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Abstract

Sleep arousal conventionally refers to any temporary intrusions of wakefulness into

sleep. Arousals are usually considered as a part of normal sleep and rarely result in

complete awakening. However, once their frequency increases, they may affect the

sleep architecture and lead to sleep fragmentation, resulting in fatigue, poor exec-

utive functioning and excessive daytime sleepiness. In the electroencephalogram,

arousals mostly appear as a shift of power in frequency to values greater than 16

Hz lasting 3-15 seconds. The general objective of this thesis was to investigate

on the nature of sleep arousal and study arousal interaction and association with

cardiovascular dynamics.

At the first step of this research, an algorithm was developed and evaluated

for automatic detection of sleep arousal. The polysomnographic (PSG) data of 9

subjects were analysed and 32 features were derived from a range of biosignals.

The extracted features were used to develop kNN classifier model in to differentiate

arousal from non-arousal events. The developed algorithm can detect arousal events

with the average sensitivity and accuracy of 79% and 95.5%, respectively.

The second aim was to investigate cardiovascular dynamics once an arousal

occurs. Overnight continuous systolic and diastolic blood pressure (SBP and DSP),

spectral components of heart rate variability (HRV) and the pulse transit time of 10

subjects (average arousal number of 51.5 ± 21.1 per person) were analysed before

and after arousal occurrence. Whether each cardiovascular variable increases or

decreases was evaluated in different types of arousals through slpoe index (SI). The

analysis indicated a post-arousal SBP and DBP elevation and PTT dropping. High

frequency component of HRV (HF) dropped at arousal onset whilst low frequency
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(LF) component shifted.

HRV spectral components extracted from ECG, lead I alongside with PTT

were utilised for sleep staging in 22 healthy and insomnia subjects using linear

and non-linear classifier models. Obtained result shows that developed model by

DW-kNN classifier could detect sleep stages with mean accuracy of 73.4% ± 6.4.

An empirical curve fitting model for overnight continuous blood pressure es-

timation was developed and evaluated using the first and second derivatives of fin-

gertip PPG (VPG, APG) along with ECG. The VPG-based model could estimate

systolic and diastolic blood pressure with mean error of ±3.96 mmHg with stan-

dard deviation of 1.41 mmHg and DBP with ±6.88 mmHg with standard deviation

of 3.03 mmHg.

The QT and RR time intervals are two cardiac variables which represent beat

to beat variability and ventricular repolarisation, respectively. PSG dataset of 2659

men aged older than 65 (MrOS Sleep Study) was analysed to compare on RR and

QT interval variability pre- and post-arousal onset. The cardiac interval gradients

were developed to monitor instantaneous changes pre-and post-onset. Analysis of

gradients demonstrated that both RR and QT are likely to start shortening several

second prior to onset by average probability of 73% and 64%. The QT/RR linear

correlation was significantly rising after arousal inducing regardless of arousal type

and associated pathological events (Rpost = 0.218 vs Rpre = 0.047). ANOVA test and

Tukey’s honest post-hoc analysis indicated a significant difference between cardiac

intervals variability between respiratory, movements and spontaneous arousals. In

addition, respiratory disturbance index (RDI) as a measure of sleep apnoea severity

was reversely correlated with both QT (RVarQT = -0.251, p < 0.0001) and RR inter-

vals vs (RVarRR = -0.265, p < 0.0001). The stronger QT and RR intervals variability

in shorter arousal (duration < 8) than longer episodes indicates that cardiac vari-

ability is reversely associated with arousal duration (p < 0.0001). Sleep stage effect

was significant in both cardiac interval variability, particularly in RR intervals.

Analysis of arousal related cardiac intervals variability in male participants

with different medical history indicated an association between post arousal un-
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changed or descending QT (∆QT > 1.1 ms) and greater frequency of sleep arousal,

less physical activity and medical history of several cardiovascular disease. Simi-

larly participants in quartile ∆RR>−8.8 were likelier to be obese with less physical

activity, medical history of COPD and stroke and suffered from severer degree of

sleep apnoea (RDI = 28.7±20.4 vs RDI = 25.5±17.6, p < 0.001). Kaplan-Meier

analysis showed that the distribution ∆RR at arousal onset was significantly asso-

ciated with cardiovascular (CV) mortality (p < 0.001). Cox proportional hazard

regression models also indicated the effect of arousal duration in prediction of CV

mortality, where longer arousals had more prognostic value for CV mortality than

shorter arousals.

Keywords— Arousals, Cardiovascular, Cardiac Intervals, Heart Rate Variability

(HRV), Blood Pressure
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Chapter 1

Introduction

This chapter begins with a general introduction to polysomnography and basics of sleep

staging. The next section is a background of sleep arousals where the literature is reviewed

in terms of the nature and origin of sleep arousals, how to score and classify them, what

is the role of arousals in sleep fragmentation, why detection of arousals is important and

how arousals are associated with different sleep disorders. Then, a background of blood

pressure measurement and cardiac time intervals are presented. The previous works on

cardiac timing and sleep analysis is also briefly discussed. The motivations, rationale and

the structure of the thesis are then discussed. The research objectives are outlined in the last

part of the chapter.

1.1 Polysomnography
Overnight polysomnography (PSG) involves typically a multitude of physiological signals

such as electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG),

electrocardiogram (ECG), air flow, respiratory effort, chest and abdominal movement, blood

oxygen saturation through fingertip photoplethysmograph (PPG). PSG systems are non-

invasive and causes minimal patient discomfort. The data are collected over a night of

sleep and a sleep technician then scores sleep events such as respiratory episodes or sleep

arousals.

Electroencephalography is a method to measure electrical potentials at the surface

of the scalp, caused by electrical activity of neurons in brain. This neuron electrical activity

results in potential differences across different locations on the surface of the brain [1]. In

terms of rhythmic activity, EEG is divided into frequency bands: delta (0.5- 4 Hz), theta (4-

7 Hz), alpha (8-15 Hz), beta (16 - 31 Hz) and gamma (32+ Hz). Three EEG channels are
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usually required for a PSG recording [2].

Electromyography is the measurement of electrical potentials caused by muscles.

EMG is therefore a signal, which is controlled by the nervous system and is depended on

the anatomical and physiological properties of muscles [3]. A typical PSG recording system

usually requires at least one EMG channel which is obtained from the chin to measure sub-

mental activity. Chin EMG can be used to differentiate REM from NREM stages. Indeed,

EMG activity decreases significantly during REM stages. EMG electrodes may also be

utilised to detect periodic limb movement events.

Photoplethysmography is a non-invasive, convenient and cheap method to determine

the variations of blood volume and blood flow in the body which occur with each heart-

beat. The PPG reflects the blood movement in the vessel in a wave-like motion. In fact,

it measures the relative absorption or reflection of red light and infrared across the finger

[4]. The PPG signal is composed of a pulsatile component (AC) which is related to pul-

sating arteries and arterioles and a relatively slow varying component (DC) that represents

the constant absorption of non-pulsatile tissue within the light path [5]. PPG signals have

been traditionally applied to measure blood pressure, oxygen saturation, cardiac output [6].

The PPG waveform morphology also indicates whether blood vessel narrows or widens.

One fingertip PPG sensor is usually used during a typical PSG recording for real-time oxy-

gen desaturation measurement. PPG recording has also been analysed to assess autonomic

functions during the sleep [4, 7]. PPG derivatives can reveal more precise details about PPG

characteristics [6, 8]. The first derivative of PPG indicates the velocity of blood detected

in the finger. Thus, PPG first derivative represents velocity of PPG (VPG). Likewise, the

second derivative of PPG represents the acceleration of blood in the finger and can be con-

sidered the ”Acceleration Plethysmogram” (APG) (Figure 1.1). The following equations

show how to compute VPG and APG:

V PG[n] =
1

2T
(PPG[n+1]−PPG[n−1]) (1.1)

APG[n] =
1

2T
(V PG[n+1]−V PG[n−1]) (1.2)

where T is the sampling interval and equals the reciprocal of sampling frequency and

n is the data sample.

APG characteristics (a, b, c, d and e waves) have been utilised to determine the degree
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of arterial stiffness and also to investigate whether ageing is associated with arterial stiffness

[9].

Figure 1.1: (Left) PPG waveform (top) and its first derivative (VPG) where SP, DP and
VP represent systolic, diastolic and VPG peaks. (Right) The PPG waveform
and its second derivative (APG), where DN indicates dicrotic notch. The APG
waveform also consists of five waves (a, b, c, d and e waves).

1.2 Sleep Stages
According to the American Academy of Sleep Medicine (AASM) criteria, sleep is divided

into two broad types [10, 11], Rapid eye movement (REM) and non rapid eye movement

(NREM) sleep which constitutes to three stages (NREM1, NREM2, NREM3) as follows:

NREM1: This stage is the transition to sleep and known as light sleep. During this

stage, eye movement is slowing down and brain produces more alpha and theta waves.

NREM2: During this stage, the brain begins to produce two characteristic waveforms,

sleep spindle and K-complex. The spindles are rapid bursts while K-complex is the largest

wave in the EEG of healthy human being.

NREM3: This stages is also known deep sleep or slow wave sleep (SWS). During this

stage, delta wave is dominant.
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REM: This stage is also known as active sleep due to eye movement. During REM,

the brain become more active and dreams may occur.

Both, NREM and REM occur in alternating cycles, each lasting approximately 90-

100 minutes, with a total of 4-6 cycles. In general, in the healthy young adult, NREM sleep

accounts for 75-90% of sleep time (3-5% stage N1, 50-60% stage N2, and 10-20% stages

N3). REM sleep therefore, accounts for 10-25% of sleep time. Hypnogram is a graph that

shows different sleep stages as a function of time.

1.3 Sleep Arousals
Arousal conventionally refers to a temporary intrusion of wakefulness into the sleep [12].

In other words, arousal may indicate at least a sudden transient elevation of the vigilance

level. Where the vigilance can be defined as the alertness and the attentiveness for whatever

may occur [13]. Arousals may reoccur once per minute and be characterised as immediate

and abrupt changes in EEG frequency during sleep [14]. Arousals usually do not lead to

complete awakening, only shifting from a deeper sleep stage to a shallower one can be

considered as an arousal [15]. Sleep can be fragmented by very short arousals throughout

the sleeping period. These short arousals are usually ignored in sleep analyses, but their

impact is significant [16].

Arousals are normally accounted as a part of normal sleep and rarely result in awak-

ening, but when the frequency of occurrence increases, they can affect the sleep process.

As a consequence, the night sleep can become highly disturbed and excessive daytime

sleepiness (EDS) can occur in the following days or weeks [17]. EDS is usually used

to describe a symptom of many sleep disorders such as narcolepsy, obstructive sleep ap-

noea/hypopnoea syndrome (OSAHS), central sleep apnoea (CSA), upper airway resis-

tance syndrom (UARS), restless leg syndrome (RLS) and periodic limb movement disorder

(PLMD). The number of sleep arousals is a predictive of daytime sleepiness [17]. More

arousals lead to more fragmented sleep and consequently more somnolence and daytime

sleepiness. Hence, sleep arousal index is considered as one of the markers of sleep qual-

ity which is independent of traditional sleep quality markers such as sleep efficiency and

sleep latency [18]. There is also a correlation between arousal and sleep fragmentation

[17]. Sleep fragmentation (SF) is the term used to describe brief awakening or arousals

from sleep which are less than 15 seconds long and often occur without the awareness of
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the sleeping subject [19]. SF can be quantified by sleep fragmentation index (SFI) which

is defined as the number of awakening during the sleep and correlated with the frequency

of arousals longer than 10s in one hour of sleep [20, 21]. Sleep arousals may add to sleep

fragmentation and this results in the lower quality of sleep and daytime fatigue.

1.3.1 Arousal Scoring

Arousal scoring takes a significant role in sleep studies and the diagnosis of different sleep

disorders. Sleep technicians and researchers mostly manually score arousal episodes based

on the AASM guideline and also look for simultaneous pathological events for arousals

classification.

According to the AASM criteria, EEG arousal is an abrupt shift in EEG frequency

which may include theta, alpha and band frequencies greater than 16 Hz excluding spindles

[10]. The EEG frequency shift must be 3 seconds or greater in duration to be scored as

an arousal. The 3-seconds duration has been chosen as the minimum length for an arousal

due to methodological reasons, whereas shorter arousals may have pathological significance

[11]. Arousals can be scored from frontal, occipital and central EEG derivations; however

frequency changes associated with arousals are more typically noted in the central and oc-

cipital derivations [2]. Figure 1.2 shows how a typical arousal can appear in EEG and chin

EMG signals

1.3.2 Classification of Arousals

Classification of arousals has always been controversial due to the different definition of

arousals and various methods for their detection [22]. Arousals can hierarchically classify

into two different broad groups: cortical and sub-cortical arousals [23].

Cortical Arousals resulted from neurons activation in the pons and activates the cere-

bral cortex. They also can propagate to the cerebral cortex and are detectable in EEG and/or

sub-mental EMG depending on the sleep stage [14]. Cortical arousals are associated with an

abrupt shift in EEG frequency and cause an increase of high frequency power in the power

spectrum of an EEG channel [24]. Apnoea/ hypopnea events or periodic limb movement

episodes can induce cortical arousals [25].

Sub-cortical Arousals or Autonomic Arousals (AA) are mostly associated to dif-

ferent levels of central nervous system activation. Despite arousal by the basic definition

refers to cortical activation, somatosensory and auditory stimulation during sleep may cause
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Figure 1.2: Arousal activation demonstrated in three EEG channels and chin EMG.

cardiac, respiratory and somatic modifications without overt EEG activation [12]. This can

be interpreted as partial arousal response that can appear even without any EEG response.

Hence, sub-cortical arousals can refer to all range of arousals resulted from those inducing

reflex motor responses and autonomic activation to the appearance of slow-wave EEG ac-

tivities such as delta bursts and K-complexes [23]. Autonomic arousal results higher level

of cardiac and respiratory activity in comparison with both sleep before the arousal and

relaxed wakefulness subsequent to the arousal [26]. The change in cardio-respiratory ac-

tivity during the arousal has been observed in several researches. Some authors speculated

the variability in cardiac functioning during AA may be associated with heart disease [27],

though some authors suggested it is correlated with a reflex activation of cardio-respiratory

system [26]. Furthermore, sub-cortical arousal is associated with sympathetic activation and

consequently causes changes in autonomic markers like heart rate (HR), respiratory rate and

blood pressure (BP) [18]. By this means, autonomic markers can be applied for detection

of autonomic arousals, particularly in children. EEG activation and presence of cortical

arousals are poor marker of sleep deprivation in children in contrast to adults [28]. Cortical
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arousals in children are associated with significant heart rate accelerations, which typically

precede arousal onset by several seconds [29]. Analysis of HR pattern can provide more

significant information about sleep deprivation in children than EEG-based techniques. The

major distinction between cortical and sub-cortical arousal is their effect on sleepiness.

While cortical arousals are correlated to sleepiness level according to the AASM criteria,

there has not been convincing evidence that autonomic arousals exhibit the same correlation

[14]. Although sub-cortical arousals can influence on autonomic activation such as heart

rate and respiratory rate, they would not make sleep deprived. Even there has been a con-

siderable debate as to whether the appearance of EEG slow-wave activity and K-complexes

is an indicator of a partial arousal process [23].

1.3.2.1 Classification of Cortical Arousals

Detection and classification of sleep arousal may help to diagnose sleep disorders and deter-

mine the severity of sleep fragmentation. Whether an arousal is accompanied by a patholog-

ical episode and has diagnostic value, can be used for the classification of cortical arousals

[25]. Loredo et al. suggested that generally there are two distinctly different types of corti-

cal arousals, one occurs in relation to disturbances during sleep, such as apnoea/hypopnea or

leg movement episodes; and the other occurs spontaneously [30]. Thus, we could generally

classify arousal events into three category as following:

Respiratory arousal or respiratory effort-related arousal (RERA) occurs when an

arousal is accompanied by respiratory events. RERA usually contains diagnostic informa-

tion about breathing disorders like obstructive sleep apnoea syndrome, central sleep apnoea

or upper airway resistance syndrome. RERAs are scored when the arousal occurs less than

5 seconds after the termination of the respiratory event [25]. The average number of ap-

noea/hypopnea events and RERAs per hour of sleep is called respiratory disturbance index

(RDI) [31]. RDI besides apnoea/hypopnea index (AHI) can determine the severity of con-

ditions in patients. For example, RDI ≤ 20 indicates mild OSAHS while 20 < RDI ≤ 40

and RDI < 40 represents moderate and severe OSAHS, respectively [32].

Periodic limb movement arousal (PLMA) is associated with abrupt variation in

EMG and plays a significant role in diagnosis of periodic limb movement (PLM) and rest-

less legs syndrome (RLS). The PLMA is scored when there is an overlap of the events or

when there is more than 0.5 seconds between the end of one event and onset of another event

irrespective of which event (arousal or limb movement) occurs first [2, 11]. The periodic
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limb movement-arousal index (PLMAI) is the number of periodic leg movements associ-

ated with an arousal per hour of sleep time [33]. The greater PLMAI can be interpreted as

the severer PLMD.

If an arousal meets both respiratory and limb movement association rules, a respiratory

arousal should be scored [2].

Spontaneous Arousal (SA): If an scored cortical arousal does not accompany with

any pathological events like RERA and PLMA, it would be categorised as SA according to

the Australian Sleep Association commentary on AASM [2]. It is assumed that SA contains

no diagnostic value and their origin has been unknown.

Arousal classification seems to be somehow subjective and highly depends on sleep

scorer, the PSG recording device and their scoring approach. Some sleep technicians prefer

to define new types of arousals based upon the association between occurrence of arousals

and various pathological events may take place during the sleep. Events such as oxygen

desaturation, heart rate acceleration or even snoring have sometimes been applied by some

sleep technician during manual sleep scoring to define new classification for arousals. For

instance, once an arousal episode is accompanied and associated with snoring event, it can

be called snoring arousal. Likewise cardiac arousal indicates an arousal event accompany-

ing with sudden heart rate acceleration. However, there is lack of scientific evidence for

these types of arousal, their origin and their impact on sleep fragmentation. More studies

are required to clarify the role of cortical and sub-cortical arousals in heart rate acceleration

or oxygen desaturation and vice versa.

1.3.2.2 Micro-arousal

The term of micro-arousal refers to any transient increases in the EEG frequencies in NREM

sleep in the conjunction with the followings: decrease of amplitudes, disappearance of delta

waves and spindles, transitory enhancement of muscle tone or phasic appearance of groups

of muscle potentials, movements of the limbs or changes in body posture and transitory rise

in heart rate. In REM sleep, the criteria for micro-arousals were temporary disappearance

of eye movements and appearance of alpha activities [12]. Sforza et al. categorised micro-

arousal as a cortical arousal because it originally requires EEG frequency shift [23]. The key

point that differentiates micro-arousals from other types of arousal is its duration. In order

to consider an abrupt EEG shift as an arousal, its duration should be at least 3 seconds.

However, for micro-arousal, the minimum required length is 1 second. In other words,
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any frequency shift to waking alpha rhythm with minimum duration of 1 second can be

categorised as a micro-arousal episode [34].

1.3.3 Arousals in Sleep Disordered Breathing
Sleep disordered breathing (SDB) events can be accompanied by either a change from a

deeper to lighter sleep stage or wakefulness. It means SDB events should induce respiratory

arousals (RERA) that directly related to central autonomic system [7]. RERA can make

sleep disturbance and cause sleep deprivation in either patient subjected to obstructive sleep

apnoea/hypopnoea syndrome (OSAHS) or suffering from upper airway resistance syndrome

(UARS).

1.3.3.1 Arousals and Sleep Apnoea/Hypopnoea

Sleep apnoea is characterised by the pauses in breathing or infrequent breathing during

sleep, lasting for at least 10 seconds. Similarly, hypopnoea is defined as a reduction in

airflow or amplitude of thoraco-abdominal movement by at least 30% from baseline ac-

companied by desaturation of oxygen of 4% or more lasting at least 10 seconds [35]. De-

spite all SDB events are expected to be terminated by arousals, only 75% of them end with

clear EEG arousals [36]. SDB events which are terminated with arousals are likelier to pro-

mote hyperventilation after event termination than SDB events with no arousal [37]. Thus,

stimuli produce measurable cardiovascular disturbance that can sufficiently produce day-

time sleepiness even without any EEG-based arousals appearing [38]. Detection of RERA

provides information about whether a SDB episode terminated by an arousal or not. This

information can be used for diagnosis and treatment of OSAHS. In addition, due to the

association between the apnoea/hypopnea terminating and arousals induction, the arousal

response is an important respiratory defence mechanism during the sleep [15]. Any impair-

ments in the arousal response by raising the arousal threshold can increase the severity of

sleep apnoea [39].

1.3.3.2 UARS and Sleep Arousals

UARS is characterised by the narrowing of the airway which is associated with increasing

breathing effort. UARS can cause disruptions to sleep, tiredness and daytime sleepiness [16,

40]. In patients with UARS, considerable increases in esophageal pressure (Pes), terminated

by arousal can be observed. In fact, once an arousal occurs, Pes abruptly decreases which

is called Pes reversal. Although, Pes reversal can be seen without the presence of a clear
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arousal, Pes reversal episodes accompanied with arousals have a greater impact on ongoing

respiratory effort than those Pes reversal occurring with no arousal [41].

1.3.4 Arousals and Periodic Limb Movement
Periodic limb movement refers to any repetitive and involuntarily leg jerks characterised

by a flexion movement at ankle, knee, and hip, which arise from sleep, lasting 0.5 to 10

seconds, separated by intervals of 5 to 90 seconds, and occurring in a row of at least 4

[42]. PLMD is characterised by episodes of limb movements during the sleep [33]. PLMD

should not be confused with RLS because RLS can occur while awake. In PLMD, move-

ments are often associated with cortical arousals or awakening. The number of limb move-

ment episodes and the periodic limb movement associated arousal (PLMA) are significantly

higher in patients with PLMD in compare to RLS subjects. The index of PLMA therefore

may determine the severity of PLMD. In other hand, the presence of spontaneous arousal

episodes in RLS cases is more remarkable than subjects with PLMD [43]. By this means,

SA index could be applied to differentiate RLS and PLMD cases.

1.4 Blood Pressure Monitoring
Circulating blood puts pressure on the wall of the blood vessel which is called blood pres-

sure (BP) and expressed and interpreted in terms of the systolic blood pressure (SBP), the

maximum pressure during one heart beat, over diastolic blood pressure (DBP), the mini-

mum in between two heart beats. BP alongside with heart rate, respiratory rate, and body

temperature are the four vital signs of human body. BP measurement provides useful infor-

mation about cardiac output, elasticity of the blood vessel, and physiological variation [44].

High blood pressure also known as hypertension (HT), is a long-term medical condition in

which the blood pressure in the arteries is persistently elevated [45]. Although high blood

pressure usually does not cause symptoms, long-term high blood pressure is a major risk

factor for coronary artery disease, stroke, heart failure, atrial fibrillation, peripheral vascular

disease and dementia [46, 47].

Ambulatory blood pressure monitoring (ABPM) is designed to measure BP for 24h

during the wake and sleep. ABPM is a known technique for HT diagnosis and usually

provides BP reading every 15 minutes during the day and every 30 minutes overnight. BP in

some patients abnormally increases in presence of doctor which is called white coat affect.

ABPM presents more reliable BP measurement through minimising white coat effect [48].
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ABPM can also provide information about BP changes after falling into the sleep. BP is

expected to reduce during the sleep by almost 10-20% and this phenomenon is known as

dipping. The ratio of daytime SBP over nighttime SBP called Dip ratio, can determine

whether BP decreases overnight. Based on ABPM measurement and difference between

night and day SBP, patients are categorised into four groups as extreme dippers (dip ≤

0.8), dippers (0.8<dip≤ 0.9), non-dippers (0.9<dip≤ 1.0) and reverse dippers (dip>1.0)

[49]. ABPM is an effective method in diagnosis and provide adequate and reliable data for

widespread applications in medicine. However ABPM as a cuff-based method has some

disadvantages which limits its application in certain clinical situations. Firstly, while cuff

is being used for measurement of continuous BP, it requires at least 1-2 minutes pause

between two BP measurements due to avoid errors. Hence, the short-term changes in blood

pressure cannot be detected [50]. In order to investigate whether BP changes can influence

sleep architecture and make sleep fragmented, short-term BP variations are essential and

should not be ignored. Secondly, the inflation of the cuff may disturb the patient and the

consequences of these disturbances are alterations of the BP [51]. Particularly during the

sleep, cuff inflation may behave as an arousal stimulation disturb the sleep and consequently,

results BP elevation. It seems cuff-based methods are not effectively reliable for sleep

analysis. Hence, development of an alternative approach for a continuous, non-invasive

and measurement of BP has been highly desirable [51, 52, 53]. Continuous blood pressure

estimation seeks to non-invasively measure BP in real-time, continuously and without any

interruptions.

There is a strong interdependence between sleep disordered breathing and HT [54]. A

study showed almost 60% of OSAHS patients had HT, whilst 30% of hypertensive adults

suffered from obstructive sleep apnoea [55]. Sleep disruption has been shown as a main

factor of blood pressure increasing during the sleep [56]. Sleep quantitative parameters like

sleep efficiency and sleep latency have association with HT. Patients with HT often suffer

from short sleep duration, less REM sleep and lower sleep efficiency [57]. In addition, the

lower percentage of SWS or deep sleep may increase the risk of HT [55].

1.4.1 Baroreflex

The baroreflex or baroreceptor reflex is a homeostatic mechanism which is responsible to

maintain BP at nearly constant levels through a rapid negative feedback loop. The elevated

blood pressure reflexively causes the heart rate to decrease and also causes blood pressure
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to decrease. As a consequence, the decreased blood pressure decreases baroreflex activation

and causes heart rate to increase and to restore blood pressure levels [58]. Baroreceptors

are present in the atria of the heart and vena cava, but the most sensitive baroreceptors are

in the carotid sinuses and aortic arch. The artificial stimulation of the carotid sinus or aortic

arch baroreceptors by either mechanical or electrical means can produce immediate and

profound electroencephalogram (EEG) synchronisation that are independent of BP changes

[59, 60]. The produced EEG waves appear identical with those seen during spontaneous

sleep arousals [60]. The baroreceptor effects on sleep and sleep arousals may be produced

by action on a specific inhibitory centre in the brain stem known as the solitary nucleus (SN).

Certain neurons in this region are known to mediate the fall in heart rate and blood pressure

caused by baroreceptor stimulation [60, 61]. Baroreflex or baroreceptor sensitivity (BRS)

is a measurement to quantify how much control the baroreflex has on the heart rate. BRS

during the sleep in OSA patients was shown to be depressed, but improved after treatment

with continuous positive airway pressure (CPAP) [62].

