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Abstract 

 
Obstructive Sleep Apnea Severity Classification  

using Sleep Breathing Sounds  

 

Kim Jae Pil 

Graduate School of Convergence Science and Technology 

Seoul National University 

 

Obstructive sleep apnea (OSA) is a common sleep disorder. The symptom has 

a high prevalence and increases mortality as a risk factor for hypertension and 

stroke. Sleep disorders occur during sleep, making it difficult for patients to 

self-perceive themselves, and the actual diagnosis rate is low. Despite the 

existence of a standard sleep study called a polysomnography (PSG), it is 

difficult to diagnose the sleep disorders due to complicated test procedures and 

high medical cost burdens. Therefore, there is an increasing demand for an 

effective and rational screening test that can determine whether or not to 

undergo a PSG. In this thesis, we conducted three studies to classify the snoring 

sounds and OSA severity using only breathing sounds during sleep without 

additional biosensors. We first identified the classification possibility of snoring 

sounds related to sleep disorders using the features based on the cyclostationary 

analysis. Then, we classified the patients’ OSA severity with the features 

extracted using temporal and cyclostationary analysis from long-term sleep 

breathing sounds. Finally, the partial sleep sound extraction, and feature 

learning process using a convolutional neural network (CNN, or ConvNet) 

were applied to improve the efficiency and performance of previous snoring 

sound and OSA severity classification tasks. The sleep breathing sound analysis 

method using a CNN showed superior classification accuracy of more than 80% 

(average area under curve > 0.8) in multiclass snoring sounds and OSA severity 

classification tasks. The proposed analysis and classification method is 

expected to be used as a screening tool for improving the efficiency of PSG in 

the future customized healthcare service. 

 

 

Keywords: snoring sound analysis, obstructive sleep apnea, screening test, 

cyclostationary analysis, feature learning, convolutional neural network, 

severity classification   

Student Number: 2013-31259 
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 Introduction 

 

 

 

Sleep plays an important role in good health and well-being for individuals. 

Physical health, brain functions, emotion, daytime performance and safety can 

be affected by sleep. Sleep apnea is one of the most common sleep disorders 

and is responsible for a variety of chronic diseases and complications. This 

thesis describes the studies of sleep disorder related snoring sound and 

obstructive sleep apnea severity classification using only the breathing sounds 

during sleep. 

 

1.1 Personal healthcare in sleep 

 

Sleep is one of the life-sustaining activities that make up a significant part of 

an individual's physical activity. Sleep also plays an important role in improving 

individual health and quality of life. Sleep is crucial for healthy brain function 

and emotional well-being. Individual sleep health can directly influence 

decision-making and problem-solving abilities, emotional and behavioral 

control [1, 2]. Besides, sleep is a critical factor in physical health, and sleeping 

health can cause or exacerbate diseases such as heart disease, kidney disease, 

hypertension, diabetes and stroke [3-5]. Sleep also has a direct impact on 

individual's daytime performance and safety, and unhealthy sleep can typically 

lead to a decline in individual productivity and increase drowsiness during 

driving [6-8]. In the case of the United States, 1,500 deaths per 100,000 car  
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accidents have been reported to be caused by sleepiness during driving*. Thus, 

people are instinctively aware of the importance of sleep health because the 

sleep health of an individual can be an important factor in the worsening and 

induction of disease. This is confirmed by the findings of one survey (Figure 

1.1) that the most common practice for personal healthcare is sleep†. 

 

1.1.1. Sleep disorders and diagnosis 

 

In 2005, the International Classification of Sleep Disorders (ICSD) listed 81 

sleep disorder symptoms in ICSD-2 with eight major categories [9]. 

 

① The insomnias 

② The sleep-related breathing disorders 

③ The hypersomnias of central origin 

④ The circadian rhythm sleep disorders 

                                            
* AAA Foundation for traffic safety (1999), “Why do people have drowsy driving crashes?” 
† GfK (2015), “Top 5 ways people maintain their physical health” 

 

Figure 1.1  Measures people take to maintain their physical health (image source: GfK) 
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⑤ The parasomnias 

⑥ The sleep-related movement disorders 

⑦ Isolated symptoms, apparently normal variants and unresolved issues 

⑧ Other sleep disorders 

 

The four main symptoms of sleep disorder in this list are insomnia, sleep apnea, 

restless legs syndrome (RLS), and narcolepsy* (Figure 1.2). Briefly describing 

symptoms, insomnia refers to symptoms that are difficult to take or maintain a 

good night's sleep. Sleep apnea is a symptom of repeated stops or very shallow 

breathing during sleep. In general, this is sometimes defined as a severe snoring, 

but it differs from a simple snoring that allows for adequate airflow into the 

lungs. RLS is a sensorimotor neurological disorder with a very unpleasant 

sensory symptoms in the legs with an urge to move the legs, leading to chronic 

sleep disturbances and daytime business disability [10]. The narcolepsy is a 

nervous system disorder and sleeping disorder in which the sleepiness of the 

day occurs during the daily life [11]. These symptoms may cause various 

diseases or complications related to a cardiovascular and nervous system as 

well as deterioration of the quality of individual sleep. 

These different sleep disorders can be diagnosed through the polysomnography 

(PSG). This is the standard test to find out the cause of the disease in patients 

with a sleep disorder, measuring and recording various bio-signals such as EEG 

(electroencephalogram), EOG (electrooculogram), EMG (electromyogram), 

ECG (electrocardiogram), etc., and finally, polysomnogram is derived.  

The PSG test is performed while the patient wears a variety of sensors on the 

patient's body and sleeps overnight in the hospital. In the test, EEG is used to 

analyze the sleep stage and evaluate the quality of sleep. Also, we measure 

                                            
* Cleveland Clinic (2013), “Common Sleep Disorders” 
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various bio-signals at same time during sleep: muscle tension measurement 

through EMG, cardiac activity through ECG, respiration through flow sensor, 

blood oxygen level using a SpO2 sensor, leg motion and body position change. 

By using various sensors, it is possible to measure the various physical activity 

of the patient during sleep, and based on these data, and the doctor can diagnose 

various sleep disorders objectively. 

Recently, a home PSG [12, 13] that can perform a PSG test at home is also 

being performed in special cases. This relatively new test has the advantages of 

using simpler sensors and allowing the patient to undergo PSG test in a 

comfortable and familiar environment. However, it still requires professional 

assistances for the sensor wearing or attachment.  

 

 

 

Figure 1.2 Four common sleep disorders 

Insomnia Sleep apnea 

RLS Narcolepsy 

Four common sleep disorders 
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1.1.2. PSG limitations and customized personal healthcare 

 

PSG is a standard test for symptoms of sleep disorder but contains several 

limitations. First of all, PSG requires a high cost of up to $ 1,000 for each patient 

[14]. Besides, as mentioned above, the patient should be examined at night in 

the hospital wearing various sensors like EEG, EMG, EOG, ECG, etc. This 

measurement method can cause serious discomfort to the patient. Also, the first 

night effect (FNE), which occurs due to the patient's failure to adapt to an 

unfamiliar hospital environment, may result in an inaccurate PSG test [15].  

Due to these limitations, attempts to convert traditional PSG test into a more 

convenient healthcare service can be naturally proposed, and home PSG, which 

is still in limited use as a professional medical device, can also amplify this 

expectation. However, there are various limitations in these attempts. EEG, 

EOG, EMG, and ECG, which are the core measurement components of the PSG, 

are still professional bio-medical sensors, and it is inevitable to attach them to 

the human body during measurement. Recently, these sensors are being 

simplified for use in mobile environments, but it is still difficult to change the 

fundamental paradigm of measurement. Even if innovative measurement 

methods are developed and deviate from the problems of sensor attachment or 

wearing, there is still a possibility of reliability-related difficulties with the 

sensor itself. 

In this situation, a patient screening test for PSG, rather than a direct PSG test, 

may be a good example from a personal health care service perspective. It is 

hard for patients themselves to recognize snoring or sleep apnea symptoms 

during sleep. Usually, the bedroom partner first recognizes the symptom and 

notifies the patient to check for the disease. However, as the number of single-
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person households in the world continues to increase* , the probability that 

individuals will not be aware of their sleep disorder will also increase steadily. 

Besides, it is also unreasonable and inefficient to conduct a high-cost PSG test 

on all patients who are aware of certain sleep disorder themselves and come to 

the hospital [16]. Unlike general illnesses, sleep disorders are difficult for 

physicians to diagnose patients immediately. In many general cases, a doctor 

can perform some instant clinical test such as a blood test and can provide quick 

clinical results to a patient. However, sleep disorders are difficult to diagnose 

by such rapid examinations, including a medical examination by interview. 

In such a situation, PSG screening test would be of great social and economic 

benefit to both parties. Before a full hospital PSG, this test may be performed 

in a PSG room of the hospital or a private bedroom environment. In other words, 

if objective and accurate screening information can be delivered to the medical 

staff, an unnecessary examination can be prevented in advance through patient 

selection, so that the reliability of the test can be maximized and the patient's 

economic loss can be minimized. 

Screening does not require complete and accurate diagnostic performance and 

can provide results using auxiliary information reflecting specific symptoms. 

In this case, diagnostic biomedical sensors may not be necessary for the 

screening test. Thus, direct or indirect parameters can be considered to 

determine a specific sleep disorder and its severity. If software applications and 

devices for PSG screening test do not require special biometric sensors, we can 

expect a big expansion in the market for sleep-related customized personal 

healthcare services. 

Finally, questions remain about which of the symptoms of a sleep disorder 

                                            
* Deloitte University Press (2015), “Single-person households: Another look at the changing 

American family” 



7 

should be screened. The requirements for the new customized healthcare 

services we have considered are as follows: 

 

① Specific symptoms should be highly associated with personal health with 

a high incidence. 

② No additional sensors are required for measurement, and unconscious 

measurement should be possible. 

③ Measurement results and related services will directly help the patient. 

④ The function should be able to be practically linked with a specialized 

institution such as a hospital. 

 

The sleep apnea mentioned in 1.3.1 is the most common sleep disorder. 

Obstructive sleep apnea is the most common symptom of sleep apnea and can 

be a direct cause of various chronic diseases and major complications and also 

can aggravate the symptoms. This symptom produces a variety of sounds, 

including snoring. Various studies have described the relationship between 

sounds and the symptoms [17-19]. These sounds can be obtained using various 

microphones. In the case of a hospital environment, a PSG room usually has a 

microphone for patient monitoring. Moreover, recently portable smart devices 

have become common so that sound recording can be performed by an 

individual himself or herself anytime and anywhere. Therefore, no additional 

sensors or devices are required for sound recording. 

Therefore, screening for obstructive sleep apnea using sound from patients 

during sleep can directly help many patients who are not aware of the symptoms 

themselves. If only the sound can be used to examine a specific symptom, the 

patient does not need any special sensors or devices, so it is economically less 

burdensome and can be conveniently measured, thereby greatly reducing the 
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patient's resistance to the measurement. The physician in the hospital can 

perform repeated screening tests on patients and can objectively explain the 

need for PSG test to the patient based on the results. Consequentially, it is 

possible to reduce the patient's rejection of the high-cost medical test, and the 

accurate diagnosis of the PSG can be expected through the selection of the 

target subject. Judging from these facts, a screening test for obstructive sleep 

apnea is perfectly corresponded with the new customized personal healthcare 

service requirements presented above. Besides, sound from patients during 

sleep can be used as a fundamental parameter for a variety of related healthcare 

services and can be expected to provide valuable research. These contributions 

are illustrated in Figure 1.3. 

 

 

 

Figure 1.3 Hospital PSG and customized personal healthcare with PSG screening test 
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1.2 Existing approaches and limitations 

 

After the first report of obstructive respiration during sleep for the first time in 

1965 [20], much research has been done on sleep-disordered breathing. 

Surveillance of the incidence of obstructive sleep apnea in specific disease 

groups has been actively conducted in several studies, and the relationship with 

mortality has also been reported [21, 22]. These studies have reported the 

incidence of obstructive sleep apnea in a variety of ways and have found this to 

be a very common disease. This section introduces some representative 

methods and related studies of a screening test for obstructive sleep apnea. 

First of all, sleep survey methods that do not require special measurement 

devices or data have been proposed. These methods include the Pittsburgh 

Sleep Quality Index (PSQI) [23] to assess sleep quality, the Sleep Apnea Scale 

Disorders Questionnaire (SA-SDQ) [24] to evaluate sleep apnea, and the 

Epworth Sleepiness Scale (ESS) [25] to assess the degree of daytime sleepiness, 

etc. The PSQI consists of subjective sleep quality, sleep latency, sleep duration, 

habitual sleep efficiency, and sleep disturbance. If the total score of PSQI is 5 

or more, low sleep quality may be suspected. SA-SDQ scores through 12 items 

related to age, smoking habits, body mass index, and snoring. The maximum 

value of SA-SDQ is 60 points, and sleep apnea is suspected when the value is 

more than 32 points for men and 36 points for women. The ESS assesses the 

degree of sleepiness in daily life through short questionnaires, with a maximum 

value of 24 and a score of 10 or more indicating a significant weekly sleepiness. 

These questionnaires are widely used for individual symptoms but are based on 

the subjective evaluation of the patient. When a patient should write a 

questionnaire directly, there is a fundamental limitation of the questionnaire 

method because a particular patient is impossible or ambiguous to answer a 
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certain questionnaire. Therefore, many related studies have attempted to detect 

obstructive sleep apnea using various methods based on objective data. Some 

of the related studies are listed and explained below.  

Adrian et al. [26] reviewed a screening test for obstructive sleep apnea using 

pulse oximetry and noted that it is the most effective and acceptable candidate 

for low-cost testing than standard Holter monitoring. Based on this, they 

proposed a sleep apnea screening test method using the clinical score for pulse 

oximetry tracing pattern, snoring, obesity, and hypertension. 

Milton et al. [27] applied a device consisting of a nasal cannula attached to a 

pressure transducer to the patient's chest via a belt and calculated the apnea-

hypopnea index (AHI) value. In this study, they compared the value of AHI in 

the PSG study with that of the home-based AHI, and confirmed the possibility 

of screening for sleep apnea.  

Martin et al. [28] proposed a sleep apnea screening test using the characteristics 

of the ECG RR intervals and the area of the QRS complex. The bivariate time 

varying autoregressive model (TVAM) was used to evaluate the beat-by-beat 

power spectral densities of the two characteristics. The ECG signals of apnea 

and non-apnea were classified using K-nearest neighbor (KNN) and neural 

networks (NN). 

Roche et al. [29] proposed a screening test for obstructive sleep apnea using 

heart rate variability analysis. Various HRV-related variables were extracted in 

the time domain and the correlation between these variables and obstructive 

sleep apnea syndrome (OSAS) was confirmed. Multiple logistic regression 

analysis confirmed that ∆[𝐷/𝑁]  SDNN index (the differences between 

daytime and nighttime values of mean of the standard deviations of all NN 

intervals for all consecutive 5-minute segments of the recording) and ∆[𝐷/𝑁] 

r-MSSD (the differences between daytime and nighttime values of the square 
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root of the mean of the sum of the squares of differences between adjacent 

normal RR intervals) were the major predictors of OSAS. 

Daniel et al. [30] proposed an accelerometer-based device for a screening test 

for sleep apnea. A body-fixed-sensor based approach was used, and the 

accelerometer sensor was immobilized noninvasively on the suprasternal notch 

of the subject lying in the supine position and the vibration sound was collected 

from this position. Respiratory, cardiac, and snoring components were extracted 

from the vibration sound for new sleep apnea diagnosis, and biomedical 

parameters such as heart rate, heart rate variability, snoring rate, and pitch 

associated with snores were calculated. These parameters were compared to 

those obtained with PSG and accurate microphone and also confirmed whether 

they were suitable portable devices for screening. 

Sola-Soler et al. [31] examined the possibility of screening for obstructive sleep 

apnea using snoring sound. Using the spectrum envelope method, they found a 

major difference between simply snoring patients and OSA patients. Formant 

analysis also revealed that SRBD-related patients had higher frequency 

distribution and found differences in formant frequencies variability between 

simple snoring patients and OSA patients. 

However, most studies have focused on the nature or detection of snoring, and 

symptomatic studies have mostly focused on determining whether or not 

patients have obstructive sleep apnea symptoms rather than providing detailed 

severity information to patients. Most of all, most of the studies were conducted 

using professional audio recording equipment or using a particular type of 

microphone. If they use this recording equipment in their experiment, they can 

get very detailed sound information and apply various analysis methods. 

However, when the developed algorithm is applied to real service, they can be 

a high entry barrier. 
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1.3 Clinical information related to SRBD 

 

Sleep-related breathing disorders (SRBD) are all the symptoms that make it 

impossible for the lungs to get adequate air during normal human breathing. A 

typical symptom of SRBD is obstructive sleep apnea (OSA), which includes 

snoring. This section describes the definitions and features of various SRBDs 

presented in this thesis. After reviewing the various symptoms associated with 

SRBD, we will look at a key symptom of this thesis, obstructive sleep apnea. 

 

1.3.1 SRBD 

 

Snoring is included in the SRBD and is typical symptoms that cause discomfort 

and sleep disturbance to a bedroom partner during sleep. Snoring is a symptom 

of sleep apnea in a broad sense. Snoring occurs when the air flow of respiration 

vibrates the tissues behind the throat. Snoring occurs only when sleeping 

because muscle tension is relaxed and tissues can shiver easily during sleep. It 

is common in men than in women and varies slightly from study to study, but 

in general, about 40% of adult men and about 20% of adult females are known 

to have habitual snoring. 

Obstructive sleep apnea (OSA) is a symptom of respiratory pausing over a 

period due to complete or partial occlusion of the upper airway. Above all, OSA 

is the most common type of sleep apnea. The upper airway obstruction may be 

caused by various causes. The most common cause of OSA in adults is changes 

of anatomical structures and soft tissues in the mouth due to obesity and 

overweight. When these tissues thicken, they relax in the direction of gravity 

during sleep to block the airway, which can lead to respiratory pausing. The site 

of OSA occurrence is known as the soft palate including uvula, the root of 
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tongue and tonsil. The soft palate containing the uvula is the most vibratory 

region of the upper airway, and when the patient's uvula and surrounding palate 

tissue is dropped, the airway is narrowed or blocked easily during sleep. Figure 

1.4 illustrates the mechanism of OSA development. 

Unlike adults, OSA in children is associated with changes in the size of the 

tonsils and adenoids, while the direct association with obesity is low. Adenoids  

are present in the back of the nose, and if it is large, nasal plugging easily occurs.  

In children, if these symptoms persist, they will continue to have oral breathing. 

This prevents the growth of upper jaw in anterior-posterior direction, and the 

nose. In this case, the child will have narrow skeletal structure behind the nose, 

and this causes more severe snoring or apnea. 

The OSA usually has a respiratory pausing for more than 10 seconds, and 

breathing resumes with a very large snoring sound. To resume breathing, 

brain’s activity signals are transmitted to various respiratory muscles, which 

causes brain awakening during sleep. If such a state of awakening continues 

repeatedly, the quality of the patient's sleep will be greatly reduced regardless 

of sleeping time. 

Hypopnea is a symptom that does not result in complete closure of the upper 

 

Figure 1.4 Obstructive sleep apnea (image source: Sleep Apnea Institute of Sarasota) 
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respiratory tract but has excessive shallow respiration and abnormally low 

respiration rate. In the case of the hypopnea, the airway is not completely 

blocked and lasts for more than 10 seconds, which usually involves snoring. 

These SRBD-related symptoms reduce the amount of air entering the lungs, 

thus decreasing the oxygen concentration in the blood, which can lead to 

various complications. 

 

1.3.2 Obstructive sleep apnea 

 

Patrick et al. [32] described symptoms and common features of sleep apnea 

during sleep as shown in Table 1.1.  Obstructive apnea and hypopnea often 

occur in the same patient with sleep apnea symptoms. However, regarding 

treatment, it is meaningless to distinguish between the two symptoms. The PSG 

test reports the severity of OSA in individual patients using Apnea-Hypopnea 

Index (AHI) or Respiratory Disturbance Index (RDI) for the number of apneas 

and hypopneas per sleep hour. 

Stenosis or obstruction of the upper airway occurs at one or more sites of 

velopharynx, oropharynx, and hypopharynx. These sites are fundamentally 

affected by the elasticity of the nerve roots, the synchronous state of the upper 

airway muscles, and the sleep stages. It is known that the upper airways muscle 

decline is common in the rapid-eye-movement (REM) sleep phase, and thus the 

stenosis and obstruction of the upper airway is prominent during REM sleep 

[32]. Also, an increase in the adipose tissue of the neck in obese subjects, a 

tonsil hypertrophy in the case of normal weight patients, or a craniofacial 

skeletal abnormality may cause stenosis and occlusion of the upper airway 

during sleep. 

