
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2006

The effect of workload dependence in systems: Experimental The effect of workload dependence in systems: Experimental

evaluation, analytic models, and policy development evaluation, analytic models, and policy development

Qi Zhang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Qi, "The effect of workload dependence in systems: Experimental evaluation, analytic models, and
policy development" (2006). Dissertations, Theses, and Masters Projects. Paper 1539623507.
https://dx.doi.org/doi:10.21220/s2-n7eq-0f90

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-n7eq-0f90
mailto:scholarworks@wm.edu

The Effect of Workload Dependence in Systems: Experimental

Evaluation, Analytic Models, and Policy Development

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Qi Zhang

2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Approved, December 2006

Evgenia Smirni
Dissertation Advisor

Phil Kearns

yfAj<£A

Weizhen Mao

Peter Kemper

Ludmila Cherkasova
Hewlett-Packard Labs

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents and dear husband

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A ckn ow led gm ents viii

L ist o f Tables ix

List o f F igures x

A b stract xv iii

1 In trod u ction 2

1.1 C on tribu tions.. 5

1.1.1 Experimental E valuation ... 5

1.1.2 Analytic M odels... 6

1.1.3 Policy Development... 7

1.2 Organization .. 8

2 B ackground 10

2.1 A u to c o r r e la t io n .. 10

2.2 Batch Markovian Arrival Processes (BMAPs) .. 13

2.2.1 Markovian Arrival Processes (M A P s).. 15

2.2.2 Markovian-Modulated Poisson Processes (M M P P s) 16

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.3 Hyperexponential P ro c e s se s ... 17

3 A u tocorrela tion in C losed S ystem s 19

3.1 Related W o r k .. 20

3.2 Closed Tandem Q ueues.. 23

3.2.1 A 2-tier S y s te m .. 23

3.3 Autocorrelation P ropagation .. 25

3.4 Performance Effects.. 28

3.5 Autocorrelation Analysis in T P C -W ... 32

3.5.1 Experimental Environm ent... 33

3.5.1.1 Capacity P la n n in g ... 36

3.5.2 Autocorrelation Propagation in TPC-W ... 37

3.5.3 TPC-W M o d e l .. 40

3.6 Taking Advantage of A C F ... 43

3.7 Summary .. 48

4 B o ttlen eck A n alysis in T P C -W 50

4.1 Capacity Planning .. 52

4.2 System Implications of the Stationary Workloads ... 55

4.3 Transient Workload Propagation... 57

4.4 System Implications of the Transient W orkloads.. 65

4.5 Summary .. 71

5 A n aly tic M od els in M u lti-tiered S ystem s 73

5.1 Related W o r k .. 75

5.2 B ackground ... 76

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.1 M /G /l-type P ro cesses ... 76

5.2.2 Example: ETAQA Representation of the M ^ /M /l Queue 81

5.3 ETAQA-based Approximation of the BM AP/MAP/1 Departure Process . . 82

5.3.1 Exact Departure Process of the BMAP/MAP/1 Q u e u e 82

5.3.2 Truncating the Exact Departure P ro c e s s .. 83

5.3.2.1 Special Case: Output Approximations for the M AP/MAP/1

Q u e u e 85

5.3.2.2 Illustration for the M ^ /M /l Departure P ro cess 86

5.3.3 Proof of the Marginal Distributions and ACF of the ME Departure

A ppro x im atio n .. 87

5.3.4 Experimental R esu lts .. 98

5.4 Summary .. 109

6 Im proved T runcation M odels for th e B M A P /M A P /1 D eparture P rocess 110

6.1 MAP Approximation Output M o d e ls ... 112

6.2 Comparison of MAP Approximation and ME Approxim ation........................... 120

6.2.1 Experimental C o m parison .. 120

6.2.2 Complexity Issues.. 126

6.2.2.1 ME Output M o d e l... 127

6.2.2.2 MAP Output M o d e l ... 128

6.2.2.3 Departure Lag Coefficients via the BM AP/GI/1 Approach . 129

6.3 Identifying a Truncation L ev e l.. 131

6.3.1 Asymptotic Behavior of the A C F ... 132

6.3.2 The Role of U tilization .. 136

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.3 Remarks on the ME Approxim ation.. 138

6.4 Experimental R esu lts ... 139

6.5 Improving Accuracy with Multiple L u m p in g .. 142

6.6 Summary .. 146

7 P o licy D evelop m en t for H andling S ystem s w ith A u tocorrela ted F low s 147

7.1 Autocorrelation Effects on Load Balancing Policies ... 151

7.1.1 Load Balancing Policies ... 152

7.1.2 Performance A nalysis.. 153

7.2 Unbalancing Load to Improve Performance .. 157

7.2.1 S-EQAL: Static Policy ... 157

7.2.1.1 Arrival process with short-range dependence 159

7.2.1.2 Arrival process with long-range d ep en d e n ce 162

7.2.2 D_EQAL: On-line Policy .. 163

7.2.2.1 Performance of D _ E Q A L .. 165

7.3 Summary .. 168

8 C onclusions and Future W ork 171

8.1 Future w o rk ... 173

8.1.1 Analytic Direction ... 173

8.1.2 Application D irection... 175

A E quivalence o f o p e n /c lo se d sy stem s 177

B ib liography 179

V ita 187

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Evgenia Smirni, for her
continuous support, guidance and inspiration over the years. I have benefited greatly from
our close relationship. Her passion for high quality research has influenced me significantly.
On a more personal note, her advice on balancing family and career has been and will
continue to be a guide in my future endeavors. W ithout her patience and encouragement, I
would not be the researcher I am today. Evgenia, thank you.

Special thanks go out to Dr. Alma Riska, who has been a great mentor and collaborator
over the years. My work in multi-tiered systems started as an intern project under the
guidance of Alma while I was vising Seagate Research Laboratory in the fall of 2003. Her
experience and knowledge greatly improved my understanding of many research problems.
I would also like to thank Dr. Ludmila Cherkasova for her mentorship during my internship
at HP Labs in the summer of 2006. Working closely with her on capacity planning problems
has taught me many valuable research skills. I am especially grateful to Dr. Cherkasova for
serving as the external member of my committee, for her comments and suggestions on this
dissertation, and for her encouragement. I also thank Dr. Armin Heindl at the University of
Erlangen-Nuremberg in Germany. He introduced to me the problem of departure processes
that forms an important part of my dissertation.

I would like to thank Dr. Andreas Stathopoulos with whom I collaborated in several
projects. His wide breadth of knowledge and rigorous research attitude impressed me deeply.
I am grateful to Dr. Phil Kearns, Dr. Weizhen Mao, and Dr. Peter Kemper for serving on my
dissertation committee, and providing me with many valuable suggestions. I also would like
to thank Dr. Gianfranco Ciardo, Dr. Xiaodong Zhang, and Dr. Dimitrios Nikolopoulos for
providing me with good suggestions throughout my research career. I am especially grateful
to my teammate Ningfang Mi for many engaging discussions. Our collaborative efforts on
different projects form an important component of this dissertation.

I would like to extend my thanks to all the faculty and staff in the Computer Science
Department for providing me with a friendly and productive work environment. In particular,
I would like to thank Vanessa Godwin for her kind assistance on many administrative issues
enabling me to focus completely on my research work, and for not letting me forget any
University deadlines. To my fellow graduate student colleagues, all of you have made my
stay at William and Mary truly memorable.

To all my past teachers, I would like to thank them for their excellent teaching and advice
during my formative years in China. Their dedication has given me a firm foundation for
m y fu r th e r s tu d ie s in th e U n ited S ta te s .

Finally, I would like to dedicate this dissertation to my dear father Quanxing Zhang, my
mother Wenling Li, and my husband Xin Chen, for their unlimited love and understanding
during my Ph.D period. My parents taught me the value of education and worked hard to
provide me with the best of it. My brother Yi Zhang has been a constant source of joy and
support. I am also fortunate to have Xin by my side during this journey, always standing by
me, loving me, understanding me and encouraging me. Without them, I would never have
gone this far.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Summary of the two scenarios... 25

3.2 Summary of the MMPPs used in the two scenarios.. 26

3.3 Hardware components on the on-line bookstore implementation 33

3.4 Sizes of important ta b le s .. 35

6.1 The second largest eigenvalue of (—Do^lAP))_1D (11̂AP).. 134

6.2 The second largest eigenvalue of (—Dg^E))-1D ^ E).. 139

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 (a) Average response time, (b) average queue length, and (c) average slowdown

as a function of system utilization when inter-arrivals are independent, weakly

dependent, and strongly dependent.. 3

2.1 ACF of inter-arrival and service times for disk level traces measured in enter­

prise systems and consumer electronics devices.. 12

2.2 State transitions of M MPP(2).. 16

2.3 State transitions of H2.. 18

3.1 A closed system with M queues... 23

3.2 ACF of departures from Q\ (arrivals to Q2), departures from Q2 (arrivals to

Q i) for both scenarios, and the ACF of the correlated service process. ACF

of the MMPP service process in (a)/(c) is SRD and tha t in (b)/(d) is LRD. . 27

3.3 Performance measures: (a) mean round trip time, (b) mean queue length, (c)

mean utilization, and (d) mean throughput at each queue for Scenario 1. The

bottleneck queue (Q2) has autocorrelated service times....................................... 29

3.4 Performance measures: (a) mean round trip time, (b) mean queue length, (c)

mean utilization, and (d) mean throughput at each queue for Scenario 2. The

non-bottleneck queue (Qi) has autocorrelated service times............................... 30

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 CDFs of (a) response time at Q i, (b) response time at Q2, and (c) round trip

time for Scenario 1 with MPL=25. The bottleneck queue (Q2) has autocor­

related service times... 32

3.6 CDFs of (a) response time at Q 1 , (b) response time at Q2, and (c) round

trip time for Scenario 2 with MPL=25. The non-bottleneck queue (Qi) has

autocorrelated service times.. 32

3.7 E-commerce experimental environment.. 33

3.8 (a) Throughput, (b) front-end CPU utilization, (c) database CPU utilization,

and (d) database memory utilization for the browsing mix and database sizes

of 10,000, 100,000, 500,000, and 1,000,000 items.. 36

3.9 TPC-W experimental environment.. 37

3.10 ACF at various points in the system. Experiments are done using the browsing

mix, a database with 10,000 items, and (a) 128 EBs, (b) 384 EBs, and (c) 512

EBs.. 38

3.11 Average performance measures with the browsing mix.. 38

3.12 A queuing model of TPC-W ... 41

3.13 Autocorrelation propagation in our queuing model parameterized using the

measurements of Section 3.5.2 with M P L equal to (a) 128, (b) 384, and (c)

512.. 43

3.14 Model prediction and experimental performance measures.................................. 43

3.15 CCDFs of (a) round trip time, (b) response time of front server, (c) response

time of database server using the model of Section 3.5 where the front server

has ACF in its service process. In all experiments MPL is equal to 512. . . . 46

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.16 CCDFs of (a) round trip time, (b) response time of front server, (c) response

time of database server when the database server has ACF in its service pro­

cess. In all experiments MPL is equal to 512... 47

4.1 (a) Throughput, (b) front-end CPU utilization, (c) database CPU utilization,

and (d) database memory utilization as a function of system load for the

database with 500,000 items and various TPC-W mixes...................................... 53

4.2 Query time distribution (CDF) for the browsing mix under various loads (left

column) and under medium load for various TPC-W mixes (right column). . 54

4.3 Disk access pattern for the 1,000,000 items database. The system is under

90% new searches mix.. 56

4.4 Throughputs and utilizations in multiple tiers under transient load of the

browsing mix.. 58

4.5 Arrival rates and system utilizations in multiple levels under transient work,

for the ordering mix and a variant (I) and the browsing mix and a variant (II). 62

4.6 Outstanding requests (queue lengths) at the disk and at the database during

overload and overwork scenarios of (a) experiment two and (b) experiment four. 67

4.7 Response time at the disk as a function of time under (a) normal schedul­

ing, (b) overload-aware scheduling, and (c) the complementary cumulative

distribution during the overload period of experiment two.................................. 69

4.8 Response time at the disk as a function of time under (a) normal schedul­

ing, (b) overload-aware scheduling, and (c) the complementary cumulative

distribution during the overwork period of experiment four................................ 70

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 A queuing model of the experimental environment in Chapter 3 but with

infinite buffers.. 73

5.2 State-space partitioning of a M /G /l solved (a) via the traditional matrix-

analytic method, (b) via ETAQA, and (c) ETAQA that preserves the first n

M /G /l levels, n > 1... 78

5.3 Dual tandem q u e u e s .. 98

5.4 The Markov chain that models an M ^ /M /l queue... 99

5.5 ACF of inter-arrival times of batches in the system (dashed curve) and of

inter-arrival times of actual arrivals (solid curve).. 100

5.6 Experimental results for example 1: ACF of departures from server 1/arrivals

to server 2 (a-b), mean queue length at server 2 (c-d), queue length distribu­

tion at server 2 for different approximation levels (e-f), and ACF of departures

from server 2 (g-h).. 101

5.7 ACF of inter-arrival times of batches in the system (dashed curve) and of

inter-arrival times of actual arrivals (solid curve).. 104

5.8 Experimental results for example 2: ACF of departures from server 1/arrivals

to server 2 (a-b), mean queue length at server 2 (c-d), queue length distribu­

tion at server 2 for different approximation levels (e-f), and ACF of departures

from server 2 (g-h).. 105

5.9 Experimental results for example 3: ACF of departures from server 1/arrivals

to server 2 (a-b), mean queue length at server 2 (c-d), queue length distribu­

tion at server 2 for different approximation levels (e-f), and ACF of departures

from server 2 (g-h).. 108

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Experimental results of MAP approximation for example 1: ACF of depar­

tures from server 1/arrivals to server 2 (a-b), mean queue length at server 2

(c-d)... 122

6.2 Experimental results of MAP approximation for example 2: ACF of depar­

tures from server 1/arrivals to server 2 (a-b), mean queue length at server 2

(c-d)... 124

6.3 Experimental results of MAP approximation for example 3: ACF of depar­

tures from server 1/arrivals to server 2 (a-b), mean queue length at server 2

(c-d)... 126

6.4 Autocorrelation of the departures from a 30% utilized and an 80% utilized

BMAP(3)/H2/1 systems.. 136

6.5 Relative ACF error under different truncation level n for system utilizations

equal to 30% and 80%... 137

6.6 Probabilities of the lumped states for different truncation levels n under sys­

tem utilizations 30% and 80%.. 138

6.7 Experimental results of MAP approximation: mean queue length relative er­

rors at server 2 of I. 30%-30% system, II. 30%-80% system, III. 80%-30%

system and IV. 80%-80% system... 141

6.8 High level idea of lumping multiple levels... 142

6.9 High level idea of multiple lumping: consecutive C levels are lumped in single

lumps... 143

6.10 Total number of block levels is 51: autocorrelation of the departures from

server 1/arrivals to server 2.. 143

6.11 Setting [C\, C2, . . . , Cm] using a greedy algorithm... 144

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.12 Relative error of average queue length in server 2.. 145

7.1 Model of a clustered server.. 148

7.2 (a) ACF for the three arrival processes used in the simulation and (b) Average

request size for every 10000 requests in the ten million sample space................... 152

7.3 Performance metrics under four load balancing policies: (a) average response

time, (b) average queue length, (c) average slowdown, and (d) average utiliza­

tion... 154

7.4 ACF in inter-arrivals at each server, where the arriving requests at the front-

end dispatcher have (a) no dependence, (b) short range dependence (SRD),

and (c) long range dependence (LRD)... 156

7.5 S_EQAL’s high level idea to recalculate boundaries under autocorrelated

inter-arrival times.. 159

7.6 Setting the shifting percentages for S-E Q A L.. 159

7.7 Average slowdown and average response time as a function of the corrective

constant R under SRD inter-arrival times... 160

7.8 Per server performance measures: (a) average slowdown, (b) average response

time, (c) average queue length and (d) average utilization as a function of the

corrective constant R with SRD inter-arrival times. The order of bars for each

policy reflect the server identity. .. 161

7.9 Average slowdown and average response time as a function of corrective con­

stant R under LRD inter-arrivals times... 162

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.10 Per server performance metrics as a function of the corrective constant R un­

der LRD traffic: (a) average slowdown, (b) average response time, (c) average

queue length and (d) average utilization. The order of bars for each policy

reflect the server identity. .. 163

7.11 D_EQAL: dynamically adjusting R ... 166

7.12 Performance of NOACF, SRD ad LRD traffic under average utilization 20%.

The first two rows are average slowdown and average response time for the

original A d a p t L o a d , S_EQAL with various values of R, and D_EQAL.

The third row is the corrective constant R as a function of time (measured in

processed requests) for C = 300K.. 167

7.13 Performance of NOACF, SRD ad LRD traffic under average utilization 62%.

The first two rows are average slowdown and average response time for the

original A d a p t L o a d , S-EQ A L with various values of R, and D_EQAL.

The third row is the corrective constant R as a function of time (measured in

processed requests) for C = 300K.. 168

7.14 Performance of NOACF, SRD ad LRD traffic under average utilization 80%.

The first two rows are average slowdown and average response time for the

original A d a p t L o a d , S_EQAL with various values of R, and D_EQAL.

The third row is the corrective constant R as a function of time (measured in

processed requests) for C = 300K.. 169

7.15 Corrective constant R, average slowdown, average normalized response time

as a function of time (measured in processed requests) for C — 300K under

NOACF, SRD and LRD traffic. System utilization is 62%.................................. 170

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.l Illustration of the equivalence of an open system with finite buffer of size M

and a closed system with M P L = M ...

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

This dissertation presents an analysis of performance effects of burstiness (formalized by the
autocorrelation function) in multi-tiered systems via a 3-pronged approach, i.e., experimental
measurements, analytic models, and policy development. This analysis considers (a) systems
with finite buffers (e.g., systems with admission control that effectively operate as closed
systems) and (b) systems with infinite buffers (i.e., systems that operate as open systems).

For multi-tiered systems with a finite buffer size, experimental measurements show that
if autocorrelation exists in any of the tiers in a multi-tiered system, then autocorrelation
propagates to all tiers of the system. The presence of autocorrelated flows in all tiers signifi­
cantly degrades performance. Workload characterization in a real experimental environment
driven by the TPC-W benchmark confirms the existence of autocorrelated flows, which orig­
inate from the autocorrelated service process of one of the tiers. A simple model is devised
tha t captures the observed behavior. The model is in excellent agreement with experimental
measurements and captures the propagation of autocorrelation in the multi-tiered system as
well as the resulting performance trends.

For systems with an infinite buffer size, this study focuses on analytic models by proposing
and comparing two families of approximations for the departure process of a BM AP/MAP/1
queue that admits batch correlated flows, and whose service time process may be auto­
correlated. One approximation is based on the ETAQA methodology for the solution of
M /G /l-type processes and the other arises from lumpability rules. Formal proofs are pro­
vided: both approximations preserve the marginal distribution of the inter-departure times
and their initial correlation structures.

This dissertation also demonstrates how the knowledge of autocorrelation can be used to
effectively improve system performance, D_EQAL, a new load balancing policy for clusters
with dependent arrivals is proposed. D_EQAL separates jobs to servers according to their
sizes as traditional load balancing policies do, but this separation is biased by the effort to
reduce performance loss due to autocorrelation in the streams of jobs that are directed to
each server. As a result of this, not all servers are equally utilized (i.e., the load in the system
becomes unbalanced) but performance benefits of this load unbalancing are significant.

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Effect of Workload Dependence in Systems: Experimental

Evaluation, Analytic Models, and Policy Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Internet servers are developing into complex but central components in the information

infrastructure, and are accessed by an ever-increasing and diversified user population. In

such computing or networking systems, burstiness, as a form of temporal dependence within

the workload, has been widely recognized as a significant factor affecting performance.

Prior work in the context of networking [22] has shown that burstiness in the arrival

process in a single server system may result in user response times that are slower by several

orders of magnitude when comparing to a system with independent arrivals. To appreciate

this, we present performance measures of a single server queue with different degrees of de­

pendence in its inter-arrival process. Three sets of experiments are presented here labeled

as “independent” , “weakly dependent” , and “strongly dependent” , but all other stochastic

characteristics of these inter-arrival processes, i.e., the mean and all higher moments, are

identical. The service process in all experiments is exponentially distributed and appropri­

ately scaled such tha t we examine performance under different utilization levels.

Figure 1.1 presents performance measures for this queuing model as a function of system

utilization. The figure shows average response time (see Figure 1.1(a)) defined as the sum

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

of the request service time and its waiting time in the queue, average queue length (see

Figure 1.1(b)) which is the total number of requests in the queue including the one in

service, and average request slowdown (see Figure 1.1(c)) which is the ratio of the response

time of a request to its service time. The effect of dependence on system performance is

tremendous: the stronger the dependence, the worse the system performance, which can

worsen by 3 orders of magnitude when comparing to the case with independent arrivals.1

1 1 1 1 I 1 1 1 1 35000 1 1 1 1 1 1 ! 1 1' 1.26408 1 1 1 1 1 1 1 1 1

independent --------
30000

independent -------- le+08 independent --------
weakly dependent------ •5 weakly dependent------ 8e+07 weakly dependent------

strongly dependent 20000 strongly dependent * * strongly dependent
-J 6e+07 ,

15000 *
u

3 10000 - - 4e+07

5000 - - 2e+07

..
0

1 I 1 1 1 ! 1 1 1
0

i i i i i i i i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Utilization (b) Utilization (c) Utilization

F ig u re 1.1: (a) Average response tim e, (b) average queue length, and (c) average slowdown as a
function of system utilization when inter-arrivals are independent, weakly dependent, and strongly
dependent.

These performance measures illustrated in Figure 1.1 serve as motivation for the work

presented in this dissertation. We stress that none of prior work has considered the effect

of dependent flows on multi-tiered systems. Multi-tiered architectures, such as the ones

in e-commerce web sites tha t separate the database server from the web and application

servers, are widely used today to improve performance. But they also introduce difficulty in

identifying the source of burstiness (e.g., burstiness may not exist due to arrivals from a wide-

area network), and hence make it hard for effective development of resource management

policies that improve performance or provide service level provisioning. Dependence in the

1 Because of the linear scale used in the figure, the performance measures with independent arrivals appear

flat. With independent arrivals for utilization equal to 0.9, queue length is equal to 152 as expected, but

this number is dwarfed in comparison to the numbers under dependent flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

arrival or service flows of one tier propagates into its lower tiers in an open system or all the

tiers in a closed system.

The focus of this dissertation is on identifying dependent flows in multi-tiered systems

and on understanding their performance implications. Such understanding is significant for

the development of robust resource allocation policies that remain effective under variable

workload conditions. Analytic performance models are usually excellent tools to quickly

compare the performance of alternative system designs, but they are often limited due to

restrictive assumptions [60], e.g., the inter-arrival and service processes must be independent

and identically distributed. These assumptions do not apply in current bursty environments.

This dissertation provides a formalization of burstiness based on the autocorrelation

function [44] tha t characterizes the temporal dependence structure in request flows. New

analytic models are devised to capture the performance effects of autocorrelation in queueing

systems for both open and closed systems. Based on these, development of new resource

allocation policies is proposed to take advantage of temporal dependence in the workload

arrivals and service demands in a variety of applications. To best address the above open

problems, this dissertation uses a 3-pronged approach:

- Experimental evaluation: Obtain a better understanding of autocorrelation and its

performance effects using an experimental system of an on-line bookstore using TPC-

W, the current industry standard for e-commerce benchmarks. This work concentrates

on characterizing the propagation of workload burstiness in a multi-tiered system. We

also use an array of metrics ranging from average throughput and average utilization

to response time distributions to better understand the behavior of the system and the

triggering of different bottlenecks that may bring the system to overload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

- Analytic models: Devise two families of finite approximations for the departure process

of a BM AP/MAP/1 queue. A BM AP/MAP/1 queue is a general queueing model of a

system having input that is best described as dependent flows with batch arrivals, and

where the service time is also dependent. It can be used as a building block to model

a single tier in a multi-tiered system.

- Policy development: Use dependence information in flows (i.e., autocorrelation) to

provide advice for resource management, such as capacity planning, admission control,

scheduling and load balancing. The development of such policies makes an important

step toward autonomic servers.

1.1 C ontributions

The contributions of this dissertation are summarized as follows.

1.1.1 E xp erim enta l E valuation

• We observe the existence of dependent flows and present how it propagates through the

network on an e-commerce system that is built according to the TPC-W benchmark by

measuring the autocorrelation of the arrival and departure processes of each tier. This

characterization shows that autocorrelation in the service process can be the source of

dependent flows in all tiers of this system, even to the ones that precede the source

tier of autocorrelation.

• By quantitatively comparing the performance effects of the presence of autocorrelated

flows in multi-tiered systems with the performance of the same system with inde­

pendent flows, we show tha t end-to-end performance significantly deteriorates while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bottleneck devices are less utilized. Lower utilization levels in such systems falsely

indicate tha t the system is able to sustain higher loads.

• We show tha t in contrast to systems where no burstiness is observed, the tails of the

overall response time distributions do not necessarily reflect the time spent at the

bottleneck tier, but instead are shaped by the response time tail at the tier that is the

source of autocorrelation, irrespective of its utilization level.

• We show that both the transient excessive load in the system (i.e., higher than usual

number of users, number of web sessions, or number of network flows) and the effects

of transient excessive work (i.e., sudden increase in the demand of system resources

by the current users of the system) could results in system overload. The further

load/work propagates down the system hierarchy, i.e., the memory/disk, the higher

the performance penalty, and the more difficult it is to recover performance effectively.

1.1.2 A n a ly tic M odels

• The traditional analytic techniques of closed systems, e.g., MVA models [53, 43], cease

to apply in systems with dependent flows. We use a queueing model to model an

e-commerce system based on the TPC-W benchmark by representing the service times

of the dependent server with an autocorrelated process. The model and experimental

results are in excellent agreement, despite the fact that no rigorous fitting method is

used to fit the measured data of the service processes. Stochastic processes that capture

autocorrelation show promise to effectively model complex systems via surprisingly

simple queuing models.

• For open systems, the departure process is an effective way of solving the network of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

queues. We present two families of finite approximations for the departure process

of a BM AP/M AP/1 queue. One is derived via an exact aggregate solution technique

called ETAQA applied to M /G/1-type Markov processes, and the second one is based

on lumpability. The proposed approximations are indexed by a parameter n (n > 1),

which determines the size of the output model as n + 1 block levels of the M /G /l-type

process.

• We formally prove tha t these two output approximation models preserve exactly the

marginal distribution of the true departure process and the lag correlations of the

inter-departure times up to lag (n — 2) with the ETAQA-based approximation and

up to lag (n — 1) with the lumpability-based approximation. A comparison of these

two approximations is carefully done, focusing on both accuracy and time complexity.

The asymptotic properties of the approximations are examined, which then aid in

identifying the level n tha t maintains well the queueing behavior of the real departure

process.

• For queues with high utilization and strong dependence in arrival/service process,

we present multiple lumping as a way to use significantly smaller size models while

maintaining nearly the same performance properties as the lumpability-based approx­

imations of much larger size.

1.1.3 P o licy D evelop m en t

• We present results on how to take advantage of the knowledge of autocorrelation in

flows for resource management via a preliminary study of admission control algorithms

that consider dynamic system behavior. Instead of doing admission control at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bottleneck tiers, this algorithm controls the flows in the tier that is the source of

autocorrelation in the system, and achieves promising performance improvements. This

dissertation also shows a first proof-of-concept of self-adaptive resource management

at the lower tiers tha t can detect and handle overload. Such mechanisms can help to

achieve graceful performance degradation and to improve system availability.

• This dissertation also presents a size-based load balancing policy in a cluster of servers

with a single system image. The policy is called D_EQAL. It aims at reducing the

performance degradation due to autocorrelation in each server by distributing the

work guided by the correlation structure of the arrivals to each server. This policy

does not assume any a priori knowledge of the job service time distribution nor any

knowledge of the intensity of the dependence structure in the arrival streams. Using

trace-driven simulation, we show that D_EQAL is an effective on-line policy: by

monitoring performance measures it self-adjusts its parameters to transient workload

conditions and achieves superior performance in comparison to other classic policies.

1.2 Organization

The dissertation is organized as follows: Chapter 2 presents an overview of basic concepts

and terminology tha t are used in this dissertation. Chapter 3 uses a simple queuing network

to quantify the performance effects of autocorrelation in closed systems. This chapter also

presents an experimental study using the TPC-W benchmark, and shows how autocorre­

lation propagates across all the tiers in a multi-tiered system if it is found in the service

process of one of the tiers. A simple queuing model that captures the benchmark’s behav­

ior is given. Chapter 4 further characterizes the e-commerce workload driven by TPC-W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

benchmark, specially focusing on system overload. Chapter 5 presents ETAQA-based depar­

ture process models of BM AP/MAP/1 queues, and Chapter 6 presents lumpability-based

departure process models. Comparison of these two models and asymptotic properties of

the approximated departure process are also discussed in Chapter 6. Chapter 7 presents

DJEQAL, a size-based load balancing policy to illustrate a case study of policy develop­

ment for handling systems with autocorrelated flows. A summary of this dissertation and

future work are outlined in Chapter 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter presents an overview of basic concepts and terminology tha t are used in this

dissertation. Section 2.1 gives a the definition of autocorrelation function, a metric used

in this dissertation to quantitatively describe dependence in a flow. Section 2.2 gives an

overview of the definitions and properties of the Batch Markovian Arrival Process (BMAP)

and Markovian Arrival Process (MAP), a special case of BMAP. These processes can be used

to model dependent flows and can be used as inputs to analytic models.

2.1 A utocorrelation

The autocorrelation function is used as a statistical measure of the relationship between a

random variable and itself [9]. Consider a stationary time series of random variables { X n},

where n = 0 , . . . , oo, in discrete time. The autocorrelation function ACF(fc) shows the value

of the correlation coefficient for different time lags k > 0:

\C F (1 A A P F E \ (X t — f i) (X t+k — fj,)]ACF{k) - ACFXt,xt+k ------------- p -------------- ,

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

where // is the mean and S2 is the common variance of {X n}. The argument k is called

the lag and denotes the number of observations that separate X t and X t+k- The values of

ACF(k) may range from -1 to 1. The higher | ACF(/t) | is, the stronger the dependence

between X t and X t+k- If ACF(k) = 0, then there is no dependence at lag k.

In most cases ACF approaches zero as k increases. The decay rate of the ACF distin­

guishes the time series as short-range dependent (SRD) or long-range dependent (LRD). The

ACF essentially captures the “ordering” of random values in the time series. Intuitively, if

there is no autocorrelation (i.e., ACF is zero, which implies there is independence in the

stochastic process), a random variable is generated as follows: first a random number is

drawn between 0 and 1 and then this random number is mapped into the distribution space

via the inverse distribution function to obtain the random value. This way of sampling

does not create any temporal locality, i.e., given the current drawn value, any value of the

distribution space is equally likely to occur in the next drawing. In distributions tha t have

correlation there is a temporal bias in this sampling, i.e., random variables are sampled

within a certain range for some time before moving into another range. This creates tem­

poral locality, yet overall all the values of the distribution space are sampled as dictated by

the distribution function. High positive ACF values imply that in the time series a value of

the random variable has a high probability to be followed by another variable of the same

order of magnitude, while negative ACF values imply the inverse.

To show that the ACF measure is not artificial but instead can be found in real systems,

we present small examples that give strong indication about the existence of autocorrelated

flows in real systems1. Case 1 in Figure 2.1 shows the ACF for a collection of enterprise

storage systems, i.e., a web server, an E-mail server, a Software Development server, and

1The data presented here are generously provided by Seagate Research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

a User Accounts server. Measurements are taken of the arrival process at the disk in an

open-loop, finite buffer, enterprise server - user arrivals feed into the server (first tier) where

they are modified by caches and other processing before being passed to the disk (second

tier). Figure 2.1(a) shows the ACF of the arrival times at the disk (departure process from

the server), while

CL.
u<

CL.
U<

Figure 2.1: ACF
systems and consum er electronics devices.

Case 2 in Figure 2.1 shows the ACF for a collection of traces from consumer electronics

devices, i.e, a Personal Video Recorder (PVR) in two different application scenarios, an MP3

player, and a Game console, which represents classical closed-loop systems such as the one

we consider in Chapter 3. Since there is only a single user, the first tier server (caches and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1(b) depicts the ACF of the service process at the disk.

Case 1: Enterprise Systems

(a) Disk interarrival times (b) Disk service times

0.4 t T

- E-mail

user Acc.
/

S o ft. Dev

E - m a i l S o ft. Dev.

jjf User, A cc.

0 100 200 300 400 500

lag (k)
Case 2: Consumer Electronics

0 100 200 300 400 500

lag (k)

(c) Disk interarrival times (d) Disk service times

0.4

0.3

0.2

0.1

0

I 1 1 1 1
Game Console

W PVR1 pvR2 V1P3

0-4 |_ i n 1 , 1 1 Game Console

03 I / PVR1
U 0.2 F m j j L]) R~ MP3“

0 100 200 300 400 500

lag (k)

0 100 200 300 400 500

lag (k)

of inter-arrival and service tim es for disk level traces m easured in enterprise

13

application processing) passes requests directly to the disk (second tier) which feeds back

to the request arrival process. Figure 2.1(c) shows the ACF of the arrival times at the disk

(departure process from the server), which also differs markedly from the ACF of the service

process at the disk in Figure 2.1(d) in some cases.

In both sets of measurements, arrivals and service times are correlated, with some cases

of pronounced long-range dependence, i.e., ACF lines that decay slowly to zero, ACF is

stronger pronounced in the service times of the Web server in Figure 2.1(b) and the Game

console in Figure 2.1(d). These measurements show tha t autocorrelation exists at the disk

tier for different workloads in large and small systems. Server processing - in particular the

cache hierarchy and algorithms along the I/O path - determines how arrivals and service

demands are shaped at this lowest tier.

2.2 B atch M arkovian Arrival Processes (B M A Ps)

A BMAP, as introduced by Lucantoni [48], is controlled by an ergodic Continuous-Time

Markov Chain (CTMC) with finite state space { 1 ,2 ,. . . , mBMAp}- In state i, the sojourn

time of the process is exponentially distributed with mean rate A*. At the end of such a

sojourn time, a batch of size k (k > 1) may occur with probability p ■ ̂ , and the CTMC

passes to state j (1 < i , j < mBMAP). Alternatively, no customer arrives (“batch of size 0”)

with probability p f j . while the CTMC passes to state j (j ^ i). Naturally, we require that

WlDMAP OO mBMAP
£ p(S + p{3 = 1 f o r 1 - i - m B M A p ■

k = 1 j = 1

The corresponding transition rates Aip\^ may be grouped into the BMAP-matrices D*, (k =

0 ,1, . . .) according to (Dfc)jj = Xip^j for k = 0 ,1, . . . with the exception that (D0)i,i = — Aj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

in order to obtain a true CTMC generator Q BMap = Yl'kLo^k- Consequently, matrix D*,

governs transitions that correspond to arrivals of batches of size k. All BMAP-matrices are

of order mBMAP x mBMAP, where

- D 0 is a matrix with negative diagonal elements and nonnegative off-diagonal elements,

- D fc are nonnegative rate matrices (k > 1).

We require the infinitesimal generator Q BMap to be irreducible and Q BMap 7̂ D 0 so that D 0

is a nondegenerate, stable matrix, and as a consequence invertible.

Let 7tbmap be the stationary probability vector of the CTMC generator (i.e., 7rBMAPQ BMAP =

0 ,7rBMAPe = 1, where 0 and e denote vectors of zeros and ones of the appropriate dimension).

