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Abstra
t

Service providers seek scalable and cost-effective cloud solutions for hosting their

applications. Despite significant recent advances facilitating the deployment and

management of services on cloud platforms, a number of challenges still remain.

Service providers are confronted with time-varying requests for the provided ap-

plications, inter-dependencies between different components, performance vari-

ability of the procured virtual resources, and cost structures that differ from con-

ventional data centers. Moreover, fulfilling service level agreements, such as the

throughput and response time percentiles, becomes of paramount importance

for ensuring business advantages.

In this thesis, we explore service provisioning in clouds from multiple points

of view. The aim is to best provide service replicas in the form of VMs to various

service applications, such that their tail throughput and tail response times, as

well as resource utilization, meet the service level agreements in the most cost

effective manner. In particular, we develop models, algorithms and replication

strategies that consider multi-tier composed services provisioned in clouds. We

also investigate how a service provider can opportunistically take advantage of

observed performance variability in the cloud. Finally, we provide means of guar-

anteeing tail throughput and response times in the face of performance variabil-

ity of VMs, using Markov chain modeling and large deviation theory. We employ

methods from analytical modeling, event-driven simulations and experiments.

Overall, this thesis provides not only a multi-faceted approach to exploring sev-

eral crucial aspects of hosting services in clouds, i.e., cost, tail throughput, and

tail response times, but our proposed resource management strategies are also

rigorously validated via trace-driven simulation and extensive experiments.
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Chapter 1

Introdu
tion

Providers of service-oriented systems aim at delivering satisfactory performance

in a cost-effective manner, which today often means taking advantage of the

cloud computing paradigm in one way or another. On the one hand, the oper-

ational cost is proportional to the number resources deployed, such as physical

machines or virtual machines (VMs) hosting service replicas. For fast-growing en-

terprises, or for services experiencing large time variability, provisioning some or

all of these resources in clouds can provide significant benefits in terms of ease-of-

management or cost. On the other hand, system performance, e.g., response time

and resource utilization, hinges on the capability of the provisioned resources in

processing time-varying requests and the balancing of the load across replicas.

Related studies [Zhang et al., 2008; Singh et al., 2010] show that striking a good

balance between conflicting objectives, i.e., operational cost and performance, is

not an easy task, especially in multi-tier systems. Statically providing a maximum

number of resources may guarantee the performance at a high operational cost,

whereas unbalanced loads and under-provisioned resources could lead to a sig-

nificant performance degradation. Dynamically and accurately adjusting service

capacities, i.e., the number and size of physical or virtual machines, depending on

the workload, has been shown to be effective in solving the dilemma of balancing

between performance targets and operational cost. The ease of dynamically ad-

justing resources is one of the key advantages of clouds, which is why more and

more service providers are turning to them for their service provisioning needs

[Chen et al., 2005; Lin et al., 2013].
The rest of this chapter gives an overview of the key relevant service provi-

sioning aspects from the perspective of service providers and the cloud comput-

ing paradigm. Section 1.1 gives a general description of service systems and the

cloud computing paradigm. Provisioning of replicated, multi-tier and composed

1
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services in clouds is presented in Section 1.2. The public cloud, and how ser-

vice providers can make use of it, is introduced in Section 1.3. This section also

touches upon two of the key properties of public clouds, namely the performance

variation, and their cost structures from a service provider’s perspective. Load

balancing of replicated and distributed systems is presented in Section 1.4. In

Section 1.5, the problem statement is introduced, followed by an overview of the

rest of the thesis in Section 1.6 and the contributions in Section 1.7.

1.1 Overview of Servi
e Systems and Cloud Computing

1.1.1 Servi
e Systems

Service-oriented systems are commonly composed of distributed web services

[Alonso et al., 2004; Papazoglou et al., 2008]. Applications’ requests, consisting

of multiple invocations of web services, show a strong time varying behavior,

e.g., time of day and day of the week effects [Arlitt and Jin, 2000; Chen et al.,

2005; Singh et al., 2010; Stewart et al., 2007]. Such systems process requests

either as atomic services, or by invoking the corresponding service compositions,

which are often represented as business processes or as workflows of services,

and which are typically deployed upon startup of the system. To maintain the

target service level agreement (SLA) and continuous availability of services, multi-

ple replicas of resources need to be deployed. This includes both back-end service

nodes that execute the requests, as well as front-end nodes which are dedicated

engines that invoke the corresponding services.

1.1.2 Cloud Computing Models for Servi
e Providers

Cloud computing is an emerging computing paradigm, featuring elastic capac-

ity provisioning and ease of operational management for a wide range of ser-

vices. Resources, such as processors, storage, and network, are provided in an

on-demand fashion to multiple service providers (i.e., clients of the cloud), who

may deploy multiple services exhibiting disparate workload patterns. Essentially,

cloud platforms enable resource sharing among multiple service providers, as

well as among multiple services deployed by the same provider. Typically, the

basic computing unit in compute clouds is the virtual node, on which different

services can be deployed in an on-demand fashion. Depending on the specific

cloud architecture, virtual nodes can correspond to either virtual machines or

physical machines.
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The NIST model of cloud computing [Mell and Grance, 2011] encompasses

three different service models — Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS). Service providers can use four

types of cloud deployment models — private cloud, community cloud, public

cloud, and hybrid cloud. The first three deployment models are ordered from

the least to the most dynamic in terms of provisioning elasticity, and the hybrid

cloud is a mix of resources from two or more of the other models.

1.2 Deployment of Multi-Tier Servi
es in Clouds

Various service replication strategies [Salas et al., 2006; Zheng and Lyu, 2008,

2009; Dustdar and Juszczyk, 2007] have been developed for fault-tolerant service-

oriented systems. Often, only the replication of atomic services has been consid-

ered and the optimal number of replicas for composed services has been over-

looked. Consequently, to optimize SLA and operational cost, the optimal provi-

sioning of service replicas has mainly been shown in the context of simple single-

tier web hosting systems [Lin et al., 2013] , i.e., clients send requests directly to

services. For multi-tier web hosting systems, most existing studies [Singh et al.,

2010; Zhang et al., 2008] design replication polices independently for each tier.

In reality, the provisioning of front-end replicas depends on the performance of

the second-tier service layer, due to the blocking I/O which is a result of the

processing of consecutive service invocations within a composition. The perfor-

mance of the service replicas depends on the invocations dispatched by front-end

replicas and the corresponding load balancing among back-end service replicas.

It is very challenging to dynamically provide resources in systems with multiple

tiers, i.e., front-end and back-end service tiers, which encounter time-varying

and -correlated workloads, such that the cost is minimized without compromis-

ing performance.

1.3 Deployment of Servi
es in Publi
 Cloud

Public clouds are clouds from which customers can obtain resources, e.g., virtual

machines in compute clouds for provisioning web services. Deploying services

in public compute cloud environments is an attractive solution, due to cost and

ease of management advantages. In a public cloud, a set of preconfigured VM

instances is available at different costs for different sizes, and their correspond-

ing hardware-related performance metrics are provided at best effort [Ristenpart

et al., 2009].
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Hosting services in a cloud relieves the service provider from maintaining

an expensive computing infrastructure. Thanks to on-demand virtual resource

provisioning, cloud operators provide on-demand computing capacity, enabling

elastic service provisioning. Another advantage of cloud environments is their

pay-as-you-go billing feature. The service provider can thus request the necessary

computing capacity in the unit of VMs from the cloud operator, according to the

workload. Consequently, hosting services in a cloud — in conjunction with an

effective service replication policy — can achieve significant cost savings for the

service provider.

1.3.1 Performan
e Variability

When migrating various applications onto cloud platforms, one of the common

weaknesses observed in public cloud environments is the higher performance

variability compared to private platforms. In particular, VMs with the same spec-

ifications (i.e., incurring the same costs for the user) show significant perfor-

mance variability in terms of throughput; some VMs are faster and some are

slower. The observed higher performance variability also holds true for the re-

sponse time, which fluctuates significantly, and tail latency degrades due to the

heterogeneity of the underlying hardware and the workloads co-located on the

same physical hosts. The effects of resource sharing that result from consoli-

dating multiple VMs on the same physical hosts, are dynamically changing de-

pending on varying workloads and on workload management actions taken by

the cloud operator, such as VM consolidation and VM migration. Furthermore,

hardware features such as dynamic frequency scaling can have an impact on

performance depending on the workloads and on VM consolidations. As a con-

sequence, the computing capacity of individual VMs fluctuates, and so does the

aggregated capacity of all provisioned VMs of a service provider.

Although virtualization enables the efficient multiplexing of workloads across

the ample hardware resource, performance isolation is limited, especially for ap-

plications that are not CPU intensive. While the performance variability persists

in cloud platforms, little is known about the sensitivity of services on different

VM configurations in terms of capacity, i.e., the maximum number of service re-

quests that can be processed sustainably, and the aggregate impact of the capacity

variability of a single VM on the QoS of the entire service cluster. VM provision-

ing of service systems is typically based on the average capacity, which in turn is

a good indicator for systems experiencing low variability and providing simple

Quality of Service (QoS) guarantees, such as average throughput over a certain

threshold. To avoid performance penalties due to variability in the cloud, se-
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lecting VMs with desirable performance becomes of paramount importance not

only to reduce performance variability, but also to optimize cost. Consequently,

empirical approaches are proposed to acquire VMs with higher capacities. How-

ever, due to the empirical nature of the proposed VM selection strategies, a QoS

promise of satisfying a given target throughput is only attained at best effort.

Moreover, the resulting cost minimization may be arbitrary, depending on the

workload dynamics of the underlying cloud platform.

1.3.2 Cost Stru
ture

In addition to the performance variability, another distinguishing difference be-

tween private systems and public cloud platforms is the cost structure and restric-

tions imposed by the billing contract. On a private platform, turning a VM on

and off is not restricted by any billing contract, whereas VMs requested in a cloud

are typically charged for pre-defined billing periods such as an hour. Therefore,

in a cloud it can be wasteful to turn VMs on and off without considering billing

constraints. Moreover, frequently turning VMs on and off may cause not only

additional costs but also some capacity loss because of the time overhead asso-

ciated with the VM control actions. System performance (i.e., service response

times) can fluctuate greatly during the transition of turning VMs on and off.

On the one hand, cloud platforms provide several cost advantages for elas-

tic service provisioning. On the other hand, system dynamics become much

more complex than in private platforms and pose several new challenges. Purely

workload-driven service replication policies have been shown effective on pri-

vate platforms [Chen et al., 2005; Lin et al., 2013; Singh et al., 2010; Stewart

et al., 2007], implementing simple control actions such as turning service repli-

cas on and off. However, such policies can fall short in optimizing the trade-off

between cost and performance in a cloud, due to the lack of consideration of the

variability in VMs’ performance and billing contracts. For example, in a cloud, a

lower number of faster VMs may have the same aggregate capacity as a higher

number of slower VMs, but typically cost less, particularly if the faster and the

slower VMs are not distinguished by the billing contracts. To optimize service

provisioning costs and service performance simultaneously, the service replica-

tion policy in the cloud needs to choose not only the right number of VMs but

also the VMs with better performance. As such, a broad range of criteria, such as

workload, heterogeneity of VM performance, and billing contracts, needs to be

taken into consideration when designing service replication algorithms for cloud

environments.
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1.3.3 Tail Response Times

Several empirical studies [Xu et al., 2013; Schad et al., 2010; Casale and Trib-

astone, 2013] point out a common pitfall in clouds: the execution speed of an

application within a virtual machine (VM) fluctuates significantly due to the het-

erogeneity of the underlying hardware and the workloads co-located on the same

physical host. Although virtualization enables efficient multiplexing of work-

loads across ample hardware resources, performance isolation is limited [Chen

et al., 2012; Björkqvist et al., 2013]. The resulting exogenous variability not

only hampers the satisfaction of the users, but also results in non-negligible busi-

ness losses associated with the violation of service level agreements (SLAs) often

specified in terms of tail response times.

The degradation of tail response times in the cloud is further exacerbated

when deploying cluster-based applications [Xu et al., 2013], i.e., relying on a

large number of VMs. Web [Dean and Barroso, 2013] and big data services [Reiss

et al., 2012] are typical examples requiring such cluster deployments. In addition

to the modulated execution speed and cluster size, the distribution of response

times, particularly the tail, is also affected by the load balancing algorithm dis-

tributing the load across VMs and the processor scheduling mechanism at each

VM. Typically, a simple round robin algorithm is widely adopted, such as the one

used in the Amazon EC2 cloud [EC2, 2014]. Requests are executed in a Processor

Sharing (PS) fashion on individual VMs, which are typically hosted on separate

physical servers. Overall, when deploying application clusters on today’s cloud,

three aspects are crucial for capturing the distribution of workloads and response

times: the modulated execution speed of VMs, the load balancing algorithm, and

the processor scheduling.

1.4 Load Balan
ing of Repli
ated Servi
es

Since service systems are normally provisioned using multiple replicas, distribut-

ing the incoming load among the available resources is critical. By keeping the

utilization level of the provisioned resources high, fewer resources are needed,

leading to lower costs. A number of approaches for balancing the loads exist,

and some are more suitable for certain scenarios than others.

Load balancing schemes can be categorized into two types: load oblivious

and load aware. The former, such as random selection and round-robin selec-

tion, distributes requests to available front-end and back-end service replicas,

independent of their loads. On the contrary, the latter dispatches requests de-
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pending on the monitored loads of the front-end and back-end service replicas.

Join the shortest queue (JSQ), where incoming requests are dispatched to the

server with the least number of outstanding requests [Whitt, 1986], is one of

such load balancing schemes, which are shown effective in systems with low

variation in loads; however, its scalability is limited due to the implementation

overhead of continuously monitoring the load. On the other hand, a dynamic lot-

tery balancing scheme, combining the advantages of load oblivious and aware, is

extensively applied for scheduling in operating system [Waldspurger and Weihl,

1994] and service system contexts [Mosincat and Binder, 2009].

To ensure scalability, today’s web services are replicated and hosted on dis-

tributed systems that experience regular resource upgrades and are thus com-

prised of heterogeneous servers. The employment of virtualization technology

further amplifies the server heterogeneity, especially on hosting platforms shared

with different service providers such as computing clouds. Web service applica-

tions are characterized not only by disparate resource requirements (e.g., CPU-

intensive browsing service vs. I/O-intensive transaction service), but also by

time-varying request workloads [Zhang et al., 2005]. Consequently, the over-

all system workloads fluctuate in terms of mixes of applications and the volume

of requests [Singh et al., 2010]. The heterogeneity of servers, together with di-

versified applications with different workload characteristics, further exacerbates

the challenges of load balancing.

There is a large body of load balancing studies [Zhang et al., 2005; Cardellini

et al., 1999; Cherkasova and Ponnekanti, 2000] that mainly focus on homoge-

neous systems and consider a single bottleneck resource where queues build up.

The JSQ policy has been shown very robust theoretically [Gupta et al., 2007]
and practically [Apache, 2014], in distributing the entire load across distributed

servers. In a heterogeneous system experiencing time-varying application mixes,

such a policy can potentially lead to the situation where servers receive similar

amounts of requests but servers with powerful CPU (resp. disk) process a lot of

IO- (resp. CPU-) intensive requests. Clearly, depending on the received applica-

tion mix, the use of servers with different bottleneck resources can result in very

different performance, such as response times. Therefore, it is imperative for the

load-balancing policy to distribute the server load evenly as well as the resource

load, which is influenced by the application mix received at individual servers.
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1.5 Problem Statement

In this thesis, we consider service systems provisioned in the cloud, from a ser-

vice provider’s point of view. These systems provide services which, either by

themselves or together with other services, form applications. Clients send re-

quests to the applications, with strong time variability patterns. The application

requests are directed to the appropriate entities, and on the way possibly broken

down into multiple internal service requests, resulting in complex workloads. A

high-level overview of the considered system can be seen in Figure 1.1.

Figure 1.1. Appli
ation 
lients a

essing servi
es provisioned in the 
loud

Essentially, an application is composed of services which are hosted on cloud

VMs. Due to the nature of resource sharing and the trend of using heterogeneous

hardware in the cloud, VMs tend to exhibit performance variability, i.e., VMs with

the same specification experience different execution speeds. The main perfor-

mance metrics of interest are resource utilization as well as the percentiles of

throughput (in terms of requests per second) and response times, which are chal-

lenging to predict. All in all, the difficulty of resource management arises from

the complexity of workloads, cloud systems, and the sophisticated performance

metrics. The general research question that we try to answer is the following:

How should service providers dynamically provision cloud resources,

in terms of VMs, so that various service objectives, especially the

high percentile throughput and response times, can be fulfilled in

a cost effective manner?
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Furthermore, we examine different aspects of complexity in the aforemen-

tioned question — service provisioning in clouds — and dive into a subset of the

problem space. In the following, we introduce the particular subproblems and

argue for their relevance:

• Two-tier Application Provisioning

Many service providers build their services using two or more tiers, e.g.,

front-end web servers and back-end databases. Understanding the interac-

tions between the different tiers is critical for efficient provisioning. Tools

and services exist for determining resource usage of individual replicas and

for dynamically adjusting the amount of provisioned resources, such as

the number of replicas, but for more complex, multi-tier deployments they

might lead to underutilization of resources, underprovisioning of unidenti-

fied bottlenecks, or both. The major challenge with provisioning of multi-

tiered systems is understanding the interaction and dependencies between

the different tiers, and their impact on provisioning decisions. For this par-

ticular problem, the research question we want to answer is:

How should resources for two-tier cloud applications be effi-

ciently provisioned?

• Opportunistic Provisioning

The cloud infrastructure providers host the VMs on a plethora of different

types of physical servers, dispersed among multiple data centers in dif-

ferent parts of the world. This often means that the physical hardware

running two identical VMs can vary greatly, and this can manifest as per-

formance variability for the cloud service providers. Provisioning for dif-

ferent application and service types requires understanding of the resource

usage, and its variance over time. When independent application and ser-

vice types are operated by the same service provider, there is potential for

exploiting the different usage patterns in terms of more efficient resource

usage and cost savings. One big challenge for cloud service providers is

therefore how to efficiently provision multiple applications and services

when faced with performance variability of VMs. To address this issue, the

research question becomes:

How can cloud service providers take advantage of perfor-

mance variability in the cloud when provisioning multiple ap-

plications and services?
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• Tail Throughput in the Cloud

Cloud services are often governed through Service Level Agreements that

defined the Quality of Service that is to be provided. An example of such

a requirement is that the throughput shall be above a certain number of

requests per second for a certain percentage, e.g., 99% of the time. Provi-

sioning for average throughput requirements is relatively straight-forward,

but provisioning resources in a way that satisfies tail throughput require-

ments in a cost-efficient manner is not a trivial task. Therefore, our re-

search question related to the tail throughput is:

How should cloud service providers provision resources to ef-

ficiently provide tail throughput guarantees?

• Tail Response Times in the Cloud

For interactive cloud services, an even more important performance metric

than the throughput is the response time. As is the case for the throughput,

predicting and provisioning for the average response time is not overly

difficult. However, predicting the tail response time is a very complex and

difficult problem:

How should cloud service providers provision resources to ef-

ficiently provide tail response time guarantees?

1.6 Outline of Proposed Solution

Due to the complexity of the system, e.g., multiple application and service types,

multiple replicas, performance variability, and workload variability, it is not pos-

sible to address all possible aspects in a single, comprehensive setting. Thus,

we resort to considering different subproblems in isolation. This is also the ap-

proach taken in other studies, but the related work often falls short by consid-

ering oversimplified scenarios, e.g., in terms of architecture, system model, or

performance requirements. Our focus is on models and algorithms that are eval-

uated on simplified scenarios, but which can be expanded to accommodate more

details obtained from real systems.

A summary of how our approach of tackling subproblems in isolation has been

structured into separate chapters is shown in Table 1.1. We first focus on tack-

ling complex workloads, i.e., time-varying composed services in two-tier systems.

Thereafter, we consider the challenges introduced by the system complexity that
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Chapter Workload System Performance

3 Composed services
Two-tier systems,

homogeneous servers

Simpler performance

metrics; utilization

4
Atomic services,

multiple service types

Spatial variability, i.e.,

heterogeneous servers
Best effort

5 Atomic services Temporal variability Tail throughput

6 Atomic services Temporal variability Tail response time

Table 1.1. Summary of 
hapters.

is inherent, but not limited to, the cloud, i.e., spatial and temporal performance

variability of servers. Finally, we focus on deriving sophisticated performance

metrics, particularly for the tails, i.e., tail throughput and distribution of tail re-

sponse times.

To handle workloads and application requests that vary over time, the ser-

vice provider must be able to adjust the amount of resources used to provide the

services. Figure 1.2 shows an example of a service system with two tiers, serv-

ing application requests for composed services. We investigate how to efficiently

provision such two-tier service systems in clouds in Chapter 3. An example of a

two-tiered service system is a front-end web server that serves requests by query-

ing a back-end database server. We analyze the system from the point of view

of a service provider that offers multiple different types of composed services.

As service demands fluctuate, the service provider needs to adjust the amount of

resources used to provision the services, while taking into account the dependen-

cies between the system tiers. To simplify the analysis of the two-tiered service

system scenario, we assume homogeneous servers that can be turned on or off

whenever necessary.

While the initial work is agnostic of the underlying platform and assumes

that all replicas run on identical systems, the work described in Chapter 4 looks

at how to optimize service provisioning in public clouds. To efficiently provide

cloud computing services in public clouds, the cloud service providers co-locate

multiple tenants on the heterogeneous hardware located in data centers around

the globe. Figure 1.3 shows a scenario where multiple identical servers, in terms

of specification and cost, are used to provision services on top of public cloud

computing platforms. In practice e.g., the underlying hardware and co-located

workloads, mean that the observed performance is not always identical. For a

service provider providing services, this presents both challenges and opportu-
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Cloud

Back-end storage or

database servers

Front-end web or

compute servers

Figure 1.2. Servi
e provisioning in multiple tiers, e.g., front-end and ba
k-end

nities. We investigate how a service provider can leverage the observed perfor-

mance variability in order to achieve better performance, in terms of throughput

capacity, at a lower cost. We simplify the problem by looking at systems with

single-tiered services of multiple different service types. Another assumption

that we make is that while the performance may be different for individual VMs

provisioned on the public cloud platform, the performance of a VM does not vary

over the observation period. The shorter the observation period, the more valid

the assumption.