Patients with the sleep apnea can be associated with various diseases [33]. Sleep  
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Distinctive features of syndromes 

Obstructive 

sleep apnea 

Cessation of airflow for >10 seconds despite 

continuing ventilatory effort 

5 or more episodes per hour of sleep 

Usually associated with a decrease of >4 % in 

oxyhemoglobin saturation 

Obstructive 

sleep 

hypopnea 

Decrease of 30-50% in airflow for >10 seconds 

15 or more episodes per hour of sleep 

May be associated with a decrease of >4% in 

oxyhemoglobin saturation 

Upper-airway 

resistance 

No significant decrease in airflow (snoring is usual) 

15 or more episodes of arousal per hour of sleep 

No significant decrease in oxyhemoglobin saturation 

Feature common to all three syndromes 

Arousal associated with increasing ventilatory effort  

(as measured with an esophageal balloon) 

Excessive daytime sleepiness 

Table 1.1 Distinctive features of OSA syndromes 

 

apnea patients are known to be at increased risk for diurnal hypertension, 

nocturnal dysrhythmias, pulmonary hypertension, bilateral ventricular failure, 

myocardial infarction, and stroke. Sleep apnea also correlates with morbidity 

and mortality due to cardiovascular and cerebrovascular disease. Repeated 

increases in sympathetic activity due to sleep apnea can cause hypertension. It 

is believed that the risk of vascular disease is mediated by interactions between 

the occurrence of hypoxia, hypercapnia, and influences on an autonomic 

nervous system of it. Sleep disorders caused by sleep apnea can lead to chronic  
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sleep deprivation, which can lead to daytime sleepiness, fatigue, cardiovascular 

complications and cognitive decline. Various diseases and complications 

associated with OSA are shown in Figure 1.5. 

 

 

1.4 Study objectives 

 

The purpose of this study is to propose an analysis of SRBD-related snoring 

and the classification of patients' OSA severity using only sleep breathing 

sounds for PSG screening test. First of all, the SRBD-related snoring 

classification experiment was performed using the sleep breathing sounds 

obtained from the hospital PSG laboratory. Through this study, we have tested 

whether the proposed algorithm can effectively classify snoring sound events  

 

Figure 1.5 Consequences of sleep apnea (image source: nightshifttherapy.com) 
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that are related to SRBD. Besides, we analyzed the OSA severity of individual  

patients by combining the analytical method mentioned above and the 

additional time domain characteristics of the patient's overall breathing during 

sleep. Finally, we tried to improve the performance of the feature learning in 

the feature representation that was used in the proposed algorithm by using the 

deep learning technique. To propose an efficient algorithm, we extracted the 

area of interest from a whole sleep breathing sound and conducted sleep apnea 

severity evaluation based on it. 

 

1.4.1 Task of interest 

 

Figure 1.6 illustrates the tasks of interest of this study. Our research focused on 

sleep disorders during chronic disease management in mobile healthcare. We  

have taken into account the various symptoms that can be detected by actively 

using sleep breathing sounds of subjects with sleep disorders. Various 

symptoms of respiratory disorders and obstructive sleep apnea during sleep 

have been confirmed through various studies. In this thesis, we applied new 

signal processing and analysis techniques for breathing sounds during sleep, 

 

Figure 1.6 Tasks of interest 
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and classify snoring sounds and OSA severity of individual patients using 

machine learning and recent deep learning techniques. Our primary interest was 

the ability to distinguish between SRBD and snoring sound events associated 

with the time domain. We could use this as a basic tool for the patient's OSA 

severity classification problems if the SRBD-related snoring sound events 

could be directly distinguished for the sequenced recorded sleep breathing 

sounds. However, this classification scheme is entirely dependent on the 

classification performance of the classifier. 

If the proposed algorithm shows some possibility to classify SRBD related 

events, we can use it to generate a particular feature representation for the total 

sleep breathing sounds. Through this study, we evaluated the severity of OSA 

in individual patients using only breathing sounds during sleep without special 

event detector for raw sound. In this way, we can minimize the effect of the 

snoring event classifier on the final OSA severity discrimination of existing 

studies, and it will be possible to generate a classification model that includes 

most of the respiratory sound properties that occur during sleep. To achieve this, 

it is of utmost importance to produce an efficient and appropriate feature 

representation of the total sleep breathing sounds. 

Recently, the machine learning field based on various data has become more 

intelligent using the deep learning technology. We have extended the existing 

traditional hand-crafted feature extraction-based research by applying the 

feature learning method of deep learning technology. Feature learning was 

performed by applying various deep learning techniques to the feature 

representation used in the SRBD event classification study and the OSA 

severity classification research, and a classification model was created using 

the derived features. The first study and the second study were conducted in 

parallel, and we tried to derive the best performance by sharing various 



19 

information updated through algorithm development in individual tasks. A third 

study using deep learning techniques confirmed the ability to evaluate OSA 

severity using sounds from specific regions of interest which were extracted 

from the total sleep breathing sounds. Besides, we assessed the generalized 

performance of the classification model so that the study can be used 

appropriately for actual services. 

 

1.4.2 Contributions 

 

The main contribution of this thesis is to propose OSA severity prediction 

method for individual patients using only breathing sound during sleep which 

is recorded in a general recording environment of PSG room. Previous studies 

have installed the special recording system in the experimental environments 

and recorded variety of experiments by recording high quality sleep breathing 

sounds. Many studies have yielded various results through detailed acoustical 

analysis based on these specially recorded sounds. 

For more successful patient-specific healthcare services, patient data should be 

simply, conveniently, and unconsciously measured from the subject. If the 

measurement method requires a very special environment and tools, or if it is 

to be worn on the user's body, the related service is difficult to apply to general 

users, and expansion of universal service is likely to be limited.  

In this study, snoring sounds of patients are classified as symptoms of the 

respiratory disorder based on sleep breathing sounds recorded with ordinary 

recording quality without any consideration of sound analysis. We investigate 

the possibility of classification of hypopnea-related snoring as well as OSA-

related snoring, which is the basis of AHI calculation, unlike other previous 

studies. This has a great significant that it provides a basic tool for directly 
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classifying sleep-related breathing disorder events for calculating AHI in a 

specific snoring region. 

In addition to the classification of these snoring events, we assess the actual 

patient OSA severity using most respiratory sounds during sleep without 

detecting snoring events. This is important because it suggests an analytical 

framework that minimizes the impact of the algorithm's ability to detect the 

snoring event itself and can utilize more information from most respiratory 

sounds during sleep. The severity criterion also allows for a detailed prediction 

of the current state of the patient by utilizing four levels of AHI [34]. This 

provides more detailed information than the binary classification scheme that 

distinguishes between simple snoring and OSA-related snoring in existing 

studies. Therefore, when this method applied to an application for a screening 

test for PSG, more detailed and various types of screening information can be 

provided. 

One of the main implications of this thesis is the proposal of a new method for 

analyzing breathing sounds. In this thesis, we applied the cyclostationary 

analysis method [35], which was used in the field of communication and 

mechanical engineering, to the audio signal without using the conventional and 

well-known audio analysis tools. In this study, snoring is assumed to be a signal 

modulated and released in association with the anatomical region of various 

upper respiratory tracts [36, 37]. The cyclostationary analysis is a specialized 

analysis method that can detect the difference between these modulation 

methods. Therefore, we expected that cyclostationary analysis would have a 

meaningful effect because we assumed that various modulation characteristics 

due to a difference in the structure and mechanism of the body organ are 

released differently when the snoring or breathing sounds related to various 

respiratory disorders arise from the vocal tract. 
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Chapter 3: In this chapter, we propose a method to classify recorded sleep 

breathing sounds from PSG into simple snoring, hypopnea-related snoring, and 

OSA-related snoring. Based on the various SRBD annotations checked by a 

medical specialist in the PSG test, snoring sounds are extracted and 

cyclostationary analysis is applied to each sound. From the cyclic spectrum (CS) 

function derived from the analysis, we derive the final feature set through 

dimension reduction, statistical analysis, and feature selection. Based on this, 

machine learning was applied, and classification experiment was conducted. 

We propose two different feature extraction methods for CS and examine the 

possibility of classification of SRBD related snoring sounds. 

Chapter 4: In this chapter, we perform cyclostationary analysis and temporal 

analysis of individual sleeping breathing sounds of individual patients recorded 

in PSG in each segment without detecting specific events. Through this, a 

symbolic representation of a person's whole sleep breathing sound is obtained. 

Temporal analysis derives a stochastic value that transitions from one state to 

another for changes in the energy pattern of the sleep breathing sound. The 

cyclostationary analysis obtains the CS mentioned above for each segment of 

the sleep breathing sounds and applies the dimension reduction, statistical 

processing, and feature selection method sequentially to derive the final feature 

set. We concentrated on whether individual snoring can identify the patient's 

sleep apnea severity based on this representation without focusing on the sound 

event classification. 

Chapter 5: In this chapter, we apply the deep learning method [38] based on 

the methods mentioned above to enhance the algorithm. In this chapter, we 

generated the final feature set by applying a very complex process, such as 

various dimension reduction, statistical analysis, and feature selection 

techniques, to the CS computed from the segment of snoring or general 
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breathing sounds. However, in this section, we use convolutional neural 

networks (CNN, or ConvNets) [39] to perform feature learning from CSs for 

simple snoring, SRBD-related snoring, and other sounds. Then, the region of 

interest in which a specific energy level transition occurs is extracted from the 

total sleep breathing sounds, and features are extracted from the audio signal 

window of each predetermined length using the feature extractor using 

ConvNets. Finally, based on these features, we perform an experiment to 

identify the AHI category of each patient using a support vector machine (SVM) 

[40] and compare the results with the previous methods. 
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 Overview of Sleep Research      

using Sleep Breathing Sounds 

 

 

 

So far, various sleep studies have been conducted using breathing sounds during 

sleep. Figure 2.1 shows the general system used to study sleep disorder 

classification using breathing sound during sleep. In this chapter, we attempt to 

divide the analytical systems applied in previous studies in the viewpoint of 

environment setting, analysis and classification methods, and examine the 

individual contents. 

 

 

2.1  Previous goals of studies 

 

Various SRBD analysis studies using breathing sounds have been carried out. 

The patient's breathing sounds were recorded through a microphone installed 

in the experimental environment and stored in the appropriate file format on the 

computer system. These stored files were analyzed using various digital signal 

processing techniques to perform typical tasks such as detection of snoring, 

classification of simple and OSA-related snoring, and recognition of the 

anatomical location where snoring occurs. In this chapter, we attempt to divide 

the analytical systems applied in previous studies in the viewpoint of 

environment setting, analysis and classification methods, and examine the 

individual contents. 
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2.2  Recording environments and related configurations 

 

Recording environment is a major factor in SRBD related research using sleep 

breathing sounds. Clinical studies using sound usually begin by recording the 

sounds produced by the patient using a microphone. Recorded sounds can be 

stored in a computer system in various audio encoding formats, and they can 

be utilized for different purposes. 

Sound waves propagating through the air are recorded through a microphone 

that converts the air pressure change into a voltage. Microphones are typically 

divided into three categories: condenser microphones, electret microphones, 

and piezoelectric microphones [41]. Among them, condenser microphones are 

the most specialized equipment and are known to be the most commonly used 

equipment in acoustical laboratories. Electret microphones, on the other hand, 

are used in most small electronic devices and smartphones because they are 

easy to miniaturize and can be produced at low cost. 

There are evident differences between using the expensive professional 

microphones and using the general-purpose microphones in the viewpoint of 

building research environments for analyzing sleep breath sounds. Since the 

 

Figure 2.1 Overview of sleep disorder research using breathing sounds 
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former can record high-quality sounds, a very detailed analysis of the sound 

itself and its consequences can be expected, but the latter may be relatively 

difficult to study. However, the latter case can be assumed to be similar to the 

actual recording environments of the general users. With this configuration, we 

were able to consider various experiments to develop sleep breathing sound 

analysis solutions that are more appropriate to real life.  

In most studies, one or more microphones were placed at very close, about 50 

cm, to a patient’s head. Furthermore, there have been some studies that have 

experimented with various body attached type microphones. In this case, the 

recordable areas known to date through the studies are the skin of a specific 

organ, the adjacent parts of the larynx and nasal cavity. Just for reference, so 

far, there has been no standard for the location of microphones for sleep 

breathing sounds recording in a related research area. 

The physical environment for recording respiratory sounds during sleep is also 

a major consideration in research. The related literature recommends that 

microphones should be installed in locations that can minimize the reflected 

sound of objects such as beds, ceilings, furniture, and walls [42]. In this thesis, 

we used the sound recorded through the microphone installed in the ceiling of 

the PSG room as in previous studies. However, unlike previous research, we 

used a microphone attached to the ceiling surface, about 170 cm from the 

patient's head. Naturally, this position will minimize the sounds reflected by 

objects in the room. However, in a typical home environment, it is difficult to 

install a microphone in the similar location. However, in this thesis, we have 

identified that breathing sounds can classify the severity of patients with 

obstructive sleep apnea, even when recorded in a general patient environment, 

rather than in a professional recording environment, and at relatively remote 

locations. Based on the results of this research, we determined that th e 
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developed system could be extended to the mobile healthcare service 

environment. 

Most of the studies have installed beds and recording equipment in the research 

laboratory or hospital’s PSG room. To determine the relationship between 

snoring and sleep disturbances, definite clinical results are needed about the 

status of patient's sleep disorder. Therefore, it is essential to use sleep system's 

recorded data and physicians' analysis result during PSG test for developing in-

depth analysis method and practical applications. Concerning the recording 

environment, the PSG room can be regarded as a typical home sound recording 

environment because it is composed of a common private bedroom with bed, 

wardrobe, and TV, etc. Figure 2.2 shows the general PSG room environment 

for this research. 

 

 

 

 

 

Figure 2.2 Example of PSG room environment (SNUBH sleep center) 
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2.3  Sleep breathing sound analysis 

 

2.3.1 Time domain analysis 

 

What the analysis of sleep breathing sounds in the time domain is considered 

in many studies on the obstructive sleep apnea (OSA). This is because the 

definition of obstructive sleep apnea is based on the temporal element of 

complete breathing stop of more than 10 seconds. Therefore, the key to time-

domain analysis of audio signals is to focus on the various characteristics of the 

signal that change over time. A typical example of time domain analysis is an 

analysis using the crest factor (Equation 2.2) which obtains the root-mean-

square (RMS) value of the signal (Equation 2.1) and then divides the largest 

absolute value of the signal by the RMS value. If the RMS value is high, the 

signal at this time can be recognized as a peaky-signal [43]. 

 

 𝑉𝑅𝑀𝑆 =  √
1

𝑛
∑ 𝑉𝑖

2

𝑛

𝑖=1

 
  

(2.1) 

 
𝐶𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  

𝑀𝐴𝑋(|𝑉|)

𝑉𝑅𝑀𝑆
 

  

(2.2) 

 

However, these analytical methods may have limitations in deriving OSA-

related features and analysis results under certain conditions. To determine the 

interval of specific sleep breathing event, various breathing or snoring 

characteristics should be recognized on the time axis. However, these sound 

events can be easily affected by different noises that occur around the patient 

during sleep. Although this method has been used in some studies to 

differentiate sound’s properties according to the occurrence location of snoring, 
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it can be considered to be suitable for checking whether a certain target event 

occurs.  

In this thesis, a sound signal is converted into energy values, and these values 

are quantized into three simple levels of 0, 1 and 2 using several threshold 

values. Respiratory pausing for more than 10 seconds is a typical feature of the 

OSA. Therefore, if the zero interval between nonzero levels lasts for more than 

10 seconds, the corresponding interval is set as a suspicious section of OSA and 

set to the additional level value 3. Sequential changes in these level values have 

been summarized in terms of a representation of the transition matrix and then 

transformed into probability values. As a result, this feature shows the energy 

transition trend of a patient’s sleep breathing sound over time and it was related 

to OSA severity [44]. Detailed contents of this feature and analysis method 

described in Chapter 4. 

 

2.3.2 Frequency domain analysis 

 

Breathing sounds during sleep including snoring are time-varying signals, and 

the frequency spectrum can be calculated through Fourier transform. The 

discrete Fourier transform, which is the Fourier transform on the discrete input 

signal, is defined as follows. 

 

 𝑋𝑘 =  ∑ 𝑥𝑛𝑒−
2𝜋𝑖
𝑁

𝑘𝑛, 𝑘 ∈ ℤ

𝑁−1

𝑛=0

 (2.3) 

 

where, N is transform length and k is frequency bin. The frequency spectrum 

can be calculated for a continuous time and displayed as a spectrogram. Various 

frequency spectrum analysis methods can be used to identify various 
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information in the breathing sounds. 

In many studies using frequency analysis, the fundamental frequency and 

harmonics of the breathing sound were checked, and the frequency envelopes 

were analyzed by connecting the peaks in the frequency domain [17, 18, 31, 

45]. 

Wavelet transform was also used for the analysis of respiratory sounds in a 

related study [46]. Compared with the Fourier analysis method, the wavelet 

transform is better suited for function expressions with discontinuous sharp 

peaks and has the advantage of multi-resolution analysis and synthesis. 

Mel-scaled spectrograms are often used in speech analysis studies and can be 

used to reduce the spectrogram dimensions using Mel-scale. Recently, Mel 

Frequency Cepstral Coefficients (MFCC) [47] is in use as a very suitable tool 

for speech analysis and classification studies. However, it is known that it does 

not fully reflect time-varying features for non-stationary non-speech signals 

[48]. 

In this thesis, we applied cyclostationary analysis to the data in addition to the 

existing audio analysis methods. A more detailed description of this is given in 

next section. 

 

2.3.3 Second-order cyclostationary analysis 

 

The human voice consists of three basic elements: voiced, fricative, and plosive. 

Vocal sounds are emitted through the area called vocal folds, while the other 

two are produced at the back of the vocal cords and are unrelated to vocal fold 

vibration. These two notes are commonly referred to as unvoiced sounds. In the 

case of fricative sounds, energy is concentrated in a high-frequency band and 

has characteristics similar to noise [42]. Usually snoring is treated the same as 
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human voice, but snoring is unvoiced, and there are fundamental differences 

from the voice that it is not produced by the human vocal cords. In other words, 

snoring is generated through various vibratory activities of the pharyngeal 

structure, which has been revealed in related research using various endoscopes 

[49]. Tonsil, tongue root, a vibration of the epiglottis, and flutter of soft palate 

cause the snoring. Furthermore, since snoring occurs during sleep and the upper 

airway is not completely autonomous, sound articulation cannot occur. Besides, 

unlike voice, snoring occurs mainly in the inhalation, so that the sound emission 

is not the outward but the inward direction [42]. These facts show that snoring 

sound is much different from normal speech. 

Cyclostationary analysis is a widely used signal analysis method in the field of 

communications and mechanical engineering. In a broad sense, if the 

autocorrelation of a signal is a periodic function, the signal is called 

cyclostationary. A modulated signal has a cyclostationary characteristic. In the 

field of communication, the periodicity embedded in a signal frequently occurs 

in training sequences and cyclic prefixes. Such periodic characteristics included 

in a transmission signal can be utilized in a receiver [50]. It is calculated using 

autocorrelation function and power spectrum density. The actual 

implementation is to compute the correlation with itself (autocorrelation) using 

the power spectral density obtained from the received signal. The derived 

function has one cyclic spectrum with a cycle frequency. Based on this theory, 

many studies extracted various features by examining the distribution of peaks 

or calculating the frequency of peaks in their experiments. In a broad sense, 

noise or interferences are treated as stationary signals and have no spectral 

correlation characteristics so that this method can be used as a suitable 

characteristic detector in low SNR environments and when there is a change in 

noise power. 
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So far, there has not been much use of cyclostationary analysis in the healthcare 

field. As a representative related study, Aya et al. [51] performed cardiac 

arrhythmia classification using cyclostationary analysis method and found that 

this method showed high classification performance for specific arrhythmia 

types. Although not many examples were actively used in the sound field, Phani 

et al. [48] conducted an experiment to compare the performance of the 

cyclostationary analysis and MFCC for the environmental sound classification 

system. Sound processing is mainly focused on voiced sound, which includes 

human voice, voice processing, and music analysis. In this field, MFCC is one 

of the most popular and widely used analytical methods. However, 

aforementioned environmental sound recognition task that included the bird 

sound recognition problem did not produce better results than the 

cyclostationary analysis method. 

In this thesis, core features are extracted based on the cyclostationary analysis 

of sleep breathing sounds. The SRBD-related breath sounds such as snoring 

were assumed to be produced by the sound modulation of the anatomical factors 

such as tonsil, tongue root, and palate. Therefore, the cyclostationary analysis 

is expected to be an appropriate tool for analysis of sleep breathing sounds. 

 

2.3.4 Features from sleep breathing sounds 

 

Although developing new analysis method of sleep breathing sound is 

important, from the results of these methods, extracting characteristic features 

from SRBD related sounds and performing actual target task can also be one of 

the major processes in the breathing sound classification or OSA severity 

classification system. To date, many studies have extracted various features 

from respiration sounds through different analysis methods and classified them 
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according to specific purposes. In this chapter, we examine different methods 

of extracting features using acoustical analysis methods for sleep breathing 

sounds in different clinical trials. Finally, we also examine feature learning 

which is getting much attention in the field of machine learning recently. 