1.5 Cardiac Time Intervals

1.5.1 Cardiac Cycle

There are four chambers in human heart, the upper two chambers are called atria while

the two lower known as ventricles. Two large veins carries poor oxygenated blood from

lower and middle half of body (inferior vena cava) and upper half of body (superior vena

cava) into the right atrium. Then the collected blood will be pumped in to right ventricle

as soon as atria contracts. At the next step, the low oxygenated blood will be sent to the

lung by passing through pulmonary artery after ventricles contracts. In other side, high

oxygenated blood is being pumped from lung into left atrium through pulmonary vein. The

contraction of atria brings blood down into left ventricle through passing mitral valves. The

ventricle contraction also pumps blood from left ventricle to aorta to be sent to the whole

body. This cycle is usually known as cardiac cycle and conducted by electrical impulses

sent by sinoatrial node located in atria and makes upper heart chambers (atria) to contract.

Similarly AV node manages ventricles to contract.
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1.5.2 ECG Morphology
The electric impulse generated from sinoatrial node, spreads across the atrium, then to the

atrioventricular node and through the ventricles of the heart. The impulse conducts four

heart chambers to relax and contract. Electrocardiography is the process of measurement of

electrical activity of heart. ECG provides detailed information about heart and consists of

three main waveforms as following:

P wave: The depolarisation of right and left atrium results atrial contraction which

appears as P wave. The early and late part of P wave represent the electrical activity gen-

erated by the right and left atrium, respectively. While the middle part of P indicates the

completion of right atrial activation of initiation of left atrium activity [63].

QRS Complex : The complex is constituted of three waves Q, R and S. The QRS

complex is the main spike seen at ECG line and corresponds depolarisation of left and

right ventricles as well as contraction of ventricles (Figure 1.3). The morphology of QRS

complex may vary case by case. Even each QRS complex do not have necessarily all three

waves. The convention is the Q wave is always negative, while the R wave is upward and

positive. The S wave is the first negative deflection after R wave. The length of normal QRS

complex is 60 to 100 ms in adults.

Figure 1.3: A typical ECG waveform with its components including P, Q, R, S and T
waves.

T Wave follows QRS complex and represents ventricular repolarisation or electric

recovery of ventricles. The direction of T wave is normally as same as QRS complex. T
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wave inversion refers to when the direction of T is the opposite of QRS. Inverted T wave

can be a sign of cardiac pathology.

A small wave between T and the P wave of next atrial repolarisation (U wave) has

been observed in some individuals. The source of U wave is still unknown.

1.5.3 ECG Time Intervals

ECG time intervals can reveal the duration of each stage of the cardiac cycle. The PR inter-

val demonstrates the time required for electric impulse to move from atria through the AV

node, bundle of His, bundle branches, and Purkinje fibres until the ventricular depolarisa-

tion [63]. The normal range for PR is 120-200 ms. QT interval indicates the time required

for ventricular repolarisation or ventricular recovery. In other words, QT interval approxi-

mates the time interval between the start of depolarisation and the end of repolarisation of

the ventricular myocardium [64]. RR time interval also represents the time delay between

two consecutive heart beats. The maximum resting RR interval for a normal heart beat (60-

100 bpm) is about one second. RR time interval are reversely related with heart rate, hence

the faster heart rate will result the shorter RR interval.

The variability of QT interval plays a key role in prediction of cardiac arrhythmia. QT

prolongation may intensify the risk of ventricular fibrillation and cause sudden cardiac death

[65]. A precise and integrated interpretation of the variability of QT intervals can therefore,

provide more reliable analysis. Some methods for correction QT have been suggested.

Firstly in 1920, Bazett developed a formula [66] to correct the measured QT interval to a

value (QTc) attributable to a heart rate of 60 beat per minute (bpm) as follows:

QTc =
QT√

RR
(1.3)

where (QTc) is called the QT interval corrected for HR and QT and RR time intervals

both should be in seconds.

Bazzet’s non-linear formula has been often used due to its simplicity, though it obvi-

ously performs over-correct at high heart rate and under-correct at low heart rate [67]. Some

alternatives have been recommended for it. For instance, Fridericia proposed to use cube

root of RR interval instead of square root as follows [68]:

QTc f =
QT
3
√

RR
(1.4)
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1.5.4 Cardiac Timing and Sleep Analysis

SDB episodes can trigger autonomic nervous system responses. Hence, cardiovascular vari-

ables such as blood pressure, heart and respiratory rate change immediately. Patients suf-

fering from obstructive sleep apnoea (OSA) are in increased risk of some cardiac problems

from heart failure to stroke. Kasai et al. showed that OSA exposes the cardiovascular sys-

tem to intermittent hypoxia, oxidative stress, systemic inflammation, exaggerated negative

intrathoracic pressure, sympathetic over-activation, and elevated BP. These can result in the

progression of heart failure [69]. It has been highly desirable to understand the behaviour of

various cardiovascular parameters during sleep events. Apnoea events by definition should

be accompanied with significant oxygen desaturation that consequently will force cardiac

system to response and cause transient changes in heart rate or blood pressure. Detection

and monitoring of changes of cardiovascular measures during sleep may facilitate the diag-

nosis and treatment of sleep disorders.

Several studies have been conducted in terms of cardiovascular dynamics during sleep,

nevertheless mainly focused on temporal and spectral features of heart rate variability

(HRV). Roche et al. developed a model with high sensitivity based upon the time-domain

analysis of heart rate variability as a tool of screening in OSAHS patients [70]. Furthermore,

HRV spectral analysis and fractal mathematics also revealed a distinction between apneic

and non-apneic epochs. The ratio of low frequency to high frequency spectral components

(LF/HF) and fractal dimension of apnoea episodes with various duration are significantly

different from normal sleep episodes [71]. Although Penzel urges that the surrogate pattern

derived from HRV cannot replace the markers which directly extracted from respiratory

recording like apnoea/hypopnoea index (AHI) for diagnosis of OSA [72].

The changes in cardiac time intervals has been discussed in the literature. Gillis et

al. claimed that RR time interval prolonged profoundly during apnoea events in compare

to normal events and decreased after apnoea hyperventilation [73]. Their observations also

showed QT time interval was prolonged at the onset and during the apnoea. Whilst it short-

ened abruptly during the post-apnoea hyperventilation period. Moreover, sleep arousals,

regardless of their type can lead PR time interval to prolong and QT and RR intervals to

shortened [74].

Barr et al. introduced the QT interval dispersion (QTd) factor regarding to Bazett’s

formula as the difference between maximum and minimum of corrected QT (QTc) [75].
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The QT dispersion (QTd) is a noninvasive method to measure inhomogeneity of ventricular

repolarisation or recovery times. Dursunoglu and his colleagues applied QTd to determine

the severity of OSA disorder [76]. They found a strong positive correlation between AHI

and QTd in non-hypertensive OSA patients.

1.6 Rationale

There is a perception that people who suffer from excessive daytime sleepiness (EDS) be-

lieve that they have a healthy overnight sleep but in fact their sleep is disturbed. EDS can

be a symptom of factors and sleep disorders such as narcolepsy, idiopathic hypersomnia,

sleep apnoea or a circadian rhythm sleep disorder. EDS affects more than 10% of the Aus-

tralia’s population [77] and people who suffer from EDS are at the risk of having motor

vehicle and work-related accidents [78]. A considerable percentage of patients who suffer

from various sleep disorders are inadequately treated because they are unaware about their

condition. Once the frequency of arousal occurrence increases, sleep architecture can be af-

fected and sleep will be fragmented. In other words, certain sleep arousals can cause sleep

fragmentation and this results in the lower quality of sleep and daytime fatigue or somno-

lence. Sleep sufferers often complain about insufficient proper daytime functioning due to

somnolence. Overall, repeated arousals in OSAHS cases may result in sleep fragmentation

and consequently poor sleep quality [15]. AASM defined an international standard for man-

ual scoring and AASM criteria are generally being used by sleep specialists and technicians

in the diagnosis of sleep disorders. However, manual sleep scoring is a time-consuming

process, subjective and suffers from low inter-rater agreement [79]. Hence, developing an

algorithm for automatic detection and classification of sleep arousal with higher accuracy

has always been desirable for sleep scientists. Despite several software have been devel-

oped for sleep analysis, they rarely can detect sleep events or classify different type of sleep

arousals. Some researcher have suggested new automatic and semi-automatic methods for

detection of sleep arousals, however their efforts mostly have been focused on respiratory

arousals [25, 80, 81]. Arousals regardless of their type may result sleep disturbance, all

arousal types were, therefore, considered in our analysis and we did not focus on a particu-

lar type of arousal and exclude the other types. Our initial goal was to develop an algorithm

to automatically detect arousal episodes without consideration of their type. By this means,

we could differentiate arousal and non-arousal epochs (Chapter 2.1).
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Autonomic activation during the sleep such as BP elevation or heart rate fluctuation

are capable to induce arousals. On the other side, some studies demonstrated that arousal

inducing can make a transient shift in BP [82] or HRV [83]. Repeated arousals not only

influences on BP during the sleep, but also it may result sustained increase in daytime BP

[21]. Autonomic cardiovascular parameters such as HR and BP are regulated by autonomic

nervous system (ANS). Sleep arousal like an stimulator trigger ANS to make a transient

change in autonomic parameters. The link between autonomic activation and EEG changes

during arousal manifests a common generator located in brainstem can generate both cere-

bral and cardiovascular variations [84]. The analysis of BP and HR variability before, during

and after arousal can therefore reveal how ANS interacts with cardiovascular system dur-

ing arousal occurrence. In addition, the HR and BP changes to the induced arousal can be

interpreted as the cardiovascular response to sleep fragmentation. By this means, we could

describe how sleep fragmentation affects on cardiovascular system. Different aspects of

the association of autonomic activation and EEG shift during arousals have been discussed

in different studies [4, 18, 26, 85, 86, 87]. According to the literature, sleep arousal and

sleep fragmentation are both associated with different cardiovascular of peripheral activa-

tion, however whether this association differs in various types of arousal has rarely been

investigated. In fact, the type of an arousal indicates whether this arousal induces with any

sleep events or arousal induced solely from cortex. Thus, cardiovascular parameters vari-

ability in different arousal types demonstrates whether adjacent activation to arousal such

as apneic, oxygen desaturation or periodic limb movement episodes are related to upcom-

ing autonomic activation. We extracted pulse transit time (PTT) from ECG and fingertip

peripheral PPG biosignals and then analyse them along with arterial systemic BP and spec-

tral components of HRV in different arousal types before and after arousal to find out the

impacts of arousal types on autonomic cardiovascular parameters (Chapter 2.2).

Sleep staging is an important part of sleep analysis and provides a general picture of

sleep architecture. EEG recording during PSG process are the main reference for sleep stag-

ing. PSG system is an integrated and cutting-edge technology which has been effectively

helpful in diagnosis of sleep disorders. However PSG is expensive and it also requires

bunch of electrodes and sensors to be connected to the patient. This might be too disruptive

for patients sleep. Therefore, PSG is restrictively used in specialised hospital-based sleep

laboratory and suffers difficulty in wider application like home nursing [88]. A simpler,
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reliable, low-cost and preferably wearable surrogate with the minimum number of elec-

trodes will facilitate sleep home screening. In this thesis, we presented our effort to develop

a new algorithm for sleep staging based upon PTT and HRV analysis (Chapter 2.3). The

suggested method only requires one ECG channel and one fingertip PPG sensor and can be

implemented for as a wearable technology for sleep screening.

Due to significance of continuous BP, tens studies have been done to develop a non-

invasive method which can estimate BP continuously and uninterruptedly. According to the

literature, PTT is known marker of continuous BP measurement [51, 44, 53, 89]. PPG first

and second derivatives (VPG and APG) can indicate another interpretation of PPG mor-

phology characteristics [6]. As mentioned in 1.1, APG has mainly been applied for arterial

stiffness assessment [9, 90] whilst PPG first derivative (VPG) has rarely been undertaken in

the literature. In Chapter 3, a new empirical approach was suggested and evaluated based

upon the analysis of first and second derivatives of PPG for PTT estimation. Then, the

performance of VPG and APG in continuous overnight BP measurement were compared.

Sleep arousal causes sudden changes in cardiovascular and respiratory system.

Arousal is also capable to instigate cardiac arrhythmias in subjects with a susceptible my-

ocardium [91]. Higher number of arousals in patients suffering from obstructive sleep ap-

noea (OSA) is likely to intensify accompanying cardiac pathology [91, 92]. Furthermore,

OSA and is known as an independent risk factor for cardiovascular disease [93]. The proba-

bility of Sudden cardiac death (SCD) amongst OSA patients at night is considerably higher

in contrast to the general population [92]. Cardiac autonomic activity during the sleep is

mainly studied through HRV analysis. Beyond HRV, QT and PR time intervals are an-

other cardiovascular markers which have been investigated in some studies for analysis of

cardiac system either in sleep or wake [91, 94, 95]. According to the literature, QT variabil-

ity is correlated with the severity of OSA and surprisingly this correlation is stronger than

HRV [94]. It seems that QT can take a similar role like RR in analysis of cardiovascular

system during the sleep. Arousal occurrence seems to be likelier to make QT and RR short-

ened than lengthened [91]. However this provides no information about the instantaneous

changes in cardiac intervals right before and after arousal occurrence. In addition, whether

arousal type, duration or sleep stages can make a significant difference in QT and RR inter-

val variability is still unknown. It seems necessary to find out QT and RR correlation and

inter-relation before and after arousal occurrence. Whether QT and RR interval variability
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are associated with arousal index, sleep fragmentation or the degree of OSA, allows us to

assess the diagnostic significance of cardiac intervals in different sleep disorders. In Chapter

4 of this thesis, we investigated different aspects of cardiac time intervals during the sleep

arousal.

Cardiac time intervals variability and severity of OSA are correlated. As mentioned,

OSA sufferers are more prone to cardiovascular disease. In Chapter 5, an analysis on the

association of QT and RR interval variability during arousal and subject’s physical and

medical background have been presented. We also investigate whether QT and RR cardiac

variability during arousal have prognostic value for cardiovascular mortality.

1.7 Objectives
The general objective of this thesis is to present a comprehensive study about sleep arousal

and its effect on dynamics of cardiovascular system.

1.7.1 Primary objectives
The manuscript also specifically focuses on the following primary objectives:

• Develop an algorithm for automatic detection of sleep arousals.

• Detect sleep stages using HRV and PTT analysis.

• Estimate cardiac time intervals before and after arousal onset to monitor cardiac in-

tervals variability during arousal episodes.

• Study the effect of arousal type, duration and sleep stages on QT and RR interval

variability.

• Study the association between arousal related cardiac intervals variability and human

subjects’ physical characteristics and medical history.

1.7.2 Secondary objectives
In addition, the study is going to focus on following secondary objectives:

• Explore the relationship between the sleep arousal occurrence and the changes in

various PSG bio-signals including PPG, ECG, EEG and EMG.

• Investigate on the relationships between arousal and cardiovascular variables such as

heart rate variability, systolic and diastolic blood pressure and pulse transit time.
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• Develop a method for the estimation of overnight continuous blood pressure using

PPG derivatives.

• Analyse instantaneous changes in QT and RR intervals prior to and following arousal

occurrence.

• Investigate on the association of cardiac intervals variability with sleep fragmentation

and the severity of sleep apnoea disorder.

• Assess the capability of arousal-related cardiac intervals variability in prediction of

cardiovascular mortality.



Chapter 2

Sleep Arousals and Cardiovascular

Variables

2.1 Automatic Detection of Arousals

2.1.1 Background

As discussed in the previous chapter, arousal is characterised by a sudden increase in EEG

frequency lasting between 3-15 seconds. Detection of sleep arousals plays a critical role

in sleep studies and provides valuable information for diagnostic purposes. Manual arousal

scoring is still widely accepted and routinely applied for clinical and research purposes.

Sleep technicians often conduct manual scoring according to AASM guideline [11] in order

to visually mark and distinguish sleep disorder events like arousals. Needless to say that

manual scoring is subjective, time-consuming and has low inter-scorer agreement. Thus,

investigation onto the development of a technique for automatic detection of arousals has

always been desirable.

In 1999, De Carli and his colleagues applied two EEG channels (F4-C4 and C4-O2)

alongside with submental EMG to design an automatic arousal detector using wavelet anal-

ysis [80]. It was one early attempt to find a computerised alternative for manual scoring.

Basner et al. developed an ECG-based algorithm for automatic arousal detection [79]. Their

aim was to design an automatic model, which is able to differentiate between cortical and

autonomic arousals. The changes of heartbeat, emerged in R wave of ECG signal, during

the sleep arousal was the fundamental of their algorithm for detection and classification of

sleep arousals. However, the accuracy and sensitivity of the model was low for arousals
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longer than 10 seconds. In another study, various PSG bio-signals such as EEG, chin and

tibialis EMG in addition to airflow pressure and temperature were employed to detect corti-

cal arousal in subjects with sleep apnoea syndrome. The developed technique could detect

RERA by 86%, nonetheless, movement and spontaneous arousals were not considered [25].

Sorensen et al. proposed an algorithm for arousal detection in healthy adults and patients

with Parkinson disease. Extracted features from spectral analysis of EEG and submental

EMG plus the hypnogram data used as the input of an artificial neural network. The algo-

rithm could identify arousal events from non-arousal events by sensitivity of 88%. Since

the hypnogram data was extracted manually, the algorithm could not be accounted as a

fully-automatic novel for arousal detection [81].

The aim of this preliminary study was to develop an algorithm for automatic detection

of sleep arousals. In this stage, we only investigated how to analyse different PSG biosig-

nals to distinguish arousal events and did not consider the type of arousal as well as sleep

disorder groups.

2.1.2 Methodology

Subjects: Nine subjects’ overnight PSG recordings which have been performed at St Luke’s

Hospital (Sydney, Australia) were analysed for this study. Six subjects were males whilst

three were females and their age range was 34-69 years. Four subjects suffered from moder-

ate and severe OSAHS, one diagnosed with PLMD and four subjects were identified healthy

and without any sleep disorders.

2.1.2.1 Data Acquisition

For each subject, 8-hour clinical sleep PSG recordings were undertaken with the sampling

frequency of 256 Hz using Bio-Logic System and Adults Sleepscan Vision Analysis (Bio-

Logic Corp, USA). The recording montage signals consisted of: EEG (C3-A2, C4-A1

and O2-A1), left and right EOG (EOG-L and EOG-R), submental EMG, ECG, leg move-

ment actigraphy, nasal and oral airflow, snoring sound, saturation oxygen and chest and

abdomen breathing effort. The sleep stages were visually scored at 30s epochs according

to Rechtchaffen and Kales criteria [96]. Sleep arousals as well as respiratory and limb

movement events were also scored by an independent sleep expert according to the AASM

criteria. The detailed information about manual arousal scoring has been presented in Table

2.1. The Arousals index was calculated as the number of arousals per one hour sleep.
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Subject

ID

Total Sleep Time

(h : m)

No. of

Arousals

Arousal

Index

No. of

RERA

No. of

PLMA

No. of

SA

1 7 : 02 520 74.0 381 27 112

2 6 : 16 45 6.6 0 17 28

3 7 : 16 314 43.3 108 89 117

4 6 : 21 273 43.0 0 151 122

5 8 : 12 137 16.7 7 85 72

6 5 : 27 147 27.0 51 67 30

7 5 : 18 64 12.1 3 42 19

8 6 : 37 74 11.2 1 30 43

9 6 : 59 121 17.1 15 63 43

Mean±SD - 188.3±145.6 27.9±20.6 62.9±117.4 63.4±39.2 65.1±39.3

Table 2.1: Partial descriptive analysis of PSG data, including manual scoring of different
types of arousals (respiratory effort related arousal (RERA), periodic limb move-
ment arousal (PLMA) and spontaneous arousal (SA)).

2.1.2.2 Data Pre-processing

Figure 2.1 presents a schematic diagram of proposed model for automatic arousal detection.

We applied various signal processing and statistical method for development and evaluation

of suggested arousal detector.

Figure 2.1: Schematic diagram of arousal detection model

According to AASM criteria, both central and occipital EEG channels can be used for

scoring of sleep arousals. Submental EMG is also required manual scoring during REM

sleep stage. Hence, the analysis of three channel EEG and submental EMG seem to be

essential for detection of arousals. Sleep technician did sleep scoring independently to

this study. Their strategy for classification of arousal was the association of sleep disorder

episodes and arousal occurrence. Thus, scored arousals were classified into RERA (Figure

2.2) or PLMA (Figure 2.3) whether the arousal was associated to respiratory or periodic
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limb movement. Otherwise, it was classified as a spontaneous arousal event. Moreover,

arousal episodes shorter than 3 seconds were excluded in this study.

Figure 2.2: The apnoea episode terminated by a RERA episode.

In actual clinical diagnosis, only arousals which are related to pathological events have

crucial meaning. Vice versa, spontaneous arousals have less diagnostic value because they

are not related to any pathological events [25]. Other PSG biosignals such as ECG, leg

movement and airflow reveal information about pathological events like heart rate acceler-

ation, apnoea/hypopnea or body movement episodes. This information therefore could be

beneficial for detection and particularly classification of different types of arousals.

To develop the algorithm, we analysed two central EEG channels (C3-A2 & C4-A1),

one occipital EEG channel (O2-A1), submental EMG, leg movement actigraphy, airflow

time series and ECG. All signals were segmented into 30 seconds epochs and the algorithm

was going to differentiate epoch with arousals from no-arousal epochs. In fact, once an

arousal occurs during an epoch, it can make sudden changes emerging in different PSG

biosignals based on the type of arousal. We hypothesised that PSG extracted features of an

epoch with an arousal would be significantly different from an epoch without presence of

any types of arousal.

2.1.2.3 Feature Extraction

In order to develop feature extraction model and then feature matrix, various signal pro-

cessing methods were applied and 32 features were extracted for each 30-second epoch as
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Figure 2.3: A periodic limb movement arousal (PLMA) accompanied with a PLM event

follows:

EEG features: Once three EEG channel biosignals were segmented into epochs, two

different approaches were applied to extract EEG features. The first approach for EEG

features extraction was to estimate percentage of EEG bands or relative power bands. The

second was to compute the ratio of previous and current time windows.

Relative EEG power bands: All epochs were band-pass filtered through a Butter-

worth filter with second order cut-off frequency from 0.4 to 40 Hz. Then each epoch was

transformed to the frequency domain using Welch’s algorithm [97]. The outcome was a

vector of power spectral values in frequency range from 0 to 128 (the half of sampling fre-

quency). The vector of power spectral values was then categorised to EEG bands according

to the frequency bands: delta band (0.5 to 4Hz), theta band (4 to 8Hz), alpha band (8 to 15

Hz), beta band (16 to 32 Hz) and Total band (0.4 to 40 Hz). The ratio of sum of absolute

values of each particular band to the summation of total band is considered as the relative

power band [98]. For instance, the delta relative power for k-th epoch (pδ
k ) was computed

as follows:

pδ
k =

∑
f=4
f=0.4 Pf

∑
f=40
f=0.4 Pf

×100%. (2.1)

Similarly, theta, beta and alpha relative power for three EEG channel recordings were

computed and consequently 12 features were created.

Ratio of previous and current time windows: Sleep arousal is characterised as a
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sudden shift in EEG frequency consisting of alpha, beta and theta activity. Sudden shift

is associated with intensive variations in EEG energy before and after occurrence of sleep

arousals and can be calculated by power spectral density (PSD). Since sleep arousals are

corresponded to greater frequencies such as alpha and beta than delta, in this stage all EEG

epochs were being passed through a band-pass filter with cut-off frequency from 8 to 40

Hz. Within each epoch, a time window with duration of 10 seconds before the moment was

applied. Indeed, the past 10-second window represents the EEG activity in advance to a

particular moment. In a similar way, the EEG activity for following initial moments can be

monitored by a current 3-second window. PSD in each window [81]:

PSD =
∑

n
i=1 X(i)2

N
, (2.2)

where X is the filtered EEG signal segment transformed to the frequency domain and N is

the number of samples in the Fourier transformed segment. The ratio of PSD of 3-second

(current) and 10-second (previous) is called ratio of PSD (RPSD) and indicates frequency

changes at each moment. Three features such as minimum and maximum of RSPD in

addition to area under RPSD curve of each epoch for three EEG channels were computed

and totally 9 features were extracted.

EMG features: Submental EMG signals were segmented to 30-second epochs and

then filtered through a 2-order high-pass filter with 30 Hz frequency of cut-off in order to

remove unnecessary frequencies and artefacts. The first feature is root mean square (RMS)

of EMG that represents the EMG epochs amplitude:

RMS =

√
x(i)2

N
, (2.3)

where x(i) is the EMG epoch time series and N is the number of samples.

In addition, EMG time series were transformed into frequency domain using Welch’s

method. The mean of power spectral values and MNF (Equation 2.4) were calculated as

two more EMG extracted features [99]:

MNF =
∑

M
j=1 f jPj

∑
M
j=1 Pj

, (2.4)

where f and P is frequency and power spectrum values of bin j and M is the length of

frequency bin.



2.1. Automatic Detection of Arousals 52

Leg movement feature: The RMS of leg movement time series was calculated and

considered as an extracted feature for each epoch. This feature represents limb movement

and can be useful for detection of movement arousals.

Respiratory feature: Once airflow time series was segmented into epochs and trans-

formed into spectral domain, three features such as arithmetic mean, standard deviation,

peak amplitude (PA) were computed. PA is the maximum of power spectral values [100].

Heart rate features: The R peaks of ECG signals were detected according to the

Murthy et al. algorithm [101]. Heart rate (HR) were computed through QRS complex

locations and used for feature extraction. Four statistical moments including mean, stan-

dard deviation, skewness and kurtosis were calculated for HR and stored as HR extracted

features.

Feature matrix: For each subject, a feature matrix was developed with n rows as the

number of sleep 30-second epochs and 33 columns. The first 32 columns were allocated to

the normalised features and the last column determined whether the epoch was manually

scored as an arousal epoch or not associated with any types of sleep arousals. This column

were being used in training and validation.

2.1.2.4 Development of Classifier

A classifier was required to differentiate epochs with arousals from non-arousal epochs.

The k-nearest neighbours (kNN) is a simple and suitable classifier model for clustering and

it is capable to be used for both regression and classification purposes. A kNN classifier

developed was applied on feature matrix to distinguish epochs with arousals. The ratio of

arousal to non-arousal epochs varied subject by subject and it might affect on the perfor-

mance of the classifier. In subjects with higher ratio, all arousal and non arousal epochs

were considered for classifications. However in subjects with lower number of arousals, for

each arousal epoch, two non-arousal epochs were randomly chosen to avoid imbalance of

datasets in classification.