Then, the mean rate of BMAP is computed as

and

‘B M A P B M A P (2 .1)

Often, performance measures related to the inter-arrival times between batches are considered

for BMAPs The batch arrival rate and the squared coefficient of variation of the inter-batch

arrival process X are given by

A,‘b a tc h 7 r B M A p (D 0)e (2 .2)

batch
E [X2}

T m w
1 — 2 A batci17TBMAP (D o) G 1 . (2.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

The lag-A; coefficients of autocorrelation (k > 0) of the (stationary) inter-batch arrival process

are computed as [62] :

ACF (k)
E[(Xo - E[X})(Xk - E[X})}

‘b a tc h n B M A P iB M AP

‘b a tc h B M A P

(2.4)

where X 0 and X k denote two inter-batch times k lags apart.

2.2.1 M arkovian A rrival P rocesses (M A P s)

A MAP is a special case of BMAP with the batch of size equal to one, i.e., k = 1. Corre-

Q m a p = Do + D i is the irreducible infinitesimal generator of a CTMC, where D 0 governs

transitions tha t do not correspond to events, while D i governs those transitions that do

correspond to events.

Note tha t different from a BMAP, a MAP can provide a variety of precise performance

measures of inter-arrival times directly from its matrix representation. Let 7tmap be the

stationary probability vector of the CTMC generator (i.e., 7tmapQ map = 0 ,7rMAPe = 1). The

mean rate and the squared coefficient of variation of the MAP with inter-event time X are

The autocorrelation function of a stationary MAP, i.e., the la.g-A: coefficients of autocorrela-

spondingly only two matrices D i and D 0 are used to describe a MAP, such that the matrix

given by

A,‘M A P ^MApPie , (2.5)

C M A P

E [X 2}
(E[X])2

1 — 2Amap7tmap(D o) e 1 . (2 .6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

tion (k > 0), is computed as :

ACF(A;) =
E[(Xo - E[X})(Xk - E[X})}

Var[X]
^ M A P 7r M A p ((—D q) 1D 1)fc(—D 0) 1e — 1

2AMAP7rMAp(Do) le 1

where X 0 and X^ denote two inter-event times k lags apart.

(2.7)

2.2 .2 M ark ovian -M od ulated P o isson P rocesses (M M P P s)

For many experiments in the later chapters, we use a 2-state Markovian-Modulated Poisson

Process (MMPP), a special case of the Markovian Arrival Process (MAP) [42], to model auto­

correlated flows because it is analytically tractable. The matrix representation of MMPP(2)

is denoted by the following equations:

■ p v M M P P (2) ___JJq —

j ~j M M P P (2) ___

~(h + ^i)
v2

h 0
0 l2

Vl
-{l2 + v2)

(2 .8)

where l\ and l2 are the mean rates of the two Markovian states, and V\ and v2 describe the

mean rates of transitions between these two states, as illustrated in Figure 2.2.

h h

F ig u re 2.2: S tate transitions of M M PP(2).

MMPP models can be easily parameterized so that they show correlation. To match a

pre-defined mean, squared coefficient of variation and ACF(l) of a process, one may use

Eqs.(2.5), (2.6), and (2.7). The two 2 x 2 matrices of the MMPP model, d “mpp(2) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

D “ mpp(2), have four parameters, i.e., tq, v2) h, and l2■ Hence, this matching technique has

one degree of freedom, and one can set k as the free parameter to obtain a solution.

Other stochastic processes have been shown in the literature to capture burstiness and

dependence, but their parameterization is not as easy for our purpose in this dissertation.

By appropriate parameterization, one could create a MMPP tha t gives an independent

process (no ACF) and a MMPP with dependence (ACF), while keeping the same mean

and variance. This property is critical for examining the performance of systems with and

without dependence because we can concentrate on the performance effects of ordering in

two samples from the same distribution.

2.2 .3 H yp erexp on en tia l P rocesses

Hyperexponential is another special case of the Markovian Arrival Process (MAP) [42],

A Hypterexponential is an independent process with high variance, which also makes it

attractive in analytical models. The matrix representation of a two-order Hyperexponential

process (H2) is as the following equations:

D 0H2 -

D?H2

/ 0
0 - l 2

hp ll (l - p)
kp k (l ~ p)

(2.9)

where l\ and l2 are the mean rates of services in the two Markovian states, and p describes

the probability of re-entering the first Markovian state, as illustrated in Figure 2.3.

The H2 models are easily parameterized as well. Similarly with tha t of M MPP(2), the

moment matching approach can be used to get a H2 matrix solution for a pre-defined mean

and a squared coefficient of variation. Since its ACF is 0 for all lag values, one freedom

variable is also needed here, which is often the probability p. In the following chapters H2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3: State transitions of H2 .

processes are typically used to fit or model independent processes of high variability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Autocorrelation in Closed System s

A system with finite buffers and/or admission control, which is indeed the case in a multi­

tiered system as buffer sizes or the maximum number of simultaneous connections is restricted

by software and/or hardware, behaves in essence like a closed system, i.e., a system with a

closed loop structure [63]. Workload characterization studies of such systems usually examine

the stochastic characteristics of arrivals to the system and wait/service times at various

tiers aiming at bottleneck identification, diagnosing the conditions under which bottlenecks

are triggered, and assisting the development of resource management policies to improve

performance or provide service level provisioning [21, 38, 49, 18].

This chapter complements prior workload characterization studies of multi-tiered sys­

tems [8] by examining how burstiness in the arrival or service process of any of the tiers

affects end-to-end performance. The burstiness is expressed by the dependence structure of

the request flows across the various tiers of a closed loop, which is described and quantified

via the autocorrelation function (ACF) as introduced in Chapter 2. In multi-tiered systems

with a closed loop structure, if autocorrelation exists in the service process of any of the

tiers, then it propagates across the entire loop in the closed system and is present in the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

arrival stream of tiers (queues) that precede that tier (queue), unexpectedly affecting their

performance as well as end-to-end performance.

The existence of autocorrelation flows in a multi-tiered system is confirmed via a case

study based on the TPC-W benchmark. A simple queueing model of this system demon­

strates that autocorrelated flows can originate from the stochastic behavior in the service

processes of only one of the tiers and captures the system performance very well. This chapter

also presents some discussion on how to take advantage of the knowledge of autocorrelation

in flows for the development of admission control algorithms tha t consider dynamic system

behavior.

This chapter is organized as follows. Section 3.1 overviews related work of workload

characterization in multi-tiered systems. In Section 3.2 we describe a simple queueing net­

work that is used to quantify the performance effects of autocorrelation in closed systems.

Section 3.3 presents how autocorrelation propagates through the queueing network. Per­

formance implications of the autocorrelation propagation are discussed in Section 3.4. In

Section 3.5, we present an experimental study with the TPC-W benchmark that shows auto­

correlation propagation a multi-tiered system and a simple queuing model that captures the

benchmark’s behavior. Section 3.6 presents an example of how one can use autocorrelation

for system design. Finally, Section 3.7 summarizes the contributions of this chapter.

3.1 R elated Work

Internet servers and services have evolved from centralized and information based only to

distributed peer-to-peer, global storage, and grid-based services, personalized e-commerce,

and sensor networks. Burstiness as expressed by self-similarity has been identified as a salient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

characteristic of traffic in communication networks [45, 19, 67, 56, 20] tha t critically impacts

their capacity and performance [45, 8]. It has also been show to exist in computer systems

including CPU utilization levels in a cluster of workstations [95], inter-arrival times at a large

memory system with nonblocking caches [79], and file system activity [31]. Recent studies

show tha t burstiness persists [92, 15], but emphasize that attention needs to be paid to the

more complex and sophisticated nature of both Internet services and systems [6, 64, 66].

The latter is a direct result of the personalized nature of Internet-related services that need

an array of resources, i.e., CPU, memory, and I/O , for serving requests. All the above

works concur that burstiness results in unpredictability of system performance and argue for

feedback-control frameworks to dynamically adapt resource allocation to changing service

demands [18, 80].

Current workload characterization studies focus on bottleneck identification of multi­

tiered systems [27]. Multi-tiered architectures that separate the database server from the

web and application servers are used to improve performance, but introduce more points

where bottlenecks may occur [5]. Furthermore, current Internet servers, such as e-commerce

systems, have stricter requirements for quick response time, high security transactions, and

persistent and reliable storage [89, 25, 47, 51] making the need of detailed workload knowledge

even more pressing. Several recently published studies indicate that different e-commerce

servers do share similar characteristics: arrivals are best characterized as bursty with high de­

grees of self-similarity, the most significant portion of requests are for dynamically generated

objects, and the popularity distribution is Zipf-like [89, 50, 86, 6].

Data on actual e-commerce sites are difficult to obtain as they are subject to non­

disclosure agreements. Consequently, one can only resort to synthetic workload generators

to study such systems, the most prominent being the TPC-W benchmark for an e-commerce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

site [83]. Studies based on TPC focus on bottleneck identification and find a variety of

causes [27, 3, 90, 49]. Note that the TPC benchmarks implement stationary arrivals only,

which gives a restricted system view: observing the system in steady state does not tell us

how the systems behaves iri transient overload.

All the workload characterization studies aim at guiding the development of admis­

sion control strategies that improve peak throughput [21, 38], prioritized scheduling at the

database server to meet different service level agreements [49], and scheduling policies that

minimize consistency overheads in clustered environments that support query caching and

database replication [4], However, none of the above characterization studies of multi-tiered

systems has identified autocorrelation as an important system characteristic for performance.

Traditionally, models of multi-tiered systems focus on modeling the bottleneck tier [87, 70]

or modeling all tiers using a single queue [38]. A closed-system model of a multi-tiered system

that is based on Mean Value Analysis (MVA) and does consider all tiers has been proposed

in [85]. In the method of layers, the system performance model is viewed as a sequence

of layers, and each layer is solved separately [75, 78]. Aggregation of models of individual

resource demands and interaction overheads for each tier in a multi-tiered system is also

proposed to predict system throughput and response times [80]. The effect of autocorrelation

in open systems has been examined in [22] where it was shown via simulation tha t long-range

dependence in the arrival process of a single queue results in sharp performance degradation.

Similar results are reported in [2] where the performance effects of short-range dependence

versus longerange dependence in the arrival streams are examined.

In contrast to all of the above works, in this dissertation autocorrelation is proposed as

a compact characterization of burstiness in multi-tiered systems. Our work further demon­

strates tha t stochastic processes that capture autocorrelation can be used in surprisingly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

simple models that can effectively capture performance trends of burstiness in complex sys­

tems.

3.2 C losed Tandem Queues

We use the simplest closed queuing system (see Figure 3.1) that resembles the topology of

a multi-tiered application. The purpose of this analysis is twofold: (1) to observe how auto­

correlation propagates through all tiers in the system and (2) to observe how autocorrelation

affects system performance.

point (1) point (2) point (m)

Figure 3.1: A closed system with M queues.

Autocorrelation in the arrival or service processes directly implies that the system is

non-product-form [43], therefore one can only use simulation for its analysis. We stress that

although we present performance results for closed systems, these results readily apply to

open systems with admission control. For a sketch of the proof of equivalence of closed

systems and open systems with admission control, see Appendix.

3.2.1 A 2-tier System

To establish a basic understanding of how autocorrelation affects system performance in a

closed system, we consider the simplest case of the system depicted in Figure 3.1, i.e., a

closed queuing network with two queues only, Q\ and Q-2 , with mean service rates /q and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

fi2 i respectively. We assume that a fixed number of jobs circulate in the queuing network.

This number is also known as the multiprogramming level (MPL).

We assume tha t Q2 is the bottleneck device and tha t Q\ is twice as fast as Q2 l The

source of any autocorrelation in the flows of this network is the service process of at least

one of the queues. We use a 2-state Markovian-Modulated Poisson Process (MMPP), a

special case of the Markovian Arrival Process (MAP) [42], as illustrated in Chapter 2, to

model autocorrelated service times. The MMPP process allows to build two distinct sets of

samples that share the same PDF but allow for different ordering in each set. Therefore, by

appropriate parameterization, one could create an MMPP that gives an independent process

(no ACF) and an MMPP with dependence (ACF), while keeping all moments identical,

essentially maintaining the same PDF. We evaluate two scenarios.

Scenario 1: The service times of Q i are exponentially distributed with mean rate pi = 2,

while the service times of Q2 are drawn from a 2-state MMPP with mean service rate

p2 = 1 and squared coefficient of variation S C V — 20. The service process of the

bottleneck device Q2 has autocorrelation.

Scenario 2: The service time of Qi is autocorrelated and is drawn from a 2-state MMPP

with pi = 2, S C V = 20. The service process of Q2 is exponentially distributed with

mean service rate p 2 = 1. Now, Q j, with ACF in its service process, is not the

bottleneck.

In order to quantify the effect of autocorrelation on system performance, we also conduct

experiments with different MMPPs for Scenario 1 and Scenario 2 such tha t we maintain the

1 Experiments with varying relative speed of the two devices yield qualitatively the same results as those

reported here .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

same mean, SCV, and higher moments in the service process, but we change its autocorrela­

tion structure to be short-range dependent, long-range dependent, or independent (i.e., ACF

equal to 0 in all lags). These experiments are labeled as SRD, LRD, or NOACF. We obtain

a SRD process with ACF equal to 0.47 at lag= l but decaying to 0 at lag=100, and a LRD

process with ACF equal to 0.47 at lag= l but flattening to 0.28 beyond lag=500. Table 3.1

summarizes the two scenarios. The matrix representations of these MMPPs are presented

in Table 3.2. All simulations are done in a ten million sample space.

T a b le 3.1: Sum m ary of th e two scenarios.

Qi Q2 (Bottleneck)

Scenario 1 Exponential MMPP

(SRD, LRD or NOACF)

Scenario 2 MMPP

(SRD, LRD or NOACF)

Exponential

3.3 A utocorrelation Propagation

First, we present how autocorrelation propagates through the queuing network by measuring

the ACF of the departure process of queue Q i (i.e., at point 1 in Figure 3.1) and the ACF of

the departure process from queue Q2 (i.e., at point 2 in Figure 3.1). Note that the departure

process of queue Q 1 becomes the arrival process to queue Q2. Similarly, the departure process

of queue Q2 becomes the arrival process to queue Q 1 .

Figure 3.2 illustrates the autocorrelation propagation for Scenario 1 and Scenario 2,

respectively, for M P L = 25. These results are representative of other MPL levels. The

ACF of the 2-state MMPP that generates the service times at Q2 and Qi for Scenario 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Table 3.2: Sum m ary of the M M PPs used in the two scenarios.

D0 Dt

Scenario 1 (Q2)

SRD
-12.048956 0.048956

0.004079 -0.088048

12.000000 0.000000

0.000000 0.083969

LRD
-12.000975 0.000975

0.000081 -0.088001

12.000000 0.000000

0.000000 0.087920

NOACF
-13.061404 1.061404

0.096491 -0.096491

12.000000 0.000000

0.000000 0.000000

Scenario 2 (Q ^

SRD
-12.041012 0.041012

0.007571 -0.161417

12.000000 0.000000

0.000000 0.153846

LRD
-12.000818 0.000818

0.000150 -0.161292

12.000000 0.000000

0.000000 0.161142

NOACF
-12.877193 0.877193

0.175439 -0.175439

12.000000 0.000000

0.000000 0.000000

and Scenario 2, is also shown in the figure. In Scenario 1 (see Figure 3.2(a)/(b)), ACF

propagates through all tiers of the closed system with almost identical strength as the one

at the service process of the bottleneck device, i.e., queue Q2, which injected autocorrelation

into the system. In Scenario 2 (see Figure 3.2(c)/(d)), autocorrelation propagates through

the tiers, but with reduced strength compared to the autocorrelation of the service process

tha t injected autocorrelation into the system (i.e., queue Qi), which is not the bottleneck

queue in the system.

The behavior observed in both experiments is explained by the general queuing theoretic

observation that the departure process of a busy queue resembles its service process rather

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Scenario 1
(a) Scenario 1 (Bottleneck: Q2, with ACF)

0.5

SRD(service process of Q2)
departure from QI
departure from Q2

0.2

(b) Scenario 1 (Bottleneck: Q2, with ACF)

0.5 -------- 1---------1---------1--------- 1-------
_LRD(service process of Q2)

200 300 400
lag (k)

V 0.2

departure from Q1
departure from Q2

j_____ i_____ i_
200 300

lag (k)
500

Scenario 2
(c) Scenario 2 (Bottleneck: Q2, exponential) (d) Scenario 2 (Bottleneck: Q2, exponential)

- SRD(service process of QI)

departure from QI
0.2

departure from Q2
_J_________I________ i—

100 200 300 400
lag (k)

LRD(service process QI)

Q 0.2
departure from QI
departure from Q2

500 100 200 300 400
lag (k)

500

Figure 3.2: ACF of departures from Q\ (arrivals to Q2), departures from Q2 (arrivals to Q1) for
both scenarios, and the ACF of the correlated service process. ACF of the MMPP service process
in (a)/(c) is SRD and that in (b)/(d) is LRD.

than its arrival process. Instead, for a lightly loaded queue, its departure process resembles

its arrival process [100]. Hence, for Scenario 1, the departure process from the heavily

loaded queue Q2, and consecutively the arrival and departure processes of the lightly loaded

queue Q1 resemble the service process at Q2. Therefore, autocorrelation propagates with the

same strength across all tiers. In Scenario 2, because the heavy loaded Q2 has exponential

service times, the autocorrelation injected in its arrivals from the service of queue Qi is

reduced since departures from this server are spaced further apart, thanks to the exponential

service times of Q2 (see Figure 3.2(c)/(d)). Experiments with variable MPL levels show the

same qualitative behavior for both of the above scenarios and for different autocorrelation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

strengths. Our first observation is summarized as follows.

O bservation 1 Autocorrelation becomes present at all queues in a closed queuing network

as long as it is exhibited in the service process of one queue.

3.4 Perform ance Effects

We now turn to the effects of autocorrelation on system performance. We evaluate the

mean response time (i.e., wait time plus service time), the mean queue length, and the mean

utilization in each server. Furthermore, we also report on the mean round trip time (i.e., sum

of all response times) tha t captures end-to-end system performance. In an effort to quantify

the effect of SRD and LRD on system performance, we also conduct the same experiments

as those described in Scenario 1 and Scenario 2 but with the MMPP process adjusted so

that it does not have any autocorrelation but maintains the same mean, SCV, and higher

moments.

Figure 3.3 shows performance under Scenario 1 and Figure 3.4 shows performance under

Scenario 2. The presence of autocorrelation (both SRD and LRD) in the closed system

degrades the overall system performance - compare round trip times in Figure 3.3(a) and

Figure 3.4(a). Looking closely into how round-trip time is distributed between the two

servers, we notice that performance of the non-bottleneck queue significantly decreases as

MPL increases. This is also reflected in Figures 3.3(b) and 3.4(b) that plot the average queue

length in each server.

Although the overall performance effects on the non-bottleneck queue are the same in

both scenarios, the reasons are different. In Scenario 1, performance degrades due to au­

tocorrelated arrivals to the non-bottleneck queue - recall that there is no autocorrelation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

(a) Response time (b) Queue length

*

V 100
// 80

- 60

X 40

X ■ 20
v3 0

15 25 50 100
MPL

(c) Utilizations

15 25 50
MPL

100

(d) Throughput
100

80

60

40

20

0

T

15 25
MPL

50 100

1
0.8

0.6

0.4

0.2

0
15 25 50

MPL
100

Q l (NOACF) ' Q2 (NoACF) ' Q l (SRD) ' Q2 (SRD) ' Q l (LRD) Q2 (LRD) 1 = 3

Figure 3.3: Performance measures: (a) mean round trip time, (b) mean queue length, (c) mean
utilization, and (d) mean throughput at each queue for Scenario 1. The bottleneck queue (Q2) has
autocorrelated service times.

in its service process. In Scenario 2, autocorrelation in both arrival and service processes

of the non-bottleneck queue degrades performance. Longer queues at the non-bottleneck

server cause the mean queue length of the bottleneck queue to surprisingly decrease (see

Figure 3.3(b) and Figure 3.4(b)) as requests spend now more time in Qx. This redistribu­

tion of requests in the system “balances” the load, as reflected in the per queue utilizations,

which are now lower than when there is no autocorrelation, Comparing the systems with and

without correlation, although the overall performance degrades in presence of correlation,

the per queue utilizations decrease (see Figures 3.3(c) and 3.4(c)). The above p erfo rm an ce

trends persist and become slightly more pronounced in the LRD experiments, but are clearly

not commensurate with the degree of dependence in the LRD process. This is due to the

fixed MPL level, that in effect acts as an upper bound on the number of jobs tha t circulate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

140
120
100
80
60
40
20
0

(a) Response time

f j
15 25 50

MPL

(c) Utilizations

100

100

80

60

40

20

0
5 15 25 50 100

(b) Queue length
100

80

60
40

m n
15 25

20

0
5 50 100

MPL

(d) Throughput

15
MPL

25
MPL

1
0.8

0.6

0.4

0.2

0
50 100

Q l (NOACF) K s a q 2 (NOACF) i= i Q l (SRD) Q2 (SRD) Ql (LRD) ^ 2 3 Q2 (LRD) 1 = 1

Figure 3.4: Performance measures: (a) mean round trip time, (b) mean queue length, (c) mean
utilization, and (d) mean throughput at each queue for Scenario 2. The non-bottleneck queue (Qi)
has autocorrelated service times.

in the system at all times.

Figures 3.3(d) and 3.4(d) show the system throughput for the two scenarios as a function

of MPL. Consistent with the utilization behavior, we see that the system with no auto­

correlation reaches its maximum throughput at MPL=100, which is equal to the service

rate of the bottleneck queue, and remains flat after that point. For the experiments with

ACF, we see tha t throughput increases very slowly as MPL increases, consistent with the

very slow growth of utilization at the bottleneck queue. Indeed, maximum throughput and

the corresponding 99.5% utilization are reached with much higher MPL=1500 for the SRD

experiments and with MPL=70000 for the LRD experiments! Therefore, throughput and

utilization, metrics that are easily obtainable from measurements and are prevalently used

to gauge system capacity, give a distorted view of the user-perceived performance. Our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

31

observations are summarized as follows.

O bservation 2 Autocorrelated flows in a closed system degrade overall system performance,

i.e., increase mean round trip time and decrease mean throughput. Counter-intuitively, they

also decrease the anticipated utilization of each queue, including the anticipated utilization

at the bottleneck device.

O bservation 3 Autocorrelated flows in a closed system balance the load among all queues,

i.e., decrease mean queue length and mean response time of the bottleneck queue and increase

those of the non-bottleneck queue.

These observations have an important effect on capacity planning. If autocorrelated flows

exist in the system, then reduced utilization levels at a queue do not mean that the system

can sustain more load.

To better understand where each job spends most of its time waiting, we plot in Fig­

ure 3.5 and Figure 3.6 the CDFs of response times (per queue and round-trip) for the LRD

experiments.2 For a substantial range of response times the performance of the system with

LRD is better than tha t with no autocorrelation (see the cross-over points in CDFs in Fig­

ures 3.5(c) and 3.6(c) as well as cross-over points in CDFs that show per-server response

times). However, response time tails at servers with ACF (Figure 3.5(b) and Figure 3.6(a))

dominate tails of round-trip times and significantly bias mean response times.

O b s e r v a t io n 4 In a closed system , the service process with uutocorrelated structure (be it

in the bottleneck queue or not) is the source of tails in the end-to-end response times and

dominates average performance measures.

2The CDF results of the SRD experiment are qualitatively the same.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

(a) Q1 response tim e, M P L = 25 (,b) Q 2 response tim e, M P L = 25 (c) R o u n d trip tim e, M P L = 25

100

80

60

40

20

0 *—
0.01 0.1 10 100

100

80
N O A C F /N O A C F >

60

40

20

0
1000 1 10 100 1000

Figure 3.5: CDFs of (a) response time at Qi, (b) response time at Q2 , and (c) round trip time
for Scenario 1 with MPL=25. The bottleneck queue (Q2) has autocorrelated service times.

(a) Q l re sp o n se tim e , M P L - 25

100

80
N O A CF *

60

40

20

0

(b) Q 2 re sp o n se t im e , M P L = 25

100

80

60

40

20

0

(c) R o u n d tr ip t im e , M P L = 25

0.001 0.01 0.1 1 10 100 1000

tim e

100

100

80

60

40

20

0
100 1000

Figure 3.6: CDFs of (a) response time at Q1 , (b) response time at Q2 , and (c) round trip time
for Scenario 2 with MPL=25. The non-bottleneck queue (Q\) has autocorrelated service times.

The immediate implication of the above observation is tha t capacity planning or admission

control at a server with autocorrelation that aims at reducing the response time tail, may

incur significant performance improvements. We will return to this point in Section 3.6.

3.5 A utocorrelation A nalysis in T P C -W

In this section, we confirm the existence of autocorrelation flows in a multi-tiered system via

a case study based on the TPC-W benchmark [83]. TPC-W is a widely used e-commerce

benchmark that simulates a Business-to-Consumer (B2C) site [27].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

3.5 .1 E xp erim enta l E nvironm ent

We collect measurements of a multi-tiered e-commerce site implemented according to TPC-

W, which simulates the operation of an on-line bookstore. A high-level overview of the

experimental set-up is illustrated in Figure 3.7 and specifics of the software/hardware used

are given in Table 3.3.

Image Server

Clients

★

Image requests

★
HTTP requests

1, MySQL reply

Front Server

i Disk accesses

Database Server

MySQL queries
HTTP reply

★ ★

Figure 3.7: E-commerce experimental environment.

Table 3.3: Hardware components on the on-line bookstore implementation

Processor Memory OS

Clients [68] Pentium 4 / 2 GHz 256 MB Redhat 9.0

Web Server -

Apache2.0/Tomcat4.0 [82]
Pentium III / 1.3GHz 2 GB Redhat 9.0

DB Server - MySQL4.0 [58] Intel Xeon / 1.5 GHz 1GB / 768 MB Redhat 9.0

Disk SEAGATE: ST373453LC; SCSI; 73 GB; 15,000 rpm

Because we focus on the activity across all tiers in the system, we collect measurements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

at the front-end server (that hosts the web and application servers), the back-end database

server, and the disk. In Figure 3.7, all measurement points are denoted with a star (*).

Trace data are collected via the following utilities:

• Arrivals at the front-end server are obtained by tracing the workload generation mod­

ules.

• CPU and memory activity at each server is measured via the sysstat Linux utility.

• Query activity at the database server is provided by MySQL logs.

• VMware [88] is used to run the database server in a Linux virtual machine hosted by

the database server machine. This allows the physical SCSI disk to appear as a process

in the database host. We use the strace Linux utility to trace all I/O activity.

The host of the database server has 1 GB of memory but the virtual machine uses only 768

MB. We also separate the image files at the front-end server in an effort to minimize their

effect. Our experiments show that images, i.e., static content attached to each dynamically

generated page, have negligible service times when compared to that of dynamic requests,

thus their impact is not considered.

According to TCP-W specifications, the number of customers or emulated browsers (EBs)

is kept constant throughout the experiment. For each EB, TCP-W statistically defines the

user session length, the user think time, and the queries that are generated by the session.

To better simulate the behavior of a real system, there is a time-out period (uniformly

distributed between 5 and 15 minutes) tha t is associated with each EB. If a time-out occurs,

then the session ends and a new session starts immediately. Four Pentium 4 machines are

used to simulate the EBs. If there are n EBs in the system, each machine simulates n /4

EBs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

The database of the online store has 10 tables. One of the most important ones is the

ITEM table which stores information on the items available for purchase. The database size

is determined by the number of items and the number of customers. In our experiments,

we found tha t the size of the ITEM table is critical for performance. Therefore, we present

results on different databases that are distinguished by the size of the ITEM table. We

run experiments in three databases: one with 10,000 items (small), one with 100,000 items

(medium), one with 500,000 items (large), and one with 1,000,000 items (very large). Ta­

ble 3.4 shows the size of the most important tables in the databases used in our experiments.

Table 3.4: Sizes of important tables

DB ITEM CUSTOMER ORDER_LINE Total

10 K 5.1 MB 362 MB 338 MB 1.5 GB

100 K 51 MB 362 MB 338 MB 1.5 GB

500 K 256 MB 362 MB 338 MB 1.9 GB

1 M 510 MB 362 MB 338 MB 2.1 GB

TPC-W defines 14 different Web interactions which are coarsely classified as either brows­

ing or ordering. According to the weight of each type of activity in a given traffic mix,

TPC-W defines 3 types of traffic mixes, namely, the browsing mix with 95% browsing and

5% ordering, the shopping mix with 80% browsing and 20% ordering, and the ordering mix

with 50% browsing and 50% ordering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

3.5 .1 .1 C ap acity P lann ing

The purpose of this section is to give an initial analysis of the system capacity and bottleneck

that will be used in the analysis of Section 3.5.2. We will return to the detailed bottleneck

analysis under various workloads using different stochastic metrics in Chapter 4.

Figure 3.8 illustrates system throughput (measured in interactions per second) at the

front server, the front-end CPU utilization, and the database CPU and memory utilizations

(i.e., the second tier) as a function of the number of emulated browsers in the system (i.e.,

system load). We do not report on the front-end memory utilization as it is always low.

Results are presented for one TPC-W mix type, the browsing mix, and four database sizes.

Overall, Figures 3.8 shows that it is the database server that becomes the bottleneck inde­

pendently of the load in the system. In the following sections, we specifically focus on the

browsing mix with a database of 10,000 items, where the system’s throughput flattens out

after the number of EBs greater than 256.

Browsing Mix

liLOCH)
100,000

S 20

500.000

.000.000 — ‘ ------I I 1 1 1 1
32 64 % 128 160 192 224 256 288 320 352 384 416 448 480 512

Number of EBs

F4 40
CO
O 20

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

100

60
a.O 40 cs
Urn 20

0
(b)

i i i i i i 1 1 1 1 1 1 1

10.000
100.000
500,000

i
i .ooo.ooo

1 i i ------ ------ - .. 1
32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Number of EBs

D <
B
2 ‘CQa 20

500,000

10.000

100.000

Number of EBs (d)
q i I l l I 1 l I I I I I I I I

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Number of EBs

Figure 3.8: (a) Throughput, (b) front-end CPU utilization, (c) database CPU utilization, and (d)
database memory utilization for the browsing mix and database sizes of 10,000, 100,000, 500,000,
and 1,000,000 items.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

3.5 .2 A u tocorre la tion P rop agation in T P C -W

Here, we report on the existence of autocorrelated flows in a multi-tiered system tha t is

built according to the TPC-W specifications. Corresponding to Figure 3.7, Figure 3.9 also

illustrates the flow of requests from the clients to the front server (which hosts the web and

application servers) and the back-end database server. Data is collected at several points as

(2) Client Departures (6) DB Server Departures

HTTP requests (3) Front Server
Arrivals

MySQL reply

0
Front Server Database Server

(4) Front Server

HTTP reply r Departures MySQL queries

(1) Client Arrivals (5) DB Server Arrivals

Clients

Figure 3.9: TPC-W experimental environment.

illustrated in Figure 3.9. Specifically, we record

• all responses sent from the front-end server to the client at point (1) labeled “client

arrivals” , collected at the workload generation modules;

• all requests sent from the clients to the front-end server at point (2) labeled “client

departures” , collected at the workload generation modules;

• all requests received by the front server (i.e., both client requests and database re­

sponses) at point (3) labeled “front server arrivals” , collected at the workload genera­

tion modules and MySQL logs;

• all responses sent from the front-end server (i.e., to both the clients and database

queries) at point (4) labeled “front server departures” , collected at the workload gen­

eration modules and MySQL logs;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

• all queries sent from the front server to the database server at point (5) labeled “DB

server arrivals” , collected at the MySQL logs;

• all query results sent from the database to the front server at point (6) labeled “DB

server departures” , collected at the MySQL logs.

Figure 3.10 shows the measured ACF at the various points indicated in Figure 3.9 for

three browsing mix experiments and a database of 10,000 items for different numbers of

concurrent EBs in the system (i.e., different workload intensities). Figure 3.11 plots the

average queue lengths, average response times, and average CPU utilizations, at the clients,

front-end, and database servers.

(a) 128 EBs
i— i— i— i— i— I— i— i— r

(1) Client Arrival
(2) Client Departure

(3) Front Arrival —
(4) Front Departure

(5) DB Arrival-----
(6) DB Departure

(b) 384 EBs

j i i i i i i i i

(c) 512 EBs
i I r

(1) C lient Arrival
(2) C lient Departure

(3) F ront A rrival
(4) F ront Departure

(5) DB Arrival
(6) DB Departure

(3) Front Arrival
(4) F ront Departure

(4) (5) DB Arrival
(6) DB Departure

■J

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Lag (k) Lag (k) Lag (k)

Figure 3.10: ACF at various points in the system. Experiments are done using the browsing mix,
a database with 10,000 items, and (a) 128 EBs, (b) 384 EBs, and (c) 512 EBs.

(a) Average response time (b) Average queue length (c) Average utilization

c 10

256 384 512
number of EBs

600

Client
- Front 1 —1

DB ■ ■
500

400

300

200

too

0
128 256 384 512

number of EBs

Front CPU
DB CPU

256 384 512
number of EBs

Figure 3.11: Average performance measures with the browsing mix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With only 128 EBs, the system is lightly loaded, the front-end utilization is 20% and the

database server utilization is 38%. The ACF in Figure 3.10(a) is very close to zero in almost

all measurement points. The ACF at point (5), i.e., at the DB arrival process, is oscillating

at low lags (from -0.05 to 0.2) and quickly decreases to nearly zero. The ACF of the database

departure process, i.e., at point (6), follows the ACF of arrivals, consistently with discussion

in Section 3.3, where we showed tha t under low load in a queuing system the arrival process

rather than the service process determines the shape of the departure process. Looking

carefully into the traces, we notice tha t the source of the correlated arrivals to the database

comes from the JDBC drivers connecting Tomcat Java servlets and MySQL database server

as one long query usually follows several small queries there.

As we increase the number of EBs in the system to 384, the system load increases to 38%

utilization at the front-end and to 82% at the bottleneck DB server. This is a case of heavy

load, where oscillating ACF values are not observed anymore. Figure 3.10(b) shows tha t au­

tocorrelation is higher now in almost all measurement points, with the exception of points (1)

and (6) which represent client arrivals and database departures, respectively. Experiments

with 512 EBs capture very similar, although much stronger, trends on ACF propagation as

depicted in Figure 3.10(c). Inspecting the ACFs at points (3) and (4) in Figures 3.10(b)-(c),

we infer that the service process at the front-end server is correlated because ACF at its

departure point is much higher than ACF in its arrivals. The autocorrelation measured at

point (4) is the strongest among all measurement points, and becomes even stronger as load

increases, see Figure 3.10(c). These ACF values suggest that there is no correlation in the

DB service process as measurements at point (6) show a flat-to-zero ACF line - the service

process in the DB “takes away” the correlation in the flow of arrivals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Average performance values are presented in Figure 3.11. Despite the fact that queue

lengths and response times increase fast as a function of EBs (see Figures 3.11(a) and (b)),

utilization levels increase very slowly, consistently with the results presented in Section 3.4.

We have conducted several experiments using different TPC-W workload mixes (i.e.,

shopping and ordering) and larger database sizes (i.e., 100,000 and 1,000,000 items). These

experiments can be summarized as follows. The amount of ACF that propagates through

the system and measured at various points is different for the three TPC-W workload mixes.

This is expected as each workload has different service demands. Autocorrelated flows are not

always observed. In some experiments there is very little or no autocorrelation. For the cases

tha t ACF is observed, we attribute its presence to autocorrelated service processes in the

front and/or database servers because the workload generation at the EBs guarantees that

there is no autocorrelation in the arrival process coming from the clients. In the following

section, we present a simple model tha t captures the performance trends observed here and

that confirms our conjecture about the existence of autocorrelation in the service process.