The analysis in Chapter 4 assumes that the performance variability among

VMs with identical specifications is constant over time, and shows how to effec-

tively take advantage of this. However, the observed performance variability in

public cloud platforms may also vary over time, e.g., due to VM migrations, or

varying system utilization of VMs co-located on the same physical machine. In

Chapter 5 we first show the performance impact that co-located VMs can have

on a VM running a wiki service, and thereafter attempt to take this temporal

performance variability into account when deciding on how to provision services

in the cloud. We model the system using a Markov-chain model, and further

show that provisioning a system based on the observed average capacity fails to
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Figure 1.3. Servi
e nodes with performan
e variability

avoid tail performance degradation, which has an impact on the fulfillment of

QoS promises.

While it is useful to be able to provision systems with QoS guarantees based

on the throughput capacity, it is more common for interactive web services to

have QoS SLAs written in terms of response times. Providing tail response time

guarantees (e.g., the response time for 99.99% of requests must be below 2s),

however, is a more complex problem to solve. In Chapter 6, we approach the

problem using large deviation analysis and use an approximation scheme to ob-

tain the tail response times, which are then used for provisioning decisions.

1.7 Contributions

This dissertation is based on several published and submitted pieces of work.

The contributions regarding the provisioning of two-tier services in the cloud

(Chapter 3) are threefold: (1) a model and analysis capturing many key features

of two-tier service-oriented systems: time-varying workloads, execution paral-
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lelism, and the inter-dependency between the two tiers; (2) a novel replication

policy, simultaneously controlling the number of provisioned resources in the

two interdependent tiers, based on monitored workload and performance met-

rics; and (3) bounding analysis on effective and nominal utilization for resources

in the first tier. This work was published in:

• Mathias Björkqvist, Lydia Y. Chen, and Walter Binder. Dynamic replication

in service-oriented systems, Proceedings of the 2012 12th IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing (CCGrid), IEEE

Computer Society, pp. 531-538.

The original scientific contribution of the work on leveraging performance

variability for service provisioning in public clouds (Chapter 4) is a novel service

replication policy, which is specially designed to explore the temporal variability

of VM performance on public cloud platforms. Compared to replication poli-

cies oblivious to the unique characteristics in public clouds, e.g., performance

variability, pay-as-you-go billing periods, the proposed opportunistic replication

policy is shown to achieve lower cost and better performance when optimizing

not only for a single service type, but for a service providers entire set of resources

provisioned in a public cloud. This work was published in:

• Mathias Björkqvist, Lydia Y. Chen, and Walter Binder. Opportunistic service

provisioning in the cloud. Proceedings of the 2012 5th IEEE International

Conference on Cloud Computing (CLOUD), pp. 237-244.

The contributions related to providing throughput QoS guarantees for ser-

vices provisioned in public clouds (Chapter 5) are twofold: (1) quantitative char-

acterization of the capacity variability of a VM running a wiki service when co-

located with another VM running various different workloads, and (2) a Markov-

chain model to avoiding tail throughput performance degradation. Based on our

experiments and model, a cluster of VMs can be properly dimensioned using

appropriate VM configurations, such that the best trade-off between cost and

throughput QoS fulfillment is achieved. This work was published in:

• Mathias Björkqvist, Sebastiano Spicuglia, Lydia Y. Chen, and Walter Binder.

QoS-Aware Service VM Provisioning in Clouds: Experiences, Models, and

Cost Analysis. Service-Oriented Computing, Springer, pp. 69-83.

In the work on optimizing for tail response times for services provisioned in

public clouds (Chapter 6), the contributions can be summarized as follows: First,
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the workload distribution is derived for hard-to-analyze systems that capture the

key characteristics of today’s cloud systems, i.e., renewal arrivals, highly varying

job sizes, Markov-modulated execution speeds, processor sharing, and round-

robin load balancing. Second, an approximation scheme for the tail response

times is developed, as these are one of the critical SLA parameters, and this is

used to further optimize the cluster size.

During the course of the PhD studies, I was also involved in related work

resulting in the following publications:

• Mathias Björkqvist, Lydia Y. Chen, Marko Vukolić, and Xi Zhang. Minimiz-

ing Retrieval Latency for Content Cloud. Proceedings of 2011 IEEE INFO-

COM. pp. 1080-1088.

• Mathias Björkqvist, Lydia Y. Chen, and Walter Binder. Optimizing service

replication in clouds. Proceedings of 2011 Winter Simulation Conference.

pp. 3312-3322.

• Mathias Björkqvist, Lydia Y. Chen, and Walter Binder. Cost-driven Service

Provisioning in Hybrid Clouds. Proceedings of 2012 IEEE Service-Oriented

Computing and Applications (SOCA). pp. 1-8.

• Sebastiano Spicuglia, Mathias Björkqvist, Lydia Y. Chen, Giuseppe Serazzi,

Walter Binder, and Evgenia Smirni. On load balancing: a mix-aware algo-

rithm for heterogeneous systems. Proceedings of 2013 ACM/SPEC Interna-

tional Conference on Performance Engineering (ICPE). pp. 71-76.

• Robert Birke, Mathias Björkqvist, Lydia Y. Chen, Evgenia Smirni, and Ton

Engbersen. (Big)data in a virtualized world: volume, velocity, and variety

in cloud datacenters. Proceedings of 2014 USENIX Conference on File and

Storage Technologies (FAST). pp. 177-189.
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Chapter 2

State of the Art

Related studies exist in all the different areas related to service provisioning in

clouds. Section 2.1 explores work done regarding replication of service systems

in clouds, data centers, or similar scenarios, and both atomic and composed ser-

vices are addressed. Studies on service provisioning in public clouds in Sec-

tion 2.2 deal with QoS, cost optimization, and the performance variability ob-

served specifically in public clouds. Section 2.3 summarizes relates work in the

field of modeling and optimizing for tail response times in clouds. Related studies

in Section 2.4 cover most related aspects of load balancing of service systems.

2.1 Repli
ation of Servi
es in Clouds

The related work regarding replicated web services in the cloud context is mainly

discussed in two contexts: fault tolerant services, and resource provisioning.

Fault-tolerant services: In order to provide highly dependable service-oriented

systems, various service replication framework and strategies have been devel-

oped in different system scenarios. Many studies [Salas et al., 2006; Zheng and

Lyu, 2008, 2009; Dustdar and Juszczyk, 2007] consider the replication of atomic

services and do not address the issues of optimal number of replicas. Salas et al.

[Salas et al., 2006] developed a replication framework, WS-Replication, which

enables the deployment in a set of sites. In particular, WS-Replication respects

web service autonomy and exclusively uses SOAP to interact across sites via

WS-Multicast. Zheng and Lyu [Zheng and Lyu, 2008, 2009] compare different

combinations of passive and active replication strategies, using their proposed

evaluation framework. Their focus is on selecting a suitable replication strategy

such that the performance threshold and failure threshold are met. Dustdar and

Juszczyk [Dustdar and Juszczyk, 2007] studied service replication strategies on

17
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mobile ad-hoc networks, whose topologies vary over time. They developed a

passive replication strategy and validated it on a simulation prototype.

In contrast, You et al. [You et al., 2009] consider the replication for com-

posed services. They replicate services that have the longest response time and

deploy them on the nodes with maximum available capacity. Via simulation,

their proposed strategy decreases the response time of composite service as well

as balances the load. We consider both the replication of the composition execu-

tion engine and the atomic services, and focus on deriving the optimal number

of replicas for optimizing system resources and performances.

Resource efficient services: To design a scalable and cost-effective service-

oriented system, dynamic resource provisioning is very critical, especially when

encountering time-varying workloads. A comparison of different web service

provisioning architectures is presented in [Pautasso et al., 2008]. A number of

studies [Chen et al., 2005; Lin et al., 2013] focus on a single tier web server sys-

tem, whereas others [Singh et al., 2010; Zhang et al., 2008; Stewart et al., 2007]
address multi-tier web server systems. Resource provisioning strategies in multi-

tier systems often consider each tier independently from other tiers. Petrucci et

al. [Petrucci et al., 2011] implement a dynamic service provisioning policy to

optimize power consumption on a heterogeneous cluster. While most provision-

ing studies monitor the request rate, Singh et al. [Singh et al., 2010] monitors

not only the request rate but also the mix of applications. Pautasso et al. [Pau-

tasso et al., 2007] design an engine for autonomic resource provisioning that can

dynamically reconfigure resources to different tasks as conditions change. The

autonomic, self-optimizing replica placement module proposed by Serrano et al.

[Serrano et al., 2008] dynamically places data copies on servers close to clients.

2.2 Provisioning of Servi
es in Publi
 Clouds

Cloud computing is an emerging platform for commercial and scientific appli-

cations, due to advantages in the pay-as-you-go business model and elasticity

capacity provision. The services offered by public clouds are a good fit for ap-

plications and services with growing or fluctuating demand, as the provisioned

capacity can be adjusted based on workload observations or predictions.

To better understand how to best go about provisioning services and appli-

cations in the cloud, many studies have looked at the replication aspect — how

are replicated services best provisioned in the cloud, how are they migrated from

existing systems, and what are the differences compared to local data centers or

clouds. The observed performance variability has been investigated from many
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points of view, such as architectural and platform differences, as well as the im-

pact of co-located VMs. For deciding whether or not to move a system into the

cloud, the actual migration from existing systems also needs to be taken into ac-

count. Guaranteeing reliability and performance for services provisioned in the

cloud is also not always straight-forward, and related studies also look at the

QoS-aspects of such services.

Migrating services to the cloud: The focus of related studies regarding

migration of service-oriented applications from existing systems to the cloud

is widely spread: From a summary of the practical experiences [Chauhan and

Babar, 2011], to frameworks for automating and easing the migration process

[Mietzner et al., 2009], and cost optimization [Trummer et al., 2010; Fehling

et al., 2010]. Chauhan and Babar [Chauhan and Babar, 2011] report practical

experiences of migrating an open source software framework, Hackystat, to the

cloud. One of the key findings is that it is easier to migrate software systems

consisting of stateless components to IaaS clouds.

Performance variability: Various studies [Kossmann et al., 2010; Jackson,

Ramakrishnan, Runge and Thomas, 2010; Jackson, Ramakrishnan, Muriki, Canon,

Cholia, Shalf, Wasserman and Wright, 2010; Ueda and Nakatani, 2010; Nurmi

et al., 2009] present performance studies and report their experiences on migra-

tion of various applications to commercial cloud platforms. A common observa-

tion is the high variability in the quality of service. Kossmann et al. [Kossmann

et al., 2010] present a comprehensive evaluation of database applications under

different cloud architectures. They conclude that the cost and performance of

the services vary significantly depending on the workload. Jackson et al. [Jack-

son, Ramakrishnan, Muriki, Canon, Cholia, Shalf, Wasserman and Wright, 2010;

Jackson, Ramakrishnan, Runge and Thomas, 2010] port various scientific ap-

plications, such as SNFactory pipeline, to Amazon [EC2, 2014]. Their results

show that the performance of EC2 is more variable and slower than non-cloud

computing platforms, due to the limitation of interconnects on EC2. Ueda and

Nakatani evaluate a wiki workload and Apache daytrader using two open-source

cloud platforms, OpenNebula [OpenNebula, 2015] and Eucalyptus [Nurmi et al.,

2009]. The two platforms give very different performance results, e.g., in terms

of VM provisioning, response time, and throughput, compared to Amazon EC2.

Most existing studies on the performance variability of applications hosted

in the cloud are based on empirical experiments, especially in terms of average

and 95th percentile response time [Xu et al., 2013; Schad et al., 2010], and aim

to discover the root cause of such a phenomenon [Kossmann et al., 2010; Jack-

son, Ramakrishnan, Runge and Thomas, 2010; Mao and Humphrey, 2012]. The

observations made from cloud experiments are mainly based on a single type of
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configuration and simple benchmarks. A few studies [Spicuglia et al., 2013; Xu

et al., 2013; Schad et al., 2010] focus on multiple types of VM configurations and

try to quantify the variability in their response times. Moreover, the variability

in throughput is largely evaluated under a particular workload intensity, instead

of using the maximum sustainable throughput, i.e., the capacity.

Reliability: Various service replication strategies have been developed and

evaluated for guaranteeing the reliability [Zheng and Lyu, 2009; Dustdar and

Juszczyk, 2007] or performance under time-varying workloads [Chen et al., 2005;

Lin et al., 2013; Singh et al., 2010; Stewart et al., 2007; Petrucci et al., 2011]. To

deliver highly dependable service systems, Zheng and Lyu [Zheng and Lyu, 2009]
compare different combinations of replication strategies, using their proposed

evaluation framework. Their objective is to select a suitable strategy such that

the performance threshold and failure threshold are met. Dustdar and Juszczyk

[Dustdar and Juszczyk, 2007] developed a passive replication strategy on mobile

ad-hoc networks, whose topologies vary over time, and validated it on a simu-

lation prototype. As for workload driven replication strategy, both single-tier

[Chen et al., 2005; Lin et al., 2013] and multiple-tier [Singh et al., 2010; Stew-

art et al., 2007] web server systems in a non-cloud platform are well addressed.

Petrucci et al. [Petrucci et al., 2011] implement a dynamic service provisioning

policy to optimize power consumption on a heterogeneous cluster. While most

provisioning studies monitor the request rate, Singh et al. [Singh et al., 2010]
monitor not only the request rate but also the mix of applications.

Consistency: Data consistency is another aspect that becomes more relevant

in public clouds. There is often a non-trivial trade-off between cost, consistency,

and availability [Kraska et al., 2009]. Weak consistency is often considered suf-

ficient for applications deployed in public clouds [Fetai and Schuldt, 2012]. This

weak consistency may result in increased operational costs, e.g., due to over-

selling products in a web shop. On the other hand, providing stronger consis-

tency comes at the expense of higher costs, both in performance and monetary

terms. These aspects also need to be taken into account when deciding whether

or not to deploy applications in the cloud.

QoS: Recent studies on QoS analysis for cloud services [Zheng et al., 2011;

Ye et al., 2012; Tsakalozos et al., 2011] are mainly driven by service composi-

tions and service selection, using a Markovian decision process [Ramacher and

Mönch, 2012] or a Baysian network model [Ye et al., 2012]. In contrast, studies

focusing on constant QoS value, e.g., Zheng et al. [Zheng et al., 2011] proposed

a calculation method to estimate the probabilistic distribution of QoS. Toffetti

et al. [Toffetti et al., 2010] use Kriging surrogate models for approximating the

performance profile of virtualized, multi-tier Web applications, including analyz-
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ing collected data to diagnose potential SLA violations. However, the impact on

the QoS due to the underlying performance variability of the cloud is to a large

extent overlooked.

Reducing variability: Meanwhile, another set of studies focus on developing

solutions to reduce the performance variability in a best effort manner, from the

perspective of service providers. Particularly, Farley et al. [Farley et al., 2012]
propose opportunistically selecting VMs which have high capacity, while discard-

ing VMs with low capacity. Another type of solution is to try to figure out the

underlying hardware and neighboring workloads, so as to select similar physical

hosts [Schad et al., 2010] and influence the neighboring VMs [Ristenpart et al.,

2009]. As the methodology is trial and error, the QoS of the target application,

e.g., the service availability, is not always guaranteed. Moreover, the cost analysis

is over-simplified, without considering the performance variability. CopperEgg

provides a tool [AWS Sizing Tool, 2014] that tracks your current system usage

and recommends optimal Amazon EC2 instance sizes. Whether or not they take

the observed variability of VMs into account is not clear, as it is not shown in any

of the metrics in the product presentation.

2.3 Tail Response Times

In this section, we discuss the related work in two directions: the modeling work

on predicting the tail response times for complex queueing systems that show a

great resemblance to real systems, and the optimization work that tries to miti-

gate the response time degradation due to exogenous variability in the cloud.

2.3.1 Modeling Tail Response Times

Given a vast amount of research on estimating the average response times, ob-

taining the entire distribution of response times is no mean feat for non-Markovian

systems, in terms of arrival and service processes. An example of this are M/G/1/PS

queueing systems [Kleinrock, 1975; Gautam, 2012], which are widely adopted to

model various computing systems executing highly varying job sizes with a fixed

speed in a processor sharing discipline. The introduction of cloud computing pin-

points another dimensionality of the modeling challenges, i.e., varying execution

speed. The state-of-the-art deals with two causes of varying execution speeds:

state-dependent and exogenous/environmental variability. The former [Gupta

and Harchol-Balter, 2009; Rege and Sengupta, 1985; Zhang and Zwart, 2008]
models the execution speed based on the current state of the system, i.e., the
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combination of the number of jobs and the multiprogramming levels. The latter

[Mahabhashyam and Gautam, 2005; Casale and Tribastone, 2013; Zhang and

Zwart, 2012; Dorsman et al., 2013] models the transition of execution speeds as

Markov-modulated speed for single queue and multiple queues.

In terms of the impact of arrival process, prior studies efficiently model the

average response times of bursty workloads using a Markovian Arrival process

[Casale et al., 2008; Sansottera et al., 2013], particularly for multi-tier appli-

cations [Mi et al., 2008]. The Markov-modulated execution speed for single

queues is discussed in [Gautam, 2012; Baykal-Gursoy and Duan, 2006; Boxma

and Kurkova, 2001]. While both Zhou and Gans [Zhou and Gans, 1999], as well

as Boxma and Kurkova [Boxma and Kurkova, 2001], study two execution speeds,

they employ different assumptions on when the changes of execution speed take

place, i.e., only after the completion of job execution and during the job execu-

tion. Moreover, Boxma et al. consider an M/G/1 queue where the speed of the

server alternates between two values with high speed periods having exponen-

tial distribution and low speed periods having a general distribution. Another

related article is one by Massey [Massey, 2002], where the author focuses on de-

riving the queue process and the time-varying aspect, in particular an Mt/Mt/1

queueing system. In [Mahabhashyam and Gautam, 2005], the authors general-

ize the execution speed to any Markov process, and also the tail distribution of

the workload in steady state. However, all the aforementioned analysis requires

the arrival process to be Markovian.

There are a few studies that consider multiple queues with Markovian-modu-

lated speeds. Dorsman et al. [Dorsman et al., 2013] obtain the heavy-traffic ap-

proximation for a steady distribution of workloads, queue lengths, and response

times for parallel queueing networks with Markov-modulated service speeds, by

combining a functional central limit theorem approach and matrix-analytic meth-

ods. However, the impact of different traffic intensities and renewal arrivals are

not considered there. To efficiently approximate the mean performance indexes,

i.e., throughput and response time, Casale et al. [Casale and Tribastone, 2013]
propose a generalized blending algorithm to model any number of execution

speeds experienced by servers in the cloud. They are based on solving the or-

dinary differential [Kurtz, 1970] that defines an approximate transient analysis

method for queueing network models. Their approach is limited to queueing

networks with Markovian arrivals and Coxian jobs size distribution.

To the best of our knowledge, the tail distribution of response times of many

queue scenarios with execution speed modulated according to exogenous envi-

ronmental processes and renewal arrivals are yet to be explored.
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2.3.2 Optimizing for Tail Response Times in Cloud

Recognizing the importance and challenges of mitigating the performance vari-

ability in cloud computing, various reactive and proactive optimization strategies

have been proposed. The reactive strategies center on obtaining a set of VMs

that are of the same configurations but provide better performance, i.e., faster

execution speed. To such an end, Farley et al. [Farley et al., 2012] use testbed ex-

periments whereas Björkqvist et al. [Björkqvist et al., 2012] leverage simulation.

Krebs et al. [Krebs et al., 2014] quantify the performance isolation of cloud-based

systems using different metrics. Kraft et al. [Kraft et al., 2011] model the impact

of workload consolidation on VM disk IO response times. Schad et al. [Schad

et al., 2010] focus on the exogenous variability resulting from the underlying

heterogeneous hardware and develop strategies to select VMs that are hosted on

the same platform as to reduce the variability of the execution speeds. As for

proactively mitigating the performance degradation, Björkqvist et al. [Björkqvist

et al., 2013] leverage a continuous Markovian model to capture the distribution

of tail throughput and further optimize the cloud cluster that fulfills the target tail

throughput at minimal cost. Sansottera et al. [Sansottera et al., 2012] provide

a consolidated model that considers power, performance and reliability aspects

when estimating the impact of hardware virtualization on the operational cost

and performance of data centers. The model developed by Casale et al. [Casale

and Tribastone, 2013] is meant to enable efficient exploration of the decision

space for cloud deployments, but with focus on the average performance index.

In summary, the optimization strategies for tail response times fall short in

providing SLA guarantees, i.e., they only promise best effort. Our study adopts

the proactive approach to model various important aspects of cloud clusters and

further optimize the cluster size so that the tail response times specified in SLAs

are statistically guaranteed.

2.4 Load Balan
ing of Servi
e Clusters

The related work in the area of load balancing of service clusters can be divided

into two areas: composed and atomic services. Composed services deal with

scenarios where a single client invocation of a composed service leads to an ex-

ecution of one or more executions of other services that provide functionality

necessary for being able to complete the composed service. The order and num-

ber of times each individual service is executed depends on the composed service

request. In studies on load balancing of composed services, the binding of ser-
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vice replicas is one of the key issues investigated. For atomic services, the related

work mainly focuses on how to distribute load between service replicas that are,

for the most part, functionally equivalent. More specifically, addressed issues in-

clude heterogeneous hardware, separating incoming requests based on param-

eters such as the size, and to what degree the time-varying aspect of incoming

requests is taken into account.