2.1.2.5 Performance Analysis and Validation

In order to evaluate the performance of classifier, we computed three statistical measures,

sensitivity, specificity and accuracy. They were calculated as following:

Sensitivity =
T P

T P+FN
×100%, (2.5)
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Speci f icity =
T N

FP+T N
×100%, (2.6)

Accuracy =
T N +T P

T P+FP+T N +FN
×100%, (2.7)

where

TP = Number of arousals detected which matched with the actual events;

FP = Number of arousals detected which did not match with the actual ones;

TN = Number of non-arousal events which matched correctly;

FN = Number of non-arousal events which did not match correctly.

We also applied Leave-one-out cross-validation method to assess the validation of our

algorithm. Eight subjects’ features matrices were selected for training and one subject’s

matrix was left for testing step, with the same process being repeated for remaining tested

subjects. By this means, we could investigate whether suggested model was successful in

arousals detection.

2.1.3 Results and Discussion

The performance analysis of algorithm in detection of sleep arousals was summarised

in Table 2.2. The higher sensitivity indicates the model could accurately distin-

guish greater number of arousal epochs. Likewise, the higher specificity demonstrates

that model was more successful in detection of Non-Arousal epochs. The accuracy

also reveals the preciseness of developed classifier model in arousal detection.

Subject ID Sensitivity(%) Specificity(%) Accuracy (%)

1 93.8 71.9 85.4

2 77.8 100 98.7

3 67.5 97.1 86.5

4 87.9 96.9 93.7

5 70.1 99.1 95.0

6 78.9 98.2 93.9

7 79.7 99.5 97.5

8 79.7 98.6 96.8

9 75.2 98.3 94.9

Table 2.2: Performance of Algorithm using Leave-One-Out-Cross-Validation method.
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The average sensitivity, specificity and accuracy were 79.0%, 95.5% and 93.6%, respec-

tively. The algorithm could classify sleep epochs into arousal epochs and non-arousal

epochs by high accuracy and sensitivity. The algorithm was able to detect arousal epochs

in two subjects with sensitivity greater than 85%. According to the Table 2.1, the Subject

1 suffered from severe OSAHS with extremely massive number of RERA (n = 381). The

sensitivity and accuracy for this case was 93.9% and 85.4%, respectively. On the other

hand, the Subject 4 was diagnosed as a PLMD patient due to 151 PLMA scored during their

overnight sleep. We could automatically detect arousal epochs in this subject with accuracy

of 93.7% and sensitivity of almost 88%. It indicates that the algorithm performance in

differentiation of arousal epochs from non-arousal was independent of subjects’ disorders

and types of induced arousals. Based upon over observations, the algorithm did not perform

well in Subject 3, where the achieved sensitivity was 67.5%, despite of high accuracy by

86.5%. In this case, majority of respiratory arousals was overlapped or surrounded by

periodic movement and spontaneous arousals. This causes the detector model failed to

distinguish a considerable number of arousal epochs. We only focused on the detection of

arousals without considering their types, as a result, it would not classify arousals based on

their association with pathological events.

In this study, the aim was to investigate whether PSG extracted features were capa-

ble in automatic detection of sleep arousal episodes. The purposed algorithm generally

could differentiate arousal epochs from non-arousal epoch with sensitivity of about 80%

and tremendously high accuracy (95.5%). Sugi et al. have been done a similar study pre-

viously [25], however our approach in feature extraction and classification was different

from them. Their focus also on detection of RERA, whilst we never excluded other types

of arousals such as PLMA and SA. Unlike to Sorensen et al. study [81], no manual scor-

ing parameters were involved in development of our model. Then, this model should be

considered as a fully-automatic technique. The suggested algorithm can be improved and

upgraded for classification of cortical arousals. Furthermore, since various PSG biosignals

from EEG and submental EMG to airflow and ECG, were being analysed and involved in

this study, an extensive range of features were generated. This feature extraction strategy

can therefore be used for further sleep analysis, particularly, when the goal is to monitor the

overall performance of physiological system during the sleep.
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2.1.4 Conclusion
The developed algorithm based upon features extracted from PSG biosignals and kNN clas-

sifier could automatically detect arousal epochs and distinguish from non-arousal epochs

with high accuracy and sensitivity. The study was preliminary and only 9 subjects’ PSG

datasets were analysed. A dataset with larger sample size would help to reach a robust

automatic algorithm. The developed algorithm can be improved and implemented as an

automatic surrogate for manual sleep event scoring.
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2.2 BP and Cardiovascular Parameters During Sleep

Arousals

2.2.1 Background

The autonomic nervous system is responsible for regulation of variables such as heart rate,

blood pressure, body temperature and respiratory rate. Sympathetic nervous system (SNS)

and parasympathetic nervous system (PNS) are two main branches of autonomic nervous

system. SNS stimulates the body for ”fight or flight” response which refers to body’s phys-

iological reaction to a perceived attack, threat, danger or harmful events. During a sym-

pathetic activation, different autonomic parameters are affected by SNS. For instance, HR

increases and blood vessels narrows (vasoconstriction) in order to restrict blood flow which

consequently leads to BP increases. Despite BP and HR responses to arousal weakens by

the age, the ventilatory response is independent of the age [102]. On the other hands, PNS is

responsible for stimulation ”rest-and-digest” or ”feed and breed” activities that occur when

the body is at rest [103]. A fundamental component of the PNS is vagal tone or vagal activ-

ity which is related to the vagus nerve and results in different effects such as HR reduction,

vasodilation/constriction of vessels, glandular activity in the heart, lungs, and digestive tract

[104].

Sleep arousals can result to a shift in sympathetic activation and therefore, lead to

peripheral vasoconstriction [18]. Due to close association of cardiovascular parameters

like HR and BP with sympathetic activities, a transient arousal can affect these markers.

Vasoconstriction induces changes in blood flow and volume represented in PPG signal [6].

Thus, PPG can be used as a marker of finger vasoconstriction [105]. Delessert and his

colleagues claimed that a sudden drop in PPG pulse wave amplitude (PWA) are associated

with arousal occurrence. In other words, a significant increase in EEG power density in

all EEG frequency bands was found during PWA drops (p < 0.001), whereas EEG did not

shift considerably before and after PWA drop [4]. PWA reduction occurs even in absence of

visual scored arousal, hence PWA drop can be considered as a sign of arousal occurrence.

Moreover, the combination of PPG features (PWA and Area under PPG curve) has been

shown as an robust detector of arousals with high accuracy [7]. PPG-based algorithms could

distinguish autonomic arousals which sometime does not appear in EEG signal and seems

to be undetectable through EEG analysis. Fingertip PPG has also been used alongside with
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ECG to measure pulse transit Time (PTT).

Pulse transit time generally refers to the time delay between two arterial sites. PTT

is defined as the time taken by the arterial pressure wave to travel from the aortic valve

to the periphery is recorded as the time delay between the ECG R-wave and the arrival

of the corresponding PPG pulse wave at the fingertip [106, 86, 107, 108]. In addition,

the term of pulse arrival time (PAT) has also been used in some recent studies to describe

the time taken for a pulse wave to travel from the heart to periphery [109, 110]. In this

thesis, to avoid confusion, only PTT was used to as the time delay between two arterial

sites (Figure 2.4). PTT has been mostly utilised for continuous BP measurement [44, 51,

53]. In addition, it has been indicated as a reliable marker of OSA episodes and arousals,

particularly in children [111, 86, 112]. Hence, it can be claimed that PTT is a suitable

measure of autonomic activities either in wake or sleep.

Figure 2.4: Graphical demonstration of R-R interval and PTT estimation. PTT is pulse
transit time from R wave to the 50% of the pulse amplitude.

It is believed that any arousal episodes, may produce a small sudden rise in BP [113].

A study statistically compared three effective indices in sleep fragmentation including ap-

noea/hypopnoea index (AHI), EEG arousal index and blood oxygen saturation as well as

three autonomic markers consisting BP, PTT and HR. It demonstrates that PTT and BP are

more sensitive than HR in detection of arousals [114].

Heart rate variability (HRV) refers to variation of heart rate in beat-to-beat intervals.

HRV spectral analysis reveals a quantitative scale of cardiovascular function as well as sym-

pathetic/parasympathetic interaction [115]. HRV spectral analysis produces three frequency
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bands. These bands are known as very low frequency (VLF) for 0.0033-0.05 Hz, low fre-

quency (LF) for 0.05-0.15 Hz, and the high frequency (HF) for frequencies 0.15-0.5 Hz.

The term of vagal tone is also used to assess heart function. During the rest and in absence

of any external triggers, sinoatrial pacing generally maintains the heart rate in the range of

60–100 beats per minute (bpm) [116]. Both SNS and PNS work together to increase or

slow the HR. The vague nerve controls vagal tone modulation through acting on the sinoa-

trial node and slowing its conduction. Due to vagal tone impact on HR, it can be indirectly

measured through heart rate variability (HRV) [117]. HF of HRV reflects vagal modulation

[118, 119] while the ratio of LF/HF power may estimate the ratio between SNS and PNS

activity under controlled conditions [120]. The term of sympathovagal balance ratio (SBR)

has been used in several manuscripts to describe LF/HF [121, 122, 123].

Sforza et al. applied HF and LF spectral components of HRV to determine the degree

of sleep fragmentation. Their research indicated that the ratio of LF/HF and heart-rate

increment to total power spectral density (%VLFI) were extremely higher in patients with

SDB and PLMD in compare to insomniac subjects. Sleep deprivation in both SDB and

PLMD patients are associated to the number of arousal, respiratory and limb movement

events. Thus, LF/HF and %VLFI can indirectly predict the level of sleep fragmentation

[85].

The aim of this study was to investigate on the relationship between sleep arousals

and five cardiovascular parameters including DBP, SBP, PTT, HF and LF spectral compo-

nents of HRV. We also attempted to find out how these parameters varying during and just

before/after the occurrence of different arousal types.

2.2.2 Methodology

Subjects: We analysed ten subjects (6 females and 4 males with average age of 45.8 ±

11.2 years) overnight PSG recordings collected at the Center for Sleep Medicine, Charite

University Hospital (Berlin, Germany). Six subjects suffered from insomnia (2 males and 4

females) whilst four subjects were healthy (2 males and 2 females).

2.2.2.1 Data Acquisition

PSG Data was recorded using SOMNOscreen PSG system (SOMNOscreen PM, SOM-

NOmedics, USA) which included 40 channel recordings. The ECG had been recorded at

frequency sampling rate (Fs) of 256 Hz whilst PPG recordings were sampled at Fs = 128 Hz.
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Existing systolic and diastolic reference blood pressure (SBP and DBP) data had been au-

tomatically calculated using analysis software, DOMINO 2.7 (DOMINO, SOMNOmedics,

USA) at Fs = 4 Hz. In order to achieve calibration, BP was measured by Riva Rocci sphyg-

momanometer method before and during the recording.

2.2.2.2 Manual Arousal Scoring

Sleep arousals were manually scored by a sleep technician according to AASM criteria.

Arousals were also manually classified based on whether an arousal is associated with a

physiological event close-by or not. Based on their classification, once a respiratory episode

either apnoea or hypopnoea induced an arousal, this type of arousal was classified as RERA.

Cardiac arousal (CA) represents one associated with a heart rate acceleration or tachycar-

dia event. Similarly, PLMA, snoring arousal (SnorA) and SpO2 arousal (SpO2A) repre-

sent arousals associated with periodic limb movement, snoring and oxygen desaturation

episodes, respectively. If an arousal event was not associated to any other physiological

events, it would be considered as a SA episode. Table 2.3 shows the outcome of manual

arousal scoring for ten subjects.

Subject

ID

No.

(SA)

No.

(CA)

No.

(PLMA)

No.

(RERA)

No.

(SnorA)

No.

(SpO2A)
Total

1 12 36 4 8 2 2 64

2 23 0 15 11 8 24 81

3 13 33 1 3 1 6 57

4 42 1 6 0 12 2 63

5 15 4 3 1 3 0 26

6 28 5 21 1 5 0 60

7 10 4 1 0 1 0 16

8 10 4 7 0 0 0 21

9 15 3 17 21 2 2 60

10 21 8 1 9 6 22 67

Total 189 98 76 54 40 58 515

Table 2.3: A description of manual scoring of different types of sleep arousals. Where SA,
CA, PLMA, RERA, SnorA and SpO2A represent spontaneous, cardiac, periodic
limb movement, respiratory, snoring and SpO2 arousal, respectively.



2.2. BP and Cardiovascular Parameters During Sleep Arousals 60

2.2.2.3 Feature Extraction

The ECG, PPG recordings alongside with existing SBP and DBP time series of 10 subjects

were extracted from PSG datasets. The sampling rate of ECG recordings was twice of

PPGs. Thus, PPG recordings had to down-sample to PPG frequency of sampling (Fs = 128

Hz) at the first step. In each subject, according to scored arousal onsets, the ECG and PPG

recordings 15 seconds prior and following to each onset were picked and analysed. ECG

time series were then analysed for peak detection in order to extract HRV. PTT biomarker

was also derived from ECG and PPG analysis.

HRV Extraction and Spectral Analysis: HRV data can be usually derived from beat-

to-beat heart rate (Fig 2.4). R peaks were detected using Murthy et al. algorithm [101].

At the next step, R-R time intervals were calculated and applied to estimate HRV. The

obtained HRV had various sample rates between 1 and 1.5 Hz. Hence, it was resampled at

Fs = 4 Hz and then transformed to frequency domain using Welch’s method [97]. LF and

HF components of HRV can be computed as the normalised percentage power in the LF

frequency band (0.05-0.15 Hz) and HF band frequency (0.15-0.5 Hz) [115].

PTT Estimation: PTT is the time taken by the pulse wave travel between two arterial

sites. The first site was once ventricles depolarise and pump blood into the body and rep-

resented by R-wave and the second arterial site is known as the pulse pressure arrival point

and detected using the fingertip PPG sensor. In this research the point with 50% of pulse

amplitude was considered as arrival point (Fig 2.4). Obtained PTT was also resampled at 4

Hz to adjust with SBP/DBP recordings.

Development of Features Matrix: Three extracted cardiovascular features as well as

DBP and SBP, which had been automatically measured by software were utilised to inves-

tigate sleep arousals. Each subject’s features matrices consisted of 5 rows as five features.

For each single arousal, features during arousal occurrence was assigned as Arousal Ma-

trix. Since the duration of arousals differed from one arousal to another one, the number of

columns for each arousal varied either. For instance, once the duration of an arousal was 5

seconds and regarding to Fs = 4Hz, the Arousal Matrix would have 20 columns. In order to

investigate how five cardiovascular markers changed before the arousal onset, for each sin-

gle arousal, features related to 10 seconds prior to arousal onset was selected and stored as

10s-Pre-Arousal Matrix. Similarly, we developed 5s-Post-Arousal Matrix that represented

features related to 5 seconds after arousal. Hence, for each single arousal three matrices
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were developed.

2.2.2.4 Slope Index Estimation

In order to investigate whether a particular feature was increasing or decreasing right before,

during and right after the occurrence of an arousal, we created the slope index (SI) which can

be computed through first degree polynomial regression. By this means, we could determine

the behaviour of various features in different types of arousal. Figure 2.5 demonstrates

how we estimated SI for SBP time series through polynomial regression. Whether SI was

positive or negative or zero, could determine the trend of SI feature over time. As long as,

SI is positive, the vector has upward trend and the feature is increasing over time. Similarly,

the negative SI indicates a descending trend. SI = 0 means that the feature was unchanged

over time. Regarding to three feature matrices, we computed the SI for all arousals and for

all features to compare variations of SBP, DBP, PTT, LF and HF in different types of sleep

arousals. At the next step, we developed a new marker, slope index positive percentage

(SIPP), which calculated the percentage of arousals with a positive and ascending trend

of a cardiovascular parameter. In other words, the greater SIPP for a particular parameter

indicates the parameter is likelier to increase than decrease before or during or after an

arousal event.

Figure 2.5: SBP regression diagram and Slope Index (SI) estimation.
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2.2.2.5 SBR Variability

For each arousal, sympathovagal balance could be obtained through LF/HF ratio for time

interval before and after onset. The change rate of SBR at arousal onset (∆SBRo) was

defined as the normalised difference of SBR pre- and post-onset. This ratio determined how

sympathetic activation varied in once an arousal induces. ∆SBRo can also indicates whether

the sympathetic response is depended to arousal type or not.

2.2.2.6 Statistical Analysis

To visualise SIPP variabilities in various arousal groups before, during and after arousal

episodes, we applied graphical analysis. The SIPP histograms allowed us to determine how

cardiovascular variable behaved during arousal three time periods. The one-way ANOVA

test was also applied to assess whether changes in LF, HF, SBP, DBP and PTT are depended

to arousal types. The significance level (p− value < 0.05) determined whether various

arousal types caused statistically significant changes in cardiovascular parameters.

2.2.3 Results and Discussion

2.2.3.1 Slope index analysis

We extracted and utilised five features (DBP, SBP, PTT, LF and HF). Thus, we computed

SIPPDBP, SIPPSBP, SIPPPT T , SIPPLF and SIPPHF of pre-, during and post-arousal situations.

The outcome of SIPP analysis for continuous BP measures have been shown in Figure 2.6.

SIPPDBP and SIPPSBP indicate that in how much of arousal episodes and their neighbouring

moments DBP and SBP has increased. In these cases, SIPP indicated that the probability

of a sudden rise in systolic and diastolic BP in different type of arousals.

For instance, SIPPDBP 10 seconds prior to spontaneous arousal was 49% (Fig. 2.6-a)

which indicates that in almost less than half of spontaneous arousals, DBP right before the

occurrence of arousal had upward trend. In the other half of SA episodes, DBP was either

steady or decreasing. During an SA event, the probability of DBP elevation was higher

before the SA onset (SIPPDBP = 53%). Interestingly, five seconds after the onset of about

64% arousals, DBP was increasing. We reached very similar results for SA events in terms

of SIPPSBP analysis. Due to the obtained result, we would not able to claim decisively about

the role of spontaneous arousals in BP elevation. In addition, since SA is not related to any

pathological events, its origin and nature is not very clear.

During about 78% of RERA episodes, DBP had an ascending trend. The DBP eleva-
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(a)

(b)

Figure 2.6: Statistical analysis of slope index positive percentage (SIPP) of systolic and
diastolic blood pressure in different types of arousals. Sub-figures (a) and (b)
demonstrate SIPP performance of DBP and SBP biomarkers, correspondingly.
Spontaneous, cardiac, periodic limb movement, respiratory, snoring and SpO2
arousals have been represented by SA, CA, PLMA, RERA, SnorA and SpO2A,
respectively.

tion was continuing at least 5 secs after the end of arousal in 96% of RERA events. Once

we compared SIPPDBP in different types of arousal, only RERA and SnoreA are likely to

increase DBP with high probability. Both of them are related to respiratory issues. In terms

of systolic blood pressure, SIPPSBP analysis (Figure 2.6-b) shows that once a respiratory

arousal occurs, it is very likely to result higher SBP (SIPPSBP = 78%) during the arousal
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Figure 2.7: Performance of SIPP for all five cardiovascular parameters in all arousals re-
gardless of their types.

and 5 seconds post-arousal. According to Figure 2-7 diagrams, the pre-arousal BP either

in DBP or SBP increased in about 48% of all arousal types. Whilst SIPP had a small rise

during the arousals to about 57%. It means once an arousal occurs, both SBP and DBP are

likelier to increase than to drop. Figure. 2.6 and 2.7 indicates that respiratory events can

elevate both SBP and DBP with high probability. Snoring arousals could highly impact on

DBP by SIPPDBP = 79% during the arousal occurrence. However, this phenomenon has not

been observed in SBP (SIPPSBP = 50%). RERA events are mostly associated to breathing

problems and respiratory sleep conditions like apnoea or hypopnoea. In other words, any

either abnormal low breath rate or any pauses in breathing would probably increase blood

pressure. The CA episode was scored once EEG shifted simultaneously to heart rate accel-

eration. Both SBP and DBP are more probable to rise 5 seconds after occurrence of CA

episode (SIPPDBP = 67% and SIPPSBP = 74%). In fact, a sudden heart rate increase might

lead to upcoming BP elevation.

Different trends of BP before and after of onset in some arousal groups indicate the

effect of arousal on blood pressure. To determine the causality of arousal occurrence and BP

elevation, the temporal priority of the arousal episode to BP changes should be undertaken.

In other words, sleep arousal may cause BP increases [124], not BP changes may induce

arousal when the arrow of time was considered. Our findings show that arousal as a sud-

den EEG activation is more likely to cause sudden BP increase than decrease, but these BP

changes are mostly prominent in RERA which were induced by respiratory events. How-
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ever, the correlation between RERA occurrence and BP elevation may be spurious because

both are the effects of SDB events.

Figure 2.8: SIPPPT T performance analysis in different types of arousal.

Obtained results also show that PTT is very likely to drop once an arousal occurs (Fig-

ure 2.8). Pre-arousal and post-arousal SIPPPT T were correspondingly 47.5% and 48.7%,

whilst during only 27.6% of all sleep arousals, regardless of their types, a rise in PTT has

happened. PTT in 85% of respiratory arousals dropped. As a consequence, it can be claimed

that respiratory arousals are extremely likely to be accompanied with PTT reduction. This

fact can be considered to develop a consistent and reliable marker for detection of respi-

ratory arousals. Several research have been done formerly to investigate whether PTT is a

reliable and non-invasive detector of respiratory disorder events and arousals particularly in

children [111, 112, 125]. However, in this research, we found that PTT is probably drop-

ping during arousal inducing regardless of arousal type. Although observed drop in PTT

was more intense and considerable during RERA events.

In terms of HRV spectral components, we found out that LF component are very likely

to increase when an arousal occur (SIPPLF = 80%), whereas before arousal onset in only

39% of arousals, a shift in LF power has been observed. Therefore, LF power shift can

be an indicator of arousal event (Figure 2.7). Similar to BP cases, RERA events had the

greatest impact on LF by SIPP = 90%. Unlike the LF component, HF band dropped during

the occurrence of 61% of all arousals. About 75% of RERA events made a decrease in HF
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(a)
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Figure 2.9: SIPPHF and SIPPLF performance analysis in different types of arousal.

activity during the arousal (Figure. 2.9). LF band is associated to the sympathetic activity

while HF is related to the parasympathetic activity [115]. Since the arousal is believed as a

short and transient intrusion of wakefulness into sleepiness, it triggers sympathetic activity

like LF band to power.

SIPPHF before, during and after SpO2 arousals were roughly close and around 50%.

Since SpO2As are associated with desaturated oxygen in blood, we expected their SIPP re-

sults should be similar to RERA events due to their dependency to oxygen level. However,
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the outcome was different. The term of SpO2 arousal has been rarely referred in literature

and our knowledge about them and their nature and origin is limited. Respiratory events

are accompanied with oxygen desaturation. Thus if a SpO2 fluctuation event occurred in

prior or next to an arousal episode, it has been mainly regarded as a consequence of respi-

ratory event rather than an independent event. According to the manual sleep scoring, there

were some arousal events which were related to oxygen desaturation without presence of

any typical respiratory event. Regardless of arousal types, the increase in LF power was

observed in most of arousals. This raises a question about the causality or in simpler words,

arousal cause HR change or vice versa. With consideration of arrow of time, we could claim

that arousal can cause transient changes in HR [126], although those alterations are more

prominent in respiratory arousals.

Rahman et al. showed that LF and LF adjusted with respiratory are correlated with

baroreflex sensitivity and reflects baroreflex function independently of cardiac sympathetic

innervation [127]. According to the literature, occurrence of arousal regardless of its origin

can be associated to baroreceptors reflex [60]. Our results show that in more than 80% of

arousals, LF had a positive trend at arousal onset (Figure 2.7). Due to association of LF

and BRS, we can claim that arousal occurrence could trigger baroreceptors. Once an arousal

occurs, BP is more likely to elevate that can lead to baroreflex activation. The increase of

baroreceptors function causes heart rate to decrease represented by high SIPPLF (≥ 80%) to

control BP and return it to normal level. However, post-arousal BP elevation continued in

more than 60% of arousals for at least 5 seconds. This indicates that baroreceptors require

time to regulate BP after arousal onset.

2.2.3.2 Slope Index Variability and Arousal Types

To investigate whether slope index of cardiovascular parameters were associated to the type

of arousal, ANOVA analysis was applied. The SILF , SIHF , SIDBP, SIDBP and SIPT T time se-

ries were evaluated pre- and post-arousal onset in different types of arousal through ANOVA

test to find out whether the SI significantly differed in various arousal types or not (Table

2.4). Post hoc Tukey’s honest significant difference (HDS) test indicated the SI variability

in which types of arousals were significantly different. Obtained results show the slope of

LF and HF components of cardiac and spontaneous arousals were significantly different

before arousal (p = 0.03). SILF or SIHF determined the rate of changes in HRV spectral

components pre- and post-arousal onset. Before arousal inducing, there was no signifi-
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cant difference of both SILF or SIHF between arousal groups which induced by a close-by

physiological events (CA, RERA, PLMA, SnorA and SpO2A). This indicates that LF and

HF fluctuations before arousal onset are independent of arousal type. In other words, pre-

arousal HRV could not determine what physiological event occurred which resulted the

associated sleep arousal. On the other hand, SA events only appear as EEG activation with-

out any accompanying physiological changes. Hence, no significant physiological events

like heart rate acceleration or oxygen desaturation are expected to occur prior to SA onset.

This results the significant difference between CA and SA in terms of their SILF or SIHF

variability.

Variables
ANOVA test

(p-Value)
Post hoc Signs

SILF
Pre-Onset 0.03 CA vs SA

Post-Onset 0.001
CA vs SA

CA vs SpO2A

SIHF
Pre-Onset 0.03 CA vs SA

Post-Onset N.S -

SISBP
Pre-Onset N.S -

Post-Onset N.S -

SIDBP
Pre-Onset 0.03 RERA vs SpO2A

Post-Onset N.S -

SIPT T
Pre-Onset N.S -

Post-Onset N.S -

Table 2.4: ANOVA test assessed whether changes in slope index of cardiovascular param-
eters before and after arousal onset are related to arousal type. Post hoc signs
show arousal types with significant difference in SI time series pre- and post-
arousal types.

The post-onset ANOVA assessment of SILF reveals that there was a significant differ-

ence between CA vs SpO2A and CA vs SA (p = 0.001). While post arousal SILF variability

in RERA and CA events were not significantly different, SILF of SpO2A had a different ap-

proach.
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Pre- and post-onset SIDBP time series shows DBP variability before occurrence of dif-

ferent type of arousals. ANOVA and post-hoc HDS results show that SIDBP in only RERA

and SpO2A were significantly difference before onset (p = 0.03). Different trend of DBP

prior to RERA ans SpO2A episodes indicates that oxygen desaturation events accompanied

with respiratory events do not have a similar effect on diastolic blood pressure as same as

oxygen desaturation events which not accompanied with respiratory episodes. No signif-

icant difference was observed between arousal groups in terms of SIDBP and SISBP means

that post-arousal BP variability are independent of arousal types and sleep events which

induced the arousals. ANOVA test rejected any dependency of SIPT T variability to arousal

type.