3 .5 .3 T P C -W M odel

The model is illustrated in Figure 3.12. Queues Q\ and Q2 correspond to the front-end

server and the back-end database server, respectively. Because the TPC-W benchmark is

session-based, we use an infinite-server queue Q0 with as many servers as the system’s MPL

to emulate client activity. The collected TPC-W trace data shows that each dynamic request

at the application server generates several database requests. We capture this behavior by

adding a feedback loop: with probability p a completed request from Qi is forwarded to

queue Q2 and with probability 1 — p it goes back to the client, in Q0. We also define the

same six measurement points as in the real system of Figure 3.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

QO

(1) Client Arrivals
(2) Client Departures
(3) Front Server Arrivals
(4) Front Server Departures
(5) DB Server Arrivals

|_ p (6) DB Server Departures

Q2

(1) (2) (3) ^ (4)
Front Server

(5) ^ (6)
Database Server

Client

Figure 3.12: A queuing model of TPC-W.

This model is solved using simulation and is parameterized using measurements from a

lightly loaded system, where there is virtually no queuing. Measuring the service process in

each of the system tiers is not straightforward but in a lightly loaded system tha t guarantees

nearly zero wait times, response times gives a good approximation of service times

• The think time in each server of Q0 is exponentially distributed with mean 7sec, as

specified by TPC-W.

• We use a 2-state MMPP to generate service times in the front-end server with mean

Pi = 582.70 and S C \\ = 20. This MMPP has autocorrelation which is equal to 0.47

at lag 1 and decays to nearly zero at lag 300. The MMPP used here has the following

MAP parameterization:

Note that we do not perform a rigorous fitting to capture the exact shape of autocor­

relation in the service process, we simply match the first two moments of the empirical

data and we adjust the MMPP parameters in order to induce autocorrelation.

-2001.004655 1.00465
0.384642 -40.457034

2000 0
0 40.072392 '

(3.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

• Service times at the database server are generated using a 2-stage hyperexponential

with /j2 = 224.34 and SCV\ = 100.This distribution is MAP presentation is as follows:

• The probability p is set to 0.876, which is again obtained by measurements.

Figures 3.13(a)-(c) show the ACF propagation with MPL set to 128, 384, and 512,

respectively. The queuing model captures well the autocorrelation trends observed in the

TPC-W experiments, compared to Figure 3.10. Consistently with experimental results, the

server at (5) have the highest autocorrelation. The slowest decaying ACF is at point (2), i.e.,

the departures from the clients. Note that the independent service process at the database

server results in independent departures at (6), which also minimally affects arrivals to the

in the service process of the front-end server. Existence of autocorrelation only at the

and arrival processes at all the queues. When the load is high (Figures 3.13(b)-(c)), the

autocorrelated service process at Q i (i.e., front-end server) dominates the departure process

at Qi and as showed in Section 3.3 propagates in the entire closed system.

Average performance measures from the model are presented in Figure 3.14 where per­

formance measures of the TPC-W experiments are also presented for easy comparison. The

dependent service process in Q i significantly affects system performance, especially round-

-1 0 0 0 0
0 -3.461149 J ’

987.991444 12.008556
3.419586 0.041563

(3.2)

departure intervals from the front-end server at (4) and the arrival intervals at the database

clients at (1). Figure 3.13 verifies our speculation about the existence of autocorrelation

service process of Qi (i.e., front-end server) causes the entire system to operate under almost

independent flows when the load is low (Figure 3.13(a)) because the workload generation

at the clients (which is driven by the exponential distribution) dominates the departure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

0.3

0.25

1 1

. (3X4X5)

1 1 I
(1) Client Arrival

(2) Client Departure ■
(3) Front Arrival

(4) Front Departure
(5) DB Arrival

(6) DB Departure

\l /

'

A (2) i

50 100 150 200 250

Cl) Client Arrival
(2) Client Departure

(3) Front Arrival
(4) Front Departure

(5) DB Arrival
(6) DB Departure

1 1 1 1 1
(1) Client Arrival —

0.25 (4)1 (5)

(2) Client Departure — *
(3) Front Amval

(4) Front Departure

0.15

f /
/ (3)

(5) DB Arrival
(6) DB Departure

0.1
(2)

0.05
________i

0
\(6)

1 1 1

50 100 150 200 250

lag (k)

F ig u re 3.13: Autocorrelation propagation in our queuing model parameterized using the mea­
surements of Section 3.5.2 with M P L equal to (a) 128, (b) 384, and (c) 512.

trip times. Model and experimental results are in excellent agreement, despite the fact that

no rigorous fitting method was used to fit the experimentally collected service times and their

autocorrelation of the front-end server to the 2-stage MMPP that was used in the model.

(a) Average response times
T

Front-mod
12 DB-mod

- j Front-exp
10

o DB-exp
o
4S 8 -
§
a 6 -
u

1 4 u
-

(b) Average queue lengths

 1— ------ 1 r
Client-mod
'Front-m od1 -J

DB-mod
, - Client-exp 1XXX^

Front-exp
DB-exp

(c) Average utilization

128 256 384 512
MPL

128 256 384 512

Front—mod
DB-mod

Front-exp
DB-exp

F ig u re 3.14: Model prediction and experimental performance measures.

3.6 Taking Advantage of ACF

After having established the importance of autocorrelated flows for the performance of multi­

tiered systems, we now turn to how to use this information for effective system design. In

general, capturing burstiness in the flows of complex systems can be used to implicitly

model caching, context switching overhead, contention for memory or locks, while keeping

the model surprisingly simple. Here, we present a case study that illustrates how ACF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

can guide admission control. Naturally, a myriad of policies exist for admission control.

Presenting an ideal admission control policy is outside the scope of this work. Instead, we

focus on how to use knowledge of autocorrelated flows to improve policy development.

In Section 3.4 we show tha t the server with ACF in its service process is the one that

most contributes to the response time tails. Based on this observation, we devise a simple

admission control strategy that rejects the jobs which are highly probable to contribute to

the long tail of round trip times. Identification of these jobs is based on the temporal locality

of autocorrelated flows.

Assuming that we know a priori which is the tier tha t is the source of autocorrelation, we

deploy admission control at tha t tier.3 Admission control is triggered when the queue length

at the ACF tier reaches a pre-defined threshold Qt of MPL. Upon each job completion,

the current queue length is checked to see whether it exceeds threshold Qt ■ If this is the

case, then the request at the head of the waiting queue is dropped (i.e., directed back to

Qo, the client queue), with probability weighed by the ACF value of the stream at lag(l),

provided that ACF has a positive value. Then, the next waiting request is also dropped with

a probability weighed by the ACF value at lag(2). The dropping of waiting requests stops

when the queue length reaches Qt or a job is admitted for service.4

We use the model in Section 3.5 to evaluate this admission control policy. The base line

for the evaluation is the case with no admission control. For comparison, we also evaluate

a policy with random dropping at the same tier. Similar to the ACF-guided policy, the

3 Even if the autocorrelation function of the flow in the tier is not known a priori, it is possible to calculate

it on-line using a modified version of Welford’s one-pass algorithm to calculate the mean and variation of a

sample [91].
4 We experimented with different probability weights that gave us qualitatively similar performance. Here,

we present results with weight equal to 1, i.e., we use directly the ACF function as the dropping probability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

random policy drops always from the head of the waiting queue with probability equal to

the overall dropping rate of the ACF-guided admission control policy. This way, we maintain

equal dropping rates in both admission control policies.

We first evaluate exactly the same setting as in Section 3.5, i.e., the front server has ACF

in its service process tha t starts at 0.47 for lag 1 and decays to nearly zero beyond lag 300.

MPL is set to 512. QT is defined as 60% of MPL because the front tier is not the bottleneck

and it is expected to be less loaded than the DB tier. Consistently with experiments presented

in Section 3.5, we assume tha t the service process at the DB tier is not correlated and that the

DB is the bottleneck. The dropping rate for the ACF-guided policy is 8.2% and average round

trip times become 8.93 seconds. The round trip times under the no-dropping and random

dropping scenarios are 11.55 and 10.07 seconds, respectively. To focus on tail performance,

Figure 3.15 illustrates the complementary cumulative distribution function (CCDF) of round

trip times and of response times at the front server and the database server. The figure shows

that ACF-guided policy improves the tail of the front server response times and respectively

round trip times, given tha t the tails of response times at the DB server of the two admission

control policies are almost identical.

We now use the model of Section 3.5 but assume that the bottleneck tier (i.e., the

database server) has ACF in its service times. This is motivated by the disk ACF service

times in Figure 2.1. Again MPL is 512 but Qt is now set to 90% of the MPL, because the

DB is the bottleneck and we expect most of the jobs to be stuck there. The ACF-guided

admission control drops only 5.8% of the total requests and achieves an average round

trip of 4.50 seconds. Round trip times with no-dropping and random dropping are 16.65

and 16.63 seconds, respectively. Both round trip times and database server response times

significantly improve with the ACF-guided policy (see the CCDFs in Figures 3.16). With

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

(a) Round trip time, ACF in front server
100

Base Case ----
Random Dropping —

ACF Dropping —

mean = 11.55

mean = 10.07
mean = 8.930.01

0.001

le-04
0 20 40 60 80 100 120 140 160 180 200

seconds

(b) Front server response time, ACF in Front Server
100

Base Case ----
Random Dropping

ACF Dropping---

mean = 2.90

meai>= 1.51 mean - 2.60
0.01

0.001

le-04
0 10 20 30 40 50 60 70

seconds

(c) DB server response time, ACF in Front Server
100

Base Case ----
Random Dropping

ACF Dropping---

mean - 8.65

■oou
mean = 7.47mean = 7.420.01

0.001

le-04
0 20 40 60 80 100 120 140 160

seconds

F ig u re 3.15: CCDFs of (a) round trip time, (b) response time of front server, (c) response time
of database server using the model of Section 3.5 where the front server has ACF in its service
process. In all experiments MPL is equal to 512.

random dropping, improvements are very small. Both experiments, although preliminary,

confirm tha t selective dropping as guided by ACF can dramatically improve performance.

By selectively dropping those requests tha t contribute most to ACF, the queue lengths in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

(a) Round trip time, ACF in DB server
100

Base Case----
Random Dropping

ACF Dropping
mean = 16.65

£
(4->
T3OU mean = 4.50

o.oi

0.001
mean = 16.63

le-04
0 200 400 600 800 1000 1200 1400 1600 1800

seconds
(b) Front server response time, ACF in DB Server

100
Base Case ----

Random Dropping —
ACF Dropping

mean = 0.64

mean = 0.63

0.01

0.001 mean = 0.49

le-04
0 5 10 15 20 25

seconds
(c) DB server response time, ACF in DB Server

100
Base Case ----

Random Dropping —
ACF Dropping---

mean = 16.01

mean = 3.87
0.01

0.001
mean = 16.14

le-04
0 200 400 600 800 1000 1200 1400 1600 1800

seconds

Figure 3.16: CCDFs of (a) round trip time, (b) response time of front server, (c) response time of
database server when the database server has ACF in its service process. In all experiments MPL
is equal to 512.

queue w ith autocorrelation significantly reduce, the A C F flows in the entire system weaken,

and perform ance in every server improves.

Similar analysis can be done for capacity planning studies. There, the focus should be on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

first identifying and then bolstering the server th at is th e source of autocorrelation, which is

not necessarily th e system bottleneck.

3.7 Sum m ary

We presented a stu d y th a t shows the presence of autocorrelated flows in a m ulti-tiered system

w ith a closed-loop structure and their perform ance effects. Com paring the perform ance

effects of th e presence o f autocorrelated flows in m ulti-tiered system s w ith the perform ance of

the sam e system w ith independent flows, we show th a t end-to-end perform ance significantly

deteriorates w hile bottleneck devices are less utilized , falsely indicating th at the system is

able to sustain higher load. Furthermore, we show th a t in contrast to system s where no

burstiness is observed, th e ta ils of th e overall response tim e distributions do not necessarily

reflect the tim e spent at th e bottleneck tier, but instead are shaped by the response tim e

ta il at the tier th a t is th e source of autocorrelation, irrespective of its u tilization level. If

autocorrelated flows are ignored, then throughput and utilization of specific devices - m etrics

often used in capacity p lanning and adm ission control - m ay give a distorted view of system

load.

The m easurem ents from a real system based th e T P C -W benchm ark dem onstrate the

existence of autocorrelation flows in a closed m ulti-tiered system . A queueing m odel is used

to m odel th is system by representing the service tim es of the guess-dependent server w ith an

autocorrelated 2 -sta te M M PP. M odel and experim ental results are in excellent agreem ent,

despite the fact th at no rigorous fitting m ethod was used to fit the measured results, which

proves th at stochastic processes th a t capture autocorrelation m ay be used to effectively

m odel com plex system s v ia sim ple queuing m odels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

T his chapter also presents a case study of adm ission control guided by the knowledge of

th e autocorrelation inform ation. T he case study illustrates th at dependence in flows w ithin

the system is critical for effective adm ission control, thus should be the focus of the resource

m anagem ent strategies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Bottleneck Analysis in TPC -W

In addition to the significant impact of autocorrelation flows on a multi-tiered system, the

mostly dynamically generated contents in contemporary servers also make it very challenging

to understand the resource requirements of dynamic requests. It is possible that a request

can cause a substantial portion of the database to be accessed even when just a few kilobytes

of text are eventually sent back to the client. The “size” of a request is not a simple one­

dimensional property, and thus is difficult to quantify a priori. For a dynamic request, the

amount of data accessed from storage, the computational requirements for processing in order

to generate the page content, and the amount of data sent back to the client are unrelated

and unpredictable. Furthermore, wide disparities in the various resource requirements of

different dynamic requests trigger multiple bottlenecks in the system. Resource allocation

is further complicated by bursty user request rates that fluctuate dramatically even within

short periods of time, resulting in systems that operate often under conditions of transient

overload.

Effective system provisioning in such complex systems requires a detailed understanding

of the system workload. While over provisioning helps Internet systems to operate under

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

light to medium load conditions, it does not preclude the fact that they are still susceptible

to transient overload. Overload can be controlled via admission control mechanisms either

at the front-end of the system (usually the network link) or at the application level, with

the intention of stabilizing performance [15, 57], or via effective resource management that

focuses on graceful performance degradation [92]. Performance degradation is by far more

desirable than service unavailability. The latter, even if it occurs for a short time period

only, can be detrimental for business profitability [52],

The purpose of this chapter is to present a detailed analysis of the resource demands in

a typical e-commerce server under steady load and under transient load, to identify how the

workload propagates through all system tiers, and to determine the conditions under which

bottlenecks occur. We still use the typical configurations of an e-commerce site following

TPC-W as in Chapter 3.5, which consists of a web and application server, a database server,

and a storage system (see Figure 3.7).

We are particularly interested in how the workload’s transient characteristics propagates

through the system hierarchy and places resource demands on CPU, memory, and I/O de­

vices. Our experiments show that the lower tiers of the system, i.e, the database server

and the storage system, become the bottleneck while the resources at the front-end remain

underutilized. The system capacity, directly related with the existence of bottlenecks in the

system, depends not only on the load, but also on the characteristics of the system workload.

Some workloads utilize system resources much faster than others, for the same number of

users in the system. These workloads are more I/O bound than others.

This chapter is organized as follows. In Section 4.1 and 4.2 we present performance results

that can be used for capacity planning, focusing on response time analysis for bottleneck

identification. In Section 4.3 we show how overload develops and propagates in the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

under transient conditions that are distinguished by sudden changes in the customer arrival

intensity and/or changes in the requested work. System implications of the presented analysis

are presented in Section 4.4. Finally Section 4.5 summarizes the contributions of this chapter.

4.1 C apacity Planning

In a multi-tiered system, the load of each tier has an impact on the user-perceived perfor­

mance. The personalized nature of the requests sent to e-commerce servers makes the second

tier, i.e., the database server, the bottleneck [49]. Our experiments show tha t this bottleneck

is triggered either by excessive load, as reflected by the number of simultaneous requests in

the system, or by excessive work, as reflected by the amount of required system resources to

service the requests.

Initially, we illustrate how load and work affect user perceived performance and conse­

quently capacity planning. The system performance under different loads has been reported

in Section 3.5.1.1 (see Figure 3.8). Results are presented for one TPC-W mix type, the

browsing mix, and four database sizes.

Figure 4.1 illustrates the effect of different TPC-W mixes. In this case, we experiment

with only one database, i.e., the one with 500K items, and report on the system throughput,

front-end CPU utilization, and database CPU and memory utilizations for the ordering,

shopping, and browsing mixes. Figure 4.1 indicates that mixes affect system performance

and resources availability. Observe tha t different mixes determine different levels of the

sustainable system load. Overall, Figures 3.8 and 4.1 show that it is the database server

tha t becomes the bottleneck independently of the load or the work in the system. In the

following, we focus on the database server performance and the characteristics of dynamic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

page generation.

500K items database, various workloads
80 100

70

60 Ordering
Q. Ordering5 60

DQ.
U 40

50

40

30 c
g20 li.

Browsing Browsing10
0

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Number of EBs

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Number of EBs(a) (b)

100
Browsing

80
Ordering

60

40

20

0
64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Number of EBs(d)

100

Shopping

•aD
DClu
CQa

Ordering

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Number of EBs(c)

F ig u re 4.1: (a) Throughput, (b) front-end CPU utilization, (c) database CPU utilization, and (d)
database memory utilization as a function of system load for the database with 500,000 items and
various TPC-W mixes.

Figure 4.2 illustrates query tim e distributions, as a m etric of th e database server perfor­

m ance. B ecause we focus on understanding the system behavior under a variety of workloads,

we introduce tw o additional traffic m ixes th at stress the system further by increasing the

I /O traffic:

• modified browsing mix', the percentage o f new product searches accounts for 90% of all

requests and the rem aining of the requests proportionally adjusted according to the

browsing m ix, w hile in the original browsing m ix new product searches are on ly 11%

of requests, and

• modified ordering', where we raise the portion of adm inistration interactions of the

ordering m ix from originally 0.11% to 10%, and adjust the percentage of the rest of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

B r o w s i n g M i x , v a r i o u s l o a d s M e d i u m l o a d , v a r i o u s w o r k l o a d s

1 0 ,0 0 0 I t e m s D a t a b a s e

1 *r"
0.95 0.95

0.9

R 0.85

640 EBs
0.9

R 0.85
Browsing

584 640
\ 256
192

Modified Ordering
0.8

128 Ordering0.75 0.75

0.7 0.70 5 10 15 20 25 30 35 40 45 50 50 10 15 20 25 30 35 40 45 50
(a) Query Time (sec) (e) Query Time (sec)

1 0 0 ,0 0 0 I t e m s D a t a b a s e

0.95 0.95

0.9

R 0.85

Shoppinj 512 EBs0.9
Ordering

0.85
320

Modified browsing0.8
192 Browsing0.75 128 0.75

0.7 0.70 5 10 2015 25 30 35 40 45 50 0 5 10 15 20 25 30 35 45 5040
(b) Query Time (sec) (f) Query Time (sec)

5 0 0 ,0 0 0 I t e m s D a t a b a s e

l
1280.95

0.9

R 0.85
256

384

0.8

0.75

0.7 0 5 10 15 20 25 30 35 40 45 50

Ordering
0.95

0.9u.
f t 0.85

BrowsingShopjji]

384 EBs
Modified browsing

0.75

0.7 0 5 10 15 20 25 30 35 40 45 50
(c) Query Time (sec) (g) Query Time (sec)

1 ,0 0 0 ,0 0 0 I t e m s D a t a b a s e

Browsing0.95 0.95 i K \

0.9 - '
tfc Ordering
R 0.85 -

64 EBs0.9Um
R 0.85 Modified browsing

0.8
192

0.75 0.75

0.7 0.7
5 15 20 25 30 35 40 45 500 10 0 5 10 15 20 25 30 35 40 45 50

(d) Query Time (sec) (h) Query Time (sec)

F igu re 4.2: Query time distribution (CDF) for the browsing mix under various loads (left column)
and under medium load for various TPC-W mixes (right column).

the requests in the ordering mix.

Since the database server is the bottleneck, this metric directly relates to the user per­

ceived performance. We focus on the query time distribution for various database sizes,

loads, and mixes. For each database size, which essentially determines the level of system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

resources availability, higher load degrades database server performance. For the two large

databases, where the system resources are limited, the impact of higher load is more ap­

parent, resulting in distributions with considerably longer tails (see Figure 4.2(c)-(d)). For

various TPC-W mixes (see the right column of Figure 4.2), the query time distribution for

work-intensive workloads, such as the modified browsing mix, is quite different from tha t of

less work-intensive workloads, such as shopping or ordering mix. We identify a workload as

work-intensive when it requires more CPU, memory, and I/O to generate the response to a

dynamic request.

4.2 System Im plications o f the Stationary W orkloads

To better understand the behavior of the service process, we take a close look at the database

behavior using the modified browsing mix (see Figure 4.3). The number of EBs is set to 32,

which results in the significant arrival rate at the database disk (see Figure 4.3(a)). Note

tha t in the same experiment but with the original browsing mix the arrival rate to the disk is

at most 50. Figure 4.3(b) reports on the disk access pattern as a function of time. The entire

disk is mapped on the y-axis which also marks the physical layout of each database table

on the disk. The figure clearly shows that I/O accesses are bursty. Figure 4.3(c) reports on

the memory utilization of the database server and shows that memory is periodically freed

because of memory pressure. Intuitively, if there is memory pressure at the database, a mem­

ory miss suggests that another memory miss will soon occur, or if the disk is accessed then

more accesses to the disk are to follow, which suggests that the service process is correlated.

Such bulks of disk I/O operations result in heavier tail of the query-time distribution (see

Figure 4.2(h)), which is attributed to the slower service rates at the disk and the FCFS-like

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

(a) Arrival rate in database disk
400

300
u

200

100

0 50 100 150 200 250 300

Time (seconds)

(b) Disk access positions

0RDER_L1NE

ITEM

AUTHOR

ADDRESS

0 50 100 150 200 250 300

Time (seconds)

(d) Database server memory utilization
100

so

D

0 50 100 150 200 250 300

Time (seconds)

F ig u re 4.3: Disk access pattern for the 1,000,000 items database. The system is under 90% new
searches mix.

scheduling discipline. On the other hand, the burstiness of the disk accesses indicates that

the system does not consistently suffer from memory misses. During the less I/O intensive

period, CPU/memory performance, which employs PS scheduling discipline, dominates the

response time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

4.3 Transient W orkload Propagation

After having understood what the system bottlenecks are under steady state conditions, we

now turn to transient analysis as systems in the real world are rarely subject to stability in

their workloads. For the specific case of the e-commerce server, a popular new product or

a seasonal sale could lead to sudden increases in arrival intensity. Different arrival patterns

may be experienced during day or night times. Furthermore, the pattern of user requests,

i.e., the information they request may be substantially different from the expected one,

affecting the demands put on system resources. First, we concentrate on how ephemeral

changes in the arrival intensity (i.e., load) propagate through the system tiers and affect

system performance. Then, we focus on how changes in the type of requests (i.e., work)

affect the bottleneck resource and how these patterns are inherited into lower system levels.

For all experiments, we present activity in all three tiers across time. All experiments are

run for 60 minutes. Results of the first 20 minutes are ignored to mask out warm up effects.

E xp erim ent O ne (10K D atab ase , T ransient Load): The first experiment uses the

browsing mix of TPC-W but changes the number of active browsers in a controlled manner.

For the experiment that uses the small database (see left column of Figure 4.4), for the first

600 seconds the number of browsers is set to 64, for the next 300 seconds it is set to 384

to induce a short-lived overload condition, and for the remaining 25 minutes of the experi­

ment the number of EBs is reset to 64. Figures 4.4(I.a)-(I.c) show the intensity of arrivals

across time at the front-end server, database server, and the database disk, respectively.

Note the flux of arrivals from one server to the other, as well as the time where significant

increases/decreases are shown. The transient load causes a severe increase in the arrival

intensity at all tiers except the disk, where short arrival bursts are detected over time with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

1 .10,000 items database (Experiment One)

(a) Arrival rate in front server

II. 1,000,000 items database (Experiment Two)

(a) Arrival rate in front server

i f i |

800 1200 1600
Time (seconds)

10
8
6
4

00 400 800 1200 1600 2000 2400

(b) Arrival rate in database server
Time (seconds)

(b) Arrival rate in database server
200

150

•E<

2000
Time (seconds)

50

40

30

20
10
00 400 800 1200 1600 2000 2400

(c) Arrival rate in database disk
400

Time (seconds)

(c) Arrival rate in database disk
400

0 400

(d) Disk access positions

ORDER...!,(NE

ORDERS

ADDRESS

1200 1600
Time (seconds)

1200 1600
Time (seconds)

(d) Disk access positions

i i i n ■ i j ■ T pi 1 ■ . i. I I i 1

.1 h ■ill i l l . ! I I - 1 1 1 . 1
ORDER LINE

. .
v : ITEM

; r f i‘ " i - i :: '7 . -* •' - [/?P ; r '
-. , ... ; - «•: .. :.•*• ̂ i . .

AUTHOR , e-: r . , ..I .' 1
i i !!< : i ' I • : ' . • • • ADDRESS i i t r

0 400 800 1200 1600
Time (seconds)

Time (seconds)

(e) CDF of database query response time

bursty pen<\i

800 1200 1600

Time (seconds)

(e) CDF of database query response time

10 15 20 25 30 35 40 45 50
Response time (seconds)

btjjsty ivruXjl
0 50 100 150 200 250 300 350 400

Response time (seconds)

Figure 4.4: Throughputs and utilizations in multiple tiers under transient load of the browsing
mix.

an exception toward the end of the overload period (after the 800^ second) where the arrival

burst is sustained longer.

Figure 4.4(1.d) reports on the disk access pattern as a function of time. The entire disk

is mapped on the y-axis which marks the physical layout of each database table on the disk.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Vertical lines in this figure indicate disk sequential accesses that correspond to an entire table

being scanned. Clearly, there is higher intensity of disk activity during the period of the

arrival burst, which makes disk transfers slower, especially after the 800th second. Note that

entire table accesses are not shown as vertical lines anymore, indicating that these accesses

take now longer. The effect of the bursty arrivals on the query response time are reported

in Figure 4.4(I.e). As expected, during the overload period database queries take longer to

complete which negatively affects user perceived performance.

Note tha t since TPC-W simulates a closed system, the arrival rate to the first server is

an equivalent indicator of system throughput. During the overload condition both arrival

intensity and system throughput increase (Figures 4.4(1.a) and 4.4(1.b)). This overload

propagates from the front-end web server down to the database server, but not to the disk.

System performance is affected (Figure 4.4(I.e)), but not to the point of affecting system

throughput. We conclude that the system sustains its performance during the short-lived

overload period.

E x p erim en t Tw o (1M D atab ase , T ran sien t Load): The right column of Figure 4.4

reports on system performance at various levels for the large database and the browsing mix.

Recall tha t for the experiments with the large database, memory may become the bottleneck

as the ITEM table is 512 MB and the available memory only 768 MB. In this experiment,

for the first 600 seconds the number of browsers is set to 16, for the next 300 seconds it

is set to 96 to cause a short-lived overload condition, and for the remaining 25 minutes is

reset to 16. Note that the arrival intensity propagates from one tier to the next, reaching

the database disk finally. Yet, there is a significant drop in the arrival rate/throughput at

the front server after the 900t/l second despite the fact tha t the bursty period ended and the

number of EBs is restored to 16 (see Figure 4.4(11.a)). This drop persists for the next 400

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

seconds and it is reflected on the database server also (see Figure 4.4(11.b)).

The opposite is observed during the same time period at the disk as in Figure 4.4(11.c).

High arrival rates at the disk imply the presence of severe queueing at the storage system,

resulting in slower response times. Because the TPC-W simulates a closed system (i.e., the

number of EBs in the system remains the same during the experiment), the majority of

the requests are accumulated in the slowest tier, resulting in a significant drop in the rate

of request completions, which reduces the throughput and consequently arrival rates to the

front and database servers (see Figures 4.4(II.a)-(II.b)). We emphasize that the drop of the

throughput at the front-end and at the database server is as drastic as to imply conditions

of service unavailability for the period of time tha t the storage system suffers from overload.

Figure 4.4(11.d) sheds light to this behavior. After the 80(Th second the system operates

under conditions of severe overload. The system recovers after the 1300th second, well after

the burst ends and the number of browsers is reset to 16. This overload period at the disk

is the result of memory thrashing at the database server, causing repetitive, long sequential

scans to the ITEM table. Under normal conditions the ITEM table is fully stored in memory.

In this experiment, the sequential scans of the ITEM table are represented as almost hori­

zontal lines in Figure 4.4(II.d) indicating that it takes a long time to complete some of the

database queries. This is also reflected in the large gap between the query response time dis­

tributions during normal and overload conditions in Figure 4.4(II.e). Approximately 5% of

all queries have a response time of more than 1 minute, which indicates service unavailability.

Concluding on experiments one and two, we stress tha t it is important for performance

that overload propagates up to the database server CPU only (experiment one, Figure 4.4(1))

rather than further down to the database disk (experiment two, Figure 4.4(H)). In experiment

one, overload does not affect system throughput and the system recovers as soon as the bursty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

period ends. In experiment two system throughput drops to the point of service unavailability

and the recovery process is much longer than the bursty period itself. Overload propagation

down to the storage system slows down the entire system operation, and significantly affects

system availability. The deeper overload propagates down the system hierarchy, the more

severe the performance degradation and the slower the system recovery.

The results of the first two transient load experiments highlight a case that can be

managed via admission control at the front-end. However, it is possible that overload happens

when the number of arrivals remains the same at the upper system tiers: all that is needed

is to change the type of work requested by the customers. For this new set of experiments

tha t simulate transient work in the system, we fix the number of customers but we change

the nature of their work for 300 seconds (from the 600th until the 900</l second).

E xp erim en t T h ree (10K D atab ase , T ransien t W ork): We report results for the

small database using the ordering mix with 640 EBs on the left column in Figure 4.5. Recall

tha t under the ordering mix the front-end rather than the database server operates close

to its capacity and 640 EBs do not saturate system resources in the lower tiers. In this

experiment, we keep the number of EBs steady but from the 600th to the 900th seconds

of the experiment, we change the work done by the browsers as follows: we increase the

percentage of ORDERJDISPLAY requests from 0.22% to 30% and we proportionally adjust

the percentage of the rest of the requests in the ordering mix. ORDERJDISPLAY requests

search in the CUSTOMER, ADDRESS, and ORDER_LINE tables to generate reports on

all orders placed by a single customer and on related best-selling items for each order. Note

tha t we do not introduce any new query in the TPC-W workload mix, we only modify the

weight that each of the pre-defined transactions have to simulate an unusual workload mix

in the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

1 .10,000 items database (Experiment Three)

(a) Arrival rate in front server
100

80

60

40

20
0

800 12000 400 1600 2000 2400
Time (seconds)

(b) Arrival rate in database server

300

> 200

'I
100

2400
Time (seconds)

(c) Arrival rate in database disk
400

| 200

'I
100 .. % ! 1 U'ifikJUkJi MJXjir t L 1.,1..*

1200 1600
um etscconds)

2000 2400

(d) Disk access positions

111 i l l ‘J i l l i t t l l l l
ORDERS

CC XACTS
rflr ■> HFTf,

. i 4 * V * fi
1200 1600

Time (seconds)
2000 2400

(e) CDF of database query response time—,---- r —

$
uT 90 ■

T 1-------- 1-------- r

i i i i i j —i ’an;|V x-'ril‘t- i
5 10 15 20 25 30 35 40 45 50

Response time (seconds)

II. 1,000,000 items database (Experiment Four)

(a) Arrival rate in front server
10
8
6
4

2
00 400 800 1200 1600 2000 2400

Time (seconds)

(b) Arrival rate in database server

1200 1600
Time (seconds)

(c) Arrival rate in database disk
400 r

2000 2400

1200 1600
Time (seconds)

2000 2400

(d) Disk access positions

RDER LINE

AUTHOR
ADDRESS

800 1200 1600 2000 2400
Time (seconds)

(e) CDF of database query response time

40 60
Response time (seconds)

Figure 4.5: Arrival rates and system utilizations in multiple levels under transient work, for the
ordering mix and a variant (I) and the browsing mix and a variant (II).

Figures 4.5(I.c)-(I.d) confirm that there is significantly higher disk activity in multiple

tables, in contrast to the disk activity of the browsing mix in experiment one (see Fig­

ure 4.4(1.d)), indicating tha t the database working set is substantially larger under the or­

dering mix and its variant than for the browsing mix. Recall that the size of the entire small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

database is approximately 1.5 GB, suggesting that a large working set would not fit into the

database server memory of 768 GB. This is the reason that the disk becomes the bottleneck

with the ordering mix variant. As a result, arrival rates (and consequently system through­

put) at the front-end and database servers significantly drop from the 600^ until the 950th

second (see Figures 4.5(1.a) and 4.5(I.b)), suggesting that the system operates in overload.

System throughput is reduced during the period of bursty work, but does not become zero

as in experiment two. Overwork in experiment three, similarly to the overload in experiment

one, impacts negatively the user-perceived performance (see Figure 4.5(I.e)) but does not

drive the system to unavailability. Comparing results of experiments one and three, one can

see that while load did not propagate down to the lowest tier, work did propagate. This

indicates a critical difference between overload and overwork: work can propagates further

down to the database disk and can make the system susceptible to overload independently

of the available system resources.

E xp erim ent Four (1M D atabase, Transient W ork): The last experiment reports

on performance data using the large database and the browsing mix and is illustrated on

the right column of Figure 4.5. Now the number of browsers is set to 32 throughout the

experiment. In the TPC-W browsing mix, the percentage of requests that ask for new

products is 11%. For 5 minutes (from the 600f,i till the 900t/l second), 90% of requests are for

new products, with the remaining of the requests proportionally adjusted. After the 900t/l

second, the system operates under the default browsing mix again. This change drastically

increases the arrival rate to the database disk, as the ITEM and AUTHOR tables need

to be accessed (see Figures 4.5(II.c)-(II.d)). These disk accesses significantly increase the

average query response time during the sensitive period (see Figure 4.5(11.e)). During the

bursty work period, throughput at the front-end web server reduces to zero for nearly 200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

seconds beyond the end of the bursty period at the 900t/l second (see Figures 4.5(11.a)). This

behavior, similar to experiment two, indicates system unavailability during the transient

overwork period.

Recall that the system with the large database has less available resources than the system

with the small database as its working set is larger but the available system memory is the

same. Under both transient load (experiment two) and transient work (experiment four), the

system becomes unavailable. For the experiments with the small database (experiments one

and two) the system resources are well provisioned, as a result during overload or overwork

performance drops but the system quickly recovers and does not become unavailable.

In contrast to the transient load which may be detected by simply monitoring the arrival

rate at the system front-end, transient work may be detected by observing slower response

times, despite the fact tha t the number of users in the system (or the number of connections)

remains relatively unchanged. Yet, we show that even for the small database where steady

state analysis (see Section 4.1) shows that memory is hardly the bottleneck, scenarios that

make the system suffer from severe overload are not hard to devise.

To summarize, in this section we present experiments using the TCP-W that do show

that transient overload as:

• load-related, where the number of simultaneous customers may force the system to

operate beyond its capacity, and to

• work-related, where the number of simultaneous customers remains the same but the

changes in the work done by them brings the system to the brink of thrashing.

If overload due to transient load or transient work propagates down to the lowest tier, i.e.,

the database disk, the effect is reflected in the system hierarchy up to the highest tier, as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

dips in the arrival ra te / throughput in the front end indicate that the system shows signs of

service unavailability.

Effective system provisioning is difficult, as changes in the work done may quickly drive

system resources to saturation, and system recovery from these states may become very slow.

In the next section we elaborate on methods to speed up system recovery, focusing on the

resource allocation policies at the storage system.