2.4.1 Load Balan
ing of Atomi
 Servi
es

There is a large body of related studies of load balancing for various conventional

service systems [Cardellini et al., 1999; Cherkasova and Ponnekanti, 2000; Riska

et al., 2002; Zhang et al., 2005] and modern cloud systems [Dejun et al., 2011].
Cardellini et al. [Cardellini et al., 1999] qualitatively classified existing load

balancing schemes at web server systems into four approaches, namely client-

based, DNS-based, dispatcher-based, and server-based. Cherkasova and Pon-

nekanti [Cherkasova and Ponnekanti, 2000] developed FLEX, a locality-aware

load balancing solution, especially for efficient memory usage. Riska et al.

[Riska et al., 2002] proposed a load balancing scheme where incoming requests

are sent to replicated server back-ends based on the request size. Zhang et al.

[Zhang et al., 2005] expands on the earlier work [Riska et al., 2002]. Dejun et

al. [Dejun et al., 2011] benchmark individual VMs obtained from cloud providers

such as Amazon [EC2, 2014]. This information is then used to both balance the

load within a tier (e.g., front-end or database), as well as to decide which tier a

new VM is best suited for. Singh et al. [Singh et al., 2010] leveraged the idea of

application mixes and proposed a mix-aware resource allocation for data centers.

Most of the aforementioned studies focus on balancing loads on homogeneous

servers with a single resource type, i.e., CPU.

2.4.2 Load Balan
ing of Composed Servi
es

There is also a substantial amount of work done in the field of dynamic binding of

composition execution engines and on scheduling algorithms. Most of the related

work in the area addresses dynamic binding for compositions expressed in BPEL,

that is, for business processes, since BPEL is a de facto standard and there are

many implementations of BPEL engines. While BPEL supports dynamic binding

by partner link assignment, it is neither possible to add new services at runtime,

nor to change the service selection algorithm at runtime. Furthermore, in BPEL,

dynamic binding is coupled with process business logic.



25 2.4 Load Balan
ing of Servi
e Clusters

VieDAME [Moser et al., 2008] is a service monitoring and selection system

based on aspect-oriented programming that intercepts SOAP messages and is

able to dynamically replace services used in a business process. Dynamo [Baresi

et al., 2007] relies on an aspect-oriented engine extension of ActiveBPEL engine

to support monitoring and failure recovery. RobustBPEL2 [Ezenwoye and Sad-

jadi, 2008] provides dynamic binding with proxies. An approach to optimize

system performance, taking hardware resources into account, is presented in

[Zhang et al., 2007]. In [Mosincat and Binder, 2009], BPEL processes are au-

tomatically transformed to interact with a separate system that handles dynamic

binding. Lottery scheduling in operating systems is presented in [Waldspurger

and Weihl, 1994].
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Chapter 3

Provisioning of Two-tier Servi
es in the

Cloud

Service-oriented systems, consisting of atomic back-end services utilized by front-

end servers to provide composed services, are commonly deployed to deliver web

applications. As the workloads of applications fluctuate over time, it is economi-

cal to autonomously and dynamically adjust system capacity, i.e., the number of

replicas for back-end and front-end services. In this chapter, we propose a novel

replica provisioning policy which adjusts the number of front-end and back-end

service replicas periodically based on the predicted workloads, such that all repli-

cas are well utilized at the target values. In particular, our proposed replica provi-

sioning policy models the workload balance and dependency between front-end

and back-end service replicas by estimating the probability that threads of front-

end replicas are not blocked by I/O. Moreover, we derive the analytical bounds

of effective front-end replica utilization and illustrate the cause of low nominal

utilization at front-end replicas. We evaluate our proposed replica provision-

ing policy on a simulated service-oriented system, which hosts front-end and

back-end service replicas on multi-threaded servers. The evaluated workload is

derived from utilization traces collected from production systems. Through sim-

ulation, we demonstrate that our proposed replica provisioning policy effectively

reduces the number of required replicas, while maintaining target utilization and

lowering the response times of requests.

Our proposed replica provisioning policy dynamically adjusts the number of

front-end and back-end service replicas periodically in slotted control windows.

The workload and performance statistics are monitored in a control window of

predefined length, and our replica provisioning policy aims to maintain the target

utilization of the front-end and back-end service replicas by using the obtained

27
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measurement data to adjust the number of service replicas. In particular, we esti-

mate the nominal and effective utilization of front-end service replicas, which ex-

plicitly factors in inter-dependency among front-end and back-end service repli-

cas using the derived non-blocking probability at front-end service replicas. Our

simulation results show that our proposed replica provisioning achieves cost-

effective provisioning of replicas, whose effective utilization is well maintained

at the target value, and which deliver satisfactory end-to-end response time.

The contributions of this chapter are threefold; first, our model and analy-

sis of two-tier service-oriented systems capture many key features: time-varying

workloads, parallelism of replicas, i.e., thread pools, and the dependency be-

tween front-end and back-end service replicas. Second, we develop a novel repli-

cation manager, which considers the aforementioned features and dynamically

controls front-end and back-end service replicas based on the monitored work-

load and performance metrics. Third, we provide bounding analysis on effective

and nominal utilization for front-end service replicas, which essentially need to

be kept less utilized than the back-end service replicas by a factor of the non-

blocking probability of the front-end service replica threads.

This chapter is organized as follows: The system architecture is explained

in Section 3.1. The service replication manager and service selection policy are

described in Section 3.2 and Section 3.3, respectively. Section 3.4 contains the

experimental results. The assumptions and limitations of this work are detailed

in Section 3.5, and Section 3.6 summarizes the chapter.

3.1 System Model

In this chapter we consider a service-oriented system as depicted in Figure 3.1.

Composed services, built using one or more atomic back-end services, are de-

ployed and provided by the front-end servers and exposed through service in-

terfaces to various client applications. When a service composition is invoked

by a client, the front-end creates an instance of the composition and executes it.

During the execution, atomic back-end services are invoked. We assume a ser-

vice provider that hosts both the service compositions (in a front-end) and the

atomic back-end services that are invoked when compositions are executed. We

assume that client do not directly invoke the atomic back-end services; clients

only invoke the exposed service compositions. In our model, both the front-end

and back-end services can be replicated.
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Figure 3.1. Ar
hite
ture overview

3.1.1 Client Requests and Composite Servi
es

For each service composition deployed in the front-end, we assume that the client

requests generated from different applications may consist of disparate service

compositions and have different workload characteristics (i.e., time-varying ar-

rival rates). Here we consider only sequential service compositions where atomic

back-end services are invoked in a given order. Here we do not model different

workflow patterns [van Der Aalst et al., 2003] such as parallel split. For example,

consider a system with two types of atomic back-end services, denoted by S1 and

S2. Two possible service compositions are 〈S1, S2〉 and 〈S2, S2〉. For the first com-

position, S1 is first invoked and then S2, whereas in the second composition, S2

is invoked twice consecutively. Each service composition corresponds to an ap-

plication a, and Ωa denotes the sequence of service invocations for application a.

For the two examples above, Ωa = 〈S1, S2〉, respectively Ωa = 〈S2, S2〉.

3.1.2 Atomi
 Ba
k-end Servi
es

The system hosts I types of atomic back-end services, subscripted by i ∈ {1 . . . I}.

There may be multiple replicas, nsi
, for each service type. All service types are
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considered stateless, i.e., for each invocation of an atomic back-end service by a

front-end replica, a different replica may be bound. Each back-end replica has

a queue for incoming requests (i.e., service invocations by the front-end) and

maintains a thread-pool of fixed size, tsi
, for processing these requests. Concur-

rent service invocations can be processed in parallel as long as there are threads

available, i.e., sequential code sections in service replicas are not modeled.

We model each back-end service replica as a queueing system with one queue

and multiple servers, each of which represents a single core/thread. An active

replica processes service invocation requests sent by a front-end replica in a first

come, first served (FCFS) manner, and the service i execution time per thread is

a random variable with mean dsi
. The response time of a service invocation is

the sum of the queueing time and the execution time. We denote the average

response time of service i by Rsi
.

3.1.3 Front-end Servi
e Repli
as

There are n f front-end replicas, each of which is a distributed queueing system.

A front-end replica queues incoming client requests that are then processed in a

FCFS order. We let the average queueing time at a front-end replica be Q f . The

front-end replica has a thread-pool of fixed size, t f , for executing client requests

in a parallel fashion. Each front-end replica thread processes one request after

the other, executing the corresponding service composition. For an invocation

of service i, each thread selects a replica of service i, according to a load bal-

ancing scheme. The average execution time for a front-end replica to process a

service invocation is assumed d f . The invocations of atomic back-end services

are handled using blocking I/O: a single thread is used for the entire execution

of an instance of a service composition, and this thread will block while wait-

ing for the results of invoked atomic back-end services. Since each instance of a

service composition is executed sequentially by a single thread, we model only

sequential compositions.

3.1.4 Repli
ation Manager

The replication manager determines the number of front-end replicas, n f (t), and

the number of back-end service replicas for each service type, nsi
(t), in discrete

time windows of fixed length. We assume that each replica is deployed on a

separate machine (i.e., resource contention between replicas on the same node

need not be considered in this simplified model). In total, the provider has N

machines to host all replicas. For all the windows, n f (t) +
∑

i nsi
(t) ≤ N . The
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replication manager keeps at least one replica for each back-end service type,

i.e., nsi
(t)≥ 1, and for front-end replicas, i.e., n f (t)≥ 1.

Front-end and back-end service replicas can be activated or deactivated in

slotted windows by the replication manager. When a replica is deactivated, it re-

ceives no more requests (client requests in the case of a front-end replica, service

invocations from a front-end replica in the case of a back-end service replica),

but it still needs to complete the processing of all pending requests in its queue.

We assume it takes constant warm-up time for a replica before starting to process

the incoming requests.

3.1.5 Average End-to-end Request Response Time, Ra

The average end-to-end response time of a request for application a, Ra, is the

summation of (1) the queue time at a front-end replica, Q f , (2) the front-end

execution times (|Ωa|d f ), and (3) the response time of all service invocations

composed in Ωa. Thus, one can obtain

Ra =Q f + |Ωa|d f +
∑

i∈Ωa

Rsi
, (3.1)

where |Ωa| denotes the cardinality of Ωa, i.e., the number of invocations in a

service composition of application a. Herein, we assume the network time is

negligible compared to the processing time and queueing time at front-end and

back-end service replicas.
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3.2 Optimizing Performan
e of Front-end and Ba
k-end

Servi
e Repli
as

System utilization has commonly been used as a performance metric for de-

signing resource provisioning policies [Verma et al., 2007; Chen et al., 2005].
Typically, the target utilization is purposely kept below the maximum capacity,

e.g. 80%, for handling variations in the workloads [Petrucci et al., 2011]. Cer-

tain load balancing algorithms can be very effective in reducing the variance

of workloads and greatly enhance application response times [Björkqvist et al.,

2011], given the same levels of resource provisioning and system utilization, es-

pecially when the system is moderately loaded. Combining both observations,

we propose a hierarchical solution to attain a cost-performance effective service-

oriented system: (1) coarse-grained front-end and back-end service replica pro-

visioning by the replication manager, and (2) fine-grained load balancing algo-

rithms among available service replicas.

3.2.1 Monitoring and Predi
ting Workloads

To design a replica provisioning policy, the very first step is to monitor and further

predict the workloads [Singh et al., 2010; Chen et al., 2005; Petrucci et al., 2011].
As there are two distinct tiers in our system, namely front-end and back end, their

workload characteristics need to be monitored separately. At the front-end tier,

we focus on request rates of each application, whereas at the back-end tier we

collect statistics of total invocations rates of each service.

We let λa be the request rate of application a. The total request rate received

by the front-end tier is the summation of all applications, i.e., λ =
∑

aλa. We

denote the invocation rate of requests received for back-end replicas of service

i by λsi
. As an application request consists of various and multiple service invo-

cations, the total request rate is less than the total service invocation rates, i.e.,∑
aλa ≪
∑

i λsi
. Note that λ and λa fluctuate in multiple time scales, and so

does λsi
.

The replication manager monitors the request rates of all applications and

invocation rates of all back-end services for all control windows. At the beginning

of the control window, the replication manager obtains the estimate of λa(t), and

λsi
(t), using historical statistics. In particular, a simple last value prediction is

used, i.e., the arrival rate of the previous control window,
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a a ∈ {1 . . . A} subscript for applications

i i ∈ {1 . . . I} subscript for services

Ωa sequence of service invocations for a request of application a

λ total request rate

λ{a,si}
request rate for application a and service i

t{ f ,s} number of threads in a front-end/back-end service replica

n{ f ,si}
number of front-end/back-end i service replicas

d{ f ,si}
average front-end/back-end i service execution time

Rsi
average response time of back-end service i

Q f average queueing time of front-end

P non-blocking probability for front-end threads

U{ f ,si}
nominal utilization of front-end/back-end service i replicas

Ra average end-to-end response time of requests from application a

Table 3.1. Notations and de�nition

Öλa(t) = λa(t − 1)

×λsi
(t) = λsi

(t − 1). (3.2)

3.2.2 Controlling Repli
as

Due to the blocking I/O in front-end threads, we consider two types of utilization

the front-end tier: nominal and effective. The former computes the fraction of

time front-end replica threads are busy processing compositions, whereas the

latter computes the fraction of time front-end threads are busy or blocked waiting

for back-end service invocation requests to return. For back-end service replicas,

the effective and nominal utilization are equivalent. Particularly, the replication

manager aims at maintaining the effective utilization of active front-end and

back-end services replicas at the target values, U∗. In the following, we first

derive the effective utilization and then obtain the replica control policy for back-

end and front-end replicas, respectively.

Ba
k-end Servi
e Repli
as

The utilization of active back-end service i replicas, Usi
is defined as the invo-

cation rate, λsi
, divided by the aggregate capacity provisioned, i.e., nsi

ts/dsi
, ac-

cording to the utilization law [Kleinrock, 1975]. At every control window, the
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replication manager provides a sufficient number of replicas, nsi
(t), such that the

effective utilization is less than the target value,

Usi
(t) =

λsi
(t)dsi

nsi
(t)ts

≤ U∗, ∀i, t , (3.3)

After substituting×λsi
(t) and following algebraic manipulation, the replication

manager controls nsi
(t) by following

nsi
(t) = ⌈
×λsi
(t)dsi

U∗ tsi

⌉, ∀i, t . (3.4)

Front-end Repli
as

The effective utilization of front-end replicas considers the blocking I/O in deal-

ing with sequential back-end service invocations. We let P(t) be the non-blocking

probability of sequential invocations within a composition. The effective capac-

ity of all front-end replicas at window t is the product of the aggregate front-end

capacity and non-blocking probability, i.e., n f (t)t f /d f P(t). The workload sent

to front-end replicas from application a is the request rate multiplied by the num-

ber of invocations in a composition, λa|Ω|. Therefore, the aggregate workload

of the front-end replicas at window t is:

λ f =
∑

a

λa|Ωa|.

Similar to Equation 3.3, one can then write the effective utilization of front-end

replicas at window t as

U
e f f

f
(t) = λ f (t)

d f

n f (t)t f P(t)
(3.5)

= U f (t)
1

P(t)
≤ U∗,

where U f denotes the nominal utilization. One can see that U f is higher than

U
e f f

f
by a factor of blocking probability, P.

We derive P(t) as the weighted average of the non-blocking probability from

applications, because the blocking depends on the composition defined in the

application. We let Pa(t) be the non-blocking probability of application a, then

write

P(t) =
∑

a

λa(t)

λ(t)
Pa(t),
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where
λa

λ
is the percentage of application a requests out of total application re-

quests.

The non-blocking probability of application a requests can be derived from

the fraction of the front-end processing time over the summation of front-end

processing and blocking time. For a composition request, the front-end process-

ing time is the processing time per invocation multiplied by the number of in-

vocations, d f |Ωa|. The blocking time is essentially the summation of back-end

service response times of all invocations,
∑

i∈Ωa
(Rsi
). As such, we can express Pa

as a function of d f and Rsi
,

Pa(t) =
|Ωa|d f∑

i∈Ωa
Rsi
(t) + |Ωa|d f

. (3.6)

Note that Rsi
(t) here is not stationary as the provisioning of back-end service

replicas changes across different time windows. To obtainÖPa(t), we propose to

substitute Rsi
(t) by an estimate based on last window statistics,

×Rsi
(t) = Rsi

(t − 1), ∀i, t . (3.7)

Using the estimated total request rate, the application request rate, and the

response time of back-end services, one can obtain

ÕP(t) =
∑

a

Öλa(t)

Ôλ(t)
ÖPa(t)

=
∑

a

Öλa(t)

Ôλ(t)
|Ωa|d f∑

i∈Ωa

×Rsi
(t) + |Ωa|d f

. (3.8)

Combining Equations 3.5 and 3.8 and using some algebraic manipulations,

the replication manager controls the number of front-end replicas by the follow-

ing:

n f (t) = ⌈
×λ f (t)d f

ÕP(t)t f U∗
⌉

= ⌈
×λ f (t)d f

t f U∗
∑

a

×λa(t)

Ôλ(t)
|Ωa|d f∑

i∈Ωa
×Rsi
(t)+|Ωa|d f

⌉, ∀t . (3.9)

In summary, the replication manager monitors statistics relating to applica-

tion request rates, back-end service invocation rates, the utilization of front-end
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and back-end service replicas, and the response time of back-end service invo-

cations. Using the collected and estimated statistics, the replication manager

activates and deactivates replicas at the beginning of each window. Note that

the statistics monitored in the replication manager can easily be collected on

production systems.

3.2.3 Bounding Analysis on Front-end Performan
e

One can see that the effective utilization of front-end replicas is higher than the

nominal utilization, which is commonly measured by utility tools. Following our

model and analysis in the previous subsection, we derive the upper bound of

nominal utilization as a function of the target utilization values. Consequently,

one can use such an upper bound as a simple rule of thumb for evaluating the

performance of the front-end tier of service-oriented systems.

Theorem 3.2.1. The upper bound of nominal utilization of front-end replicas is

U f ≤ (U
∗)

2
.

The upper bound of U c is achieved when the non-blocking probability is equivalent

to the target utilization, P = U∗.

Proof. We start the proof by first deriving a looser upper bound of the nominal

utilization. Then, using the optimal value of non-blocking probability, we can

reach a tighter bound, which only depends on the target utilization.

From Equation 3.5, one can write U f
1
P
≤ U∗ ≤ 1. First, as P ≤ 1, we know

U f ≤ U∗. Secondly, as U f
1
P
≤ 1, we know U f ≤ P. Combining both observations,

one can get a loose upper bound of U f , by taking the minimum of P and U∗,

U f ≤min{U∗, P}.

When U∗ ≥ P, U f ≤ P; whereas when U∗ ≤ P, U f ≤ U∗. Consequently, the

upper bound of U f increases in P and stays constant at U∗, after P reaches U∗.

In other words, when P = U∗, the upper bound U f is maximized. Taking P = U∗

into Equation 3.5, one can get U f
1

U∗
≤ U∗, and then U f ≤ (U

∗)2.

Theorem 3.2.1 points out that to achieve the nominal utilization upper bound,

the non-blocking probability should be at least as high as the target utilization.

However, the non-blocking probability at front-end replicas is bounded by the

relative difference between the front-end processing time and response time of

back-end service invocation. The maximum achievable non-blocking probability

is when there is no queueing time at the back-end service replicas. Comparing

such a non-blocking probability with the target utilization, one can gauge how
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tight the nominal utilization is bounded by (U∗)2. When the maximum achiev-

able non-blocking probability is lower than U∗, the nominal utilization is lower

than (U∗)2. whereas when the maximal achievable non-blocking is greater than

U∗, the nominal utilization might reach (U∗)2.

3.3 Servi
e Sele
tion

To evenly balance the loads on the distributed replicas, we adopt two back-end

service selection algorithms. For each service invocation in a request, a front-end

thread selects back-end end service replicas using only statistics collected at the

local front-end replica. That is, threads of a replica have the back-end service

replica statistics from their local requests, but not the aggregate statistics from

all front-end replicas. In the following, we describe two selection policies:

1. Distributed Round Robin Selection (D-RR):

Each front-end replica maintains a round-robin list of active back-end ser-

vice replicas. At the beginning of each control window, the list is updated

by adding (removing) the newly activated(deactivated) back-end service

replicas. Upon back-end service replica selection, the front-end replica

thread requests the next back-end service replica from the round-robin list

and sends the invocation request to the chosen back-end replica. D-RR

is completely load oblivious and the resulting loads on back-end service

replicas may not be optimally balanced.

2. Distributed Shortest Queue Selection (D-SQ):

A front-end replica keeps statistics of outstanding service invocation re-

quests sent by its threads and the corresponding queueing information at

active back-end service replicas. Upon back-end service replica selection,

the front-end thread selects the back-end replica with the lowest number

of queued invocations based on the locally maintained statistics. The im-

plementation overhead is limited compared to the conventional shortest

queue selection, which collects queueing statistics from all front-end repli-

cas. D-SQ is partially load aware, practical, and has good potential for

reducing response time [Björkqvist et al., 2011] and balancing loads on

back-end replicas.

As D-SQ is expected to achieve lower response times of service invocation

than D-RR, one can expect that the resulting non-blocking probability is higher

for D-SQ, according to Equation 3.8.
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3.4 Evaluation

In this section, we evaluate our proposed replication policy in combination with

two load balancing schemes using trace-driven simulation. We first describe the

simulated environment: the workload generator and the system scenarios. Our

evaluation results, based on the average of ten simulation runs, show that our

proposed replication policy can effectively reduce the number of front-end and

back-end services replicas, while maintaining the target utilization and minimiz-

ing the response time of back-end service invocations.

3.4.1 Simulator and System Con�guration

We built an event-driven simulator of service-oriented systems in Java, as shown

in Figures 3.1 and 3.2. Composition requests are generated from applications.

A front-end replica has t f = 32 threads to process service compositions and in-

vocation in parallel. The execution time per front-end thread is assumed ex-

ponentially distributed with an average d f = 0.5s. A back-end service replica

is configured to have ts = 4 threads, independent of service types. The repli-

cation manager collects workload statistics at every control window and acti-

vates/deactivates front-end and back-end replicas at the beginning of a window.

The length of the control windows is chosen according to workload characteris-

tics and prediction schemes.