2.2.3.3 ∆SBR and Arousal Type

To evaluate how sympathetic activity changed after arousal inducing, ∆BSR was computed

for arousals. The term of ∆SBR > 0 means that the ratio of sympathetic activity to vagal

tone increased at arousal onset. In other words, once the arousal induced, a significant shift

in sympathetic activity occurred. ∆BRS = 0 indicates that arousal resulted no significant

changes in sympathovagal balance. ∆SBR < 0 means that arousal occurrence was accom-

panied with a decrease in sympathetic activity in contrast to parasympathetic activation.

As shown in Figure 2.10, the majority of spontaneous and cardiac arousals resulted pos-

itive ∆SBR that refers to an increase in sympathovagal balance at onset of these arousal

groups. Particularly, 80% of CA episode caused a shift in sympathetic activation. On the

other hand, other arousal types such as RERA, PLMA and SpO2A mainly resulted a drop

in SBR at arousal onset. The prominent negative ∆SBR in these arousal groups indicates a

post-arousal higher parasympathetic activation than sympathetic activation. A respiratory

event or a limb movement episode that induced an arousal is expected to shift the sympa-

thetic activation. However, according to SBR analysis, LF/HF ratio was likelier to drop

after arousal occurrence. This indicates a post-arousal reduction in sympathetic activation

and an increase in vagal tone at the same time. The ANOVA analysis and post hoc test

also confirmed that ∆SBR in CA and SA groups were significantly different with RERA,

PLMA, SpO2A and SnorA groups (p < 0.0001). Figure 2.11 presents the post hoc test

and shows ∆SBR variability through different arousal types. RERA, SnorA and SpO2A are

symptoms of problem in breathing mechanism during sleep. Our observations manifest an

increase of parasympathetic activity during these types of arousals in compare to SA and
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CA. This means respiratory event are more associated with increased vagal tone. Previ-

ously, Chrysostomakis et al. found out that HRV parameters which reflect parasympathetic

activity are increased during the night in OSA patients. [128]. They also concluded that

CPAP therapy can affect on vagal tone and reduce parasympathetic activity and alleviate

bradyarrhythmic episodes. According to the literature, sleep arousal is expected to result an

increase in sympathetic activation and a drop in PTT [129]. However, our results indicated

that respiratory arousal and even movement arousal are likelier to elevate parasympathetic

activation. In addition, LF/HF ratio is depended to the sleep stage where it could reach to

the maximal during REM and minimal during NREM [115, 130]. LF/HF ratio during REM

is also associated to the subjects gender [115]. Hence, the difference between LF/HF ratio

in various arousal types might be related to their sleep stage than its type or adjacent sleep

events. Furthermore, non-stationarities increase the likelihood of finding a shift of sympa-

thovagal balance toward sympathetic predominance and alter significantly the power of the

statistical tests [131]. This may limit usage of LF/HF as a reliable marker of sympathovagal

balance.

Figure 2.10: ∆SBR (blue) indicates sympathovagal balance changes at arousal onset.
∆SBR < 0 represents the percentage of arousals with a drop in SBR at onset.
Similarly, ∆SBR = 0 (green) represents the percentage of arousals with no
significant change in SBR. ∆SBR > 0 (red) shows the percentage of arousals
with ascending SBR at onset
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2.2.4 Limitations
The maximum duration of an arousal episode in 15 seconds. This time length may limit

estimation of LF power (0.05 - 0.1 Hz), hence 15 seconds ECG before and after arousal

onset (30 second recording) were picked for HRV analysis. In this study, we only accessed

to 10 subjects PSG recordings. A larger size database would help to conduct a holistic

investigation on BP and HR momentary changes during sleep events.

Figure 2.11: Post hoc tukey’s HDS analysis compares the ∆SBR variability in different
types of arousals.

2.2.5 Conclusion
In conclusion, this study demonstrated that in all types of arousals, the probability of BP

increasing is greater than BP decreasing based on our results. Particularly, it is significantly

likely to rise when a respiratory arousal occurs. We also found out that low frequency spec-

tral component of HRV increased during the 78% of all arousals and 88% of respiratory

arousals. This happened due to the association of LF component to sympathetic activities.

Vice versa, we observed a considerable drop in SIPPHF during the arousal. It means that

sleep arousal occurrence will be likely accompanied with HF band power reduction. Sim-

ilarly, SIPPPT T during the arousal was lower than either before or after arousal inducing.

This was more significant in respiratory arousals. As a consequence, PTT drop seems to be

a reliable marker for detection of respiratory events and arousals in clinical settings.
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2.3 Pulse Transit Time and Heart Rate Variability in

Sleep staging

2.3.1 Background

An important step in clinical diagnosis and treatment of various sleep disorders is sleep

staging. Sleep architecture includes transitions from wakefulness to shallower sleep and

then proceeding to the deep sleep. Thus, identifying sleep stages provide valuable infor-

mation about general architecture of sleep. Rechtschaffen and Kales firstly published their

guideline of sleep staging in 1968, also known as R&K criteria [96]. According to R&K

criteria, sleep stages should be scored by using EEG central leads (C3, C4) and a normal

sleep is divided to five stages: Stage 1, Stage 2, Stage 3, Stage 4 and Stage REM sleep.

The AASM later released their guideline for sleep stages scoring. Based on AASM criteria

sleep stages can be scored through frontal, occipital and central leads. The AASM crite-

ria modified some terms in sleep staging in compare to R&K where sleep is divided two

main stages, REM sleep stage and NREM sleep stages (NREM1, NREM2 and NREM3)

[11]. Both guidelines have been widely employed for manual sleep scoring that is a te-

dious, subjective and time-consuming process. Creating a computerised alternative that can

limit technologist’s involvement has always been highly desirable. In recent years, several

methods for automatic detection of sleep scoring by using EEG, EMG and EOG has been

developed [132, 133, 134, 135].

During transition between sleep stages, several physiological parameters associated to

ANS such as heart rate, body temperature, respiratory rate and blood pressure may alter. In

this study, we specifically focused on two measures of cardiac activity regulated by ANS

and their relations with sleep stages HRV and PTT.

Spectral analysis of HRV provides a quantitative evaluation of the sympa-

thetic/parasympathetic interaction [115]. Several researches investigated applying HRV

features to classify the different sleep stages [88, 136]. In 2010, Yilmaz et al. claimed

that one lead ECG was capable in determining sleep stages and the degree of AHI [136].

Their features extraction approach was based upon time statistical analysis of RR intervals

and they evaluated three classification methods, k-NN, support vector machine (SVM) and

quadratic discriminant analysis (QDA). The accuracy of their algorithm with k-NN, SVM

and QDA classification were 68.9%, 71.5% and 73.1%, respectively. Similarly, Xiao et al.
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developed a new method for sleep staging based upon temporal and spectral analysis of

HRV [88]. Their proposed method achieved sleep staging with high mean accuracy.

PTT has been suggested as a reliable marker for autonomic activation monitoring as

well as the detection of sleep events. This study presents a new method for sleep stages

classification. We analysed fingertip PPG and the ECG lead I to estimate spectral compo-

nents of HRV and PTT in order to investigate whether these parameters can automatically

detect sleep stages.

2.3.2 Methodology
Subjects: We analysed 20 subjects (11 females and 9 males with average age 45.6 ± 10.2

years) overnight PSG datasets collected at the Center for Sleep Medicine, Charite University

Hospital (Berlin, Germany). Nine subjects were diagnosed with insomnia (6 females and 3

males) and 11 subjects were healthy (5 females and 6 males).

2.3.2.1 Data Acquisition and Preparation

Data had been recorded using a SOMNOscreen PSG system (SOMNOscreen PM, SOM-

NOmedics, USA). ECG and PPG data was included in PSG datasets and hypongrams

were automatically scored by DOMINO sleep analysis software (DOMINO 2.6.0, SOM-

NOmedics, USA) and validated by a sleep technician independently of our research. The

ECG signals had been recorded at a frequency sampling rate (Fs ) of 256 Hz whilst Fs for

the PPG recordings was 128 Hz. Then ECG signals were firstly downsampled to Fs = 128

Hz to match with PPG recordings. Sleep staging had been determined in the epoch with du-

ration of 30 seconds. We divided each 30 seconds epoch into two sub-epochs with duration

of 15 seconds. Similarly, PPG and ECG recordings were split up into 15 seconds segments

(sub-epochs) in order to estimate PTT and HRV spectral features with higher accuracy and

precision.

2.3.2.2 PTT Estimator

PTT is usually estimated through ECG and PPG analysis but in this study, we chose a dif-

ferent approach for PTT estimation. Since PPG signal represents blood flow and movement

in the vessel, the first derivative of PPG could indicate the velocity of blood detected in

the finger. Then the first derivative of PPG can be called velocity of PPG or VPG that can

be calculated through Equation 1.1. The time delay between the R wave in the ECG and

the consecutive peak of VPG was assumed as PTT (Figure 2.10). All biosignals were seg-
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mented into sub-epochs with duration of 15 sec. The average PTT of each sub-epoch was

appointed as its PTT feature.

Figure 2.12: PTT estimation by using ECG and first derivative of PPG. PTT is pulse transit
time from R wave to the consecutive peak of VPG.

2.3.2.3 HRV spectral analysis

HRV data was derived from beat-to-beat R-R interval. Once R waves of ECG were identi-

fied for each 15s segments, HRV was computed as the time delay between two consecutive

R waves. The obtained HRV was resampled at 2 Hz and transformed to frequency domain

using Welch’s method [97]. The LF band power was defined as the percent power in the LF

frequency band (0.05-0.15 Hz), and the HF band power was defined as the percent power in

the HF band frequency (0.15-0.5 Hz) [115]. Both LF and HF data were normalised to their

ranges. By this means, spectral power of HF and LF as HRV features were computed for

every segment.

2.3.2.4 Development of Classifier

A classifier model was required to distinguish whether each 15 seconds sub-epoch belonged

to NREM1, NREM2, NREM3 and REM sleep stages. The features matrix consisted of the
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PTT, HF and LF band power of all sub-epochs in an overnight recording. Regarding to

feature matrix, we developed linear classifiers including linear discriminant analysis (LDA)

and linear SVM as well as non-linear classifier models like decision tree (DT), kNN and

distance weighted k-NN (DW-kNN) for classification of sleep stages. LDA is a generali-

sation of logistic regression, however not limited to only two-class classification problem.

SVM is a type of linear classifier that is capable to use to solve linear and non-linear prob-

lems. DT is non-linear method for classification of non-linearly separable data. The kNN

is a non-parametric algorithm that seemed suitable for our classification purpose because

it is not based on parameterised families of probability distribution. In addition, the kNN

classifier was previously used for detection of sleep stages [132]. The distance weighted k-

nearest neighbourhood (DW-kNN) algorithm is a refinement of k-NN classification method

and assigns to weigh of contribution of the k-Neighbours according to their distance to the

query point [137]. We developed our classifier models for sleep staging based upon these

five classifiers. In each subject, either healthy or insomniac, developed classifiers identified

sleep stages based on subject’s features matrix. The performance of classifiers in detection

of different sleep stages was evaluated and compared.

2.3.2.5 Performance Analysis

To assess the performance of classifier model, we applied three statistical measures includ-

ing sensitivity (Equation 2.5), accuracy (Equation 2.7) and positive predictive value (PPV)

which can be calculated as following:

PPV =
T P

T P+FP
×100%, (2.8)

where true positive (TP) indicates the number of sub-epochs which their sleep stages was

predicted correctly. false positive (FP) represent the number of epochs which their sleep

stages was predicted incorrectly. In each subject, sensitivity refers to the fraction of a par-

ticular sleep stage which was classified accurately. While PPV represents the strength of the

classifier in detection of a particular stage of sleep. Accuracy also indicates how generally

was the performance of classifier in sleep staging.

2.3.3 Results and Discussion
Leave-one-out-cross-validation algorithm was used to assess the validation of our algo-

rithm. Of the total 20 subjects in our dataset, features from 19 subjects were used for
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Figure 2.13: The comparison of accuracy of 5 classifiers in sleep staging. DT, LDA, SVM,
kNN and DW-kNN refer to decision tree, linear discriminant analysis, support
vector machine, k-nearest neighbourhood and distance weighted kNN classi-
fier models, respectively.

training and data from the remaining one more subject used test. This process was being

replicated for all 20 subjects and the overall sensitivity, PPV of each stage and accuracy of

whole was computed. Figures 2.13 and 2.14 compared a the performance of various classi-

fiers through accuracy, sensitivity and PPV. By this means, we could determine how various

classifier performed in the detection of sleep stages.

Several PSG recordings such as EEG, eye movement and sub-mental EEG are nor-

mally required to provide an accurate sleep staging detection. In this study, we focused

on ECG and PPG biosignals as two measures of cardiovascular functions, for automatic

detection of sleep stages. PTT has been known as a reliable and non-invasive measure for

widespread applications from continuous measurement of blood pressure to the sleep events

detection e.g apneic episodes or micro-arousals [51, 111, 125]. Since PTT is a marker of

autonomic function, we hypothesised it can take an effective role in the determination of

sleep stages.

We visualised the obtained results in order to compare the performance of linear and
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Figure 2.14: The comparison of sensitivity and predictive positive value of classifier mod-
els in sleep staging.

non-linear classifiers in detection of different sleep stages as well as in different patients

group. Non-linear classifier models reached a higher accuracy than linear models almost

in all subjects (Figure 2.13). The average accuracy in all non-linear classifiers was greater

than 70% (AccuracyDT = 70.1%, AccuracykNN = 71.4% and AccuracyDW−kNN = 73.4%, ),

whilst in linear models, it was less than 60% (AccuracyLDA = 56.1% and AccuracySV M =

57.8%). Particularly, DW-kNN model had the most successful performance in sleep staging

where the accuracy in only one subject was below of 65%, whilst it reached over 80% in

4 subjects. As shown in Figure 2.14-Left, the sensitivity of non-linear models in detection

of REM, NREM1 and NREM3 sub-epochs were comparably greater than linear models.

The linear SVM classifier could accurately detect stage 2 sub-epochs with average sensitiv-

ity of about 75%, whilst its sensitivity was below 55% in detection of other sleep stages.

PPV analysis also shows that non-linear classifiers could detect all stages with higher PPV

(Figure 2.14-Right). A visual comparison of the performance of all classifier models in 20

subjects demonstrates that DW-kNN classifier could detect sleep stages with higher accu-

racy and greater sensitivity and PPV. In insomniac subjects group, non-linear classifiers like

DT, kNN and could launch sleep staging with average accuracy of 70.3% and 71.6%, re-
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Subject ID Conditions
Wake NREM1 NREM2 NREM3 REM Accuracy

(%)SEN(%) PPV(%) SEN(%) PPV(%) SEN(%) PPV(%) SEN(%) PPV(%) SEN(%) PPV(%)

1 I 35 63 43 55 81 66 86 90 73 73 71.3

2 H 70 70 46 48 80 73 63 67 63 59 73.0

3 H 54 65 56 64 79 72 88 87 85 84 75.3

4 I 84 85 59 53 82 77 88 91 60 71 82.8

5 H 94 94 59 68 71 66 82 76 74 74 82.8

6 H 76 77 43 46 73 66 66 66 80 81 70.2

7 I 79 82 61 70 83 77 95 91 75 74 82.7

8 I 68 81 74 58 82 75 90 92 64 59 78.8

9 I 64 84 44 60 89 65 86 87 69 68 71.8

10 H 55 69 49 58 77 68 84 81 59 62 69.1

11 I 55 69 55 66 77 68 74 71 66 66 68.3

12 H 36 75 43 73 90 64 82 86 22 60 69.5

13 H 49 68 43 58 84 55 84 84 23 56 65.0

14 I 36 60 49 59 87 71 76 82 58 78 74.4

15 H 92 87 59 61 53 55 76 57 70 68 81.0

16 I 38 70 55 56 82 59 90 91 47 61 66.8

17 H 72 81 86 71 66 68 89 82 81 94 75.3

18 H 71 75 39 43 72 59 68 64 72 68 62.9

19 I 57 78 36 53 87 75 73 72 81 79 73.4

20 H 60 76 58 57 63 61 85 78 57 62 68.4

Mean - 61.9 74.7 53.1 77.7 80.7 67.0 81.3 79.8 64.0 69.9 73.4

Std - 18.3 10.0 12.1 8.2 9.4 6.8 8.8 10.5 17.1 9.9 6.4

Table 2.5: Performance of the DW-kNN classifier model in sleep staging by using Leave-
one-out-cross-validation method. Sen and PPV indicate respectively sensitivity
and positive predictive values. H and I represent diagnosed healthy and insomnia
subject, respectively.

spectively. The performance of linear classifiers in sleep staging of insomniac subject were

significantly weaker (AccuracyLDA = 56.9% and AccuracySV M = 57.8%). In healthy group,

the average accuracy of 55.4%, 57.7%, 70%, 71.3% were obtained for LDA, SVM, DT,

kNN and classifiers, respectively.

The detailed results of detection of sleep stages using DW-kNN classifier in two group

of healthy and insomniac subjects are presented in Table 2.5. The mean accuracy of patients

with Insomnia was 74.5%, nonetheless, it reached to about 72% in healthy subjects. The av-

erage accuracy of both groups were very close and it therefore proved that the performance

of algorithm was completely independent of subjects’ sleep conditions (Figure 2.15).

As shown in Figure 2.16, the average sensitivity for the differentiation of wake sub-
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(a)

(b)

Figure 2.15: A graphical comparison of obtained accuracy of DW-kNN classifier in detec-
tion of sleep stages in healthy and insomniac subjects.

epochs from sleep epochs was 61.9%. Similarly, the algorithm could identify sub-epochs

with NREM sleep stage 1, 2 and 3 with an average sensitivity of 53.1%, 80.7% and 81.3%,

correspondingly. Whilst the mean sensitivity of algorithm for REM sub-epochs was about

64%. Our algorithm was more powerful in stages 2 and 3 of NREM with an average sensi-

tivity of over 80%. The average PPV for the detection of wake sub-epochs was 73.5% whilst

it was 77.2%, 67.0%, 79.8% and 69.9% for classification of NREM1, NREM2, NREM3,

and REM respectively. We compared the average sensitivity of algorithm in detection of

each sleep stage in both healthy and insomniac groups and found that the algorithm was

able to classify NREM1 sub-epochs in healthy subjects with average sensitivity of 0.7%

greater than insomnia patients. On the contrary, the algorithm was more sensitive to iden-

tify NREM2, NREM3 and REM sub-epochs in patients with insomnia than healthy sub-

jects where the average sensitivity was greater by 9.3%, 5.4% and 3.5%, respectively. The

proportion of waking sub-epochs in patients with insomnia should be more than healthy

subjects. Thus, we expected the higher number waking epochs would affect the accuracy

of algorithm and consequently overestimated the number of detected waking epochs in in-

somniac patients. However, we observed the mean sensitivity of detected waking epoch in
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healthy group was overwhelmingly greater than insomniac group by 9.9%. Therefore, the

performance of proposed technique was not associated to sleep latency.

(a)

(b)

Figure 2.16: The sensitivity of DW-kNN based algorithm in detection of sleep stages. (a)
healthy subjects and (b) patients with insomnia

Researchers suggested methods for sleep staging based on HRV analysis [88, 136],

however this research has suggested applying the PTT alongside with HRV spectral com-

ponents for sleep staging. Since PTT like HRV can be used for monitoring of autonomic

system function, it is imperative to investigate whether PTT could predict sleep stages. In a

similar research, the capability of model based on PPG pulse rate variability and combined
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with HRV for detection of sleep stages in children were evaluated [138]. Their developed

SVM classifier model could detect REM and NREM stages with accuracy of 77%. Then, for

future studies PTT and HRV models can be assessed in children subjects for sleep staging.

2.3.4 Conclusion
This study presented a new developed algorithm for sleep staging by using a combination

of PTT and HRV extracted features. The DW-kNN classifier based-algorithm could de-

tect sleep stages with average accuracy of 73.4% when the lowest accuracy was about 63%.

This manifests that the classification model performed successfully. We also evaluated clas-

sifiers in two groups (healthy and insomnia patients) and we achieved similar results in both

cases. This indicates that our recommended method can distinguish sleep stages either sub-

jects was healthy or suffered from insomnia. Development of the algorithm was completely

independent of EEG, sub-mental EMG and eye movement recordings and their consider-

able number of electrodes and sensors. It means that our suggested method requires fewer

recordings and subsequently fewer electrodes. Furthermore, wearable technologies have

recently become considerably popular for screening purposes, as a consequence a sleep

staging technique which is not very complicated and does not require a bunch of sensors

and electrodes could be highly desirable. For improving the performance and reaching

higher accuracy in sleep staging, further spectral and temporal HRV features along with

PTT biomarker can be evaluated. The algorithm can be implemented and used as a sim-

ple, reliable and wearable instrument for home-based sleep screening. Further studies with

wider range of subjects with different sleep disorders are required to assess the algorithm

performance in different conditions



Chapter 3

Overnight Continuous BP Estimation

3.1 Background
Development of a reliable and non-invasive method for continuous BP estimation is chal-

lenging. Since all cuff-based methods require pauses during measurement, they will miss

some points of measurement and they would not be able to measure BP without any in-

terruptions. Pulse transit time as a marker of autonomic activity has been recommended

as a reliable alternative for continuous BP estimation (CBPE) [44, 51, 53, 139]. PTT can

be used either directly or indirectly for development of CBPE models. Ye et al. estimated

PTT from ECG and fingertip PPG and then tried to develop an empirical equation for CBPE

[44]. Another study suggested a method for non-invasive and continuous BP measurement,

based on pulse wave velocity (PWV) derived from PTT analysis [51]. PWV is defined as

the speed of propagation of a BP pulse and dependant to the number of arterial properties

such as elasticity, thickness, diameter and the density of the blood [140]. PWV is also re-

versely associated with PTT [51]. In addition, due to some similarities in PPG and arterial

BP waveform morphology [139], features extracted from PPG can therefore be effective

in BP estimation. Thus, PPG characteristics and derivations have been utilised for CBPE

in few studies [141, 142]. Li and his team extracted about 20 features from PPG and ap-

plied them alongside with PTT to develop a reliable CBPE model. PPG-based CBPE model

resulted a significant underestimation (8 mmHg) in SBP measurement and considerable

overestimation (10 mmHg) in compare with cuff pressure. Nevertheless, a combination of

PTT time spans and PPG morphology characteristics could improve BP estimation [141].

In another research, 14 features from second derivative of PPG (APG) were extracted and

applied along with PPG features to estimate BP [142]. Their findings demonstrated that a
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combined model of PPG and APG could improve BP measurement by 40%.

In this chapter, first and second derivatives of PPG (VPG and APG) were extracted

through PPG analysis to estimate PT Tv and PT Ta and then to develop PTT-BP models for

continuous BP estimation. We compared results of both PT Tv and PT Ta- based models with

existing BP reference values to find out which model provided more accurate SBP and DBP

measurements.

3.2 Methodology

3.2.1 Data Acquisition

We utilised PSG data of 6 female and 4 male subjects with the average age of 45.8 ± 11.2

collected in the Center for Sleep Medicine, Charite University Hospital (Berlin, Germany).

Six subjects suffered from insomnia (2 males and 4 females) whilst four subjects were

healthy (2 males and 2 females). PSG Data was recorded using SOMNOscreen PSG system

(SOMNOscreen PM, SOMNOmedics, USA) which provided 33-channel recordings. We

utilised only ECG, PPG and BP data. The ECG had been recorded at a sampling rate (Fs) of

256 Hz whilst PPG was recorded at 128 Hz. Existing arterial systolic and diastolic reference

blood pressure (SBPr and DBPr) data were automatically measured using analysis software,

DOMINO 2.7 (DOMINO, SOMNOmedics, USA) at Fs = 4 Hz. Arterial BP values were

then be calibrated with the Riva Rocci sphygmomanometer method before and during the

recording. These existing blood pressure values were called reference systolic and diastolic

blood pressures (SBPr and DBPr) and were later used to validate our empirical techniques.

3.2.2 Data Preparation

Data from three subjects were used to develop BP-PTT models (pilot group) and data from

seven more subjects were considered as control group and being employed to validate ob-

tained models. Subjects were randomly selected for pilot and control groups. ECG signals

firstly were down-sampled to Fs of PPG (128 Hz) to match with PPG by averaging. ECG

and PPG recordings were segmented into sub-segments with duration (d) of 3 seconds. SBPr

and DBPr data were divided into 3 seconds segments and the mean value of each segment

was calculated and considered for further analysis. By this means, we could measure blood

pressure and validate by SBPr and DBPr every 3 secs.
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3.2.3 PPG Derivatives and PTT Estimation
The first and second derivatives of PPG (VPG and APG) are known as two interpretations

of PPG characteristics [143]. The PPG signal is filtered with low- and high-pas FIR filters

to eliminate DC components and high frequency noise with cutoff frequencies of 30 Hz and

0.5 Hz, respectively. Both filters are designed using the window method, with the Hamming

window function where the corresponding filter orders are chosen as 500 for the low-pass

after and 4000 for the high-pass filter [144].

Both VPG and APG signals were obtained using a 3-point numerical differentiation

derivative function. To minimise noise effect during computation of VPG and APG, band-

pass and moving average filters were applied to smooth the signal after derivation. We

employed critical points of VPG and APG for estimation of PTT. After detection of R-waves

[101], we used them as the first arterial points for PTT estimation. The second arterial site

is where the pumped blood reaches and is tracked by fingertip sensor and is called pulse

pressure arrival point. Different points have been considered by different devices as arrival

points such as points whose amplitude values are 50% or 25% of PPG pulse amplitude

and located exactly after R-wave peaks [111, 112]. Here, peaks of VPG and APG were

considered as two different arrival points. The VPG peak indicates when pulse wave reaches

the highest velocity whilst APG peaks or a-waves represents systolic positive point. As a

consequence, two different types of pulse transit time were obtained including PT TV , PT TA

which indicate respectively the time difference from R-wave to the consecutive VPG and

APG peak points (Figure 3.1).

3.2.4 PTT and Estimation of Overnight Blood Pressure
Our aim was to formulate models to find out the relationships between different types of

PTT and blood pressure, then to determine which type of computed PTT can accurately

estimate systolic and diastolic blood pressures. Hence, for the development of empirical

functions, three subjects’ two types of PTT (PT TA and PT TV ) alongside with SBPr and

DBPr time series were used to develop the optimal fitting curve. We created two models

of PTT-BP, where the first model was called Model A and developed to fit PT TA and SBPr

and DBPr values. Another model was Model V and was created to fit PT TV and SBPr and

DBPr time series. In case of SBP measurement, two functions were empirically estimated by

using polynomial curve fitting. Figure 3.2 shows how we used curve fitting to model PT TA−

SBP and PT TV − SBP relations by employing second-degree polynomial. Eventually, two
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Figure 3.1: Two techniques for PTT detection. PT TV is pulse transit time from ECG R
wave to the VPG peak. PT TA represents pulse transit time from ECG R wave
to a-wave.

following functions were constructed to fit systolic blood pressure and different types of

PTT (PT TA and PT TV ) in order to predict SBP through PTTs:

SBPA = 0.0029× (PT TA)
2−1.958×PT TA +414.9, (3.1)

SBPV =−0.0028× (PT TV )
2 +1.091×PT TV +28.72. (3.2)

Curve fitting process were replicated in to fit different types of pulse transit time (PT TA

and PT TV ) and diastolic blood pressure. Equations 3.3 and 3.4 were also empirically created

to realise DBPA−DBP and DBPV −DBP relationships.