4.4 System Im plications of th e Transient W orkloads

The previous sections show via measurements how the system workload propagates down

the tiers of an e-commerce site. The goal is to understand the conditions under which certain

tiers of the system become the bottleneck and negatively affect service availability and user-

perceived performance. The straightforward conclusion is that too much load at the front-

end generates too much load at the lower levels of the system, increasing the average request

service time and causing the service to become unavailable. The experiments also show

that excessive work, especially in the lower tiers, may also cause response times to become

so slow that can considerably degrade user-perceived performance. By propagating down

the system hierarchy, excessive work critically affects system performance and, similarly to

excessive load, might bring system availability to a halt as depicted in Figures 4.4(II.a)-(II.b)

and 4.5(II.a)-(II.b.) Consequently, effective handling of such overload conditions, e.g., via

work-shedding of some form, becomes as important as any load-shedding technique.

The straightforward way to avoid overloading is admission control, i.e., rejecting service

to new customers at the system front-end and/or interrupt service to existing users. Note

that from the perspective of the service provider, service interruption to existing users bears

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

more penalty than rejection of service to new users. As shown in Section 4.3, excessive

work might result even from the same set of users, which leaves service interruption at the

front-end as the main alternative to sustain service availability during the transient overwork

period.

Complementary to front-end admission control is the development of work-shedding poli­

cies at the lower tiers of the system tha t adapt their configuration parameters according to

the current resource demands. In fact, it is possible for system resources to achieve much of

the benefits of work-shedding by taking advantage of local information and by understanding

their own behavior.

Figure 4.6 illustrates the number of outstanding requests (i.e., the queue length) at

the database server and the storage system during the overload and overwork scenarios in

experiments two and four of the previous section. In the overload case (see Figure 4.6(a)),

queue lengths of both resources follow the same pattern, while for the overwork case (see

Figure 4.6(b)) spikes in the queue length at the disk and the database are complementary

to each other across time.

This further shows tha t lower tiers may have an advantage in work-shedding over the

front-end. The front-end cannot easily distinguish the source of slow response time: is it

because of increased arrival intensity (overload), or is it because of a slower service process

(overwork)? Furthermore, the front-end cannot make the best decisions about which requests

to drop, as it cannot accurately assess which are expensive and which are not. As a result,

it may end up dropping requests randomly, leaving a large fraction unserviced [92] instead

of a small fraction of well-chosen requests. For requests that have already reached deep in

the system hierarchy and cannot be easily rejected, simple work reordering, i.e., preferential

scheduling in the same spirit as in [34], may result in faster system recovery from overload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

(a) 1M database under transient (over)load; Experiment two
100
90 Disk

DB
2 80
<A
§ 70

I 60
op 50
1 40
1 30
I 20

600 700 800 900 1000 1100 1200 1300 1400
Time - in sec

(b) 1M database under transient (over)work; Experiment four
90 i 1------- 1------- 1------- 1------- 1------- 1------- r

600 650 700 750 800 850 900 950 1000 1050 1100
Time - in sec

Figure 4.6: Outstanding requests (queue lengths) at the disk and at the database during overload
and overwork scenarios of (a) experiment two and (b) experiment four.

For example, the system resource may choose to postpone certain actions in order to achieve

graceful degradation in system performance and avoid service unavailability. This can be an

effective strategy especially if the overload (or overwork) condition is only temporary. In the

following part, we give a proof-of-concept that it is possible for system resources to make

independent decisions toward effective overload/overwork handling.

Case study: handling overload/overwork at the storage system

Now, we focus only at the lowest level in the system, i.e., the storage system, and propose

a technique to handle disk overload/overwork. The goal is to adapt disk operation such that

during overload, or overwork, graceful performance degradation is achieved. In order to

handle overload at the disk where service rejection is not straightforward, we prioritize the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

work such tha t the tail of disk response time, i.e., the worst case, is contained.

Note tha t a single request for a database table gets transformed to several, sometimes

hundreds of, I/O requests. If these I/O requests are for consecutive blocks of the disk

media, they are considered to be a sequential stream. A fully random I/O workload instead

consists of requests uniformly distributed over the disk media. In an e-commerce system,

usually, the disk workload consists of a mix of sequential streams and random requests,

as Figures 4.4(I.d), 4.4(II.d), 4.5(I.d), and 4.5(11.d) illustrate. By characterizing the I/O

workload as a set of streams, one can identify long running streams and short running

streams. This characterization becomes very useful in times of overload where it may be

better to prioritize service of short-running streams and postpone service of the long-running

ones, in the same spirit as the Shortest Job First (SJF) family of policies. We implemented

this prioritization of streams into the Shortest Positioning Time First (SPTF) policy [96],

which is widely implemented in disk drives today. We detect overload/overwork at the

disk by monitoring its queue length. Once queue length reaches a predefined threshold,

SPTF serves short-running streams and postpones the long-running ones for the future. The

postponed requests are served after the transient overload period ends or a predetermined

time interval has elapsed. By viewing the I/O workload as streams of requests, decisions at

the disk level can affect only a small number of database requests.

We evaluate this disk overload-aware policy via trace driven simulation. DiskSim [26]

is used as the disk-level simulator, which is driven by traces from the testbed described

in Section 3.5, specifically traces from experiments two and four (see Figure 4.4(11) and

Figure 4.5(H)). Here, we concentrate on handling overload at the disk level only. A com­

prehensive evaluation of the performance implications of this disk scheduling policy in the

entire system is the subject of future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Figures 4.7 and 4.8 present the response times of all disk requests during the overload

and overwork periods in experiments two and four, respectively. Results are presented as

(a) Normal Scheduling
3.5

S
Po
CAca
(AUC4

3

2.5

2

1.5

1
0.5

0
600 700 800 900 1000 1100 1200 1300 1400

Time in sec
(b) Overload-aware Scheduling
3.5

o
CD(A
c 2.5
<D
E
P<u
ca

0.5

800600 700 900 1000 1100 1200 1300 1400
Time in sec

(c) Complementary Cumulative Dist. o f Response Time

1

0.1

0.01X
V
h- 0.001
06
ji
1 0.0001

le-05

le-06

Overload Aware Scheduling —
Noryial Scheduling ~

10 100
Response time in msec

1000 10000

Figure 4.7: Response time at the disk as a function of time under (a) normal scheduling, (b)
overload-aware scheduling, and (c) the complementary cumulative distribution during the overload
period of experiment two.

a function of time using the normal SPTF scheduling policy and the overload-aware SPTF.

Observe tha t for both experiments, disk response times using the overload-aware scheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

(a) Normal Scheduling
3.5 ------- 1-------1------

O<L>
e/5
C 2.5

8
<uGOa
c*

0.5

600 650 700 750 800 850 900 950 1000 1050 1100
Time in sec

(b) Overload-aware Scheduling
3.5 I i i i i

o<L>
c 2.5
<D
£
Pu
co
o .tn<UC6

0.5

600 650 700 750 800 850 900 950 1000 1050 1100
Time in sec

(c) Complementary Cumulative Dist. of Response Time

0.1
><
vE-U.

0.01

■§ 0.001
£

0.0001

le-05
O verload Aw are Scheduling

Noi^nal Scheduling

10 1
le-06

1 100 1000 10000
Response time in msec

Figure 4.8: Response time at the disk as a function of time under (a) normal scheduling, (b)
overload-aware scheduling, and (c) the complementary cumulative distribution during the overwork
period of experiment four.

algorithm are diminished to less than half. This fact is emphasized also in the complementary

distribution functions of the response times for both policies (see Figures 4.7(c) and 4.8(c)),

which show that there is a clear reduction in the tail of the response time distribution when

overload-aware scheduling is used. This reduction can greatly help in avoiding the time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

during which the system operates on a “red” zone, i.e., when the system is so slow that it

is unavailable. By modifying the disk scheduling discipline, we reduced the worst response

times at the disk by a factor of two, clearly improving the responsiveness of the lowest tier

and improving on the overall system availability.

4.5 Sum mary

In this chapter, we present a detailed workload characterization study via experimental

measurements in a 3-tier e-commerce system built according to the TPC-W specifications

to study the system performance under overloads and evaluate how workload propagates

through all levels of the system hierarchy. By measuring resource utilization through all

3 tiers of the system, i.e., at the front end web server, at the database server, and at the

database storage system, we show tha t it is the lower tiers i.e., the database server and

the disk, tha t suffer most from such overload/overwork conditions. More specifically, we

summarize our observations as follows:

- The time spent at the database server (including the disk) is the one that dominates

user-perceived performance. The workloads which utilize mostly the database server

memory and less the disk, can sustain more load, while the workloads tha t are more

I/O oriented sustain less load as a result of a slower service process and FCFS-like

service discipline at the disk.

- Both the transient excessive load in the system (i.e., an higher than usual number of

users, number of web sessions, or number of network flows) and the effects of transient

excessive work (i.e., sudden increase in the demand of system resources by the current

users of the system) could results in system overloading. The further overload/overwork

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

propagates down the system hierarchy, i.e., the memory/disk, the higher performance

penalty, and the more difficult it is to recover performance effectively.

- Complementary to front-end admission control mechanisms, effective resource manage­

ment at the various devices can significantly aid system performance. We have showed

a first proof-of-concept that self-adaptive resource management at the lower tiers that

can detect and handle overload and overwork cases can help in graceful performance

degradation and in avoiding system unavailability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

A nalytic M odels in M ulti-tiered

System s

The experiments in previous chapters indicate the existence of autocorrelation in closed

systems. The impact of autocorrelation in an open multi-tiered system is different from that

in a closed system, first because the correlated tier can only affect its descending tiers and

second because there is no upper bound of system performance due to the unlimited customer

population in an open system. In this chapter we focus on analytic models of multi-tiered

systems with no restriction in their buffer sizes, i.e., open systems. An abstraction of such

systems is illustrated in Figure 5.1. It resembles the structure of tandem queues, i.e., queues

whose departure process becomes the arrival process of the next queue.

- h z x > - c x > — n o - *

Front Server Database Server Storage System

F ig u re 5.1: A queuing m odel of the experim ental environm ent in C hapter 3 bu t w ith infinite
buffers.

Developing analytic techniques for solving networks of queues as the one depicted above

is very challenging. A queue-by-queue analysis of such networks [35] often is the only ana-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

lytic alternative to simulation, especially when queues exhibit autocorrelations in the arrival

and/or service processes. The persistent presence of rare events in simulations of such sys­

tems require several replications of a tremendously large sample space in the order of hun­

dreds of millions to reach results within accepted confidence intervals, even for the simplest

case of a single queue, necessitating analytic models. Modeling the departure process of a

queue accurately is essential to queue-by-queue analysis, as the departure process may serve

as arrival process to downstream queues.

It has been extensively shown that batch arrivals and long-range dependence are charac­

teristics of Internet systems [40, 22], while there are clear indications that dependence exists

in the service process of systems as well[71]. The presence of (positive) autocorrelation in the

arrival and/or service process has detrimental effect on performance [22]. Therefore, it is of

critical importance for departure processes to capture as accurately as possible autocorrela­

tion in the departure flows of a queue, else analytic models may fail to capture performance

degradation due to dependence in flows.

The models presented in this chapter are as general as possible and do consider correlation

in their arrival and/or service processes. Customers (or packets) in such systems may arrive

in batches, significantly impacting queueing behavior. As introduced in Chapter 2, correlated

flows with batches can be represented by the Batch Markovian Arrival Process (BMAP) [48].

Correlated service processes may be described by MAPs. Data fitting to BMAPs, MAPs,

and their subclasses is subject of several recent works [37, 10, 11, 74],

In this chapter we present a family of finite approximations for the departure process of

a BMAP/MAP/1 queue, which is derived via an exact aggregate solution technique called

ETAQA [72] applied to M /G /l-type Markov processes. This chapter is organized as follows.

In Section 5.1 we give an overview of related work. We present techniques for the solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

of M /G /l-type Markov processes in Section 5.2. In Section 5.3, we construct the family

of finite matrix-exponential (ME) matrix representations, from which characteristics of the

departure process are computed and formally proved that the approximation preserves the

marginal distribution and certain autocorrelation of the exact departure process. Section 5.4

gives a summary of this chapter.

5.1 R elated Work

Characteristics of departure processes of BM AP/GI/1 queues are studied in [24], i.e., queues

with general, but uncorrelated service times and batches. Algorithms and explicit formulas

to compute various measures, including the moments and covariances of the inter-departure

times, are developed for different types of queues, including queues with finite buffers and

vacation servers. The methods presented in this dissertation could be applied to servers

with vacation (at the expense of increased QBD block dimensions), but are not designed for

finite queues. In contrast to [24], we can treat correlated service times and not only deliver

a set of output characteristics, but also an approximate output model tha t matches these

characteristics exactly.

Different approximation models of departure processes, which also capture the inter­

departure distribution and the first lag coefficients of correlation of the departure process,

have been proposed for single-server queues (e.g., [30, 77, 41]) - all of them based on arrival

and service processes in matrix notation. Kumaran et al. [41] suggest a model for the

departure process of an M E/M E/1 queue. The notation used to decide matrix-exponential

(ME) processes strongly resembles tha t of a MAP. It is more general than MAP but lacks

MAP’s stochastic interpretation. The approximation models proposed by Green [29, 30]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

work for M AP/PH/1 queues (i.e., when there is no correlation among service times), and

the proofs of the preserved properties of the output models, such as marginal distribution

and correlation coefficients can be found in [29]. Among the alternative approaches in the

literature, the family of models proposed in [77] is the most general, it guarantees that the

output approximations are MAPs, but it only applies to M AP/M AP/1 queues. However to

the best of our knowledge, none of the others’ work considers batch arrival processes in such

traffic-based decomposition techniques. Additionally, this dissertation presents thorough

analytic proofs of how well the approximation matches the lag correlations as a function of

the size of the approximation model.

5.2 Background

In this section, we recall the definitions and properties of M /G/1-type Markov processes and

cite a theorem on the aggregate solution of such Markov processes upon which the analysis

of the departure process is based.

5.2.1 M /G /1 - ty p e P ro cesses

A BM AP/MAP/1 queue defines an M /G/1-type Markov process. The infinitesimal generator

Qoo of such a CTMC1 has an upper block Hessenberg form

Q o c =

L F(i) F(2) p(3) F(4)
B L F(b f (2) F(3)
0 B L F(b F(2)
0 0 B L F(b

(5.1)

1Note that although we restrict the presentation to continuous-time queues, the presented techniques can

be directly adapted to discrete-time queues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

where the state space is partitioned into levels, i.e., = { .s ^ ,. . . , Sm }, for j > 0 and

m > 1. Intuitively, represents the state configuration when the queue is empty. The

states tha t account for the state of the system when the queue is nonempty (with j customers)

correspond to sets for j > 1 , and the interaction of successive sets has a “repetitive”

structure (see Figure 5.2(a)). In Eq. (5.1), The letters “L” , “F” and “B” are used according

to “local” , “forward” and “backward” transition rates, respectively, in relation to a set of

states for j > 0. For BM AP/MAP/1 queues, the block matrices are defined as follows

using Kronecker notation:

L =

L = © D[,5) = D(,A) ® I5 + I A ® D '5)

B = I a ® D (1s)

® Is for * > 1 ,

where the matrices (i > 0) describe the BMAP of the arrival process of order rri^ and

D^5) and describe the MAP of the service process of order mg- All matrices B , F ^ , L

and L are square (m x m)-matrices, where m = m Am s. For general M /G /l-type processes,

the set iS(0) might differ in cardinality from m, but for presentation simplicity we need not

consider this here.

Let 7 for j > 0 be the stationary probability vectors (of dimension m) for states in

S ^ . For the computation of the stationary probability vector

TToo = [tt(0) 7T(1) . . .] , (5.2)

defined by tTqoQ oo = 0 and Tr^e = 1 , matrix-analytic methods have been proposed [61].

Commonly, the sub-vectors 7r ^ are determined using Ramaswami’s recursive formula [69],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

(a) Original M /G /l (standard state space partitioning)

S(0) &l) &2)

o
o

o

o
o

o
o

o
o

o o o

(b) ETAQA partitioning of M/G/l

S® S<1) s(*>

O

(c) Partitioning the M/G/l preserving n levels

s® s ' 0 s'"'

O

O

0 \ IO
O

O

Figure 5.2: State-space partitioning of a M /G /l solved (a) via the traditional matrix-analytic
method, (b) via ETAQA, and (c) ETAQA that preserves the first n M /G /l levels, n > 1.

which is based on matrix G, the key element to matrix-analytic methods and solution of

OO

B + LG + ^ F (i)G i+ 1 = 0 . (5.3)
i= 1

Matrix G has an important probabilistic interpretation: an entry (I, k) in G expresses the

conditional probability of the process first entering through state k, given tha t it starts

from state I of S ^ [61, page 81]. Iterative algorithms are used to calculate G, with the cyclic

reduction algorithm being the most efficient [42].

To formulate Ramaswami’s formula, we define the matrices

OO

S U) = ^ F w G i_j for j > 0 , (5.4)
i = j

where we additionally set F ^ = L. Note tha t Eq. (5.3) then takes the form B + S ^ G = 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Ramaswami’s formula defines the following recursive relation:

^ 7r (i)S(j- l) (S(o)) 1 fOT all j > 1 (5.5)

Before applying Eq. (5.5) to iteratively compute 7r ^ for j > 1, we first have to solve the

following system of m linear equations to obtain vector 7r ^ : where the last column in the

matrix corresponds to normalization, which replaces any one of the other equations.

In [72], ETAQA was proposed as a methodology for the exact analysis of M /G/1-type

Markov processes. Originally, ETAQA truncates these infinite Markov processes on level

n = 2 in such a way that the stationary level distributions tt1-0'1 and 7r^b are preserved

(see Figure 5.2(b)). However, it is easily seen from [72] that aggregation can occur for any

level n > 2 (and in fact, also for n = 1 with a structure as in Eq. (5.1)), as illustrated

in Figure 5.2(c). The main theorem for the solution of M /G /l-type processes can then be

restated as follows:

T heo rem 5.1 [ETAQA] Given an ergodic CTMC with infinitesimal generator Qoo (see

Eq. (5.1)/ and with stationary probability vector (see Eq. (5.2)/, the system of linear

equations (parameterized with n)

^nQn 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

where Q n € R(n+l)mx(n+l)m ^ defined by

OO OO OO
L jrd) p (2) . . . p (" -2)

F(n-1) - 5 Z s(i)G
2=71+1OO

Y s w g
2=71 2=71+1 OO OO

B L f (p . . . Jp(n-3) jp(ra—2) _ ^ SW q
2=71OO

Y F (i) + ^ S WG
2=71—1 2=71

0 0 OO

0 B L F ("-3) - Y S(i)G
2=71—1

Y F W + Y s(i)G
2=71—2 2=71—1

Q n = 0 0 I'd)
OO OO OO

L Fd) - J ^ S WG
2 = 3

0 0

^ F w + J ^ S (i)G
2 = 2 2 = 3

OO 0 0

0 0 . . . o B L - j ^ S w G
2 = 2

OO

J ^ F W + ^ S WG
2= 1 2 = 2

OO OO

0 0 . . . 0 0 B - ^ S WG
2= 1

5 ^ F (<) + l + ^ s w g
2= 1 2= 1

(5.6)

admits a unique solution

7T„ = [7 T ^ 7 T ^ _ (n - l) _ o o 7T ’ 7T„

where*™ = E S n 7 r W ; given that we discard one column (any) and replace it with a column

of l ’s due to the normalization condition, i.e., * ne — 1.

Proof: The proof follows directly from the main theorem in [72], ■

Qn is not necessarily an infinitesimal generator, since non-diagonal numbers might be

negative due to the subtractions in Eq. (5.6). However, from Q„, the initial sequence of

(invariant) stationary probability vectors 7 (j = 0 , 1 , . . . , n — 1) and + " ’*) may be derived

similarly as for Markov chains. The case n = 1 with two block levels only (namely 0 and 1)

may also be included. However, we will see that this particular case (unlike n > 1) does not

prove favorable for the desired output approximations of BM AP/MAP/1 queues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

5.2 .2 E xam ple: E T A Q A R ep resen tation o f th e Q ueue

For illustrative purposes, we present here the aggregate ETAQA representation of Theorem

5.1 for the simplest queue with arrival batches of 1 and 2, namely an M ^ /M /l system. With

the settings

F (1) = [A!] F<2> = [A2] F w = [0] if i > 3

B = [/r] L = [—(Ao + p)] L = [—A0] = [—(Aj + A2)]

SW = [A1 + A2] S(2) = [A2] S « = [0] if i - 0 ,3 ,4 , . . . ,

we obtain the “matrix” G = [1], where obviously all block matrices are of dimension 1 (=

mAms)- The resulting ETAQA representation

—Ao Ai A2 0 0 0

M — (Ao + fj,) Ai A2 0 0

0

Ai a 2 0

0 0 0 —(A0 + n) Ai a 2

0 0 0 ••• — (A0 + A2 + fj.) Ao + A2

0 0 0 ••• 0 fj, — Aq — A2 —// + Aq + A2

defines a true infinitesimal generator, if p > A0 + A2 = Ai + 2A2, which corresponds to the

stability condition > Abmap = 7t B M a p YlkLi assuming tha t the mean service time

of the queue is E[S} = K

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

5.3 ETAQ A-based A pproxim ation of the B M A P /M A P /1

D eparture Process

5.3.1 E xact D eparture P rocess o f th e B M A P /M A P /1 Q ueue

Starting from the infinitesimal generator Qoo (see Eq. (5.1)), we give the exact departure

process of a BMAP/MAP / 1 queue as a MAP of infinite order. By “filtration” (see [29]), i.e.,

by collecting in matrix D i)00 “backward” transitions of that correspond to departures,

we arrive at the following MAP representation:

D 0,oo —

' L f P) F(2) F(3) FP) ' 0 0 0 0 0
0 L FP) F(2) F(3) • B 0 0 0 0
0 0 L f P) F(2) •) Dl,oo — 0 B 0 0 0 •
0 0 0 L F 0 0 B 0 0

Applying the MAP definitions, the mean rate of this exact departure process is:

-̂ oo TTooDiooe

The SCV of the exact departure process is

Cqq 2A007T00(D o , o o) 6 1 >

and the associated autocorrelation function

ACF (k) = A°°7r°°((~Do-0°)~lD l'0°)A:(~ Do-0°)~le ~ 1

(5.8)

(5.9)

(5.10)

(5.11)

The infinite order of the above MAP is impractical for further processing. In the next

subsection, we present a finite representation, from which several performance measures of

the exact departure process can be computed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

5.3 .2 T runcating th e E xact D eparture P rocess

One obvious way to obtain a tractable (approximate) representation of the BM AP/MAP/1

departure process is to truncate the infinite representation in Eq. (5.8). For arrival processes

without batches, as for the M AP/M AP/1 queue, This has been done in different ways (e.g.,

see [77]). Then, it suffices to adjust the last block row (chosen at an arbitrary block level n,

n > 1) to obtain a representation that preserves the marginal distribution and the coefficients

of correlation up to the first n — 1 lags.

The applicability of ETAQA to M /G/1-type Markov processes allows to obtain an ap­

propriate truncation for the BM AP/M AP/1 departure process. W ith similar “filtration” as

for the exact departure process in Section 5.3.1, one can easily construct the following matrix

representations from the ETAQA matrix:

L F (1) F (2)

0 L F «

F ("-2) f ("-1) - ^ 2 SWG ^ F w + ^ 2 SWG
2=n+l i —n i = n + 1

oc oo oo

p(n-3) p(n-2) _ ^ SWG ^ 2 + ^ 2
i = n
oo

0 0 L F(n~3) - '̂ 2 S (*h
i = n —1

Fd)
oo

0 0 0 L F « -
2=3

oo

0 0 0 0 L - ^ S WG
i = 2

0 0 0 0 0

i = n —1
oo

i —n —2

t —n
oo

i = n —1

j T F (<) + j ^ S w G
i = 2 i = 3
OO 0 0

£ ^ F W + ^ S (i)G
i = 1 2=2

oo

Y F(i) + L
2=1

(5.12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

- p v (M E) _

l.n —

' 0 0 0 • 0 0 0

B 0 0 0 0 0

0 B 0 0 0 0

0 0 0 . 0 0 0

0 0 0 . B 0
oo

0
oo

0 0 0 • • 0 B - J ^ S WG
1=1

j ^ S (i>G
i=1

(5.13)

Index n (n > 1) indicates tha t the dimensions of matrices DoMnE) and may be chosen

flexibly. The order of the truncated representation is (n + l)m = (n+l)msrriA. Furthermore,

the block elements of and D /] / are given directly in terms of the arrival and service

process representations and the fundamental-period matrix G.

The notation D ^ f Y D ^ resembles tha t of a MAP, and indeed moments of the marginal

distribution and coefficients of correlation (of the true departure process) are computed cor­

respondingly (e.g., Eqs. (2.5), (2.6), (2.7)). However, the subtractions in the next-to-last

columns of both matrices may violate the non-negativity constraint imposed on off-diagonal

elements of D] / / and D /] / . Still, we have (D / / 1 + 0 ^) 1 = 0. In fact, representation

(5.12)/(5.13) defines a matrix-exponential (ME) process [41]. Such correlated sequences

of matrix exponentials are generalizations of MAPs used in linear-algebraic queueing the­

ory [46, 55]. ME matrices can be used analogously to the corresponding MAP matrices in

computational procedures for queueing systems, which do not rely on this probabilistic in­

terpretation. Thus, we may also use the ME representation (5.12)/(5.13) as an approximate

output model of the BMAP/MAP/1 queue. The corresponding notations for the mean rate,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

the squared coefficient of variation and the autocorrelation function of the above ME are:

ACF T (k) (C M E)2

where 7r„ = [t t^ 7r ^ 7t^°] as defined in Theorem 5.1.

As the last two columns of Do^E)/D (,“ E) in Eq. (5.12)/(5.13) are now different from the

exact departure process due to the aggregation, only the first (n—2) coefficients of correlation

can be preserved for an nth-level truncation. However the marginal distribution remains

invariant for n > 2 because Theorem 5.1 guarantees that the stationary distribution of

the embedded Markov chain of the true departure process (i.e., of the original M /G /1-type

process) is maintained by ETAQA technique. The above mentioned properties of the exact

departure process are formally proved in Section 5.3.3.

5.3.2.1 Special Case: O utput A pproxim ations for th e M A P / M A P / 1 Q ueue

The ETAQA methodology for the M AP/M AP/1 departure process has been first proposed

in [36]. Here, we customize the results of the previous section to the M AP/MAP/1 queue,

i.e., when the queue accepts batches of size 1 only. Note that the subtractions in the next-

to-last column of the ME representation (5.12)/(5.13) disappear, which causes one more

coefficient o f co rre la tio n to be m a tch ed (i.e., n — 1 in s te a d of n — 2) . T h e m a trices D //E> and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

D (1MnE) for the M AP/M AP/1 case are:

‘ L F 0 0 - 0 0 0 0 0 '
0 L F B 0 0 0 0

n (M E) _
u 0,n ~ 0

P |(M E) _
i l ,n 0

0 0 L F B 0 0
0 0 0 L + F _ 0 0 0 B - F G FG .

(5.14)

The block matrix FG in Eq. (5.14) now fully captures the flow backward within the aggregate

state encompassing original levels n to oo, while B —FG corresponds to the flow that actually

leads from the aggregate state to level n — 1 (see [36] for a detailed treatment).

5.3.2.2 Illustration for th e M ^ / M / l D eparture Process

Specializing our output process results to the stable M ^ /M /l queue described in Sec­

tion 5.2.2, we obtain from Eqs. (5.12) and (5.13) the following output MAP approximation:

-A0 Ai A2 0 0 0

0 — (Aq + n) Ai A2 0 0

0 0
• , "■

Ai ^ 2 0

0 0 0 — (A0 + jj) Al A2

0 0 0 ••• 0 — (A0 + A2 + fi) Ao + A2

0 0 0 0 0 - V .

' 0 0 0 ••• 0 0 0

V 0 0 ••• 0 0 0

0 t1 0 0 0 0

i-v(ME) _
1,71 —

0 0 0 0 0 0

0 0 0 M 0 0

_ 0 0 0 ••• 0 /i -■ Ao — A2 Aq + A2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

5.3 .3 P ro o f o f th e M arginal D istr ib u tion s and A C F o f th e M E

D eparture A p proxim ation

Theorem 5.2 contains the proof tha t the marginal distributions of the true and the approxi­

mated departure processes are identical. As a prerequisite of this proof, we show A“ E = Aqo

for all n > 1 :

T heo rem 5.2 The complete inter-departure time distribution of the true departure process

is preserved by the ME output approximation.

P roof: For both the infinite and truncated output ME representations (5.8) and (5.12)/(5.13),

respectively, the inter-departure time can be seen as a composition of

ME enters a level greater than 0 and

a convolution of an idle period (described by L) and a service time when the respective ME

enters level 0 .

Note that in the bottom row of the ME presentation (5.12)/(5.13) the service-terminating

rates also sum up to matrix B, since

\ M E ___ T V M E) on Tfn L) i „ e

n —1 oo oo

= Y t t « B + < ° (B - Y , S (l)G) + T C j] S « G e

o o ̂ 1 ,O G ^ - ^ o o

a service time (whose transient phases are described by L + F ^) when the respective

oo oo

(B - J 2 s(i)G) + s(i)G = B *
i =1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let the vectors x / i0 0 / x b i00 (of block dimension m) be the stationary distributions that the

BM AP/MAP/1 queue is empty/nonempty (or idle/busy) immediately after a departure.

With / x g n , we denote the respective counterparts for the lumped Markov chain in

Eq. (5.6). In PH-type notation, the outlined composition of the true inter-departure time

distribution can be expressed by the initial phase distribution c* and the transient rate matrix

T as follows:

As mentioned above, matrix T remains the same for the lumped model. Thus, the invariance

a = [x /i00 x Bj00] = [y7T(1)B

of the inter-departure time distribution is proved, if we show that X/]0O = x /*rf an(I xb,oo

x Bn ■ Note that we have already shown tha t A“ E = A^ = A for n > 1.

For n > 1, we obtain

M E
x I,n

M E
B,n

oo

For n = 1, we obtain

X/,l

XB, 1 \ir™ FG = \ B = x B,,
A A

l

This concludes the identity proof for the inter-departure time distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

The above theorem implies = c2n for all n > 1 and identity for all higher moments.

In the remainder of this section, we prove that representation (5.12)/(5.13), indexed by n,

preserves the first n — 2 coefficients of correlation coefficients, i.e.,

ACF“ E(A;) = A C F ^ k) , for all n > 3 and 1 < k < n — 2.

Before stating this theorem (see Theorem 5.3), we first introduce three auxiliary lemmas.

L em m a 5.1 Matrix (—D 0jOO) _ 1 can be rewritten as:

{ — D 0,oo)

' 1 hd: o Pi p 2 P3 ...
X _ 0 Po Pi P2

0 0 Po P l (5.15)

where

Po = (-L)- \

Pi

Po

P,

^ P i ^ F ^ - L) - 1, for * > 1 ,
3 - 1

(- L) - 1,

^ P i - j F W ^ - L) -1 , for i > 1 .
j = i

Proof: Eq. (5.15) is directly obtained by the closed-form formula of the inverse of an upper

diagonal matrix. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

L em m a 5.2 Matrix (—Dq„) 1 can be represented as

Po Pi p 2 ' P n-2 U„_! Vn
0 Po Pi ' P n—3 Un_2 V„_!
0 0 Po ' P71—4 U„_3 V„_2

0 0 0 • • Po Ui V2
0 0 0 • 0 Uo V!
0 0 0 • 0 0 Vo

where and P i, i > 0, are defined in Lemma 5.1 , and

n— 1
U„_! =

u, =

Uo =

v n =

V,; =

Vo =

(F « - £ S « G) (- (L - ^ S « G)) - 1,
j =1 l = j + 2 1=2

i oo oo
^ P ^ (F « - £ S « G) (- (L - ^ S « G)) - \ for 1 < t <

= 1 l = j +2
oo

- (L - ^ S ^ G) - 1,
1=2

oo
E

3=1
n

1=2

j=n-l
OO

P j — U,_i. for 1 < i < n — 1,
j=i- 1

00

E p ,
j=0

Proof: By the closed-form formula of the inverse of an upper diagonal matrix,

directly get

(- D ‘7)) - 1 =

1
TJ> 0 Pi p 2 P 71-2 Uu_! V 'n

0 Po Pi P 71-3 Un_2 V '_ !
0 0 Po • • Pti-4 Un_3 v ; _ 2

0 0 0 ■ • Po Ui v i
0 0 0 • 0 Uo Vi
0 0 0 • 0 0 V(,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5.16)

2 ,

we can

(5.17)

91

where

v ; = X) P n - j (E F (0 + E sW G)(-(L + J] F «)) - 1
j=2 l=j 1=3 + 1 /=1

OO 0 0 0 0

+ U „_ 1 (J] f W + ^ S W G) (- (L + ^ F «)) - 1,
1=1 1=2 1=1

i oo oo oo

v ' = ^ p w (£ f (') + £ s ^ g x - c l + ^ f W)) - 1

j = 2 l = j / = j + l Z=1
oo

+ U i_1 (^ F « + ^ S ^ G) (- (L + ^ F «)) - 1, for 2 < t < n - l ,
Z= 1 1=2 1=1

oo oo oo

v i = U o(^ F W + ^ S W G) (- (L + ^ F ^)) - 1, for 1 < Z < n — 2,
1=1 1=2

oo

V' = - (L + ^ F W) - 1-

1=1 1=2 1=1
oo

1=1

To prove tha t = V n and V' = V, for all 0 < i < n — 1 , we only need to prove that

(i- 2

£ p j + Uj_! + V- = ^ P j , for all 0 < i < n - 1
j =o j = 0
n —2 oo

^ P j + U ^ + V ^ ^ P ; .
j=0 j=0

It is easy to show that

OO OO 0 0 OO

£ Pi = -(L + £ f (V , £ P, = (-LJ-^-L) - (L + £
j —0 i=i j =o ;=i

Then we prove Eq. (5.18) step by step.

(1)
o o OO

v ' = - (l + x ; f ('))-i = £ p j,
1=1 j = 0

(5.18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

(2)

OO

Uo + V l = (- (L - J] S (')G) -1) +
1=2

OO 00 oo oo

(- (L - j r S ^ G) - 1) ^ F « + Y S « G) (- (L +] T FW)) - 1

1=2 1=1 1=2 1=1
00 oo oo

= (- (L - £ S « G) - 1) (- (L + £ F «)) (- (L + £ FW))-1
*=2 /= 1 1=1

oo oo oo oo

+ (—(L - Y S(° G)" 1) (^ F<'> + Y S(° G)(- (L + Y F (0)) _1

1=2 1=1 1=2 1=1
oo oo oo

= (- (L - 5] SW G)-1) (- (L - Y SWG))(- (L + Y fW))_1
1=2 1=2 1=1

oo oo
_(L + ^ F (0) - 1 = ^ P J .