Simulation Workload

The arrival patterns of requests from different applications are typically not avail-

able to the public, due to the business confidentiality. The most widely used

traces are World Cup web site workloads that date back to 1998 [Arlitt and Jin,

2000; Petrucci et al., 2011], or are derived from the TPC-W benchmark [Singh

et al., 2010], which was last updated in 2001. In contrast to conventional ap-

proaches, we seek an alternative to generate the workload – converting the CPU

utilization traces of an existing production system into the workload input of a

discrete simulator [Verma et al., 2007; Chen et al., 2005; Meng et al., 2010]. Ac-

cording to the basic utilization law [Kleinrock, 1975], the utilization multiplied

by a normalized constant is essentially the request rate, especially when the load

is below 100% utilization.

We collect utilization traces from four servers providing web services at finan-

cial, airline and media industries, during 10 am-12pm on October 20, 2011. The

trace from one server is considered as one application. The utilization values are
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the average computed over 15 minutes. To obtain the request rate per second, we

multiply the utilization values with the processing power of the server, i.e., the

number of cores. We illustrate the rationale by an example: Let the utilization

value be 35% for a 16 core server. This implies that, on average, 5.6 (0.35 · 16)

cores are busy. We further assume that a core is occupied by a single request

and such a value corresponds to the request arrival rate for a small granularity,

i.e., second. As such, we obtain the request rates for four applications, shown in

Figure 3.3. One can clearly see that the workloads are time-varying.

Due to the limitation of the coarse granularity in collecting utilization, we

are unable to collect the higher moment statistics and further fit the empirical

distribution of utilization. Consequently, we assume that the arrivals of requests

follow Poisson processes for each 15 minutes and that their means fluctuate ac-

cording to Figure 3.3. Once requests are generated, they are then immediately

forwarded to available front-end replicas in a random fashion.

Simulated System S
enarios

In particular, we consider the following two specific system scenarios and their

compositions:

• System scenario I:

The system provides a single type of back-end service, namely S0. Requests

are generated from two applications, i.e., a = {1, 2}, whose requests rates

correspond to app1 and app2 in Figure 3.3. Their service compositions are

Ω1 = 〈S0, S0〉, Ω2 = 〈S0, S0, S0〉. The execution time of a back-end service

replica thread at S0 is assumed exponentially distributed with mean ds0
= 1.

The maximum number of available front-end and back-end service replicas

are n f = 9, ns0
= 33. The length of each control window is 100 seconds.

• System scenario II:

The system provides three back-end service types, namely S0, S1 and S2.

Composition requests are generated from four applications, whose requests

rates correspond to app1, app2, app3 and app4 in Figure 3.3. Their service

compositions are Ω1 = 〈S0, S1, S0〉, Ω2 = 〈S0, S2〉, Ω3 = 〈S0, S1, S2〉, and

Ω4 = 〈S2, S0, S1〉. The execution times of a back-end service replica thread

at S0, S1 and S2 are assumed exponentially distributed with means ds0
= 1,

ds1
= 1.5, and ds2

= 2.5 seconds, respectively. The maximal number of

available front-end replicas and S0, S1 and S2 replicas are n f = 18, ns0
= 19,

ns1
= 26, and ns3

= 37, respectively. The length of each control window is

150 seconds.
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Figure 3.3. Request rates of appli
ations, λa.

For both scenarios, we set the target utilization of the active front-end and

back-end service replicas to be 85% and 80%, respectively. Such values are cho-

sen by empirical experiences [Petrucci et al., 2011]. Note that our replication

policy aims to maintain the front-end effective utilization, which includes the

blocking time, at the target value. For each simulation run, we collect the perfor-

mance metrics, averaged over all control windows, i.e., replica savings, nominal

and effective utilization of front-end and back-end service replicas (U
e f f

f
, U f , Us),

queueing time at front-end replicas (Q f ), response time of back-end service invo-

cations (Rsi
), and end-to-end request response time (Ra). In particular, the replica

savings are computed as one minus the number of total active replicas divided by

the maximal number of available front-end and back-end service replicas. Using

this metric, one can estimate the cost savings, given the target performance. For

both system scenarios, we compute the average of the aforementioned metrics

over ten simulation runs and present them in Tables 3.2, 3.3 and 3.4. Moreover,

for the purpose of comparison, we additionally simulate a static replication policy

which keeps the number of active back-end service replicas at the maximum for

all control windows, independent of workloads. The lowest end-to-end response

time can be achieved via maximum replica provisioning.
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3.4.2 System S
enario I

We apply our replication policy on system scenario I, with two different workload

load prediction schemes and two service selection schemes, D-SQ and D-RR, and

summarize the performance metrics in Table 3.2. To verify the accuracy of work-

load prediction in our proposed replication policy, we use our replication policy

with actual application request and invocation rates, and the default last value

predictions. One can observe the performance degradation is 15 − 25% when

using last value prediction with our replication policy, with any given service

selection.

When comparing D-SQ and D-RR under "actual" prediction, D-RR achieves

similar replica savings and effective utilization as D-SQ; however, D-RR has roughly

20% higher invocation and end-to-end response time. The utilization of back-end

service replicas is slightly under the target value of 80%, whereas the effective

utilization of front-end replicas is roughly 15% lower than the target value, due

to the large number of threads in a front-end replica. As expected, D-SQ can

achieve a lower response time via better load balancing, and thus a lower non-

blocking probability at front-end threads that is reflected by the relative differ-

ence between U
e f f

f
and U f . Moreover, due to a low non-blocking probability, the

front-end nominal utilization is way lower than the its upper bound, according

to Theorem 3.2.1 one can expect D-RR to have even worse performance when

the workload prediction is inaccurate, i.e., over- and under-estimating. Conse-

quently, we provide a higher spare capacity for the front-end tier and set a slightly

lower utilization target when applying our replication policy with last value pre-

diction and D-RR, i.e., 80% and 75%, respectively, for both scenario I and II.

When applying our proposed replication policy with the last value predic-

tion specified in Equation 3.2, the replica savings are around 50%, and D-RR

has slightly lower replica savings due to a lower target utilization. The average

queuing time at front-end replicas is significantly higher than in the "actual" case,

and consequently the end-to-end response time of the applications is higher than

in the "actual" case by 15−25%. Even with higher provisioning of front-end and

back-end service replicas, our proposed replication policy with last value predic-

tion and D-RR selection still has the worst queueing time at the front-end tier

and consequently the worst application end-to-end response times. As pointed

out earlier, the back-end service selection can fine tune the performance, but the

provisioning of the replicas are the first order parameters to control.

Overall, our proposed replication policy together with last value prediction

can achieve (1) significant replica savings; (2) front-end and back-end service

utilization that is slightly under the target values; and (3) very low end-to-end
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Table 3.2. Performan
e of applying proposed repli
ation poli
y on system

s
enario I.

Proposed replication policy

Workload Performance Statistics

Load Prediction Service Selection Replica Savings [%] U
e f f

f
[%] U f [%] Us0

[%] Q f [s] Rs0
[s] Ra0

[s] Ra1
[s]

Actual D-SQ 50.00 69.85 22.12 75.55 0.03 1.08 3.20 4.77

Actual D-RR 50.00 72.80 20.71 75.55 0.06 1.26 3.57 5.33

Last value D-SQ 50.68 70.93 21.87 75.91 0.75 1.12 4.00 5.63

Last value D-RR 47.53 69.96 20.08 71.31 1.10 1.25 4.60 6.34

Maximum Static Provisioning of Replicas

none D-SQ 0.00 26.71 8.78 38.33 0.00 1.02 3.03 4.55

none D-RR 0.00 26.81 8.78 38.33 0.00 1.02 3.04 4.56

request response times that are only slightly higher than the response times under

static maximum provisioning.

3.4.3 System S
enario II

We summarize the performance metrics of applying our proposed replication

policy with "actual" and "last value" prediction in Tables 3.3 and 3.4. Following

the observation and rationale in scenario I, we set the target utilization of front-

end and back-end service replicas to 80% and 75%, respectively.

One can make the following general observations, which are similar to the

ones made in scenario I: The replica savings achieved by our proposed replica-

tion policy are quite significant, compared to providing the maximum number

of replicas in all windows. Our proposed replication policy maintains the front-

end and back-end service replica utilization just slightly below the target values.

In particular, when applying our proposed replication policy with "actual" pre-

diction, the average end-to-end response time, Ra0
, Ra1

, Ra2
and Ra3

, is roughly

10% higher than with static maximum replica provisioning. It strongly supports

the accuracy of our proposed replication policy in predicting performance met-

rics, especially in a more complex system. The difference between "actual" and

"last value" prediction is more visible in front-end queueing time (Q f ) and thus

degrades the end-to-end response time roughly by 10− 20%.

We plot the run time results of applying our proposed replication policy with

last value prediction and D-SQ in Figure 3.4. The number of front-end and back-

end service replicas is highly correlated, because the number of front-end replicas

determines the invocation rates received by back-end service replicas. As such,

the utilization of front-end replicas oscillates in a greater range than the back-end

service utilization. Queueing time at the front-end replicas is fairly low, except

for two spikes around 70 and 80 minutes. The invocation response times for all

back-end services are even more stable, except for a spike around 80 minutes.
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Table 3.3. Repli
a savings and repli
a utilization when applying our proposed

repli
ation poli
y on system s
enario II.

Proposed replication policy

Workload Performance Statistics

Prediction Selection Savings [%] U
e f f

f
[%] U f [%] Us0

[%] Us1
[%] Us2

[%]

Actual D-SQ 36.59 81.37 17.50 76.16 76.90 76.83

Actual D-RR 36.59 82.54 16.29 76.16 76.90 76.84

Last value D-SQ 36.63 81.77 17.34 75.65 76.25 76.49

Last value D-RR 32.59 77.77 15.85 70.95 71.53 72.08

Maximum Static Provisioning of Replicas

none D-SQ 0.00 38.56 8.89 51.62 51.82 46.07

none D-RR 0.00 38.59 8.89 51.62 51.82 46.07

Table 3.4. Front-end queueing time, and servi
e and appli
ation response times,

when applying our proposed repli
ation poli
y on system s
enario II.

Proposed replication policy

Workload Performance Statistics

Prediction Selection Q f [s] Rs0
[s] Rs1

[s] Rs2
[s] Ra0

[s] Ra1
[s] Ra2

[s] Ra3
[s]

Actual D-SQ 0.17 1.16 1.74 2.90 4.07 7.47 5.23 7.47

Actual D-RR 0.28 1.29 1.94 3.23 4.52 8.24 5.80 8.24

Last value D-SQ 1.47 1.18 1.76 2.97 5.41 8.89 6.62 8.88

Last value D-RR 1.38 1.23 1.84 3.15 5.46 9.11 6.76 9.10

Maximum Static Provisioning of Replicas

none D-SQ 0.00 1.06 1.60 2.61 3.66 6.77 4.68 6.77

none D-RR 0.00 1.06 1.60 2.61 3.66 6.78 4.67 6.77

Overall, our proposed replication policy is able to provide sufficient numbers of

front-end and back-end service replicas, keep them well utilized, and maintain

stable response times, given the load fluctuation over time.

3.5 Assumptions and Limitations

In this work, we make a number of assumptions to facilitate the development

of a system model, enabling the analysis, as well as simplifying the simulations.

From the service point of view, we assume single resource bound (in particu-

lar, CPU-bound) services. We also only consider composed services where the

individual back-end services are invoked in a sequential manner. All compo-

nents are considered to be stateless in the sense that new replicas can be cre-

ated, and existing replicas terminated, without needing to transfer any state to

other entities in the system. On the other hand, the front-end service replicas

do keep state for each invocation of a composed service, to be able to determine

which back-end responses belong to which composed service request, and to be
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able to send responses back to the client when the composed service request has

been completed. We also do not consider the network in terms of e.g., latency

or throughput, in our analysis or evaluation. For the request processing we as-

sume first-come-first-served both on the front- and back-end service replicas, and

we evaluate our approach using (distributed) join-the-shortest-queue and round

robin as the load balancing policies.

The aforementioned assumptions make up some significant limitations that

need to be taken into account when applying the results on real systems, or when

extending the modeling and simulation work to more complex scenarios. Paral-

lel executions of back-end services to model more complex composed services,

maintaining state and consistency between replicas, and more accurate models

of resource constraints are all viable avenues to explore for future work.

3.6 Summary

In this chapter, we studied a service-oriented system hosting multiple front-end

and back-end service replicas. Our system model captures the workload dynam-

ics and the interdependency between the front-end and back-end service replicas

equipped with multiple threads. To reduce operational cost, as well as minimize

the end-to-end response time of applications, we developed a dynamic replica-

tion manager. The replication manager periodically adjusts the provisioning of

replicas such that the effective utilization of both front-end and back-end replicas

is kept at target values. The replication manager explicitly factors in the depen-

dency between the front-end and back-end tiers, using the derivation of non-

blocking probability at front-end replicas. Furthermore, we provide theoretical

bounding analysis on front-end replicas and derive optimal/maximal nominal

utilization. Our trace-driven simulation results show that using our proposed

replication policy, along with simple last-value workload prediction, can achieve

great replica savings and keep front-end and back-end service replicas well uti-

lized, while maintaining low response times, especially when the loads on back-

end service replicas are well balanced.
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Chapter 4

Leveraging Performan
e Variability for

Servi
e Provisioning

There is an emerging trend to deploy services in cloud environments due to their

flexibility in providing virtual capacity, ease of management, and pay-as-you-

go billing features. Cost-aware services demand computation capacity such as

virtual machines (VMs) from a cloud operator according to the workload (i.e.,

service invocations) and pay for the amount of capacity used according to billing

contracts. However, as recent empirical studies show, the performance variabil-

ity, i.e., non-uniform VM performance, is inherently higher than in private host-

ing platforms This can be explained by the fact that the cloud operators may

consolidate VMs of multiple tenants on the same physical machine, resulting in

resource sharing and possible performance interference. Additionally, the cloud

providers typically run their cloud infrastructure on top of heterogeneous hard-

ware, which can also cause performance variability. Consequently, the provision-

ing of service capacity in a cloud needs to consider varying VM performance as

well as workload variability.

In this chapter we develop an opportunistic replication policy for elastic ser-

vice provisioning on cloud platforms. Our objective is to leverage the variability

in VM performance and their billing contracts in a cloud such that the VM costs of

all services hosted by a provider are minimized, while maintaining given system

utilization. Our policy takes several control actions in a slotted window: turning

VMs on and off, replacing slower VMs in the hope of getting faster ones, and

reconfiguring VMs from one type of service to another. All these actions are as-

sociated with non-negligible time overhead. The criteria are the predicted work-

load, estimated VM performance, target system utilization, and billing contract

periods. Our evaluation results based on simulation show that the proposed

47
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opportunistic replication policy achieves significantly lower service provisioning

costs than workload-oblivious or purely workload-driven policies.

In this work, we analyze the workload of incoming requests of multiple ser-

vice types, where the request can be satisfied by one of many replicated service

replicas. We only consider stateless services, and assume that new replicas, iden-

tical with existing ones, can be started up at any time, and with only a short

delay. When deciding on how many resources are required to provision the pro-

vided services, we assume CPU-bound services, look at the utilization of each

service replica, and compare it to a target utilization. We use the utilization as

the performance measure instead of e.g., the response time or the throughput,

since it can be easily obtained by a monitoring tool without having to modify and

instrument the software providing the actual service.

The original scientific contribution of the work presented in this chapter is a

novel service replication policy, which is specially designed to explore the vari-

ability of VM performance on cloud platforms. In contrast to existing replication

polices, we optimize the cost and performance not only for a single service but

also for the entire system, by an augmented set of control actions, in particular

replacing and reconfiguring VMs. Our evaluation environment encompasses a

large number of different parameters, such as different time overheads associ-

ated with each control action. The proposed opportunistic replication policy is

shown to achieve lower cost and better performance for services hosted in the

cloud, compared to replication policies oblivious to the unique characteristics in

the cloud.

The rest of this chapter is organized as follows: The system architecture is ex-

plained in Section 4.1. The proposed opportunistic replication policy in Section

4.2. Section 4.3 contains the experimental results. Section 4.4 lists the assump-

tions and limitations of our work, and Section 4.5 summarizes the chapter.

4.1 System Model

4.1.1 System Ar
hite
ture and Dynami
s

Figure 4.1 illustrates the system architecture considered in this chapter. A ser-

vice provider deploys I types of services Si (1 ≤ i ≤ I) in a cloud. The services

considered here are simple atomic ones (i.e., we do not focus on composite ser-

vices that invoke other services). At any given moment, there are ni ≥ 1 VMs

running a service of type i; we also say there are ni replicas of service i in the

cloud. The values ni may change over time according to the actions taken by the
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Figure 4.1. S
hemati
s of servi
es system deployed in a Cloud platform.

policy presented in this chapter. However, there is always at least one replica for

each service.

To limit the scope of this study, we assume that all services are CPU-bound

and multi-threaded, that is, capable of handling several concurrent invocation

requests in parallel. We also assume that the service execution time is not signif-

icantly influenced by the input parameters passed upon service invocation.

For each service, there is a corresponding load balancer and VM controller

that are also deployed in the cloud. The load balancer distributes incoming invo-

cation requests to the replicas of the requested service (i.e., to the currently active

VMs running a service of the corresponding type) with the fewest outstanding

requests. We assume that the size of invocation requests varies, following an

exponential distribution, and thus the execution times of requests follow an ex-
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ponential distribution for a given VM throughput. The VM controller monitors

active VMs and keeps tracks of statistics about the invocation rate, VM perfor-

mance, and the billing periods of the active VMs. All controllers communicate

the statistics to the VM broker, on which the proposed opportunistic policy and

the control actions are implemented.

The throughput of a VM (i.e., its performance) is not fixed, but changes over

time due to the possibly heterogeneous infrastructure used by the cloud operator,

hardware optimizations that result in performance fluctuations, performance in-

terference of multiple VMs consolidated on the same physical machine, and VM

migrations. In this chapter, we assume that the average performance of VMs with

the same specification fluctuates in the discrete range of values. The specific val-

ues of VM performance can be estimated by observing the completed service

requests. Each VM is bound to a contract that defines the billing period (e.g.,

one or more hours). Therefore, releasing a VM before the end of a billing period

would be wasteful for the service provider who would still have to pay until the

end of the period.

4.1.2 VM Repli
a Provisioning

Here, the VM replication provisioning is implemented in slotted windows. The

length of the control windows depends on the dynamics of the workload and

the parameterization of the service replication policy. We assume that the billing

period is a multiple of the algorithm’s execution interval. In our simulation, we

use a billing period of one hour. To dynamically provide VM replicas in a cost-

effective manner, the VM broker considers four kinds of control actions: (1) turn

on a new VM; (2) turn off a VM (i.e., terminating the contract at the end of

a billing period); (3) replace a VM at the end of a billing period, if the VM is

suspected of not performing well; (4) reconfigure a (previously allocated) VM to

run a service of a different type. The first three actions are requests towards the

cloud operator, while the fourth action is transparent to the cloud operator.

There are some time overheads associated with each action. The turning on

of a new VM is assumed to take υ seconds to load and start the required service.

The VMs that are about to be turned off need to immediately stop receiving in-

vocation requests, but they will complete serving any requests that are currently

being processed, or are in the queue waiting to be processed. As for VMs reconfig-

ured from one service to another, they no longer receive invocations of the former

service and start serving invocations of the new service right after completing the

remaining requests of the former service and after the reconfiguration process.

Here, similar to the process of loading services, we assume that the reconfig-
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uration also takes υ seconds. The newly turned-on and reconfigured VMs are

published as “available” VMs after the completion of their loading/configuration

process. Note that previous related studies [Chen et al., 2005; Lin et al., 2013;

Singh et al., 2010; Stewart et al., 2007] tend to overlook the overhead structure

and lead to a simplified replication policy.

4.2 Opportunisti
 Repli
ation Poli
y

Following the rule of thumb practiced in today’s resource management [Verma

et al., 2007; Chen et al., 2005], we provide sufficient VMs to each service such

that the VMs’ aggregate capacities are well utilized. We use a typical target uti-

lization of around 80% [Petrucci et al., 2011], for handling temporary workload

variation. Here, we aim at achieving better performance metrics, e.g., response

time, and maintain target utilization at a lower cost, by leveraging a pay-as-you-

go billing model and the variability in VMs’ performance in the cloud.

We develop an opportunistic replication policy and implement it in the VM

broker. In contrast to replication policies on private platforms, our proposed

policy decides not only on the number of active VMs per service, but also strives

to acquire VMs with better performance. The general idea of our opportunistic

policy is that the VM broker first decides on the number of VMs for each service,

based on the information monitored/collected in VM controllers. The second

step is to select specific VMs, using appropriate control actions. The selection

criteria considered are the billing period, the difference in the number of VMs

in adjacent windows, and the performance of active VMs. Each controller then

executes the decisions made by the broker. In the following, we first describe the

control timing of the broker, the algorithm for deciding on the number of VMs

for each service, and finally, the algorithm for selecting VMs.

4.2.1 Control Window and Overhead

Herein, we consider a sequence [Tt : 0 ≤ t < k] of k windows, each of length

τ minutes. Due to the time overhead associated with each control actions, the

VM broker queries the required statistics from controllers at ε seconds before the

beginning of every control window. The schematics are depicted in Figure 4.2.

Controllers of services immediately send back their invocation rate, VM perfor-

mance, and their billing periods. Using the collected information and algorithms

described in the following two subsections, the broker computes and broadcasts

its decisions of VM replication and selection to all controllers. We assume that
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Figure 4.2. Timing of 
ontrol a
tions and windows for the VM broker.

such a decision process takes a negligible time and no time overhead occurs. We

choose such a value of ε that there is sufficient time for turned-on VMs to load

the services, turned-off VMs to complete the remaining service invocations, re-

placed VMs to complete pending requests and replacement VMs to load the new

service, and reconfigured VMs to complete pending requests and load the new

service.

4.2.2 Number of Repli
a VMs

To proactively provide a sufficient number of well-utilized VMs at the beginning

of every control window, the broker needs to know the utilization of active service

VMs by the estimates of the average invocation rates, and the aggregate capacity.

