488 research outputs found

    Effective Resource and Workload Management in Data Centers

    Get PDF
    The increasing demand for storage, computation, and business continuity has driven the growth of data centers. Managing data centers efficiently is a difficult task because of the wide variety of datacenter applications, their ever-changing intensities, and the fact that application performance targets may differ widely. Server virtualization has been a game-changing technology for IT, providing the possibility to support multiple virtual machines (VMs) simultaneously. This dissertation focuses on how virtualization technologies can be utilized to develop new tools for maintaining high resource utilization, for achieving high application performance, and for reducing the cost of data center management.;For multi-tiered applications, bursty workload traffic can significantly deteriorate performance. This dissertation proposes an admission control algorithm AWAIT, for handling overloading conditions in multi-tier web services. AWAIT places on hold requests of accepted sessions and refuses to admit new sessions when the system is in a sudden workload surge. to meet the service-level objective, AWAIT serves the requests in the blocking queue with high priority. The size of the queue is dynamically determined according to the workload burstiness.;Many admission control policies are triggered by instantaneous measurements of system resource usage, e.g., CPU utilization. This dissertation first demonstrates that directly measuring virtual machine resource utilizations with standard tools cannot always lead to accurate estimates. A directed factor graph (DFG) model is defined to model the dependencies among multiple types of resources across physical and virtual layers.;Virtualized data centers always enable sharing of resources among hosted applications for achieving high resource utilization. However, it is difficult to satisfy application SLOs on a shared infrastructure, as application workloads patterns change over time. AppRM, an automated management system not only allocates right amount of resources to applications for their performance target but also adjusts to dynamic workloads using an adaptive model.;Server consolidation is one of the key applications of server virtualization. This dissertation proposes a VM consolidation mechanism, first by extending the fair load balancing scheme for multi-dimensional vector scheduling, and then by using a queueing network model to capture the service contentions for a particular virtual machine placement

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    Calidad de servicio en computación en la nube: técnicas de modelado y sus aplicaciones

    Get PDF
    Recent years have seen the massive migration of enterprise applications to the cloud. One of the challenges posed by cloud applications is Quality-of-Service (QoS) management, which is the problem of allocating resources to the application to guarantee a service level along dimensions such as performance, availability and reliability. This paper aims at supporting research in this area by providing a survey of the state of the art of QoS modeling approaches suitable for cloud systems. We also review and classify their early application to some decision-making problems arising in cloud QoS management

    An adaptive admission control and load balancing algorithm for a QoS-aware Web system

    Get PDF
    The main objective of this thesis focuses on the design of an adaptive algorithm for admission control and content-aware load balancing for Web traffic. In order to set the context of this work, several reviews are included to introduce the reader in the background concepts of Web load balancing, admission control and the Internet traffic characteristics that may affect the good performance of a Web site. The admission control and load balancing algorithm described in this thesis manages the distribution of traffic to a Web cluster based on QoS requirements. The goal of the proposed scheduling algorithm is to avoid situations in which the system provides a lower performance than desired due to servers' congestion. This is achieved through the implementation of forecasting calculations. Obviously, the increase of the computational cost of the algorithm results in some overhead. This is the reason for designing an adaptive time slot scheduling that sets the execution times of the algorithm depending on the burstiness that is arriving to the system. Therefore, the predictive scheduling algorithm proposed includes an adaptive overhead control. Once defined the scheduling of the algorithm, we design the admission control module based on throughput predictions. The results obtained by several throughput predictors are compared and one of them is selected to be included in our algorithm. The utilisation level that the Web servers will have in the near future is also forecasted and reserved for each service depending on the Service Level Agreement (SLA). Our load balancing strategy is based on a classical policy. Hence, a comparison of several classical load balancing policies is also included in order to know which of them better fits our algorithm. A simulation model has been designed to obtain the results presented in this thesis

    The effect of workload dependence in systems: Experimental evaluation, analytic models, and policy development