 

2.3.4.1 Discovery of features based on clinical tests 

 

Respiratory sound analysis through clinical tests can be summarized using 

results from sleep nasal endoscopy. Most studies suggested acoustic features 

according to the anatomical characteristics and locations of the snoring 

occurrence. These studies expected that the snoring improvement or change of 

snoring according to the operation related to snoring treatment could be judged 

through sleep nasal endoscopy and breathing sound analysis. However, other 

related studies have raised fundamental questions about the methodology 

through sleep nasal endoscopy, because they found differences between the 

features of breathing sound analysis of natural and sleep-induced snoring. 

Quinn et al. [52] found in their studies that there is a difference in waveform 

and frequency patterns between palatal flutter and tongue-based snoring. The 

result shows that the location of snoring occurrence makes the differences 

between analyzed features. Hill et al. [37] conducted a study of snoring using 

crest factor as mentioned above. They argued in this study that areas of severe 

snoring occurrence that were detected during a one-night nasal endoscopy 

could not be representative. They also analyzed the snoring sounds occurring 

at different times on the same day's test. They found that, in some patients, the 

mechanism of snoring generation may be altered, regardless of changes in 

snoring occurrence sites. Agrawal et al. [53] compared snoring in natural and 

drug-induced sleep based on the fact that midazolam or propofol is used to 
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induce sleep when patients undergo a sleep nasal endoscopy for snore tests. 

They found that sleep nasal endoscopy does not fully reflect the nature of 

snoring by identifying differences between the two snoring in their experiment. 

Jones et al. [54] also found that measured loudness of the snoring sound 

increases with increasing levels of sleep induction, revealing a clear difference 

between natural snoring and sleep-inducing snoring. 

 

2.3.4.2 Feature extraction through spectral analysis 

 

In the studies up to now, many characteristics of sleep breathing sounds have 

been extracted through spectral analysis. As representative examples, mean 

power ratio (MPR), center frequency (CF) and peak frequency (PF) of the 

spectrum were used to distinguish characteristics according to the location of 

snoring occurrence in the upper airway.  

Schafer et al. [55] found that in the case of simple snoring, the frequency 

spectrum has low-frequency components and a large number of harmonics. 

Saunders et al. [56] divided snoring into the palatal-based snoring and tongue-

based snoring based on the range of CF values, and they also found that this 

could be a substitute for the sleep nasal endoscopy, depending on the results of 

acoustical analysis of snoring. Agrawal et al. [53] extracted spectrum-related 

information, MPR, CF, and PF from 12 palatal-related snoring patients and 

studied the characteristics of ordinary snoring and sleep-induced snoring. Jones 

et al. [54] analyzed the features of sleep-induced and natural snoring through 

energy ratios for low-frequency subbands. Herzog et al. [57] identified simple 

and OSA-related snoring using peak intensities from the power spectrum for 

inspiratory snoring and found that simple snoring contains multiple harmonic 

intensity peaks, and has peak intensities in the 100-300 Hz band. Besides, they 
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found that peak intensities existed above 1,000 Hz for OSA-related snoring. Ng 

et al. [58] thought that general power spectrum analysis is not sufficient for 

SRBD analysis because snoring signal has non-Gaussian and nonlinear 

behavior characteristics. Accordingly, they attempted to detect OSA through 

nonlinear properties using bispectral analysis. Bertino et al. [59] looked at the 

difference between the two symptoms through formant analysis based on the 

fact that snoring and sleep apnea related surgical procedures alter the 

anatomical structure of the upper airway and the resonance characteristics of 

the vocal tract. 

 

2.3.4.3 Feature learning via deep learning techniques 

 

With the recent development of deep learning related research, there have been 

many attempts to learn the feature through neural networks without hand-

crafted manner in various fields. In particular, various attempts have been made 

in the area of image processing and recognition, and recently, related studies 

have been expanded to the area of sound processing. 

Honglak et al. [60] proposed a deep learning approach that can be applied to a 

wide range of audio recognition tasks. After converting audible data such as 

unlabeled speech and music into a spectrogram, they performed feature 

learning using convolutional deep belief networks (ConvNets), and obtained 

the learned feature representation. The feature representation derived from this 

study is claimed superior to the widely used spectrogram and MFCC for various 

existing audio classification tasks. Also, these learned features were expected 

to be utilized in various audio recognition tasks since they showed higher 

performance than other features even when the number of training examples 

with labels was small. 
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In this thesis, we converted the preceding cyclic spectrum (CS) derived from 

the cyclostationary analysis of a snoring sound into an image form [44, 61]. We 

applied ConvNets to these images and learned features from CS. The 

classification results obtained from these learned features were compared and 

evaluated regarding classification performance with results of previous studies 

which extracted a feature from CS in a hand-crafted way. 

 

 

2.4  Sleep breathing sound classification 

 

In various research, data sets consisting of sleep breathing sounds were 

classified according to different purposes using the different data analysis and 

feature extraction methods. Tasks can be broadly divided into two classification 

tasks: snoring recognition among the various respiratory sounds, detecting 

specific pathological symptoms such as an OSA. In previous studies, OSA 

event detection and classification are necessary processes to assess whether a 

particular patient has OSA symptoms, and furthermore, to evaluate the OSA 

severity of an individual patient. 

As described above, the OSA diagnosis of individual patients is evaluated based 

on the AHI value derived from the hospital’s PSG test. Most studies have 

simply assessed whether a patient is an OSA patient by analyzing sleep 

breathing sounds [45, 62, 63]. At this time, the AHI threshold which is the 

criterion for dividing the patient into two classes (OSA/ non-OSA) was 

arbitrarily selected to adjust the sensitivity and specificity of the results. 

However, some studies have classified OSA severity using sleep breathing 

sounds according to four-level criteria of AHI [64]. 

In this thesis, we classify the patients based on the multiple indexes 
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corresponding to the standard AHI severity category through the proposed sleep 

breathing sound analysis method. More detailed patient prediction of OSA can 

provide more detailed information in real-world applications than other 

methods. Moreover, the analysis method using only sound can make the 

measurement manner easy and simple, so repeated measurements allow to 

analyze the trends related to OSA. 

 

 

2.5  Current limitations 

 

The purpose of our study is to investigate the possibility of a screening test for 

PSG test through the analysis of sleep breathing sounds. This screening test 

should be able to be performed simply and repeatedly when we consider future 

mobile healthcare-related services. However, to date, many studies have 

performed the sleep breathing sound recording process by attaching a special 

microphone to the body [17, 19, 46, 53, 62-65] or using a high-performance 

microphone placed in close distance to the subject’s head [18, 19, 37, 55-58]. 

Recorded sleep breathing sounds in this way have a high SNR, and therefore, 

the minute characteristics included in the sounds can be analyzed in detail. 

However, professional recording environment or requiring special device can 

make it difficult to carry out PSG screening test in ordinary environments. We 

believe that PSG screening test should ultimately be applied to mobile 

healthcare service for self-awareness and treatment of sleep disorder and also 

be realized via the personal mobile devices. Unfortunately, we have not been 

able to conduct experiments based on typical home bedroom environment and 

data recorded from mobile devices. However, we performed experiments in a 

recording environment that can offset the influence of the position and distance 
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of the microphone somewhat in a physical environment that is not specifically 

controlled than any previous experiment. The PSG room is similar to a typical 

bedroom environment, but sleep technicians who administrate PSG tests may 

visit several times during sleep to adjust the sensor or resolve complaints of the 

patient. To remove the speech or noise caused by the visit of the technicians or 

the patient behavior, in some case of experiments, the breathing sounds which 

were included in the particular sleep stages were used. Therefore, to apply the 

specific algorithm to real healthcare services in the future, it may be necessary 

to analyze the sleep stage. However, since we chose breathing sounds mainly 

at deep sleep stages, if needed, sleep stage filtering method can be easily 

implemented by using body movement information from a built-in 

accelerometer in mobile healthcare devices. 

To summarize, the experimental limits of this thesis are as follows: 

 

① Various types of microphones and various installation sites have not 

been considered for sleep breathing sound recording. The microphone 

used in the experiment is installed on the ceiling of the PSG room, and 

the distance from the patient’s head is about 1.7 meter. 

② Data analysis did not consider real-time processing. The audio data 

used in the experiment is the audio files extracted from the full 

recorded video for room monitoring during PSG. 

③ The breathing sounds recorded at specific deep sleep stages were used 

in certain experiments to remove speech or various unintended noises. 

 

Based on above limitations, the goals of this thesis can be clearly defined. 

 

① Compared with the previous experiments, we investigate the 
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possibility of SRBD-related snoring and OSA severity classification 

using the sleep breathing sounds which are recorded with the most 

common recording environment and equipment in the PSG room. 

② Ensures task performance that enables PSG screening from recorded 

sound data in a relatively uncontrolled environment. Based on this, it 

will be available that predicting the possibility that developed analysis 

algorithms and its frameworks can be easily applied in other 

experiment environments. 

 

In the following chapters, we will describe the details of the three different 

studies that we have done and their results. 
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 Multiple SRDB-related        

Snoring Sound Classification 

 

 

 

In this thesis, we perform two kinds of sleep breathing sounds analysis tasks. 

The first is to distinguish SRBD-related snoring events from snoring sound 

units extracted from full-night sleep breathing sound, and the second is to obtain 

a specific feature representation from long-term sleep breathing sound and use 

it to classify OSA severity of individual patients. This chapter describes the first 

task. 

 

 

3.1 Introduction 

 

Sleep-related breathing disorder (SRBD) which shows complete or partial 

upper airway obstruction including snoring, is very common symptoms that 

lead to person’s sleep disturbance and bed partner’s discomfort. In some severe 

cases, it causes or worsens the patient’s excessive daytime sleepiness and 

various cardiovascular and neurovascular complications [33, 66]. 

In this chapter, we have performed experiments to classify three kinds of 

snoring sounds. A specific length of OSA related snoring sounds was extracted 

from the patient’s sleep breathing sounds and verified that the individual sounds 

could be classified based on a particular feature representation.  

Many studies have been conducted to detect snoring events from sleep 

breathing sounds [57, 64, 67]. The detected snoring sounds were classified into 
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simple (non-OSA) snoring sound or OSA-related snoring through various 

methods. Most existing studies detect the occurrence of snoring preferentially, 

and then set the snoring interval according to established criteria. Finally, they 

identified snoring type of the interval with various analysis methods which 

described in Chapter 2. On the other hand, our study investigated whether the 

chunks of signal per unit of a window could be classified as a snoring type 

representing various symptoms of sleep disorder. In other words, we focused 

on developing a feature extractor that accounts for a given sound section rather 

than developing a snoring sound detector. 

In this chapter, we have conducted extended tasks that classify three types of 

snoring, rather than existing research: simple snoring, OSA-related snoring, 

hypopnea related snoring. Creating a classification model that can distinguish 

the three snoring types has many implications. If a model with perfect 

classification performance can be generated, this can be the major tool for 

calculating AHI from a patient’s overnight sleep breathing sound. However, 

creating a complete classification model is a very difficult or impossible task. 

Thus, a model or a feature of the previous task that can lead to achieving 

reasonable performance can help generate another new feature representation 

that reflects the characteristic of the patient’s overnight sleep breathing sounds. 

Furthermore, by performing the window-based SRBD related snoring 

classification task, a single feature representation of the breathing sounds 

contained in individual windows can be generated. This means that when the 

task is extended to overnight breathing sounds analysis task, feature 

representations of all individual sound intervals can be collected. More details 

on this can be found in Chapter 4 of this thesis. 

We used the cyclostationary analysis described in Chapter 2 to extract features 

that can distinguish the three types SRBD related snoring. Cyclostationary  
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analysis changed the snoring sound to the specifically transformed matrix and 

based on this, and two feature representations were generated. Then, we also 

made various classification models using various classifiers and compared their 

performance. 

We start in Section 3 with a system architecture, which includes data 

specification, analysis method, feature extraction and classification method. In 

Section 3, we describe the evaluation process of a classification model. Next, 

in Section 4 and 5, we describe the result and conclusion of this experiments. 

 

 

3.2 System architecture 

 

3.2.1 SRBD-related snoring event database and preprocessing 

 

The breathing sounds for this study were recorded during hospital PSG tests 

which were conducted in the sleep laboratories at the Seoul National University 

Bundang Hospital. The number of involved patients was 12 and the average 

recording time was 7 hours. Each examination process in a sleep laboratory 

was recorded using a microphone with a frequency band between 20 and 2000 

Hz (SUPR-102, ShenZhen YIANDA electronics) placed on the ceiling above a  

 

Figure 3.1 Examples of the PSG Software's annotation (RemLogic® Data explorer) 
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Type Extraction criteria Duration 

Simple snoring Annotated section’s duration 2 seconds 

Hypopnea-related 

snoring 

Annotated section’s duration or no 

annotation but indubitably, snoring 
2 seconds 

OSA-related 

snoring 

snoring sounds that occurred 

immediately after the OSA annotations 
2 seconds 

Table 3.1 Criteria for three types of snoring sound extraction 

 

patient’s bed at a distance of 1.7 m. We extracted sounds from the recorder 

through a widely used multimedia library, FFmpeg [68]. Then, these sound files 

were resampled to 8 kHz for effective analyses and filtered by a spectral 

subtraction algorithm [69] to reduce unintended noises. Analyses of the PSG 

data were performed using a sleep diagnostic software, RemLogic® (Natus 

Medical Inc., USA). The various clinical events were eventually analyzed by 

medical professionals and the point of occurrence and duration of the related 

events were displayed and stored with the form of annotation in the PSG 

software. In this experiment, we considered three types of snoring: simple 

snoring, hypopnea-related snoring, OSA-related snoring. Using these 

annotations, three types of snoring events, simple were extracted from the 

sound data extracted from monitoring video which is time-synchronized. Based 

on these extracted events, 50 snoring sounds were randomly selected for each 

type, and the duration of each sound was 2 seconds.  

There were a few considerations in annotation-based snoring sound extraction. 

The OSA is an event in which the breathing is stopped for a few seconds or a 

few minutes. Thus, related annotations written by the experts span the silent 

section on the synchronized PSG sound signal. For that reason, we collected 

snoring sounds that occurred immediately after the silent apnea period, not the  



43 

 

sounds of the annotated OSA section. On the other hand, hypopnea and simple 

snoring related sounds were directly extracted based on the time duration of its  

annotated sections. The following Figure 3.1 shows an actual example where 

each snoring event is displayed on the real PSG software. 

In the individual SRBD related snoring segments extracted by the above 

process, we manually selected 2 seconds duration snoring sound. As a result, 

we could get an experimental data set which consisted of total 150 individual 

snoring sound files with three different classes. The Table 3.1 shows the criteria 

for three types of snoring sound extraction methods and the preprocessing of 

this experiment can be summarized with the diagram of Figure 3.2. 

 

3.2.2 Feature extraction method 

 

From extracted SRBD related three types of snoring sounds, we attempted 

feature extraction through the cyclostationary analysis method. In Chapter 2, 

we briefly described this analysis method. If the section of the thesis in which 

the cyclostationary analysis applied appears, we will individually explain in 

detail how it has been applied to each experiment. In this study, we transformed 

the snoring sound of 2 seconds length into cyclic spectrum using 

cyclostationary analysis method and performed feature extraction through 

principal component analysis or integral image conversion of a covariance 

matrix. 

 

Figure 3.2 Preprocessing of this experiment 



44 

3.2.2.1 Spectral Correlation for the Snoring Sound 

 

In the signal processing research area, most studies considered a given signal 

to be stationary. However, most of the signals that occur in nature are non-

stationary [70]. The extracted snoring sounds in this study were considered non-

stationary data including repetitive and complex waveforms. The sounds were 

analyzed offline and we tried to extract the cyclostationary properties from 

theses sounds. In general, one signal is cyclostationary when the signal is non-

stationary, and its statistical characteristics are varying periodically in time 

domain [71]. When we conduct a cyclostationary analysis, if a signal x(t) can 

decompose to several sine wave components through a non-linear 

transformation of order n, x(t) is defined as nth order cyclostationary process. 

The non-linear transformation can represent a correlation function including 

time lag of x(t) using a quadratic transformation. Therefore, conducting a 

cyclostationary analysis can show the hidden periodicity of the signal of interest 

and can extract the hidden features of data. On the other hand, typical noises do 

not indicate any cyclostationary properties. Therefore, this analysis method can 

be considered to be robust regarding noises. According to the above definition, 

a non-linear transformation of signal x(t) generates a non-zero spectral line 

when the α is greater than zero. Alpha means cyclostationary frequencies which 

can be obtained by 𝑛/𝑇0(𝑛 ∈ ℤ) . Combining the above concepts allows 

inducing cyclic autocorrelation function (CAF) 𝑅𝑥𝑥
𝛼   which is represented in 

equation 3.1. 

→∞
                          (3.1) 

where, α ∈

The CAF can be considered to be a measurement of the correlation between the 
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frequency shifted versions of x(t). The CAF can also be a periodic function 

which represents the second-order periodicity of the x(t) and assumes a 

cyclostationary process. As we obtain the necessary information of periodic 

function through Fourier transform, we can acquire the cyclic spectrum (CS) 

by performing the Fourier transformation of the CAF. The CS is represented in 

equation 3.2. 

∞

∞
                  (3.2) 

We also can represent the discrete version of CAF and CS of signal x[n] which 

has fixed time lag l. They can show as equation 3.3 and 3.4. 

 

→∞
                     (3.3) 

where N is the number of samples of signal x[m], ∆m is the sampling interval. 

 

∞

∞
                                 (3.4) 

As mentioned in the above, if the spectral components greater than zero exist 

in signals of interest, the signals can be considered to have a second-order 

periodicity, which also can be regarded as a hidden periodicity. The hidden 

periodicity was comprised of many spectral correlation coefficients. Therefore, 

we selected these coefficients for generating features of target signals. Figure 

3.3 shows results of the CS of representative signals corresponding to simple 

snoring, hypopnea-related snoring, and apnea-related snoring. Although results 

were not completely same patterns in individual three kinds of snoring, they 

showed that spectrum components in cycle frequency domain of each snoring 

might have different cyclostationary properties. 
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3.2.2.2 Feature extraction from cyclic spectrum 

 

These cyclostationary features were extracted from foregoing three symptoms-

related snoring sounds with two second signal window. First of all, CS was 

calculated from each snoring sound, and this built a spectral correlation matrix 

(SCM). The SCM was a result of the CS which includes magnitudes 

corresponding to frequency and cycle frequency domains. The region of interest 

of the SCM which was partially removed the zero magnitude regions was 

extracted using the method of the previous related study [51]. Based on this 

filtered SCM, we calculated the max, mean, standard deviation of each cycle 

frequency (column) according to whole frequency range (raw). The SCM was 

generated for each frame and results were averaged by the total frame numbers. 

Then, a feature set was produced by attaching each of the statistical value of 

 

Figure 3.3 Comparison of the cyclostationary component in 3 types of snoring (subject 1) 
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the coefficients. The dimension of the feature set showed definitely high 

dimensionality (35,901). Therefore, we conducted principal component 

analysis (PCA) and obtained a new dimension-reduced version of feature set 

which includes 149 PCA coefficients. A pseudo-code for a feature extraction so 

far is given in Algorithm 3.1. In the code, cyclic resolution (dalpha) is 

calculated by 1/T, where T is the observation time of the data, and spectral 

resolution (df) is calculated by 1/Tw, where Tw is the small window time 

(sliding FFT time length) along the entire observation time interval dalpha [72].   

 

Algorithm 3.1 A Feature Extraction Method 1 Pseudo-Code  

input  A snoring sound S, frame rate Fr, frame duration D,  

average ROI coordinate set OC, window scaler V 

1:  Calculate frame size Fsize:   

2:  Extract frame data, FD by Fsize: ←  

3:  Cyclic resolution dalpha = , Spectral resolution df =  

4:  Calculate the cyclic spectrum (CS): 

  

5:  Crop the magnitude for extraction the region of interest 

 

6:  Calculate averaged maximum, standard deviation, mean of  

 

6:  Principal Component Analysis: ←  

output  

 

Another approach for feature extraction of cyclic autocorrelation function has 

been attempted. Several studies have used covariance matrices as object 

descriptions of an image. Assuming that I is a one-dimensional intensity or a 
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three-dimensional color image and F is a feature image of × ×  dimension 

extracted from I, 

Φ   

where the function Φ can be any mapping such as intensity, color, gradient, 

filter response, and so on. If we denote the d-dimensional feature points in R, 

which is a rectangular region included in F (R⊂F), as {𝑧𝑖}𝑖=1..𝑆, the region R 

is expressed by the  covariance of feature points 

 

where μ is the mean of the points. The diagonal entries of the covariance matrix 

represent the variance of each feature, and non-diagonal entries are the 

respective correlations. Oncel et al. [73] explained the advantages of using 

covariance matrices as region descriptor of an image in their research. Among 

them, the greatest motivation for using covariance matrices in this study is that 

the representation of a covariance matrix can suggest a natural way to fuse 

multiple features that might be correlated. Thus, they also described that a 

single covariance matrix obtained in one region is usually sufficient to match 

the region of different views and poses. They also introduced the expression 

method called integral images for quick calculation of the region covariances. 