We define the utilization of active service i VMs, Ui, as the invocation rate,

λi, divided by the aggregate throughput of active VMs, i.e.,
∑ni

j=1
µi j , where µi j

denotes the throughput of VM j for service i,

Ui =
λi∑ni

j=1
µi j

. (4.1)

Furthermore, we defineµi as the average throughput per active VM, i.e.,
∑ni

j=1
µi j =

niµi. Note that as there can be multiple threads in a replica VM, the performance

of a VM corresponds to the summation of the performance of all of the threads.

Our objective for the VM provisioning is that the effective utilization of every ser-

vice in every window is less than the target value, Ui(t)< U∗,∀i, t . To that end,

we first need to estimate the average invocation rate and average capacity for
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each coming control window. We propose to use a simple last value prediction

for the invocation rate,
Öλi(t) = λi(t − 1), (4.2)

and for the average throughput,

Öµi(t) = µi(t − 1) =

∑ni(t−1)

j=1
µi j(t − 1)

ni(t − 1)
. (4.3)

Substituting the estimated values of Equation 4.2 and 4.3 into Equation 4.1, the

broker estimates the utilization of service i when deploying ni(t) VMs at the

beginning of window t ,

Ui(t) =
Öλi(t)

ni(t)
Öµi(t)

. (4.4)

After straightforward algebraic manipulation, the broker controls ni(t) such that

Ui(t)≤ U∗, as follows,

ni(t) = ⌈
Öλi(t)

U∗Öµi(t)
⌉, ∀i, t . (4.5)

Once the broker obtains the values of ni(t), it proceeds to decided on which

VMs are to be turned off, replaced, and reconfigured, and how many new VMs

are to be turned on.

4.2.3 Turning on-o�, Repla
ing, and Re
on�guring VMs

The objective of selecting VMs is to maintain as few VMs as possible and to keep

as many fast VMs as possible, such that the return on payment for active VMs

is maximized. Consequently, the broker only turns off the expiring VMs, whose

billing contracts end, and only turns on new VMs for services when there is no

spare capacity from other services. In general, the broker is greedy in maxi-

mizing the “benefit” of individual services, rather than the global welfare of all

services, when it comes to decreasing VMs. The broker also increases VMs in a

collaborative manner, as elaborated in the following.

The decision process of the broker is structured into two parts: The first part

focuses on the services which need to reduce VMs, and the second part focuses

on services which need to increase VMs, from their current provision. Critical

parameters considered are the number of expiring contracts, Ei(t), the difference

in the number of VMs in adjacent windows, δi(t) = ni(t)− ni(t − 1), and the

performance of the VMs. Expiring VMs can be either turned off, reconfigured
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to other services, or replaced by other VMs, whereas non-expiring VMs can only

be reconfigured. When δi(t) > 0, the service i demands more VMs for window

t , whereas when δi(t) < 0, the service i tries to reduce the number of VMs by

turning off or reconfiguring whenever possible. This implies that not all services

can always reduce VMs as the workload decreases as shown in Equation 4.5, due

to the billing periods and no other services requiring more VMs.

To facilitate selecting control actions for increasing and decreasing VMs, we

keep two lists, an expiring list and a reconfiguration list, which record expiring

and reconfigurable VMs, respectively. The lists are filled up during the “decreas-

ing” part of the policy, and flushed out during the “increasing” part of the policy.

Both lists are maintained in a slowest-first manner. For example, the broker al-

ways selects the slowest expiring VMs first into the expiring list, and distributes

the slowest VMs first to the services with δi(t)> 0.

De
reasing VMs

For services with δi(t) < 0, the broker greedily optimizes the aggregate VM

capacity of individual services by turning off expiring VMs or replacing the slow

expiring VMs with faster ones.

When there are more expiring VMs than reduced VMs, Ei(t)> |δi(t)|,, where

|∗| denotes the absolute value and |δi| is the number of VMs needs to be reduced.

the broker first turns off |δi(t)| expiring and slowest VMs. Then, the broker tries

to replace remaining expiring VMs by comparing the corresponding cost and

benefit. The cost of replacing VMs is the unavailability of its capacity during the

time a replacement VM is being configured. The potential benefit is the chance

of obtaining a VM with better performance. We thus derive the quantitative cost

of replacing a VM j of service i as

Ci j = εµi j. (4.6)

Correspondingly, we derive the benefit of replacing an expiring VM j of service i

as the expected capacity gain, which sums the product of probabilities of through-

put levels, the throughput differences, and the control window length. Assuming

a VM has K different levels of throughput and the probability of receiving a VM

with throughput level k is Pk, one can write

Bi j =

K∑

k 6= j

Pk(µik −µi j)τ. (4.7)

When the benefit of replacing VM j of service i is greater than the cost, Bi j > Ci j,

the broker replaces VM j by a new VM. Note that the replacing decision may not
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necessarily lead to a faster VM. From Equation 4.6, one can see that probabilisti-

cally speaking, it is beneficial to replace VMs especially when currently expiring

VMs are slow and the control window is longer.

When there is not a sufficient number of expiring VMs to be reduced, i.e.,

Ei(t) < |δi(t)|, the broker first turns off Ei(t) expiring VMs. Then, among the

non-expiring VMs, it chooses the {|δi(t)| − Ei(t)} slowest VMs and adds them to

the reconfiguration list, Ψ. Such a list is first filled up by services with δi(t)< 0

in a sequential order of service index, and then flushed out by services with

δi(t) > 0 in a round robin fashion for reasons of fairness. As such, the time

overheads associated with replacing and reconfiguring VMs can be minimized.

In
reasing VMs

Once the broker completes the process of increasing VMs, it proceeds to the ser-

vices requiring additional VMs. The broker first tries to distribute any available

VMs on the reconfiguration list, and then turn on new VMs where required. Let

the total number of VMs on the reconfiguration list be nΨ(t), and total number

of additional VMs from services with δi(t) > 0 be ∆ =
∑

i∈{δi(t)>0} δi(t). When

nΨ(t) > ∆, it implies a sufficient number of VMs can be reconfigured and then

distributed to other services. The broker distributes the slowest ∆ VMs on the

reconfiguration list to services with δi(t) > 0 in a round-robin fashion. There-

after, the remaining {nΨ(t)−∆} VMs on the reconfiguration list are returned to

their original services. Alternatively, when there is not a sufficient number of

VMs on the reconfiguration list to meet the requirement for an increasing num-

ber of VMs, the broker only distributes nΨ(t) VMs in a round-robin fashion, and

turns on additional VMs according to unfulfilled demands. We summarize the

opportunistic replication policy implemented on the broker in Algorithm 1.

4.3 Evaluation

In this section, we use trace driven simulation to evaluate the proposed oppor-

tunistic replication policy for service systems deployed in the cloud. The perfor-

mance metrics evaluated are the VM costs, the average normalized throughput of

VMs, the average utilization of active VMs, and the average response time of an

invocation. To show the effectiveness of the VM broker, we also present the de-

tailed statistics of control actions. We benchmark our policy against a workload

oblivious replication policy and a purely workload driven policy. Our evaluation

results, based on the average of ten simulation runs, show that the VM broker
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Algorithm 1 Opportunistic Replication Policy of the Broker

1: Compute ni(t) as in Equation4.5 and δi = ni(t)− ni(t − 1), ∀ i.

2: for i = 1 to I services, with δi(t) ≤ 0 do

3: if Ei(t) > |δi | then

4: Turn off |δi | expiring VMs

5: Replace up to {Ei(t)− |δi(t)|} servers based on Equation 4.7, and 4.6.

6: else

7: Remove Ei(t) expiring VMs

8: Add slowest {|δi(t)| − Ei} VMs to the reconfiguration list, Ψ.

9: end if

10: end for

11: for For services with δi(t) > 0 do

12: if nΨ (t) >
∑

i δi(t) =∆ then

13: Distribute ∆ VMs on the reconfiguration list round-robinly

14: Return remaining {nΨ(t)−∆} VMs back to original services

15: else

16: Distribute nΨ(t) VMs on the reconfiguration list in round-robin

17: Add {∆− nΨ (t)} servers and distribute to the corresponding services in round-robin

18: Empty the reconfiguration list

19: end if

20: end for

can significant reduce the cost by acquiring a smaller number and faster VMs in

a collaborative manner, while maintaining the system utilization slightly lower

than the target values, U∗ = 80%, and achieving low average response times of

invocations.

4.3.1 System Con�guration

We built a trace-driven simulator of service-oriented systems in the cloud using

Java. Invocation requests are generated for each service, following a Poisson

process with time varying arrival rates. Each VM replica is configured to have

one thread, independent of service types. Moreover, we assume a VM can have

three different levels of performance to process requests of each service in our

simulated cloud environment. To ease the analysis, we express VM throughput

as a multiplier of the minimum throughput of each service, αµi. The specific

values are α = {1, 1.2, 1.5}, i.e., a VM has an average throughput of µi, 1.2µi

and 1.5µi for processing request of service i. The probabilities of obtaining VMs

with different α values are 0.5, 0.3, 0.2 respectively. The aforementioned values

can be configured according to values measured in different cloud platforms.

The VM controller collects the required statistics ε = 20 seconds before every

control window of length τ = 5 minutes and the VM broker immediately com-

putes and implements the control actions, some of which have time overhead of

υ = 20 seconds. For a fair comparison, the timing of control actions in policy

II are synchronized with the broker. The specific length of the control window
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is chosen according to workload characteristics and prediction schemes. The

discussion of the optimality of those values is beyond the scope of this chapter.

Cost Cal
ulation

We follow the convention in today’s commercial cloud [EC2, 2014] and use an

hour as the billing period. The actual cost per billing period is different between

cloud providers, and also varies depending on the requested VM specifications.

We present our results in terms of relative cost savings, and the results are there-

fore not bound to any cloud provider in particular.

The total cost is the summation of all requested VM hours. When VMs are

turned off before the end of billing period, they still need to pay for the remaining

minutes. We add the cost for any possibly remaining periods immediately onto

the windows when those VM are turned off.

4.3.2 The Workloads: Invo
ation Requests

Following approaches used in [Verma et al., 2007; Chen et al., 2005; Meng et al.,

2010], we adopt the utilization traces from current IBM production systems as

workload input for each service, i.e., to generate the invocation requests. Based

on the basic utilization law [Kleinrock, 1975], the utilization multiplied by a

normalized constant reflects the request rate, especially when the load is below

100% utilization.

We collect utilization traces from four large multi-processor servers engaging

in web services in financial, airline and media industries, in late January, 2012.

The trace from one server is considered as one service here. The utilization values

are the average computed over 15 minutes. To obtain the request rate per second,

we multiply the utilization values with the processing power of the server, i.e., the

number of cores. We illustrate the rationale by an example: Let the utilization

value be 35% for a 16 core server. This implies that, on average, 5.6 (0.35 · 16)

cores are busy. We further assume that a core is occupied by a single request

and such a value corresponds to the request arrival rate for a small granularity,

i.e., second. As such, we obtain the request rates for four services, shown in

Figure 4.3. One can clearly see that the workloads are time-varying.

The execution times of each service follow the exponential distribution with

mean 1
µ1
= 1

1
, 1
µ2
= 1

1
, 1
µ3
= 1

10
, 1
µ4
= 1

8
seconds respectively. Note that due to the

performance variability of VMs, the execution times can be scaled down by the

multiplying factor, α, by 1.2 or 1.5.
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Figure 4.3. Average request rates of servi
es, λi(t).

Due to limitations in the granularity in collecting utilization we are unable

to collect the higher moment statistics and further fit the empirical distribution

of utilization. Consequently, we assume that the arrivals of the requests follow

Poisson processes for each 15 minutes and that their means fluctuate according

to Figure 4.3. Once requests are generated, they are then immediately forwarded

to the corresponding and available service load balancers.

We compare the proposed policy against the following policies, which are

oblivious to the variability of the workload, heterogeneity of VM throughput, or

billing periods:

• Policy I: statically providing maximum number of VMs for each service.

This is a workload oblivious policy.

• Policy II(a), Policy II(p): dynamically providing VMs for each service, ac-

cording to the workload only. This is a purely workload-driven policy. The

number of VMs is decided by Equation 4.5, but based on the minimum VM

throughput only. We provide two versions of Policy II, namely II(a), and

II(p). The former one uses the actual request rate information and the later

one uses the predicted ones in Equation4.2.

We also use the actual and predicted invocation rates in the proposed broker,

and denote them broker(a) and broker(p) in the following. The difference be-
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tween these two versions comes from the performance degradation due to the

inaccurate workload prediction.

4.3.3 Two Servi
es

We first evaluate the VM broker on a system with two services, namely service 1

and 2 (S1, S2), shown in Figure 4.3. We summarize the results in terms of cost

saving, average utilization, average response time, and average normalized VM

throughput in Table 4.1. The cost savings are compared with the cost of policy I,

where the provisioning costs are the highest. The normalized VM throughput is

calculated from the observed VM throughput divided by the minimum through-

put for each service.

Clearly, static provisioning of VMs in policy I incurs high costs, and results

in low utilization of VMs, as well as lower response times. Policy II saves costs

for both services, compared to the policy I, because of frequently turning VMs

on and off, and being oblivious to the performance variability of VM throughput.

However, policy II has a much lower cost saving than the broker, especially for

service 1, whose workloads are more stable and the cost savings from dynamic

VM provisioning is smaller. In contrast, the broker can leverage the control knob

of "replacing" VM for less varying workloads and acquire faster VMs, which in

turn results in a lower number of VMs provisioned and subsequently lower cost.

As for the utilization, the broker maintains the utilization at roughly 70 %, which

is slightly lower than the target value of 80 %. Overall, the broker has the high-

est cost savings, medium utilization, the lowest response time, and the highest

normalized VM throughput.

Furthermore, we present average statistics about control actions and the num-

ber of VMs provisioned in Figure 4.4. We denote a1, a2, a31, a32, and a4 as the

number of VM, which are turned off, replaced, and reconfigured to another ser-

vices, reconfigured from another service VM, and turned on, respectively. The

first three actions are associated with "decreasing VMs", while the latter two are

for "increasing" VMs. One can see that there is a higher number of reconfigura-

tion and lower number of replacing occurring for service 2, because of a higher

oscillation in workloads compared to service 1. Due to a higher variety of control

actions taken for service 2, the broker is able to obtain VMs with higher through-

put, i.e., the average normalized throughput of service 2 is higher than service 1.

We conclude that the broker can apply different control actions according to dif-

ferent dynamics of workloads, and further gain cost savings without sacrificing

the performance.
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Table 4.1. Performan
e of di�erent poli
ies: two servi
es.

Policy Total S1 S2

CS[%] CS[%] U[%] RT[s] AT CS[%] U[%] RT[s] AT

I 0 0 55.8 0.91 1.14 0 49.4 0.45 1.15

II(a) 14 7 74.6 1.08 1.16 21 74.9 0.55 1.17

II(p) 14 7 74.1 2.18 1.17 21 73.7 0.55 1.16

Brok.(a) 32 27 68.9 0.96 1.22 38 72.7 0.52 1.23

Brok.(p) 31 25 68.0 1.75 1.22 37 71.6 0.50 1.23

cs=normalized cost savings, U=utilization,

RT=average response time of invocation, AT=average normalized throughput of VMs
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Figure 4.4. Average number of a
tive VMs per window(ni) and average number

of VM used in ea
h 
ontrol a
tion: turn o� (a1), repla
e (a2), re
on�gure o�

(a31), re
on�gure on (a32), turn on (a4).

4.3.4 Four Servi
es

Secondly, we evaluate the VM broker on a system with four services, namely ser-

vice 1-4 (S1, S2, S3, S4), shown in Figure 4.3. We present the cost savings, average

utilization, average response time, and average normalized VM throughput un-

der different policies in Tables 4.2 and 4.3. The statistics of the control actions

used in the proposed broker are summarized in Figure 4.5. Similar to the obser-

vations made in previous sections, we can see that the proposed VM broker can

achieve significantly higher costing savings than other policies, while adhering

to the utilization target and attaining lower response times. For the services with

less varying workloads, i.e., services 1, 3 and 4, the broker can gain cost saving

by replacing slower VM with faster VMs, whereas policy II can only gain marginal

cost savings, compared to the static provisioning. For service 2, although policy

II and the broker can gain good cost savings, the broker still obtains twice as high
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Table 4.2. Performan
e of under di�erent poli
ies: four servi
es, servi
es 1

and 2

Policy Total S1 S2

CS[%] CS[%] U[%] RT AS CS[%] U[%] RT AS

I 0.00 0.00 55.8 0.91 1.14 0.00 49.4 0.45 1.15

II(a) 12.4 7.95 74.6 1.09 1.15 20.2 74.9 0.56 1.15

II(p) 11.2 5.61 73.9 2.37 1.16 19.7 73.9 0.56 1.15

Brok.(a) 29.7 30.1 71.6 0.99 1.22 38.8 73.2 0.52 1.24

Brok.(p) 29.5 28.4 71.6 2.34 1.20 37.0 71.8 0.51 1.23

CS=normalized cost saving, U=utilization, RT=average response time of invocation

AT=average normalized throughput of VMs

Table 4.3. Performan
e of under di�erent poli
ies: four servi
es, servi
es 3

and 4

Policy Total S3 S4

CS[%] CS[%] U[%] RT AS CS[%] U[%] RT AS

I 0.00 0.00 63.8 0.37 1.16 0.00 58.2 1.74 1.17

II(a) 12.4 7.18 75.0 0.44 1.16 13.3 76.0 1.98 1.17

II(p) 11.2 7.01 75.1 0.44 1.18 12.0 76.7 2.17 1.16

Brok.(a) 29.7 19.6 73.1 0.42 1.23 28.6 74.9 1.86 1.23

Brok.(p) 29.5 21.9 74.0 0.42 1.25 29.3 75.6 2.03 1.23

CS=normalized cost saving, U=utilization, RT=average response time of invocation

AT=average normalized throughput of VMs

savings as policy II due to effective replacing and reconfiguration of VMs.

As the broker applies VM control actions in a collaborative manner, especially

through the reconfiguration, a better performance gain can be achieved by the

broker in systems with a higher number of services. The overall performance

in the case of four services is better than in the case of two services. One can

observe this especially by comparing service 1 and 2 in both system scenarios. In

particular, the average utilization of VMs for each service increases slightly and

gets closer to the target value (80%). Both services also achieve higher cost sav-

ings in the four services scenario, because of more opportunities to reconfigure

VMs to different services. From our evaluation, we believe our proposed policy

can opportunistically acquire a fewer and faster VMs for different workloads, and

its effectiveness grows with the scale of the system, i.e., with a higher number of

different services.

Discussion: We would like to point out a few limitation of our study. First,

this study considers only atomic services, and modeling dependencies among

services (i.e., composite services) will be our future work. Second, we adopt

preset values for modeling the variability of VM performance. We note that the

cost savings and performance metrics presented here can change depending on

those values. We plan to conduct extensive measurements in a commercial cloud
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environment to confirm that our simulation results can be carried over to real

systems.

4.4 Assumptions and Limitations

As described in Section 4.1, we only consider atomic, stateless services in this

work. Furthermore, the assumption of CPU-bound services implies that the ser-

vices can easily be reconfigured and migrated, without e.g., heavy dependence

on data that would also need to be transferred in order to start up a new service

VM instance. Taking into account more complex services with different resource

requirements would complicate the opportunistic replication algorithm. More

complex services would also potentially limit the degree to which the perfor-

mance variability could be exploited, due to more overhead for reconfiguring



63 4.5 Summary

and replacing VMs.

4.5 Summary

In this chapter, we proposed an opportunistic replication policy especially de-

signed for services deployed in a cloud. The objective of our work was to lever-

age the variability in VM performance and pay-as-you-go billing contracts in the

cloud, such that the number of VMs for each service is minimized and opportunis-

tically provisioned with better performing VMs. Our policy is based on compre-

hensive workload and system characteristics, i.e., time variability of workloads,

VM variability, invocation variability, and billing periods. Moreover, we consid-

ered a complex set of control actions, i.e., turning VMs on and off, replacing

VMs, and reconfiguring VMs, with detailed modeling of the respective overhead.

The proposed policy not only optimizes the cost of a single service but also the

welfare of all services in a collaborative manner.

Our evaluation results using production traces showed that the proposed pol-

icy achieves lower cost and better performance in terms of VM utilization and

response time, compared to existing replication policies that are oblivious to per-

formance and billing characteristics of the cloud.
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Chapter 5

Providing Tail Throughput QoS

Guarantees

Recent studies show that service systems hosted in clouds can elastically scale the

provisioning of pre-configured virtual machines (VMs) with workload demands,

but suffer from performance variability, particularly from varying response times.

Service management in clouds is further complicated especially when aiming at

striking an optimal trade-off between cost (i.e., proportional to the number and

types of VM instances) and the fulfillment of quality-of-service (QoS) properties

(e.g., a system should serve at least 30 requests per second for more than 90% of

the time). Several empirical studies [Xu et al., 2013; Schad et al., 2010; Casale

and Tribastone, 2013] point out a common pitfall in clouds that the performance

variability — in this case the response time of services — fluctuates significantly,

and tail latency degrades.

In this chapter, we develop a QoS-aware VM provisioning policy for service

systems in clouds with high capacity variability, using experimental as well as

modeling approaches. Using a wiki service hosted in a private cloud, we empiri-

cally quantify the QoS variability of a single VM with different configurations in

terms of capacity. We develop a Markovian framework which explicitly models

the capacity variability of a service cluster and derives a probability distribution

of QoS fulfillment. To achieve the guaranteed QoS at minimal cost, we construct

theoretical and numerical cost analyses, which facilitate the search for an opti-

mal size of a given VM configuration, and additionally support the comparison

between VM configurations.