    Get PDF
    This dissertation presents an analysis of performance effects of burstiness (formalized by the autocorrelation function) in multi-tiered systems via a 3-pronged approach, i.e., experimental measurements, analytic models, and policy development. This analysis considers (a) systems with finite buffers (e.g., systems with admission control that effectively operate as closed systems) and (b) systems with infinite buffers (i.e., systems that operate as open systems).;For multi-tiered systems with a finite buffer size, experimental measurements show that if autocorrelation exists in any of the tiers in a multi-tiered system, then autocorrelation propagates to all tiers of the system. The presence of autocorrelated flows in all tiers significantly degrades performance. Workload characterization in a real experimental environment driven by the TPC-W benchmark confirms the existence of autocorrelated flows, which originate from the autocorrelated service process of one of the tiers. A simple model is devised that captures the observed behavior. The model is in excellent agreement with experimental measurements and captures the propagation of autocorrelation in the multi-tiered system as well as the resulting performance trends.;For systems with an infinite buffer size, this study focuses on analytic models by proposing and comparing two families of approximations for the departure process of a BMAP/MAP/1 queue that admits batch correlated flows, and whose service time process may be autocorrelated. One approximation is based on the ETAQA methodology for the solution of M/G/1-type processes and the other arises from lumpability rules. Formal proofs are provided: both approximations preserve the marginal distribution of the inter-departure times and their initial correlation structures.;This dissertation also demonstrates how the knowledge of autocorrelation can be used to effectively improve system performance, D_EQAL, a new load balancing policy for clusters with dependent arrivals is proposed. D_EQAL separates jobs to servers according to their sizes as traditional load balancing policies do, but this separation is biased by the effort to reduce performance loss due to autocorrelation in the streams of jobs that are directed to each server. as a result of this, not all servers are equally utilized (i.e., the load in the system becomes unbalanced) but performance benefits of this load unbalancing are significant

    Two-Layer Load Balancing for Onedata System

    Get PDF
    The recent years have significantly changed the perception of web services and data storages, as clouds became a big part of IT market. New challenges appear in the field of scalable web systems, which become bigger and more complex. One of them is designing load balancing algorithms that could allow for optimal utilization of servers' resources in large, distributed systems. This paper presents an algorithm called Two-Level Load Balancing, which has been implemented and evaluated in onedata - a global data access system. A study of onedata architecture, request types and use cases has been performed to determine the requirements of load balancing set by similar, highly scalable distributed systems. The algorithm was designed to match these requirements, and it was achieved by using a synergy of DNS and internal dispatcher load balancing. Test results show that the algorithm does not introduce considerable overheads and maintains the performance of the system on high level, even in cases when its servers are not equally loaded

    POWER MANAGEMENT IN THE CLUSTER SYSTEM

    Get PDF
    With growing cost of electricity, the power management of server clusters has become an important problem. However, most previous researchers have only addressed the challenge in traditional homogeneous environments. Considering the increasing popularity of heterogeneous and virtualized systems, this thesis develops a series of efficient algorithms respectively for power management of heterogeneous soft real-time clusters and a virtualized cluster system. It is built on simple but effective mathematical models. When deployed to a new platform, the software incurs low configuration cost because no extensive performance measurements and profiling are required. Built upon optimization, queuing theory and control theory techniques, our approach achieves the design goal, where QoS is provided to a larger number of requests with a smaller amount of power consumption. To strive for efficiency, a threshold based approach is adopted in the first part of the thesis. Then we systematically study this approach and its design decisions. To deploy our mechanisms on the virtualized clusters, we extend the work by developing a novel power-efficient workload distribution algorithm. Adviser: Ying L

    Resource management of replicated service systems provisioned in the cloud

    Get PDF
    Service providers seek scalable and cost-effective cloud solutions for hosting their applications. Despite significant recent advances facilitating the deployment and management of services on cloud platforms, a number of challenges still remain. Service providers are confronted with time-varying requests for the provided applications, inter- dependencies between different components, performance variability of the procured virtual resources, and cost structures that differ from conventional data centers. Moreover, fulfilling service level agreements, such as the throughput and response time percentiles, becomes of paramount importance for ensuring business advantages.In this thesis, we explore service provisioning in clouds from multiple points of view. The aim is to best provide service replicas in the form of VMs to various service applications, such that their tail throughput and tail response times, as well as resource utilization, meet the service level agreements in the most cost effective manner. In particular, we develop models, algorithms and replication strategies that consider multi-tier composed services provisioned in clouds. We also investigate how a service provider can opportunistically take advantage of observed performance variability in the cloud. Finally, we provide means of guaranteeing tail throughput and response times in the face of performance variability of VMs, using Markov chain modeling and large deviation theory. We employ methods from analytical modeling, event-driven simulations and experiments. Overall, this thesis provides not only a multi-faceted approach to exploring several crucial aspects of hosting services in clouds, i.e., cost, tail throughput, and tail response times, but our proposed resource management strategies are also rigorously validated via trace-driven simulation and extensive experiment
    corecore