(= 1 j = 0

(3) For any 0 < k < n — 3,

k+2
u fc+1 + v ; + 2 = u k+1 + Y P k+2-j(Y Fil)+ E SW G)(-(L + ^ F W)) - 1

j = 2 l = j l = j + 1 1=1
oo oo oo

+ufc+1 + Y s(l)G)(-(L+ E F(i)))_1
1=1 1= 2 1=1

fc+1 oo oo

= £ p fc+w(F tf> - Y S « G)(- (L + £ ; F < V)
3 = 1 l = j + 2 1=1

k + 2 oo oo oo

+ Y F k+2-J(Y F{l) + E S « G)(- (L + ^ F «)) - 1
j —2 l = j 1=3 + 1 i = l

fc+1 00 oo

= ^ P fc+1_j (X ;F W)(-(L + ^ F «)) - 1.
j = i i = j i = i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Then

fc+i fc+i
£ P , + Ul+1+ V i+2 = ^ P m ^ + ^ P m . ^ F ^ H L + ^ f W))-1
3 = 0 3 = 1 J = 1 1=3 1=1

k+1 k + 1 oo oo

= E p * + w + E p * + w (E F(()) H L + E fW))_1
3 = 2 j = 2 l = j /= 1

oo
+ P fe + P fc(^ F «) (- (L + Y F(0))_1

1 = 1 1 = 1

fc+1 k + 1 oo oo

= E P k + i ~ j +E p fc+i-j
j = 2 j = 1 l = j 1=1

k oo

+ ^ P , _ jF W (-(L + £ F «)) - 1
j = l Z=1

k k oo oo

= E p*-; + E P̂ (E pW)(-(L + E F(,)))_1
3 = 1 3 = 1 l = j 1=1

= Po + P o (E f (I))(-(L + E f(0))_1
Z= 1 1=1

OO 0 0

= - { L + Y ^ r ^ Y ^
1=1 3 = 0

(4) With the similar way as in (3), we can prove that

n —2 oo oo

^ p J + u „ _ 1 + v ; = ^ + p 0(E F(,)) (- (L + E FW) r 1
j =0 1=1 1=1

oo

(-L)-1(-L)(-(L +J^ F W)-1) = Y PJ
i = 1 j =0

Summering (l)-(4), Eq. (5.18) is true, and Lemma 5.2 is proved.

Based on Lemma 5.1 and Lemma 5.2, one can easily show that

/ (-Do,oo)-1e = [X 0e,X 1e,X 1e,---]T
1 (—Do“E))_1e = [X0e, X i e , • • • , X ie]T , (5.19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

where n > 1, X 0 = (- L) - 1 (- L) (- (L + E ^ F ^) - 1), and X x = - (L + E ^ F M) " 1. For

more general cases, the following lemma is introduced.

L em m a 5.3 Matrix ((—D o ,0o) _ 1 D i , o o) i : (— Do,oo)- 1e; for 0 < k < n — 2, has the form

r y ^ p 7^1o y(kl o 7 & 1T[0 e> 1̂ i 2 e) > *Jk+ie’ '̂*:+le: ' ' ' J >

and. the matrix ((—Dg“E;) 1D j“£;)fc(—Dq“e;) *e has the f(orm

[7 {fc)P 7 W p 7 (fc)P 7 (fc)f> 7 (fc) p 7 W _ iT L 0 e > ^ 1 e > ^ 2 e ’ ^fc+ie) > ^k + 1 J i

where

17(0) Y 7 (0) Y

and /o r all i > 1,

Z « = ^ P iB Z [ri1)+ ^ P ;BZ|
/= 1 /=i+ 1

i-j 00

Z ? = £ p ,B Z ^ 1}+ ^ P ,B Z t<<_1), l < j < i + l.
/=0 l —i + l —j

P roof: We prove this Lemma using induction.

(1) From Eq. (5.19), we know the statement is true for k = 0, where Zq0̂ = X 0 and

Z f } = X j.

(2) Assume that for all 0 < i < k, where 0 < k < n — 3, the statement is true, i.e.,

((- D c i . c o r ' D ^ r i - D o ^ r 'e = [Zf’e .Z f ’e .Z f e , - - - , Z f e , Z g je , z g .e , • • •]T,

((-D |,“ ') - 1DS”B)‘(- D i“B) - ' e = [Z «e. Z<‘>e, Z « e . • • • , Z<"e, Z f^ e , • ■ • , Z « e] T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Then the following will prove that the statement is also true for case i — k + 1 .

((—D 0 ,oo) Di.oo) + (—D 0,oo J

P jB P 2B P 3B P 4B

P 0B P iB P 2B P 3B

0 P 0B P jB P 2B

0 0 P 0B P jB

fc+i

Z ^ e
Z ^ e
Z f e

Z ^ e^k+ le
7 M e^Jc+le

^ < 8 ^ 6 + E P < B Z « e
1=1 \i=fc+ 2 /

k / o o \

j > 3 Z , ' * > e + (^ P i j B z j f t e
i = 0 \2 = fc + l /
A:—1 / oo \

5 > B Z £ >1e + (^ P . l B Z & e
2=0 v 2=/c

P „ B Z f e + l B Z & e
\ i = 1 /

' OO \

Ep< BZS.e
V 2=0 /
i OO \

B Z ^ e
, 2=0

Zofc+1)e
Z(*+1)e
'7.(/c+1)q

C >e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

For 0 < k < n — 3,

((- D ^ E)) - 1D^nE,)(fc+1)(- D ^ nB)) - 1e
oo oo

P jB P 2B ••• P„_2B U„_!B V „ (B - ^ S « G) v „ J] s « g
i=rn

00
i —n

oo

P 0B P iB ••• P„_3B U„_2B V „_1(B - ^ 2 S ^ G) V n - ^ S W G
i = n i —n
oo oo

0 p 0B p„_4B u „_3b V„_2(B - ^ S ^ G) v „_2^ s « g

0 0

0 0

0 0

P 0B

0

0

U iB

U 0B

0

V 2(B -] T s (i)G)
i —n
oo

V i (B - J ^ S (i)G)
i —n
oo

V 0(B - ^ S « G)

V 2 ^ S « G
i = n
oo

V ^ S ^ G
i —n
oo

V 0 ^ S « G

Z<fc)e
rW,Z\K)e

Z(k)e

Z(k)e
ec ‘k + i e

fc+1 n - 2

J ^ B Z ^ e + £ P , + U„_r + V„ B Z j& e
i = l \ i = k + 2 /
k / n —3 \

J ^ B Z ^ e + ^ P i + U „ _ 2 + B Z j^ e
1=0 \i=Jfc+ l /
k —1 / n —4 \

^ P i B Z S e + + U„_3 + V„_2 B Z ^ e
1=0 ». i —k

(n —k —3

PoBZ^. ^ P j + U n_fc_ 2 + Y n-k ~ \j B Z j^ e

/ n - k - 4 \

(P i + U n _fc_3 + V n _ (t _ 2 J B Z j ^ e

i= 0

(P 0 + U i + V 2) B Z ^ e
(Uo + V O B Z ^ e

V 0B Z g ie

z£fc+1)e
Z(*+1)e
Z{k+1)e

Z(A:+1)eA:+2
z(fc+i)e
L ‘k + 2 e

z(fc+i)e fc+ 2 e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Therefore the statement is also true for i = k + 1.

Summarizing the proof of induction, the statement of Lemma 5.3 is true for all 0 < k <

n - 2 . ■

Theorem 5.3 ACF00(k) = ACF£E(k) for all n > 3 and 1 < k < n — 2.

Proof: According to Lemma. 5.3, we have that

COVoo(fc) = A007T((—Do,00)"1D 1,00)fc(—D 0,oo) - 1e - 1
k oo

= A00(^ 7r « z f)e + £ wWZg ie) - l .
i =0 i = h + 1

c o v r w =

= A„(jr<0>Z0e + ■ ■ ■ + ir<‘>Z<*>e + 7r<*+‘> Z g1e + • • •

+7r<”- 1>Zg1e + < z £ 1e) - l

= A „ (^ Ir»zf> +] T ^ z f i e + ^ Z g . e) - !
i=0 i=k+ 1

= COVo0(k).

Then

COV0 0 (A:) _ COV“E(*0
(C E) 2

ACF0 0(/c) = — ^ J = ACF“ (*)•

R em ark 1 The lemma/theorem, in this section can be trivially adjusted for the departure

process approximations from a M AP/M AP/1 queue. The proof is the same as above given

that F ^ is equal to 0 for all i > 2, and is omitted here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

5 .3 .4 E xp erim en ta l R esu lts

In this section, we present a set of experimental results that show the effectiveness of the

ETAQA departure approximation under different systems and utilizations. The purpose of

the experiments is to illustrate tha t a level-n approximation of the departure process captures

the exact lag coefficients up to n — 2 for n > 3. For all experiments, we use a dual tandem

queue (see Figure 5.3) and consider performance measures under two utilization levels (30%

and 80%) for both servers. We first show the autocorrelation function (ACF) of the arrival

server 1 server 2

B

F ig u re 5.3: D ual tandem queues

process to the tandem queue (i.e., at point “A” in Figure 5.3) and the ACF of the departure

process of the first queue (at point “B”) for different approximation level n. For the BMAP

at point “A” , both the ACF of the inter-batch arrival process (see Eq. (2.7)) and the ACF,

which does not ignore the zero inter-arrival times (as obtained by simulation) are given.

In traffic-based decomposition, the approximation of the departure process from server 1

becomes the arrival process to the second queue. To appreciate the quality of the departure

process approximation, we also illustrate the average queue length and its distribution in

server 2 for different level n. Finally, in an effort to show how correlation propagates in the

system, ACF of the departure process from the second server is shown, i.e., at point “C”

in Figure 5.3. All analytic results are obtained via MAMSolver, a matrix-analytic methods

tool [73]. To assess the quality of the approximations, simulation results are also presented.

The simulation space is 100M requests. Each simulation is run 10 times with 10 different

random number generator seeds. The reported small 99% confidence intervals indicate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

high accuracy of the simulations. The figures only plot the mean of the summary measures

of the replications without confidence intervals to increase the readability of the graphs.

E xam ple 1: M ^ / M / l —> E r la n g -2 /1

0.1 0.1 0.1 0.1 0.1

0 .3 0 .3 03 0 .3

1.0 / 1.0 / 1.0 / 1.0/

Figure 5.4: The Markov chain that models an M ^ /M /l queue.

In the first example, we use a simple dual tandem queue M ^ /M /l —> Erlang-2/1. Fig­

ure 5.4 illustrates the Markov chain that models the first queue (M ^ /M /l) , with values as

assumed in the experiment. The arrival process is a BMAP of order 1:

D qA) = [—0-4] , D ^ = [0-3] , = [0.1] ._ (4) _

This M® process has a mean arrival rate of 0.5 and a squared coefficient of variation (c2)

equal to 1.5. Its two ACFs, i.e., taking into account of zero inter-arrival times and ignoring

zero inter-arrival times (simulation vs. analytic, respectively), are given in Figure 5.5.

The service process in the first queue is an exponential distribution with mean rate equal

to 1.0Z, where I is a scaling coefficient equal to | or | resulting in a system lightly loaded

(i.e., with 30% utilization) or highly loaded (i.e., with 80% utilization). The independent

Erlang-2 services in the second queue are given in the following MAP notation with mean

service rate equal to I and c2 equal to 0.5:

D (S2) _ - 2

0
-

0 0

2 0 (5.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Autocorrelation of M[2]
0.02

request —
batch —0.01

eo

■§ - 0.01 g
u -0 .0 2 O
< -0.03

-0.04

-0.05
8 10 122 4 6 14 16 18 20

lag k

Figure 5.5: ACF of inter-arrival times of batches in the system (dashed curve) and of inter-arrival
times of actual arrivals (solid curve).

Figure 5.6 gives the analytic and simulation results of this network. Figures 5.6(a) and

5.6(b) plot the ACF of the departure processes from server 1 (which are also the arrival

processes to server 2) for several truncation levels (as given by parameter n) under 30% and

80% utilizations. Note that the generic form of these output approximations for the

system is presented in Section 5.3.2 .2 and represents MAP. To avoid overloading the graphs,

we only plot the ACF for representative values of n. As expected, the approximation with

n = 3 is rather poor as it only captures the lag-1 coefficient of correlation (which is negative

for low load and positive for high load). Case n = 5 captures the first 3 coefficients and

diverts after that point. Consistently, the ACFs of experiments n = 10 and n = 50 capture

the correlations up to lag k — 8 and k = 48, respectively. For instance, under 30% utilization,

the correlation coefficient of lag k = 8 is 0.00038 with the truncation models (n = 10 and

n = 50) and 0.00038 ± 0.000083 for the sim ulation. In light load (Figure 5.6 (a)), n = 5

appears sufficient for a good approximation. As load increases (see Figure 5.6(b)), more

levels prior to truncation are needed to achieve a comparable quality of approximation.

The inset graph in Figure 5.6(b) provides a better look of how close the ACFs of various

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

(a)
1 .30%

Autocorrelation of departures server 1/arrivals to server 2
0.012

n = 30.01

o 0.008

| 0.006

5 0-004

0.002

- 0.002

klag

(c)
Average QLEN in server 2

0.433
s im u la tio n0.4325

j 0.4315

S 0.4305

0.4295

0.429

(e)

0 10 20 30 40 50 60 70

block level n

QLEN distribution in server 2
0.7 0.01

n = 30.6
0.0010.5

0.4 simulation------ 0.0001
0.3

0.2

le-06

QLEN
(g)

Autocorrelation of departures from server 2
0.025

n=10, n=3
n=10, n = 5 -----

0.02

a 0.015

0.01

0.005

-0.005

klag

(b)
II. 80%

Autocorrelation of departures server 1/arrivals to server 2

(d)

90 100

(*>

(h)

0.012 0.001S
0.0014

n = 3
0.01c

I 0.008
"33

6 0.006u
i 0.004
<

0.002

0.001

0.0006
simftHrtion —

0.0002

,0002

klag

Average QLEN in server 2
3.52

3.5

3.48

3.46

3.44

3.42

3.4

3.38

3.36

sim u lation

100
block level n

QLEN distribution in server 2
0.2

n = 3 ••••
n = 5 - -

0.18 0.01
0.16

0.001B, 0.14 Q̂
 0.12

sim ulation------

0.0001

le -05

le-060.06

QLEN

Autocorrelation of departures from server 2
0.07 0.007

0.006

0 .005
0.004

0.003
0.002
0.001

n=10, n=3 -•••
n= 10, n=5 —

0.06

.1 0.05
simulation0.04

<3 0.03 o
0.023

<
0.01

lagk

Figure 5.6: Experimental results for example 1: ACF of departures from server 1/arrivals to server
2 (a - b) , m e a n q u e u e le n g th a t se rv e r 2 (c - d) , q u e u e le n g th d is tr ib u t io n a t se rv e r 2 for d iffe ren t
approximation levels (e-f), and ACF of departures from server 2 (g-h).

departure approximations match simulation results for lags greater than 2 0 (such a graph

is not provided for Figure 5.6(a) since all approximations only insignificantly deviate from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

0 for k > 10). Also note that the higher utilization slows down the decay of the departure

ACF for the same arrival process thus intensifying the correlation structure. For lower loads,

the ACF of the departure process (Figure 5.6(a)) and the arrival process (Figure 5.5) bear

a stronger similarity.

Figures 5.6(c) and 5.6(d) show the average queue length in server 2 as a function of

the truncation level. Under 30% utilization, the approximation with n — 5 approaches

the simulation closely (relative error of 0.08%), while n > 10 gives virtually exact results.

For example, the average queue length is 0.4324 ± 0.000078 for simulation and 0.43244 for

n = 10. Under 80% utilization, the approximations with n > 25 have a relative error less

than 0.055% (the average queue lengths are 3.5020 ± 0.0018 for simulation and 3.5001 for

n = 25). Figures 5.6(e) and 5.6(f) present the queue length distributions. Up to queue

length equal to 5 we use linear scale for the y-axis. Beyond 5, we use logarithmic scale as

this allows us to better distinguish the tail of the distributions for different truncation levels.

In both figures, results for n = 50 match simulation results. Figures 5.6(e) and 5.6(f) offer

the same conclusions as Figures 5.6(c) and 5.6(d): systems with higher load need higher

truncation levels to meet the same accuracy requirements.

Figures 5.6(g) and 5.6(h) give the ACF of the departure process from server 2 (i.e., point

“C” in Figure 5.3). We plot the simulation curve and analytic curves with approximation

parameters equal to n = 10 for server 1 and n = 3,5,10 for server 2. The notation n =

x, n = y on the graph legend means that the approximation level for server 1 is equal to

x and for server 2 equal to y. Since n = 10 for server 1 is good enough for both cases,

the approximation of the departure process from server 2 may provide good results. In

Figure 5.6(g), approximations with n = 3 at the second queue are in good agreement with

simulation. For higher utilization, Figure 5.6(h) exhibits a less regular behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

We also note that at point “B” (see Figure 5.3), the marginal distribution is preserved

for any approximation. Depending on the utilization, the c2 of the departure process at

point “B” is 1.35 (for 30%) and 1.1 (for 80%). While we conserve the flow also at point “C” ,

the level-n approximation of the internal traffic at “B” distorts the marginal distribution

of the output approximation at the second server. At point “C” , the “n = 10, n = 10”

approximation yields the values of c2 as 1.2513 (for 30%) and 0.7223 (for 80%).

E xam ple 2: B M A P (3) /H 2/ 1 —> E rlan g-2 /1

Here we study another dual tandem queue with a more complicated arrival process.

The following BMAP of order 3 admits finite batches with sizes of up to 5. Note that

D ^ i = § D ^ , l < i < 4 .

=

04) _D

D (>4) _

D (-4) _

-0.290083 0.003728 0.000000
0.004349 -0.014549 0.000621
0.000000 0.001243 -1.207105

0.005625 0.000000 0.142171
0.000000 0.004773 0.000170
0.619824 0.001364 0.001193
0.002813 0.000000 0.071085
0.000000 0.002387 0.000085
0.309912 0.000682 0.000596
0.001406
0.000000
0.154956
0.000703
0.000000
0.077478

0.000000
0.001193
0.000341
0.000000
0.000597
0.000170

0.035543
0.000043
0.000298
0.017771
0.000021
0.000149

0.000352 0.000000 0.008886
0.000000 0.000298 0.000011
0.038739 0.000085 0.000075

This BMAP(3) has mean rate 0.5000 and c2 30.2335. Figure 5.7 gives the ACF of the inter­

batch times as provided by (2.7) and the simulated ACF, which considers the zero inter-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

arrival times of the arrival process. Figure 5.7 illustrates the noticeable difference between

these correlation structures, especially the jagged shape of the analytic ACF in Figure 5.7.

Autocorrelation of BMAP(3)
0.16

0.14
0.12e

■2 0.1CQ
| 0.08
Q 0.06
3 0.04

0.02

request —
batch —

0.0015

0.001
0.0005

-0 .0005

-0.001
-0 .0015

-0.02

lag k

Figure 5.7: ACF of inter-arrival times of batches in the system (dashed curve) and of inter-arrival
times of actual arrivals (solid curve).

The service in the first server is a two-stage hyper-exponential distribution H2, which we

again give in MAP notation:

D iSl) =
-10 0
0 -0.52632 I D p l} = 5 5

0.26316 0.26316 I. (5.21)

This H2 process has (a controllable) mean rate of I and (a fixed) c2 of 2.6197. The Erlang-2

service at the second node is the same as in the first example (see Eq. (5.20)).

Figures 5.8(a) and 5.8(b) illustrate the autocorrelation of the departure process from

server 1 for the two server utilization levels 30% and 80%. Again, approximations with

n = x (here ME processes and not MAPs) capture the lag correlations up to k — x — 2. It is

interesting to observe how erratic the correlation structure of the output model may behave

beyond k = n — 2, especially for high utilizations. Often, dips occur at k = n, which shrink

for increasing n. The deviation between the analysis and the simulation result at lag k = n

is 0.4033 with n — 3 and 0.0912 with n — 50, suggesting that a larger number of levels is

now required for high-quality approximations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

(a)
1 .30%

Autocorrelation of departures server 1/arrivals to server 2
(b)

II. 80%

Autocorrelation of departures server 1/arrivals to server 2
0.16

0.14

§ 0.12

0.2
0.150.0024

0.002
0.0015

n = 3

§ 0.050.001
0.0005 A si m u I; 0.01£g 0.08 u

o 0.06

< 0.04

£ -0.05

-0.03S -0.15
< - 0.2

-0.25
-0 .3

-0.35

:0 .0005

0.02

20
lag k lag k

(C)
Average QLEN in server 2

0.94

0.92

0.92u
O'
u00«
<5>CO

0.86
0.84

0.82

0.78

block level n
(e)

QLEN distribution in server 2
0.1

n = 3 ••••
n = 5 - -0.7

0.6 0.01

0.5
u.
Q 0.4 o.

0.3

0.001

0.0001

0.2
le -0 5

le - 0 620 25
QLEN

Autocorrelation of departures from server 2

0.003

0.0025
0.002

0.0015
0.001

0.0005
0

n=10, n=3 •
n=l0. u=5 - -

simulation

2 0 25 30 35 4 0 45 5 0 55

(d)
Average QLEN in server 2

sim u la tion

24

100
block level n

(i)
QLEN distribution in server 2

0.22
0.2

0.18
0.16
0.14
0.12

0.01

0.001

n = 3 •••
n = 5 - - 0.00010.08

0.06
0.04
0.02

le - 0 5
s im u la t io n ------

le - 0 6

QLEN
(h)

Autocorrelation of departures from server 2
0.16
0.14

012 I 0.1
| 0.08
I 0.06
^ 0.04
| 0.02

HoT

-o.oi
- 0.02

n=10, n=3 —
n=10, n=5 - -

- 0.02
-0 .04

lag k

F ig u re 5.8: Experimental results for example 2: ACF of departures from server 1/arrivals to server
2 (a—b), mean queue length at se rv e r 2 (c -d) , q u e u e le n g th d is tr ib u t io n a t se rv e r 2 fo r d iffe ren t
approximation levels (e-f), and ACF of departures from server 2 (g-h).

Average queue lengths are displayed in Figures 5.8(c) and 5.8(d) and confirm the above

observation. Here, n = 25 yields an accurate average queue length in the lightly loaded

system with relative error of 0.05% (0.9314 ± 0.00079 for simulation and 0.9310 for n = 25).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Again, the output models tend to underestimate the average queue length. In Figure 5.8(d)

the approximated average queue length still has a 10% relative error even when n = 100.

Figures 5.8(e) and 5.8(f) show the queue length distribution in server 2. Comparing them

with Figures 5.6(e) and 5.6(f), one can easily observe that high autocorrelation and c2

(29.3905 for 30% utilization, and 14.8456 for 80% utilization) in the arrivals to server 2

increase the queue length significantly. Note that the x-axis in Figure 5.8(f) is up to 100,

which still corresponds to a non-negligible probability value.

To plot the autocorrelation of the departure process from server 2, we use a truncation

level n = 10 for the first server, and truncations equal to 3, 5, and 10 for the second server

(see Figures 5.8(g) and 5.8(h)). Under 30% utilization, even with n = 3 in the second

server, the ACF can be captured well in the approximation. Under 80% utilization, the

approximate ACF for n = 10 rather closely follows the shape of of the simulated ACF curve

(see Figure 5.8(b)).

E xam ple 3: B M A P (3)/ M A P (2) / l —► E rlan g-2 /1

To evaluate the importance of correlation in the service process (with different loads),

we use the same scheme as in example 2, but substitute the renewal H2 service in server 1

with a correlated MAP(2), which describes alternating exponential service times:

D (5l)u o
-10 0
0 -0.52632 I , d (5i) = 0 10

0.52632 0 I. (5.22)

Note that this MAP(2) has the same marginal distribution as H2 in example 2 (see Eq. (5.21)).

Thus, any difference in departure process characteristics should stem from the observed cor­

relation in the service process. This strong (but alternating) correlation oscillates between

the values —0.3 and 0.3 (for the coefficients of correlation).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Figure 5.9(a) shows the autocorrelation of departures from server 1 under 30% utilization.

Clearly, this ACF is dominated by the arrival process, while the service autocorrelation

is reflected to some extent by the lightly oscillatory curves (note the jag in Figure 5.9(a),

especially in the tail as shown in the inset figure). Figure 5.9(c) and (e) give the average queue

length and queue length distribution of server 2. Observe that the oscillating autocorrelation

introduced to the system by the service of queue 1 decreases queueing in the second node (the

average queue length for simulation is 0.8705 ±0.00096 as compared with 0.9314 ±0.00079 in

the previous example for this load). Figure 5.9(g) gives the ACF of departures from server

2 and illustrates tha t the Erlang-2 service process in server 2 smoothes the jagged behavior

of the arrivals from this server.

Under heavy load, the influence of the service process is significantly more prominent,

as illustrated in Figure 5.9(b). The autocorrelation of departures from server 1 drops from

0.14 in Figure 5.8(b) to 0.1 for lag k — 1, with pronounced subsequent oscillations. Due

to the nature of the approximation (which as before are ME processes), adding a level to a

small n causes inverted oscillations in the ACF for lag k > n — 1 (observe the approximation

results for n = 3,4 and 5). With increasing truncation levels, this behavior is attenuated

and the analytic curve converges to the simulation result (note how the curve of n = 10 is

closer to simulation than n = 4). Again, under heavy load, we need more levels to capture

the departure process from server 1. According to Figure 5.9(d), the average queue length in

server 2 of the approximation with n — 100 has an 11% relative error when compared with

that of simulation (the numbers are 21.66 for n — 100 and 24.15 ± 0.21 for simulation).

Finally Figure 5.9(h) gives the autocorrelation of departures from server 2 when the

approximation level at point “B” is 10. The Erlang-2 service process in server 2 increases

the ACF for lag k = 1 and smoothes the oscillation. As we observe in Figure 5.9(b), n = 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

(a)
I. 30%

Autocorrelation of departures server 1/arrivals to server 2
0.16
0.14

_ 0.12

1 0,
0.08
0.06

5 0.04
< 0.02

0̂006
0.004
0.002

u
t
c3O

- 0.002

-0.004

s im u la tion
- 0.02

lag k
(c)

Average QLEN in server 2

0.86

£ 0.84

& 0.82

0.78

0.76
40 50 6

block level n
100

(e)
QLEN distribution in server 2

0.7

0.6
n = 3 •• ••
n = 5 - - 0.01

0.5

0.4
0.001u.Q

Cl.
s im u la tio n ------

0.00010.3

0.2 le - 0 5

20
QLEN

Autocorrelation of departures from server 2
0.16

0.0030.14
n=10, n=5 - -

'U. ■■■■
A A sim u lation — j
h\ A l a i a /

| 0.12

I 0.1
£g 0.08U
o 0.06

< 0.04

0.002

0.001

vO.001

0.02

lag k

(b)
II. 80%

Autocorrelation of departures server 1/arrivals to server 2
0.41— i------- r-

0-3 " s i m u l a t i o n
n - 50: •

0.2 - . : '.

o.i

-0.2
di = 4

-0 .3

lag k
(d)

Average QLEN in server 2

sim ulation

24

2WJO'
u002
w>C3

100
block level n

(f)
QLEN distribution in server 2

0.22
0.2

0.18
0.16
0.14

s °-12at 0.1
0.08
0.06
0.04
0.02

0.01

0.001
n = 3

0.0001

e-05

e-06

QLEN
(h)

Autocorrelation of departures from server 2
n r

35 40 45 50 55 60n=10, n=3
n = 1 0 , n=5 - -

:>. U--1-:
sim ulation

18 20

F ig u re 5.9: Experim ental results for example 3: A CF of departures from server 1 /arrivals to server
2 (a—b), m e a n q u e u e le n g th a t se rv e r 2 (c -d) , q u e u e le n g th d is tr ib u t io n a t s e rv e r 2 fo r d iffe ren t
approxim ation levels (e-f), and ACF of departures from server 2 (g h).

does not capture well the departure process from the first server, which contributes to the

differences between simulation and analytic curves in Figure 5.9(h).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

5.4 Sum m ary

In this chapter, a family of approximation models for the departure process of a BM AP/MAP/1

queue arising from ETAQA is presented. This family of approximations are indexed by a

parameter n, which determines the size of the output model as n + 1 block levels of the

M /G /l-type process. The approximations lend themselves to further use in network decom­

position.

We formally proved tha t this approximation model can preserve the marginal distribu­

tion and the autocorrelation function up to lag (n — 2) of the exact departure process of

a BMAP/MAP/1 queue. This model is also shown to be efficient by experimental results,

especially under light loaded systems. However, it is hard to achieve an accurate approxima­

tion for the system existing long-range dependence. Moreover, the output traffic descriptors

formally belong to the class of matrix-exponential (ME) processes, which lack the physical

interpretability of the rate matrices. In the next chapter, we address these drawbacks by

presenting an alternative output approximation that is a MAP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Improved Truncation M odels for the

B M A P /M A P /1 Departure Process

In this chapter, we present an alternative family of analytic approximation models of the

departure process of BM AP/MAP/1 queues that results in a MAP output process. The

approximations have a form of a finite MAP and are developed based on the original (infinite)

MAP departure process using lumpability arguments that are similar to the flow arguments

presented in [77] for M AP/M AP/1 queues. The family of MAP approximation models that

are proposed here can be broadly classified in two categories. The first category includes

models that preserve the original first n levels of the infinite departure process and lump the

remaining levels starting from level n into a single level. (Level numbering starts with 0.)

This category preserves exactly the first n — 1 lag correlations of the true inter-departure

process (i.e., one more accurate lag than the ME approximation in Chapter 5). Here, n + 1

is the size of the output model in terms of block levels. The second category includes models

that do not focus on preserving the first n — 1 lag correlations exactly but instead aims at

reducing significantly the size of the models while maintaining nearly the same performance

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

properties as models of much larger size in the first category. We provide proofs that both

categories preserve exactly the marginal distribution of the original departure process. We

also provide proofs tha t the first category matches exactly the first n — 1 lag coefficients of

correlation.

Deciding the truncation level n of the output model is no trivial. As that also discussed

in Chapter 5, the higher n is, the more lag coefficients of correlation of the true departure

process are matched and the time series properties of the true departure process are better

preserved. But using large n ’s is not always possible, as this output model serves as input to

downward queues. It is of paramount importance to minimize its size to avoid the problem of

state space explosion to allow queue-by-queue analysis. To this end, we present a study that

identifies the conditions tha t require an exact representation of higher lags and consequently

identify the size of the output model. We use the probability mass of the lumped level as

an indicator of the ideal size of the MAP departure process. Additionally, for cases that

the asymptotic analysis suggests a prohibitively large output model, we propose ways to

reduce it via alternative ways to further lump the state space of the output MAP without

significant loss in the time series properties of the MAP and consequently in performance

accuracy. Extensive experimentation illustrates the effectiveness of the proposed methods.

This chapter is organized as follows. Section 6.1 constructs the new lumpability-based

approximation of the departure process that represents a MAP. Proofs tha t this representa­

tion matches exactly the lag coefficients of correlation up to a predefined lag are also given.

Section 6.2 compares the performance of MAP approximation with that of ME approxima­

tion via experimental results. Complexity issues are also discussed here. Section 6.3 further

studies the asymptotic behavior of the approximation and provides a methodology to identify

the appropriate truncation level, which is validated by numerical examples in Section 6.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

The second category of MAP approximations is given in Section 6.5. Section 6.6 summarizes

this chapter.

6.1 M A P A pproxim ation O utput M odels

To aid in the presentation, we first define a diagonal operator diag(-). Given the n-dimensional

vector x = [x0 xi x2 • ■ • xn], diag(x) is the n-dimensional matrix whose diagonal entries are

the elements of vector x and whose other entries are zero. Obviously, x (diag(x))-1 =

[1 1 1 ■ • • 1] and xdiag(y) (diag(x))-1 = x (diag(x))-1 diag(y) = y, where y is a vector of

same dimension as vector x.

Applying basic lumpability rules (or flow arguments as in [77]), we can construct a finite

Markov chain from the infinite original one Qoo of the BM AP/MAP/1 process in Eq. (5.1).

Both chains are identical up to the (n — l) th level, whereas the finite chain “lumps” all states

from the nth level onward. Correspondingly, the infinitesimal generator Q„ € R(n+1)mx(n+1)m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

of this new process is expressed as follows:

OO
L F<!) F(2) . . F("_1) y~^Fw

i= n
oo

B L]? (1) . . . f (”-3) jp(n-2) E F“
i= n —1

00

0 B L F("“3) E F(i
1=71 — 2

F (1)
oo

0 0 0 L pd) E f «
i= 2
oo

0 0 0 B L ' y F n)

i — 1

diag(7C+1)d ia g « °) :B +
0 0 0 0 diag(7r^”)̂ (diag(7r^°))_1 B

i—1
(6.1)

This representation requires knowledge of vectors 7r“ = 7r^ an(i tt̂ i = S S n + i7r^^’

which can be computed by solving the ETAQA system Eq. (5.6) with the parameter n + 1.

Note tha t 7r^") + 'Kr̂+l = 7r£°. The flow out of the lumped state is the original downward

flow B weighted by diag(7r^ni) (diag(7r“))-1 . These weights are the probability ratios, with

which the original chain is in states of level n. Note that in the original chain level n — 1

can only be reached from level n. One easily verifies that Eq. (6.1) represents a generator

matrix and thus defines a true stochastic process. Therefore, filtration yields the following

L + > F (i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

t -v (M A P)
0 ,n

the departure process:

OO

L p (l) p (2) . . . p (" - 2) F f " - 1) EF<,)
i = n
00

0 L p(l) ... F (n - 2) y ^ F (i)

i = n — 1
OO

0 0 L p (r a - 3) y ^ F (i)

i = n —2

F (i)

00

0 0 0 L F (P EF<i>
i = 2
00

0 0 0 0 L
i= 1

00

0 0 0 0 0 L + F (l
i= 1

(6.2)

' 0 0 • • 0 0 0
B 0 • 0 0 0

0 B • 0 0 0

0 0 . 0 0 0

0 0 . B 0 0

0 0 0 d ia g (7 r (n)) (d ia g (7 r“)) _1 B d ia g (7 r“ +1) (d i a g (7 r “)) _ 1 B _

n (M A P)
l , n

(6.3)

According to Eqs. (2 .5), (2 .6) and (2.7) in Chapter 2, th e m ean rate, the squared coefficient

of variation and th e autocorrelation function of the above M AP are denoted as follows:

\ M A P _ n (M A P)
~ n l,n e >

/ ■ „ M A P \ 2 _ _ q \ M A P _ (- p v (M A P) \ — 1
\ c n) - l K ^ n l - U o . n) e - 1

ACFMAp(A.) A „7 T „((-D ™)-1D ir PT (- D [) T ,) - 1e - 1
(C M A P) 2

where 7r„ = [tt^ 7r^ 7r“] as defined in Theorem 5.1.

This truncated M A P process w ith level n can preserve the marginal distributions of the

exact departure process and m atches the autocorrelation function up to lag (n — 1). A s a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

prerequisite of the proof, we show A“AP = Aqo for all n > 1:

\ M A P An

n (M A P) ,7rn1J l,n

f ^ 2 wWb + 7r“ diag(7T(n)) (diag(7r“))_1 B + 7r“ d ia g « ° +1) (d ia g « °)) -1 B] e
\ i = l

= (E wWb + (ff(n) + e = (E e

TTooDl.ooe A :x

T heorem 6.1 The complete inter-departure time distribution of the true departure process

is preserved by the M AP output approximation.

Proof: With the similar proof of Theorem 5.2, we prove that the complete inter-departure

time distribution is preserved by the MAP output approximation (6.2)/(6.3).

In the bottom row of Eq. (6.2)/(6.3) the service-terminating rates sum up to matrix B,

since

diag(7r(”))(diag(7r~))“ 1B + d ia g « ° + 1)(diag(7r~))_1B

= (diag(7r(n)) + d ia g « ° + J) (diag(7r“))“ 1B

= diag(7r~)(diag(7r^°))“ 1B = B .

L e t v e c to r s x / (/ J p / x / / (of b lo c k d im e n s io n m) b e t h e s t a t i o n a r y d i s t r i b u t i o n s t h a t t h e

respective lumped Markov chain of the BMAP/MAP/1 queue (see Eq. (6.1)) is empty/nonempty

(or idle/busy) immediately after a departure. Thus, the invariance of the inter-departure

time distribution is proved, if we show that x /i0O = ^-YnP and x b j00 = x ^ Ap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

For n > 1, we obtain

M A P _ I - h - W r - , , ,
X / , n — \ 7 1 - D — X / ?00

V M A P _ 1

Xb'" ~ A

A
71— 1 \

£ tt« B + 7r~diag(7r("))(diag(7r“)) -1B + 7r“ diag(7r~+ ̂ (d i a ^ O) - ^
2=2

XB, 0

For n = 1, we obtain

x J T = ^ 7 r f >d ia g (7 r (1)) (d ia g (7 r ? °)) XB

= 7̂r(1)B = X/>°°

= ^ r diag(7r20)(diag(7r~))_1B

= xB ,

This concludes the identity proof for the inter-departure time distribution. ■

T h eo rem 6.2 ACF00(k) = A C F fAP{k) for all n > 2 and 1 < k < n — 2.