The integral images are intermediate image representation used to quickly 

calculate the region sums. For an intensity image I, its integral image is 

calculated as 

 

In our study, we used integral images as a tool for dimension reduction of the 

calculated covariance matrix. We derived a feature representation named COV-

II, an integral image for the covariance of CS [74]. We normalized COV-II and 
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eliminated the outliers with extreme values. We extracted 13 attributes in total 

from the CS and the COV-II, including entropy, centroid, central moment and 

basic statistics. A pseudo-code for second feature extraction method so far is 

given in Algorithm 3.2. 

 

Algorithm 3.2 A Feature Extraction Method 1 Pseudo-Code  

input  A snoring sound S, frame rate Fr, frame duration D,  

average ROI coordinate set OC, window scaler V 

1:  Calculate frame size Fsize:   

2:  Extract frame data, FD by Fsize:  

3:  Cyclic resolution dalpha = , Spectral resolution df =  

4:  Calculate the cyclic spectrum (CS): 

  

5:  Crop the magnitude for extraction the region of interest 

 

6:  Calculate covariance matrix of : 

 

7:  Transform the  to integral image (COV-II): 

) 

8:  Calculate statistics (Entropy, centroid, central moment, max, min, 

   median) from  

output  

 

In this study, the whole process was implemented and tested using Matlab® 

R2015a (MathWorks, USA) based on Windows PC (Intel Xeon 3.3GHz, 16GB 

RAM, Windows 10 Pro). 
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3.2.3 Feature selection 

 

Using the intermediate feature set which was obtained through the above 

processes, we set a goal of development of three types of a snoring 

classification model. In this study, WEKA toolbox [75], widely used the 

software in a data mining area, was used for the classification tasks. First of all, 

redundant and irrelevant features in our feature dataset were eliminated using 

the feature selection function to generate a more informative feature set and 

improve the classification accuracy. We performed the feature selection in the 

Algorithm 3.1. The output of feature extraction Algorithm 3.1 has 149 PCA 

coefficients as an intermediate feature set. To improve the classification 

performance in this task, we used an SVM attribute evaluator which was offered 

by the WEKA and could get a list of feature rankings. The top 60 attributes 

were finally selected from the ranking, and it became the final selected feature 

set. The parameter setting in WEKA related to the feature selection used in this 

experiment is summarized in the following Table 3.2. 

In the case of Algorithm 3.2, not only was its number of output small but also 

there was no reasonable performance improvement when it applied to the  

Key scheme Setting value Parameter setting 

Attribute 

selection 

evaluator 

SVMAttributeEval 

Complexity 1.0 

Epsilon  1.0E-25 

Filter type Normalization 

Tolerance 1.0E-10 

Attribute 

selection 

search 

Ranker  

(ranks attributes 

by their individual 

evaluations) 

Generate ranking True 

Number  

of attribute  

to retain 

60 

Table 3.2 Parameter setting for feature selection in WEKA 
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output, so the additional feature selection process did not perform. The 

attributes used in the final feature set are shown in the following Table 3.3. 

 

3.2.4 Classification of three types of snoring 

 

Using the final selected feature set, we tried to apply it to various machine 

learning algorithms and aimed to choose the most outstanding classifier. In the 

first experiment with 60 selected features, we chose three classifiers (SVM, 

Logistics, Random forest) which were embedded in WEKA and performed 10-

repeated 10-fold cross-validation for each classifier. Finally, we analyzed the 

classifiers’ performance through the corrected paired samples t-test. The paired 

Index Attribute  Remark 

1 Max1 Maximum (standard deviation of Cov-II) 

2 Mean1 Mean (standard deviation of Cov-II) 

3 Median1 Median (standard deviation of Cov-II) 

4 Max2 Maximum (mean of Cov-II) 

5 Mean2 Mean (mean of Cov-II) 

6 Median2 Median (mean of Cov-II) 

7 Entropy Entropy (Cov-II) 

8 Central moment Central moment (Cov-II) 

9 Sx_sum Sum (max. for magnitudes of CS) 

10 Sx_entropy Entropy (max. for magnitudes of CS) 

11 Sx_max Maximum (max. for magnitudes of CS) 

12 Sx_centroid1 Centroid (max. for magnitudes of CS) 

13 Sx_centroid2 Centroid (max. for magnitudes of CS) 

Cov-II means the  

Table 3.3 Attributes used in the final feature set 
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samples t-test is a statistical procedure to determine whether the difference 

between the mean of the two observations is zero. In this experiment, we used 

this procedure for confirming difference of average classification performance 

between each classifier.  

In the second experiment with COV-II features, we selected a random forest 

classifier with 30 trees to confirm the classification performance through a 

classifier accuracy comparison test as in the previous experiment. This process 

of experiments is summarized in Figure 3.4. 

 

 

3.3 Evaluation 

 

In this study, we generated a classification model identifying three types of 

snoring based on statistics of cyclostationary features from the recorded  

breathing sound during PSG and validated its performance. We calculated the 

classification performance of different classifiers, SVM, Bayes network, 

multinomial logistic regression, random forest using 10-repeated 10-fold cross-

validation.  

Figure 3.4 Process for the classification and its performance comparison 
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Classifier Key scheme Option Remark 

SVM1 

Build 

LogisticModels 
False 

Whether to fit logistic models 

to outputs 

Complexity 1.968  

Epsilon 1.0E-12 
The epsilon for round-off 

error 

Filtertype 
Normalize 

training data 
Data transformation 

BayesNet1 

Estimator 
SimpleEstimator 

Estimating the conditional 

probability tables of a Bayes 

network 

Alpha 0.5 Initial count for estimator 

Search 

algorithm 

K2 
Bayes learning algorithm:  

hill climbing algorithm 

Score 

type 
Bayes 

The measure used to judge the 

quality of a network structure 

Logistic1 

ridge 1.0E-8 
Ridge value in the log-

likelihood 

maxlts -1 (unlimited) 
Maximum number of 

iterations to perform 

Random 

Forest2 

maxDepth 0 (unlimited) Maximum depth of the trees 

numFeatures 0 (unlimited) 
Number of attributes to be 

used in random section 

numTrees 60 
Number of tree to be 

generated 

Reference 
1: Setting value of Algorithm 3.1 

2: Setting value of Algorithm 3.2 

Table 3.4 key scheme options of each classifier used in this experiment 

Cross-validation is a procedure of evaluating a prediction model by dividing 

the original sample data into a training set for model learning and a test set for 

evaluation of the generated model. Generally, in k-fold cross-validation (in our 

experiment, k=10), the original sample data is randomly divided into k equal- 
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sized subsamples. At this time, k-1 subsamples are used for learning data and 

the other one is test data for validating the model. Then, the cross-validation is 

repeated k times and in each process, k subsamples which are individual test 

sets, are used as validation data. Finally, a single estimation is calculated by 

averaging the results derived from each test. In the case of repeated cross-

validation, the procedure is repeated n times (in our experiment, n=10) and 

producing n random partitions of the original sample data. From this, a single 

averaged estimation is yielded from n results. The key scheme options of each 

classifier used in this experiment are summarized in the following Table 3.4.  

 

 

 

 

 

Figure 3.5 Snoring type classification performance of the three classifiers 
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3.4 Results 

 

3.4.1 Cyclostationary feature extraction using PCA (Algorithm 3.1) 

 

The accuracies of these classifiers are 67.64 to 80.00 %, 63.04 to 75.35 %, 66.18 

to 78.08% respectively with 90% confidence interval (Figure 3.5). Also, we 

conducted corrected paired t-test to compare the classification performance of 

classifiers statistically. As a result, there is no significant difference in percent 

correction among foregoing three classifiers. However, in comparison of the 

Area Under ROC (AUC), Bayes Network is significantly worse than other two 

classifiers. Therefore, SVM and Multinomial logistic regression are proper 

classifiers for classifying the symptom-related snores using the proposed 

cyclostationary features. Table 3.5 shows detailed mean results of 10-repeated 

10-fold cross-validation of each classifier.  

Detailed mean result 

(10-repeated 10-fold CV) 
SVM Bayes Network Logistic 

Percent correct (%) 73.80 69.20 72.13 

Percent incorrect (%) 26.20 30.80 27.87 

Kappa statistic 0.61 0.54 0.58 

Mean absolute error 0.30 0.21 0.19 

Root mean square error 0.38 0.43 0.41 

Relative absolute error 67.17 47.04 41.89 

Root relative squared error 81.04 90.38 87.33 

True positive rate 0.82 0.66 0.80 

False positive rate 0.19 0.21 0.18 

True negative rate 0.81 0.79 0.82 

False negative rate 0.18 0.34 0.20 

F-measure 0.75 0.63 0.74 

Area under ROC 0.84 0.81 0.89 

Area under PRC 0.70 0.74 0.83 

Table 3.5 Result summary of three classifiers 
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In this thesis, the classifier performance is verified using the classification 

accuracy (Percent correct), sensitivity (True positive rate; TPR), specificity 

(True negative rate) and AUC. The accuracy represents the rate at which the 

analysis results of each sample are classified into the correct class. This 

measures the extent of veracity of the classification test on a condition [76]. 

The sensitivity value indicates the probability that the classification test 

identifies the patient suffering from the disease. Tests with high sensitivity tend 

to detect all possible positive conditions with fail and are useful for determining 

disease. The specificity is the proportion correctly identified as true negatives  

through classification results. This indicates how well the normal condition can 

be determined. In the ROC space, a TPR and a false positive rate (FPR) appear 

as a single point. TPR is equal to the sensitivity and FPR is equivalent to the  

specificity. The location of a single point indicates the tradeoff between the 

sensitivity and specificity, and shows whether classification performance is 

good or not. If the positions of points on the ROC are close to the diagonal, the 

accuracy of test becomes lower. The AUC is calculated by the integral of the 

ROC (i.e. area) and used as a measure of accuracy in clinical diagnostic trials 

[76]. Higher AUC values are considered to indicate better classification abilities. 

Table 3.6 shows the criteria for clinical diagnostic testing based on the AUC 

value [77]. 

AUC range Discriminatory abilities 

 Excellent 

 Good 

 Fair 

 Poor 

Table 3.6 Criteria for clinical diagnostic testing based on the AUC value 
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3.4.2 Cyclostationary feature extraction using integral image of a 

covariance matrix (Algorithm 3.2) 

 

Figure 3.6 shows that the average COV-II of 150 snoring sounds according to 

each event group (middle row). The nonzero region of each snoring event 

reveals different distribution and intensity. For instance, snoring of hypopnea 

(left) has highest standard deviation and meanwhile snoring of obstructive 

apnea (right) event shows the highest entropy. However, simple snoring (middle) 

has small values than other events across the board. This result could be 

interpreted that the proposed COV-II is useful to identify the snoring types 

using sound only.  

We conducted the 3-class snoring classification task evaluation using four 

classifiers (Figure 3.7). The basic evaluation framework was the same as  

 

Figure 3.6 Integral image of the cyclostationary attribute’s covariance matrix (from top to 

bottom: snoring events, average COV-IIs, and statistics of average COV-IIs) 
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preceding Algorithm 3.1. In the experiment using features derived from 

Algorithm 3.2, the random forest classifier showed the best classification 

performance. As shown in the above table, we conducted a three-class 

classification task using a random forest classifier with 30 trees, and other 

parameters were the default value of WEKA.  

10-repeated 10-fold cross-validation was performed and the classification 

accuracy was 78.07±6.63% with a 95% confidence interval. Figure 3.8 shows 

the ROCs for each class. It is confirmed that AUC value is 0.8 or more for each 

SRBD-related snoring classification task. The analysis, comparison, and 

significance of two algorithms used in this experiment are described in the 

conclusion. In particular, both algorithms change the snoring sound to CS using 

cyclostationary analysis. However, the CS treats the two algorithms differently  

 

Figure 3.7 Classification results of the four different classifiers 
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to generate individual feature representations. Therefore, we will focus on this. 

 

 

3.5 Discussion 

 

From the results of Algorithm 3.1, cyclostationary analysis can be used to 

estimate SRBD severity as features representing traits of three types of snoring 

which are observed during sleep. In the representative snoring signals shown in 

Figure 3.3, the nonzero values of the CS are distributed at various locations of 

the SCM converted from the snoring sound. By definition, a certain signal is 

cyclostationary when the nonzero magnitudes are exhibited for the nonzero 

values of alpha. These cyclostationary properties are presented with various 

attributes as a different magnitude and occurrence location. These attributes 

may be related to participant’s upper airway characteristics which are involved 

 

Figure 3.8 ROC to SRBD-related snoring classes 
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in generating various SRBD related snoring sounds. In the case of simple and 

hypopnea related snoring in Figure 3.3, obvious lines depicting high spectral 

correlation appear in the alpha frequency domain along the frequency domain. 

Furthermore, simple snoring showed the higher magnitude and relatively high 

magnitude regions are more widely located than the hypopnea-related snoring. 

On the contrary, in the case of the OSA-related snoring (special loud snoring 

after the long cessation of breathing during sleep), nonzero spectral correlations 

are widely distributed, and a high magnitude area is also presented more widely 

than the other two types of snoring. Due to many factors influencing snoring 

sounds of patients, for example, recording environment and the position of 

patients, distributions, and magnitudes of components do not show definitely 

same patterns. However, by using simple statistics and PCA, we could extract 

approximated compact features based on the cyclostationarity related to three 

types of snoring.  

In the case of Algorithm 3.2, we obtained the covariance matrix from the CS 

and applied an integral image method to it. From the feature representation 

applying the integral image, we extracted various statistical values, and also 

added other simple statistical values based on original CS to generate the final 

feature set. In particular, this final feature set showed better classification 

performance without the feature selection process, unlike the Algorithm 3.1. 

This means that the attributes of Algorithm 3.2's final feature set is less 

redundant and irrelevant than Algorithm 3.1. Algorithm 3.2 derived the 

covariance matrix from the original CS. In this experiment, the CS is treated as 

a 2-D image of the contour view type as shown in the previous Figure 3.3. Since 

covariance of an image is known to play a role as an object descriptor in the 

field of image processing, it is considered to be more efficient feature set than 

the product of Algorithm 3.1. We obtained the covariance matrix from the 
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magnitude values of the CS derived using the cyclostationary analysis. The 

original CS has a dimension of   in our experiment. Its 

transposed matrix was able to generate a  dimensional covariance 

matrix. This procedure can also be considered as a dimension reduction process. 

In this case, the variables that obtain the covariance can be defined as 

 composed of 32,001 CS magnitude values. The diagonal entries of 

the covariance matrix represent the variance for each  and the remaining 

entries represent the covariance values for each pair of different .  Positive 

covariance between two variables indicates a positive linear relationship, and 

negative covariance indicates vice versa. A covariance value of zero indicates 

that there is no linear relationship between the two variables and that they are 

independent of each other. In this study,   is a variable including  

frequency values (the CS magnitude values) belonging to one spectral 

frequency value. Therefore, the covariance matrix consists of variance values 

of  , and the covariance values between the CS magnitude values that 

correspond to each spectral frequency value. For example, if the covariance 

values of  and  are positive, the CS magnitude values included in these 

values exhibit a positive linear relationship, that is, when  increases,  

also shows an increasing characteristic. We also applied integral images to the 

covariance matrix. As explained earlier, in the integral image, all pixels are the 

sum of the upper and left pixels, and consequentially, it can calculate the 

summations for the subregions of the image. As can be seen in the result, the 

statistical values of the integral images were different according to the types of 

snoring. Therefore, when Algorithm 3.1 and 3.2 are compared based on the 

necessity of the feature selection process, it can be advantageous to grasp the 

correlation and summarize related values rather than to use the primary result 

of the cyclostationary analysis to derive a more useful and reliable feature set.  
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In two experiments using different features, we compared the classification 

performance by different classifiers. Experiments using the algorithm 3.2 with 

better classification accuracy showed the best performance when using a 

random forest. A random forest is an ensemble method that combines bagging 

with tree models that are sensitive to training data fluctuations. Bagging is a 

simple, yet effective ensemble method for generating various models for 

different random samples of a raw data set. When bagging is applied to a tree 

model, a process called subspace sampling, which constructs individual trees 

from different random subsets of features, is performed. The decision tree is a 

grouping model in which leaves partition the instance space, which is a 

collection of features, so a corresponding instance space partition of the random 

forest is the intersection of the partitions of the individual trees in the ensemble. 

Therefore, the random forest partition is more delicate than most tree partitions, 

and the random forest is an alternative learning algorithm for the tree models 

because the ensemble has an effective decision boundary that cannot be learned 

by the single base classifier [78]. The features output through Algorithm 3.2 

consists of statistical values based on CS and its integral image of covariance 

matrix. As shown in Figure 3.6, the tree model can be a good solution when 

performing classification tasks because each statistic value has different values 

according to the related symptoms. Therefore, it is considered that the best 

classification performance is obtained from a random forest having a finer 

partition and a more effective decision boundary than the general tree models. 

Another finding of this study is about the possibility of hypopnea-related 

snoring identification. The typical apnea-related snoring contains relatively 

obvious information in a time domain, which represented by a loud snoring 

sound occurrence after a long-term breathing stop. However, hypopnea snoring 

was not easy to compare with simple snoring sound just by listening to the 
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sound and also it did not have certain features in the time domain as OSA-

related snoring. However, hypopnea snore was not easy to compare with simple 

snore just by listening to the sound, and also it did not have certain 

characteristics related to sound generation in the time domain like the OSA-

related snoring. Besides, hypopneas are typically identified by the bio-signal 

indicators, such as the oxygen saturation, nasal pressure transducer or an 

electroencephalographic arousal signal. However, the fact that hypopnea-

related snoring can be distinguished using the breathing sounds brings us a 

possibility that cyclostationary analysis may be adopted as one of the main 

features for designing a sleep disorder severity classifier related to SRBD. 

 

 

3.6 Summary 

 

In this experiment, we extracted three types of snoring sounds based on the 

annotations of the physician’s SRBD-related snoring (snoring, hypopnea, OSA) 

from recorded sleep breathing sounds during the PSG test. Although there have 

been a variety of related studies, very few studies have attempted to distinguish 

hypopnea related snoring using only breathing sounds. Unlike OSA, hypopnea 

is not clear about its recognition criteria, and it mainly uses EEG or oxygen 

saturation information, which is not a characteristic of sound or time in the 

process of recognition. Therefore, in this experiment, it is crucial how accurate 

the symptomatic snoring sounds can be extracted by the gold standard. 

Unfortunately, we have not been able to find any experimental frameworks or 

databases that have been created and used as Gold Standard for snoring sound 

analysis. Therefore, we used the annotation information of the physician set as 

the time interval as the gold standard and extracted the sound data of the 

matching interval according to the symptom.  
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For the three snoring sounds, this experiment showed a classification 

performance of over 70%, and the AUC at that time was more than 0.8, which 

shows this method is useful in clinical practice [77]. However, as mentioned 

earlier, there are obvious limitations because data extraction for individual 

events is difficult and the number of data used in experiments is small. In the 

future, it will be necessary to increase the number of data and develop a robust 

classifier that can cope with various conditions through the development of a 

clear snoring sound event extraction framework based on the physician's 

annotation. 

However, this experiment showed that cyclostationary analysis could identify 

the snoring sounds by symptoms. This means that this analysis method can be 

used for snoring event classifiers and can extract various features when applied 

to the sleep breathing sound analysis. In the next section, we conducted an OSA 

severity classification study by applying this analysis method to the long-term 

sleep breathing sound of individual patients. 
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 Patient’s OSA Severity Classification  

 

 

 

In this thesis, we perform two kinds of sleep breathing sounds analysis tasks. 

The first is to distinguish SRBD-related snoring events from snoring sound 

units extracted from full-night sleep breathing sound described in previous 

chapter, and the second is to obtain a specific feature representation from long-

term sleep breathing sound and use it to classify OSA severity of individual 

patients. This chapter describes the second task. 

 

 

4.1 Introduction 

 

As mentioned in Chapter 1, obstructive sleep apnea (OSA) is the most common 

sleep-related breathing disorder. Chapter 4 is a study that directly distinguishes 

OSA severity by using sleep breathing sounds. After explaining the more detail 

OSA-related content, we will explain the actual experiment process and the 

result. 

The OSA syndrome is characterized by repetitive episodes of upper airway 

obstruction and commonly connected with a reduction in blood oxygen 

saturation. OSA is associated with a characteristic snoring pattern and consists 

of loud snores or short gasps that alternate with events of silence that typically 

last for more than 10 s. OSA also can induce various dangerous situations or 

personal complaints in person’s daily life. For example, the patient’s severe 

daytime sleepiness due to OSA can be a direct cause of a large number of car 

accidents [79]. Besides, gastroesophageal reflux can occur as a result of the 
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effort made to reestablish breathing [80], and the loss of both libido and erectile 

ability could occur in patients with OSA [81]. Cardiac arrhythmias also 

commonly occur during sleep in OSA patients [82]. In this case, bradycardia 

alternates with tachycardia during the apneic phase and termination phase of 

the obstruction, respectively. Even more severe, tachyarrhythmias most 

commonly occur when a patient tries to reestablish breathing following the 

apneic phase and may increase the risk of sudden death during sleep.  