This study aims to find the optimal VM provisioning for a service system,

i.e., composed of an ideal VM configuration using a minimum number of VM in-

stances, such that the required QoS properties are guaranteed for a certain frac-

65
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tion of time at minimal cost (e.g., 90% of the time the sustainable throughput

should be at least 30 requests per second). To such an end, we study a Wikipedia

service [Wikipedia, 2014] and first empirically quantify its capacity variability

on different VM configurations, in the presence a daemon VM executing various

benchmark workloads in a private cloud. Leveraging our empirical experience,

we build a Markovian model which explicitly models the capacity variability of an

entire cluster, and we derive the probability distribution of the delivered QoS for

a given number of VMs of a certain configuration. Based on analytical solutions

regarding the QoS fulfillment, we construct theoretical and numerical analyses

to evaluate the tradeoff between cost and the fulfillment of QoS promises, (1) by

comparing optimal provisioning to simple pessimistic and optimistic provision-

ing; (2) when provisioning based on the average capacity fails; and (3) when

choosing a VM configuration that returns the best cost/service-availability ratio.

Our contributions are two-fold: Firstly, we quantitatively characterize the ca-

pacity variability of a VM running a wiki service against a co-located VM running

various workloads in a controlled private cloud environment. Secondly, we build

a Markov-chain model to answer the question of how to guarantee ξ% of QoS ful-

fillment, i.e., avoiding tail performance degradation. Based on our experiments

and model, we can dimension a cluster of VMs and choose among different VM

configurations, such that the best trade-off between cost and QoS fulfillment is

achieved.

In this work, we analyze a cluster of VMs running a single service type, i.e.,

a wiki service. The wiki service is assumed to be stateless, and additional VMs

running the same wiki service can be started or stopped at any time to dimension

the cluster according to the observed and predicted demand.

This chapter is organized as follows: The capacity variability of a VM hosting

a wiki service on different VM configurations is discussed in Section 5.1. The

proposed Markovian model and VM provisioning optimization is described in

Section 5.2. Section 5.3 presents our cost analysis, and Section 5.4 lists the

assumptions and limitations of this work. Section 5.5 summarizes this chapter.

5.1 Capa
ity Variability of Servi
e VM Con�guration

In this section, we use a controlled cloud environment to study the capacity vari-

ability of service hosting on different VM configurations, i.e., the fluctuation of

capacity, against single neighboring VMs executing various workloads. To such

an end, our target service is a Wikipedia deployed on a set of VM configura-

tions and co-located with a daemon VM executing Dacapo benchmarks [DaCapo,
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2014] in a private cloud. Essentially, we use the daemon VM to synthesize in-

terference that can be encountered by a wiki VM in the cloud and parameterize

the capacity variability, which is then used to build the QoS model for a service

cluster in Section 5.2.

5.1.1 Experiment Setup

From our private cloud environment, we chose two IBM System x3650 M4 ma-

chines, gschwend and nussli, each with 12 Intel Xeon E5-2620 cores running at

2.00GHz, and 64 and 36 GB of RAM, respectively, for running our experiments.

We use KVM on gschwend for hosting our target and daemon VMs, and nussli

for generating the Apache JMeter workload requests for our target wiki VM.

The target Wikipedia system is based on a subset of 500000 entries from a

pages-articles.xml dump downloaded on October 12, 2012. The wiki VM is a

Debian 7.0 system running an Apache 2.4.4 web server, the PHP 5.4.15 server-

side script engine, MediaWiki 1.21 as the web application, and the MySQL 5.5.31

database. The number of threads employed by Jmeter is configured such that

the maximum throughput of the wiki VM is reached. As for the workload on the

daemon VM, we selected the following benchmarks from the Dacapo benchmark

suite: (1) fop, a lowly threaded CPU-intensive benchmark; (2) luindex, a lowly

threaded IO-intensive benchmark; (3) sunflow, a highly threaded CPU-intensive

benchmark; (4) lusearch, a highly threaded CPU- and IO-intensive benchmark;

and (5) tomcat, a network-intensive benchmark. We refer readers to [Chen et al.,

2012] for the detailed threading behaviors and characterization of the Dacapo

benchmarks.

We consider four types of VM configurations, with CPUs and memory sizes as

listed in Table 5.1, which are comparable to VM offerings in Amazon EC2 [EC2,

2014]. We use three configurations for the wiki VM (bronze, silver, and gold),

and two configurations for the daemon VM (gold and platinum). Based on ex-

perimental evaluation, we use two, four, and eight threads when running Jmeter

against a wiki running on a bronze, silver, and gold VM instance, respectively. In

total, we evaluate the amount of performance interference experienced by the

wiki under 36 scenarios, i.e., three configurations of wiki VMs × six types of dae-

mon workloads (5 DaCapo benchmarks and no workload) × two daemon VM

configurations.

The target wiki performance statistics are collected from the Apache log files

which record the current time, the requested URL, and response time for each

request. After a warm-up period for the wiki VM, Jmeter, the daemon VM and the

DaCapo benchmark, we start collecting statistics for five minutes for each of the
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(a) Wiki on gold (b) Wiki on silver (c) Wiki on bronze

Figure 5.1. Capa
ity variability of a wiki running on di�erent VM 
on�gura-

tions against fop, luindex, lusearch, sunflow, and tomcat, hosted on gold

and platinum VMs: box plots based on 10 repetitions.

36 scenarios, each of which is repeated ten times. We summarize the results of

36∗10 = 360 runs using box plots in Figure 5.1. One can straightforwardly find

that the capacity variability of the wiki, i.e., the difference between no workload

and different DaCapo benchmarks running on the daemon VM, can vary signif-

icantly depending on VM configurations and the characteristics of the DaCapo

benchmark.

For further analysis, we take the median of the repeated runs of all scenar-

ios and compute the average of the normalized throughput, compared to the

scenario with no daemon VM neighbor. We thereafter categorize the results by

target VM type, daemon VM type, and benchmark.

5.1.2 (In)sensitivity of Capa
ity Variability

To compare the robustness of different target VM configurations, we normalize

the throughput of the wiki VM by the throughput of the wiki without any neigh-

bor for gold, silver, and bronze VMs. In Figure 5.2(a), we present the average

normalized throughput, a higher value of which means less interference is ob-

served and the wiki VM is more robust. When co-located with a gold daemon

VM, the difference between wikis running on different VM configurations is al-

most negligible. However, in our setup, when the daemon VM is more dominant,

i.e., a platinum VM, a wiki on a silver VM seems to be slightly more robust than
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Figure 5.2. Average analysis of normalized throughput of target wiki.

when on a gold or bronze VM. Such an observation can also be made for indi-

vidual daemon workloads, see Figure 5.1. Overall, our experiments show that a

wiki running on a silver VM is slightly more robust to noisy neighbors, and the

capacity of the wiki can be throttled by 10-20% on average due to interference

from neighboring VMs.

5.1.3 A Really Noisy Daemon

We try to identify which type of workload represents the noisiest neighbor and

causes high capacity variability for a wiki service co-located on the same phys-

ical machine. We compute the average normalized throughput across all tar-

get VM configurations for each benchmark, as presented in Figure 5.2(b). One

can clearly see three levels of performance variability: (1) mild interference

from fop, luindex, and tomcat, where the capacity degradation is within 10%;

(2) medium interference from sunflow, where the capacity is degraded by roughly

20%; and (3) high interference from lusearch, where the capacity degradation

can be up to 35%. Clearly, lusearch is the noisiest neighboring VM for our wiki

service, as they both compete for a similar set of resources, i.e., both CPU and

IO. As both fop and luindex have limited concurrent threading, only limited

performance interference is observed.

Up to this point, our experiments have addressed the variability of a wiki ser-

vice hosted on a single VM. In the next section, we leverage Markovian modeling

to capture the capacity variability of a wiki cluster consisting of multiple VMs.



70 5.2 Markov Chain Model for Servi
e Cluster

Capacity

Per VM

Time

~Exp(!)

~Exp(")

µl

µh
!

"

#h
#l

Figure 5.3. Capa
ity variability of a VM: state diagram of high and low 
apa
ity

(left) and illustration of time series (right)

5.2 Markov Chain Model for Servi
e Cluster

In this section, our objective is to derive a rigorous mathematical analysis for

answering the question, "what is the minimum size of a cluster whose VMs expe-

rience capacity variability such that the probability of achieving a target QoS is

guaranteed?". We define the service capacity C(n) as the total number of requests

processed by a cluster of n ∈ Z VMs, its QoS target as C∗, the fulfillment of which

should be above a certain threshold ξ. Using Markov chain modeling, we obtain

the steady-state distribution of QoS of a cluster with n VMs, and further search

for the minimum n that satisfies the desired availability, Pr[C(n) > C∗]> ξ.

We start out the analysis by modeling the transition between high and low

capacity of a single wiki VM, using values obtained in the previous section. Based

on that, we develop a continuous-time Markov chain to model the service avail-

ability of the entire cluster. Finally, we show, by theoretical analysis and numeri-

cal examples, that the proposed minimum cluster size, n∗, indeed attains a good

trade-off between cost and guarantee of service availability.

5.2.1 Single VM node

We assume that a VM of a certain configuration (e.g., gold, silver, or bronze)

alternates between states of high and low capacity, denoted by µh and µl , for

exponentially distributed times with rate α and β , respectively. Examples of such

values can be found in Figure 5.1 for different VM configurations. We term the

difference between µh and µl the capacity variability, and (α, β) the intensity

of the variability. Figure 5.3 illustrates the state transitions and time series of

such a model. To capture the maximum variability possibly experienced by a
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VM, we only adopt two states of capacity, namely high and low, for different

VM configurations. Their parameterizations can be carried out by our empirical

analysis in Section 5.1. On the contrary, the values of α and β depend on the

workload dynamics of the underlying cloud, and thus are assumed invariant to

VM configurations. Note that one may find intermediate states in reality, i.e.,

the capacity is between [µl ,µh]. Our proposed model can be further refined

to accommodate multiple levels of capacities, albeit with a higher computation

overhead for obtaining steady-state probability of service availability (see the

next subsection).

5.2.2 Continuous Markov Chain Modeling of the Cluster

The single VM model naturally leads us to use a continuous-time Markov chain

(CTMC) to describe the dynamics of available capacity in a cluster consisting of n

VMs, experiencing high and low capacity. In the proposed CTMC, a state i ∈ I =

{1, 2, . . . n} is defined as the number of VMs having low capacity, while the rest

of n− i VMs in the cluster have high capacity. Consequently, the corresponding

capacity of state i in the systems is

Ci(n) = iµl + (n− i)µh.

Note that Ci(n) ≥ C j(n), for i ≤ j — essentially, Ci(n) monotonically de-

creases in i. When there are i VMs with low capacity, the system transpositions

to state i+1 with the rate (n− i)α, and to state i−1 with the rate iβ . Figure 5.4

illustrates such a Markov chain for a cluster of n VMs.
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We let π= [π0,π1 . . .πn] denote the steady-state probability that the system

has a service capacity of Ci(n). One can solve the Markov chain in Figure 5.4 by

a set of balance equations [Nelson, 1995], i.e.,

(n− i)απi = (i)βπi+1∀i,

∑

i

πi = 1.

Substituting all πi as a function of πn, we can then obtain the closed formed

solution of π

πn =
1

(1+ αβ )
n

(5.1)

πi =

�
n

i

�
(
α

β
)n−iπn, 0 ≤ i < n.

Consequently, we can derive the probability that the service capacity is greater

than the target

Pr[C(n) > C∗] =
∑

i∈{I :Ci(n)>C∗,i≤n}

πi. (5.2)

To compute Pr[C(n) > C∗] for all n ∈ Z, one shall first compute the values πi, ∀i

using 5.1 for a given n, and the sum of πi for the states i where the resulting

capacity is greater than C∗, and then iterate the computation procedure for all

values of n.

5.2.3 Trade-o� between Cost and Servi
e Availability

To find a minimum cluster size that ensures that a service capacity greater than

the target capacity, C > C∗, is guaranteed for ξ% of time, we can formulate the

following optimization after substituting Equation 5.1 into the constraints and

rearrangements:

minimize n

subject to (n− i)µh + iµl ≥ C∗

∑

i

�
n

i

�
(
α

β
)n−i 1

(1+ α
β
)n
≥ ξ

i ≤ n

For given values of α, β , µh, and µl , Pr[C(n) > C∗] is a function increasing

in n, i.e., when n1 ≥ n2, Pr[C(n1) > C∗] ≥ Pr[C(n2) > C∗], as self-explained in
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the second constraint in the above optimization. Consequently, one can straight-

forwardly find the optimal n∗ by linearly searching through the possible values

of n ∈ Z in an increasing order.

Note that the optimization is constructed implicitly depending on the work-

load intensity via the value of C∗. For a given period of time when the workload

intensity is predicted as λ requests per second, one may want to keep the system

80% utilized, and set the target capacity to C∗ = λ/0.8. For more discussion on

the choice of the target capacity, see Chapters 3 and 4.

n∗ vs. Simple Solutions

Herein, we illustrate how n∗ obtained through our proposed methodology at-

tains a good trade-off between the cost and the guaranteed service availability,

compared to simple optimistic and pessimistic solutions. One may optimistically

think that all VMs have high capacity and only purchase nopm = ⌈C∗/µh⌉ VMs

by simply dividing the target capacity with the value of high capacity of a single

VM. In contrast, a pessimistic solution would be to assume that all VMs have low

capacity and purchase npsm = ⌈C∗/µl⌉. As µh > µl , npsm is greater than nopm.

We compute the service availability curves by Equation 5.2 for all values of n

that fulfill the target capacity of C∗ = 60 requests per second, using α = 60, β =

50 and two sets of µh and µl , respectively. Figure 5.5 summarizes the numerical

results. Additionally, we also graphically illustrate the optimal provisioning of

VMs (n∗) that fulfill the desired service availability, i.e., the cluster capacity is

greater than 60 for ξ = 90% of the time, compared with pessimistic (npsm) and

optimistic (nopm) solutions. We consider service availability curves in two cases

of capacity variability, namely with smaller and bigger difference between the

high and low capacity of a VM. One can easily see that the optimal cluster size

grows with the variability, indicated by a higher value of n∗ in Figure 5.5(b)

than (a). When the variability of capacity is higher, the service availability curve

increases slower in n than in the low variability case. Moreover, the pessimistic

and optimistic allocations are even further away from the optimal one.

To proceed to cost comparison, we assume the cost of a cluster, cost(n), is a

strictly increasing function in n, i.e., cost(n1) ≥ cost(n2) when n1 ≥ n2. Further-

more, due to the monotonicity of Pr[C(n) > C∗] and nopm ≤ n∗ ≤ npsm, we reach

the following corollary:

Corollary 5.2.1.

cost(nopm) ≤ cost(n∗) ≤ cost(npsm),

Pr[C(nopm) > C∗]≤ Pr[C(n∗) > C∗]≃ ξ≤ Pr[C(npsm) > C∗].
(5.3)
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Though the optimistic solution incurs lower cost, the QoS fulfillment thresh-

old is not met. On the contrary, the pessimistic solution can achieve the service

availability with 100% guarantee, but at a higher cost. The optimal provisioning

of VMs, n∗, indeed achieves a good trade-off between cost and QoS fulfillment,

compared to simple optimistic and pessimistic solutions. Note that n∗ can result

in a slightly higher value of Pr[C(n∗) > C∗] than ξ, due to the discrete choice of

the number of VMs.

We further numerically illustrate how such a trade-off is affected by different

levels of variability in capacity of a single VM. Using a simple linear cost func-

tion, i.e., cost(n) = 1.2 · n, we construct two numerical examples in Figure 5.6,

following the parameters discussed in Figure 5.5. Note that the cost here is de-

fined as the cost per time unit, which can be aligned with the billing periods used

in commercial clouds, e.g., one hour. One can see that n∗ can improve the QoS

fulfillment drastically by increasing cost, compared to nopm, and reduce cost sig-

nificantly by allowing a fractional capacity degradation, compared to npsm. The

advantage of n∗ in attaining a good trade-off is even more prominent in the case

of bigger variability.

Why not Consider Average Capa
ity of a VM?

In this subsection, we show that choosing n based on the average capacity of a

VM cannot reach the optimal values nor guarantee QoS fulfillment at the target

capacity level, using numerical examples. Recalling the state transition of a VM

depicted in Figure 5.3(a), the average capacity of a single VM, µ, and the VM
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provisioning based on the average capacity, navg are

µ=
µhα+µlβ

α+β
,and navg =

C∗

µ
,

respectively. Figure 5.7 demonstrates that a cluster size based on the average

capacity is not a reliable solution under three scenarios of (α,β), namely (a) often

experiencing low capacity (b) alternating between high and low capacity equally,

and (c) often experiencing high capacity. We let µh = 2.4 and µl = 1.6, as used

in the case of small variability. Shown in Figure 5.7(a), when α < β , navg tends

to overestimate and Pr[C(n) > C∗] is over the required values, ξ = 0.9. When

α > β , navg tends to underestimate and Pr[C(n) > C∗] is below the required

values, indicated by the horizontal line overlapped on the x-axis in Figure 5.7(c).

As for α = β , we want to highlight that navg can achieve the target capacity

roughly 50% of the time, for any capacity variability and target values. This

observation can be explained by Equation 5.1. When α = β , the steady state

of QoS fulfillment is greatly simplified to πn = 1/2n and πi =
�

n

i

�
(1/2n). Thus,

substituting navg = ⌈1/2µh +µl⌉ can result in Pr[C(n)> C∗] = (50+ε)%], where

ε is a small positive fluctuation due to the ceiling operator on navg .

Observation 5.2.2. When α = β , navg can achieve C(n) > C∗ roughly 50% of the

time, i.e., P r[C(n) > C∗] = 50+ ε%, where ε is a small positive value.
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5.3 Choosing a VM Con�guration

In this section, we compare different VM configurations in terms of their optimal

cluster sizes and total cost, based on our proposed Markov chain model. Using

theoretical and numerical analysis, we study if a cluster composed of more pow-

erful VMs is always smaller than a cluster of weaker VMs. Due to the large num-

ber of parameters considered, we focus on providing a condition where weaker

VMs imply a bigger cluster, and numerical counter examples where a cluster of

weaker VMs can provide better service availability than a cluster of more power-

ful VMs.

5.3.1 Typi
al Case: Weaker VM Means a Bigger Cluster

Following the convention in Section 5.1, we consider three types of VM instances,

namely gold, silver, and bronze. A gold instance is more powerful and implies

a higher average computational capacity than a silver instance, whose average

capacity is more than that of a bronze instance. All VM configurations experience

high (µh,t ype) and low capacity (µl ,t ype) for exponentially distributed durations

with means equal to α and β , respectively. We can show the necessary condition

for the typical case, meaning clusters of weaker VMs are bigger than clusters of

more powerful VMs when achieving the same target of service availability.

Theorem 5.3.1. When experiencing the same α and β and aiming at the same

service availability threshold, the cluster sizes of gold, silver, and bronze instances

are

n∗
gold
≤ n∗

sil ver
≤ n∗

bronze
, when

µh,gold ≤ µh,sil ver ≤ µh,bronze, and µl ,gold ≤ µl ,sil ver ≤ µh,bronze.
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The theorem follows straightforwardly from the monotonicity of Pr[C(n) >

C∗] in n. Due to the lack of space, we skip the proof. The theorem tells us that

to guarantee the same level of service availability, one should definitely acquire

a higher number of weaker VMs than powerful VMs, when the low and high

capacity of weaker VMs are inferior to the low and high capacity of powerful

VMs, respectively.

We note that the typical case simply implies the order of n∗ for different con-

figurations, not the differences in their costs. Using three types of cost functions,

namely linear, concave, and convex, we show that the costs of different types of

VM clusters can vary a lot. In particular, the high and low capacities experienced

by each VM configuration are listed under the typical case in Table 5.2, where

(α,β) are (40,20). The linear/concave/convex cost function means the cost per

VM instance is linearly/concavely/convexly proportional to the average capac-

ity of single VM of a particular type. We set the cost per VM per time unit of

(gold, silver, bronze) for linear, concave, and convex as (1.5, 2.25, 3.375), (1.5,

1.95, 2.7), and (1.5, 2.7, 4.2), respectively. Figure 5.8 (a) and (b) summarize

the resulting service availability curves of different VM types and the resulting

costs under different cost functions. One can see that although the bronze cluster

is much bigger than the gold, the cost can still be lower when the cost per VM

is linearly and convexly proportional to their average capacity. On the contrary,

when there is a discount on computational capacity, i.e., when the cost per unit of

computation decreases for gold, a gold cluster can be a cheaper option as shown

by the case of a concave cost function.
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Table 5.2. Capa
ity parameters of single VM for all VM types.

Typical Case Counter Example

µl µ µh µl µ µh

Gold 3.75 4.5 5.62 0.26 2.65 5.03

Silver 2.25 3.00 3.75 0.95 2.30 3.64

Bronze 1.50 2.00 2.50 1.80 2.00 2.20

5.3.2 Counter Example: A Cluster of Weaker VMs Can Be Smaller

Here, we show by some counter examples that the optimal size of a cluster with

weaker VMs is not necessarily larger. The capacity parameters of gold, silver, and

bronze instances used are listed under the counter example in Table 5.2. The

average capacity, µ, is the average of high and low capacity, and grows with the

VM configuration. However, the capacity variability, i.e., the difference between

high and low capacity, is higher for more powerful VMs.

Figure 5.9 summarizes the curve of QoS fulfillment of the three VM config-

urations. One can see that the QoS curve of the three types of VMs cross each

other at n = 15. For a given size, the QoS of a gold VM is not necessarily higher

than that of a silver or bronze VM. In particular, for n ≥ 15, the QoS of a silver

VM is higher or equal to a gold VM. As a result, depending on the threshold of

QoS, ξ, the optimal cluster size of bronze VMs can be bigger, or smaller than that

of gold VMs. To guarantee Pr[C(n) > 30] ≥ 0.85, the optimal cluster size of all

three types of VMs is 16. When such a threshold is higher than 0.85, the number

of VMs in a gold cluster should be higher than in a bronze cluster. This leads us

to conclude that not only the average, but also the variability in VM throughput

is crucial in choosing and sizing VM clusters in the cloud.

Our proposed Markov model and solution provide an efficient means to ex-

plore a large number of parameters encountered, such as different cost functions,

and exogenous variabilities and their intensity, when choosing the right VM con-

figuration and deciding the cluster size. Numerical examples serve the purpose

of illustrating how our solution robustly attains an optimal trade-off between cost

and QoS fulfillment across different system parameters and VM configurations.