P roof: The proof is similar with tha t of Theorem 5.3 in Section 5.3.3 and is omitted here

for the sake of brevity. ■

R em ark 2 For the ME departure approximation of a BM AP/M AP/1 queue, the last two

columns of ~Dt0M/ > are adjusted, but here for the MAP departure approximation, only the last

one column is adjusted. j4s a result the inverse matrix only has the last column

different from (—Do)00)-1 , as shown in Lemma 6.1. Therefore in Theorem 6.2, A C F fAP

matches AC F ^ up to lag (n — 1) instead of (n — 2) for all n > 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

L em m a 6.1 Matrix (—DgiTi ') 1 can be represented as

(- D ^ r r 1 =

r p 0 P i p 2 • Pn-2 P n—1

1---£

0 Po P i P n—3 P n-2 W„_!
0 0 Po ' Pn-4 P n—3 W„_2

0 0 0 • Po P i w 2
0 0 0 0 Po Wj
0 0 0 • 0 0 Wo

(6.4)

where P , and P i; i > 0, are defined in Lemma 5.1 , and

3=1 3= 1

Proof:

From Lemma 5.1, we get

(— D o , o o) (— D q .o o)
-1

LPo L P X + ^ F « P ! _ , l p 2 + L P 3 + J > WP 3-i
i= 1 i=1

1
i=l
2

0 L P 0 l p : + j y (i)Pi~i
i=1

l p 2 + j y (i)P2-i
i—i

0 0 L P 0
i

L P i +
i= 1

= I ,

Where I is an identity matrix with appropriate demission. So that

LP0 = - I , LP0 = - I , LPi + F ij)p i-j = 0 > Lpi + Y1 F i j) p i - 3 = 0 for alH > 1 .
3 = 1 j=l

(6.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Let us define matrix A as

Po Pi p2 • P n-2 P n—1 w„
0 Po Pi P n—3 P n-2 W„_!
0 0 Po ' Pn-4 P n—3 W„_2

0 0 0 • Po Pi w2
0 0 0 0 Po Wi
0 0 0 • 0 0 Wo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Then

(- D r P>)A

LP0 L P i
+ F « P 0

LP»-i
n — 1

+ ^ F « P „ .-1-2
i = 1

71—1
L W „ +

i = 100
+ J] F (,)Wo

L P n

L P n-2
71—2

+ ^ F WP
2=1

71—2—2

71-2
LW n_! +

2=100
+ F (i)w «

1-2

2= n —1

F P 3
72 — 3

+ ̂ F « P „ _ 3 - ,
2=1

72 — 3
l w „ _ 2 + wn_2_

2=100
+ 5] F « W 0

2=71—2

0 0 L P 0 L W i + ^ F (i) W 0

0 0 0

i = 1

L +] W 0

i = 1

From above, we see tha t (—Dq„) A = I for the all columns except for the last one. To prove

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

that this identity also holds for the last column, we first note that the closed-form formula

of the inverse of an upper diagonal matrix implies Wo = P , = — (L + Y lit i F ^)

This shows — (L + F ^) W 0 = I. The first element in the last column of (—Do^AP))A

can be manipulated to

n — 1 oo

L W n + ^ fW 'W »-< + X FW Wo
2 = 1 i= n

oo n —1 oo oo oo

£Ep;+EF<'' E pj+Ef<i,Epj
j = n i= 1 j = n —i i = n j = 0

oo n — 1 oo oo oo

= E£pJ+EF“,Ep̂ +EFl‘,Epj-»
j=n i— 1 j=n i=n j=n

oo oo n—1 oo j
= E£p»+EEF(‘T-.+EEF“>pi-<

j = n j —n 2 = 1 j = n i= n

oo / j \ oo

= E £pi+EF“)pi-< =E° = ° •
j=n \ 2=1 / j —n

The last line is due to Eq. (6.5). In the same way, we get LW*, + Yli=i F ^ W ^ , +

Y Z k F (<)W 0 = 0 for k = 1, • • • , n -1 so that indeed (-D ^„ap))A = I and thus (-D qM„ap))_1 =

A, which completes the proof. ■

6.2 Com parison of M A P A pproxim ation and M E A p­

proxim ation

6 .2 .1 E x p e r i m e n t a l C o m p a r i s o n

The experiments of this section show the effectiveness of the MAP output models under

different systems and utilizations and compare its performance to the results of ME repre­

sentation. The very same systems are investigated in Section 5.3.4 with ME output approx­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

imations (5.12)/(5.13) only. Since we have proved tha t the marginal distribution and the

first lags of the autocorrelation structure of the inter-departure times are preserved by both

families of approximations, we focus on the behavior of the correlation structure beyond the

invariance threshold and the performance impact of the approximations of the inter-queue

process on the downstream node. In each experiment, we show the autocorrelation function

(ACF) of the departure process from server 1 (i.e., at point “B” in Figure 5.3) and the mean

queue length (QLEN) at server 2 for selected truncation levels n.

E xam ple 1: M ^ /M / l —> E rlan g-2 /1

The first example represents the dual tandem queue M ^ /M /l —► Erlang-2/1. The

arrival process is a BMAP of order/dimension 1 with rates —0.3 and —0.1 for batch arrivals

of size 1 and 2, respectively. This process has a mean arrival rate of 0.5 and a squared

coefficient of variation (c2) equal to 1.5. Its inter-batch ACF equals zero, while the ACF,

which takes into account the “zero inter-arrival times” , has a negative first coefficient of

around —0.04 and a positive second coefficient of around 0.01 (see Figure 5.5). The service

processes are an exponential distribution (c2 of 1) at the first queue and Erlang-2 distribution

(c2 of 0.5) at the second one. The rates of the service processes of the two nodes are scaled

simultaneously in order to achieve light system load (30% utilization) and high system load

(80% utilization) across both nodes. These functions are depicted in Section 5.3.4.

Figure 6.1 gives analytic and simulation results of this network. Figures 6.1(a) and 6.1(b)

plot the ACFs of the departure processes from server 1 (which are also the arrival processes

to server 2) for several truncation levels of the MAP output model (6.2)/(6.3) under 30%

and 80% utilizations. The chosen values of the truncation parameter n are the same as in the

corresponding example in Section 5.3.4 for the ME output representation (5.12)/(5.13). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

inset graph in Figure 6.1(b) provides a better look of how close the ACFs of the departure

approximations match simulation results for lags greater than 40. Comparing low (a) and

high (b) load situations, we observe the stronger long-term correlations in the departure

process for the system in high load.

I. 30% II. 80%
(a) Autocorrelation of departures server 1/arrivals to server 2 (b) Autocorrelation of departures server 1/arrivals to server 2

0.012 0.012
n = 3
n = 5

n = 10

sim u lation

0.01 0.01

I 0 .008

I 0 .0060
1 0 .004 <

0.002

0.008

| 0 .006

3 0 .004 o
< 0.002

- 0.002 20 20
lag k lag k

(c) Average QLEN in server 2 (d) Average QLEN in server 2
0.433 3.52

3.50.4325

0.432 z 348
“ 3.463 0.4315

O '

0431
fc 0 .4305

0.43

0.4295

3.44
3.42sim u la tio n - -

M A P appro x im a tio n — *
Mb approximation —*•

s im u la tion —
M A P approx im ation

M b app ioxm ia tio ji —"*•

>
3.4

3.38
3.360 .429 100) 50

b lo ck level □
60 40 50

b lo c k level n
70 100

F ig u re 6.1: Experimental results of MAP approximation for example 1: ACF of departures from
server 1/arrivals to server 2 (a-b), mean queue length at server 2 (c-d).

As proven, the ACF of the MAP output model with parameter n matches exactly the

first (n — 1) lag coefficients, e.g., cases n = 3 and n = 5 capture the correlation up to

lag 2 and 4, respectively. The MAP approximation not only matches one more coefficient

than the ME representation, but also the tail of its ACF deviates less from simulation

results. Given that both approximations preserve the marginal distribution of the original

departure process, we now explore how matching one more lag affects performance results

for server 2. Figures 6.1(c) and 6.1(d) plot the average queue length (QLEN) at server 2 as a

function of the truncation level n of the departure approximation from server 1. Results for

both the MAP and the ME output model are shown for comparison. Both approximations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

generally underestimate the mean queue length. For the MAP output model under light load,

truncation n = 3 already gives a relative error of only —0.015% compared with simulation,

and n > 5 yields exactly average queue lengths. The ME approximation results in virtually

exact results only when n > 10. Under 80% utilization, both approximations have higher

errors: for case n = 10, the relative error of —0.6% with the ME approximation is reduced

to —0.2% with the MAP approximation. In this example, MAP output models with very

small n appear sufficient for good approximations of the downstream mean queue length,

where slightly larger n are required for the ME output model to achieve the same accuracy.

E xam ple 2: B M A P (3) /H 2/1 —> E rlan g -2 /1

The second dual tandem queue has a more complicated external BMAP, which is of order

3 and admits finite batches with sizes of up to 5. Its mean rate is 0.5 and its c2 30.2335.

Both inter-batch and inter-arrival ACFs start around 0.14 (positive lag-1 coefficient) and

decay to negligible values (i.e., less than 0.0025 in absolute terms) within the first 20 lags

(see Figure 5.7). Also, the service process at the first server is changed with respect to the

first example, namely to a two-stage hyper-exponential distribution H2 with rate ratio of

5.2632 and c2 of 2.6197. Again, in this experiment service rates are adjusted to obtain the

desired utilization levels at both servers. More details on this BMAP and the H2 service are

found in Section 5.3.4.

In Figure 6.2, we show analogous plots as for example 1. The ACFs of the departure

process from server 1 in Figures 6.2(a) and 6.2(b) computed with the MAP output model

can again be compared with the corresponding figures in Section 5.3.4 for the ME output

representation. Especially for high loads, the level-n ME representation suffered erratic dips

for the lag-n coefficient of correlation with significant deviations (see Figure 5.8(b)). These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

dips disappear with the MAP output model, which makes the overall ACF approximation

smoother and accounts for an improved tail behavior.

I. 30% II. 80%
(b) Autocorrelation of departures server 1/arrivals to server 2

0.160.16
0.140.14 n = 3
0.120.12 oco

0.10.1 sim u la tion --------- £
oO
o

£oU
©
3<

0.08

0.060.06 3< 0.040.04
0.020.02 ~ ~ r -

20
lag klag k

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

0.78

(c) Average QLEN in server 2
i ~i

(d) Average QLEN in server 2

s im u la t io n -------
M A P a p p rox im ation — ©—

M b. a p p r o x im a t io n ------

_J_______ I_______ I_______ I_______ I_______ L_
10 20 30 40 50 60 70 80 90 100

block level n

28

26

24

22

20

18

16

14 0 10 20 30 40 50
block leveln

60 70 80 90 100

Figure 6.2: Experimental results of MAP approximation for example 2: ACF of departures from
server 1/arrivals to server 2 (a b), mean queue length at server 2 (c-d).

Since additionally the lag (n — 1) correlation coefficient is matched exactly, level-n ap­

proximations with MAPs are noticeably more accurate than their ME counterparts, also

with respect to the mean queue lengths at server 2 (see Figures 6.2(c) and 6.2(d)). This is

especially true under low load (c): for n — 3, the MAP approximation only yields a relative

error of —1.5% and a exactly average QLEN with n = 10. Under high load (d) with n = 100,

the MAP approximation reduces the relative error to —5.7% from —11% with the ME ap­

proximation. From Figure 6.2(d) we see for both families of approximations tha t mean queue

lengths only slowly converge to the simulated value in high load. In both cases, it requires

more than 100 levels (n > 100) to achieve fair approximations to the mean queue length.

E xam ple 3: B M A P (3) /M A P (2) /1 —> E rlan g -2 /1

This dual tandem queue differs from the one in the previous section only in the corre-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

lation structure of the service process at server 1. The exponential phases of the two-stage

hyper-exponential distribution H2 are not chosen with equal probabilities, but alternate with

each service. This defines a MAP service process of order 2, which has the same marginal

distribution H2, but a non-zero ACF, which oscillates between —0.3 and 0.3. More details

on this MAP are found in Section 5.3.4.

The impact of the introduced service correlations at server 1 as compared to example

2 can be studied in Figure 6.3. Figures 6.3(a) and 6.3(b) clearly demonstrate how the

service oscillations become more and more visible in the ACF of the departure process

from server 1 with increasing utilization. Observe also that this oscillating autocorrelation

decreases queueing in the second node as compared with the previous example. Besides

the features mentioned before, another qualitative difference between the MAP and the

ME output models can be identified: in the discussion of the corresponding example in

Section 5.3.4, the ME output model gave rise to out-of-sync oscillations in the ACF of the

output approximation for specific truncation levels ((see Figure 5.9(b)). For the MAP output

model, Figure 6.3(b) shows that all oscillations are in the same phase independent of the

value of n. Quantitatively, the ACF of the MAP output model also outperforms the ACF of

the ME approximation of the same order. For example, the maximal absolute deviation of

the ACFs from the simulated ACF occurs in both cases for lag 3 with level n — 3 and takes

the value 0.04 in the MAP case and 0.2 in the ME case.

Figure 6.3(c) illustrates that the MAP approximation with small values of n can pro­

vide accurate average queue lengths in the second queue under 30% utilization. Mean

queue lengths in high load are not as easily approximated. Under 80% utilization (see

Figure 6.3(d)), the relative error in case n — 100 is still around —8% for the MAP ap­

proximation, reduced from —11% for the ME approximation. Generally, the approximation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

1 .30%
(a) Autocorrelation of departures server 1/arrivals to server 2

II. 80%
(b) Autocorrelation of departures server 1/arrivals to server 2

0.16
0.14
0.12

0.16
0.14
0.12

0.1

£ 0.08
U 0.06
o
“ 0.04

0.02

a
.0 s im u la t io n ---------

| 0.08
o 0.06
o 0.04 | 0.02n = 33<

- 0.02
-0.04- 0.02

20
la g k lag k

(c) Average QLEN in server 2 (d) Average QLEN in server 2
0.88 I I I I 1 1 I T 1

0.86 -r) .*'' -

sli 0.84
;

-

0.82 - •/>a 0.8 ■ti s im u la t io n -------
M A P ap p rox im ation “

0.78

0.76 ; i i i

M b a p p r o s i m a t i o n ;

i i i i i i
10 20 30 40 60 70 80 90 100

zw 22

603
20

sim u la tio n - ~
M A P app ro x im atio n — ♦

MK appro x im a tio n — :

100
block level

Figure 6.3: Experimental results of MAP approximation for example 3: ACF of departures from
server 1/arrivals to server 2 (a-b), mean queue length at server 2 (c-d).

behavior for the downstream QLEN is similar to the previous example (see Figure 6.2),

except tha t the accuracy gain of the MAP output model is even more mitigated in high

loads.

6.2 .2 C om p lex ity Issues

We first compare the computational effort related to the ME representation (5.12)/(5.13)

and the MAP output model (6.2)/(6.3). For this discussion, we assume that the lag k

autocorrelation of the inter-departure times of a BMAP/MAP/1 queue with true batches

needs to be computed exactly. The autocorrelation function is simply the numerator in

equation (2.7). At the end, we also outline the time complexity using the BM AP/GI/1

approach in [24] to compute the lag k autocorrelation for a BM AP/PH/1 system of identical

dimensions. In all three cases, ACFs of lag i < k come at essentially no extra cost in the

course of lag k computations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

6.2 .2 .1 M E O u tp u t M odel

For both ME and MAP representations, the level dimension of the involved block matrices

is m = rriAms- However, with true batches, the ME representation to approximate the

departure process requires one more level for the exact lag k autocorrelation computation.

The truncation parameter of representation (5.12)/(5 .13) must be chosen as n = k + 2 so

that the ME output model assumes the total order of mME = (k + 3)m = (k + 3

The time complexity in constructing the ME representation (5.12)/(5.13) is dominated

by computing matrix G of dimension m (see Eq. (5.3)). This matrix is often sparse and

can be efficiently computed by matrix-analytic techniques [42, 59] with complexity 0 (m 3).

The series, which appear in (5.12)/(5.13), are usually finite sums due to batches of limited

size. In any case, the summations of (5.4) are efficiently computed via backward recursions

gO) _ p(j) gO'+bQ for j = &max — 1, • • ■ ,1, where 6max denotes the maximal batch size.

Note that at this point, without any further matrix-matrix multiplications, the complete ME

output model is at hand.

In order to compute the lag k autocorrelation (according to the numerator in (2.7)), one

has to deal with vectors and matrices of dimension m ME = (k + 'i)mAms- Both obtaining the

inverse of D JjJa and the ETA.QA. stationary solution tt^ . 2 in Eq. (5.6), which becomes tTmap

in Eq. (2.7), are rather expensive operations of worst-case complexity 0 (m :(fE) = 0 (((k +

3)m)3) = 0 (k 3m 3). Note, however, that the M /G /l-type structure of involved matrices and

their sparsity allows efficient implementations to lower the complexity significantly (i.e., k2

instead of k3 and (m x # [non-zero entries in sum of all block matrices in Qoo plus G])

instead of m3, see [72]). Explicit expressions for (D q ^ 2)_1, similar to the ones given in

Lemma 5.1, are found in [99]. Finally, with (k + 2) additional vector-matrix and one more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

matrix-matrix multiplication, the lag k autocorrelation is obtained.

6.2.2.2 M A P O u tp u t M odel

The main advantage of the MAP output model (6.2)/(6.3) with respect to efficiency consists

in that it requires one block level less, i.e., the truncation parameter can be chosen as

n = k + 1 and the model dimension is mMAP — (k + 2)m = (k + 2)niA'nis- Further use of

such a model in network decomposition and the computation of the lag k autocorrelation

profit from this fact which has to be paid for by a slightly more expensive construction of

the MAP model. At a first glance at the model representation (6.2)/(6.3), this construction

even seems simpler: matrices and related series expressions do not occur, neither does

matrix G. Still, exactly the same block matrices are needed as in the ME case, since vectors

7r(fc+1) and 7r^j_2 have to be computed from the ETAQA matrix Qjt+ 2 from (5.6). Note that

matrix Qfc+2 has the same dimensions as the ME output model of Section 6.2.2.1. The

identical system of linear equations has to be solved as for 7rfc+2 above, and this is exactly

the overhead in the construction of the MAP output model1.

When computing the lag k autocorrelation with Eq. (6.2)/(6.3) for n = k + 1, the

“overhead computation” addressed before will be reused in an efficient implementation to

extract the stationary solution 7tmap of the MAP for Eq. (2.7). Considering this, the MAP

approach actually outperforms the ME approach by the difference of dealing with vectors

and matrices of dimension mMAP instead of m ME in the following situations:

• when inverting matrix instead of D q“ ^ 2,

• for (k + 2) vector-matrix multiplications, and

1Here, we ignore multiplications/inversions of diag-matrices in (6.2)/(6.3), which boil down to scalar-

matrix multiplications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

• for 1 matrix-matrix multiplication.

Formally, while the construction of the MAP output model has complexity 0 ((m MAP +

m)3) = 0 (((k + 3)m)3) = 0 (k 3m 3) (ETAQA solution), the additional effort for the lag

k autocorrelation amounts to 0(m®AP) = 0(((fc + 2)m)3) = 0 {k 3m 3). Again, exploiting

sparsity and the M /G /l-type structures yields similar gains as pointed out in the ME case.

Overall, a complexity of 0 (k 2m x # [non-zero entries in sum of all block matrices in Qoo

plus G]) may be achieved.

Generally, one not only constructs an output model, but also further processes it - for

computing performance characteristics or for employing it in downstream queue analyses.

Especially in the latter case, where the order of the output model usually enters the calcula­

tions multiplicatively, the MAP output model is clearly advantageous. This superiority (due

due lower order) vanishes without proper arrival batches, e.g., for the M AP/MAP/1 queue,

where the ME representation might be preferred. Recall that all suggested output models

also preserve the marginal distribution of the original departure process.

6 .2 .2 .3 D eparture Lag C oefficients v ia th e B M A P /G I /1 A pproach

Although our approach mainly aims at providing output models, it may still be worthwhile

to compare the efficiency with another methodology that might as well be used to compute

the lag k autocorrelation for BM AP/PH/1 queues (but does not deliver an output model).

This methodology by Ferng/Chang [24] is based on the BM AP/GI/1 framework and as such

does not admit correlated service processes. Ferng and Chang mostly deal with vectors and

matrices of the BMAP order m a , as they arise from matrix-analytic techniques for M /G /l-

type queues embedded at the departure epochs. Clearly, the algorithms of Ferng and Chang

benefit from the lower dimensions of the matrices involved in the computations. However, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

detailed analysis of the computation of the lag k autocorrelation, which presupposes the first

k sub-vectors of the queue length distribution at departures (see [48] for their computation),

shows that

• at least 3k + 1 series with matrix-matrix multiplications (dependent on uniformization

coefficients),

• ^k3 + ^k2 + vector-matrix multiplications and

• 4 matrix inversions

constitute a high computational requirement. Especially, the first item may easily exceed

the effort for computing matrix G as needed for the ME and MAP output models, despite

the lower dimension of compared to m Arris of G. Due to the more compact notation and

also due to the diverse series computations, the sparsity of the arrival and service processes

cannot be as fully exploited as in the approaches via the ME and MAP output models.

Overall, a precise performance comparison is difficult and would depend very much on

actual batch sizes, sparsity of service and arrival processes, series truncation rules, and actual

implementation. In the light of the fact that our approaches to departure process charac­

terizations are conceptually simpler and easier to implement, we claim that they are to be

preferred when computing lag k coefficients for low and moderate values of k. This is espe­

cially valid, if a low-order PH (or MAP) service is specified. For example, with exponential

service times, any performance advantage due to lower block dimensions disappears for the

approach in [24], On the contrary, for large values k (and non-MAP service), the algorithm

by Ferng and Chang is expected to outperform the techniques presented here to compute

the lag k departure autocorrelations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

6.3 Identifying a Truncation Level

We have proved that the autocorrelation function of the real departure process is exactly

preserved up to lag (n — 1) in a finite system with n + 1 block levels. For lags larger than

(n — 1) the autocorrelation is an approximation to the exact one. Naturally, the higher the

value of n, the better the approximation accuracy. Large values of n, however, result in

large output models and commensurate increase in the associated computational cost (see

Section 6.2.2).

Here we concentrate on identifying the minimum size of the truncation level n tha t yields

a sufficiently small approximation error from the true departure process so tha t the final

error in the target performance metrics is negligible. Besides small computational costs,

smaller n also offers better scalability of the analytic model. From Eq. (6.2)/(6.3), DqN)1ap>

and Dj))lAP) are square matrices of size (+ 1) x m^m<,(rt + 1)), where tua and m s

are the order of the arrival and service processes, respectively. Obviously, large n may result

in state-space explosion in downward queues, making network decomposition infeasible.

A n E xam ple: B M A P (3) /H 2/1 departure process

We first use the same example of the BMAP(3)/H2/1 system as in the previous sections that

will help us characterize the behavior of the ACF of the departure process, and thus choose

an appropriate truncation level n. By scaling the rates of the service process we control the

utilization level of the queue. We consider two cases: a low system load (30% utilization)

and a high system load (80% utilization).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

6.3 .1 A sy m p to tic B ehavior o f th e A C F

In the formula for ACF“ AP(/c), the matrix (—DQMnAP))- 1D (1̂ lAP) is stochastic. Therefore, when

raised to the power of k , the inner products it defines should decay geometrically according

to its second largest eigenvalue, This is stated in the following theorem. W ithout loss

of generality, we assume tha t the matrix is diagonalizable to avoid a complicated proof.

The same analysis can be performed using the Jordan canonical form and the appropriate

spectral projectors [76].

T h eo rem 6.3 The autocorrelation of the approximated departure M AP decays geometrically

with k, with rate equal to the second largest eigenvalue l2 ,n ° f (—T)Q '̂P',)_1D [^1P,,.

P roof: From the proof of the marginal distributions in Section 6.1, we have that A^AP = Aoo

and (c“ AP) 2 = cf. for all truncation levels n > 2 .

We know that the matrix G„ = (—Dq'^ap))_1D ^ ap) is a stochastic matrix, i.e., G n e = e,

where e is a column vector of all ones.Let li<n denote its 1th largest in magnitude eigenvalue,

x i:Tl denote the ith right eigenvector, and y jn denote the ith left eigenvector, for 1 < i < m,

where m is the dimension of G n. Then, l^n = 1, Xi_n = e, and

m

G n ^] h,nZi,nUitn'
i = 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

Then we have

ACF ™AP(k) =
m

A r p^ (E ^ ^ >) (- D oMnAP))_le - 1
i—1

(c M A p) 2

m
Ar p* n (e y l n + Y . ltnXi,nyln) { - D ^) " ^ - 1
___________________________ i = 2__ _

(c M A p) 2

m
+ A r P7 r „ (E ^ y ^ - D ™) " ^ " 1

__ i = 2 __
(c M A p) 2

Since 7r„e = 1, it suffices to prove that:

A r py L (- D o’r ,r 1e - 1 = o.

Since Q„ = DgM̂ P) + D f ^ P) is the infinitesimal generator with 7t„Q„ = 0, then,

y in =

= v U - V ^ r ' Q n + vln-

Therefore y^„(—DoM̂ p))_1Q = 0, so that y£„(—D o ^ p))-1 — C ' ^n , where C is a constant.

Letting y f n be normalized as y^„e = 1, then

y L e = y U - D C ^ r ^ - D o T O e

= C ■ 7rn(—D 0,n)e = C • A“AP = 1.

Therefore C = 1/A“AP, and

A I T j / U - D S r ’r ' e - 1 = K " • TS5: • ” - e - 1 = »•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the eigenvalue for some block level is very close to the second-largest eigenvalue

of the matrix Goo for the true ACFoc(A:), that block level should capture very well the

asymptotic behavior of ACFoc(A;). To identify this level n, we keep increasing n and compute

the second eigenvalue Z2)„ of (—D o ^ p))_1D (1Mnw>) until two successive eigenvalues do not differ

much. Then, we concentrate on the asymptotic decay of ACF, and search for the lag numbers

koo and kn where the two ACFs have the same value, i.e., ACF00(k00) & (l2too)k°° = (h,n)kn ~

ACF“AP(A;n), differ by less than, say, 5%. Then, /2i„ = Ẑ oo*” = which gives an

acceptable n.

Table 6.1: The second largest eigenvalue of (—Do l̂AP))_1D ^ P).

30% Util 80% Util

n 2nd Eigenvalue n 2nd Eigenvalue

3 0.840610 3 0.978824

4 0.833388 4 0.978698

5 0.823615 5 0.978562

1 0 0.862645 1 0 0.977784

25 0.935070 25 0.978720

50 0.951438 50 0.986322

1 0 0 0.956885 1 0 0 0.993959

2 0 0 0.958519 2 0 0 0.997739

400 0.958972 400 0.999000

600 0.959060 600 0.999311

2 0 0 0 0.959125 2 0 0 0 0.999614

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

Let us illustrate this with the BMAP(3)/H 2 / 1 example. Table 6 .1 gives the second

largest eigenvalue of (—Dq^1ap))_1D (1'^ap) for this queue under the two utilization levels of 30%

and 80%. Figure 6.4 displays the autocorrelation tails of the approximation with different

truncation levels n under 30% and 80% utilizations. Note the asymptotically geometric

decay of the autocorrelation with k. Figure 6.5 plots the relative error of the approximate

ACFs for different block levels n. These are computed by integrating the absolute error and

scaling it by the ACF area: J2k>n I ACFqo(k) — ACF™AP)(k) \ /J 2 k >l A C F^/c).

For the 30% utilization level, Z2>00 ~ 0.959125, and Z2,n = 0.959125105 = 0.957126, which

is obtained for n around 100. Because of the fast decay, however, for n = 50, /2i„ = 0.951438,

the overall difference is only about 16%. For this case, we expect block levels n =50-100 to

provide good ACF approximations. This is confirmed in Figure 6.4 where the ACF tails of

all approximations with n > 50 are almost indistinguishable, with negligible relative error

(see Figure 6.5).

For 80% utilization, /2,n = 0.999614105 = 0.999595, which means that n greater than

1000, and possibly closer to 2000 is needed to have less than 5% difference with the same ACF.

One would think that there is little hope to analyze this system, as n = 2000 would result in

D<MApi an(j j) ^ p> with dimension 12006 x 12006 for the output MAP. However, Figure 6.4

shows that ACFs from block levels n = 400 and n — 600 capture the true ACF trend

relatively well. Figure 6.5 quantifies this, measuring a 1% relative ACF error for n = 600.

Our results show that the asymptotic behavior for large lags does not capture well the

transient effects for smaller lags, which, as we show later, turn out to be important in a

downstream queue. Obviously, utilization plays an important role. Note that large lags k

imply dependence of transition times between states tha t are k hops apart. If the proba­

bility of such an event is extremely low, capturing the appropriate ACF(fc) may not be as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

ACF of departures from BMAP(3)/H2/1 system

£oU
o

n = 25
n = 50

n= 100
n = 20030% Utilization

le-04
le-05
le-06
le-07
le-08
le-09
le-10

1
0.1

0.01
c_o 0.001

1“ le-04
Co le-05
a
o le-06
s

< le-07
le-08
le-09
le-10

300

ACF of departures BMAP(3)/H2/1 system

80% Utilization
n = 50

n= 100
n = 200
n = 400
n = 600

n = 2000

J __________L
0 1000 2000 3000 4000 5000 6000 7000 8000

lag k

F igu re 6.4: Autocorrelation of the departures from a 30% utilized and an 80% utilized
BMAP(3)/H 2 / 1 systems.

important.

6.3 .2 T h e R ole o f U tiliza tion

The proof of Theorem 6.2 shows that it is the last two block columns in D ^PAP) and D <1̂ AP)

(see Eq. (6.2)/(6.3)) of the approximate model tha t introduce the error. These two block

columns correspond to the lumped level and its interaction with the rest of the Markov chain.

Intuitively, all information about dependencies between the levels lumped into a single big

level is overlooked. One can easily prove that if the stationary probability of the lumped state

is zero, then the introduced error due to lumping reduces to zero as well. It is reasonable,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

1 fkx- * * ___
-x -

0.01
[1.
^ le -04

le -06

le-08

U le—10
PS

le—12 30% - x- ■
le -14

0 100 200 300 400 500 600
block level n

F i g u r e 6 .5 : R e la tiv e ACF e r ro r u n d e r d iffe ren t t r u n c a t io n leve l n fo r s y s te m u ti l iz a tio n s e q u a l to
30% a n d 80%.

therefore, to expect very small approximation errors if the above probability is non-zero but

sufficiently small. This is the case when the queue has a very low utilization. This suggests

an approach for identifying the block level as the smallest n such tha t 7r^°e < e, where e is

a predefined small threshold.

Figure 6 . 6 gives the probabilities of the lumped states under different truncation levels n,

for the two utilization levels of our example queue BMAP(3)/H 2 / 1 . Under 30% utilization,

7r“ is less than le - 6 for all n > 54, and less than le-10 for all n > 92. This is in agreement

with our previous asymptotic analysis, but more surprisingly, the decay of probabilities

approximates well the relative error in the ACF approximation as shown in Figure 6.5.

Turning into the system with 80% utilization, we see that 7r£° is still larger than le — 6

even for n = 2000. This also agrees with our asymptotic analysis. Also surprising here is

the level of agreement between the decay of probabilities and the relative error in the ACF

of Figure 6.5. For example, for n = 600 the relative ACF error is 0.01 while 7r ^ 0e = 0.01 !

It is possible, therefore, tha t an approximate departure process with two digits of accuracy

(n = 600) produces a sufficiently accurate input to the second queue, and a sufficiently

accurate metric such as mean queue length.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

• 30%

* 001
H 0.001
I le-04
S-H

£ le-05

S> l e - ° 6

tb le-07
le-08
le-09
le-10

200 400 600 800 1000 1200 1400 1600 1800 20000
block level n

Figure 6 .6 : Probabilities of the lumped states for different truncation levels n under system
utilizations 30% and 80%.

More importantly, the accuracy of the final metric depends on the utilization of both

the first and second tier systems. As we show later, if the second tier system has very low

utilization as in Figure 6.7, even a block level n = 15 for the first queue with 80% utilization

provides excellent approximations to the queue length. We further elaborate on this in

Section 6.4.

6.3 .3 R em arks on th e M E A pproxim ation

Although ME output model in Chapter 5 lacks of physical interpretability as

the MAP model, its preserves the same,e matrix properties. The above discussion of the

asymptotic autocorrelation behavior is valid for the ME output as well.

Table 6 . 2 gives the second largest eigenvalue of (—Do^1E))_1D ^ E) for the BMAP(3)/H2/1

example under the 30% and 80% utilizations. These values also confirms tha t the ME output

model captures autocorrelation of the exact departure process worse than the MAP output

model with compared to the second largest eigenvalues of (—D o ^ p))~1D (1'^ p> in Table 6.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

Table 6 .2 : T h e se c o n d la rg e s t e ig en v a lu e o f (—D g ^E)) 1D ^).

30% Util 80% Util

n 2nd Eigenvalue n 2nd Eigenvalue

3 0.787447 3 0.657528

4 0.790878 4 0.648375

5 0.791682 5 0.754235

1 0 0.826577 1 0 0.891940

25 0.931856 25 0.957455

50 0.950909 50 0.980542

1 0 0 0.956804 1 0 0 0.990440

2 0 0 0.958508 2 0 0 0.997386

400 0.958970 400 0.998944

600 0.959059 600 0.999291

6.4 Experim ental R esults

We use the BMAP(3)/H2/1 system as the first queue that is the same as the one in Sec­

tion 6.3. At the second queue, we present experiments with two different service processes

for comparison purposes. In the first experiment, the service process has an Erlang-2(E2)

distribution with mean rate equal to 1.6667 and SCV equal to 0.50 as in Section 6.2.1. In the

second experiment, the service process is an MMPP with the same mean rate as 1.6667, SCV

equal to 20, and ACF starting at 0.4 at lag 1 and decaying to 0.001 beyond lag 36. Same as

before, the rates of the service processes of the two nodes are scaled in order to achieve light

system load (30% utilization) and high system load (80% utilization) across both nodes,

i.e., we use all four combinations of utilization levels 30%-30%, 30%-80%, 80%-30%, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

80%-80%.

Figure 6.7 presents performance results at the second queue with MAP approximations of

different size (i.e., block level n) as input. We focus on how well the output approximations

of the first server can capture the mean queue length of the second server as the mean queue

length is a performance measure that is truly affected by autocorrelated flows. Average

throughputs and utilizations remain the same because the marginal distributions of the

approximations are identical. The figure presents the average queue length error as a function

of n. The figure shows tha t small block levels n consistently underestimate performance.

The degree of error changes significantly from case to case (see the various ranges in the

y-axes).

Under 30% utilization in the first queue, n as small as 25 is enough to provide nearly exact

results, see Figure 6.7(I)-(II). For the 80% utilization cases in the first queue (Figure 6.7(111)-

(IV)), the figures show that deciding the ideal n of the output of the first queue depends

on the utilization level of the second queue. For small utilization of the second queue, small

n is sufficient. The more bursty service process in the second experiment with the MMPP

requires a higher block level n to reach a similar error level as in the first experiment with

the more stable Erlang-2 service process.