Many population-based studies have reported a high prevalence of OSA in 

adults [83]. In the case of the United States, OSA has increased over the past 

two decades and its prevalence rate in adults between 30 and 70 years old has 

reached 26 % [84]. Despite the seriousness and increased cases of OSA, related 

research has reported that 93 % of women and 82 % of men remain 

underdiagnosed [85]. The main reason for the high number of underdiagnosed 

individuals is that it is hard to recognize the intensity of their pathological 

breathing during sleep. Even if they are aware of the symptoms, an expensive 

and uncomfortable examination make their visit to the hospital difficult.  

Polysomnography (PSG) is currently the gold standard for the diagnosis of 

OSA. To make an OSA severity diagnosis, PSG provides an Apnea-Hypopnea 

Index (AHI) that contains the number of apnea and hypopnea occurrences per 

hour of sleep. According to the American Association of Sleep Medicine 

(AASM), when a subject has more than five obstructive apneas over 10 s per 

hour of sleep, the individual could be suspected of having OSA syndrome [86]. 

However, the test should be conducted overnight, and its cost is expensive. 

Moreover, the measurement is inconvenient because various physiological 

sensors must be attached to the body [87]. Because of these limitations of PSG, 

it is not suitable for mass examination and occasionally, obtaining reliable 

results is difficult due to different sleeping behaviors in a hospital, called first 
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night effect (FNE). Recently, portable PSG has been developed and used in 

personal home care related to sleep disorders. However, this technology still 

requires multiple uncomfortable sensors and measurements for various 

physiological parameters, such as blood saturation and nasal airflow. Therefore, 

a preliminary screening test is necessary for suspected subjects who are 

concerned about the financial burden and measurement inconvenience. The test 

should be as simple as possible and should be capable of repeatedly measuring 

patient’s data for mass examinations. 

Breathing sounds can be measured more easily than other known physiological 

signals during sleep. Conventional sensors can be used to take measurements 

in a body-contact manner, but the breathing signal can be recorded using non-

contact sound recording devices. If the recording device is not professional and 

the operation is not complicated, the breathing sounds may be measured 

without any help from specialists or technicians. Decisively, many studies show 

that sleep breathing sounds are related to sleep disorders [17, 45, 57, 58, 62-64, 

67]. These studies could be representative examples of the medical advantages 

of being able to examine some symptoms related to sleep disorders without 

additional bio-signal sensors when high-quality sleep breathing sounds can be 

obtained from patients. Therefore, sleep breathing sounds can be regarded as 

acoustic physiological signals that anyone can measure. However, most recent 

studies have focused on snoring segment detection, snore/non-snore 

classification, or OSA/non-OSA patient group classification. The sensitivity 

result of OSA classification, which has shown that a percentage of people with 

OSA are correctly identified as having the symptom, ranges from 60 % to 80 % 

in related studies [45, 62, 63, 68]. For an efficient OSA screening test, OSA 

severity should be able to report results based on a clinical standard. According 

to the AASM, AHI values are categorized into four severity labels: normal, mild, 
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moderate, and severe sleep apnea. Moreover, many studies have used body-

contact microphones, for example, microphones attached to a surrounding area 

of the neck [17, 62, 64] or face [63]. These contact microphones easily cause 

inconvenience for patients and make it difficult to make simple measurements. 

Additionally, numerous studies have acquired breathing sounds using 

expensive professional microphones that typically hang from the ceiling at a 

short distance from the patient. More detailed information on the algorithms of 

previous studies is presented in a discussion section comparing the results of 

other studies with those of the proposed study. The aim of this study is to 

develop a new approach to multiple OSA severity classification using breathing 

sounds during sleep. Two novel methods, the total transition probability of 

approximated sound energy in a time series and the statistical properties which 

are derived from dimension-reduced cyclic spectral density, are proposed for 

our object. To the best of our knowledge, so far, no approach has utilized a 

combined feature set, which was made with prior methods, for multiple OSA 

severity classification. In contrast to related studies [17, 62-64], breathing 

sounds are recorded using an ordinary microphone that is placed at a long 

distance from the patient and not intended to record special sounds, such as the 

patient’s breathing. Moreover, we focus on breathing sounds during non-rapid 

eye movement (NREM) sleep: sleep stages 2 and 3. We know that sleep apnea-

related snoring is most likely to occur during REM sleep. However, because we 

use an ordinary subject’s breathing sounds, we concentrate on the two sleep 

stages in which conventional snoring is most likely to occur. Furthermore, body 

movement or other complex behaviors rarely occur during these stages, hence 

we can minimize the noise that is unrelated to breathing sounds. Additionally, 

we attempt to extract succinct characteristics from relatively long audio 

recordings without any particular event detection method or random event 
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selection in contrast to previous studies [17, 58, 62, 64, 67].  

 

 

4.2 Existing Approaches 

 

There have been many studies on OSA detection using breathing sounds during 

sleep. In this section, we summarize some studies that are considered to be 

highly relevant to this study. Looking at the research methods of various studies, 

it can be seen that most of the experiments used professional recording 

environment and special microphones. It is the biggest difference from our 

previous studies that we did not consider setting up a special recording 

environment in our experiment. 

Nakano et al. [62] recorded the tracheal sound using a body-contact microphone 

and calculated a transient fall (TS-dip) of the power spectra’s moving average 

in the time series. With this feature, they obtained the tracheal sound-respiratory 

disturbance index (i.e., the number of TS-dips per hour) and compared it with 

existing AHI values from PSG. The result of OSA subject detection using their 

feature (AHI threshold 5) was 93 % sensitivity and 67 % specificity. Abeyratne 

et al. [45] detected segments of snore related sounds (SRS) detected 

automatically and categorized SRS into pure breathing, silence, and 

voiced/unvoiced snoring segments. From these segments, they extracted the 

intra-snore pitch periods feature, which was characterized by discontinuities 

called intra-snore-pitch-jumps. Using this feature, they obtained an OSA 

detection result with 100 % sensitivity and 50 % specificity, where the AHI 

threshold was 5. Azarbarzin et al. [64] recorded sleep breathing sounds with a 

special microphone that was placed over the suprasternal notch of the trachea, 

and extracted three types of the segment: non-apneic, hypopneic, and post-
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apneic. From these segments, they calculated the total variation norms of the 

zero-crossing rate and peak frequency and used them as features. They obtained 

77.2 % accuracy from the four-OSA severity classification test and an 

additional OSA detection result of 92.9 % sensitivity and 100 % specificity with 

AHI threshold 5. Behar et al. [63] detected OSA subjects using breathing 

sounds and additional information from sensors such as actigraphy, body 

position assessment, and photoplethysmography (PPG). For breathing sound 

recording, they used a special microphone attached to the subject’s face and 

extracted the multiscale entropy values from the audio. The OSA subject 

detection result based on audio was 69.5 % sensitivity and 83.7 % specificity 

for training using SVM. 

 

 

4.3 System Architecture 

 

To develop an OSA severity classification method using breathing sound, 

individual respiration sounds were divided into four OSA severity groups. All 

breathing sounds were acquired from video clips for PSG room monitoring that 

were included in the clinical sleep diagnostic tool.  

In the preprocessing, the spectral subtraction technique which is popular for the 

enhancement of noisy speech signal was applied [69]. Then, the total transition 

probability of the approximated sound energy and the statistical properties of 

the cyclic spectral density features were extracted from the preprocessed 

breathing sounds. These features and machine learning techniques were used to 

train the OSA severity classification model and verify its accuracy.  

In this section, we first describe participant statistics, physical recording 

environment, and sound acquisition method. Secondly, we explain the details  
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of the feature extraction methods. Finally, we describe the training and 

validation method for the classification model. 

 

4.3.1 Breathing Sound Database 

 

A total of 83 adult subjects (27 females and 56 males with a mean age of 

48.7(±17.5) years, mean body mass index of 25.6(±4.1), and mean AHI of 

23.6(±25.3)) were enrolled from the sleep laboratory of the Seoul National 

University Bundang Hospital (SNUBH), South Korea. The study was approved 

by the institutional review boards at SNUBH, and informed consent was 

obtained from all patients or their guardians on their behalf.  

The basic environment of the laboratory is the same as previous Chapter 3. 

Again briefly, the PSG room contained a video camera and auxiliary 

microphone (SURP-102, YIANDA electronics Co., Ltd, ShenZhen, China; 20-

2kHz frequency range, -40dB sensitivity) for monitoring the test for the entire 

night. The video clips were synchronized with various physiological signals of  

Parameter Conditions 
SURP-102 

(PSG room) 

SPH0644LM4H-1 

(Samsung Galaxy S8) 

Directivity  Omnidirectional 

Supply 

voltage 
 9 ~ 12 V 1.6 ~ 3.6 V 

Frequency 

range 
 20 ~ 2k Hz 100 ~ 10k Hz 

Sensitivity 94 dB SPL @ 1kHz -40 dB -37 dB (typical) 

Signal to 

Noise 

Ratio 

94 dB SPL @ 1kHz, 

A-weighted 
60 dB 65.5 dB 

Table 4.1 Comparison of microphone used in experiment with latest smartphone 
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the PSG and stored through the sleep laboratory’s sleep diagnostic software 

(REM-Logic, Natus Medical Inc. CA, USA). The auxiliary microphone was set 

up by default in the PSG room and was not installed for clinical purposes. It 

was located on the ceiling 1.7 m from the bed and has a frequency range of 20 

~ 2kHz according to its device specification. In general, the minimum 

frequency bandwidth required to carry human voice is known as 300 to 3,400Hz.  

This corresponds to the corded telephone voice frequency band (VFB). The 

microphone used in this experiment has a narrower frequency range than VFB 

and has a lower frequency range than VFB, but does not reach in the high-

frequency range. This can be just like applying a 2kHz low-pass filter to a high-

performance microphone with a frequency range of 50 to 20kHz. Since it was 

hard to obtain a full specification of the microphone used in our experiment, it 

was practically difficult to compare it with other kinds of microphones directly. 

However, it is evident that its performance is lower than the microphones used 

in the latest smartphones. The following table compares the microphone 

utilized in the most recent smartphones with that used in our experiment. 

 

Figure 4.1 Sound acquisition and preprocessing in the PSG room 
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In conclusion, it is highly probable that the recorded sleep breathing sounds in 

this situation are not as good as the sounds obtained through well-controlled 

professional recording environment as in previous studies. Although the  

position of the microphone on the ceiling is not a very common situation from 

the user's point of view, we can be confident that this experiment is based on a 

relatively general recording environment rather than other research. Therefore, 

we aimed to develop a classification algorithm that can distinguish OSA 

severity based on relatively simple and general environment that can record the 

sleep breathing sounds through an ordinary microphone which is carelessly 

suspended from a ceiling. 

The left-hand side of Figure 4.1 shows the actual setup of the PSG room. From 

monitoring-video clips of the PSG room, the all-night breathing sounds of each 

subject were extracted using a multimedia conversion tool (FFmpeg) [68] and 

saved as a wave format file with an 8 kHz sampling frequency. Then, according 

to each patient’s AHI value from the PSG test result, wave files were 

categorized into four OSA severity groups: normal (0 ≤ AHI ≤ 4), mild (5 

≤ AHI ≤ 14), moderate (15 ≤ AHI ≤ 29), and severe (AHI ≥ 30). 

The normal group included 20 breathing sounds and all other OSA groups 

contained 21 sounds. The average time of the sleep breathing sounds was 7 

hours 10 minutes 30 seconds. 

 

4.3.2 Preprocessing 

 

Since the recording equipment was not specifically chosen for sound analysis 

experiments and was intended to monitor the PSG room’s test environment, 

there was a lot of background noise, such as white noise, hum or hiss when we 

checked the audio signals. We considered that these noises’ spectrums did not 
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substantially change the target signal; thus, we adapted a spectral subtraction 

method [69], which is a computationally cheap and efficient method for this 

situation. We assumed that subject’s regular breathing sounds during sleep 

could be used to estimate OSA severity. When we identified a typical 

hypnograms of adults, NREM sleep corresponding to stage 2 and 3 accounted 

for at least 60 % of the total sleep [88]. During these sleep stages, the subject is 

typically stationary and the respiratory pattern is regular. Therefore, we 

assumed that regular breathing sounds could be obtained and various noise 

associated with the subject’s body movement and arousal could also be 

minimized during these stages. Thus, we extracted sounds corresponding to the 

stage 2 and 3 NREM sleep in the original breathing sound database. Breathing 

sound data were simultaneously stored with various physiological data from the 

PSG test and synchronized. In addition, sleep stages were labeled by sleep 

specialists or physicians using the clinical sleep diagnostic software mentioned 

previously. Such label information can be exported to the outside of the system 

by applying various filtering in the program. Therefore, we could extract 

breathing sounds based on the time-stamped sleep stage information from the 

software.  

The average time of all extracted breathing sounds related to stages 2, and 3 

NREM was 4 hours 1 minute 55 seconds (± 1 hour 34 minutes 59 seconds), 

which was significantly reduced sound data compared with the original sound 

database.  The right-hand side of Figure 4.1 shows the preprocessing 

procedure used in the present study. The breathing event detection method was 

not adapted to breathing sound analysis, in contrast to previous related studies 

[17, 58, 62, 64, 67]. This strategy can reduce possible detection errors and 

computational cost during the pre-detection process for target events. Whereas, 

our method simply divides the breathing sounds into window units of a 
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predetermined window length and inputs them sequentially to the proposed 

feature extraction method. In this approach, most respiratory sounds associated 

with normal breathing, snoring and other disorders can be used for OSA 

severity estimation. Naturally, it is meaningful if the proposed method can 

extract representative features that can show respiratory characteristics in the 

individual signal window. 

 

4.3.3 Feature Extraction Methods 

 

We have considered two key features related to the time and spectral domain in 

this experiment. The features in the time domain have the advantage of being 

able to determine the temporal features of the OSA and other breathing events. 

Spectral features also provide valuable information such as the hidden attributes 

of each sound unit; thus, it could identify the target data that could not be 

recognized through the time domain features.  

The first feature in this study is the total transition probability of approximated 

breathing sound energies in the time domain. The second feature is derived 

from the cyclostationarity-based information of breathing sounds which 

presents hidden spectral characteristics using the periodicity of the signal’s 

autocorrelation. Then, this was simplified and transformed into a statistical 

representation. All features were calculated using signal processing and 

statistical functions of MATLAB 2015a (MathWorks, Inc., MA, USA) on a 

Windows PC (Intel Xeon 3.3GHz, 16GB RAM, Windows 10 Pro). 

In the next sections, we will describe the previous two feature extraction 

methods: time domain and cyclostationarity based feature. 
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4.3.4 Time Domain Analysis 

 

Sequential changes of the PSG data in the time domain are primary information 

that can be used clinically to diagnose sleep apnea. For example, certain episode 

in which respiratory arrest lasts longer than 20 seconds are an important 

indicator of sleep apnea [86].  

We assumed that as the frequency of obstructive sleep apnea increased, the 

frequency and length of silent intervals between breathing sounds would be 

increased, so that the sequential amplitude changes of breathing sounds during 

sleep can represent the incidence of obstructive sleep apnea. Using this 

 

Figure 4.2 Representative example of the time domain analysis of sleep breathing sound.  

a: A raw audio data example of the OSA severe group, b: its quantized signal’s energy.    

c: The 4 × 4 transition matrix including probability values, which is calculated by (b).    

d–f:  Example results of the OSA mild group 
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characteristic, we summarized the signal transition information of the subject’s 

breathing sound as features for OSA severity classification. Using a 0.5 s 

Hanning window with 80 % overlap, each subject’s breathing sound was 

segmented. Each segment was transformed into energy values and then 

approximated into three simple energy levels using thresholds (level 1: silence, 

level 2: lower energy level, and level 3: higher energy level).  

Snoring has two dominant patterns of simple and complex waveforms. The 

complex-waveform snoring is associated with palatal snoring and may be 

indicative of actual airway obstruction through a collision of airway walls. The 

simple waveform snore does not actually obstruct the lumen, but it is generated 

by the oscillation around its neutral position and is associated with tongue-

based snoring. The previous study shows that the palatal snoring has a higher 

ratio of peak sound amplitude to effective average sound amplitude than  

nonpalatal snoring [42].  

Based on these facts, we assumed that level 2 can represent energy level of 

general breathing events, including simple snoring, and level 3 contains louder 

snoring's energy level associated with OSA events. Two dynamic thresholds 

were applied to divide the energy signal into two levels, which were 

sequentially updated from a predefined ratio of the most frequent energy peak 

range in each window segment. To eliminate some ripples, which were 

produced by an accumulation of the low energy values of the energy conversion 

process, we calculated another threshold, which was the proportion of actual 

signal energy within the area of a window. For instance, if the maximum energy 

value in a certain energy window was higher than the lower threshold and its 

energy proportion was more than 50 %, this window was simplified as level 2. 

On the other hand, if the energy ratio is less than 50 % under the same 

conditions, this window frame is approximated to level 1. The threshold was 
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applied to the early energy conversion process and reduced the errors of the 

energy approximation process.  

After changing the audio signal to three levels as described above, a second 

analysis process was performed. OSA suspected sections were searched using 

the length of level 1 (silence) and the occurrence of different levels (  on 

both sides of the level 1 section. When the level 1 section lasted for more than 

20 s and was located between levels 2 and 3, this silent section was changed to 

level 4, which was an extra level for the OSA suspected section; that is, level 4 

particularly indicated that this section is an OSA candidate.  

During the third stage of analysis, those mentioned above approximated and 

weighted signal was transformed into a transition matrix. Since the signal had 

four levels, a transition matrix form was 4×4, and the number of occurrence of 

16 transition cases was accumulated in the matrix elements. By normalizing the 

matrix, the cumulative numbers of the elements were transformed to probability 

values, which represented the tendency of the subject’s breathing sound energy 

transition. As a result, these 16 probability values were used as features of time 

domain analysis in this study. Figure 4.2 shows a representative example of the 

conversion results of this method. A pseudo-code for time domain feature 

extraction method so far is given in Algorithm 4.1. 

 

Algorithm 4.1 Pseudo-code for time domain feature extraction method 

input  A snoring sound S, Sample rate in Hertz FS, Quantization level QL, 

       Window W, Window length percentage WP, Overlap percentage OP 

1:   

2:  Calculate window length WL and frame number FN: 

 

3:  Signal framing with start point SP and end point EP: 
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where, k is window index (k = 1,2, ..., FN) 

4:  Calculate the energy in separate windows (E) and merge them into ES: 

 

5:  Search the most common max peak value in ES: 

     

 

     

     

6:  Calculate threshold 1(TH1) and threshold 2 (TH2): 

 

7:  Calculate proportion of actual signal energy within the area of a window 

 

8:  Approximate energy at three levels: 

 

 

 

9:  Find an OSA candidate section 

, and 

 

 

10:  Make a transition matrix using the Level section information 

 

11:  Converting a TM into a probability matrix (pTM): 

 

output  



80 

4.3.5 Cyclostationary analysis 

 

As mentioned earlier, we did not consider the sound analysis method based on 

the breathing events detection. Therefore, the signal window, which is the basic 

unit of analysis, may contain unspecific waveforms or noise that are not related 

to snoring related sounds. Furthermore, the dominant signal in a window was 

considered as a nonstationary signal containing repetitive and complex 

waveforms such as breathing or snoring. Thus, characteristic properties 

representing not only the window’s basic properties but also an overall 

summary were required for our goal. In the case of snoring, it is the result of an 

obstruction of air flows in the respiratory tract during sleep and causes 

repetitive vibrations of the tissues of the throat [49]. 

The snoring sound could be considered as including two main types of 

waveforms. The first is a complex waveform with a low-frequency sound that 

is generated as a result of the collision of opposing airway walls during passing 

periods of airway obstruction. The second is a simple waveform sound with a 

quasi-sinusoidal pattern that could be considered as a result of the airway walls’ 

vibration around a neutral position without an obstruction of the respiratory 

tract lumen [89].  

To obtain valuable insight of sleep breathing sounds in this experiment, we 

applied the cyclostationary analysis which is an unattempted method in this 

field. It is possible to deduce that a signal is cyclostationary when it is 

nonstationary, and its statistical characteristics vary periodically in the time 

domain [71]; that is, if the signals can decompose to the several sinusoidal wave 

components through a nonlinear transformation of order n, the signals are 

defined as an n-th order cyclostationary process.  

In the present study, an autocorrelation function, a second order statistic, was 
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used for the nonlinear transformation of the signals. Therefore, if the second-

order statistic of the signal is periodic, it is second-order cyclostationary. We 

first calculated a bivariate autocorrelation function  for each window 

of breathing sound  (time t, time lag τ). Then, we converted this function 

using a two-dimensional Fourier transform, and the result was the spectral 

density. The spectral density   must consist of two frequency 

variables: frequency   and cyclic frequency  . Only if the   and  

frequencies were related to some hidden frequencies in the stochastic process, 

  is a continuous function of   and is a discrete function over  

with non-zero values [90]. This non-zero spectral density, called the cyclic 

spectrum, and the spectral density   are commonly known as the 

cyclic spectrum (CS): 

 

where * denotes the complex conjugate, 

→∞

 

To derive the overall cyclostationary features of a long-term sleep breathing 

sound, the sequentially updated mean of CS,   was calculated 

using the current CS and a previous mean value for every 60 seconds window, 

where  is described as follows: 

 

where k = 1,2,3, ..., N and N is the total number of windows.  