5.4 Assumptions and Limitations

In this work we assume a cluster of stateless VMs running a single service

type, and in particular a wiki service. On the one hand, while this is a more

realistic system than the ones described in Chapters 3 and 4 in the sense that the

performance is not necessarily bound by a single resource type, we still assume
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that new VMs can be started at any point of time. On the other hand, this work

focuses more on a medium- to long-term capacity planning, where the overhead

of transferring data necessary for starting new VM instances is less significant.

5.5 Summary

Using empirical experiments with a Wikipedia system, as well as a Markovian

model and numerical analysis, we demonstrated how QoS fulfillment can be best

guaranteed with a minimum number of correctly configured VMs deployed in a

cloud where VMs suffer from high capacity variability. Our experimental results

showed that different VM instance sizes can have varying degrees of capacity

variability from co-located VMs and that workloads on co-located VMs can impact

the capacity of the service VM by up to 35%. Our analytical and numerical results

provided not only insight on how an optimal number of VMs should be chosen for

a service cluster, but also give counter examples on why simple pessimistic, opti-
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mistic, and average-based provisioning of VMs cannot strike an optimal balance

of cost and QoS fulfillment in the cloud where performance variability persists.

Overall, we provided a systematic and rigorous approach to explore several cru-

cial aspects of VM provisioning for service clusters, i.e., capacity variability, cost

structure, and guarantees regarding QoS fulfillment.



Chapter 6

Optimizing for Tail Response Times

Related work in the areas of queueing networks and operations research sheds

light on analyzing either single or multiple aspects of deploying clusters in the

cloud. Obtaining the distribution of response times is always challenging, espe-

cially with complex arrival and service processes, i.e., Markov modulated speed,

and non- First Come First Serve (FCFS) scheduling. The only easy expression

relates to the first moment of response times.

A large body of related work concentrates on deriving the distribution of

the M/G/1/PS queue [Kleinrock, 1975; Gautam, 2012], where the service rate

is fixed. Considering varying service rates, the related work centers around

two directions: (1) service rates depending on the state of the system [Rege

and Sengupta, 1985; Gupta and Harchol-Balter, 2009] and (2) service rates

changing due to external environmental processes [Mahabhashyam and Gau-

tam, 2005; Boxma and Kurkova, 2001; Zhang and Zwart, 2012; Dorsman et al.,

2013]. Motivated by the fact that the "speed" of a system increases with the

number and variability of jobs, Gupta et al. [Gupta and Harchol-Balter, 2009]
developed the approximation for mean response times for M/G/PS −M P L and

GI/G/PS−M P L queues with state-dependent service rate, where MPL denotes

the multi-programming limit. While most of the aforementioned work centers

around single server/queue, Dorsman et al. [Dorsman et al., 2013] and Casale et

al. [Casale and Tribastone, 2013] study parallel queueing networks with Markov-

modulated execution speeds using a functional central limit theorem and ordi-

nary differential equations, respectively, with a strong assumption on Markovian

arrivals. Therefore, little is known on the challenging question of how to predict

the tail response times for parallel queueing systems with renewal arrivals, high

job size variability, Markov-modulated execution speeds, and processor sharing

discipline under various traffic intensities.
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Various strategies have been proposed to overcome the degradation of tail

response times due to exogenous variability. On one hand, various opportunistic

VM selection algorithms [Björkqvist et al., 2012; Farley et al., 2012] reactively

obtain the VMs with better performance in terms of execution speed. On the

other hand, cluster sizing algorithms aim to proactively provision VMs accord-

ing to their predicted performance, such as the tail throughput [Björkqvist et al.,

2013], and SLA targets. Though a pro-active optimization scheme is able to pro-

vide a reliable statistical guarantee on the performance metrics of interest, one

needs to first obtain the prediction of those metrics, such as tail response times.

Overall, optimizing for tail response times is achieved as best effort, without any

guarantees.

In this chapter, we develop an abstract parallel queueing system, where each

queue is a G/G/1/PS with Markov modulated execution speeds, to represent

the application cluster hosted in a cloud. We obtain the distribution of work-

loads accumulated in the system, with special focus on their tail, using large

deviation analysis. To derive the approximation of the tail response times, we

leverage the workload distribution and a mean-based analysis of the M/G/1/PS

queue with an average execution speed. We first derive the conditional distribu-

tion of the number of jobs for a given workload distribution for the M/G/1/PS

queue. Then we develop an approximation scheme for the tail response times –

a kind of worst case analysis. As a special case to model highly varying job sizes,

we present closed form results for a degenerate hyper-exponential distribution.

We compare the proposed analysis against simulation results under various pa-

rameter settings, i.e., number of servers, different levels of exogenous variability

(execution speeds), traffic intensities, and job size variability. Overall, our anal-

ysis shows a very good match with experimental results for the tail distribution

of workloads, and response times, especially in cases with high job variability,

number of speeds, and number of servers.

Our contribution can be summarized as follows. First, we derive the workload

distribution for hard-to-analyze systems that capture the key characteristics of

today’s cloud systems, i.e., renewal arrivals, highly varying job sizes, Markov-

modulated execution speeds, processor sharing, and round-robin load balancing.

Second, we develop an approximation scheme for the tail response times, which

are one of the critical SLA parameters, and further optimize the cluster size based

on that.

The outline of this work is as follows. Section 6.1 provides an overview of the

system model. In Section 6.2 we obtain the workload distribution based on the

large deviation analysis for the G/G/1/PS queue with Markov-modulated exe-

cution speeds and illustrate an approximation scheme to obtain the tail response
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times. We develop a mean-based approximation in Section 6.3, which captures

the conditional probability of the number of jobs and tail response times for the

M/G/1/PS queue with a special case on degenerated hyperexponential distribu-

tion of job sizes. Extensive experiments comparing analysis and simulation are

given in Section 6.4, and Section 6.5 lists the main assumptions and limitations

of our work. Finally, a summary is presented in Section 6.6.

6.1 System Model

Z(t)λ 2

N

1

Round

Robin

Job size ~G(.)

-Markov modulated speeds

-Processor sharing

Figure 6.1. Cloud 
luster s
enario.

We consider a system of N parallel servers and a dispatcher in front of them,

as depicted in Figure 6.1. Each server is functionally equivalent. Jobs arrive to

the dispatcher according to a renewal process with a rate of λ per second, and an

inter-arrival time squared coefficient of variation (SCOV) c2
a
. Each job requires a

random amount of work (say, in KBytes) to be processed by one of the servers.

We assume that the amount of work, denoted by H, for various arrivals is IID

with a common CDF G(·), mean m and SCOV c2. The dispatcher cannot observe

the state of the servers, and hence routes jobs to the servers in a round robin

fashion. The servers use complete processor sharing. However, the speed of the

server changes according to a finite-state continuous time Markov chain (CTMC)

{Z(t), t ≥ 0} with state-space S and infinitesimal generator matrix Q. At any

time t , if Z(t) = i, then the server uses execution speed φi, for any i ∈ S . We
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define the unit of φi as KBytes per second. If there are no jobs at the server at

time t then the processor is idle, otherwise it serves jobs at speed φi. Note that

the speed can change during any time of the job execution process, i.e., a job can

be executed over multiple speeds. In summary, using Kendall’s notation from

queueing theory, each queue of our system is a G/G/1/PS(φ) queue, where φ

denotes the vector of all possible execution speeds.

This is a somewhat non-traditional description of a queueing system. Hence

before proceeding ahead, we explain the service process in some detail. Say, at

time t an arrival occurs to a server which already has n−1 jobs that it is processing

in parallel. Let x1, x2, . . ., xn be the remaining amount of work (in KBytes) for

jobs 1, 2, . . ., n (where the nth job corresponds to the one that just arrived at

time t). Since the server’s speed is φi, the amount of work for each of the n

jobs would reduce at rate φi/n because of the processor sharing discipline. For

instance, the kth job has the smallest remaining work, i.e., xk =min{x1, . . . , xn}.

Then, the kth job would be completed at time t+nxk/φi, provided that there are

no arrivals as well as no state changes for execution speeds during the interval

(t , t+nxk/φi). If there are arrivals during the interval (t , t+nxk/φi) but no state

change, then as soon as the first arrival occurs, each job would now be processed

at rate φi/(n+ 1). Conversely, if a state change but no arrival occurs during the

interval (t , t + nxk/φi), then immediately after the state changes (to say j ∈ S )

each of the n jobs would now get processed at rate φ j/n.

Let p be the steady-state probability row-vector of the CTMC {Z(t), t ≥ 0}

(assuming it is irreducible), i.e., p satisfies pQ = 0 and p1
′
= 1 (where 0 and 1

are row-vectors of zeros and ones respectively). The condition for system stability

is

λm

N
< pφ (6.1)

where φ is a column vector of the φi values. Thus from inequality (6.1), we

can immediately identify the minimum number of servers N that would result in

a stable system.

Prior to formally introducing our problem, we first describe the definition

for the so-called (1 − ε)th percentile of workloads and response times. For a

random variable X , e.g., workloads and response times, the value X1−ε is such

that P{X ≤ X1−ε}= 1− ε. Thus X1−ε is the (1− ε)th percentile of X .

Problem statement: What we look for is the minimum number of servers that

would guarantee that the response time for an arbitrary arrival in steady state would

be less that ζ with a probability greater than 1− ε, for some given values of ζ and

ε, i.e., so-called (1− ε)th response times.
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For that, we assume there are N servers that would result in a stable system,

i.e., the inequality (6.1) is satisfied. Specifically, let R be the response time ex-

perienced by an arbitrary job that arrives in steady state to one of the N servers.

We obtain an expression for P{R > ζ} and subsequently check if it is less than

ε. If not, since our expression for P{R > ζ} is a function of N , it can be easily

changed and we can find the smallest N so that P{R> ζ} is less than ε.

6.2 Tail Response Times of G/G/1/PS(φ) Queues

In this section we consider any one of the N servers, i.e., G/G/1/PS(φ) queues,

and aim to obtain the (tail) response times. To such an end, we first derive

the tail workload distribution based on large deviation analysis, and then derive

approximation schemes of response times based on a mean-based approximation

of the M/G/1/PS queue with an average execution speed. It is crucial to point

out that it is extremely difficult to obtain the response time distribution for the

M/G/1/PS queue. However, in this study we add some features beyond the

M/G/1/PS queue, such as Markov-modulated execution speed and round robin

dispatching (resulting in general inter-arrival times). Undoubtedly, their analysis

gets even more intractable, and hence we resort to an approximation scheme.

6.2.1 Workload Distribution

To obtain the tail distribution of the workload under round-robin load balancing,

we use a method based on large deviations. Here we consider any one of the N

servers. Arrivals occur at any server according to a delayed renewal process,

with inter-renewal times according to a general distribution with mean N/λ and

variance Nc2
a
/λ2. Let W be the workload to be processed in the server at any arbi-

trary time in steady state. To obtain the limiting tail distribution of the workload

in the queue, W (t), i.e., P{W (t)> x} as t →∞ for some large x , we consider a

fictitious server with constant processing speed φmax =maxi∈S φi. In addition to

the regular stream of arrivals, the fictitious server also gets fluid workload at rate

φmax −φ j at time t (if Z(t) = j for some j ∈ S ) from a compensating source.

Note that the workload at time t at this fictitious server is stochastically identical

to W (t) for all t ≥ 0. Thus we analyze the tail distribution of this fictitious server

and represent it as W (t).
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Let A(t) be the total amount of workload that arrived from time 0 to t from

the regular renewal source. We can compute for some v ≥ 0,

E[evA(t)] = E[{G̃(−v)}N (t)]

= e
λt
N log{G̃(−v)}+

λtc2
a

2N2 {log{G̃(−v)}}2

whereN (t) is the number of arrivals in time t , assuming a non-delayed renewal

process (this would not affect us as we will let t →∞), and for the latter term

we use a Normal approximation to N (t) which is reasonable for large t . Now,

we can write down h(v) the asymptotic logarithmic moment generating function

(ALMGF) defined as [Gautam, 2012]

h(v) = lim
t→∞

1

t
log E[evA(t)]

and for our A(t), h(v) can be computed as

h(v) =
λ

N
log{G̃(−v)}+

λc2
a

2N 2
{log{G̃(−v)}}2 (6.2)

for any v ≥ 0. Likewise, since the compensating source is a CTMC fluid source,

we can compute its ALMGF hc(v) as

hc(v) = e(Q+ vφmaxI− v˘) (6.3)

where e(A) denotes the largest real eigenvalue of a square matrix A, I is the

identity matrix, and ˘ is the diagonal rate matrix, i.e., ˘= [diag(φ)],

Let η be the unique solution to

h(η) + hc(η) = ηφmax

where h(v) and hc(v) can be computed from Equations (6.2) and (6.3), respec-

tively. Then, using results from large deviations,

lim
t→∞

P{W (t)> x} ≈ e−ηx (6.4)

for large values of x (in particular as x →∞). Thus we have an approximation

for the tail distribution of the steady-state workload.

6.2.2 Approximating Tail Response Times

Here, we seek to obtain an expression for the response time tail, based on the

workload tail derived in Section 6.2.1. Notice that in Section 6.2.1 we do not
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make any assumptions about the service discipline except that it is work con-

serving. Here, we focus on the tail probability of response time under a processor

sharing discipline.

Assumptions: In particular, we assume fast dynamics of execution speeds,

i.e., jobs can experience many different execution speeds during their response.

The motivation behind is two-fold. First, co-located neighboring VMs can execute

complex applications that exhibit volatile run-time behavior and cause frequent

changes in execution speeds. Second, under a special case, it is possible to ana-

lytically derive the tail probabilities of response times under very fast dynamics:

λ/N ≪ −min j∈S q j j, where q j j is the j th element on the diagonal of Q matrix

of CTMC. Essentially, the dynamics of the number of jobs in the system is much

faster than the dynamics of execution speeds, i.e., a server changes state many

times during a job’s response. Especially for the scenario in [Reiss et al., 2012],
this is a reasonable assumption.

Approximation S
heme

As described earlier, obtaining the tail response time for an M/G/1/PS queue-

ing system with fixed speed is itself not straightforward, and to the best of our

knowledge not available in the open literature. Therefore, as a first step, we

obtain an approximate expression for R1−ε(M ,φ), the (1− ε)th percentile of the

response time under the M/G/1/PS queue with an average speed φ (where

φ = pφ). To obtain an expression for R1−ε(M ,φ), we need a closed-form formula

for W1−ε(M ,φ), the (1− ε)th percentile of the workload under the M/G/1/PS

queue with constant speed φ. However, what we ultimately need is an approx-

imation for R1−ε(G,φ), the (1 − ε)th percentile of the response time under the

G/G/1/PS queue with varying speed φ. We already have an expression for the

corresponding workload W1−ε(G,φ) from Equation (4), which can be written as

W1−ε(G,φ) =
−1

η
log(1− ε). (6.5)

Then, based on the expressions for R1−ε(M ,φ), W1−ε(M ,φ) and W1−ε(G,φ),

we can obtain an approximation for R1−ε(G,φ) using

R1−ε(M ,φ)

W1−ε(M ,φ)
≈

R1−ε(G,φ)

W1−ε(G,φ)

conjecturing that the ratio of the almost-worst-case response time to the almost-

worst-case workload would be approximately equal for two queues that have the



88 6.3 Mean-based Approximation

same mean arrival rate, same mean processing speed and same job size distri-

bution. Similar ideas have been considered in other areas of queueing theory

connecting Markovian queues to general queues [Buzacott and Shanthikumar,

1993]. Essentially, we propose to estimate

R1−ε(G,φ) ≈ R1−ε(M ,φ)
W1−ε(G,φ)

W1−ε(M ,φ)
, (6.6)

where the derivation of W1−ε(G,φ) is given in Equation (6.5) and R1−ε(M ,φ) and

W1−ε(M ,φ) are given in the next section based on a mean-based approximation.

To achieve our objective of this study, i.e., searching for a minimal number

of servers that guarantees the 1− εth response times, we need to iterate through

W1−ε(G,φ) with different number of servers, i.e., N , using our proposed approx-

imation.

6.3 Mean-based Approximation

To obtain values of R1−ε(M ,φ) in Equation (6.6), we propose a mean-based ap-

proximation, i.e., considering the average arrival rate, average execution speed

(φ), and average number of jobs, for an M/G/1/PS(φ) queueing system. We

first obtain the distribution of the number of jobs in an M/G/1/PS(φ) queue-

ing system, conditioned upon the workload. To accommodate a high variability

of job size, we approximate the job size to be degenerate hyperexponential and

derive the LST expression of the number of jobs as well as response times, i.e.,

W1−ε(M ,φ). Finally, combining the conditional probability of the number of jobs

and W1−ε, we develop an approximation scheme for R1−ε(M ,φ).

6.3.1 Conditional Distribution of Number of Jobs

For such a server that adopts processor sharing, let X (t) be the number of jobs

in the system at time t and Ri(t) be the remaining amount of work to be pro-

cessed for the i th job in the system. The multi-dimensional stochastic process

{(X (t), R1(t), R2(t), . . . , RX (t)(t)), t ≥ 0} is a Markov process. We denote

Fn(t , y1, y2, . . . , yn) as the joint probability

Fn(t , y1, y2, . . . , yn) =

P{X (t) = n, R1(t)≤ y1, R2(t)≤ y2, . . . , Rn ≤ yn}.



89 6.3 Mean-based Approximation

Thereby the density function fn(t , y1, y2, . . . , yn) is defined as

fn(t , y1, y2, . . . , yn) =
∂ nFn(t , y1, y2, . . . , yn)

∂ y1 ∂ y2 . . . ∂ yn

.

It is known that as t →∞, fn(t , y1, y2, . . . , yn) converges to the stationary dis-

tribution fn(y1, y2, . . . , yn) which is given by

fn(y1, y2, . . . , yn) = (1−ρ)
λn

(Nφ)n

n∏

i=1

[1− G(yi)]

where ρ = λm/(Nφ).

Using the above we next obtain the joint probability that there are n jobs in

the system and the total workload is not more than y which we denote as F̂n(y)

and define as

F̂n(y) = lim
t→∞

P{X (t) = n,

R1(t) + R2(t) + . . .+ Rn(t)≤ y}

for all n ≥ 0 and y ≥ 0. Using the expression for fn(y1, y2, . . . , yn), we have

F̂n(y) =

∫ y

0

∫ y−y1

0

∫ y−y1−y2

0

. . .

∫ y−y1−y2−...−yn−1

0

fn(y1, y2, . . . , yn)d ynd yn−1 . . . d y1

= (1−ρ)
λn

(Nφ)n

∫ y

0

(1− G(y1))

∫ y−y1

0

(1− G(y2))

∫ y−y1−y2

0

(1− G(y3))

. . .

∫ y−y1−y2−...−yn−1

0

(1− G(yn))

d ynd yn−1 . . . d y1.

Since there is an n-folded convolution, it is only natural that we write down the

LST of F̂n(y), namely ˜̂Fn(s), which after some algebra and calculus is

˜̂Fn(s) = (1−ρ)
λn

(sNφ)n
[1− G̃(s)]n (6.7)

for all s ≥ 0.
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It would typically be difficult to invert the above LST and obtain F̂n(y) except

for some special cases that we will investigate in the next subsection. Nonethe-

less, we go ahead and use the density f̂n(y) defined as the derivative of F̂n(y)

with respect to y for all y > 0. Using that, we can write down an expression

for the steady-state probability that there are n jobs in the system, given the

workload, W (t), is y as

lim
t→∞

P{X (t) = n|W (t) = y} =
f̂n(y)
∞∑

k=1

f̂k(y)

. (6.8)

6.3.2 Spe
ial Case: Degenerate Hyperexponential Work

Here, we consider a special case of amount of work requested by jobs, i.e., de-

generate hyperexponential distribution, to represent a highly varying job size as

well as to demonstrate how to compute conditional probability in Equation (6.8)

and tail workload.

Let H be a non-negative random variable that has a degenerate hyperexpo-

nential distribution with parameters q and θ if its CDF is P{H ≤ h} = 1− qe−θh

for some h ≥ 0 where q satisfies 0 ≤ q ≤ 1 and θ > 0. Notice that when q = 1,

H reduces to the standard exponential distribution, while q = 0 corresponds to

H = 0, a deterministic value. Also, when 0≤ q < 1, H has a mass at 0 with prob-

ability 1−q. One can compute the LST of the CDF as E[e−sh] = (1−q)+qθ/(s+θ ).

Further, the mean and variance of H are E[H] = q/θ and Var[H] = (2q−q2)/θ 2.

We model the amount of work a job brings to the following degenerate hy-

perexponential distribution. We particularly consider the workload distribution

that has SCOV at least 1. From a practical standpoint this would be a reasonable

assumption when there are many extremely tiny jobs and the SCOV is greater

than 1 (both of which are typical in many server environments). Also, from a

mathematical point of view, there are just two parameters to estimate. Recall

from Section 6.1 that the amount of work has a mean m, SCOV c2 and distri-

bution G(·). We can estimate q and θ by fitting the mean and SCOV. Thus we

have

q = 2/(1+ c2) and θ = 2/(m+mc2).
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Distribution of Number of Jobs

Now, reverting back to Equation (6.7), we approximate the LST ˜̂Fn(s) as

˜̂Fn(s) = (1−ρ)
λn

(sNφ)n
[sq/(s+ θ )]n

which can be inverted to get

f̂n(y) = (1−ρ)

�
λq

Nφ

�n
yn−1e−θ y

(n− 1)!

for all y > 0. Thereby, we can write down the steady state probability of having

n jobs at the server, given the workload is y using Equation (6.8) for all n ≥ 1 as

lim
t→∞

P{X (t) = n|W (t) = y} =

�
λq y

Nφ

�n−1
e−λq y/(Nφ)

(n− 1)!

which is a Poisson distribution with parameter λq y/(Nφ) with the adjustment

made from n to n− 1 since n cannot be zero if y > 0. Notice that the number

of jobs at a server, given a non-zero workload does not depend on the mean job

size. However, it does depend on the SCOV of job sizes through q.