The harder case is the 80%-80% one. Figure 6.7(IV) shows that n = 400 is required

to achieve comparable error. This is in agreement with the asymptotic results presented

in Section 6.3. Values of n as high as 100 result in around -5.7% error, making the cost

of the method prohibitive for network decomposition in networks that operate under high

utilization levels for all queues. In the next section we propose a remedy to this problem

that strikes a balance between the size of the approximation and performance accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

1. 30% -30%
Relative error o f QLEN in server 2

- 0.2

-0 .4£
o
t11U>

- 0.6 E 2 (S e rv e r 2) — i— Q L E N : 0 .9 3 1 3

M M P P (S e rv e r 2) Q L E N : 1 3 .1 0 5 1- 0.1

1)
* - 1.2

-1 .4

- 1.6
100

block level n

II. 30% - 80%
Relative error of QLEN in server 2

—i------1----- ¥----- 1------1—

_ i _

30 7040 50 60
block level n

III. 80% - 30%
Relative error of QLEN in server 2

80 90

10 20 30 40 50 60 70
block level n

VI. 80% - 80%
Relative error of QLEN in server 2

80 90

E 2 (S e rv e r 2) — Q L E N : 1 0 2 .7 7 5 3

M M P P (S e rv e r 2) - x - Q L E N : 3 2 2 .6 8 1 8

100

0
-0 .5 T

i i ' i _ i ____- * — +. - - i _ — 1 i— i------------------

^ -1 _ r " ' "

£ -1 .5 - i E 2 (S e rv e r 2) — i— Q L E N : 0 .7 4 2 9

1 - 2 ~ * M M P P (S e rv e r 2) - * - Q L E N : 9 .3 6 4 7
S -2 .5 - i -
•5 - 3 - i -

1 - 3 '5
- 1 -

- 4 _ i *
-4 .5

i -
- 5 * 1 1 1 1 1 1 1 1 1

100

0

-5

£ -1 0
§u
u -1 5

■a
-2 0

-2 5

-3 0

I l i i i

-

E 2 (S e rv e r 2) — i— Q L E N : 2 7 .4 6 8 6 -

M M P P (S e rv e r 2) — * - Q L E N : 2 8 7 .8 7 4 2 _

< y

7 -

1 i i i i i i i
50 100 150 200 250

block level n
300 350 400

F ig u re 6.7: Experimental results of MAP approximation: mean queue length relative errors at
server 2 of I. 30%-30% system, II. 30%-80% system, III. 80%-30% system and IV. 80%-80% system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

6.5 Im proving Accuracy w ith M ultiple Lumping

In Section 6.1 we showed that the lumped level eliminates the existing dependence among

the various levels beyond n of the original infinite process, therefore higher n results in more

accurate models. Nonetheless, the size of n needs to be kept at a minimum for any practical

consideration. Here, we propose to break the single lumped level into several lumped levels,

such that the dependence of the original process is recovered to some extend. Following this

idea, we lump multiple levels up into to a certain predefined level as in Figure 6 .8 . Let w

(a) Single lump (base-case approximation)

(b) Multiple lumps

Figure 6 .8 : High level idea of lumping multiple levels.

denote the number of lumps of the departure process, and [s*, i*] be the set of levels to be

lumped in the ith lump, where 1 < i < w, s* < fj, and tw is equal to oo. Note that si must

be larger than or equal to 1 to avoid losing correctness of the marginal distributions of the

approximation.

Lem m a 6.2 I f the boundary states are not lumped (i.e., s i > 1), then the approximated

departure process using multiple lumps preserves exactly the marginal distributions of the

interdeparture times o f a BM AP/M AP/1 queue, and it preserves the exact autocorrelation

up to lag (Si — I).

Proof: Since the stationary probabilities of the lumped levels are exactly derived by the

probabilities of the Markov chain in the original BMAP/MAP/1 system, one can easily

extend the proof of Theorem 6.1. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Consider the 80%-80% utilized system in Section 6.4 again. Here, we use multiple lumps

by setting the number of levels tha t are lumped together to (7, as illustrated in Figure 6.9.

All lumps are contiguous, i.e., Sj = 1 , U = Si + C — 1, si+i = U + 1 for all 1 < i < w — 1. Note

(a) C = 1

® O 0 © • • •

Figure 6.9: High level idea of multiple lumping: consecutive C levels are lumped in single lumps.

that the limit case of C — 1 is the original approximation, i.e., all levels beyond n are lumped

into a single level. Figure 6.10 provides the autocorrelation of the approximated departure

process with different values of C. The number of block levels of these approximations is

0.16

0.14

e 0.12o
M, o.i
6o 0.08u
2 0.06
3

< 0.04

0.02

0
2 4 6 8 10 12 14 16 18 20

lag k

Figure 6.10: Total number of block levels is 51: autocorrelation of the departures from server
1 /arrivals to server 2 .

the same and equal to 51, i.e., their MAP matrices have the same size. (7 = 1 preserves

exactly the ACF up to lag 49. When C > 1, the approximated process loses its short range

dependence starting from lag 1. The error increases as C increases, because dependence in

Autocorrelation of arrivals to second node

C=1
C = 2 ------
C=6

C=10
C=20

le-04
le-05
le-06
le-07
le-08
le-09

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

the initial boundary levels is ignored. Focusing our attention to higher lags (see the inset

graph in Figure 6.10), large C's reflect better the asymptotic behavior of the second largest

eigenvalue of the original model. Judiciously selecting C may balance the trade-off between

the effect of small and large lags.

In the following, we propose a greedy algorithm to decide C for a pre-determined block

level. Assuming that the block level n is pre-defined, our purpose is to find a good multiple-

I. Ci <— 1 /* match exact acf for the first chunk */

II. for i — 2 —> m /* decide [C2, • ■ • , CmJ */

1 . /* initialization */

c <— 0 /* lumping level is initialized as 0 */

Q LE N 2 <— 0 /* the avg. qlen in server 2 is set as 0 */

2 . /* increase lumping level gradually till the optimal

performance in the second server is found */

do

a. QLENprey <— Q LE N 2

b. Cj <r- c + 1 for i < j < rn

c. approximate the departure process using

[Ci,C2,--- , c m\

d. use the departure process as the arrival process in

server 2 and get its average queue length Q LE N 2

w hile (Q LE N 2 > Q LE N wtv)

3. Q * - c

Figure 6.11: Setting [C\,C2, , Cm) using a greedy algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

lumping tha t achieves good performance given the restriction of the size n. Assume tha t n is
m

to be divided in m chunks. Let the ith chunk consist of 6, blocks so that b, = n. For each
i = 1

chunk i, the number of levels that is collapsed into a single lump is constant and is denoted

by Ci. As both the stationary probabilities and absolute ACF values decrease geometrically,

the matches of the first lags are important. C\ = 1 always, so that the exact autocorrelation

values up to lag (&i — 1) are exactly preserved. [C'2 , C3 , • • • , Cm] are determined by the

algorithm in Figure 6.11.

Figure 6.12 shows the relative error of the average queue length in the second queue

using the multiple lumping algorithm of Figure 6.11. The results are for the 80%-80%

Relative error of QLEN in server 2

-10

-15

-20
E2: single lumping ■
E2: multiple lumping - -

MMPP: single lumping —*—
M|V1PP: multiple lumping ~ ~Q- •

-25

-30
0 10 20 30 40 50 60 9070 80 100

block level n

Figure 6.12: Relative error of average queue length in server 2.

systems in Section 6.4, and are compared with the approximation performance using the

base-case approximation, i.e., single lumping. For very small n, i.e., 2, 3, 4 and 5, to avoid

significant errors in the first lags, we only use single lumping even under the multiple lumping

a p p r o x i m a t io n , i .e . , there is only one chunk and Cj = 1. For n = 10 we equally partition

the blocks into 2 chunks, and for n < 25, we equally partition the blocks into 4 chunks.

The effectiveness of the approximation now improves: for n — 25, the relative error of the

second queue length decreases to -7.6% and -6.1% for the experiments with Erlang-2(E2) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

MMPP service processes in server 2 respectively, while the corresponding values are -14.7%

and -11.3% with the base-case approximation; for n = 100, the relative errors are only -1.6%

and -2 .0 % for these two experiments.

6.6 Sum m ary

In this chapter, we derive a family of finite MAP approximation models of the departure

process of a BM AP/MAP/1 queue based on lumpability arguments, and compare it with

the ME approximation models presented in Chapter 5. For the MAP output model, sta­

tionary probability vectors need to be computed additionally, which makes the construction

of MAP representation more expensive than the construction of ME representation. How­

ever the MAP approximation can matches the first (n — 1) correlation coefficients of the

inter-departure time while the ME representation can only match the first (n — 2) values.

The benefit of matching one more correlation coefficient on the performance accuracy at the

downstream node is also demonstrated via experimentation.

This chapter also gives asymptotic analysis to best determine the size of the approxima­

tion n. Based on eigenvalue analysis of two key matrices of the MAP model as well as on

analysis of the decay of probabilities of the lumped level for increasing n levels in the approx­

imation, the block level n can be determined. We have shown that the size of n depends on

both the utilization level of the BM AP/MAP/1 process and the utilization level of the queue

that it feeds to. We have further presented a second category of approximations tha t aims

at significantly reducing the size of the output model by lumping several intermediate block

levels without performance loss. Extensive experimentation illustrates the approximation

quality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Policy Developm ent for Handling

System s w ith Autocorrelated Flows

Both workload characterization and analytic modeling aim toward the development of prac­

tical policies that can effectively improve the performance of systems with autocorrelation.

Although correlated flows are observed in the our work as well as in many other previous

papers, they are seldom considered in actual system design. In this chapter we illustrate

how autocorrelation can be used to improve performance for load balancing in a clustered

system.

Effective Load Balancing Under A utocorrelated Flows

In the past few years there has been a renewed interest in the development of load

balancing policies for clustered systems with a single system image, i.e., systems where a

set of homogeneous hosts behaves as a single host. Jobs (or requests) arrive at a dispatcher

which then forwards them to the appropriate server. 1 While there exists no central waiting

queue at the dispatcher, each server has a separate queue for waiting jobs and a separate

Bn this chapter we use the terms “jobs” and “requests” interchangeably.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

processor, see Figure 7.1. The dispatching policy is critical for system performance and

strongly depends on the stochastic characteristics of the jobs tha t request service as well as

on the performance measures that the system strives to optimize.

Prior research has shown that the job service time distribution is critical for the perfor­

mance of load balancing policies in such a setting [33, 32], If job service times are highly

variable, including job service times that are best characterized using heavy-tailed distri­

butions, then policies tha t balance the load in the system by using only the size of each

incoming job to determine the server that will be dispatched to, have been shown optimal

if the performance goal is to minimize the expected job completion time, job waiting time,

and job slowdown [23, 101].

Back - end Nodes

Front - end !

Dispatcher ;
Arriving tasks

u

Figure 7.1: Model of a clustered server.

Several types of clustered systems can take advantage of size-based policies. Locally-

distributed Web server cluster architectures that provide replicated services where a switch

acts as the initial interface between the cluster nodes and the Internet, are one example of

such systems [5, 101, 65]. For static requests in such systems, e.g., transfers of image files,

the job service time is analogous to the size of the transfered file, thus it can be immediately

used by the dispatcher to forward the request to the appropriate server. Content-distribution

networks and media-server clusters that provide streaming of high quality audio and video

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

from a central server configuration to a large number of clients are a second example of

a centralized system where size-based policies provide good balancing solutions [98, 16].

Finally, large storage systems which deploy mirroring for enhanced performance and data

availability are another case of a clustered system where load balancing based on the job

size is beneficial.

A significant body of research in task scheduling and load balancing has been developed

over the years, but only recently there has been a consensus that traditional load balancing

policies, i.e., join-the-shortest queue or join-the-least-loaded server, fail to balance the load

if job service times are highly variable and/or heavy-tailed [33]. For workloads with highly

variable service times size-based policies that advocate dedicating servers to jobs of similar

sizes have been shown to achieve high performance. Assuming tha t there are N servers, the

job sizes are partitioned into N intervals, [s0 = 0, s ^ , [si, s 2), . . . , [sw -i, s n = °°), so that

server i is responsible for satisfying requests of size between Sj_i and sl . By dedicating servers

to requests of similar size, these policies aim at reducing the average job slowdown through

separation of long and short jobs. Despite the fact tha t size-based policies are oblivious of

the instantaneous load in each server, they successfully load each server with approximately

the same amount of work so that they are equally utilized [32, 23]. Note that size-based

policies are based solely on a priori knowledge of the distribution of the incoming job sizes.

If this distribution is known, then size-based policies can minimize the expected job waiting

time and job completion time.

Even if the job service tim e distributions are not known a priori, on-line versions of

size-based policies have shown to m aintain high perform ance for workloads th at are highly

variable across time, i.e., workloads th at show transient behavior [101]. A d a p t L o a d has

been developed as an on-line version of a size-based policy th at m onitors the incom ing work­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

load and self-adjusts the above interval boundaries according to changes in the operational

environment such as rapid fluctuations in the arrival intensities or service demand.

Nonetheless, size-based solutions are not adequate if the arrival streams in the dispatcher

are autocorrelated. Indeed, conventional wisdom has it tha t the arrival process in Inter­

net servers is not independent and it is an effect of the self-similar nature of the network

traffic [8 6]. Furthermore, autocorrelated flows in the arrival process has been observed in

systems including multi-tiered systems [54], large storage systems [28], an effect that has

been shown to be detrimental for performance [22], To alleviate the negative effects of au­

tocorrelation, traffic shaping has been used by dropping, reordering, or delaying selected

requests [12, 97, 17, 1],

In this chapter, we show tha t size-based load balancing policies cease to be effective if the

workload arrival process is autocorrelated. We show tha t as autocorrelation in the arrival

process increases, the performance benefits of size-based policies diminish. Based on our

observations, we propose a size-based load balancing policy tha t aims at reducing the per­

formance degradation due to autocorrelation in each server, while maintaining the property

of similar job sizes been served by the same server. This new policy, called D_EQAL, strives

to equally distribute work guided by autocorrelation and load, and effectively unbalances the

load in the system: not all servers are equally utilized any more, but overall system per­

formance increases dramatically. D_EQAL does not assume any a priori knowledge of the

job service time distribution nor any knowledge of the intensity of the dependence structure

in the arrival streams. By observing past arrival and service characteristics as well as past

performance, it self-adjusts its configuration parameters. To the best of our knowledge this

is the first time that dependence in the arrival process becomes a critical aspect of load

balancing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

This chapter is organized as follows. In Section 7.1 we compare the performance of a

size-based policy with several classic policies in the presence of autocorrelated arrival flows

in the system. The proposed on-line size-based policy is presented in Section 7.2 and its

performance is evaluated via simulation. Section 7.3 gives a summary of this chapter.

7.1 A utocorrelation Effects on Load Balancing Policies

In this section, we use trace driven simulation to examine the performance impacts of au­

tocorrelated arrivals in load balancing policies in the simple cluster depicted in Figure 7.1.

We assume tha t the number of nodes is equal to four. 2

The service process is obtained from traces of the 1998 World Soccer Cup Web site ,3 that

have been used in several studies to evaluate the performance in load balancing policies in

clustered web servers [101, 81, 84], Trace data were collected during 92 days, from 26 April

1998 to 26 July 1998, see [7] for more details. Here, we use part of the June 24th trace

(1 0 million requests), that corresponds to nearly ten hours of operation and we extract the

file size of each transfered request. Because the Web site contained only static pages, the

size of the requested file is a good approximation of the request service time. In the trace

used for the experiments, the average size of a requested file is 5059 bytes and its coefficient

of variation (CV) is 7.56. Figure 7.2(b) plots the average request size for batches of 10,000

requests for the duration of the trace, and shows that the average transfered size varies across

time.

Unfortunately, we cannot use the arrival process of the World Cup trace data because it

Experim ents with larger number of nodes have been also done but results are qualitatively the same and

are not reported here.
3Available from the Internet Traffic Archive at http://ita.ee.lbl.gov .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ita.ee.lbl.gov

152

is not detailed enough: arrival timestamps of requests are provided in seconds, as a result

there are multiple requests that arrive within one second periods. To examine the effect

of autocorrelation in the arrival process, we use a 2-stage MMPP, which with appropriate

parameterization allows for changing only the ACF while maintaining the same mean and

CV, tha t are equal to 1 and 4.5, respectively. The ACF of the three arrival processes that

we use here is illustrated in Figure 7.2(a).

NOACF

3 00 400
Lag(k)

700

9 0 0 0

8 0 0 0

S 7 0 0 0

ST 6000
(D 5 0 0 0 W)
<5 4 0 0 0

3 0 0 0
0 200 40 0 60 0 80 0 1000

(b) Monitoring window (every 10K requests)

F ig u re 7.2: (a) ACF for the three arrival processes used in the simulation and (b) Average request
size for every 10000 requests in the ten million sample space.

7.1.1 Load B alan cin g P olicies

We compare the performance of the following policies: A d a p t L o a d , a size-based policy

that does not require a priori knowledge of the service time distribution and has been shown

to be effective under changing workload conditions [101], the Join Shortest Weighted Queue

(JSWQ) policy [101], Join Shortest Queue (JSQ) [39], and Round Robbin (RR). The policies

are summarized as follows:

• A dap tL oad : In a cluster with N server nodes, A d a p t L o a d partitions the possible

request sizes into N intervals, {[s0 = 0, Si), [si, s2) , . . . [s j v - i , « jv = oo)}, so tha t if the

size of a requested file falls in the ith interval, i.e., [st- i , Si), this request is routed

to server i, for 1 < i < N . These boundaries s* for 1 < i < N are determined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

by constructing the histogram of request sizes and partitioning it in equal areas, i.e.,

representing equal work for each server, as shown by the following equation:

where F(x) is the CDF of the request sizes and the amount of total work is S. By

sending requests of similar sizes to each server, the policy improves average job response

jobs in the queue. For a transient workload, the value of the IV — 1 size boundaries

si, s2, . . . , s n - i is critical. A d a p t L o a d self-adjusts these boundaries by predicting the

incoming workload based on the histogram of the last K requests. In the simulations,

we set the value of K equal to 10000.

• JSW Q : The length of each queue in the system is weighed by the size of queued

requests, therefore each incoming request is routed to least loaded server.

• JSQ : When a request arrives, it is assigned to a server with the smallest waiting queue.

If multiple servers have the same queue length, then a server is selected randomly from

this group of servers.

• R R : In the round-robin algorithm, requests are routed to servers in a rotated order.

7.1.2 P erform ance A n alysis

Using trace-driven simulation we compare the performance of the four policies. In all our

experiments, we consider a cluster of four homogeneous back-end servers that serve requests

in a first-come-first-serve (FIFO) order.

(7.1)

time and average job slowdown by avoiding having short jobs been stuck after long

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

We evaluate the effect of autocorrelated inter-arrival times on the performance of load

balancing policies by analyzing the response time (i.e., wait time plus service time), the

average queue length (i.e., the total number of jobs in the server, both waiting and in

service), the average slowdown (i.e., the ratio of the actual response time of a request to its

service time), and the mean utilization. Figure 7.3 plots performance results for the four load

balancing policies in the three different experiments. Similar to the results in the previous

AdaptLoad JSWQ JSQ

10000

£ 1000 r

ea
C/5<U04

(a)

100 r

NOACF SRD LRD

10000

1000

O
O'

(b)

58 \ x

5 8 \\

(C)

100000

10000

1000

100

10

J ! \
II
1 1 $

NOACF SRD LRD

100

100

NOACF SRD LRD (d)
10

NOACF SRD LRD

F ig u re 7.3: Performance metrics under four load balancing policies: (a) average response time,
(b) average queue length, (c) average slowdown, and (d) average utilization.

chapters, Figure 7.3 shows that correlation in the arrival process degrades overall system

performance for all four policies. For example the overall performance under independent

arrivals (NOACF) is two orders of magnitude better than under SRD inter-arrivals, and

three orders of magnitude better than under LRD inter-arrivals, despite the fact that average

system utilizations are exactly the same for all experiments, i.e., the average utilizations are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

about 62%, see Figure 7.3(d) . 4 Most importantly, the figure also shows tha t A d a p t L o a d

outperforms all policies under independent inter-arrivals only, see Figure 7.3(a)-(c). Under

correlated arrival processes, A d a p t L o a d ’s performance is comparable to the three other

policies, essentially showing tha t separating requests according to their sizes is not sufficient.

To better understand this behavior, we turn to the autocorrelation of the arrival process

in each server. Figure 7.4 shows the ACF of the arrival process at each back-end server,

as well as the ACF of the arrival process at the front-end dispatcher (labeled as “original

stream” in the figure). When there is no autocorrelation in the inter-arrivals at the front-end

dispatcher, the ACF of inter-arrivals at each back-end server is almost zero for all policies

except A d a p t L o a d , see Figure 7.4(a). Because only a few requests are for large files,

the size-based A d a p t L o a d routes them to the fourth server only, and these requests are

spaced in such a way that there is autocorrelation in their arrival process to server four. The

middle column of graphs in Figure 7.4 shows the ACFs for the experiments with short-range

dependence in the arrival process, and the right column of graphs in Figure 7.4 shows the

ACFs for the experiments with long-range dependence in the arrivals. JSWQ and JSQ have

the weakest dependence while RR has the strongest dependence. Because A d a p t L o a d is a

size-based policy and the workload is heavy-tailed, most requests are for small files and the

first server receives most of requests. Therefore the ACF of its arrival process is very similar

to the original ACF of the arrival process at the dispatcher. High ACF in the arrivals at the

first server does not affect its utilization, which remains almost the same as the rest of the

servers, but its response time and slowdown deteriorate significantly and negatively affect

the overall performance .5 This suggests tha t perhaps in such systems unbalancing the load

4Per server utilizations for all experiments remain the same, and equal to about 62%.
5Weak ACFs in the arrival processes of all servers under JSW Q/JSQ help performance but because short

and long jobs are now be served on the same server in both policies, their performance remains low.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

(a) NOACF (b) SRD (c) LRD

0.5

0.4

0.3

0.2

0.1

0

- 0.1

ACF at arrival point of each server: AdaptLoad

1--
ACF at arrival point of each server: AdaptLoad

—i— i— i— F~
original stream

server 1
server 2
server 3

'***'̂ Mt*!# M*1 *** M»v v

_L _L J L _L _L

0.5

0.4

0.3

0.2

0.1

0

-0.1

1 1 1---- 1—
original stream

server 1
server 2
server 3
server 4

ACF at arrival point of each server: AdaptLoad

T~

_L _L I _L

1 1 1 1---
original stream ‘

server 1
server 2 '
server 3
server 4 '

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: JSWQ

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server. JSWQ

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server. JSWQ

0.5

0.4

0.3

0.2

0.1

0

-0.1

1 1 1 I 1 1
original stream _

server 1
- server 2 -

server 3
server 4

■ -

1 1 1 1 1 !

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: JSQ

0.5

0.4

0.3

0.2

0.1

0

-0.1

T T 1 ------- 1------- 1------- r
original stream

server 1
server 2
server 3
server 4

I _L i _L » _L

0.5

0.4

0.3

: 0.2

0.1

0

- 0.1

0.5

0.4

0.3

0.2

0.1

0

- 0.1

1 1 1 1 1 1
original stream _

0.5

0.4

1 1 i i r i
original stream _

server 1 server 1
- \ server 2 -

server 3 p-
0.3 \ server 2 -

n. server 3
server 4 < 0.2 server 4

V 0.1

0
1 1 1 1 1 1 1 1 1 1 1 t

) 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: JSQ

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: JSQ

“I 1----1----T
original stream

server 1
server 2
server 3
server 4

original stream
server 1
server 2
server 3
server 4

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: RR

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: RR

0.5

0.4

0.3

0.2

0.1

0

- 0.1

I 1 1 1 1 1
original stream _

server 1
- server 2 -

server 3
server 4

■ ■

1 1 1 1 1 1

i— i— i--------r
original stream

server 1
server 2
server 3
server 4

0 100 200 300 400 500 600 700

Lag(k)

ACF at arrival point of each server: RR

X -1— 1-----1-----r
original stream

server 1
server 2
server 3
server 4

100 200 300 400 500 600 700

Lag(k)

100 200 300 400 500 600 700

Lag(k)

0 100 200 300 400 500 600 700

Lag(k)

Figure 7.4: ACF in inter-arrivals at each server, where the arriving requests at the front-end dis­
patcher have (a) no dependence, (b) short range dependence (SRD), and (c) long range dependence
(LRD).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

(i.e., reducing the utilization level of the server with correlated arrivals) while maintaining

the property of serving jobs of equal size in the same server may improve performance.

7.2 Unbalancing Load to Improve Perform ance

In this section, we propose an enhancement to the A d a p t L o a d policy that accounts for

dependence in the arrival process by relaxing A d a p t L o a d ’s goal to balance the work among

all nodes of the cluster. The proposed policy strives to judiciously unbalance the load among

the nodes by moving jobs from the nodes with a strongly correlated arrival process to nodes

with weaker correlation in their inter-arrival times. First we present a static version of the

policy where the load of the severs with correlated interval times is reduced by a static per­

centage while the load of servers with no autocorrelation in their arrival process increases.

Then, we present a dynamic version of the same policy where measured workload charac­

teristics and policy performance measures guide load unbalancing in the system to improve

overall system performance.

7.2.1 S_EQAL: S tatic P o licy

Recall tha t A d a p t L o a d is based on the idea that given that in an A-server cluster the

amount of total work is S, then the best performance is achieved if requests are assigned to

the servers such that each server serves S /N of the work, i.e., load is well balanced across all

servers. Associating the request size with the work a server has to do, A d a p t L o a d equally

distributes the work among servers by determining boundaries of request sizes for each server.

These boundaries s, for 1 < i < A are determined by constructing the histogram of request

sizes and partitioning it in equal areas, i.e., representing equal work for each server, as shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

by Eq. (7.1) .

S-EQ AL uses the same histogram information, but sets the new boundaries s' by weight­

ing the work assigned to each server as a function of the degree of correlation in the arrival

process based on the observation that in order to achieve similar performance levels un­

der autocorrelated arrivals, the system utilization must be lower than under independent

arrivals.

We introduce a shifting percentage vector p = (pi,P2 , • ■ • , P n) , so that the work assigned

at server i is now equal to (1 + p ,) jj for 1 < i < N . Note that p, can take both negative

and positive values. A negative p, indicates that the amount of work assigned at server i

should be less than the equal share of S /N . A positive pt indicates tha t the amount of work

assigned at server i should be higher than the equal share of S /N . Because the shifting

percentage p* simply shifts the amount of work from one server to another it should satisfy

the equation XaliP* = 0 for 1 < i < N . The following equation formalizes this new load

distribution:

f x ■ dF{x) « (1 + P i)^ j, 1 < i < N. (7.2)
Jsi- 1 ™

Figure 7.5 gives an illustration of the high level idea of this new policy.

First, we statically define the values of pi for 1 < i < N , by letting pi be equal to a pre­

determined corrective constant R , 0% < R < 100%, and then by calculating the rest of the

shifting percentages p, for 2 < i < N using a semi-geometric increasing method, as described

by the algorithm in Figure 7.6. Because the first server is usually the one that serves the

small requests and has strong autocorrelated inter-arrival times, the shifting percentage p\ is

negative, i.e., pi = —R. For example, if we define R — 10% then the shifting percentages for

a 4-server cluster are pi = —10%, p2 = —1.67%, p3 = 3.33% and p4 = 8.34%. For R = 20%

the shifting percentages are twice as high as in the case of R = 10%. i.e., p 4 = —20%,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

♦
to server 1.

/ ' : \
; to \

server
r",• :■ £

Shifted boundaries

Assume N=4 servers

\{o server 3

V to server 4

Size

LJ
Sq = 0 J j O ld S2 o w s 3 o ld

.S', S-y S-
Figure 7.5: S_EQAL’s high level idea to recalculate boundaries under autocorrelated inter-arrival
times.

P2 = —3.34%, p3 = 6.67%, and p4 = 16.67%.

1 . initialize variables

a. initialize a variable adjust adjust — —R

b. initialize the shifting percentages Pi = 0 for all 1 < i < N

2. for i — 1 to N — 1 do

a. add adjust to Pi Pi Pi + adjust

b. for j — i + 1 to N do

equally distribute adjust to the remaining servers a d j u s t
yj Pj N - i

c. reduce adjust to half adjust <— ad just/2

Figure 7.6: Setting the shifting percentages pi for S-EQAL.

7.2.1.1 A rrival p rocess w ith sh o rt-ran g e d ependence

We evaluate the performance of S-EQAL using the short range dependent arrival process

used in Section 7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

First, we quantify the effect of the corrective constant R tha t we use to generate the

values of the shifting percentages p, for 1 < 2 < TV by computing the average slowdown

and average response time of requests under S-EQAL for different values of R. We present

our findings in Figure 7.7. R = 0% corresponds to the the original A d a p tL o a d , i.e.,

"^3—1— 1— 1— 1— 1— 1— 1— 1— r7000
6000

c 5000
I 4000
| 3000Vi

2000
1000

0

-

-

-

-

-

-

$7

12000

10000

= 8000

ORG 10 20 30 40 50 60 70 80 90
(a) R (%)

ORG 10 20 30 40 50 60 70 80 90
(b) R (%)

Figure 7.7: Average slowdown and average response time as a function of the corrective constant
R under SRD inter-arrival times.

no shifting of boundaries. Figure 7.7(a) shows that the average slowdown of all requests

improves as R increases (i.e., the boundaries are shifted to the left compared to the original

A d a p t L o a d). We observe tha t the best performance is achieved for R = 80% (i.e., p\ =

—80%). However, Figure 7.7(b) indicates that the best performance for response time is

achieved when R = 40%. Therefore, a good corrective constant is R — 40%, where average

slowdown improves by 75.1%. Average response time improves by 41.9% when compared to

the original A d a p t L o a d .

We present the per server performance in Figure 7.8. Per server utilizations shown

in Figure 7.8(d) verify that the shifting percentages pi indeed imbalance work across the

cluster. As R increases, the utilization of the first two servers decrease while the utilizations

of the last two servers increase. The last server’s utilization is now the highest in the

cluster. Reducing utilization in the first server reduces its request slowdown, as shown in

Figure 7.8(a), but the extra work tha t is now assigned to servers 3 and 4 do not increase their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

server4server3 E ssaserver2server!
16000
14000
12000

12000

10000

§> 8000S 10000
8000

I k s i t P -̂L- —

30 50
R(%)

le+06

100000

10000H o
1000c

I 100

70ORG 10 30 50 90
R(%)

100

co
ed
—

ORG 10 30 50 70 90
R(%)

Figure 7.8: Per server performance measures: (a) average slowdown, (b) average response time,
(c) average queue length and (d) average utilization as a function of the corrective constant R with
SRD inter-arrival times. The order of bars for each policy reflect the server identity.

slowdown significantly for small values of R. For R — 90%, slowdown at server 4 becomes

very high, almost twice as high as for server 1 under the original A d a p t L o a d . The average

per-server queue length behaves similarly to the average slowdown (see Figure 7.8(c)). The

average response time displayed in Figure 7.8(b) shows that small R values decrease average

response time of the first server and increase the response time of the last server. If the

portion of additional requests served by the last server is small, then the contribution of the

last server performance values to the overall performance degradation is not significant. As

R increases, more jobs are assigned to higher servers, which counterbalances the benefits of

decreased utilization at the first servers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

7 .2 .1 .2 A rrival process w ith long-range dep en d en ce

We evaluate the performance of S-EQ A L under long range dependent (LRD) inter-arrival

times in the cluster. Figure 7.9 gives the average request slowdown and the average request

response time as a function of the corrective constant R. In Figure 7.9 we observe the same

performance trends as in Figure 7.7 but higher absolute values than under SRD. The smallest

average request response time is achieved for R — 40%, which represents an improvement

of 49.2% compared with the original A d a p t L o a d (i.e., R = 0%). The average request

slowdown for the optimal R value is 67.2% better than with the original A d a p t L o a d .

25000 14000
12000

| 10000

u 8000(A
| 6000

20000
C
| 15000 ■oS
5 10000

ORG 10 20 30 40 50 60 70 80 90 ORG 10 20 30 40 50 60 70 80 90
(a) R(%) (b) R(%)

Figure 7.9: A v erag e s low dow n a n d av e rag e re s p o n se t im e as a fu n c t io n o f c o rre c tiv e c o n s ta n t R
u n d e r L R D in te r -a r r iv a ls tim e s .

Figure 7.10 illustrates the per server performance under LRD traffic in the cluster. Al­

though performance trends are similar as with the SRD case, they are more exaggerated here.

Both average slowdown and average response time of the first server reduce as R increases

(see Figures 7.10(a)-(b)), but a turning point exists where shifting more work to subsequent

servers adversely affects slowdown. In the following section we present a dynamic algorithm

tha t decides the amount of work to be shifted on-the-fly and strikes a good balance across

both performance measures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

server1 server2 server3 s s s a server4
30000

25000

20000eSo•a
o

15000

^ 10000

5000

70ORG 10 30 50 90
(a)

12000

10000

L =
30 50

R(%)

le+06

100000u
P 10000

2 1000
Fi­

lm
>f\

ORG 10 30 50 70 90

100

co
cd
N

P

ORG 10 30 50 70 90(b) (d) R(%)

Figure 7.10: Per server performance metrics as a function of the corrective constant R under LRD
traffic: (a) average slowdown, (b) average response time, (c) average queue length and (d) average
utilization. The order of bars for each policy reflect the server identity.

7.2.2 DJEQAL: O n-line P o licy

In the previous section we gave a first proof of concept that load imbalancing can be beneficial

for performance in clusters with autocorrelated inter-arrival times and heavy tailed service

requests, but performance improvements depend on the degree of load imbalancing that

is introduced by the corrective constant R. A good choice of R can result in significant

performance improvements, but an unfortunate choice may also result in poor performance.

Here we present an on-line version of the policy that monitors the workload as well as the

effectiveness of load balancing, and its performance is now independent of the choice of

R. Based on continuous monitoring, the policy readjusts the degree of load imbalancing

on-the-fly while aiming at improving both average response time and average slowdown.

We use an updating window of C requests that have been served by the cluster. C must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

be large enough to allow for statistically significant performance measurement but also small

enough to allow for quick adaptation to transient workload conditions. In the experiments

presented here C is set to 300K. 6 The policy starts by setting R to zero, i.e., no load shifting

is proposed beyond the computed A d a p t Lo ad intervals. For every batch of C requests, we

compare the relative performance improvement/ decline in comparison to the previous batch

of C requests. The two performance measures tha t we examine are the average slowdown

(Avgsid) and the average normalized response time {Avgnrea). which is defined as follows:

^ average response tim e o f requests in the kth batch
nres average fi le size o f requests in the kth batch

Then, according to the comparison of the values of average slowdown and normalized re­

sponse times, we readjust R by a, small pre-determined value adjief t or adjright■ The following

four corrective actions can be taken:

• Correct left: R <— R + adjief t .

• Correct right: R *— R — adjright.

• Correct continuously: If the previous adjustment is “correct left” , then correct left. If

the previous adjustment is “correct right” , then correct right.

• Correct reversely: If the previous adjustment is “correct left” , then correct right. If

the previous adjustment is “correct right” , then correct left.

In our experiments, adjief t and adjright are set to 10% under medium or heavy load (i.e.,

10% of the load is shifted left or right in the histogram of Figure 7.5 in order to recalculate

6We examined the robustness of D .EQAL by different C values ranging from 100K to 800K, which

achieve similar performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

the interval boundaries). Under light load (i.e., system is under 30% utilized), adjief t is

set to 20% to avoid slow adjustment of reaching the best performance. Note tha t we do

not monitor the dependence structure of arrival streams in this online algorithm, but trust

D_EQAL to find the optimal R.