The number of steps in the  and  domains was 54 and 889, respectively. 

Therefore,  generated a 54×889 matrix, with the magnitudes of 

  as the elements. However, it was not appropriate to use the  
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complete matrix of  as a feature because of the widespread zero 

values. For dimensionality reduction, first, a threshold using Otsu’s method [51, 

91] was applied to the   matrix to eliminate unnecessary zero 

regions. Secondly, a non-negative matrix factorization (NMF) technique was 

applied to the previous matrix. NMF can analyze large quantities of data 

through the approximated decomposition of target data V into non-negative 

factors, which consist of a basis matrix W that includes inherent properties of 

data, and a coefficient or activation matrix H [92]. To obtain a representative 

basis matrix, a total of 83 previous  matrices were sequentially 

merged into an input matrix, and the basis matrix was calculated using NMF 

with rank 45. The rank was heuristically determined by repetitive tests. This 

basis matrix was used as an initial basis matrix to calculate the activation matrix 

 

Figure 4.3 Feature extraction and classification based on nonstationary analysis.   

Statistical cyclostationary properties were extracted using the mean cyclic spectrum (CS) 

and the non-negative matrix factorization (NMF) for dimension reduction 
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H of each  matrix. Because a cyclostationary component-related 

basis matrix should be obtained, the transposed   matrices were 

used in the process mentioned above, that is, the representative basis matrix 

contained inherent properties of cyclostationarity and we could extract a feature 

set consisting of the H matrices: 

≡  

Because WH is an approximated matrix of V, the factors W and H were chosen  

using the minimization of the root mean squared (RMS) residual between V and 

WH. Through these procedures,   (54×889) of a long-term 

breathing sound was transformed into an NMF activation matrix (45×54). 

Based on the dimension reduced matrix, we calculated seven basic statistics, 

maximum, minimum, median, standard deviation, variance, kurtosis, and 

skewness, according to the rows and columns of H. As a result, these 693 (45×7 

+ 54×7) statistical values are the features of nonstationary analysis based on 

cyclostationarity and we defined this statistical data set as the second feature in 

this study. This feature can analyze the statistics of the activity of the cyclic 

spectrum magnitude based on the spectral or cycle frequency domain. Figure 

4.3 shows the second feature extraction process. 

 

4.3.6 Feature selection 

 

For better classification performance, we conducted a feature selection process 

that eliminated redundant data in the features as mentioned above. We used the 

wrapper subset evaluation method, which is a flexible supervised attribute 

selector. We used a support vector machine (SVM) as a classifier of the 

evaluator and linear forward selection as an attribute search method. This 

process was performed using the WEKA framework [75], which embedded  
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various attribute selection methods.  

Abovementioned linear forward selection technique can find smaller optimal 

attribute subsets from full attributes and can reduce a risk of overfitting. Finally 

it can provide higher classification accuracy [93]. This technique initially ranks 

all attributes and selects top-k ranked attributes by their scores that are obtained 

using a previous wrapper evaluator. Using a limited number of attributes and 

m-fold cross-validation, this search technique finds the optimal subset size. 

Therefore, a result subset has an exact size, and which is final feature set 

determined as the input of classifier.  

The parameter setting in WEKA related to the feature selection used in this 

experiment is summarized in the following Table 4.2. 

In Chapter 3, we also summarized the parameter setting values related to feature 

selection in WEKA as shown in the above table. Besides, we explain some of 

these parameters related to the feature selection method. Feature selection 

Key 

scheme 
Setting value Parameter setting 

Attribute 

selection 

evaluator 

WrapperSubsetEval 

Classifier 
SVM 

(default) 

Evaluation 

Measure  

Accuracy 

(discrete), 

RMSE 

(numeric) 

Attribute 

selection 

search 

LinearForwardSelection 

Forward 

selection 

method 

Floating 

forward 

selection 

Perform 

ranking 
True 

Table 4.2 Parameter setting in WEKA for feature selection 
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process is a search problem that selects a criterion function to validate a feature 

subset and then detect an optimal feature set based on this function. The 

criterion function based on the key scheme in the above table is a wrapper 

subset evaluator, and the search method is linear forward selection. The search 

process requires a computationally feasible procedure that avoids exhaustive 

searches. The search for an optimal feature subset can be divided into a bottom-

up method (forward) and a top-down method (backward). The former is a way 

to add key features starting with an empty feature set, and the latter is a way to 

get the final feature set by removing the non-critical features from the complete 

measurement set. However, there is a nesting effect between the two methods, 

i.e. in the case of the forward method, the added feature cannot be deleted later, 

and in the case of the backward method, the deleted feature cannot be reselected. 

To solve this problem, various studies have been carried out. For example, 

floating forward selection is performed by Pudil et al.[94] (The selected 

parameter of the forward selection method in the table). Unlike conventional 

methods, this method allows flexible changes to approximate the result 

dimensions without pre-assigning the result dimensions when obtaining the 

best feature set. These values are not fixed and are 'float' so that the results of 

each step are not monotonously changed but are floating. Although this method 

does not always provide the best subset features, it is known to be better than 

other search methods and is more efficient than the branch & bound method, 

which is known for its breakthrough in feature subset search. 

 

 

4.4 Evaluation 

 

Using the searched feature subset, we performed three classification tests. For  
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two types of features, transition probability and cyclostationary based 

information, we performed the individual classification test. Then we 

conducted the final classification test with complete feature subset to validate 

the performance of multiple OSA severity classification. All the classification 

tests provided the accuracy of the four OSA severity classifications using leave-

one-out cross-validation (LOOCV). Additionally, we calculated the sensitivity 

and specificity based on the multiple OSA severity classification results to 

compare classification performance. In this section, all tasks were conducted 

using the WEKA framework [75], which was employed in previous processes 

and provides various feature selection methods and machine learning classifiers. 

In this experiment, evaluation was performed using random forest, Bayes 

network, logistics, and SVM as in the case of the Chapter 3 experiments, and a 

Cross-validation scheme Leave-one-out 

Classifier Key scheme Option 

SVM 

Build LogisticModels False 

Complexity 1 

Epsilon 1.0E-12 

Filtertype Normalize training data 

BayesNet 

Estimator 
SimpleEstimator 

Alpha 0.5 

Search algorithm 
K2 

Score type Bayes 

Logistic 
ridge 1.0E-8 

maxlts -1 (unlimited) 

Random 

Forest 

maxDepth 0 (unlimited) 

numFeatures 0 (unlimited) 

numTrees 110 

Refer to the table in Chapter 3 for a detailed description of each parameter 

Table 4.3 Evaluation test related setting parameter 



87 

classifier showing optimal results was selected by comparing the results. The 

final selected evaluation test related setting parameters are shown in the 

following Table 4.3. Each parameter value was selected through a repetitive 

heuristic test or a grid search. 

 

 

4.5 Results 

 

4.5.1 Feature subsets for OSA severity classification 

 

Using the feature selection method, we obtained 18 features from two types of 

features. Three were selected from the temporal analysis features, and the 

remainder were selected from the nonstationary features. Table 4.4 shows the 

complete feature list of the feature subset. In this table, we show the results for 

the rank, base, observation, statistics, and sequence number. The “Rank” was 

determined using an attribute search method: wrapper subset evaluation feature 

selection method. A higher rank means that the associated feature is more 

significant for the classification task. In this study, the final nonstationary 

analysis feature representation, called an NMF activation matrix, has a 45×54 

dimension. Its x-axis represents the spectral domain, and the y-axis represents 

the dimension-reduced cycle frequency  domain. Based on this matrix, seven 

basic statistical values were calculated according to each axis:   and   

index. The “Base” indicates a base axis for observing the statistical activation 

status of the other axis, which is presented in the “Observation” column. 

The “Statistics” represents the type of statistics that were calculated for the 

observation axis. The “Sequence number” represents an index of a 

particular base axis. For example, if [base = , observation = , statistics = 

maximum, sequence number = 40], then we select the maximum of the   
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index domain’s activation statuses associated with the 40th index of the 

dimension-reduced cycle frequency index domain as a feature. An example  

of this analysis procedure is illustrated in Figure 4.4.  

Various statistical values were selected from the original feature representation. 

Because the statistical results were calculated from one column or row of a 

matrix, and the distribution of activations was important, the subset features  

Cyclostationary analysis based feature subset 

Rank Base Observation Statistics Sequence number 

1 α f maximum 40 

2 α f maximum 42 

3 α f variance 34 

4 α f kurtosis 8 

5 f α kurtosis 42 

6 f α maximum 24 

7 f α standard deviation 42 

8 f α variance 24 

9 f α median 24 

10 f α median 45 

11 f α median 46 

12 f α mean 7 

13 f α kurtosis 1 

14 f α kurtosis 2 

15 f α skewness 2 

Temporal analysis subset features 

Rank Energy level transition information 

16 (1×1) from Level 1 to Level 1 

17 (3×4) from Level 3 to Level 4 

18 (4×1) from Level 4 to Level 1 

Table 4.4 Final feature subset selected from the original feature set 
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included many statistical descriptors of the shape of distribution, such as a 

kurtosis or skewness. Figure 4.5 shows four NMF activation matrices averaged 

based on these 15 nonstationary subset features. To observe the overall 

distribution of the magnitudes corresponding to each dimension-reduced cycle 

frequency 𝛼 and spectral 𝑓 index pair, we calculated the average matrices, 

including the 15 nonstationary subset features of all subjects, and adapted a 

Gaussian filter to check the distribution of each matrix. 

Final feature subset was selected from the original feature set. From the original 

feature set that consisted of temporal analysis and cyclostationary analysis 

based features, a dimension reduction technique and a feature selection method 

were applied for obtaining more optimized feature subset and better 

classification accuracy. 

According to Figure 4.5, the four average NMF activation matrices have 

different distributions on OSA severity. The normal group demonstrates more 

widespread spectral activations associated with a dimension-reduced cycle 

frequency index domain than the others. The mild group’s distribution is  

 

Figure 4.4 Feature selection from the NMF activation matrix.                        

x-axis: the spectral domain, y-axis: the dimension-reduced cycle frequency (α) domain 
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relatively sparser than any other groups, in particular, it has no evident cyclic 

activations related to a low range of the spectral index.  

The activation distribution of the moderate group demonstrates relatively high 

cyclic activation at a low range of the spectral index. The severe group’s 

distribution demonstrates higher spectral activations at a high range of cyclic 

indices and higher cyclic activations at a high range of spectral indices when 

compared with the other groups. Moreover, the significant highest activation 

regions of the NMF activation matrices are all different according to the OSA 

severity.  

Based on these observations, we can assume that our cyclostationary analysis  

Figure 4.5  Averaged four NMF activation matrices based on the final cyclostationary analysis 

based dimension reduced feature subset. The NMF activation matrices show different 

distributions of corresponding magnitudes for each dimension-reduced cycle frequency α and 

spectral 𝑓 index pairs 
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based feature set is useful for classifying the breathing sounds into four OSA 

severity groups. Regarding temporal analysis subset features, three features 

were selected from the original set and they represented the transition 

probability of the approximated breathing sound’s energy values. The selected 

transition information indicated that the silent section and those associated with 

a predefined OSA candidate were important for OSA severity classification.  

By performing statistical analysis using these temporal analysis feature subset, 

we were able to identify the differences between the four OSA severity classes. 

Using analysis of variance (ANOVA) and Tukey’s honest significance 

difference (HSD) test, we verified that all three temporal analysis features were 

significant (p < 0.05), and most class-pairs (normal-mild, normal-severe, 

normal-moderate, mild-severe, and moderate-severe), with the exception of the 

moderate-mild class-pair, demonstrated a significant difference (p < 0.05) 

regarding these features. 

 

 

 

Temporal analysis feature 1×1 3×4 4×1 

ANOVA *** *** *** 

Tukey 

HSD 

moderate-mild n/s n/s n/s 

normal-mild ** n/s n/s 

severe-mild *** *** *** 

normal-moderate *** n/s ** 

severe-moderate ** *** *** 

severe-normal *** *** *** 

* (0.01 < p < 0.05), ** (0.001 < p < 0.01), *** (p < 0.001), n/s: not significant 

Table 4.5 Analysis results of the temporal feature subset 
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4.5.2 Classification Test with the Subset Features 

 

Using the subset features, we performed the four-OSA severity classification  

 

Figure 4.6 Performance comparison for OSA severity classification 
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Normal 0.75 0.02 0.94 0.75 0.83 0.93 0.81 

Mild 0.86 0.16 0.64 0.86 0.74 0.81 0.59 

Moderate 0.67 0.08 0.74 0.67 0.70 0.77 0.58 

Severe 0.91 0.02 0.95 0.91 0.93 0.98 0.92 

Weighted 

average 
0.80 0.07 0.82 0.80 0.80 0.87 0.72 

Table 4.6 Detailed results of cross-validation (using SVM) 
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test. We trained the classification model using an SVM [95-97] with a linear 

kernel and confirmed the model’s performance using LOOCV. All the 

experiments were conducted using a WEKA-implemented classifier and 

validation tools, and their configuration settings initialized with default values 

(Exclude tree number in the random forest). Also, to select the best classifier, 

classification experiments were performed using various classifiers built in 

WEKA framework such as random forest, Bayes network, logistics and the 

SVM was finally selected among them. 

The detailed results of cross-validation using SVM are shown in Table 4.6. The 

moderate OSA group has the lowest true positive (TP) rate and AUC, while the 

severe group has the highest TP rate and AUC. 

The classification accuracy of the four-OSA severity classification test was 

79.52 %. Table 4.7 shows the classification result as a confusion matrix. In the 

moderate OSA group, it showed classification errors on the mild OSA group. 

Moreover, the majority of the normal subject group’s classification error is 

related to the mild OSA group. The weighted-average AUC for the four-class 

classification test was over 0.8, and it means relatively good performance [77]. 

Using Table 4.7, we can also obtain the binary classification result to classify 

normal subjects (AHI   5) and OSA patients (AHI   5). The binary 

classification results show that the sensitivity is 98.0 %, specificity is 75.0 %,  

 

OSA 

Classified as 

Normal Mild OSA Moderate OSA Severe OSA 

Normal 15 4 1 0 

Mild 1 18 2 0 

Moderate 0 6 14 1 

Severe 0 0 2 19 

Table 4.7 Four-OSA severity classification result with leave-one-out cross-validation 
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and the classification accuracy is 92.78 %.  

Referring to the comparison proposed in the related study [64], in Table 4.8, we 

compared our method with other studies regarding the number of subjects, 

microphone’s location, number of OSA groups, and performance. 

Since there is no standardized performance comparison framework for studies 

using sleep breathing sounds [64], our study may not be evaluated as being 

objectively superior. However, this table is presented to check our research 

performance level against the previous related studies. 

 

 

4.6 Discussion 

 

In this study, we demonstrated that our new sleep breathing sound analysis 

method can provide relatively high performance for multiple OSA severity 
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Accuracy (%) 

Nakano 

(2004) [62] 
383 Neck (Contact) Two 93 67 

Abeyrantne 

(2005) [45] 
16 

Patient vicinity 

(40~70 cm) 
Two 100 50 

Azarbarzin 

(2013) [64] 
57 Neck (Contact) 

Two 92.9 100 

Four 77.2 

Behar 

(2015) [63] 
856 Face (Contact) Two 69.5 83.7 

Proposed 83 
Patient vicinity  

(170 cm) 

Two 98.0 75.0 

Four 79.52 

Table 4.8 Method comparison between related studies using snoring sounds 
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classification. We hypothesized that the energy transitions related to the general 

breathing sounds, snores, and silence in a time series, and the cyclostationarity-

based nonstationary characteristics of the sounds associated with obstruction 

and vibration in the upper airway could be used as significant features that 

represent long-term breathing sounds of a participant. This hypothesis has been 

validated using experiments that classify sleep breathing sounds into OSA 

severity classes based on the AHI.  

In this study, we extracted cyclostationary analysis based features using an 

entirely new approach. We calculated an average CS from a subject’s sleep 

breathing sounds, for which the average time was over four hours. Then the 

NMF method was adapted for drastic dimension reduction, and a specific 

feature selection method was also applied to search significant feature subset. 

To our knowledge, this is the first study using cyclostationary analysis based 

information with NMF and feature selection for sleep breathing sound analysis.  

The results of this approach show that cyclostationary activation, which 

represents a hidden periodicity of data related to particular spectral bands, could 

be a special feature for sleep breathing sounds. Using this method, we 

summarized the nocturnal breathing sounds of each subject, with particular 

properties that were associated with the spectral characteristics and hidden 

periodicity of the sounds. We verified that this feature represented significant 

differences between breathing sounds, which were grouped according to the 

OSA severity class, as shown in Figure 4.5. For the normal group, the NMF 

activation matrix revealed that a wide spectral band area was associated with 

the narrow high indexed cycle frequency band area. By contrast, the moderate 

and severe OSA groups presented different characteristics. For these groups, a 

wide cycle frequency band area associated with a particularly high indexed 

spectral area was activated in the matrix. We found that these properties 
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reflected the special spectral characteristics of representative breathing sounds 

of each subject’s nocturnal breathing sounds.   

The temporal analysis features were the transition probability of breathing 

sound energy in time series. We adapted basic OSA detection criteria that are 

related to the silent interval between snoring sounds, for example, apneic events 

greater than 10 s in duration [86]. In Table 4.4, the final temporal analysis subset 

feature consisted of three types of transition information: (1×1) – silence level, 

(3×4) – energy transition from the high energy level to the OSA candidate level, 

and (4×1) – energy transition from the OSA candidate level to the silence. We 

showed that all searched features were statistically significant in Table 4.5 in 

which the appearance rates of purely silent sections and the sections of energy 

transition to silence could be an important feature for the OSA severity 

classification task. The aforementioned two feature subset could be influenced 

by the sound recording quality concerning the recording performance or 

location of the microphone. Although the microphones are located on the 

ceiling and are experimented in a special place called the PSG room, there is a 

limit to applying the developed analysis framework directly to the general user 

environments. However, unlike previous studies, it is clear that the recording 

quality of the sound used in this study is not comparatively good because the 

professional recording environment including special microphones is not 

considered in this study. Therefore, attempting to distinguish OSA severity 

using only sounds in such a situation can be a clear distinction from other 

related studies. The performance and location of the recording device are an 

important consideration when applied to the actual user environment. As shown 

in Section 4.3.1, personal portable smart devices can embed better performance 

microphones than that used in this experiment. Thus, if additional algorithm 

tuning or alteration is performed due to changes in the experimental parameters, 
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such as changes in sound quality due to the use of better performance 

microphones and proximity to the user, we expect that proposed analysis 

framework will provide better results in tasks related to sleep breathing sounds. 

In Table 4.8, we compared our study with previous related research. Unlike 

previous studies, our proposed method did not use a special body contact-type 

microphone and did not perform any snoring detection process with breathing 

sounds. Furthermore, the sleep breathing sound utilized in this experiment was 

recorded via the microphone installed farthest from the patient compared to 

other studies. We only divided the sleep breathing sound into predefined 

window lengths and generated the feature representation and subset using the 

features mentioned above from all the windows. We intend to use this method 

in a screening system which can provide the personal OSA critical alarms or 

can provide notification of whether PSG test is necessary. 

 

 

4.7 Summary 

 

In this study, we proposed an OSA severity classification method for a 

preliminary PSG test using particular features of nocturnal sleep breathing 

sounds. Unlike previous research, this study did not use any current known 

features used in the field of sound analysis. Instead, the energy transition 

probability information of the audio signal in the time domain, and the 

cyclostationarity-based nonstationary characteristics in the spectral and cycle 

frequency domains were used in this experiment. Using these two features, the 

proposed method showed the very competitive classification performance of 

79.52 % accuracy, 87.00 % average AUC for the multiple OSA severity 

classification, and also 92.78 % for OSA patient detection test. These results 
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indicate that a proposed method could be a promising approach to identify the 

multiple OSA severity of suspected patients and provide proper information to 

individuals for a preliminary PSG screening test. The limitations of 

conventional PSG, such as the high cost, inconvenience, complex measurement 

method, and Inaccurate results due to sleep variability, lead to an increased 

demand for a preliminary PSG screening test in various environments, such as 

the home. In the proposed method, the sounds were recorded only in the clinical 

test rooms, so it can be considered that the experiment did not consider the 

actual environments. However, since the general private bedroom environment 

is not much different from the PSG room, and the sounds were not recorded 

under particular controlled conditions, the proposed algorithm is expected to 

perform reasonably well in the universal circumstances by parameter tuning 

and supplementing algorithms based on various experimental environments in 

the future. 

The proposed method also has some limitations. For more practical applications, 

there is a need to apply various noise reduction and cancellation techniques to 

the acquired sounds or framework of research. Additionally, experiments with 

many more patients should be conducted to make our method more robust and 

reliable. Furthermore, to obtain more accurate classification performance, 

additional algorithms can be considered in the preprocessing or feature 

extraction process. In particular, the properties related to cyclostationarity can 

be expected as a good input data of feature learning techniques for a deep neural 

network; thus, we will consider this in a future study.  