DBPA =−0.0024× (PT TA)
2 +1.77×PT TA−212.9, (3.3)

DBPV =−0.0007× (PT TV )
2 +0.1342×PT TV +87.39. (3.4)
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Figure 3.2: The empiric PTT-BP functions. (Top) Schematic of Model A fitting curve:
(Right) SBP−PT TA, Left: DBP−PT TA. (Bottom) Schematic of Model V fit-
ting curve: Right: SBP−PT TV , (Left) DBP−PT TV . The confidence intervals
of 95% was indicated by dashed-lines in all diagrams.

3.3 Performance Analysis

After development of curve fitting models, it is necessary to evaluate how each model can

estimate SBP and DBP. To assess the performance of either model A or V, we referred to

seven subjects in the control group. Their PT TA and PT TV were computed and then used

to evaluate functions of models A and V. We finally compared resulted SBP and DBP of

both models to the reference values (SBPr and DBPr) using goodness of fit analysis and

Bland-Altman plots. Two goodness of fit parameters including R2 and root mean square

error (RMSE) were calculated. R2 represents the square of the correlation between response
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and predicted values whereas RMSE computes the mean error of the approximation. Bland-

Altman plots were also applied to compare results of two methods with reference BP values.

3.4 Results
The outcomes of goodness of fit analysis were tabulated in Table 3.1 and 3.2. indicate which

PTT-BP model estimated overnight continuous SBP and DBP more accurately. In case of

systolic blood pressure measurement, model V was more precise with the average R2 of

0.593 and the mean error of ±3.96 mm-Hg with standard deviation of 1.41 were achieved.

Whilst the average R2 in Model A was 0.488 and mean error reached to ±9.23 mm-Hg

which was considerably higher than Model V.

Subject

ID

Model A Model V

R2 RMSE R2 RMSE

1 0.338 4.08 0.467 4.32

2 0.526 7.00 0.715 1.36

3 0.828 11.13 0.791 2.85

4 0.289 12.91 0.393 5.54

5 0.65 10.19 0.664 4.26

6 0.097 8.48 0.383 4.88

7 0.691 10.83 0.741 4.53

Mean 0.488 9.23 0.593 3.96

SD 0.258 2.96 0.174 1.41

Table 3.1: Statistical analysis of two recommended models for estimation of systolic blood
pressure. Mean and SD indicate the average and standard deviation value of R2

and RMSE for each model.

Figure 3.3-a shows Bland-Altman plot for SBP estimation of Model A that compares

the estimated SBP values from model A (SBPA) with reference values (SBPr). The agree-

ment limits were meanSBPA,SBPr± 34.4 mmHg where about 4% of [SBPA SBPr] pairs were

located beyond the limits. Similarly, the agreement limits for model V were meanSBPV ,SBPr±

28.8 mmHg where 3.2% of [SBPV SBPr] were located beyond the limits (Figure 3.3-b). As

shown, the difference between SBPV and SBPr was 6 mmHg smaller than difference be-

tween SBPA and reference values. In addition, the greater percentage of SBP data in Model
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Subject

ID

Model A Model V

R2 RMSE R2 RMSE

1 0.219 6.49 0.321 6.01

2 0.362 2.95 0.393 1.68

3 0.739 8.92 0.722 9.48

4 0.250 6.16 0.181 9.91

5 0.551 10.59 0.559 4.27

6 0.015 8.98 0.245 8.49

7 0.484 6.85 0.494 8.35

Mean 0.374 7.28 0.416 6.88

SD 0.240 2.49 0.189 3.03

Table 3.2: Statistical analysis of PTT-DBP models

A were outside of the agreement limits in compare to Model V by 0.7%. Goodness of fit

parameters and BA plots both indicate that Model V had stronger and more precise SBP

estimation than Model V.

Likewise, Model V had better results in DBP estimation whilst its average R2 was

higher by almost 4% greater than Model A. Albeit, the difference of two mean errors in

diastolic blood pressure measurement was negligible (Table 3.2). Bland-Altman plots of

DBP estimation shows that the difference between DBPA and DBPV with DBPr were about

52 and 21 mmHg, respectively. Moreover, only 1.5% of estimated DBP through Model V

(DBPV ) were beyond the agreement limits, whilst this rate for Model A (DBPA) was more

than twice (3.5%) (Figure 3.4). This means that model V could also estimate DBP more

precisely than model A.

3.5 Discussion
In this chapter, we presented our empirical models for overnight continuous BP monitor-

ing by using PTT which was extracted from ECG and derivatives of PPG. PTT has been

used in development of a cuff-less surrogate technique for BP estimation in several studies

[44, 51, 53, 140, 145, 146]. A key point in PTT detection is the arrival time of the pulse

wave in the periphery (finger), though there in no agreement about that in literature. Several
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(a)

(b)

Figure 3.3: Bland-Altman plots of the continuous SBP data of 7 subjects. Each point rep-
resents SBP for 3 secs. (a) Estimated SBP through Model A (SBPA) where
3.9% of all pairs are located beyond the agreement limits (mean ± 1.96 SD).
(b) Estimated SBP through Model V (SBPV ) where 3.2% of all pairs are located
beyond the agreement limits. SBPr represents reference values of systolic BP.

studies considered the peak of PPG as arrival point [140, 53] while 25%, 50% or 60% of

PPG pulse amplitude was assigned as arrival point for PTT estimation in other researches

[44, 51, 146]. However, our empirical models estimate PTT through haemodynamic fea-

tures such as the velocity and acceleration of blood in vessels. PT TV provided a more

consistent and accurate measure than PT TA to estimate blood pressure. In other words, if

the VPG has been used for detection of PTT, the obtained PTT (PT TV ) could produce more

precise and accurate results than PTT detected by second derivative of PPG. In fact, the

peak of VPG waveform represents when the blood flow which is pumped from left ventricle

reaches the maximum velocity in peripheral circulation. Here we presented a technique for
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(a)

(b)

Figure 3.4: Bland-Altman plots of the continuous DBP data of 7 subjects. (a) Estimated
DBP through Model A (DBPA) where 3.5% of all pairs are located beyond
the agreement limits (mean ± 1.96 SD). (b) Estimated DBP through Model V
(DBPV ) where 1.5% of all pairs are located beyond the agreement limits. DBPr

represents reference values of diastolic BP.

BP estimation directly from PTT-SBP/DBP curve fitting models. However, PTT has been

mainly utilised to compute pulse wave amplitude and then indirect estimation of BP. PWV

by definition represents the velocity of blood propagation and it seems to be closely related

with VPG. The significant difference between PWV-BP based models and our developed

PTT-BP model is in the various techniques which were applied for estimation of the BP

velocity. Both PWV and VPG can describe the velocity of BP pulse, however PWV estima-

tion, firstly, requires PTT detection, while VPG can be directly obtained from PPG analysis

and its peak can be used for PTT estimation. Indeed our method was independent of PPG

pulse amplitude and was associated to the morphology of PPG first derivative. For devel-
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opment PTT-BP models, ECG and PPG recordings of PSG database were used. Thus, for

each subject, averagely 6 hours and 50 minutes continuous BP were estimated and validated

through reference values every 3 secs. The BP estimator models have often been developed

from shorter duration data (15 or 30 minutes) [53, 147] or 90 minutes [140], however in

this study, we developed models using considerably longer duration datasets and evaluated

with at least 6 hours extracted PTT and BP reference values. The goodness of fit parame-

ters for both SBP and DBP analysis show that model V could estimate continuous BP with

higher accuracy than model A even in several hours recording. Thus, VPG seems to be

more effective than APG for continuous BP monitoring.

On the other hand, 1.96 SD for both DBP and SBP measurement in model A and V are

debatable in terms of whether developed models are usable or not. The agreement limits of

model V for continuous SBP and DBP estimation was considerably smaller than model A.

This manifests the more accurate performance of model V in contrast to model A. However

the obtained 1.96 SD for model V were 29 and 21 mmHg for SBP and DBP, respectively.

This contradicts the high capability of model V in accurate continuous BP estimation as we

expected. This reflects PTT limitations in BP estimation, specifically during the sleep. In

this study, we evaluated two method for PTT estimation, however, we did not consider the

effect of pre-ejection period (PEP), which is the time between the onset of electrical cardiac

activity and the start of mechanical ventricular ejection. PEP contributes significantly to the

PTT [51] and is accounted as a cause of PTT variability [148].

PPG signal differentiation may generate destructive noise which affect on the detection

of critical points of VPG and APG. In other words, a simple differentiator works as a high-

pass filter and could amplify the high frequencies like unwanted noises, correspondingly.

Our approach was to use smoothing and averaging window filters after differentiation. An-

other suggested technique is using Smooth Noise Robust Differentiator (SNRD) which is

precise at low frequencies, smooth and guaranteed suppression of high frequencies [144].

In this study, the limited number of subjects were applied for development of models

(n = 3) and test of models (n = 7). More subjects either men or women with different

age and medical condition will allow to gain a comprehensive comparison of APG and

VPG features in continuous BP monitoring as well as to develop robust and more precise

BP estimators. The effect of random selection in BP estimation can also be determined in

future studies with larger sample size.
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3.6 Conclusion
This study shows that PT TV as time delay between from ECG and the first derivative of

PPG peaks is correlated with both systolic and diastolic blood pressure. The empirical

quadratic polynomials could model PTT-SBP and PTT-DBP relations and resulted models

could estimate overnight SBP and DBP. This research illustrated that derivatives of PPG,

particularly, VPG can also be considered as a non-invasive measure for haemodynamic

monitoring. The obtained algorithm is capable to be improved and utilised for real-time and

overnight blood pressure monitoring.



Chapter 4

Arousals and ECG Time Intervals

4.1 Background
Heart rate is a vital measure of cardiovascular function and can be measured from R-R time

intervals. Heart rate variability has been analysed in various studies in order to monitor

sleep events and diagnosis of sleep disorders [71, 72, 83, 149]. In chapter 2, HRV frequency

components were extracted and applied to develop an algorithm for sleep staging as well as

to investigate whether different types of sleep arousals influence on low and high frequency

spectral components of HRV. Despite of diagnostic significance of HR in sleep studies, it

is not the only cardiovascular marker which can be extracted from ECG. In addition, HR

does not seem as a robust index of potentially pro-arrhythmic changes that may occur in the

cardiac conduction system in the atrial or ventricular myocardium [91]. The QT interval

reflects subtle temporal variations in ventricular depolarisation and repolarisation and also

exhibit spontaneous beat-to-beat fluctuations [150]. QT interval can be affected in patients

suffering from obstructive sleep apnoea (OSA). Specially, the variance of beat to beat QT

interval are correlated with the severity of obstructive sleep apnoea [94]. This correlation is

even stronger than standard measures of HRV.

The main objective of this chapter was to evaluate whether sleep arousals can cause a

significant change in cardiac QT and RR time intervals. In addition, this study was going to

study and compare the instantaneous changes of cardiac intervals pre- and post-arousal. The

variability of both QT and RR before and after arousal onset was also investigated. Since

different sleep events such as respiratory or limb movement episodes may induce transient

arousals, we also compared QT/RR interval changes during occurrence of different types of

arousals to explore the association of sleep events and QT/RR intervals fluctuations. The
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effect of sleep stage and duration of the arousal episode on QT and RR interval variability

were also studied.

4.2 Methodology

4.2.1 Data Acquisition

The MrOs Sleep Study is a multi-centre cohort study which was conducted between De-

cember 2003 and March 2005 with more than 3135 community-dwelling men, 65 years old

or older participants at 6 different clinical centres in the United States. All men provided

written informed consent, and the study was approved by the Institutional Review Board at

each site. All men completed in-home overnight polysomnography, however we had access

to 2892 subjects’ PSG datasets. The participants’ PSG data was recorded over one night at

their residence using the Sleep Monitoring System (Safiro, Compumedics, Inc, Chatlotte,

NC, USA). Since our goal was to focus on sleep arousals and cardiac time intervals, we

only considered subjects whose PSG recordings was fairly adequate and their sleep had a

proper number of arousals. Finally PSG dataset of 2659 (91.9%) were utilised and analysed

in this study.

Each dataset contained 22 channels. We only analysed one central EEG channel and

one ECG channel. EEG had been recorded at frequency sampling (Fs ) of 256 Hz whilst Fs

= 512 Hz for ECG.

4.2.2 Arousal Scoring

Sleep events such as arousals, oxygen desaturation, periodic leg movement, obstruc-

tive/central apnoea and hypopnoea were manually scored by a specialist according to the

AASM criteria. Sleep stages were also detected and determined for almost all subjects

based upon AASM sleep staging rules. Only arousal episodes longer than 3 seconds were

considered for this study to meet AASM requirements of arousal scoring. Arousals were

categorised into two groups based upon their duration, short-term arousal (STA) and long-

term arousal (LTA). The STA term refers to arousal with duration less than 8 secs, whilst

longer episodes were categorised as LTA.

We conducted classification of arousals regarding to their annotation files. Arousal

might be induced by a respiratory episode or a limb movement event or non of them. If an

arousal occurred 10 secs after the end of a respiratory event or 5 secs before the termination
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of the event, it means that the induced arousal was associated with the adjacent respiratory

event, then classified as RERA episode. Similarly, arousals related with any leg movement

or periodic body movement episodes were categorised as movement arousals (MA). Once

an arousal occurred simultaneously with both respiratory and movement events and the

origin of arousal was unknown, the arousal was classified as RERA. If an arousal is neither

associated to a respiratory event nor to a body movement episode, it was considered as

spontaneous arousal.

Furthermore, we divided arousals into 5 sub-groups (NREM1, NREM2, NREM3,

REM and Wake) regarding to the sleep stage that the arousal terminated. For instance,

if an arousal started at stage NREM2 and ended at stage NREM1, it was categorised into

NREM1 group. Table 4.1 presents a general view of how many arousals were scored and

how they were classified. By these classifications, we could investigate the effect of arousal

type, duration and sleep stage on cardiovascular dynamics once an arousal induces.

Caregory Class
Total Number

(%)

Arousal number per subject

Mean ± SD

Type

MA 81886 (21.1%) 30.7 ± 29.2

SA 194648 (50.3%) 73.1 ±37.9

RERA 110576 (28.6%) 41.5 ± 42.4

Duration
STA 146440 (37.8%) 55.1 ± 36.9

LTA 240670 (62.2%) 90.4 ± 48.6

Sleep Stage

NREM1 44262 (11.2%) 16.6 + 13.3

NREM2 250031 (66.3%) 93.9 ± 55.1

NREM3 9652 (2.5%) 3.6 ± 6.2

REM 51331 (12.3%) 19.3 ± 13.5

Wake 31033 (7.7%) 11.7 ± 8.5

Table 4.1: General Information of total scored arousals in 2659 participants. MA, SA and
RERA represent movement, spontaneous and respiratory effort related arousals,
respectively. Short- and long-term arousal were represented by STA and LTA
abbreviations.

4.2.2.1 Arousal Indices

In any PSG reports, total number of arousal is significant to determine how much sleep was

fragmented. As a result, the arousal index (AI) is defined as the total number of arousals
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per one hour of sleep. This marker can estimate the degree of sleep fragmentation [20, 21].

Furthermore, respiratory disturbance index (RDI) is obtained as the total number of apnoea,

hypopnoea and RERA events in one hour sleep. In addition, we defined movement arousal

index (MAI), respiratory arousal index (RAI) and spontaneous arousal index (SAI) as the

average number of MA, RERA and SA events in one hour of sleep, respectively. Thus,

we calculated 5 arousal indices (AI, RDI, MAI, RAI, and SAI) regarding to each subject’s

number and types of sleep arousals as well as their total sleep time. Arousal indices allowed

us to quantify the reciprocating pathological effect of arousals on cardiac intervals.

4.2.3 EEG Signal Processing
EEG spectral analysis is the gold standard for manual scoring of sleep events. Different

EEG spectral power components vary when cardiovascular parameters suddenly change.

These alteration can manifest as cortical events such as sleep arousals. The main aim of this

section was to determine the exact location of arousal onset

4.2.3.1 EEG Decomposition

As previously discussed, EEG signal is normally divided into frequency bands based on

rhythmic activity. Since EEG is a non-stationary signal, traditional time-frequency trans-

forms may not provide precise analysis. Thus, discrete wavelet transform (DWT) was ap-

plied to decompose EEG signal into spectral patterns. By this means the impact of non-

stationarities on our analysis could be minimised. Since all EEG data was being recorded

at Fs = 256 Hz, we applied Daubechies wavelets with 8 vanishing moments to decompose

EEG signals [151]. The DWT decomposed EEG into its frequency bands step-by-step in

7 levels (Figure 4.1). During the initial levels (d = 1,2), artefacts and noises were elimi-

nated by DWT. At the fourth level, DWT provided power band component for frequencies

between 16 and 32 Hz (beta wave). Similarly, we gained alpha, theta and delta bands at 5th,

6th and 7th level of DWT decomposition, correspondingly.

4.2.3.2 Validation of Manual Scoring

It is essential to validate manual arousal scoring and verify arousal onset. Since we in-

tended to investigate cardiac intervals variation at arousal onset, we had to find a strategy to

determine the exact location of onset for each arousal. Thus, we referred to AASM basic

definition for sleep arousals. According to the AASM criteria, only EEG shift greater than

16 Hz, can be considered as sleep arousals, except EEG spindles. All arousals were anal-
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Figure 4.1: Graphical demonstration of EEG decomposition by Daubechies’ Wavelet with
8 vanishing moments.

ysed to determine whether the manually scored arousal onset was precisely in accordance

with EEG shift in frequencies greater than 16 Hz.

For arousal analysis, it was only required to focus on beta frequency band ( f ≤ 16)

[152] and look for EEG shift. For each single arousal, two windows with different lengths

were designed, the past window (PW) with length of 10 seconds and 3 seconds current

window (CW). Both windows were being moved across the EEG signal, 3 seconds before

and after arousal onset. By applying wavelet analysis, EEG beta power band was computed

for the past and current windows. The beta power of both PW and CW could be calculated

as follows:

Powerβ =
∑

f=32
f=16 p2

f

L
(4.1)

We looked for the sudden EEG shift, the ratio of CW to PW beta power band then

was computed. The highest CW/PW ratio could indicate when EEG genuinely shifted and

consequently, determined the precise moment of arousal onset. By this means, we assessed

and then verified the onset index for all scored arousals in all subjects.
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4.2.4 ECG Analysis

Any changes in the cardio-respiratory system can appear in ECG modulation. Alteration of

ECG waves can therefore reveal an issue in cardio-respiratory function. We applied several

ECG analysis methods to investigate subtle changes in cardiac time intervals once a sleep

arousal occurs.

4.2.4.1 Two-Dimensional Signal Warping

In biomedical signal analysis, matching and similarities can be quantified to detect sub-

tle changes of time intervals. Schmidt et al. developed a two-dimensional signal warp-

ing (2DSW) algorithm for detection of subtle changes in noisy quasi-periodic biomedical

signals [153]. The term of warping in signal and image processing is known once simi-

larities of two pattern are compared. The developed 2DSW technique was integrated for

measurement of QT beat-to-beat intervals variability and its performance was evaluated in

simulations clinical data. The 2DSW approach could detect subtle changes in noisy ECG

and have diagnostic potential for measuring repolarisation lability in patient suffering from

myocardial infarction [153].

4.2.4.2 Cardiac Time Intervals Measurement

For each single arousal, we defined cardiac arousal window (CAW) which contained ECG

recording between 5 secs prior to and 10 secs after the verified arousal onset. It allowed us

to precisely focus on cardiac function some moments before and after the arousal induces.

Hence, for each subjects a matrix of 15 secs CAW time-series were generated.

We applied a 2DSW-based software for ECG analysis in our study. The software was

a MATLAB graphical user interface (GUI) and automatically constructed an ECG template

based upon several minutes ECG recordings [153]. The 2DSW GUI at the first step, gener-

ates the ECG template based upon an input ECG signal (Figure 4.2) and then automatically

estimates cardiac time intervals for another ECG recording based on developed template

(Figure 4.3). In each subject, an ECG recording sample with duration of 5 mins was ran-

domly selected regardless of the sleep stage or the possibility of any sleep events such as

arousal or apneic episodes. The ECG sample was the input of the 2DSW software to con-

struct the ECG template that provided detailed information of ECG critical points indices

such as Ponset , Ppeak, Po f f set , QRS complex, R wave, Tonset , Tpeak and To f f set (Figure 4.2).

For each subject, the matrix of CAW time-series was applied alongside with the sub-



4.2. Methodology 99

Figure 4.2: 2DSW software generated an ECG template using 5 minutes ECG recording.

ject’s constructed template to estimate QT and RR time intervals through the 2DSW algo-

rithm. The 2DSW GUI matched the template with each CAW time-series and estimated

two main cardiac time intervals including the interval between two consecutive R waves or

RR interval as well as the time delay between the start of QRS complex (Q-wave) and the

end of T-wave which is known as QT interval. Figure 4.3 shows how 2DWS software could

automatically measure QT for a typical ECG waveform in several steps.

Thus, two vectors of estimated QT and RR were produced for each CAW time-series,

which represents cardiac intervals fluctuations pre- and post-onset of arousal. Each subject’s

QT and RR interval vectors were gathered together and constructed QT and RR interval

matrices, respectively. By this means, we could obtain the cardiac intervals during almost

all arousals in 2659 subjects.

4.2.5 Cardiac Intervals Signal Averaging

For each single arousal, QT and RR time series were obtained for 15 secs (5 seconds pre-

onset and 10 secs post onset). The objective was to study how intervals vary arousal-by-

arousal and subject-by-subject. The another question was whether different pathological

sleep events that induced arousals were associated with QT and RR interval variability or

not. In order to study the QT and RR variability subject-by-subject, the phased-rectified

signal averaging algorithm was implemented. Then, we investigated whether averaging

was an adequate approach to study cardiac intervals alterations.
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Figure 4.3: QT interval estimation for a typical ECG waveform using MATLAB-based
2DSW software in four steps.

4.2.5.1 Phase-Rectified Signal Averaging

In 2006, Bauer et al. proposed phase-rectified signal averaging (PRSA) as a technique

for analysis of quasi-periodic oscillations in noisy, non-stationary signals. The suggested

method was based on the definition of anchor points in the signal and then using them

to align and phase-rectify the oscillatory fluctuations followed by an averaging of the sur-

roundings of the anchor points [154]. PRSA algorithm can briefly be described as following:

i) Let X = { x1, x2, ...,xN } be a long time series representing the signal which may

contain non-stationarities, noise or artefacts.

ii) Anchor points in X defined according to the specific features such as increasing (xi

> xi−1) or decreasing (xi < xi−1)
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iii) Windows and surroundings, of length 2L around each anchor point xiv where v = 1

, . . . , M, are identified. M is the total number of regarded anchor points. The surrounding

of xiv is xiv−L , xiv−L+1 , . . . ,xiv , . . . , xiv−L−2 , xiv−L−1.

iv) Window are aligned at their anchor points, xiv and PRSAx is obtained by averaging

all windows:

PRSAx(k) = x̄(k) =
1
M

M

∑
v=1

xiv+k (4.2)

where k = –L,...,0,..., L – 1.

In this study, we applied PRSA technique for averaging of QT and RR intervals in a

subject. We consider arousal onset as anchor points and computed the PRSARR and PRSAQT

as following:

PRSARR(k) =
1
M

M

∑
v=1

rriv+k (4.3)

and

PRSAQT (k) =
1
M

M

∑
v=1

qtiv+k (4.4)

where M is the number of detected arousals of a subject, rriv and rrqt are the RR and

QT interval at arousal onset or just before it.

Figure 4.4 shows an example of how we developed PRSAQT and PRSARR. For each

subject, PRSAQT and PRSARR presented an average of QT and RR variability pre- and post-

onset of sleep arousals.

4.2.5.2 Bivariate PRSA

PRSA, usually known as univariate PRSA, has been generally used to rectify the phase of

a noisy quasi-periodic signal. Schumann et al. proposed a new modification of univariate

PRSA for investigation on the inter-relations between two signals [155]. In bivariate PRSA

(BPRSA) algorithm, we have two signals, trigger signal, X = { x1, x2, ...,xN } and target

signal, Y = { y1, y2, ...,yN } . Anchor points i1,...,iM are defined for any increase or decrease

in trigger signal, while surrounding are defined and averaged for the target signal. Thus

BPRSA as the phase rectified averages for X → Y computed as following:

BPRSAX→Y (k) = ȳ(k) =
1
M

M

∑
v=1

yiv+k, (4.5)

where k = –L,...,0,..., L – 1.
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Figure 4.4: A graphical demonstration of (Left) RR interval phase-rectified signal av-
eraging (PRSAQT ) and (Right) QT interval phase-rectified signal averaging
(PRSARR) for a subject with 149 sleep arousals. Arousal onsets (black points)
was appointed as anchors.

BPRSA is a non-symmetric algorithm that means if the trigger and target signals are

swapped, the outcomes, BPRSAX→Y and BPRSAY→X will be different [155].

Once an arousal occurs, both RR and QT intervals are expected to change immedi-

ately. To find out whether increase in one cardiac interval will result to increase or decrease

of another one, we investigated on inter-relations between QT and RR. BPRSA assisted

us to model cardiac inter-relations during the arousal. BPRSAQT→RR and BPRSARR→QT

were estimated to assess how those parameters are inter-related. Our algorithm for BPRSA
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analysis of QT and RR was as following:

i) Let QT = { qt1, qt2, ...,qtN } and RR = { rr1, rr2, ...,rrN } and are two time series of

QT and RR intervals of 5 seconds pre- and 10 second post arousal onset, after re-sampling

at Fs = 10 Hz.

ii) Anchors for RRi are defined as the peaks points adjacent to onset. It indicates when

the RR was considerably increasing. Then the anchors should be assigned in QTi curve to

compute BPRSARR→QT for a subject as following:

BPRSARR→QT (k) =
1
M

M

∑
v=1

QTiv+k, (4.6)

where M is the number of detected arousals of a subject.