Workload Distribution

Recall that we would like to analyze an M/G/1 queue with PP(λ/N) arrivals,

and each arrival brings a random amount of work that needs to be processed by

a single server. We let λ′ = λ/N . The amount of work for various arrivals is

IID degenerate-hyperexponential with a common CDF, as described earlier. The

server uses a single processing rate φ. The jobs can be served according to any

work-conserving discipline, i.e., FCFS or processor sharing. If the M/G/1 queue

is observed at an arbitrary time in steady state, then let V be the time to empty

all the workload in the system. The LST of V (assuming stable) can be computed

as:

E[e−sV] =
(1−ρ)s

s−λ(1− G̃(−s/φ))

where ρ = λ′q/(θφ) and G̃(−s/φ) = (1− q) + qθ/(s/φ + θ ). Rearranging the

terms we get

E[e−sV] = (1−ρ) +ρ
θφ −λ′q

θφ −λ′q + s
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which upon inverting we get the CDF of V as

P{V ≤ t}= 1−ρe−(θφ−λ
′q)t

for all t ≥ 0. Now, the amount of workload in steady-state W∞ can be written

as W∞ = Vφ. Hence the CDF of the amount of workload is

P{W∞ ≤ x}= 1−ρe−(θφ−λ
′q)x/φ.

Thus, we have W1−ε(M ,φ) = {x : P{W∞ ≤ x = 1− ε}}

6.3.3 Tail Response Time Approximation

In the remainder of this subsection, we present an approximation scheme, based

on the so-called (1−ε)–worst case analysis. Our approximation scheme for (1−

ε)th percentile response time is motivated by Little’s law and based on the idea

that the tail response time depends on the tail job size, the tail number of jobs,

and the average execution speed.

Approximation algorithm for (1− ε)–worst case analysis

1. Obtain the average speed,φ = pφ, where the terms are defined near Equa-

tion (6.1)

2. Obtain the 1− εth percentile of the steady-state workload, W1−ε =

− log(ε)/η, according to Equation (6.4).

3. Obtain the number of jobs in the system. Using the analysis in Section

6.3.2, we obtain the number of jobs to be a Poisson random variable with

parameter λq y/(Nφ) where for y we use W1−ε in step 2 above and φ

is from step 1. Then, we obtain 50th percentile of number of jobs in the

system, termed J1−ε, corresponding to having W1−ε amount of workload.

4. Obtain the (1−ε)th percentile of the amount of work brought by an arriving

job in steady state, Y1−ε = qG−1(1 − ε), where q is the parameter in the

degenerate hyperexponential distribution defined in Section 6.3.2.

5. Approximate the (1− ε)th response time as R1−ε = Y1−ε(1+ J1−ε)/φ.

While steps 1, 2 and 4 of the above algorithm are straightforward, it is worth-

while explaining the rationale behind steps 3 and 5. As a conservative approxi-

mation we essentially assume that the tail response time corresponds to the tail

job size and tail number of jobs in the system. A crucial thing to observe is that
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small changes to the number of other jobs during an arriving job’s response (es-

pecially when that number of other jobs is high) would not adversely affect the

response time as the large job size would overwhelm, leading to the expression

in step 5 and the use of the median number as a surrogate for the number of jobs

in step 3.

6.4 Experimental Results

In this section, we present an extensive set of experimental results, comparing the

proposed analysis against simulation results. Our objective is to show: (1) the ac-

curacy of the proposed workload analysis; (2) the accuracy of the response time

approximations; and (3) the optimality of the dimensioned cluster size. To such

an end, we consider a large number of system and workload parameters, in par-

ticular, the number of servers, different execution speeds, and job size variability.

The metrics of interest are the tail workload distributions and the tail response

time distributions, i.e., the 50th, 75th, 85th, 95th, 99.5th, 99.95th, 99.995th, and

99.9995th percentiles. Due to lack of space we present only partial results. In

the following, we first explain the experiment settings, followed by the accuracy

and scalability of the proposed analysis, and finally, the analysis of optimizing

the cluster for a target tail response time.

6.4.1 Experiment Setup

We develop a simulator based on OMNet++ [OMNeT++, 2015] for the system

shown in Figure 6.1, consisting of N queues, i.e., N = {1, 4, 10, 20, 30}, each

of which execute requests in a processor sharing fashion. Requests following

Poisson distribution with rates λ = {0.8, 3.2, 8, 16, 24}, corresponding to N =

{1, 4, 10, 20, 30}, respectively, are dispatched to each queue by a round-robin

load balancer. Each server experiences different execution speeds, governed by

the Q matrix of CTMC. In particular, we consider two scenarios: (1) servers

alternate between 2 speeds, φ = [8, 10] according to Q2, (2) servers alternate

between 5 speeds, φ = [8, 9, 10, 11, 12] according to Q5, where Q2 has all non-

diagonal entries qi j = 0.05 and Q5 has all non-diagonal entries qi j = 0.1.

Each job brings a workload amount with mean m = 10 KBytes and different

SCOV, i.e., c2 = {1, 4, 9}. The job sizes follow the degenerate hyperexponential

distributions described in Section 6.3.2. Note that we purposely make the values

of Q2 and Q5 comparable so as to study the effect of increasing the number of

speed choices |φ|.
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Exp
Parameters Workload error[%] Response Times error [%]

N λ |φ| c ρ p75 p85 p95 p99.5 p99.95 p75 p85 p95 p99.5 p99.95

1 1 0.8 2 1 0.89 9.1 6.0 2.9 0.6 0.1 88.2 101.6 138.6 181.1 213.3

2 1 0.8 2 2 0.89 8.8 6.1 3.5 1.6 1.1 7.1 13.4 14.7 24.5 32.0

3 1 0.8 2 3 0.89 8.9 6.3 3.6 1.6 3.6 n/a 4.8 6.2 4.0 0.1

4 4 3.2 2 1 0.89 18.1 12.6 7.4 3.8 2.3 34.5 46.1 62.4 94.5 113.6

5 4 3.2 2 2 0.89 11.5 8.2 4.9 2.2 0.9 0.9 5.8 2.3 8.3 13.9

6 4 3.2 2 3 0.89 10.2 7.2 4.3 1.9 1.6 n/a 5.0 11.5 9.9 5.3

7 10 8.0 2 1 0.89 29.2 21.9 15.2 10.4 8.6 27.3 42.3 62.4 86.1 105.4

8 10 8.0 2 2 0.89 13.9 10.3 6.9 4.6 3.6 8.4 4.2 5.2 4.5 11.9

9 10 8.0 2 3 0.89 11.3 8.2 5.4 3.2 2.1 n/a 4.3 13.6 10.7 5.4

10 20 16.0 2 1 0.89 17.1 10.9 5.2 1.5 0.7 16.5 30.3 40.2 65.2 84.8

11 20 16.0 2 2 0.89 10.6 7.2 4.0 1.8 1.2 10.9 6.8 7.8 1.8 9.1

12 20 16.0 2 3 0.89 10.0 7.0 4.0 1.9 1.7 n/a 5.6 14.7 11.8 6.6

13 30 24.0 2 1 0.89 20.9 14.2 8.1 3.5 2.1 19.5 21.5 43.5 68.7 83.4

14 30 24.0 2 2 0.89 11.5 8.0 4.6 2.6 2.2 10.2 6.1 7.1 2.4 7.6

15 30 24.0 2 3 0.89 10.3 7.3 4.4 2.2 2.3 n/a 5.3 14.4 11.5 7.3

16 1 0.8 5 1 0.80 15.5 9.8 4.8 1.1 1.0 60.2 76.7 116.3 153.0 183.6

17 1 0.8 5 2 0.80 18.2 12.4 7.1 3.0 3.0 6.3 3.1 7.5 16.9 25.2

18 1 0.8 5 3 0.80 18.9 12.8 7.2 3.1 0.6 n/a 9.0 4.2 3.3 10.1

19 4 3.2 5 1 0.80 34.5 22.9 13.1 6.7 4.5 38.1 36.8 54.1 77.3 107.0

20 4 3.2 5 2 0.80 23.5 16.2 9.6 5.2 3.3 5.9 14.7 8.5 1.9 10.2

21 4 3.2 5 3 0.80 21.2 14.7 8.8 4.7 2.6 n/a 8.8 8.9 1.9 4.7

22 10 8.0 5 1 0.80 53.9 36.9 23.3 14.8 11.8 17.2 20.8 45.1 75.2 99.4

23 10 8.0 5 2 0.80 27.3 19.2 12.1 7.3 5.5 20.3 13.3 7.0 3.6 7.9

24 10 8.0 5 3 0.80 22.8 16.0 9.9 5.6 3.7 n/a 8.2 8.3 1.2 5.6

25 20 16.0 5 1 0.80 36.9 22.9 11.5 4.3 1.8 7.1 10.4 32.6 48.6 73.1

26 20 16.0 5 2 0.80 23.2 15.5 8.7 4.2 2.4 22.4 15.7 9.6 4.7 4.9

27 20 16.0 5 3 0.80 20.9 14.2 8.2 4.2 3.1 n/a 9.3 9.5 2.6 4.1

28 30 24.0 5 1 0.80 43.3 27.8 15.4 7.4 4.4 9.9 13.3 36.0 52.6 77.6

29 30 24.0 5 2 0.80 24.8 16.8 9.9 5.2 4.0 21.7 15.0 8.7 3.8 6.0

30 30 24.0 5 3 0.80 21.6 14.8 8.8 4.6 2.9 n/a 9.1 9.2 5.2 4.6

Table 6.1. Predi
tion errors, 
omparing analyti
al results with simulation.

The exact parameter combinations and the resulting prediction errors be-

tween the proposed analysis and the simulation results are listed in Table 6.1.

The prediction error is defined as the absolute difference between the predic-

tion and simulation result, divided by the simulation result. response times of

lower percentiles, such as the 50th and 75th percentile, are measured as low as

0 in the simulation. In these cases the prediction error is listed as n/a in Table

6.1. In most cases, our prediction overestimates the simulation results. Note that

for each combination, our simulation results are averaged across 10 runs, where

each queue roughly receives 6.4 million requests. The simulation time grows

exponentially with the number of speeds, servers, traffic intensities, as well as,

the tail statistics. The longer simulations are in the order of several hours. In

contrast, the computational time of the proposed analysis is negligible.

6.4.2 A

ura
y and Sensitivity Analysis

In this subsection, we first report on the accuracy of our proposed tail workload

and response time analysis, using Table 6.1, and then discuss how these two

metrics vary across different parameter settings, and what their implications are

on system design.
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Figure 6.2. Sensitivity analysis of tail workloads and response times.

Predi
tion Errors

The average prediction error is around 5% for both the workload and response

time in most considered cases. For workload predictions, our model works very

well particularly for higher percentiles and for highly varying workloads, i.e.,

for higher values of c, at a given number of servers. One can observe that in

the workload part of the table, i.e., its middle section, prediction errors in the

lower left corner are higher than in the upper right corner. This indicates that

the workload prediction suffers slightly, in particular of overestimation, when

increasing the number of servers and number of execution speeds.

As for response time predictions, our proposed approximation results in slightly

higher errors compared to the workload part. In particular, our estimations are

highly conservative for job size distributions with low variance, i.e., c = 1, and

for higher tail response times. The good news is that the overestimation effect is

mitigated with increasing variability of job sizes, increasing numbers of servers,

and increasing number of execution speeds. Overall, our proposed analysis is

very accurate in predicting the 95th and 99.5th percentile of response times for

systems with high numbers of servers experiencing high job size variability, and

frequent execution speed changes due to the external environment.

Sensitivity Analysis

To see how the distribution tail of workload and responses time changes with the

job variability, we select three sets of experiments and summarize them in Figure
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6.2, corresponding to the cases having N = 4, |φ| = 5 while varying c = {1, 2, 3}.

We plot both the analytical and simulation results.

In Figures 6.2 (a) and (b), one can clearly observe that the workload in-

creases with the degree of job variability for any given percentile. The tail work-

load grows exponentially, shown as almost linear curves in Figure 6.2 (a), due

to the log scale. As stated earlier, our workload predictions are overestimated

for lower percentiles, but very accurate for higher percentiles. In terms of tail

response time distributions, a different pattern with respect to the job variabil-

ity can be observed. In Figure 6.2 (b), the tail distribution of response times

increases differently for different job variability values. Comparing c = 1 and

c = 3, the 75th and 85th percentile of c = 3 are lower than c = 1, whereas for

the 95th, 99.5th and 99.95th percentile, the opposite holds true. Such an obser-

vation is not too surprising, since extensive related work has pointed out that

the average response times is much worse in systems with highly varying job

sizes. The additional merit of our analysis is to pinpoint at which part of the

tail the response times degrade drastically and impact the average performance.

This further indicates that dimensioning a cluster based on (high) tail response

times is very different from using the average response time. Moreover, we again

stress our response time prediction as being particularly conservative for c = 1,

i.e., overestimating, and very accurate for c = 2, 3.

We also compare the above results with the cases having N = 4, |φ|= 2. Due

to lack of space, we skip the graphical presentation and only report the observa-

tions. All observations made in the first case still hold, except the exact values are

slightly higher due to the lower traffic intensity, ρ. As such, the cross point among

response times for different jobs size variabilities happens at slightly higher per-

centiles. This highlights another important factor in dimensioning cloud clusters,

i.e., the traffic intensity loading the system, but this is currently out of the scope

of this study.

6.4.3 Optimizing for Cloud Clusters

The objective of this subsection is to demonstrate how our prediction can be ap-

plied in optimizing a cloud cluster so that the SLAs specified by the tail response

times can be achieved with the minimum number of servers, i.e., lowest cost. To

such an end, we assume that the system has a job arrival rate of λ = 14 jobs per

second, and the job size follows a degenerate hyperexponential distribution with

c = 3. The server experiences 5 different execution speeds |φ| = 5 governed

by a CTMC with Q5, described at the beginning of this section. The system also

considers 15 seconds as a target value, which can be used for the SLA specified
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by a tail percentile. In Figure 6.3, we show how the optimal cluster size changes

across different percentiles, using 15 seconds as a target value.

In particular, we depict how the 85th, 95th, and 99.5th percentile of response

times evolve with different cluster sizes, i.e., 15-30 servers, using our analysis.

On one hand, a cluster size greater than 15 achieves that the 85th response time

percentile is less than 15 seconds. On the other hand, 18 servers and 30 servers

are the minimal cluster size to fulfill the same target at the 95th and 99.5th per-

centile, respectively. To provide statistical guarantees on the long tail of response

times, a substantial service provisioning cost is unavoidable. Overall, the pro-

posed analysis enables an efficient methodology to evaluate such emerging chal-

lenges, i.e., capturing the tail distribution of response times in highly distributed

and volatile systems, i.e., in terms of workloads and server execution speeds.
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6.5 Assumptions and Limitations

In this work, we make similar assumptions as in Chapters 3, 4 and 5 in terms

of atomic, stateless services, but there are also some differences. In this work, we

assume processor sharing for the request processing at the VMs, which is closer to

real systems than the first-come-first-served policy that is assumed in the earlier

chapters.

We assume that the load balancers are not able to monitor the internal state

of the VMs, and therefore route jobs using round robin. Uniform random as

the load balancing policy has also been investigated in the literature, but to use

e.g., join-the-shortest-queue would require additional non-trivial extensions to

our work.

Similarly to the work in Chapter 5, we here also focus on resource provision-

ing in the medium- to long-term. Therefore, we do not take into account any

overhead resulting from e.g., data transfer required to be able to start up a new

VM on a new physical machine.

6.6 Summary

Motivated by the emerging challenge in capturing the tail response times in cloud

systems where workload and server execution speeds are highly varying, we de-

veloped an approximation of tail response times for the G/G/1/PS queueing

system with Markov modulated execution speeds. We first derived the tail work-

load distribution and then developed the approximation algorithms based on

M/G/1/PS queueing systems. Using extensive simulation results, we showed

that our proposed analysis is particularly accurate for systems with highly vary-

ing job sizes, and large number of servers experiencing frequent execution speed

changes.



Chapter 7

Con
lusions

Motivated by the elasticity and ease-of-management of cloud computing, service

providers seek the cloud as hosting platforms and seek for resource management

solutions tailored for service workloads and cloud systems. Service providers face

several challenges of provision cloud resources, arising from the service work-

load, cloud system, and stringent performance metrics. Service workloads are

complex, e.g., composed of different atomic services, and exhibit strong time-

variability. Due to the employment of virtualization technology on heteroge-

neous hardware, cloud systems often suffer from performance variability. More-

over, to provide competitive services to users, providers strive to guarantee not

only the average performance metrics but also their higher percentiles.

This thesis develops resource provision strategies which aims to best allocate

service replicas in clouds, such that multiple performance metrics, in particular

the tail throughput and tail response times, can be optimally fulfilled. Applying

methods in simulation and analytical modeling, policies developed in this the-

sis can achieve significant cost savings by effectively deploying service replicas,

while adhering to target performance targets.

7.1 Contributions

To address the high problem complexity of workloads, systems, and performance

metrics, this thesis considers a subset of challenges inherent to cloud provision-

ing, and makes specific contributions to the following aspects:

• Delivering a two-tier application of composed services

We propose a replica provisioning policy which adjusts the number of ser-

vice replicas in a two tier system based on the predicted workloads, such

99
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that all replicas are well utilized at their target values. In particular, we

model the workload balance and interdependency among tiers by estimat-

ing the probability that processing in the first tier replicas is not blocked

waiting for work in the second tier to complete. We provide theoretical

bounding analysis on first tier replicas and derive optimal/maximal nomi-

nal utilization. Our trace-driven simulation results imply great replica sav-

ings and balanced utilization of resources on both tiers, while maintaining

low response times.

• Opportunistic provisioning

We develop an opportunistic replication policy for elastic service provision-

ing on cloud platforms that optimizes the cost and performance not only for

a single service, but also for the entire system. By leveraging the variabil-

ity in VM performance and pay-as-you-go billing contracts in the cloud,

the number of VMs for each service is minimized and opportunistically

provisioned with better performing VMs. We assume a system consisting

of multiple service types, where each service is stateless and atomic, and

can easily be replicated to provide service scalability. Our proposed policy

achieves lower cost and better performance in terms of VM utilization and

response time, compared to existing replication policies that are oblivious

to performance and billing characteristics of the cloud.

• Capturing tail throughput

We develop a QoS-aware VM provisioning policy using a Markovian frame-

work which explicitly models the capacity variability of a service cluster,

and derives a probability distribution of QoS fulfillment. In particular, we

examine atomic, stateless services of a single type. To achieve the guar-

anteed QoS at minimal cost, we construct theoretical and numerical cost

analyses, which facilitate the search for an optimal size of a given VM con-

figuration, and additionally support the comparison between VM configu-

rations. Our results also give counter examples on why e.g., average-based

provisioning of VMs cannot strike an optimal balance of cost and QoS ful-

fillment in the clouds with performance variability.

• Capturing tail response times

We derive an approximation scheme to capture the response time per-

centiles, based on large deviation theory. The specific systems considered

cater to atomic services in the cloud, essentially a G/G/1/PS queueing sys-

tems and have virtual capacities that are subject to exogenous variability.
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Via simulation, the derived scheme is particularly accurate for systems host-

ing large number of replicas, and experiencing highly varying workloads

in high intensities. Moreover, the proposed approximation can be applied

to optimize the size of service clusters hosted in the cloud.

7.2 Limitations and Future Work

Despite the contributions presented in this thesis, the complex nature of service

provisioning in the cloud means that we cannot claim that our work is the sil-

ver bullet for service providers. As a result, the proposed solutions might fall

short in solving the entire problem and provide only a suboptimal solution. The

main limitations we have identified are the lack of extensive evaluations on real

systems, and the combination of all the presented work into a comprehensive

framework for service provisioning.

One of the most obvious directions for future work would be to verify some

of the presented results on real cloud deployment testbeds. Setting up the appli-

cation VMs, load balancers and request generators could be largely done using

existing tools, VM images, configuration scripts, and load generators. Instru-

menting all the different components to be able to tune and measure the critical

metrics such as request rates, throughput, response times and utilization would

for some pieces also be straight-forward, whereas it for others could be more

challenging. Nevertheless, being able to confirm the results using a few different

applications would already be extremely useful.

Another related avenue would be to explore how the different proposed so-

lutions could be combined to support more complex, but at the same time more

realistic deployments. A straight-forward starting point would be to apply the

control knobs of the opportunistic resource provisioning algorithm for tuning

VMs on and off, reconfiguring VMs and replacing slow VMs in combination with

one or more of the other provisioning approaches. For the two-tier provisioning

algorithm this would involve taking the varying performance into account in the

form of the average service execution time. For the provisioning algorithm based

on tail throughput, the potential increase in average capacity resulting from re-

placing of slow VMs would manifest as changes in the high and low capacity

levels over time. As the cluster size is adjusted over time using the tail response

time algorithm, better performing VMs would lead to lower response times across

the board when comparing clusters of similar size.

Applying the tail throughput work on the two-tier application provisioning

could be done by basing the provisioning algorithm for back-end service replicas
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on the tail throughput rather than the target utilization. The calculation of the

non-blocking probability, and therefore the provisioning decisions for front-end

replicas, depends on the estimated response time of the back-end replicas, and

would not need to be changed.

One of the main challenges for applying the work on the tail response time

guarantees to the other approaches, is the different system assumptions and mod-

els. In the tail response time system, we assume round robin load balancing and

processor sharing job execution on the VMs, whereas we mainly consider join-

the-shortest-queue and first-come-first-served in the other scenarios. Verifying

the accuracy and adapting the tail response time algorithm and approximation

formulas could turn out to be quite demanding.

Finally, a more practical approach for future work would be to implement

tools that would enable the approaches proposed in this thesis. This would in-

clude facilitating the collection of metrics for arbitrary applications, calculating

the resource provisioning accordingly, and finally performing the actual resource

provisioning and dynamic resource adjustments on actual cloud platforms such

as Amazon EC2 or OpenStack.
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