The present study will contribute to the development of screening technology 

for a specific medical inspection using limited data, and we expect that this 

technique will be applied to various healthcare service platforms to supplement 

a preliminary examination of sleep disorders. 
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 Patient OSA Severity Prediction    

using Deep Learning Techniques 

 

 

 

In this chapter, we applied deep learning techniques to the previous studies. For 

the SRBD-related snoring classification performed in Chapter 3, we conducted 

the feature learning of CS using convolutional neural networks. With this 

learned model, we also performed the patient’s OSA severity classification task 

based on partial sound section extracted from patient’s long-term sleep 

breathing sound. 

 

 

5.1 Introduction 

 

Recently, as we have seen through Google Alpha-Go*, deep learning is being 

used in a variety of studies to learn features from certain data and to create 

classification models. The artificial neural network that underpins deep running 

has had two boom-ups from the 1940s to the present. The back-propagation 

method was devised at the time of the second boom-up, and the research field 

seemed to make a great leap forward. However, it was not properly learned 

when the number of layers of the neural network was increased, and it was 

evaluated that the performance was lower than that of the machine learning 

technique because it was impossible to explain how to set various parameters 

(number of layers, unit) optimally. However, as Hinton et al. [98] announced a 

                                            
* Google AlphaGo: https://deepmind.com/research/alphago/ 
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deep belief network (DBN), the neural network research turned out to be a 

turning point. DBN is a graph model with a multi-layer structure similar to a 

general neural network. They propose a learning method based on pre-training 

using a restricted Boltzmann machine (RBM) and a greedy algorithm to limit 

learning difficulties in the course of increasing number of layers. After that, the 

validity of multi - layer neural network for speech recognition and image 

recognition has been verified through various studies, and the classification 

performance results of these studies have overwhelmed the existing ones. 

Currently, there is active research on performance improvement through deep 

learning in various fields. These studies use three representative methodologies 

such as fully-connected neural networks, convolutional neural networks (CNN), 

and recurrent neural networks (RNN), according to the data. Fully-connected 

neural network or RNN is used for speech recognition, and natural language 

processing, and also CNN is applied for image recognition tasks. 

CNN is based on neuroscientific facts about the visual cortex in the brain of an 

organism and models simple and complex cells in the retina that selectively 

respond to specific input patterns by light sources [99]. Simple cells usually 

have strict regioselectivity, but complex cells do not. In a typical CNN structure, 

the convolutional layer and the pooling layer are the main components. The 

composite layer is a simple cell, and the pooling layer placed after a composite 

layer is a model of complex cells. Therefore, the pulling layer lowers the 

position sensitivity of features extracted from the composite product layer so 

that the output of the feature does not change even if the position of the feature 

changes slightly in the image. The features of this convolutional layer are equal 

to the weights of the layer. In the case of CNN, we optimize the weights of the 

composite products by the gradient descent method, similar to the general 

feedforward neural network. Therefore, the weight of the optimized composite  
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product layer is an optimization filter itself. 

 

 

5.2 Methods 

 

In this chapter, we applied deep learning techniques in the study of sleep 

disorders using sleep breathing sounds. As far as we know, there has not yet 

been any application of deep learning in this sleep breathing analysis fields. In 

this chapter, we performed the SRBD-related snoring carried out in the previous 

Chapter 3 using CNN. Then, the learned model was applied to the sleep 

breathing data set to obtain the classification probability value for the window 

of the corresponding signal.  

Furthermore, we consider the outputs of fully-connected layers of CNN as the 

final feature set and the OSA severity classification was performed as in 

previous Chapter 4. From the CNN structure used in this experiment, we 

 

Figure 5.1 New overall architecture of the SRBD-related snoring and OSA severity 

classification 
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extracted two feature representations, the first is the processed output of a  

specific fully connected layer and the second is the probability of 3 snoring 

classes derived from the final output layer which is applied a softmax. The 

subject's sleep breathing sound data set was the same as in Chapter 4. However, 

a 10-minute partial breathing sound, which was extracted separately without 

using the entire sleep breathing sound, was utilized in this experiment. 

Through the experiments in this chapter, we tried to compare the classification 

performance of traditional hand-crafted features with features derived from 

feature learning process using deep learning techniques. Particularly, we tried 

to maximize the effectiveness of the proposed framework in practical 

applications by using partial sleep breathing sounds. Figure 5.1 shows the new 

overall architecture of the SRBD-related snoring and OSA severity 

classification system proposed in this chapter. Each key process will be 

described in the following sub-chapters. 

This experiment was performed using Keras [100], a high-level neural network 

API which is written in Python, on Ubuntu 14.04 LTS. It also runs on top of 

Theano* , which is a Python library for deep learning tasks, using a GPU 

(Geforce GTX 980Ti).  

 

5.2.1 Feature learning of SRBD-related breathing sounds 

 

First of all, we confirmed the feature learning possibility using deep learning 

techniques, and the practical classification performance using the CS, which is 

a symbolic feature representation of sleep breathing sounds used in previous 

experiments [44, 61]. In this study, we extracted simple snoring, hypopnea-

related snoring, and apnea-relate snoring based on the recorded sleep breathing 

                                            
* Theano 0.9 (http://deeplearning.net/software/theano/) 
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sounds during PSG test, as in the case of Chapter 3's research processes. Also, 

the silent section or noise region was defined as no-event, and it has been 

extracted from the sleep breathing sounds. 

Unlike previous experiment [61], hypopnea-related snoring and apnea-related 

snoring were integrated into abnormal snoring and generated new data set 

consisted of three types of events: simple snoring, abnormal snoring, and no-

event. In this study, we aimed to obtain a better performance SRBD-related 

snoring sound classifier using deep learning technique and to provide OSA 

occurrence result of the patient with simple way. Therefore, we judged that this 

breathing event scheme could better reflect the actual situation.  

Each event consists of 200 sound data of 2 seconds length. Therefore, the total 

number of event data used in the experiment is 600. The sound data of 2 seconds 

length is converted into CS [44] through the cyclostationary analysis introduced 

in Chapters 2 and 3. In previous experiments, complex processes such as 

dimension reduction and statistical analysis applied to this CS for extracting 

hand-crafted features. However, in this experiment, we only applied feature 

learning process using the CNN on a CS.  The CNN used in the experiment 

has a typical structure consisting of convolutional layers, pooling layers, and 

fully-connected layers. The proposed CNN structure is summarized in Table 

5.1. 

The CS image input to the CNN structure is an image file stored in the system 

by down-sampling the CS matrix calculated using cyclostationary analysis to 

174×132 pixels. These image files were created as a dataset file in one 

Hierarchical Data Format (HDF) [101] linked to individual snoring labels. The 

CNN used in the experiment was comprised of repeated three convolutional 

layers and pooling layers and had four fully-connected layers, all layers used 

dropout procedure for improving generalization error, and each fully-connected  
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layer performed batch normalization before activation. 

 

5.2.2 Partial sleep breathing sound extraction 

 

Experiments to classify the patients' OSA severity in Chapter 4 used a very long 

breathing sounds, excluding sound sections of some sleep stages, from the total  

idx Type Output shape Param # 
Kernel (Pool size)/ 

stride 

0 input (132, 174, 1)   

1 

Conv2D (132, 174, 32) 320 3x3 / 1 

tanh (132, 174, 32)   

MaxPool (66, 87, 32)  2x2 / 1 

2 

Conv2D (66, 87, 64) 18496 3x3 / 1 

tanh (66, 87, 64)   

MaxPool (33, 43, 64)  2x2 / 1 

3 

Conv2D (33, 43, 64) 36928 3x3 / 1 

tanh (33, 43, 64)   

MaxPool (16, 21, 64)  2x2 / 1 

4 

Dense 2048 44042240  

BatchNorm 2048 8192  

ReLU 2048   

5 

Dense 1024 2098176  

BatchNorm 1024 4096  

ReLU 1024   

6 

Dense 512 524800  

BatchNorm 512 2048  

ReLU 512   

7 
Dense 3 1539  

Softmax 3   

Table 5.1 Detailed description of the best CNN of data set 
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sleep breathing sounds. This approach is a method of extracting and analyzing 

features from most recorded sleep breathing sounds from one patient and 

confirming the results, but it is certainly not efficient. Therefore, the previous 

analysis system should record most of the patient's sleep breathing sounds and 

save with a particular file format in storage, and also should use the entire stored 

sound file in the analysis process. 

In Chapter 4, we have investigated the transition matrix [44] that reflects the 

characteristics of the sleep breathing sounds in the time domain. To transform 

the sleep breathing sound of one patient into this matrix, we quantified the raw 

sleep breathing sounds of the patient to several quantized levels according to 

the labeling criteria. That is, the sleeping breathing sounds of one patient were 

labeled with silence interval, low-energy sound interval, high-energy sound 

interval, and apnea suspicion interval (intervals longer than 10 seconds between 

low or high-energy sound interval) [86]. In this experiment, the region of 

interest (ROI) was extracted from the total sleep breathing sounds of one patient 

using this label information. 

In the same way, as in the previous study, the sleeping breathing sounds were 

 

Figure 5.2 ROI selection from sleep breathing sounds 
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converted to energy signals and based on this, and the moving average was 

sequentially calculated to smooth the signal. Finally, the signal was quantized  

according to a predetermined criterion. The number of occurrences of a high-

energy interval (label = 3) and apnea suspect interval (label = 4) was calculated 

for each specific length (= 10 minutes) in the entire signal quantized with four 

labels. Finally, the section of the specific length with the greatest number of 

label occurrences was designated as the ROI for the sleep breathing sounds of 

the individual patients. An example of this process is shown in Figure 5.2. In 

this process, we assumed that the OSA severity of the patient could be 

represented by a region which includes large snoring sounds and OSA suspicion 

sections frequently occurs in the time domain. Of course, it is not easy to 

distinguish multiple OSA severities with this information alone. Since OSA 

severity cannot be assessed by the loudness or frequency of occurrence of the 

patient's snoring, and furthermore, OSA suspicion sections are not always real 

OSA intervals. Therefore, we applied the previous SRBD-related breathing 

sound classifier as  

 a feature extractor on the partial sleep breathing sounds. A pseudo-code for 

partial sleep breathing sound extraction so far is given in Algorithm 5.1. 

 

Algorithm 5.1 Pseudo-code for ROI extraction 

input  Output of step 9 of the Algorithm 4.1  

(energy signal smoothing using moving average) 

1:  SumE = Sum of label 3, 4 occurrences in each 10-minutes window 

2:  ROI = if SumE > Total number of predetermined label occurrences 

output ROI 
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5.2.3 OSA severity classification using partial breathing sounds 

 

The SRBD-related breathing sound classifier outputs three classification 

probabilities for the CS calculated from the breathing sounds at a specific time 

in the final fully-connected layer. As shown in Table 5.1, these probabilities are 

generated by the last fully-connected layer. In this experiment, the result values 

processed by a specific fully-connected layer, which is an output of the sixth 

layer in Table 5.1, and probability values of output layer are used as feature 

representations. In fact, fully- connected layers, which is a component of the 

general neural network, are utilized in the process of actually classifying the 

input data using the learned features in the previous convolutional layer.  

We define this set of layer’s outputs, derived sequentially from the window of 

the signal, as a specific feature representation in a task that classifies OSA 

severity using partial sleep breathing sounds. In this experiment, the length of 

the partial sleep breathing sounds is set to 10 minutes, and sixth layer’s and 

final layer’s output through the SRBD-related breathing sound classifier is 

generated for each 2-seconds window. Therefore, 3×300 and 512×300 formed 

feature representations were generated per patient data. We transformed it into 

1×153,600 and 1×900 forms respectively by flattening them and applied feature 

selection using logistic regression. Similar to the feature selection procedure in 

Chapter 4, we used a logistic regression in this study as a base classifier to 

evaluate a subset of features [102]. We searched for feature subsets with various 

sizes and selected the optimal subset using 5-fold cross-validation. For the first 

feature representation, a subset of 10,000 features was finally selected and its 

validation result (mean % and 95% CI) was 0.95(±0.09). Also, for the second 

feature representation, a subset of 138 features was selected, and its validation 

result was 0.86 (± 0.11).  
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Once the feature subsets have been determined, we performed repeated hold-

out tests using existing dataset. Ten random datasets were created by setting 33 % 

of the dataset as the test set and the remains as the training set. The classification 

model was generated using SVM [95], and actual ten classification results were 

calculated. The various parameter settings used in this classification experiment 

are summarized in Table 5.2. Besides, we confirmed the classification results 

by combining the feature representation created through the feature learning of 

this experiment and the hand-crafted feature proposed in Chapter 4. Through 

these experiments, we confirmed the effect of the combination of specific 

features on the improvement of classification performance. In other words, we 

focused on identifying whether the hand-crafted feature could be used as a 

complement to the learned feature. A pseudo-code for OSA severity 

classification using CNN and partial sleep breathing sounds so far is given in 

Algorithm 5.2. 

 

 

 

 

Validation scheme 10-repeated hold out test 

Classifier SVM (Python scikit-learn) 

 

Parameters Option 

Kernel Linear 

Complexity 0.01 or 1 

Tolerance 1E-3 

Iterations within solver No limit 

Random state (seed) 1,3,7,14,28,35,42,55,97,100 

Table 5.2 Parameter settings for validation test 
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Algorithm 5.2 Pseudo-code for OSA severity classification using CNN 

input  CS result of each signal window wCS, SRBD-related snoring 

 classification model M, Evaluation function for feature selection  

FS = logistic regression, Full dataset D  

1:  Feature representations (FR) = M(wCS) 

2:  Feature subset (fSubset) = RFE(FS) 

3:  Split the training (TR, 67%) and test set (TE, 33 %) from D 

4:  Training subset: subTR = fSubset(TR),  

Test subset: subTE = fSubset(TE) 

5:  OSA classification model 1 (mOSA1) = SVM(subTR) 

6:  Concatenate feature subset (cSubset) = [subTR, Other features] 

7:  OSA classification model 2 (mOSA2) = SVM(cSubset) 

8:  Holdout test: Accuracy = mOSA1(subTE) and  

mOSA2( [subTE, Other features] ) 

output Accuracy, sensitivity, specificity 

RFE: Feature ranking with recursive feature elimination 

Other features: Hand crafted features of previous chapter 

 

 

5.3 Results 

 

 

5.3.1 OSA severity classification using output of dense layer 

 

In the SRBD-related breathing sound classification experiment, the CS was 

calculated using the cyclostationary analysis for individual respiratory sound 

events, and the classification model was created by applying the CNN structure 

proposed in the previous section and confirmed the results. 
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We confirmed 82.83 (± 4.78) % classification performance in 10-fold cross-

validation for simple snoring, abnormal snoring, and no-event data. Figure 5.3 

showed that the average AUC of the three-class classification test was 0.8 or 

more, and it indicated that the performance is good in a clinical practice [77]. 

The classification model developed through this experiment is an event 

classifier that can distinguish between normal-snoring and abnormal-snoring 

for breathing sound during sleep. We applied this classifier to the partial sleep 

breathing sounds extracted from the whole sleep breathing sounds of one 

patient. Since the classification model was not created using a large number of 

patients' snoring data, this classifier's performance cannot be guaranteed from 

the system when applied to partial sleep breath sounds of other patients. 

Therefore, we did not directly use the classification results of this classifier in 

 

Figure 5.3 ROC to SRBD-related snoring classes 
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OSA severity classification. Instead, the two outputs from the events classifier 

were considered as feature representations in the OSA severity classification 

task. 

 

5.3.2 OSA severity classification using output of dense layer 

 

Sixth layer output of the CNN structure was considered as feature 

representation in the multiple or binary OSA classification task. The output of 

a fully-connected layer is a value derived from processing the features extracted 

from the convolutional layer in the CNN structure for classification as in the 

layers of a typical neural network. Based on the series of fully-connected layers 

combined after the convolutional layers, the output of the third layer was 

selected as the feature. Therefore, the selected feature representation in this 

experiment has the activation information of the features derived from the 

convolutional layer by the following equation. 

 

where, activation function is ReLU, the kernel is a weight matrix created at 

each layer, and bias is a bias vector generated at each layer. 

The 1×153,600 formed feature representation was extracted from the 10 

minutes partial breathing sounds. It was generated by concatenating 300-row 

vectors with 512 elements. Then, feature selection was performed through 

logistic regression and, finally, 10,000 features were selected through repetitive 

experiments. The classification model was generated by the SVM (c=0.01) of 

the linear kernel, and the classification performance of 0.85 (± 0.05) was 

confirmed in multiple OSA Severity classification tasks through 10-repeated 

hold-out tests. In a binary classification test to determine whether a particular 

patient had OSA symptoms, the average sensitivity and specificity were 90.73  
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(±5.65) % and 95.25 (±6.17) %, respectively, by the AHI value of 5 and 10-

repeated hold-out tests. Figure 5.4 shows the individual 5-fold CV results in the 

repeated hold-out test and the classification results in the separate test sets. 

 

5.3.3 OSA severity classification using output layer 

 

We also considered the classification probability information values for the 

three classes derived from the outputs of event classifier as another feature  

representation in the OSA severity classification task. In fact, this probability 

value indicates whether any breathing signal belongs to three events, simple 

snoring, abnormal snoring, or no-event. However, if we do not associate event 

labels with this, this set of probability values can be regarded as a characteristic 

value of a signal which is derived from a CNN. Therefore, the event classifier 

derived from the classification of respiratory sounds is used as a feature 

extractor of the signal in the OSA severity classification.  

 

Figure 5.4 Results of multiple OSA severity classification using output of dense layer 
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The 1×900 formed feature representation was extracted from the 10 minutes 

partial breathing sounds using preceding feature extractor. Feature selection 

was performed through logistic regression. Finally, 138 features were selected 

through repetitive experiments. The classification model was generated by the 

SVM (c=1.0) of the linear kernel, and the classification performance of 0.74 (± 

0.05) was confirmed in multiple OSA Severity classification tasks through 10-

repeated hold-out tests. In a binary classification test to determine whether a 

particular patient had OSA symptoms, the average sensitivity and specificity 

were 83.29 (±9.73) % and 84.75 (±15.16) %, respectively, by the AHI value of 

five. Figure 5.5 shows the individual 5-fold CV results in the repeated hold-out 

test and the classification results in the separate test sets. 

 

 

 

 

Figure 5.5 Results of multiple OSA severity classification using output layer 
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5.3.4 OSA severity classification using compound feature subset 

 

Also, we compounded transition-matrix-based features that reflect the temporal 

characteristics of patient sleep breathing sounds obtained in Section 4 with the 

above feature subsets. Experimental results showed that the synthesis of 

temporal features derived from partial sleep breathing sounds did not affect the 

classification results. From this, it could be judged that the probability value is 

significant only if the signal transition probability is obtained from the 

respiration of the patient for a considerable long term. However, the temporal 

features of the long-term sleep breathing sound slightly increased the 

classification results. This is the case when compounding the feature subset of 

the CNN’s output layer, and transition probability obtained in Chapter 4. In the 

multiple OSA severity classification experiment, the compounded feature  

Dataset Method 

Target for 

feature  

Multiple OSA 

severity  

OSA detection (%) 

Sensitivity specificity 

ROI 

Feature 

learning  

DL 0.85  90.73 95.25 

OL  0.74  83.29 84.75 

Compound 

Feature 

learning + 

Hand-

crafted 

OL + TP  0.77  

86.03 

(±10.35) 

85.25 

(±14.36) 

Full data 

Hand-

crafted 

TP 0.63 87.3 65 

CS + TP 0.79 98 75 

DL: Output of CNN’s dense (Fully-connected) layer 

OL: Classification probability from CNN’s output layer 

TP: Energy signal transition probability 

Table 5.3 Results of new OSA severity classification / OSA detection 
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 subset showed 0.77 (± 0.07) classification accuracy in a 10-repeated hold-out 

test. In the binary classification test, the average sensitivity was 86.03 (±10.35) % 

and the specificity was 85.25 (±14.36) % by the AHI value. Table 5.3 

summarizes the classification results of these experiments. This table also 

included the results of the previous Chapter 4 which corresponds to full data in 

the dataset category in the table. We cannot compare the results directly because 

the methodology of the experiments is not completely consistent, but we can 

confirm the advantage of CNN-based feature learning method.  

 

 

5.4 Discussion 

 

In this experiment, we performed feature learning through CNN in the CS 

calculated by the sleep breathing sounds and created a classification model that 

conforms to the individual task. In fact, the essence of this experiment is the 

improvement of the SRBD-related snoring sound classification discussed in 

Chapter 3 using the latest deep-learning techniques. This is because it can be 

utilized as a more accurate event detector and enables better characteristics 

extraction from sleep breathing sounds. Therefore, in this experiment, more 

snoring samples than the previous experiment were used for generating 

classification model, and the CS was calculated from each sample using the 

cyclostationary analysis employed in Chapters 3 and 4. We transformed the 

calculated CS into a two-dimensional image and applied it to the CNN structure 

consisting of three convolutional layers and three fully-connected layers to 

perform feature learning and classification. The learned features in the 

classification experiment of SRBD-related breathing sound showed higher 

classification performance than the classification model proposed in Chapter 3.  
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In the experiment in Chapter 3, we calculated CS from a snoring sound sample 

and obtained the covariance between the CS magnitude values that match one 

spectral frequency value and calculated the summation of the subregions of the 

image by applying an integral image. This can be summarized as a series of 

processes to find out the structure of the distribution of the CS magnitudes 

contained in the image when the calculated CS is regarded as one image. 