Figure 4.5: Illustrations of implementing bivariate PRSA of RR and QT mutual relations
during an arousal occurrence. Anchors of RR (red points) were determined and
then transferred into QT. An average of anchors and surroundings estimated the
normalised BPRSARR→QT , 4 seconds pre- and post- onset.
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Figure 4.5 graphically illustrates how BPRSA algorithm was launched for estimation

of QT and RR inter-relations in a particular cardiac arousal window. Anchors of RR indi-

cates when RR interval curve was significantly increasing. In this arousal, the algorithm

found 4 anchors in RR curve, though in the most of arousals, maximum two anchors were

found according to the algorithm. By averaging the anchors and surroundings after transfer-

ring anchors to QT , the BPRSARR→QT for the arousal was obtained and describes whether

an increase in RR interval was accompanied with a shift in QT interval at onset or moments

before and after it. At the end, we normalised BPRSARR→QT using mean and standard

deviation of QT interval in each subject.

Similarly, if we assume QT as trigger signal and RR as target, BPRSAQT→RR can be

computed. The peak points of QT indicate when QT interval curve was increasing and

defined as anchors and assigned at RR to estimate BPRSAQT→RR :

BPRSAQT→RR(k) =
1
M

M

∑
v=1

RRiv+k, (4.7)

BPRSA analysis allowed to investigate whether instantaneous fluctuations in QT in-

tervals during arousal are in the same direction with RR variations. Figure 4.6 presented an

example of how we reapplied BPRSA algorithm to model BPRSAQT→RR. Exchanging of

QT and RR will result two different curves where BPRSAQT→RR and BPRSARR→QT could

have some common features and correlation, however they both model the variations in two

different signals and they do not have necessarily same trends. In addition, the variability of

both BPRSAQT→RR and BPRSARR→QT in different subjects and different types of arousals

can reveal the QT/RR inter-relations before, during and after arousal occurrence.

By using univariate and bivariate PRSA, we obtained four time-series curves for each

subjects, PRSAQT , PRSARR, BPRSAQT→RR and BPRSARR→QT . At the next step, the vari-

ability of these curves at arousal onset, before and after it were investigated to find out how

an induced arousal influences on cardiac time intervals as well as cardiovascular system.

4.2.6 Cardiac Interval Gradients

To study whether cardiac intervals were increasing or decreasing once an arousal occurred,

we defined QT and RR gradients. The gradient of a curve manifests its slope at a particular

point and it can be different at another point of the curve. The gradient of a cardiac time

interval e.g. QT, may show its trend at a particular time as well as its instantaneous changes
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Figure 4.6: A graphical demonstration of using QT as trigger and RR as target signals to
estimate BPRSAQT→RR for a particular arousal. Normalised BPRSAQT→RR can
be easily obtained using mean and standard deviation of RR in each subject.

over the time. Our algorithm to compute the gradient of cardiac time interval during arousal

time was as following:

Let X ={ x−5,...,x−4,..., xonset ,...,x1,..., x5 } be a discrete time-series which can be a car-

diac arousal window or a PRSA interval curve that includes interval values from 5 seconds

prior to onset to 5 seconds after it. Then gradients be defined as:

Gr−4 = (x−4− x−5); Gr−3 = (x−3− x−4);

Gr−2 = (x−2− x−3); Gr−1 = (x−1− x−2);

Gr0 = (x0− x−1); Gr1 = (x1− x0);

Gr2 = (x2− x1); Gr3 = (x3− x2);

Gr4 = (x4− x3); Gr5 = (x5− x4);

Hence, the gradient vector GR = [Gr−4, Gr−3, Gr2, Gr−1, Gr0, Gr1, Gr2, Gr3, Gr4,
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Gr5] could be obtained. The Gri < 0 indicates that cardiac interval, ′X ′ had a downward

trend and was decreasing. While positive Gri reflects ′X ′ increasing. For instance, if Gr1 <

0, it is interpreted that the time interval shortened right after onset (Figure 4.7).

Figure 4.7: A graphical demonstration QT gradients computation. Gr−4, Gr−3, Gr−2, Gr−1
and Gr0 are pre-onset gradients and Gr4, Gr1, Gr2, Gr3, Gr4 and Gr5 are post-
onset gradients.

4.2.7 Cardiac Intervals Variability
To investigate the variability of cardiac intervals during arousal inducing in different sub-

jects, we developed all 2569 participants PRSAQT and PRSARR curves and then computed

the following statistical features for all:

i) QT and RR range: the difference between the maximum and minimum of PRSAQT

either 5 seconds before onset (PrerangeQT ) or 10 seconds after it PostrangeQT . The RR range

for pre (PrerangeRR) and post-onset (PostrangeRR )windows could be derived from PRSARR

just similar to QT range.
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ii) QT and RR mean: we computed PremeanQT , PostmeanQT , PremeanRR and PostmeanRR

as the mean of Pre−QT , Post−QT , Pre−RR and Post−RR vectors, respectively.

iii) QT and RR Variance: PreVarQT , PostVarQT , PreVarRR and PostVarRR indicated the

variance of QT and RR before and after onset.

iv) In addition, we computed QTVi−Pre and QTVi−Post for pre- and post-onset based

on Berger et al. [156]:

QTVi = log(
VarQT/(meanQT )2

VarRR/(meanRR)2 ), (4.8)

where VarQT and meanQT were variance and mean of QT interval vectors. Likewise,

meanRR and VarRR represent mean and variance of RR interval vectors.

v) QT/RR Slope: The measures PreSlope and PostSlope represents the slope of a linear

regression function fitted QT and RR before and after onset. The Slope reflects mutual

changes of QT and RR intervals

vi) QT/RR R2: Residual of the regression line fitted to QT and RR (PreR2 and PostR2).

This factor indicates the strength of the QT/RR dependence.

4.2.8 Statistical Analysis
We applied different statistical and graphical analysis methods to study QT and RR interval

variations before and after arousal occurrence. Visualisation of gradients allowed us to in-

vestigate momentary changes in cardiac intervals once arousal occur. Statistical measures

like mean and variance utilised the comparison of pre- and post-onset situations. The Pear-

son linear correlation coefficient was also used to assess any possible associations between

computed parameters. We also applied the Student’s t-test and ANOVA analysis to evaluate

whether obtained results are statistically significant.

4.3 Results

4.3.1 Cardiac Interval Gradients
Gradients of cardiac intervals can detect the instantaneous changes in intervals. The di-

rection of Gri determines whether the time interval had an upward or downward trend at

moment of i. The absolute value of Gri reveals the intensity of changes. We analysed gra-

dients in two ways, subject-by-subject and arousal-by-arousal. In order to investigate how

cardiac interval gradients changes subject-by-subject, we estimated all participants PRSAQT
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and PRSARR time-series and then computed their gradients. In each subject, two gradient

vectors were obtained, Gr(PRSAQT ) and Gr(PRSARR) which respectively represented the

gradient analysis of PRSAQT and PRSARR.

Figure 4.8: The histogram of cumulative distribution function (CDF) for gradients of
PRSARR in 2659 subjects. The probabilities of Gri < 0 has been indicated in
sub-figures.

To investigate how Gri values were distributed, we used the cumulative distribution

function (CDF) as the measure of probability distribution of Gri. By this means, we could

estimate the likelihood of Gri < 0, the marker of interval reduction. The CDF of PRSARR

gradients was depicted in Figure 4.8. In each histogram, the distribution of Gri based upon

their probability was indicated. For instance, the CFD(Gr−4 < 0) = 0.73, CFD(Gr−3 <

0)= 0.72, CFD(Gr−2< 0)= 0.74 and CFD(Gr−1< 0)= 0.61 indicate that until 2 seconds
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prior to arousal onset, the RR interval was decreasing with probability greater than 70%.

This likelihood dropped to 61% one moment to before arousal induces. Furthermore, the

PRSARR dropped at onset in 46% and this means the chance of RR shortening reduced at

arousal onset. The early post-onset gradients, CFD(Gr1 < 0) = 0.69 and CFD(Gr2 < 0) =

0.61 also demonstrates that RR is more likely to shorten than prolong even 2 seconds after

arousal onset. Vice versa, the CDF analysis of later gradients (Gr3, Gr4 and Gr5) show that

the RR was likelier to have ascending trend than descending.

We also visualised cumulative distribution of PRSAQT gradients in all participants

(Figure 4.9). An overview of gradients in PRSAQT indicates that in at least 60% of subjects,

QT had a descending trend moments before and after arousal occurs. The only exception

was CFD(Gr0 < 0) = 0.57, which means that the probability of QT shortening at arousal

onset was less than moments prior to or following to onset. Even 5 seconds after onset,

CFD(Gr0 < 0) = 0.71 that indicates a post-arousal continuous QT shortening.

PRSA algorithm provided a precise average of QT and RR intervals in a subject. Ac-

cording to the literature, using anchors and average could help to minimise the effects of

noises and missing points. It also enabled us to compare cardiac changes during arousals in

different subjects. However, PRSA analysis does not allow to understand a particular single

arousal behaviour. Moreover, we are not able to compare cardiac changes in one arousal

with another arousal. To investigate arousal-by-arousal cardiac interval gradients, we com-

puted gradients for all arousals of all subjects, regardless of its type or duration instead of

computation of gradients for PRSA curves. We previously, created CAW vector for each

single arousal and used it to compute gradient vector for all arousals. Thus, RR and QT

interval gradients were computed for all arousals. As a consequence, we reached two same-

sized matrices, Gr(QT ) and Gr(RR), which had 387110 rows as the number of all arousals

and 10 columns represented 10 Gri. In each arousal, the gradients of QT and RR were

computed and whether they were negative, positive or zero determined they were descend-

ing (↓), ascending (↑) or constant and with no change (N.C). The aim was to investigate

on Gr(QT ) and Gr(RR) analysis and compare them with Gr(PRSAQT ) and Gr(PRSARR).

Tables 4.2 and 4.3 illustrated the percentage of arousal with ascending, descending or no

change Gri. Tables also presents a comparison of RR and QT interval gradients in three

arousal groups (MA, SA and RERA) as well as in short- and long-term arousals.

As shown in Table 4.2, gradients trend distribution is independent of arousal type or
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Figure 4.9: The CDF histogram of gradients for QT time intervals.

duration. For instance, Gr−1 refer the slope of QT curve one second prior to arousal onset.

Only 17.9% of all arousals had a descending QT (↓) at moment right before the onset. This

percentage in MA, SA and RERA arousal group was 15.4%, 17.6% and 17.4%, respec-

tively. Similarly, the probability of negative gradient at onset-1 in short and long duration

arousal was very close (17.5% vs 17.3%). The percentage of zero (N.C) and ascending

gradients also had the same conditions. At arousal onset, QT gradients were distributed

in three groups with almost same probability. The chance of QT drop at a typical arousal

was approximately as same as QT rise. The likelihood of no change in QT at onset was

also same. In this case, there is no convincing evidence to explain QT behaviour at arousal

onset. The probability of Gri = 0 (N.C(%)) was gradually increasing over the time after

arousal onset. One second after onset, the probability of no change Gr1 was only 29.4%,
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which means in more than 70% of arousal QT changed at one second after onset. However

one second later in almost half of all arousal, QT did not change at all (Gr2 = 0). The

probability no changes at 3, 4 and 5 seconds after onset (Gri = 0, i = 3,4,5) were 57.3%,

61,6% and 63.6%, respectively. This demonstrates the post-onset gradual QT smoothing.

A comparison between results shown in Figure 4.9 and Table 4.2 indicates a clear differ-

ence between obtained results from Gr(PRSAQT ) and Gr(QT ). The averaging algorithm

provided an overview of QT and RR activation and its outcome is not necessarily reflects

the cardiovascular activation during each single arousal.

Analysis of RR interval gradients of all arousals shows that the trend of changes in RR

pre and post-arousal moments does not seem to be depended to type or duration of arousal.

While the probability of RR shortening at onset (Gr0 ↓) of all arousal was 28.5%, this ratio

in MA, SA and RERA episodes was 30.6%, 29.3% and 28.3%, receptively. Although,

shorter episodes are likelier to be accompanied with RR interval drop at onset than longer

arousal by about 3% (Table 4.3).

Similar to QT gradients, the percentage of RR no-change gradients had an ascending

trend after onset. For example , the zero gradient at onset of RERA events had 42.7%

chance to be unchanged, this likelihood reached to 51.6%, three seconds later and shifted to

54.5% five seconds after onset.

Beyond Gri direction, as an indicator of the trend of instantaneous changes in cardiac

intervals, the scalar value of Gri which represents the rate of change were investigated in

different arousal categories. Hence, we compared cardiac intervals Gri variability in terms

of their type (MA, SA and RA), duration (STA and LTA) and the sleep stage of arousal

termination (Table 4.4). We applied the two sample t-test to investigate whether variability

of QT and RR Gri is related to the duration of arousal or not (significance level: p = 0.05).

Furthermore, the one-way ANOVA analysis assessed whether arousal type or sleep stage

affect on momentary changes in QT and RR intervals. The significant level for Gri analysis

based on arousal type was p = 0.05, whilst it was considered p = 0.01 for investigation on

sleep stages. The post hoc Tukey’s honest significant difference criterion was also applied

after ANOVA analysis to determine the gradients in which type of arousals or sleep stages

were significantly different.



4.3. Results 112

Gri All MA SA RERA STA LTA

Number 387110 81886 194648 110576 146440 240670

Gr−4

↑ (%) 34.4 33.3 33.4 33.8 33.3 33.4

↓ (%) 34.1 33 33.1 33.5 33.1 33.1

N.C(%) 31.5 33.7 33.4 32.6 33.7 33.5

Gr−3

↑ (%) 22.6 21.5 22.2 22.3 21.9 22.1

↓ (%) 22.7 21.8 22.3 22.3 21.9 22.2

N.C(%) 54.6 56.6 55.6 55.4 56.2 55.7

Gr−2

↑ (%) 19.1 18.3 18.8 18.8 18.5 18.6

↓ (%) 19.6 18.8 19.3 19 19.1 19

N.C(%) 61.3 63 62 62.2 62.4 62.4

Gr−1

↑ (%) 17.1 16.3 16.9 16.7 16.7 16.6

↓ (%) 17.9 17.4 17.6 17.4 17.5 17.3

N.C(%) 65 66.3 65.5 66 65.8 66

Gr0

↑ (%) 33.1 31.9 32.3 32.5 32 32.1

↓ (%) 34.4 33.6 33.5 33.8 33.5 33.4

N.C(%) 32.4 34.5 34.3 33.7 34.5 34.4

Gr1

↑ (%) 35.7 34.5 34.6 35.2 34.4 34.8

↓ (%) 35 34 34.2 33.9 34.1 33.8

N.C(%) 29.4 31.5 31.2 30.9 31.5 31.5

Gr2

↑ (%) 25.2 24.3 24.7 24.4 24.8 24.2

↓ (%) 25.6 24.5 25.3 24.9 25 24.8

N.C(%) 49.2 51.1 50.1 50.7 50.1 51

Gr3

↑ (%) 21.2 20.2 21.1 20.4 21.2 20.2

↓ (%) 21.5 20.8 21.2 20.8 21.1 20.8

N.C(%) 57.3 59 57.8 58.8 57.7 59

Gr4

↑ (%) 19.2 18.7 19.1 18.4 19.5 18.3

↓ (%) 19.2 18.2 19 18.5 18.8 18.5

N.C(%) 61.6 63 61.9 63.1 61.7 63.2

Gr5

↑ (%) 18.3 17.8 18.2 17.4 18.4 17.4

↓ (%) 17.9 16.9 17.8 17.4 17.6 17.3

N.C(%) 63.9 65.3 64.1 65.2 64 65.3

Table 4.2: QT interval gradients analysis in different arousal categories based on arousal
types (MA, SA and RERA) and duration (STA and LTA). LTA and STA repre-
sent long- and short-term arousal. The percentage of ascending and descending
gradients were represented by ↑ and ↓ signs. N.C refers to zero gradients.

4.3.1.1 Gradients and Arousal Types

As tabulated in Table 4.4, RR Gri variability are more associated to arousal type than QT

Gri variability. Only QT gradients at 1 sec and 4 secs after onset significantly differed by

arousal type. The post hoc test shows that QT gradients one second after arousal onset
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Gri All MA SA RERA STA LTA

Number 387110 81886 194648 110576 146440 240670

Gr−4

↑ (%) 22.6 22.3 23.1 22.5 23 22.7

↓ (%) 29.6 30.3 30.3 30 30.3 30.4

N.C(%) 47.8 47.4 46.6 47.5 46.7 46.9

Gr−3

↑ (%) 20.4 19.8 21.1 20.1 20.7 20.5

↓ (%) 29.2 30.3 29.7 30 30 30.1

N.C(%) 50.4 49.9 49.1 49.9 49.2 49.4

Gr−2

↑ (%) 18.2 17.7 19 17.9 18.8 18.3

↓ (%) 27.1 28.5 27.7 28 28 28.2

N.C(%) 54.7 53.8 53.3 54.1 53.2 53.6

Gr−1

↑ (%) 15.8 16.2 15.9 15.9 16.4 15.8

↓ (%) 17.4 19 18.4 18.5 18.7 18.8

N.C(%) 66.8 64.8 65.6 65.6 64.9 65.3

Gr0

↑ (%) 28.4 27 28.7 28.9 27 29.3

↓ (%) 28.5 30.6 29.3 28.3 31.4 28.2

N.C(%) 43.1 42.4 42 42.7 41.5 42.5

Gr1

↑ (%) 20.9 20.9 21.8 20.4 22.3 20.6

↓ (%) 31.1 31.6 31.9 31.5 31.9 31.8

N.C(%) 47.9 47.4 46.3 48.1 45.8 47.6

Gr2

↑ (%) 22.1 23 22.8 21.3 24.4 21.3

↓ (%) 28.5 28.3 29.4 28.9 28.6 29.4

N.C(%) 49.2 51.1 50.1 50.7 50.1 51

Gr3

↑ (%) 22.8 24.4 23.7 21.7 25.9 21.8

↓ (%) 26 25.2 26.8 26.7 25.5 27.2

N.C(%) 51.2 50.4 49.5 51.6 48.6 51

Gr4

↑ (%) 24 26 24.9 22.6 27.5 22.8

↓ (%) 23.2 22 24 24.2 22.2 24.7

N.C(%) 52.8 51.9 51.1 53.1 50.3 52.5

Gr5

↑ (%) 24.3 26.4 25 23.3 27.5 23.3

↓ (%) 21.5 20.2 22.4 22.3 20.5 22.9

N.C(%) 54.2 53.4 52.6 54.5 52.1 53.8

Table 4.3: RR interval gradients analysis in different arousal categories based on arousal
types

in respiratory arousals was significantly different from spontaneous arousal. On the other

hand, Gri of RR intervals in almost all i moments were associated with arousal type, except

i=1. The post hoc test results indicates that gradients at i= onset, onset+2, onset+3 and

onset+4 (Gr0,Gr2,Gr3, Gr4) were significantly associated with arousal type. This means

post arousal RR momentary changes are related to arousal type as consequently to sleep

event which induced the arousal.
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4.3.1.2 Gradients and Arousal Duration

The duration of arousal played a significant role in gradients RR variability in all Gri, except

i =−4 (Table 4.4). This means the RR pre-and post-onset instantaneous changes in arousal

with duration shorter than 8 secs were significantly different from the longer arousals. Vice

versa, our findings did not show a significant dependency of QT Gri variability and arousal

duration, except Gr−4 and Gr1.

4.3.1.3 Gradients and Sleep Stage

The RR fluctuations during arousal were associated to sleep stages. The pre-onset RR gra-

dients of arousals ended in wake stage (Gr−3, Gr−2 and Gr−1) were significantly different

from arousals ended to stage NREM1, NREM2 or REM. Furthermore, RR gradients in

arousals occurred at NREM3 stage had a different variability with arousal occurred in other

sleep stages. QT gradients of REM arousals at onset and one moment later (Gr0 and Gr1)

significantly differed from arousals occurred as stage 2. This shows QT gradients were

independent of RR gradients, because QT and RR instantaneous changes in various sleep

stages were not related to each other.

4.3.2 Cardiac Intervals Variability Analysis

To analyse how much arousal can affect cardiac intervals, we defined and applied statistical

parameters. By this means, we estimated the variability of QT and RR interval 5 seconds

before an arousal occurs, as well as 10 seconds after arousal inducing. An analysis of ex-

tracted parameters pre- and post-onset of arousals quantified changes in cardiac intervals

during arousal events. Table 4.5 illustrated a comparison of cardiac measures before and

after arousal onset. Features extracted from PRSARR and PRSAQT represented the intervals

variability in 2659 subjects. Obviously a feature would vary after arousal induces. To evalu-

ate whether the difference in features pre- and post- arousal onset was statically significant,

we applied the paired t-test. The linear correlation ratios of pre- and post-onset features

were demonstrated in table.

According to our findings, the average range of both RR and QT intervals were con-

siderably increasing after arousal onset. The range of a time series indicates how spread out

values of a time series. Thus, a greater range means greater data dispersion. Thus, cardiac

time interval experienced more dispersion once arousal occurred in compare to pre-arousal

conditions. The average post-onset QT and RR intervals gradually dropped at arousal onset,
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Pre-Onset Post-Onset
R

Paired t-test

(p-Value)Features mean SD mean SD

rangeRR (ms) 32.44 22.12 38.2 19.98 0.441 <0.0001

rangeQT (ms) 6.88 4.27 7.93 4.08 0.408 <0.0001

meanRR (ms) 1047.03 133.29 1033.71 139.16 0.992 <0.0001

meanQT (ms) 416.32 29.42 409.12 28.32 0.987 <0.0001

VarRR (ms2) 259.28 414.47 198.77 236.79 0.456 <0.0001

VarQT (ms2) 10.43 14.47 7.23 8.11 0.426 <0.0001

logVarRR (ms2) 2.02 1.35 2.06 0.44 0.176 N.S

logVarQT (ms2) 0.736 0.566 0.658 0.675 0395 <0.0001

QTVi (n.u) -1.13 3.13 -1.40 1.74 0.197 <0.0001

QT/RR Slope (n.u) 0.404 0.048 0.557 0.049 0.137 <0.0001

QT/RR R2 (n.u) 0.606 0.046 0.442 0.057 0.138 <0.0001

Table 4.5: A comparison of cardiac statistical features 5 seconds before and 10 seconds
after arousal onset. R represents linear correlation coefficient between features
before and after onset. p− value indicates significant level. SD and n.u refer to
the standard deviation and normalised units.

as the the pre-onset meanRR and meanQT were greater than the post-onset similar features.

The linear correlation ratio between PremeanRR and PostmeanRR was 0.99 that indicate the

change in RR interval can be modelled through a linear regression fit.

The variance of cardiac intervals, VarRR and varQT indicate the variability around

meanRR and meanQT , respectively. As shown in Table 4.5 The average variance of

both QT and RR reduced after arousal onset as the average pre-onset varQT and varRR

were 30% greater than post-onset (PreVarQT = 10.4± 14.5 vs PostVarQT = 7.2± 8.1 and

PreVarRR = 259.3± 414.5 vs PostVarRR = 198.8± 236.8). To investigate how variance

changes over time, QT and RR time-series were divided into seven sub-vectors includ-

ing t−2, t−1, to, t1, t2, t3 and t4 which represents cardiac intervals from [onset-5 to onset-4],

[onset-3 to onset-2], [onset-1 to onset], [onset+1 to onset+2]; [onset+3 to onset+4], [On-

set+5 to onset+6] and [onset+7 to onset+10], respectively. By this means, cardiac interval

variance was monitored second-by-second. We also used logarithmic value to gain the nor-

mal distribution. Berger equation (QTVi) [156] was also computed to investigate the beat-

to-beat QT variability pre- and post arousals. Based on the definition, QTVi is a measure

of relative magnitude of QT interval changes compared to heart rate variability. Figure 4.10

depicted and compared QT and RR variability as well as QTVi before and after arousal
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Figure 4.10: Barcharts demonstrate QT and RR interval variance fluctuations second-by-
second. t−2, t−1, to, t1, t2, t3 and t4 represents cardiac intervals [onset-5 onset-
4], [onset-3 onset-2], [onset-1 onset], [onset+1 onset+2], [onset+3 onset+4],
[Onset+5 onset+6] and [onset+7 to onset+10], respectively. logVarQT and
logVarRR also indicate the logarithm of variances of QT and RR

onset. The logVarRR as an indicator of RR variability reached to the maximum amount

at onset and then significantly dropped and this reduction continued until 5 seconds after

onset. Similarly, for QT interval, the highest degree of variability occurred at arousal on-

set and after that logVarQT started to decrease where it reached the minimum variability

about 7 secs after arousal onset. QTVi marker was negative in both pre- and post-onset

conditions, although it dropped by about 23% after arousal inducing. Similar to QT and

RR variability, the QTVi reached the maximum at onset and then continuously reduced for

several moments after arousal inducing.
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Figure 4.11: Graphical demonstration of curve linear regression for QT/RR relationship
before (Left) and after (Right) arousal onset. The dependency of RR/QT
after arousal onset was four time stronger than pre-onset conditions.

4.3.2.1 QT/RR linear regression model

We applied linear curve fitting analysis to find an empirical model for cardiac intervals

changes. To differentiate QT/RR regression models at arousal onset, we designed two sepa-

rate curve fittings. All subjects’ average of RR and QT intervals 3 secs before arousal were

utilised to describe pre-onset QT/RR dependency (Figure 4.11-Left). On the other hand,

the average cardiac intervals 3 secs post arousal were used to design curve fitting model of

post-onset QT/RR dependency (Figure 4.11-Right). Slope and R2 are two main parameters

of linear regression process. Slope represents the rate of change in regression model and

indicated how much two datasets are depended, while R2 measures how close the data are to

the fitted regression line. Obtained results shows that the R2 value after onset (R2 = 0.218)

was significantly greater than pre-onset regression (R2 = 0.047). It means the QT/RR depen-

dency can considerably increase once an arousal occurs. Moreover, we also estimated the

QT/RR slope and R2 subject by subject. The mean and standard deviation of QT/RR Slope

and QT/RR R2 in normalised units were tabulated in Table 4.3 as well. The Pearson linear

correlation of pre- and post-onset of these features were comparably small (RSlope = 0.137
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and RR2 = 0.138) in contrast to other obtained ratios for other extracted features.

4.3.2.2 Arousal Duration and Cardiac Intervals

Arousals were previously categorised into two groups short-term and long-term arousals.

In each subject, arousals were divided into STA or LTA groups based on their duration

and four matrices were generated including QTSTA, QTLTA, RRSTA and RRLTA. All subjects

had long duration arousals, then all had RRLTA and QTLTA whilst only one subject had no

arousal episode shorter than 8 secs and consequently no QTLTA and RRLTA matrices. Then,

we computed PRSARR and PRSAQT curves for developed matrices. Statistical analysis were

applied to investigate whether the duration of arousal is associated to simultaneous QT or

RR variability. Thus, we compared features like range, mean, variance of cardiac intervals

along with QTVi in both groups and then assessed by two sample t-test to find out obtained

results were statistically significant (The significance level: p = 0.01). Our findings show

that indicators of QT and RR variability like range and variance of STA group were sig-

nificantly different from LTA group (p < 0.0001). The average VarRR and VarQT in STA

episode were 23% and 51% greater than LTA events that indicate the greater variability of

both RR and QT in arousal shorter than 8 secs in contrast to longer arousals. This manifest a

inverse association between cardiac interval variability and the duration of arousal episode.