In this experiment, we expected the CNN to be able to learn features without 

manually extracting feature extraction from CS images. Convolution calculates 

the correlation between an image and a filter, which acts to detect where the 

image resembles the pattern of the filter. The convolutional layer used in CNN 

is a single layer neural network that performs this convolution operation. In the 

convolution operation, a local coupling of the input layer and the output layer 

occurs, and the weight of the coupling is a coefficient of the filter. Since this 

weight is the filter itself to know the pattern of the presented image, it can be 

summarized as the process of optimizing this filter through CNN for the 

classification task. Therefore, superior results of CNN mean that CNN is better 

able to recognize the CS image pattern difference of the snoring sound than the 

hand-crafted method. 

We also used this newly generated sleep breathing sound classifier as a feature 

extractor in the OSA severity classification task. Based on the same dataset used 

in Chapter 4, we used a temporal analysis method proposed in the same chapter 

to extract a short ROI of about 10 minutes. A new feature representation was 

extracted from the partial respiration sound through the SRBD-related snoring 

sound classifier described above, and a classification model was created using 

the extracted feature representation. Despite using a relatively short sleep 

breathing interval, it showed better classification performance than previous 

studies. Especially, the relatively low specificity result (75%), which was a 
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problem of the existing study results in the OSA detection experiment, is greatly 

improved in the newly proposed framework. Specificity is an indicator of 

whether normal patients can be distinguished as a normal patient. Its low value 

can be a major reason for users to underestimate the reliability of devices and 

associated algorithms in personal healthcare services. Because the OSA 

detection experiment was performed based on the AHI value of 5 as in the 

previous experiment, it is classified as the OSA patient from the mild OSA 

patient. In this case, the average sensitivity that can show the performance 

distinguishing the patients having the OSA symptom correctly is about 91 % 

(in the case using an output of the CNN’s dense layer). This shows that the 

sensitivity is slightly lower when compared to previous experiments using full 

breathing sounds. Because there is not a large number of data involved in the 

experiment, a few classification errors can lead to significant differences in 

results. However, as a result, the improvement in specificity will compensate 

for the decline of sensitivity. 

Of course, as in previous experiments, it is not an experiment using large-scale 

patient data, so the generalized error of the developed classifier may still exist. 

However, it is evident from objective experiments that the learned features 

perform better than the hand-crafted features when using the CS derived from 

sleep breathing sounds of the same data set. 

In addition, we can confirm the performance improvement by compounding 

existing hand-crafted features on learned features. Therefore, it is expected that 

the better classification performance will be achieved if the feature learning 

method and the hand-crafted method are appropriately mixed or combined in 

the related studies. In this test, however, this is limited to hand-crafted features 

extracted from the previous full breathing sounds. The transition probability, a 

hand-crafted feature calculated from the 10-minutes ROI extracted in this 



118 

experiment, did not affect the performance improvement. This means that the 

simple amplitude value or time interval information of the signal, which is not 

able to represent the characteristics of the sound chunk itself, cannot properly 

reflect its characteristics given short-length data. 

In this study, we can confirm that the feature learning method can be effective 

in generating an effective feature set if some specific data form which is 

transformed from raw data shows a complicated data distribution, or if the 

interpretation is relatively complex. Besides, this study extracted OSA severity 

of individual patients by extracting short 10 minutes sleep breathing sounds 

from average four hours total sleep breathing sounds. This type of analysis 

framework can save a significant amount of computing power which is required 

for large data analysis when it applied to personal healthcare services. 

 

 

5.5 Summary 

 

In this study, SRBD-related snoring classification and OSA severity 

classification tasks are performed using the latest deep learning technology. 

Based on CS computed from snoring samples, it is at the core of this experiment 

that snore sound samples can be distinguished by symptoms through the feature 

learning. As far as we know, this is the first experiment to use deep learning in 

the study of sleep breathing sounds including snoring. This experiment can also 

be compared with the study of Chapter 3 of this thesis. As a result, CNN-based 

features showed better performance in classification experiments using more 

data sets than COV-II (covariance integral image of CS)-based hand-crafted 

features, which showed the best performance in Chapter 3. It is considered that 

the feature learned through CNN better describes the structure of the image 
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which indicates the distribution of CS magnitude values matching the spectral 

frequency value. However, still, without a standardized experimental 

framework, it is hard to collect data and to explain the classification 

performance completely objectively. Therefore, if standardized data collection 

and experimental framework are developed in the future, it is expected that a 

significant amount of data and various deep learning structures, including our 

method, will generate a reliable classifier for the SRBD-related snoring sound 

that can minimize generalization error. Also, we performed the previous OSA 

severity classification task using this classifier. In particular, we assume that the 

SRBD-related snoring classifier has a sufficiently good performance. Thus, 

only the 10-minutes interval with the greatest energy change in the total 

breathing sounds was selected experimentally from existing sound dataset for 

OSA classification. The results of the experiment showed better results, 

especially the improvement of the specificity, than the previous experiments. 

The feature used in this experiment is the output derived from specific layers 

of the CNN structure for the SRBD-related snoring classifier, and the severity 

class was identified using a general classifier such as SVM. The fact that the 

experiment in the short time interval shows better performance than the 

previous experiment means that SRBD-related snoring classifier using CNN 

extracts better features from snoring sound samples. However, this experiment 

is expected to have generalization error because OSA classification is 

performed using a large number of CNN's parameters as a feature based on a 

small number of patient data. Therefore, as mentioned above, we expect to be 

able to develop a more robust OSA severity classifier if we can utilize large 

patient datasets in the analysis and classification framework developed in this 

experiment, and we also expect that our proposed framework can be used for 

various personal healthcare services using sleep breathing sounds. 
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 Conclusions and Future Work 

 

 

6.1 Conclusions 

 

The purpose of this study was to classify the SRBD-related snoring sounds and 

severity of obstructive sleep apnea of patients using only breathing sounds 

during sleep. We extracted various features from sleep breathing sounds 

recorded during PSG using different analysis methods, and performed SRBD-

related snoring classification, and OSA severity classification of OSA suspected 

patients. The analytical framework derived from this study is expected to be 

used in the future for sleep breathing sound research, screening for PSG testing, 

and home healthcare services. In particular, since sleep breathing sounds can be 

recorded without any other additional sensors, it will be possible to perform 

necessary tasks with various mobile or wearable devices in the future without 

high-cost investment for the related functions. In terms of the results provided, 

this study can assess the patient's OSA severity in more detail than other studies. 

Therefore, more detailed information can be provided to the patient or 

physician when the actual PSG screening test is carried out so that it can be 

utilized as a differentiated service. 

Many studies using breathing sounds, including snoring, have established a 

professional sound recording environment and have placed a microphone in a 

position very close to the patient or attached a microphone to his/her body. In 

this thesis, we used the sound extracted from the recorded video using the 

microphone and camcorder installed relatively far from the patient 

(approximate 2 meter) to monitor the test environment including the patient in 

the PSG test. Although not completely consistent with the user's actual 
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environment, by using a sound similar to a typical recording environment as 

input, we can focus more on the extraction and development of features 

available in the normal environment. Also, it is possible to exclude the serious 

limitations that may be raised in actual use, which may be caused by the 

location of the microphone or the type of the microphone. 

However, this experiment cannot be applied directly to the latest smart 

handheld devices even if a professional recording environment and a special 

microphone are not used. The microphone used in this study is still installed on 

the PSG room ceiling of the hospital. Also, experiments are not carried out 

using the sleep breathing sounds recorded with the microphones built in the 

user's smart device at practically various locations. However, as described in 

Chapter 4 of the system architecture, this study is based on experimentation 

with a sound that is worse than that recorded in a user's ordinary recording 

environment. This could be advantageous when applied to a general user 

environment or device rather than a conventional experiment in which various 

conditions must be accompanied.  

In a view of the patient data analysis system for expansion into various health 

care environments, the significance of this thesis is that it has confirmed the 

feasibility of a system capable of analyzing respiratory sounds associated with 

sleeping breathing disorder and OSA severity classification using only sleep 

breathing sounds with the devices and recording level and conditions that can 

be considered by the patient. To expand and evolve the analysis framework of 

this experiment to a substantial home healthcare and mobile healthcare 

environment, some additional tasks should be considered, and these are the 

limitations of this study.  

First, various sounds other than sleep breathing sounds should be able to be 

filtered in the user's general environment. Considering services in general smart 
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devices, it could be possible to record selective sleep breathing sounds through 

motion detection using a built-in sensor (for example, a 3-axis accelerometer) 

or prediction of a simple sleep phase. However, depending on the recording 

environment or the device used, it may be necessary to filter out noise that may 

degrade the quality of the sleep breathing sounds. Moreover, the environment 

in which more than two patients simultaneously develop snoring sound can also 

be considered, which is expected to require a high level of filtering because of 

the need for individual discrimination of sleep breathing sounds.  

Second, a standardized experimental protocol and framework are required. 

These requires considerable time and effort. However, the gold standard for 

processing individual data is essential for analyzing respiratory sounds 

associated with various sleep disorders. In this thesis, the annotation related to 

the symptom of sleep disorder diagnosed by the physician in the sleep analysis 

system used in the PSG test is taken as the gold standard, and the respiration 

sound in the matching time interval was extracted as data representative of the 

specific symptom. However, since this annotation does not match with the 

experimental protocol for analyzing sleep breath sounds, it is hard to extract 

related breathing sounds, and various assumptions are needed (For example, an 

OSA-related annotation is matched to silence interval from sleep breathing 

noise, hypopnea is different from diagnosis interval and snoring period). 

Therefore, a standardized experimental framework is necessary if robust and 

accurate experiments and scalability are considered.  

Third, several types of microphones and different recording positions should be 

considered. In an actual user's healthcare service environment, the type and 

recording location of the microphone may affect the performance of the 

analysis and classification algorithms. A variety of experiments are needed to 

find optimal conditions, but they should not undermine the ultimate goals such  
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as patient custom or mobile healthcare due to unrealistic configurations. 

Finally, high-quality sleep breathing sounds are still required for the use of sleep 

breath sounds in a variety of studies or applications. Although, the studies to 

detect the occurrence and severity of certain symptoms using breathing sound 

are important, In the future, it will be a major research goal to predict the 

possible diseases or conditions in the future by using specific information 

inherent in breathing sounds. Therefore, to be able to do such research, we 

should be able to discover features that can predict the correlation with various 

diseases by using high-quality sleep breathing sounds. 

Nevertheless, this research presented a new analytical method for analyzing 

snoring and breathing sounds during sleep. Based on the fact that snoring is  

produced not from the vocal cords but by various anatomical organs including 

the tongue, larynx, and soft palate, we have proposed a classification method 

based on cyclostationary analysis rather than general acoustical analysis 

methods. Although there is no formal database or evaluation criteria for the 

proposed method, it is difficult to compare the performance of other similar 

studies directly, but it would be appropriate to use it for the screening test of 

general obstructive sleep apnea. 

 

 

Figure 6.1 Main contributions of this research 
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The contribution of this study can be summarized as the following items, and 

the related studies were conducted in this regard. 

① By using only sleep breathing sounds, it is possible to eliminate 

inconveniences caused by wearing the biomedical sensors, and effectively 

respond to patient custom or mobile healthcare services. 

② By extending OSA detection studies, which were performed mainly by 

previous studies, to multiclass OSA severity classification research based 

on AHI value, more detailed information can be provided to users in actual 

healthcare service. 

③ A novel analysis method for sleep breathing sounds using cyclic spectrum, 

energy signal transition probability and deep learning technique was 

applied through this study. 

 

In the SRBD-related snoring analysis, we attempted to classify simple snoring, 

OSA-related snoring, and hypopnea-related snoring. The AHI, which indicates 

OSA severity, is calculated based on the total number of apnea and hypopnea 

occurring during the entire sleep period. In the result, we could not classify 

three types of snoring very clearly but could suggest the possibility that the 

snoring associated with apnea symptoms could be classified using only 

breathing sounds. Therefore, we thought that OSA severity could be judged 

only by analysis of snoring events if even snoring associated with the hypopnea, 

which is evaluated based on changes in oxygen saturation and a time interval 

of respiration stop, can be classified directly using sounds. This experiment was 

a core study of features extraction from breathing sounds, and used various 

hand-crafted feature extraction methods and deep learning technique-based 

feature learning for related classification experiments. We conducted several 

studies in parallel and extended the experimental scope based on the study's 
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goal. First of all, we proposed a model in which a given snoring sound is 

classified into simple snoring, hypopnea related snoring, and apnea related 

snoring based on the recorded sleep breathing sounds from PSG. Based on the 

various SRBDs checked by the medical staff at PSG, snoring sounds were 

extracted, and cyclostationary analysis was applied to each sound. From the 

cyclic spectrum (CS) function obtained as a result of this analysis, we derive 

the final feature set through dimension reduction, statistical analysis, and 

feature selection. Through the proposed method, we could confirm by 

experiment that each SRBD-related snoring sound has different characteristics. 

This demonstrates the possibility of estimating the relevant SRBD through the 

snoring sound analysis. In the related experiments described in Chapter 3, three 

SRBD-related snoring sounds classifiers showed performance of 73.8 ~ 

78.07 %. 

Secondly, we performed a cyclostationary and temporal analysis of individual 

sleep breathing sounds, without detecting specific events in each section, and 

obtained feature representations reflecting the key property of sleep breathing 

sounds of a patient. Temporal analysis extracted the feature representing energy 

transition probability in the sleep breathing sound, which represented the 

probability that a particular energy level of a breathing sound changes to a 

different energy level in the time domain. The OSA suspected interval was set 

using the information on the silence interval, and the transition probability for 

this interval was also calculated at the same time. Cyclostationary analysis was 

performed by calculating the CS by each segment of the sleep breathing sounds, 

followed by dimension reduction, statistical processing, and feature selection. 

Through the feature set derived from these two methods, the patient's sleep 

breathing sounds were classified into four AHI severity categories with 79.52 % 

accuracy. Due to the absence of a standard test framework, it is difficult to 
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directly compare performance with other studies, but the results of this 

experiment are relatively high classification performance in the same 

classification task. 

Finally, we have advanced the algorithm by applying the deep learning 

technology to the existing analysis method. Based on CNN, we attempted 

feature learning in CS and classify the sleep breathing sound event of the patient 

using the derived parameters and confirmed the performance. The SRBD-

related snoring classifier obtained through this experiment was applied to the 

existing OSA severity classification task as a feature extractor. Especially, in 

OSA severity discrimination experiment using deep learning, partial sleep 

breathing sounds were extracted by recognizing the part with relatively large 

variance in total breathing sounds. We extracted features in this interval and 

estimated the OSA severity of the patient. In this experiment, we could confirm 

the best classification performance of 85 % in the OSA severity classification 

based on deep learning technology using CNN's fully connected layer output. 

This result shows higher performance than the classification experiment using 

the previous hand-crafted based feature extraction method. 

In this thesis, the sound derived from human body was applied to task related 

to sleep disorder using machine learning technique. To apply machine learning 

to a specific task, a significant amount of data is required. However, data 

collection for healthcare related tasks is often more challenging than other data 

due to privacy and user safety issues. It is therefore essential to cooperate with 

institutions or hospitals that enable continuous data availability. Nevertheless, 

if the number of participants is not large, a classification experiment based on 

the detection of a specific sound event justly may be more efficient. For this, it 

is important to obtain high-quality sound from the patient and to study the 

common characteristics of the sound associated with the specific symptom. 
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Besides, in the case of healthcare-related experiments using sounds, the 

creation of a gold standard is of utmost importance, although it has been 

mentioned several times in the preceding. Clearly, pre-classified sound samples 

with specific symptoms are required. However, since the diagnostic results are 

not often generated based on the sound, most of them will use the acquired 

sound file in synchronization with the actual diagnostic parameters in time. At 

this time, it is preferable from the viewpoint of expansion of experiments, 

making an experimental protocol capable of extracting the sample on a clear 

criterion. 

In this thesis, we have found that sleep breathing sound can be used to identify 

the conditions that have a fatal effect on a patient's sleep health. If we can 

analyze the sleep breathing sound and various environmental sounds at the 

same time, it will be possible to provide various healthcare services such as 

sleep health monitoring, and emergency status detection of patients in a 

bedroom environment without any additional sensors. Also, if the actual target 

device and the recording environment to record are confirmed, it will be 

possible to analyze the respiration sound in more detail and expand the related 

research to various aspects according to specific purposes. 

 

 

6.2 Future work 

 

In the future study, we will seek to improve generalization errors and improve 

accuracy by improving the analysis framework based on data collected from 

more patients through large-scale research. There is also a need to improve the 

reliability and robustness of the analysis framework by performing 

classification studies on various sounds, including snoring sounds as well as 
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specific noises that occur during sleep. Of course, future extension studies need 

a clear specification of system setup related to sound acquisition. Therefore, 

large-scale data collection and analysis should be performed with the type of 

microphone, target device, and recording location clearly set according to the 

application purpose. 

Based on the above extended studies, we would like to apply this analysis 

framework to mobile healthcare services related to sleep health. However, for 

mobile healthcare services, there are a number of additional considerations that 

need to be considered along with the performance of the analysis framework 

itself. The power consumption of a target device and execution time for analysis 

and providing results are very important constraints to be considered in the 

mobile environments. Therefore, it is necessary to develop and operate an 

efficient analysis algorithm considering the computation ability of the target 

device. In this respect, research on the interaction between machines and 

humans in the field of sleep related healthcare is also an important topic of 

interest. Finding methods to effectively provide collected data or analytical 

results to users or physicians is critical to the efficiency and user-friendly 

application of the overall system. 

Identifying the relationship between the patient's voice and OSA severity is also 

an interesting topic for future research. As mentioned earlier, speech and 

snoring sounds have different development mechanisms. However, 

deformation of the UA structure due to aging and obesity can affect voice, and 

this change may be characterized by OSA severity and recorded for a specific 

trend analysis. For this study, it is necessary to observe very specific changes 

associated with symptoms from the sound. Therefore, high-quality recorded 

voices are required and the development of sentences or pronunciation that can 

well reflect the sound characteristics associated with pathological symptoms 
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may be needed. 

The standard experimental protocol and the sleep breathing sound database are 

indispensable factors in future studies. These factors enable objective 

evaluation of the algorithm under development and benchmarking for the 

performance improvement. In the future, we would also like to conduct research 

standardization work for various sleep breathing sounds analysis studies in 

conjunction with related researchers and hospitals. To this end, synchronization 

of the PSG result data with sleep breathing sounds, construction of related 

storage servers, and development of data extraction tools based on these 

components could be significant starting points for the standard experiment 

protocol. 
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초    록 
 

 

폐쇄성 수면 무호흡증 (Obstructive Sleep Apnea, OSA) 은 대표적인 

수면 질환으로 유병률이 높으며 고혈압 및 뇌졸중의 위험 요소로서 

사망률을 증가시킨다. 이 증상은 수면 중에 발생하므로 환자가 

자각하기 어렵고, 수면다원검사라는 표준검사가 있으나 복잡한 진단 

방식과 고비용에 대한 부담으로 인하여 실제 진단율은 낮은 편이다. 

따라서 해당 증상 의심 환자에 대한 수면다원검사의 필요 여부를 

판단할 수 있는 효과적이고 합리적인 선별 검사에 대한 요구가 

증가하고 있다. 본 논문에서는 수면 중 호흡음만을 이용하여 환자의 

코골이음 및 OSA 중증도를 분류하는 세가지 연구를 수행하였다. 

먼저 주기 정상성 분석에 기초한 특징점을 이용하여 수면 호흡장애 

관련 코골이음의 분류 가능성을 확인하였다. 그리고 장시간의 수면 

호흡음으로부터 시간 및 주기 정상성 분석에 기반한 특징점들을 

추출하고 환자들의 OSA 중증도를 분류하였다. 최종적으로는 상기 

분류 태스크들의 효율성과 성능 향상을 위하여 부분 수면 호흡음 

추출 및 컨볼루션 신경망을 이용한 특징 학습 과정을 실험에 

적용하였다. 컨볼루션 신경망을 이용한 수면 호흡음 분석 방법은 

다중 클래스 코골이음 및 OSA 중증도 분류 태스크에서 80 % 

이상의 분류 정확도, 평균 AUC (Area Under Curve) > 0.8 이상의 

우수한 성능을 보여주었다. 제안된 방법은 향후 환자 맞춤형 

헬스케어 서비스에서 수면다원검사의 효율성 및 정확성 향상을 

위한 선별 검사의 핵심 분석 도구로 활용될 수 있을 것으로 

기대한다. 

 

주요어: 코골이 소리 분석, 폐쇄성 수면 무호흡, 선별 검사, 주기 

정상성 분석, 특징 학습, 컨벌루션 신경망, 중증도 분류 
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