Statistical

Features

Short-term Long-term
p-value

Mean SD Mean SD

rangeRR (ms) 54.25 40.09 48.71 34.19 <0.0001

rangeQT (ms) 13.49 8.16 11.17 6.06 <0.0001

meanRR (ms) 1036.5 135.86 1030.8 130.9 N.S

meanQT (ms) 415.85 34.22 416.16 33.19 N.S

VarRR (ms2) 345.28 821.12 280.3 636.84 0.0013

VarQT (ms2) 17.13 25.42 11.31 11.93 <0.0001

logVarRR (ms2) 2.18 0.56 2.09 0.54 <0.0001

logVarQT (ms2) 0.95 1.19 0.84 0.73 <0.0001

QTVi (n.u) 0.91 0.04 0.92 0.03 <0.0001

Table 4.6: Features comparison in short- and long-term arousals
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4.3.2.3 Arousal Types and Cardiac Intervals

Arousals were also classified to three different groups, movement arousals, respiratory ef-

fort related arousals and spontaneous arousals regarding to the association of arousal to

physiological events. In each subject, all arousals were categorised into these three groups.

There were SA episodes in all 2659 subjects, however in 48 participants, no MA event

was scored (1.8%). Furthermore, in 13 out of 2659 participants (0.5%), we did not find

any RERA events. PRSAQT and PRSARR were estimated for each arousal category in each

subject. In this case, for almost all subjects, we obtained three PRSAQT as well as three

PRSARR represented cardiac intervals fluctuations in MA, RERA and SA events. In order

to compare cardiac intervals dependency in different arousal types before and after arousal

onset, we applied linear curve fitting for each arousal type as well. Figure 4.12 depicts

QT/RR curve fitting of MA, RERA and SA patterns. The QT/RR dependency after arousal

inducing is considerably increasing regardless of arousal types. Our findings also show the

spontaneous arousals leads to greatest QT and RR dependency (R2 = 0.198) in comparison

with movement and respiratory arousals.

The statistical cardiac parameters were computed to analyse the variability of QT and

RR intervals in different types of arousals. Table 4.7 presents a comparison of mean and

standard deviation of features in three arousal groups. One-way ANOVA test also assessed

whether extracted features significantly differed in various arousal types or not (significance

level: p = 0.05). Our observations show that range and variance of RR interval (rangeRR

and logVarRR) were greater in MA and RERA episodes than spontaneous arousals. It can

be interpreted that MA and RERA which are accompanied with a pathological event can

lead to more dispersion in RR interval than SA episodes. Similarly, both rangeQT and

logVarQT were comparably greater in MA and RERA groups than SA group.

The ANOVA test rejected any significant difference of some features in different types

of arousals (Table 4.7). Both meanQT and meanRR were altered after onset in all types

of arousals, however their changes was not associated to the type of arousal. The obtained

p-value rejected the hypothesis that means of cardiac intervals are depended to arousal type.

We observed the similar situations in other features like QT/RR Slope and QT/RR Resid-

ual. The obtained p-value in this case confirmed that the variability in QT and RR linear

correlation and strength during arousal inducing are independent of any pathological events

that accompanied arousals. The difference between both rangeQT and rangeRR in arousal
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Figure 4.12: Curve fitting of QT/RR interval relationship in various arousal types pre-
(Top) and post-onset (bottom).

groups was significant. The post hoc Tokey’s honest significance test also revealed that the

range of cardiac intervals is depended to arousal type and correspondingly to physiological

event that cause the arousal. The variances of QT and RR intervals (VarQT and VarRR)

were also assessed through ANOVA test for different types of arousals. We found a signifi-

cant difference in variance of RR in various arousal groups (p < 0.0001). The post hoc test

of VarQT indicates that variance of spontaneous arousals was significantly different from

respiratory and movement arousals. However, VarQT difference between RERA and MA

was not statistically significant.

Both variance and range are markers of interval variability. They reveal how data

varies around of mean. Figure 4.13 visualised the mean comparison of range and variance

of QT and RR in various arousal types. The average rangeQT and VarQT in spontaneous

arousal was considerably smaller than movement and respiratory arousals. In terms of vari-
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Features
MA RERA SA

ANOVA
Post hoc

SignsMean SD Mean SD Mean SD

rangeRR (ms) 65.5 58.2 60.1 49.6 47.4 30.4 <0.0001
MA vs SA

RERA vs SA
MA vs RERA

rangeQT (ms) 30.3 19.4 29.1 17.9 24.9 13.1 <0.0001
MA vs SA

RERA vs SA
MA vs RERA

meanRR (ms) 1081.3 147.8 1083.3 146.1 1083.4 141.4 N.S –
meanQT (ms) 416.5 18.6 416.5 18.8 416.7 17.5 N.S –

logVarRR (ms2) 2.68 1.179 2.62 0.99 2.47 0.83 <0.0001
MA vs SA

RERA vs SA

logVarQT (ms2) 2.07 0.79 2.04 0.82 1.95 0.68 <0.0001
MA vs SA

RERA vs SA
QTVi (n.u) 0.68 0.12 0.73 0.11 0.83 0.13 0.08 –

QT/RR Slope (n.u) 0.565 0.03 0.566 0.02 0.565 0.02 N.S –
QT/RR R2 (n.u) 0.434 0.05 0.434 0.04 0.435 0.05 N.S –

Table 4.7: A comparison of features in various arousal groups. Post hoc sings MA, RERA
and SA refer to movement, respiratory and spontaneous arousal group.

ability of RR interval, our findings show that the variance and range of cardiac intervals in

MA and RERA were significantly greater than SA. The MA events even caused RR inter-

val more variable in compare to RERA episodes. These observations show that arousals

associated with respiratory or movement episodes influence cardiac intervals stronger than

spontaneous arousals.

4.3.2.4 Sleep stages and Cardiac Intervals

To study the effect of sleep stage and cardiac interval fluctuations during sleep events, each

subject’s scored arousals were categorised into five group based on the sleep stage that

arousal ended. For each arousal group and in each subject, we applied PRSA algorithm and

developed PRSARR and PRSAQT curves. For instance, if a subjects had arousals in stage

NREM1, NREM2 and REM, three PRSAQT and three PRSARR were generated. Out of 2659

subjects that we analysed, 2629 subjects had at least one arousal episode which terminated at

stage NREM1 (98.8%). This rate (percentage) for NREM2, NREM3, REM and wake stage

were 2659 (100%), 1867 (70.1%), 2625 (98.7%) and 2637 (99.2%), respectively. Statistical

analysis allowed to investigate the association sleep stage and RR and QT variability during

the arousal occurrence. ANOVA test also assessed the statistical significance of obtained

results. Our findings show that features like range and variance which are indicators of
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Figure 4.13: Means comparison of range and variance of cardiac intervals in different
arousal types using post hoc test

cardiac interval variability significantly differed during arousals in different sleep stages

(p < 0.0001). This demonstrates the role of sleep stage in QT/RR fluctuations. While

the the average QT and RR (meanQT and meanRR) did not significantly change during

different sleep stages, QT and RR variability were associated to sleep stages. Slope and R2

as two marker of dependency between QT and RR also changed in different sleep stages.

The stage of NREM1 had the highest average normalised QT/RR slope (0.79) that indicates

the highest QT/RR dependency. Arousals in NREM1 category also had the lowest R2 as a

goodness of fit parameter.

4.3.2.5 Cardiac Intervals and Arousal indices

In this study, five arousal indices were derived from number of different sleep events and

total sleeping time. RDI and AI are two known sleep marker which determine the severity

of sleep disordered breathing (SDB) and the degree of sleep fragmentation. Beyond these

two indices, we also defined three more indices (MAI, RAI and SAI) based upon the num-

ber of MA, RERA and SA in one hour of sleeping time. These measures reflect different

dimensions of subjects’ sleep quality. For each subject, we calculated all five indices to
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Features
NREM1
n = 2629

NREM2
n = 2659

NREM3
n = 1867

REM
n = 2625

Wake
n = 2637 ANOVA Post hoc Signs

mean SD mean SD mean SD mean SD mean SD

rangeRR 81.36 73.64 48.56 36.16 159.13 171.7 82.94 69.28 101.62 78.96 <0.0001

W vs N1, N2, N3, R
N1 vs N2, N3
N2 vs N3, R

N3 vs R

rangeQT 23.28 19.38 11.33 6.96 45.79 40.09 21.68 15.57 27.36 18.41 <0.0001

W vs N1, N2, N3, R
N1 vs N2, N3
N2 vs N3, R

N3 vs R
meanRR 1036.23 140.87 1034.27 133.51 1030.88 156.21 1027.68 134.76 1028.22 133.46 N.S –
meanQT 415.26 36.35 415.92 33.71 417.52 39.08 416.45 34.52 416.44 34.31 N.S –

LogVarRR 2.44 0.68 2.08 0.56 2.98 0.85 2.51 0.6 2.67 0.99 <0.0001

W vs N1, N2, N3, R
N1 vs N2, N3, R

N2 vs N3, R
N3 vs R

LogVarQT 1.32 1.48 0.79 1.09 1.82 1.81 1.3 1.55 1.52 1.45 <0.0001

W vs N1, N2, N3, R
N1 vs N2, N3
N2 vs N3, R

N3 vs R
QTVi -0.64 3.62 -1.01 2.8 -0.71 4.06 -0.85 3.72 -0.68 3.74 0.001 N2 vs W, N1

QT/RR Slope 0.79 0.02 0.28 0.02 0.45 0.03 0.17 0.02 0.58 0.02 <0.0001

W vs N1, N2, N3, R
N1 vs N2, N3, R

N2 vs N3, R
N3 vs R

QT/RR R2 0.18 0.02 0.72 0.02 0.51 0.03 0.77 0.03 0.42 0.02 <0.0001

W vs N1, N2, N3, R
N1 vs N2, N3, R

N2 vs N3, R
N3 vs R

Table 4.8: Sleep stage effect on QT and RR variability during sleep arousals. The number of subjects
who had arousals ended at a particular sleep stage is referred by n. Post hoc signs: N1,
N2, N3, R and W represents sleep stage of NREM1, NREM2, NREM3, REM and Wake,
respectively. Normalised units were used for QTVi, QT/RR Slope and R2 features.

investigate on the association of cardiac intervals change and different sleep markers. To

compare and tabulate cardiac variability, we calculated the variance of QT and RR, as a

measure of variability, in each subjects’ arousal group. The linear correlation coefficient

(R) of the variance of QT and RR interval with arousal indices plus p-value were evaluated

and illustrated in Table 4.5. To gain a normal distribution, we used the log-transformed

equivalent of each arousal index as well as QT and RR variance. The obtained results show

a negative correlation between interval variance and arousal index.

In case of movement arousal (MA), the correlation coefficient (R) of VarQT and

log(MAI) was -0.317, whist R = −0.272 was the linear correlation of VarRR and MAI.

We computed the R in respiratory and spontaneous arousals as well as the cardiac variance

of subjects’ all arousals, regardless of their type. However, the resulting R and signifi-
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cance level indicates lack of any considerable correlation between MAI and cardiac interval

variance in RERA, SA episodes. In fact, only VarQT and VarRR had a meaningful and

significant correlation with MAI. It indicates the variability of cardiac intervals during MA

episodes is associated with the number of occurred movement arousals and consequently

with the number of periodic or non-periodic limb movement events.

MAI RAI SAI AI RDI

MA

VarQT

VarRR

R -0.317 -0.023 -0.023 -0.097 -0.009

p <0.0001 N.S 0.N.S <0.0001 N.S

R -0.272 -0.005 -0.005 -0.083 0.010

p <0.0001 N.S N.S <0.0001 N.S

RERA

VarQT

VarRR

R -0.035 -0.292 -0.090 -0.184 -0.251

p 0.071 <0.0001 <0.0001 <0.0001 <0.0001

R -0.017 -0.287 -0.088 -0.204 -0.265

p N.S <0.0001 <0.0001 <0.0001 <0.0001

SA

VarQT

VarRR

R -0.005 -0.023 -0.125 -0.059 -0.025

p N.S N.S <0.0001 0.0004 N.S

R 0.015 -0.023 -0.121 -0.076 -0.022

p N.S N.S <0.0001 <0.0001 N.S

All

VarQT

VarRR

R -0.047 0.089 -0.126 -0.139 0.069

p 0.016 <0.0001 <0.0001 <0.0001 0.0004

R -0.010 -0.036 -0.051 -0.065 -0.042

p N.S 0.071 0.009 0.001 0.042

Table 4.9: A comparison of linear correlation of cardiac intervals variability and arousal
indices. In order to reach normal distribution, features and indices were log-
transformed. R in each case represents Pearson correlation coefficient and p
indicates significance level.

In terms of respiratory arousal index, similar outcome was obtained. The number

of RERA events was negatively correlated with the post-onset QT and RR variability in

RERAs (RVarQT = -0.292 & RVarRR = -0.287 ). We did not observe any correlations between

RAI and variances in other types of arousals. We also investigated whether cardiac interval

variability in different types of arousal are associated with sleep fragmentation. Our findings

shows a correlation between intervals variability and AI (RVarQT = -0.184 and RVarRR = -

0.204), nevertheless this correlation was halved in other types of arousal. This manifest

that cardiac fluctuations generated by RERA events are more susceptible to make sleep

fragmented and deprived than spontaneous arousals.
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RDI is the indicator of sleep apnoea diseases. The higher RDI, the severer SDB con-

ditions. The variability of both QT and RR intervals with RDI only in RERA arousal was

significant (RVarQT = -0.251 & RVarRR = -0.265). Hence the variability of QT and RR during

respiratory arousals are reversely correlated with the RDI as well as the severity of SDB.

4.3.3 QT and RR inter-relations during Arousals
We employed bivariate phase rectified signal averaging (BPRSA) algorithm to investigate

about the cardiac intervals inter-relations. The aim was to find out how increase or decrease

of QT before and after onset influence on RR interval and vice versa. Thus, we defined

four BPRSA curves to cover all changes 5 secs prior to onset and 5 secs following of it

(k = onset−5,onset−4, ...,onset, ...,onset +5). The BPRSAQT→RR↗ curve indicated the

RR changes triggered by QT increase, whilst BPRSAQT→RR↘ represented the RR changes

by QT decrease. Similarly, BPRSARR→QT ↗ and BPRSARR→QT ↘ were defined to analyse

how RR increase or decrease could change QT. In each curve and at each particular moment,

e.g. arousal onset or 1 second after or before it, we computed the slope. Whether the slope

was positive or negative could determine that the curve was increasing or decreasing at that

particular point.

We assumed that QT and RR changes were in same direction. In other words, an in-

crease in QT, would trigger RR to shift and decrease in QT results RR reduction. On the

other hand, any RR rise or fall was assumed to develop a shift or drop in QT, respectively.

To investigate the mutual effect of cardiac intervals on each other, we computed the percent-

age of subjects whose QT and RR changes were in same direction and was in accordance

with our initial assumption (Figure 4.14). Hence, the higher percentage indicates that in

more subjects cardiac changes occurred in same direction. According to obtained results,

from 5 to 3 secs pre-onset (k = −5 to −3), QT increase triggered about 30% of subjects

RR to increase (QT → RR↗), whereas QT reduction resulted RR drop (QT → RR↘) in

about 70% of subjects. Vice, versa, one second before onset (k = −1), in more than 70%

of subjects, QT increase led to RR increase, whilst QT drop caused RR drop in 34% of

subjects. On the other hand, pre-onset (k = −5,−4, ...,−1) RR increase caused QT eleva-

tion (RR→ QT ↗) in about half of subjects. This means RR pre-onset upward trend does

not necessarily lead to QT increasing. Furthermore, RR pre-arousal shortening caused QT

shortening (RR→ QT ↗) in about half of arousals.

The pre-onset conditions can be interpreted as ’no arousal period’ where the cardiac
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Figure 4.14: Bivariate PRSA analysis of cardiac intervals. BPRSAQT→RR and
BPRSARR→QT were developed to investigate QT and RR inter-relations during
arousal occurrence. For instance, QT → RR↗ (%) indicates the percentage
of subjects whose BPRSAQT→RR curve increased at a particular time (k) once
QT increased. Similarly, QT → RR↘ (%) demonstrates QT drop in what
percentage of subjects led to RR drop at k.

fluctuations are not depended to any arousal intervention, but might be related to the post-

arousal physiological activation such as SDB even or limb movement episodes. On the other

hand, the post-onset changes indicate the influence of sleep arousals and adjacent physio-

logic events on cardiovascular mechanism. Sleep arousal like a simulator may trigger au-

tonomic nervous system and affect on cardiovascular parameters. At onset ( k = Onset),

QT shortening mainly triggered RR to decrease (≈ 74%), whilst QT prolongation was also

likelier to result RR shortening (62%). Furthermore, RR increase at onset would be accom-

panied with QT shifting by 56%. The QT probability of changes caused by RR increase

(RR→ QT ↗) or decrease (RR→ QT ↗) was about 50%. This shows any changes in RR

during arousal occurrence has approximately the same chance to cause a shift or drop in

QT. Contrarily, any QT alterations are more likely to lead RR shortening except one second

before onset (k =−1).
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4.4 Discussion

The cardiac intervals fluctuations during sleep arousal occurrence was broadly studied in

this chapter. We analysed a very large database consisting of 2659 PSG recordings and

we faced some limitations such as artefacts, noises and missing data. In fact, our analysis

should consider those issues and find a solution to eliminate artefacts, minimise noises and

neutralise missing data effects. The PRSA analysis allowed to generate a precise averaging

equivalent for all arousal activation of a subject. By development of cardiac interval gra-

dients, the effect of arousal in instantaneous fluctuations of cardiovascular dynamics was

investigated.

Analysis of PRSAQT gradients demonstrates that QT had a downward trend in about

39% of subjects at least 4 seconds before (Gr−4) arousal onset (Figure 4.9). One second

later (Gr−3), the probability of QT reduction was about 63%. Right before, arousal on-

set the probability of PRSAQT decrease was about 65%. This manifests a continuous QT

shortening during moments pre- and post-onset. Similarly, pre-arousal RR drop was ob-

served in more than 70% of subject until 2 seconds before onset (Figure 4.8). In addition,

PRSARR interval shortened by at least 20 ms in more than a quarter of subjects (n = 691).

The gradient analysis of cardiac time intervals demonstrates a significant QT and RR short-

ening during arousal which is in agreement with previous studies [91, 74]. Post arousal

QT and RR shortening also indicate the effect of arousals on cardiovascular mechanism. In

other words, arousal occurrence causes cardiac time intervals, which are representing the

cardiac function, be affected. The effect of arousal on cardiac function vary in different

arousal types. Our finding show the effect of RERA episodes was more prominent than

other arousal types. This can be interpreted that SDB events that induced arousal, they also

triggered cardiovascular system and cause caridac interval fluctuations.

QT variability represents changes in the ventricular depolarisation period and along

side with RR which is indicator of heart period provides indexes of the autonomic regula-

tion at the sinus node and ventricular levels [157]. The amount of QT variability can be

considered as an indirect measure of the ventricular sympathetic control if it progressively

increases as a function of the sympathetic drive and this augmentation is accompanied by

the rise of the amount of QT variability unrelated to RR changes and respiratory-related

fluctuations [157]. An arousal episode like a trigger cause a sympathetic surge which can

be reflected as sudden alterations on QT modulation.
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The duration of a transient arousal can influence on the post-arousal heart rate re-

sponses [158, 126, 159]. In terms of the effect of the duration on cardiovascular dynamics,

our observations show that RR momentary interval fluctuations are depended to the dura-

tion of arousals (Table 4.4). RR gradients from 3 seconds prior to arousal (Gr−3) to at

lease 5 seconds after onset (Gr5) in short- and long-term arousal were significantly different

(p < 0.0001), the QT interval instantaneous changes did not significantly differ between

two arousal categories. The association of RR intervals to the duration of arousal is in

agreement with Trinder et al. that the characteristics of post-arousal HR like magnitude and

duration may significantly differ by arousal duration. According to literature, the increase

in HR is strongly correlated with arousal duration [126] and our findings show that RR and

QT variability are reversely associated with arousal duration (p < 0.001).

QT intervals seem to be more variable in movement and respiratory arousals than

spontaneous episodes where both LogvarQT and rangeQT in MA and RERA were greater

than SA patterns (Figure 4.13). Even the range of QT in MA and RERA episodes was wider

than SA by about 20%. Similarly, rangeRR and LogvarRR results indicate that the RR

variability of movement and respiratory arousals was significantly greater than spontaneous

arousals. Smith et al. found that RR shortening during respiratory arousal are greater than

SA episode [74], while obtained results show that both RR and QT had a greater variability

in RERA in compare with SA. Both MA and RERA are highly depended to body movement

and respiratory episodes which occurred and terminated before arousal inducing, while SA

episode is not related to any of those pathological events. Consequently, once each of these

events occurs, a sudden change in cardiac cycle is expected. SDB events like partial or

full blockage of airway can temporarily disturb the cardiovascular mechanism and this may

appear as QT and RR fluctuations. At the same time, they may stimulate autonomic system

and induce sleep arousal. Similarly, high RR and QT variability prior to MA, manifests

that limb movement events are capable to trigger cardiovascular system. A comparison of

HRV spectral components, previously, demonstrated that the LF/HF ratio in PLM events

are significantly stronger than non-movement episodes [160]. Hence, limb movement is

associated with HRV and consequently with RR interval variability.

In chapter 2, HRV spectral components were shown as adequate markers for sleep

staging. This manifest the impact of sleep stage on HRV as well as cardiac interval vari-

ability. The effect of sleep stages in cardiovascular activation during different pathological
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events have been discussed in several studies [94, 161, 162, 163, 164]. Our findings shows

that RR gradient variability during sleep arousal is associated with sleep stages, where the

difference between wake stage with REM, NREM1 and NREM2 was statistically significant

in majority of Gri in either pre- or post-onset (p < 0.0001). On the other hand, QT gradients

were significantly different only in NRME2 and REM groups at arousal onset. Hence, QT

arousal-related momentary changes was independent of sleep stage. We also observed a sig-

nificant association between sleep stages and RR variability which was in agreement with

previous studies [94, 162]. QT variability unlike QT gradient, had a significant association

with sleep stages (p < 0.0001). There are contradictory opinions about the association of

QT variability and sleep staging. One study did not conclude any significant difference in

QT variability in various sleep stages [94], whilst another manuscript found an association

between QT variability during OSA events and sleep stages in only male subjects, but not

female subject [164]. This study only focused on male subjects and we found an association

between their QT variability during sleep arousals and sleep stages. Further analysis e.g. a

similar study on female subjects could be helpful to reach a conclusive outcome about the

sleep stage effect on QT variability.

RR interval is an equivalent term for HRV and as a result VarRR and rangeRR are both

related to HRV. However, the QT variability refer to the variability in the autonomic neural

outflow to the ventricular myocardium and is independent of HR [94]. RR-QT linear re-

gression results show their correlation before arousal occurrence was very small (R2 = 0.04)

regardless of the types of upcoming arousals, whilst their correlation increased after arousal

onset (R2 = 0.21). This manifests stronger QT and RR association after arousal induces. An

arousal episode as a sympathetic activation was expected to accompany with a decrease in

QT/RR association, however we observed an improvement in QT/RR strength. This might

be related to vagal rebound [165, 166]. According to the literature, vagal rebound may be

involved in mechanisms resetting the baroreflex sensitivity at the onset and offset of stress

[167].

The study also presented new analysis about the correlation of cardiac variability and

the number of scored arousals in each subjects (Table 4.5). The movement, respiratory and

spontaneous arousal indices (MAI, RAI and SAI) as three measure of arousal frequency in

one hour sleeping had negative correlation with QT and RR variability. The more frequent

arousals resulted less variable QT and RR curves. The higher number of arousal makes
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the sample size of PRSA analysis larger and consequently the variance decreases. Thus,

the variability of PRSAQT and PRSARR reversely affected with the number of arousals were

used for signal averaging. Number of arousal can be used to quantify sleep fragmentation or

can be added to respiratory events index and determines RDI as the main indicator of OSA

severity. For calculation of AI, all arousals regardless of their types is usually considered

[19]. In majority of subjects, the number of SA episodes was greater than RERA events,

even in 58% of subjects SA index was twice of RERA index. It is expected that the impact of

SA in sleep fragmentation was higher than RERA. However, the correlation of QT and RR

variability with AI in RERA was about three times of SA. This demonstrates the prominent

role of RERA in sleep fragmentation. Moreover, RDI is significantly associated with cardiac

intervals variability. Our findings show QT and RR variability has a same influence in RDI

and consequently in severity of sleep apnoea (R = −0.265 vs R = −0.251), despite they

are independent. Another study has previously shown that RDI is more correlated with

QTVi than HRV [94]. This shows the significant association cardiac interval variability

with the degree of sleep apnoea. QT variability is more under sympathetic control while

the magnitude of RR variability is more under vagal control. Thus, QT and RR variability

after SDB events is expected not to be in same direction. The negative relation of RDI with

both QT and HP variability is therefore, controversial. This may be related to influence of

physiological artefacts affecting QT interval measurement such as cardiac axis movements

related to respiration [168, 169]. The electrode movement attendant to respiration will

distort the vector analysis of the heart’s electrical potentials, nevertheless the greatest effect

of respiratory on displacement of electrical axes was reported during deep inspiration stress

or exercise [169], but not during sleep.

PRSA analysis could produce an average pattern of cardiac intervals activation of

a subject. It also allowed to compare QT and RR variability and gradients in different

subjects. However, it does not seem to be an adequate approach for arousal by arousal

analysis. The gradient analysis of arousals (Table 4.2 and 4.3) delivered a different outcome

in contrast to PRSA gradient analysis.

Besides the known markers of autonomic activation such as heart rate, blood pressure

and respiratory rate, new approaches have been suggested to analyse cardio-respiratory in-

teractions. The squared coherence between QT and RR [165] and cardiopulmonary cou-

pling [170] have provided new indices which can improve future studies of autonomic sys-
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tem. The analysis of QT-RR squared coherence during sleep, particularly pre- and post-

arousal occurrence in men and women cohorts can be considered in prospective studies.

The frequency of arousals is often used to quantify the level of sleep fragmentation

[171] and associated with poor sleep quality [15] and daytime sleepiness in patients suf-

fering from severe OSA [172]. Furthermore, frequent arousals are linked to increased

emotional and physical fatigue in OSA sufferers [173]. Morover, patients with numerous

arousals have more prevalent cardiovascular disease, arrhythmias and mortality [174] due to

direct arousal-related conditions, involving activation of the autonomic nervous system, im-

pairment of the circadian rhythm due to sleep fragmentation, nocturnal blood pressure and

heart rate rises [91, 175, 176]. QT and RR cardiac interval allow to monitor cardiovascular

function during sleep. The variability of intervals before and after sleep events can help to

study the effect of different pathological sleep events on cardiovascular system. The sudden

post-arousal QT and RR variability can be utilised as an effective marker for detection of

sleep arousals and quantification of sleep fragmentation and prediction daytime sleepiness

in clinical settings. Only one ECG channel recording is required for QT and RR estimation

and it can be considered for simple sleep screening. The suggested method for development

of cardiac interval gradients can be improved and and implemented for real-time cardiac

function monitoring.

4.5 Conclusion
In this chapter the cardiac time interval modulations during sleep arousals were studied.

The occurrence of an arousal episode is associated with increase in QT and RR interval

variability which is related with arousal characteristics such type, duration and sleep stage.

Cardiac interval gradients could determine instantaneous changes in QT and RR intervals.

RR gradients are strongly depended to arousal type, duration and sleep stage, however QT-

related arousal gradients were not necessarily associated to arousal characteristics. Both

QT and RR interval variability are reversely associated with RDI and can determine the

severity of obstructive sleep apnoea. BPRSA analysis could explain QT and RR inter-

relations where any pre-arousal QT change (increase or decrease) is likelier to result RR

shortening.



Chapter 5

Arousal Related Cardiac Interval

Variability in Cardiovascular Disease

5.1 Background
Obstructive sleep events can have adverse effects on the cardiovascular system, including

blood gas disturbances, large negative intrathoracic pressure changes, surges in sympathetic

neural activity, alterations in heart rate, and surges in arterial blood pressure [94]. Patients

suffering from severe sleep apnoea are more susceptible to develop coronary artery dis-

ease [177], congestive heart failure [178] and stroke. In other words, numerous arousals

occurring in OSA sufferers likely contribute to the development of accompanying cardiac

pathology [91]. As a consequence, patients with OSA disorder have higher cardiovascular

mortality. The risk of heart failure, stroke and coronary heart disease rises in OSA patients

[179]. OSA increases the risk of heart failure by 140% or risk of stroke by 60% [178]. In

addition, patients with OSA have a higher recurrence of AF after cardio-version than non-

OSA subjects [180]. Kanagla et al. observations also indicated that in OSA patients who

did properly CPAP treatment, AF recurrence reduced in compare to patients did not.

Sudden cardiac death (SCD) is defined as unexpected, non-traumatic death occurring

within 1 hour of the onset of new or worsening symptoms (witnessed arrest) or, if unwit-

nessed, within 24 hours of last being seen alive [181]. It is estimated that SCD annually

causes over 300,000 deaths in the United States [182]. Obstructive sleep apnoea has been

speculated as a risk factor of SCD. Gami et al. conducted a cohort study of 10,701 to

investigate on the association of OSA ans SCD. Their findings demonstrated that the risk

of incident SCD after an average of 5 years was significantly and independently associated
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with OSA, based both on the frequency of apnoeas and hypopnoeas, and the severity of noc-

turnal oxygen desaturations [183]. Cardiac arrhythmias, stroke/ruptured cerebral aneurysm

and myocardial infarction (MI) can potentially increase the probability of SCD [74]. OSA

events are mainly accompanied with sleep arousals. In chapter 4, we demonstrated that

sleep arousals can significantly trigger cardiovascular system changes. In addition, QT and

RR time intervals are both likely to shorten right after arousal onset [74].

In this chapter, we focused on cardiac intervals variability during arousal to investi-

gate whether QT and RR fluctuation at arousal onset are associated with patients physical

and cardiovascular conditions. At the next step, the prognostic value of cardiac intervals

variability for cardiovascular mortality was evaluated.

5.2 Methodology

5.2.1 Study Population

We conducted our research based upon MrOS cohort sleep study database. As mentioned

in Chapter 4, all studied participants in MrOS study were male older than 65 years old.

We could only choose subjects whose PSG data were adequate and their sleep scoring con-

tains sufficient number of arousals. Thus, 2659 participants PSG dataset could meet our

requirements. All participants were required to attend at a clinical interview and com-

plete an enrolment form which contains questions about their medical history in advance of

overnight PSG recordings. The participants’ history of physician diagnosis of diabetes, hy-

pertension, myocardium infarction (MI), transient ischaemic attack (TIA), congestive heart

failure (CHF), stroke and chronic obstructive pulmonary disease (COPD) and etc were ob-

tained in the questionnaire. In addition, participants were asked about their smoking habits

and their height and weight were measured to compute body mass index (BMI). Further-

more, the questionnaire surveyed participants’ physical activity through computation of

physical activity scale for the elderly (PASE) score.

Participants were being followed up every four months to survey for new symptoms

of CVD or clinically relevant arrhythmia. A board-certified cardiologist then verified all

gathered documents using a pre-specified adjudication protocol [184].
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5.2.2 Data preparation
The method for data preparation was exactly as same as in the previous chapter. Partici-

pants ECG and EEG recordings were being analysed to compute QT and RR intervals for

each single arousal. In order to the arousal effect on QT and RR intervals, in each arousal

5 seconds prior to arousal onset and 10 seconds after that were picked. By this means, we

could investigate cardiac intervals modulations moments before onset to find how arousal

was induced and moments after onsets to monitor how arousal caused sudden changes in

cardiovascular function. Hence, two cardiac arousal matrices were developed for all sub-

jects. Each row of matrix, represented cardiac interval of each single arousal and contained

RR and QT time series moments before and after arousal onset. Through phase rectified av-

eraging signal algorithm, the PRSAQT and PRSARR curves were estimated for each subject.

Figure 5.1: A graphical demonstration of estimation of DeltaQT and DeltaRR at arousal
onset.

5.2.3 Measures of Cardiac Interval Variability
To estimate QT and RR fluctuation at arousal onset, we analysed PRSAQT and PRSARR

curves and computed ∆QT and ∆RR as the difference between average cardiac interval post

and pre-onset (Figure 5.1). Negative ∆QT or ∆RR indicate post-arousal interval shorten-

ing. The variance of QT as an indicator of QT variability was computed for each subject’s

PRSAQT . To reach the normal distribution, we applied logarithm of variance (logvarQT ).

Similarly, logvarRR, the measure of RR interval variability was computed using PRSARR.

To investigate whether arousal duration can be effective in our analysis on CVD,

arousals in each subject were classified into two groups short-term arousal with duration
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< 8 and long-term arousal for longer episodes. Then, QTSTA, QTLTA, RRSTA and RRLTA

were computed for each subject based using PRSA algorithm (4.3.2.2).

5.2.4 Statistical Analysis
Four extracted features of cardiac interval variability including ∆QT , ∆RR, logvarQT and

logvarRR were divided into two parts with consideration of a threshold for Kaplan-Meier

(KM) curve survival analysis and log-rank testing. The threshold was chosen when p-value

of KM analysis reached the minimum value. For instance, ∆QT variable was divided into

upper and lower ∆QT using threshold = 1.1 (p = 0.0004). Similarly for logvarQT , the

threshold was chosen as 0.92 when p = 0.067. Participants information like their age, BMI

or PASE score plus sleep scoring parameters (RDI and AI) were compared through student’s

two sample t-test. Their medical history and smoking habits were assessed using χ2 test.

Cox proportional hazards regression models were constructed for continuous normalised

variables and dichotomised and categorical variables.

5.3 Results

5.3.1 Participant characteristics
Table 5.1 presented detailed information about participants characteristics. At baseline visit,

the participants’ average age was 76.3± 5.5 and their BMI was 27.1± 3.8. Participants

mean PASE score was as a measure of physical activity was 144.8± 71.4. About half

of participants (49.3%) were overweight whilst more than one fifth of them were obese.

Almost half of participants were hypertensive (n = 1321), whilst 16.5% of subjects were

diagnosed with MI. Furthermore, 13.1% of men had diabetes, 5.1% had COPD, 9.1% had

TIA. In addition 5.8% of participants had a past history of CHF whilst the prevalence of

stroke was 3.5%. The participants respiratory disturbance index and arousal index were

computed through as index of SDB events and sleep arousals in one hour of sleeping time.

The average RDI and AI was 27.5±19.4 and 25.1±12.4, respectively.

5.3.2 Cardiovascular Mortality
The available outcome data of 2659 participant shows that during follow-up period (10.7 ±

4.1 years), 1065 subjects (40.1%) were still alive, whilst 491 subjects (18.5%) died from

CVD. In addition, various types of cancer was the reason of death of 305 participants

(11.5%) and 581 of them (21.9%) died due to neither CVD nor cancer. There was no
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Variables
All ∆QT ≤ 1.1 ∆QT >1.1

p-value
∆RR≤−8.8 ∆RR >-8.8

p-value
logvarQT ≤ 0.94 logvarQT>0.94

p-value
n = 2659 n = 1769 n = 890 n = 1055 n = 1604 n = 1724 n = 935

Age 76.3 ± 5.5 76.4± 5.4 76.3 ± 5.7 N.S 76.0± 5.4 76.6 ± 5.6 0.004 76.3 ± 5.4 76.4 ± 5.7 N.S

BMI (kg/m2) 27.2 ± 3.8 27.3 ± 3.9 27.0 ± 3.7 0.038 27.0 ± 3.5 27.3 ± 4.0 0.034 27.3 ± 3.8 26.9 ± 3.8 0.011

Overweight 1311 (49.3%) 873 (49.3%) 438 (49.2%) N.S 530 (50.2%) 781 (48.7%) N.S 862 (50.0%) 449 (48.0%) N.S

Obese 541 (20.3%) 374 (21.1%) 167 (18.8%) N.S 196 (18.6%) 345 (21.5%) 0.066 361 (20.9%) 181 (19.3%) N.S

PASE Score 144.8 ± 71.4 141.8 ± 70.3 150.6 ± 73.3 0.003 150.0 ± 70.5 141.3 ± 71.8 0.002 145.0 ± 71.4 144.1 ± 71.5 N.S

Medical History

HT 1321 (49.6%) 899(50.8%) 422 (47.4%) 0.097 517 (49.0%) 804 (50.1%) N.S 881 (51.1%) 440 (48.5%) 0.045

MI 439 (16.5%) 310 (17.5%) 129 (14.5%) 0.047 165 (15.6%) 274 (17.1%) N.S 289 (16.7%) 150 (16.0%) N.S

TIA 241 (9.1%) 178 (10.1%) 63 (7.1%) 0.011 88 (8.3%) 153 (9.5%) N.S 162 (9.4%) 79 (8.4%) N.S

CHF 154 (5.8%) 114 (6.4%) 40 (4.5%) 0.042 53 (5.0%) 101 (6.3%) N.S 112 (6.5%) 42 (4.5%) 0.033

Stroke 94 (3.5%) 74 (4.2%) 20 (2.2%) 0.011 28 (2.7%) 66 (4.1%) 0.046 58 (3.4%) 36 (3.9%) N.S

COPD 136 (5.1%) 101 (5.7%) 35 (3.9%) 0.049 40 (3.8%) 96 (6.0%) 0.012 85 (4.9%) 51 (5.4%) N.S

Diabetes 347 (13.1%) 240 (13.6%) 107 (12.0%) N.S 135 (12.8%) 212 (13.2%) N.S 232 (13.5%) 115 (12.3%) N.S

Smoking

Never 1057 (39.8%) 690(39.0%) 367(41.2%) N.S 422(40.0%) 635(39.6%) N.S 679 (39.4%) 378(40.4%) N.S

Past 1550 (58.3%) 1043(59.0%) 507 (57.0%) N.S 615(58.3%) 935 (58.3%) N.S 1015(58.8%) 535 (58.2%) N.S

Current 52 (2%) 36 (2.0%) 16 (1.8%) N.S 18 (1.7%) 34 (2.1%) N.S 30 (1.7%) 22 (2.4%) N.S

Sleep Index

RDI 27.2 ± 19.4 27.9 ± 19.4 26.5 ± 19.3 0.071 25.5 ± 17.6 28.7 ± 20.4 <0.001 28.4 ± 19.6 25.7 ± 18.1 <0.001

AI 25.1 ± 12.4 25.8 ± 12.8 23.6 ± 11.4 <0.001 24.4 ± 12.2 25.5 ± 12.6 0.022 26.1 ± 12.5 23.2 ± 12.0 <0.001

Table 5.1: Study cohort detailed information. Subjects’ anthropometric metrics, medical history,
smoking habits and sleep indices were compared in lower and upper ∆QT , ∆RR and
logvarQT groups. BMI, HT, MI, TIA, CHF, COPD, RDI and AI refer to body mass
index, hypertension, myocardium infarction, transient ischaemic attack, congestive heart
failure, chronic obstructive pulmonary disease, respiratory disturbance index and arousal
index, respectively. N.S also refer to non statistically significant results.



5.3. Results 138

information about 217 subjects to clarify whether they were alive or died.

5.3.3 Univariate survival analysis
We applied Kaplan-Meier (KM) analysis to investigate whether the mortality rate is asso-

ciated with cardiac interval variability during sleep arousals. ∆QT ≤ 1.1 ms referred to

participants with post-arousal QT unchanged or shortening which included 67% of partici-

pants. KM curves of ∆QT does not show any significant relationship between the variable

and CV mortality (Figure 5.2.a). Participants with DeltaQT ≤ 1.1 ms were more likely to

be have higher BMI, less physical activity, history of MI, TIA, CHF, Stroke and COPD with

higher number of arousals in their sleep (Table 1). However, DeltaQT distribution was not

associated with CV mortality in KM analysis (p = 0.33). Similarly, logvarQT indicates the

QT variability, where men with logvarQT ≤ 0.94 had higher probability of history of hy-

pertension and heart failure, higher degree of sleep apnoea (RDI = 28.9± 19.6) and more

fragmented sleep (AI = 26.1± 12.5). The obtained p-value (p = 0.067) was close to the

significant level, but greater and rejected the association of arousal-related QT variability

and CV mortality (Figure 5.2.c).

The negative ∆RR represents post-arousal RR shortening. Participants with ∆RR ≤

−8.8 ms were likely to be more physically active with less BMI and lower probability

of stroke and COPD in their medical history with lower degree of RDI. KM curves of

∆RR demonstrate an elevated CV mortality in participants with ∆RR >−8.8 ms in contrast

with men with lower ∆RR (at 10.7 years, 20.1% vs 14.6%, p = 0.0004) (Figure 5.2.b).

Obtained results rejected the significant association between the distribution logvarRR and

CV mortality.

5.3.4 Cox-proportional hazard analysis
Table 5.2 shows the performance of Cox proportional hazard models. No significant as-

sociation between arousal-related cardiac interval and CV mortality was observed. Even

after adjusting Cox-proportional for age, BMI, PASE score, CHF, COPD, TIA, hyperten-

sion, stroke, RDI, AI and smoking, the performance of resulted model reject any statistical

significance in association of QT or RR variability during arousals with CV mortality.

5.3.5 Arousal Duration and Cardiovascular Mortality
To assess the role of arousal duration in cardiac intervals fluctuation and its association with

CV mortality, we computed ∆QT for QTSTA, QTLTA and ∆RR for RRSTA and RRLTA in each
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(a) (b)

(c) (d)

Figure 5.2: Kaplan-Meier survival analysis of participants based on QT and RR intervals
(a) ∆QT at arousal onset (b); ∆RR at arousal onset; (c) QT and (d) RR variances
of arousal episodes in logarithmic scale; The obtained p-value indicate both
analysis had an unsuccessful performance in prediction of CV mortality.

subject. The two sample t-test showed that the difference between ∆QT in short and long

terms arousal was statistically significant (p < 0.0001). This means the QT variability at

arousal onset is associated with duration of arousal. A similar t-test assessment confirmed

that ∆RR in LTA and STA groups were significantly different (p < 0.0001) that indicates
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Variables
Uni-variate Analysis Multivariable Analysis

HR (95% Cl) P-Value HR (95% Cl) P-Value

∆QT 1.2 (0.68 – 2.12) 0.52 1.01 (0.99 – 1.02) 0.59

∆QT >1.1 0.72 (0.34 – 1.54) 0.39 0.98 (0.94 – 1.02) 0.43

∆RR 1.02 (0.64 – 1.64) 0.9 0.99 (0.98 – 1.01) 0.54

∆RR >-8.8 1 (0.99 – 1.01) 0.26 1 (0.98 – 1.01) 0.27

logvarQT 1.09 (0.95 – 1.24) 0.2 1.05 (0.98 – 1.01) 0.52

logvarQT > 0.94 1.14 (0.73 – 1.77) 0.6 1.15 (0.75 – 1.17) 0.32

Table 5.2: Cox proportional hazard regression assess the association of arousal related car-
diac interval with cardiovascular mortality. HR and CI refer to hazard ratio and
confidence interval.

RR fluctuations at onset also related to the duration of arousal.

Cox proportional hazard regression models based on ∆QT in both LTA or STA did

not show any significant association with CV mortality either in univariate or multivari-

able analysis (Table 5.3). Although the obtained p-value for ∆QT > 1.1 in multivariable

analysis was very close to significance level (p = 0.08). On the other hand, unadjusted

Cox-proportional analysis indicates that ∆RR in long-term arousals has a significant associ-

ation with CV mortality. Cox models based on both normalised ∆RR and ∆RR > −8.8 ms

variables in arousal longer than 8s had significant association with CV mortality (p = 0.009

and p = 0.03, respectively). In Cox multivariable analysis, normalised ∆RR in both LTA

ans STA groups had significant association with cardiovascular mortality. This indicates RR

fluctuations during the longer arousal had more effect than short arousal in CV mortality.

5.4 Discussion
The primary objective of the chapter was to find out whether cardiac interval fluctuations

during arousals are associated with physical and medical history of subjects and if they

are capable to predict CV mortality. This study was the first to investigate the prognostic

value of sleep arousal cardiac interval variability for CV mortality. Obtained results show

that ∆QT and ∆RR as two measures of cardiac interval changes at arousal onset are asso-

ciated with several cardiovascular problems, respiratory disturbance index and participants



5.4. Discussion 141

Category Variables
Uni-variate Analysis Multivariable Analysis

HR (95% Cl) P-Value HR (95% Cl) P-Value

STA

∆QT 1.004 (0.982 - 1.01) 0.562 0.992 (0.978 - 1.006) 0.251

∆QT >1.1 0.997 (0.974 - 1.02) 0.801 0.992 (0.969 - 1.016) 0.513

∆RR 0.998 (0.996 – 1.001) 0.143 0.997 (0.995 – 0.999) 0.04

∆RR >-8.8 1.004 (0.998 – 1.01) 0.219 0.997 (0.996 – 1.009) 0.385

LTA

∆QT 1.004 (0.996 – 1.019) 0.638 1.002 (0.998 - 1.017) 0.761

∆QT >1.1 0.982 (0.946 - 1.019) 0.338 0.966 (0.929 - 1.004) 0.08

∆RR 0.995 (0.992 – 0.999) 0.009 0.995 (0.992 – 0.999) 0.006

∆RR >-8.8 1 (0.99 – 1.01) 0.03 0.997 (0.991 – 1.003) 0.223

Table 5.3: The effect of arousal duration in Cox-proportional hazard models of cardiac in-
tervals and cardiovascular mortality. STA and LTA refer to short- and long-term
arousal groups.

weight and physical activity. Although this association does not necessarily lead to in-

creased CV mortality. The cohort study show a significant association between post arousal

unchanged or descending QT (∆QT > 1.1 ms) and medical history of CVD such as MI,

TIA, CHF, stroke and COPD. In previous chapter, we showed that sleep arousal occurrence

are more likely to result QT shortening than QT prolongation. A considerable number of

sleep arousals were induced by various adjacent SDB events like apnoea or hypopnoea.

The greater number of SDB events result the numerous arousals and consequently more QT

shortening episodes during the sleep. Furthermore, QT shortening is correlated with occur-

rence of arousals, where the correlation is stronger in RERA episode which induced by SDB

events [74]. The increased probability of arousal-related QT shortening in men with CVD

also indicates the association of sleep fragmentation and the likelihood of cardiovascular

disease. Higher arousals either induced after SDB events or as EEG cortical modulation

can intensify the degree of sleep fragmentation.

The cohort study shows the association of RR variability at arousal onset with subjects

age, physucal activity and BMI . Patients with ∆RR >−8.8 ms at arousal onset were more

likely to had a medical history of COPD and stroke and higher respiratory disturbance index.

A previous study showed that patients with both OSA and COPD have higher sympathetic
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modulation of heart rate compared with those with OSA or COPD alone [185]. Our findings

show subjects with history of COPD were likelier to have post-arousal RR prolongation and

QT shortening and suffer from a severer degree of OSA.

According to the literature, sleep disordered breathing is highly associated with a range

of CVD [92, 186, 187]. People suffering from OSA have a peak in sudden cardiac death

during the sleeping hours, in compare with the nadir of SCD causes during this period in

non-OSA people in the general population [92]. Kaplan-Meier survival estimator and Cox

proportional models rejected the association of QT interval variability during arousal and

CV mortality. The prognostic value of QT variability in prediction of CV mortality has

been assessed in several studies [150, 188, 189]. Our study only focused on QT fluctuations

during arousal activity that was not associated with CV mortality.

Different patterns of QT and RR variability in short- and long-term arousal groups,

manifest the role of arousal duration in cardiac intervals variability. The distribution of

∆RR in LTA group had a significant association with CV mortality in spite of lack of similar

association in STA group. The effect of arousal duration in RR variability has been illus-

trated in chapter 4 (Section 4.3.2.3). Our observations in this chapter demonstrates again

that arousal duration can be effective even in CV mortality prediction. The obtained hazard

ratio (HR = 0.998) also shows RR interval Cox based model can not be considered as a

robust predictor.

5.5 Conclusion
The general objective of this chapter was to study the association of sleep arousals and car-

diovascular disease in a large cohort of old community-dwelling men. Measures of cardiac

interval variability have been demonstrated to be associated with some cardiovascular dis-

eases and subjects’ physical characteristics. RR changes during long arousal episodes has

been shown to be associated with cardiovascular mortality. Analysis of QT and RR vari-

ability during the sleep events is capable to be improved and applied for prospective studies

about the association of different type of sleep apnoea/hypopnoea syndrome and cardiovas-

cular disease. A similar cohort study in female subject could be very helpful to evaluate

the role of gender in Cox cardiovascular analysis. Due to duration of an arousal episode (3-

15 seconds), cardiovascular dynamics during arousal may not present enough information

about nocturnal cardiac function to be able to predict CV mortality.



Chapter 6

General Conclusion

The general objective of this thesis was to present a comprehensive study on phenomenon

of sleep arousal and its relations with dynamics of cardiovascular system. At this study, we

firstly, developed a classifier model for automatic detection of sleep arousals. The suggested

algorithm could distinguish 30 secs epochs with arousals from non-arousal epochs with high

accuracy and sensitivity. In development of the algorithm, we accessed to only 9 subjects

PSG datasets. For further studies, higher number of subjects, as well as the more machine

learning techniques would help to reach a robust automatic algorithm for detection and

classification of sleep arousal episodes.

At the second part of the thesis, five markers of cardiovascular activation including

PTT, HF and LF spectral components of HRV as well as continuous systolic and diastolic

BP (SBP and DBP) were computed and their modulations assessed before and after arousal

onset. The study outcome manifests a post-arousal elevation in both blood pressure mea-

sures (SBP and DBP). In addition, we observed a PTT reduction at arousal onset regardless

of arousal types.

The thesis also reported our effort to develop an algorithm for classification of sleep

stages using only PTT and spectral features of HRV. The developed kernel model was eval-

uated in two group subjects (healthy and insomnia patients). Obtained results indicated that

the algorithm could distinguish sleep stages regardless of the human subjects’ conditions.

Moreover, the suggested method requires fewer recordings and fewer electrodes. As a result

it can be utilised for wearable technologies. An analysis with more subjects with a range of

sleep disorders can improve the performance of suggested algorithm.

The manuscript also presented a new empirical polynomial model for overnight con-

tinuous BP estimation using the first derivation of PPG (VPG). It was the first to use VPG
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signal for continuous BP estimation. The developed model could estimate SBP and DBP

with low mean error and considerable R2. It manifests the high correlation of VPG with

both SBP and DBP variables.

Cardiac interval variability during arousals was also broadly investigated and dis-

cussed in fourth chapter of this manuscript. PRSA algorithm allowed us to analyse QT and

RR variations before and after arousal onset. Gradients of cardiac intervals were developed

to monitor instantaneous intervals changes. QT and RR gradients can provide detailed infor-

mation about cardiac intervals pre- and post-onset fluctuations with consideration of arousal

type, duration and the sleep stage that arousal episode occurs. In addition, the developed

QT/RR linear correlation model reveals that their dependency is considerably increasing

right after arousal induces. Our findings in this manuscript show an association between

cardiac interval variability and arousal types. The respiratory or periodic limb movements

related arousals caused more QT and RR variability in contract with spontaneous arousal

episodes. Arousal indices are reversely related to both QT and RR variability where the

higher number of arousals results a less variable interval.

The thesis also presents an investigation about the effect of sleep stage on cardiac

intervals variability. Both arousal related QT and RR variability seem to be significantly

associated with arousal sleep stages. However, more studies are required to determine about

the effect of sleep stages in QT interval.

At final part of the thesis, our investigation about the arousal-related cardiac interval

variability and subjects physical characteristics and medical history of cardiovascular dis-

ease has been reported. According to obtained results, the QT and RR changes at arousal

onset are associated with several CV disease, BMI, physical activity, arousal index and RDI.

The Kaplan-Meier analysis rejected any association of QT variability with cardiovascular

mortality, whilst ∆RR > −8.8 was significantly associated with CV mortality. The devel-

oped Cox proportional hazard regression model show that RR variability in longer arousal

had prognostic value of CV mortality either in univariate analysis or in multivariable anal-

ysis with physical and medical background of participants, whilst shorter arousal did not.

This manifests the effect of arousal duration in analysis. Although obtained hazard ratio in-

dicates the capability of arousal-related RR and QT variability in prediction of CV mortality

is limited.

Our research on MrOS study PSG datasets was limited on male subjects. A similar
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study in females subjects, could assist to investigate the role of gender in cardiac interval

analysis during the sleep arousal and its association with CV mortality. In this study, only

the association arousal-related QT and RR variability with CVD was assessed. The cardiac

interval variability during other physiological sleep phenomena like EEG cyclic alternat-

ing pattern (CAP), their association with various CVD and their prognostic values for CV

mortality can be investigated in future studies. Furthermore, in this study, we found out that

both QT and RR variability are associated with the possibility of COPD. A further study can

reveal more details about QT and RR interactions either in sleep or wake in COPD patients.

Finally, we believe that the outcome of this study can be inspiring for biomedical

engineers, cardio-respiratory physiologist, sleep scientists and whom are interested in signal

processing and biomedical data analysis.
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