The algorithm in Figure 7.11 describes how the corrective constant R is dynamically

adjusted every C requests. Once a new value for R is set, the corrective factors pi are

computed according to the algorithm of Figure 7.6. Finally, the per server job size boundaries

are computed according to Eq. (7.2) using the recalculated p*.

7.2.2.1 P erfo rm an ce o f D_EQAL

In this section, we evaluate the effectiveness of D_EQAL. As in the previous sections,

each experiment is driven by the WorldCup 10 million request trace, the boundaries of

A d a p t L o a d are computed every K = 10K requests, while the adjustment of the corrective

factors for D_EQAL happens every C — 300K requests,

We compare the original A d a p t L o a d , S-EQ AL with various values of its corrective

constant R, and D_EQAL. Note that in the dynamic policy, we start with a value of R = 0,

which indicates tha t we rely on the adaptive algorithm to find the best value of R. Results

for various system utilizations of 30%, 62% and 80% are presented in Figure 7.12-7.14. In

all the results, the on-line policy (labeled “D_EQAL”) is comparable to the best performing

S_EQAL, where R is set to a set of static values. D_EQAL manages to adjust R such that

both slowdown (Figures 7.12-7.14(a)) and response time (see 7.12-7.14(b)) are improved.

Figures 7.12-7.14(c) show how the value of the corrective constant R changes over time

under NOACF, SRD and LRD arrivals under different utilizations, respectively. Observe

that when system has no autocorrelation, R sits in value 0 most of time no m atter what

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

1. initialize

a. set R <— 0

b. k <— 0

2. every C requests

a. compute the current system utilization and set adjiejt and adjright

b. compute the current performance metrics Avgsid(k) and Avgnres(k)

c. if (k = 0)

th e n I. Correct left

I I . go to 3.

1 A v g n r es(k) -A vg nres(fc -1) ^ Avgsld(k) - A v g sid (k - 1)
Avg nres (0) ^ Avgsld(0)

th e n I. Correct right

II . go to 3.

e. if (Avgsid(k) > Avgsid(k - 1) or Avgnres(k) > Avgnres(k - 1))

th e n Correct reversely

else Correct continuously

3. Compute Pi for 1 < i < N using the algorithm of Figure 7.6

4. k <— k + 1

5. goto 2.

F ig u re 7.11: D_EQAL: dynamically adjusting R.

the system utilization is. However under SRD or LRD arrival process, R, that starts from

0, converges toward the best performing. Under 20% utilized system, R oscillates around

60%, while under 62% and 80% systems, R is around 40% and 20% respectively. All these

targeted values are the optimal R under S-EQAL in Section 7.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

I . N O A C F
I 1----1----1----1

III. LRD

S 1500

■a 1000

O RG 10 30 50 70 D Y N

corrective constan t (R%)

ORG 10 30 50 70

corrective constant (R%)

ORG 10 30 50 70 D Y N

corrective constant (R%)(I.a)

(I.b)
ORG 10 30 50 70 D Y N

corrective constan t (R%) (H.b)
10 30 50 70

corrective constan t (R%) (in.b)
ORG 10 30 50 70 D Y N

corrective constan t (R%)

100 100 100

%
s0I

8©1©o
11
I 200 0 200 400 800 1000 200 400 1000400 600 1000 600 0 600 800

(I.C) M onitoring w indow (every 10K requests) (II.C) M onitoring w indow (every 10K requests) (HI.C) M onitoring w indow (every 10K requests)

Figure 7.12: Performance of NOACF, SRD ad LRD traffic under average utilization 20%. The first
two rows are average slowdown and average response time for the original A daptLoad, S_EQAL
with various values of R, and D_EQAL. The third row is the corrective constant R as a function
of time (measured in processed requests) for C = 300K.

To further understand how D_EQAL adjusts R value, we present the performance of the

on-line policy over time. Figure 7.15 gives results under medium load, i.e., 62% utilization

(the x-axis of all the plots in Figure 7.15 represents the number of batches of K requests

processed so far). 7 Figures 7.15(b) and (c) show the average request slowdown and response

time, respectively. Note the similar shape of both metrics across time, which indicates the

effectiveness of load imbalance. As the average size of requests is increasing starting from

the 600th monitoring window (see also Figure 7.2(b)), the utilization in this system becomes

7we observe the same over-time behavior of light load and heavy load as that of medium load so that we

do not report them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

I. NOACF II. SRD III. LRD

(I.a)

(I.b)

O RG 10 30 50 70 DYN

corrective constan t (R%)

7000

6000

5000

%
-3
io

4000

3000

2000

1000

O RG 10 50 70 DYN30

(II.a) corrective constan t (R%)

corrective constan t (R%)

~r
(n.b) corrective constan t (R%)

n n i n n

25000

20000

S 15000

■a 10000

5000

ORG 10 30 50 70 DYN

10000 3500

~ 3000
*ccs c 2500

1000
2000E

S 150°

£ . iooo g
500

Ss.g
100

O RG 10 30 50 70 DY N O RG 10 30 50 70 DY N

(III.a)
6000

^ 5000■aB

| 4000
J 3000

| 2000

E 1000

0

(Ill.b)

200 400 600 800 1000

M onitoring w indow (every 10K requests) ^

100

0 200 400 600 800 1000

corrective constan t (R%)

“I 1----1-- T

O RG 10 30 50 70 DYN

corrective constan t (R%)

100

80

60

40

20

00 200 600400 800 1000

M onitoring w indow (every 10K requests) (in.c) M onitoring w indow (every 10K requests)

F ig u re 7.13: Perform ance of NOACF, SRD ad LRD traffic under average utilization 62%. The first
two rows are average slowdown and average response tim e for the original A d a p t L o a d , S_EQAL
w ith various values of R, and D_EQAL. T he th ird row is the corrective constant R as a function
of tim e (m easured in processed requests) for C = 300K.

larger thereafter. Correspondingly the R value decreases during this period, especially with

LRD arrivals (see Figure 7.15(111.a)).

7.3 Sum m ary

In this chapter, we evaluate the performance of sized-based load balancing policies for homo­

geneous clustered servers under correlated arrivals. We show' tha t under correlated arrivals

sized-based policies, which have been shown to successfully balance load and improve per­

formance when service demands are highly variable, are now ineffective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

I. NOACF III. LRDII. SRD
14000 50000

4500012000
40000

35000i 30000

25000
o 6000 *5 20000

15000

O RG 10 30 50 70 DYN

corrective constan t (R%)

O RG 10 30 50 70 DYN

corrective constan t (R%)

O RG 10 30 50 70 DYN

corrective constan t (R %)

25000 25000I00000
•3 20000 20000

15000

S 1000
0000

fi 5000

70 DYN

(I.b)

O RG 10 30 50 70 DYN

corrective constan t (R %) ^

O RG 10 30 50 70 DYN

corrective constan t (R %) (Ill.b)
ORG 10 30 50

corrective constan t (I

100100 100

i
>•a
£c

•a

Ic

400 1000200 400 800 1000 0 200 400 600 800 1000 0 200 600 800600

(I.C) M onitoring w indow (every 10K requests) (II.C) M onitoring w indow (every 10K requests) (in.c) M onitoring w indow (every 10K requests)

F ig u re 7 .14: Perform ance of NOACF, SRD ad LRD traffic under average u tilization 80%. T he first
two rows are average slowdown and average response tim e for the original A d a p tL o a d , S-EQAL
w ith various values of R , and D-EQAL. T he th ird row is the corrective constant R as a function
of tim e (m easured in processed requests) for C = 300K.

Our experiments show tha t if the arrival process is correlated, then it is not enough for

a size-based policy to equally distribute the work among the servers in the cluster - if the

arrival streams to individual servers are correlated, then performance significantly degrades.

We propose a new size-based load balancing policy, called D_EQAL, tha t strives to distribute

the work such tha t the load to each sever is proportional to the correlation structure of the

arrival process to that server and still separates jobs to servers according to their sizes. As

a result of this effort, not all servers are equally utilized (i.e., load in the system becomes

unbalanced) but this imbalance results in significant performance benefits. D_EQAL does

not require any prior knowledge of the correlation structure of the arrival stream or of the job

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

I. NOACF II. SRD III. LRD

n n n n , n u
(I.a)

240

220
200
ISO
160

140

120

(I-b)

(Ix)

0 200 400 600 800 1000

M onitoring w indow (every 10K requests) ^

— i------ 1------n----- 1 25000

jui ih. J l U l l k d

200 400 600 800 1000

M onitoring w indow (every 10K requests) ^ j j

“ I--------------1--------------1--------------1 5000

4500

| 4000

1 3500
3 3000
| 2500
8 2000
| 1500

2 iooo

500

0
200 400 600 800 1000

M onitoring w indow (every 10K requests) ^j j ^

100

2000 400 600 800 1000

M onitoring w indow (every 10K requests) (III.a)

100

0 200 400 600 800 1000

M onitoring window (every 10K requests)

90000

80000
20000 70000

60000i 15000
o 50000

5 4000010000
30000

20000

M onitoring w indow (every 10K requests)

. [i lk iii i u O iJ i l

(IH.b)
18000

_ 16000

| 14000

§ 12000

Y 10000 ~ 8000

| 6000

g 4000

2000

0

200 400 600 800 1000

M onitoring window (every 10K requests)

| i Upr̂ WlrmriWrT
200 400 600 800 1000 0 200 400 600 800 1000

M onitoring w indow (every 10K requests) (III C) M onitoring window (every 10K requests)

Figure 7.15: Corrective constant R, average slowdown, average normalized response time as a
function of time (measured in processed requests) for C = 300K under NOACF, SRD and LRD
traffic. System utilization is 62%.

size distribution. Using trace-driven simulation, we show that D_EQAL is an effective on­

line policy: by monitoring performance measures it self-adjusts its parameters to transient

workload conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions and Future Work

This dissertation presents analysis of dependent flows and their impact on multi-tiered sys­

tems:

• by characterizing the propagation of autocorrelation and understanding its perfor­

mance effects via experimentation of an on-line bookstore based on the TPC-W bench­

mark,

• by building analytic models that can be used to solve multi-tiered systems with de­

pendent arrival/service processes, and

• by developing robust resource management policies under variable workload conditions.

More specifically, the existence of dependence in the service process is observed in the multi­

tiered system driven by TPC-W. This is identified as the source of the dependent flows

in all tiers of this system. Such dependent flows significantly deteriorate the end-to-end

performance in spite of the fact that the bottleneck resource in the system is far from

saturation and tha t the measured throughput and utilizations of other resources are also

modest. When autocorrelation is not considered, this underutilization of resources falsely

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

indicates that the system can sustain higher capacities. Different from the tails of the overall

response time distributions in the independent systems which reflect the time spent at the

bottleneck tier, the tails are now shaped by the response time tail at the tier that is the source

of autocorrelation. Based on this observation, an admission control algorithm is presented

that takes autocorrelation into account and shows benefit in reducing the long tail of the

response time distribution instead of doing admission control at the bottleneck tiers.

For systems with infinite buffer size, that performs as open systems, two families of

analytic models tha t approximate the departure process of a BM AP/MAP/1 queue are

presented, i.e., the ETAQA-based approximation and the lumpability-base approximation.

These analytic models can be used to model each tier in isolation and to understand the

following performance affected by dependent flows in multi-tiered systems. The properties

of these two output approximation models are formally proved: the marginal distribution of

the true departure process is exactly preserved; the lag correlations of the inter-departure

times are matched up to lag (n — 2) with the ETAQA-based approximation and up to lag

(n — 1) with the lumpability-based approximation for the output models with n + 1 block

levels of the M /G /l-type process. The value of n can be automatically identified by the

asymptotic properties of the approximations to maintain well the queueing behavior of the

real departure process.

This dissertation also demonstrates how the knowledge of autocorrelation can be used to

aid robust policy development by presenting D_EQAL, a size-based load balancing policy, for

a cluster of homogeneous servers. D_EQAL aims at reducing the performance degradation

due to autocorrelation and strives to distribute the work to each server in such a way that the

assigned work is proportional to the correlation structure of the arrival process to that server.

D_EQAL monitors performance measures as well as the dependence of the incoming traffic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

to the cluster and self-adjusts its parameters to transient workload conditions. Performance

evaluation using trace-driven simulation shows that D_EQAL achieves superior performance

in comparison to other classic policies under correlated arrivals.

8.1 Future work

The research presented in this dissertation is introducing several open problems in two di­

rections. The first direction is on the development of analytic models for closed and open

systems with autocorrelated arrival and/or service processes. The second direction is on de­

signing robust system policies where autocorrelation in arrivals/service flows is instrumental

in policy decisions.

8.1 .1 A n a ly tic D irection

• A naly tic m odels o f closed system s: We will develop effective models similar to the

traditional Mean Value Analysis (MVA) and convolution models that are traditionally

used in closed queuing networks [43] to obtain approximate analytic solutions. We

will use ideas for solutions of load-dependent queuing networks [13, 14] that have been

recently proposed and apply them to closed queuing networks with autocorrelated

service processes. In addition to the approximate analytic solutions, we expect to

derive performance bounds of dependent systems in the spirit of the classic Asymptotic

B ounds A nalysis [43] a n d B a lan ced Jo b B ounds [43] th a t have b een used for p ro d u c t-

form networks.

• Efficient m odels o f open system s: The analysis of multiple lumping method in

Chapter 6 indicates the huge potential of obtaining better approximations of departure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

processes by lumping states in different ways, intermixing lumps and exact states in

the embedded Markov chain. We plan to further investigate this idea, understand how

the ACF values of departure processes are controlled by more eigenvalues of the key

matrix as well as the system utilization, and propose a more effective algorithm to

optimize the approximation accuracy automatically.

• F itt in g correlated trace: Different sample ordering of the same distribution results

in processes with different dependent structures. Traditional fitting methods focus on

matching the stochastic characteristics, i.e., the first moments of a real trace, while

ignoring the development of dependence in the trace. We propose to devise MAP-

fitting methods which will be aware of the temporal bias in a trace. This method

will divide the trace into small portions within each no dependence is detected. Each

portion can be modeled as an exponential or a phase-type process using simple fitting

techniques. Then the transitions among these portions will be captured with Markov

process and entire trace will be fitted into a MAP process.

• P rop agation characteristics: We have observed that autocorrelation propagates

in both open and closed systems, while lacking the knowledge that which process

(arrival or service) dominates the departure process, especially under medium loads.

The theory that we will develop will address the above question. Knowing which

of the two processes dominates the departure flow has an immediate application in

resou rce a llo ca tio n , gu id ing th e deve lopm en t of scheduling po licies w ith in each server

tha t reduce correlation in the observed output, similar to input shaping tha t is widely

used in networking research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

8.1 .2 A p p lica tion D irection

• A d m ission control: Our preliminary results on admission control guided by auto­

correlation in flows achieve promising performance improvements (see Chapter 3). We

will continue building on this idea and develop a sophisticated and practical policy

tha t maintains comparable performance with the existing admission control policies

by dropping a much smaller ratio of requests. We will specifically focus on web servers

and storage systems.

• C ap acity planning: The significant impact of dependence in system performance

makes autocorrelation function a considerable factor in capacity planning and can not

be overlooked. First, we will identify the system reasons that introduce dependence

in the service process, e.g., the execution properties of application servers or the effect

of caches. Once this knowledge is given, better system design, e.g., selection of the

appropriate applications or hardware, might be able to reduce burstiness and improve

system performance. For the systems where the dependence can not be eliminated, a

robust capacity planning that takes correlation into account will be proposed to answer

the typical question: How many number of clients can be supported by the existing

system while satisfying pre-defined server level agreements.

• Scheduling classification: Research has shown that Shortest-Job-First (SJB) and

its pre-emptive counterpart Shortest-Remaining-Processing-Time (SRPT) are superior

to FCFS and yet do not starve large jobs if the workload is heavy-tailed [94, 93]. We

will provide a new classification of these scheduling policies by showing what they do

to autocorrelation of the service process. An immediate application of the observations

for autocorrelation in scheduling can be used to improve disk scheduling. We anticipate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

tha t based on on-line measurement of autocorrelation, we will be able to devise new

scheduling policies that are oblivious of the size of requests, but use the statistical

knowledge of the size of the next batch of jobs (as given by the autocorrelation values

of the first lags) to determine an effective scheduling solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Equivalence of open /closed system s

E quivalence o f o p e n /c lo se d sy stem s

Open systems with finite queue capacity or admission control behave in essence like

closed systems [63], therefore the performance effects of autocorrelation in a closed system

directly apply to open systems with finite buffers. This equivalence of open/closed systems

is illustrated here via a simple example. Figure A.1(a) shows an M /M /1 system, i.e., arrivals

are Poisson and service times are exponential with parameters A and //, respectively. The

system has a finite buffer size equal to M , i.e., incoming requests are rejected when the buffer

is full. The state space in this system is denoted by an integer number i, number of jobs in

the system, see the Markov chain of this system in Figure A.1(b).

A two-queue closed system with a limitation on the number of circulating jobs as ex­

pressed by the multiprogramming level M P L — M is also shown in Figure A.I. The first

queue “simulates” the arrival of jobs in the system from the outside world. The state space

of this system is expressed by two integers 0 < i, j < M, while i + j = M for all states,

see Figure A. 1(d). There is a one-to-one correspondence of the two Markov chains, which

implies that the probability distributions of the states in both chains are identical. Based on

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A dm ission C ontro l

M,0 0,M

B uffer Size: M

C losed System w ith M PL = M

O pen System w ith B uffer S ize M

M PL = M

(c) (d)

Figure A .l: I l lu s t r a t io n o f th e eq u iv a len ce o f a n o p e n s y s te m w ith fin ite b u ffe r o f size M a n d a
c losed sy s te m w ith M P L = M.

this observation and Little’s law, one can trivially show that the performance measures of

the queue with rate /x are identical for both systems. This equivalence can be easily extended

to systems with MAP distributions tha t describe the arrival/service processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] D. A b e n d r o t h a n d U. K il l a t . Intelligent shaping: Well shaped throughout the
entire network? In Proceedings of the IEEE INFOCOM 2002, volume 2, pages 912-919,
New York City, NY, June 2002.

[2] A. M . A d a s a n d A. M u k h e r j e e . On resource management and QoS guarantees
for long range dependent traffic. In Proceedings of the IEEE INFOCOM 1995, pages
779-787, Boston, MA, April 1995.

[3] C. A m z a , E . C e c c h e t , A . C h a n d a , A . C ox, S. E l n ik e t y , R . G i l , J . M a r ­
g u e r i t e , K. R a j a m a n i , a n d W . Z w a e n e p o e l . Specification and implementation
of dynamic content benchmarks. In Proceedings of the 5th IEEE Workshop on Work­
load Characterization (WWC-5), Austin, TX, November 2002.

[4] C. A m z a , A. Cox, AND W . Z w a e n e p o e l . A comparative evaluation of transparent
scaling techniques for dynamic content servers. In Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005), pages 230-241, Tokyo, Japan, April
2005.

[5] M. A n d r e o l in i , M. C o l a j a n n i , a n d R. M o r s e l l i . Performance study of dis­
patching algorithms in multi-tier web architectures. ACM SIGM ETRICS Performance
Evaluation Review, 30(2):10-20, September 2002.

[6] M. A r l i t t , D. D r is h n a m u r t h y , a n d J . R o l ia . Characterizing the scalability
of a large Web-based shopping system. ACM Transactions on Internet Technology,
l(l):44-69, August 2001.

[7] M. A r l it t a n d T. Jin . Workload characterization of the 1998 World Cup Web site.
Technical Report HPL-1999-35R1, Hewlett-Packard Laboratories, September 1999.

[8] G. BANG A AND P. D r u s c h e l . Measuring the capacity of a Web server. In Proceedings
of the USENIX Symposium on Internet Technologies and Systems (U SITS’97), pages
61-72, Monterey, CA, December 1997.

[9] J. BERAN. Statistics for Long-Memory Processes. Chapman Sz Hall, New York, 1994.

[10] P. BuCHHOLZ. An EM-algorithm for MAP fitting from real traffic data. In Proceedings
of the 13th International Conference on Modeling Techniques and Tools for Computer
Performance Evaluation (Performance TOOLS 2003), P. Kemper and W.H. Sanders,
editors, volume 2794 of LNCS, pages 218-236. Springer-Verlag, 2003.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

[11] P. B uchholz , G. H o r v a th , a n d M. T el e k . A MAP fitting approach with inde­
pendent approximation of the inter-arrival time distribution and the lag correlation. In
Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems
(Q E ST’05), pages 124-133, Torino, Italy, September 2005.

[12] D . B u sh m it c h , S. S. Pa n w a r , a n d A. P a l . Thinning, striping and shuffling:
Traffic shaping and transport techniques for variable bit rate video. In Proceedings of
the IEEE Global Communications Conference (GLOBECOM 2003), volume 2, pages
1485-1491, Taipei, November 2003.

[13] G. C a sa l e . An efficient algorithm for the exact analysis of multiclass queueing net­
works with large population sizes. In Proceedings of the Joint International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS/Performance
2006), pages 169-180, Saint Malo, Prance, June 2006.

[14] G. C a sa l e . On single class load-dependent normalizing constant equations. In Pro­
ceedings of the 3rd International Conference on Quantitative Evaluation of SysTems
(Q E ST’06), pages 333-342, Riverside, CA, September 2006.

[15] L. C herkasova a n d P. P h a a l . Session based admission control: a mechanism for
peak load management of commercial web sites. IEEE Transactions on Computers,
51(6):669-685, June 2002.

[16] L. C h erk aso v a , W. Ta n g , a n d S. S in g h a l . An SLA-oriented capacity planning
tool for streaming media services. In Proceedings of the International Conference on
Dependable Systems and Networks, (D SN’2004), pages 743-752, Florence, Italy, June
2004.

[17] K. J. C h r isten sen a n d V . B a ll in g a m . Reduction of self-similarity by application-
level traffic shaping. In Proceedings of the 22nd IEEE Conference on Local Computer
Networks (LCN’97), pages 511-518, Minneapolis, MA, November 1997.

[18] I. C o h e n , J. S. C h a se , M . G o l d szm id t , T . K elly , a n d J ulie Sy m o n s . Corre­
lating instrumentation data to system states: A building block for automated diagnosis
and control. In Proceedings o f the 6th Symposium on Operating Systems Design and
Implementation (OSDI’04), pages 231-244, San Francisco, CA, December 2004.

[19] M. E. C rovella AND A. B e sta v r o s . Self-similarity in world wide web traffic:
evidence and possible causes. In Proceedings of the Conference on Measurement and
Modeling of Computer Systems (SIGM ETRICS’96), pages 160-169, May 1996.

[20] R. L. C r u z . Service burstiness and dynamic burstiness measures: A framework.
Journal of High Speed Networks, 1(2):105-127, 1992.

[21] S. E l n ik e t y , E. N a h u m , J. T r a c e y , a n d W. Zw a e n e p o e l . A method for
transparent admission control and request scheduling in e-commerce Web sites. In
Proceedings of the 13th International Conference on World Wide Web (WWW2004),
pages 276-286, New York, NY, 2004.

[22] A. E r ram illi, O. N a r a y a n , a n d W . W illin g er . Experimental queueing analysis
with long-range dependent packet traffic. IEEE/ACM Transactions on Networking,
4(2):209-223, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

[23] H. F e n g , M. V is r a , a n d D. R u b e n s t e in . Optimal state-free, size-aware dis­
patching for heterogeneous M /G /-type systems. Performance Evaluation Journal,
62(l-4):475-492, 2005.

[24] H .-W . F e r n g a n d J.-F . C h a n g . Departure processes of BM AP/G/1 queues. Queue­
ing Systems, 39(2-3):109-135, 2001.

[25] G. M. C. G a m a , W. M e ir a J r ., a n d M. L. B. C a r v a l h o . Resource placement
in distributed e-commerce servers. In The Evolving Global Communications Network
(GLOBECOM 2001), volume 3, pages 1677-1682, San Antonio, TX, November 2001.

[26] G. R. G a n g e r , B. L. W o r t h in g t o n , a n d Y. N. P a t t . The DiskSim simula­
tion environment, Version 2.0, Reference manual. Technical report, Electrical and
Computer Engineering Department, Cannegie Mellon University, 1999.

[27] D .F . G a r c i a a n d J. G a r c i a . TPC-W e-commerce benchmark evaluation. IEEE
Computer, 36(2):42-48, February 2003.

[28] M. E. G o m e z a n d V. S a n t o n j a . On the impact of workload burstiness on disk
performance. Workload Characterization of Emerging Computer Applications (The
International Series in Engineering and Computer Science), pages 181-201, 2001.

[29] D. G r e e n . Departure Processes from M AP/PH /1 Queues. PhD thesis, Department
of Applied Mathematics, University of Adelaide, South Australia, 1999.

[30] D. G r e e n . Lag correlations of approximating departure processes of M AP/PH /1
queues. In Proceedings of the 3rd International Conference on Matrix-Analytic Methods
in Stochastic Models (MAMS), pages 135-151, Leuven, Belgium, July 2000.

[31] S. D. G r ib b l e , G. S. M a n k u , D. R o s e l l i , E. A. B r e w e r , T. J. G ib s o n , a n d
E. L. M il l e r . Self-similarity in file systems. In Proceedings of the Conference on
Measurement and Modeling of Computer Systems (SIGM ETRICS’98), pages 141-150,
Madison, WI, June 1998.

[32] M. H a r c h o l - B a l t e r , M .E. C r o v e l l a , a n d C.D. M u r t a . On choosing a task
assignment policy for a distributed server system. In Proceedings of the 10th Inter­
national Conference on Computer Performance Evaluation: Modeling Techniques and
Tools (Performance TOOLS 1998), pages 231-242, Palma de Mallorca, Spain, Septem­
ber 1998.

[33] M. H arch ol-B alter a n d A. D o w n e y . Exploiting process lifetime distributions
for dynamic load balancing. ACM Transactions on Computer Systems, 15(3):253-285,
August 1997.

[34] M. H a r c h o l - B a l t e r , B . S c h r o e d e r , N. B a n s a l , a n d M. A g r a w a l . Size-based
scheduling to improve web performance. ACM Transactions on Computer Systems,
21(l):207-233, May 2003.

[35] A. H e in d l . Traffic-Based Decomposition of General Queueing Networks with Corre­
lated Input Processes. PhD thesis, Department of Electrical Engineering and Computer
Science, TU Berlin, Aachen, Germany, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

[36] A. H e in d l , Q. Z h a n g , a n d E. S m ir n i . ETAQA Truncation Models for the
M AP/M AP/1 Departure Process. In Proceedings of the 1st International Conference
on Quantitative Evaluation of Systems (Q EST’04), pages 90-99, Enschede, Nether­
lands, September 2004.

[37] A. H orvath a n d M . T el ek . Markovian modeling of real data traffic: Heuristic
phase-type and MAP fitting of heavy tailed and fractal-like samples. In Tutorials of
the IFIP WG7.3 Int. Symposium on Computer Performance Modeling, Measurement
and Evaluation, LNCS 2459, pages 405-434, Rome, Italy, September 2002.

[38] A. K a m r a , V. M is r a , a n d E. N a h u m . Yaksha: A Self-Tuning Controller for
Managing the Performance of 3-Tiered Web sites. In Proceedings of the Twelfth IEEE
International Workshop on Quality of Service (IWQoS 2004), pages 47-58, Montreal,
Canada, June 2004.

[39] L . K L E IN R O C K . Queueing Systems, Volume I: Theory. W ile y , 1975.

[40] A. K l e m m , C. LlNDEMANN, AND M. L o h m a n n . Modeling IP traffic using the Batch
Markovian Arrival Process. Performance Evaluation, 54(2):149-173, 2003.

[41] J. K u m a r a n , K . M it c h e l l , a n d A. v a n d e L ie f v o o r t . Characterization of
the departure process from an M E/M E/1 queue. RAIRO Recherche Operationelle /
Operations Research, 38(2):173—191, 2004.

[42] G. L a t o u c h e a n d V. R a m a s w a m i . Introduction to Matrix-Analytic Methods in
Stochastic Modeling. Series on statistics and applied probability. ASA-SIAM, 1999.

[43] E. D. L a z o w s k a , J. Z a h o r j a n , G. S. G r a h a m , a n d K . C. S e v c ik . Computer
System Analysis Using Queueing Network Models. Prentice-Hall, Inc, New York, 1984.

[44] L. H. L e e m is AND S. K . P a r k . Discrete-event Simulation: A First Course. Prentice
Hall, 2005.

[45] W . E. L e l a n d , M. S. T a q q u , W. W il l in g e r , a n d D. V. W il s o n . On the self­
similar nature of Ethernet traffic. IEEE/AC M Transactions on Networking, 2(1):1—15,
1994.

[46] L . LlPSKY. Queueing Theory: A linear algebraic approach. MacMillan, New York,
1992.

[47] Z. Liu, M. S q u il l a n t e , a n d J. W o l f . On maximizing service-level-agreement
profits. In Proceedings of the Third ACM Conference on Electronic Commerce (EC ’01),
pages 213-223, Tampa, Florida, October 2001.

[48] D. M. L u c a n t o n i . New results on the single server queue with a batch Markovian
arrival process. Communications in Statistics, Stochastic Models, 7 (l):l-46, 1991.

[49] D. M c W h e r t e r , B. S c h r o e d e r , N. A il a m a k i , a n d M. H a r c h o l - B a l t e r .
Priority mechanisms for oltp and transactional web applications. In Proceedings of
the 20th' International Conference on Data Engineering (ICDE 2004), pages 535-546,
Boston, MA, April 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

[50] D. M e n a sc e , V. A lm eid a , R . R ie d i, F . P el eg r in elli, R . F o n se c a , and
W. M e ir a . In search of invariants for e-business workloads. In Proceedings of the
Second ACM Conference on Electronic Commerce (EC ’00), pages 56-65, Minneapolis,
MN, October 2000.

[51] D. M e n a sc e , D. Ba r b a r a , a n d R. D o d g e . Preserving qos of e-commerce sites
through self-tuning: A performance model approach. In Proceedings of the Third ACM
Conference on Electronic Commerce (EC ’01), pages 224-234, Tampa, Florida, October
2001 .

[52] D. A. M e n a sc e a n d V. A. F. A l m eid a . Capacity planning for Web services:
metrics models and methods. Prentice Hall, Inc., NJ, 2001.

[53] D. A. M e n a sc e , V. A. F. A l m eid a , a n d L.W . D o w d y . Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems. Prentice Hall,
Inc., NJ, 1994.

[54] N. Ml, Q. Zh a n g , A. R is k a , a n d E. S m irn i. Performance impacts of autocorre­
lation in tpc-w. Technical Report WM-CS-2005-35, Department of Computer Science,
College of William and Mary, November 2005.

[55] K. M itchell an d A. van d e L ie fv o o r t . Approximation models of feed-forward
G /G /l/N queueing networks with correlated arrivals. Performance Evaluation, 51(2-
4):137—152, 2003.

[56] J. C. M O G U L . Operating systems support for busy internet servers. In Proceedings
of the Fifth Workshop on Hot Topics in Operating Systems (HotOS-V), pages 1-15,
Orcas Island, WA, May 1995.

[57] A. W . M O O R E . Measurement-based management of network resources. PhD thesis,
Computer Laboratory, University of Cambridge, Cambridge, UK, 2002.

[58] M ySQL AB. MySQL, http://www.mysql.com.

[59] V. A. N a o u m o v , U. K r ie g e r , a n d D. W a g n e r . Analysis of a multi-server delay-
loss system with a general Markovian arrival process. In Proceedings of the Second
International Conference on Matrix-Analytic Methods in Stochastic Models (MAM2),
Chakravarthy and Alfa, editors, pages 43-66, New York, 1997. Marcel Dekker.

[60] R. N el so n . Probability, Stochastic Processes, and Queueing Theory. Springer-Verlag,
1995.

[61] M. F . N e u t s . Structured Stochastic Matrices of M/G/1-type and their Applications.
Marcel Dekker, New York, NY, 1989.

[62] M. F. N e u t s . Algorithmic Probability: A Collection of Problems. Chapman and Hall,
1995.

[63] R. O. O n v u r a l a n d H. G. P e r r o s . Equivalences between open and closed queueing
networks with finite buffers. Performance Evaluation, 9(4):263-269, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mysql.com

184

[64] V. N. P a d m a n a b h a n a n d L. Qiu. The content and access dynamics of a busy web
site: Findings and implications. In Proceedings of ACM SIGCOM’02, pages 111-123,
Stockholm, Sweden, August 2000.

[65] V. S. Pai, M. A r o n , G. B a n g a , M. S v e n d s e n , P. D r u s c h e l , W. Z w a e n e p o e l ,
a n d E. N a h u m . Locality-aware request distribution in cluster-based network servers.
In Proceedings of the Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems, (ASPLOS-VIII), pages 205-216, San
Jose, CA, October 1998.

[66] S. PANDEY, K. RAMAMRITHAM, a n d S. C h a k r a b a r t i . Monitoring the dynamic
web to respond to continuous queries. In Proceedings of the Twelfth International
World Wide Web Conference (WWW2003), pages 659-668, Budapest, Hungary, May
2003.

[67] V. P a x s o n a n d S. F l o y d . Wide-area traffic: the failure of Poisson modeling.
IEEE/AC M Transactions on Networking, 3(3):226-244, June 1995.

[68] PH A R M P R O J E C T . Java TPC-W Implementation Distribution.
http://www.ece.wisc.edu/ pharm /, Department of Electrical and Computer En­
gineering and Computer Sciences Department, University of Wisconsin-Madison.

[69] V. R a m a s w a m i . A stable recursion for the steady-state vector in Markov chains of
m /g/1 type. Communications in Statistics, Stochastic Models, 4:183-263, 1988.

[70] S. R a n j a n , J. R o l ia , H. F u , a n d E. K n ig h t l y . Qos-driven server migration for
internet data centers. In Proceedings of the Tenth IEEE International Workshop on
Quality o f Service (IWQoS 2002), pages 3-12, Miami Beach, FL, May 2002.

[71] A. RlSKA a n d E. R ie d e l . Disk drive level workload characterization. In Proceedings
of the USENIX Annual Technical Conference, pages 97-103, Boston, MA, June 2006.

[72] A. R is k a a n d E. S m ir n i . Exact aggregate solutions for M /G /l-type Markov pro­
cesses. In Proceedings of ACM SIGM ETRICS Conference, pages 86-96, Marina del
Rey, CA, June 2002.

[73] A. R is k a a n d E. S m ir n i . MAMSolver: a matrix-analytic methods tools. In Pro­
ceedings o f the 12th International Conference on Modeling Tools and Techniques for
Computer and Communication System Performance Evaluation (Performance TOOLS
2002), T. Field, P. Harrison, J. Bradley, and U. Harder, editors, pages 205-211, Lon­
don, UK, April 2002. Springer-Verlag.

[74] A . R i s k a , M . S q u i l l a n t e , S . Yu, Z . Liu, AND L. Z h a n g . M a t r ix - a n a ly t i c a n a ly s is
o f a M A P / P H / 1 q u e u e f i t t e d t o w e b s e r v e r d a t a . I n M atrix-Analytic M ethods ; Theory
and Applications, G. Latouche and P. Taylor, editors, pages 333-356. World Scientific,
2002 .

[75] J. A. R o l ia a n d K. C. S e v c ik . The method of layers. IEEE Transactions on
Software Engineering, 21(8):689-700, 1995.

[76] Y. S a a d . Numerical methods for large eigenvalue problems. Manchester University
Press, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ece.wisc.edu/

185

[77] R. S a d r e a n d B. H a v e r k o r t . Characterizing traffic streams in networks of
M AP/M AP/1 queues. In Proceedings of the 11th G I/ITG Conference on Measuring,
Modeling and Evaluation of Computer and Communication Systems, pages 195-208,
Aachen, Germany, 2001.

[78] F. S h e ik h a n d C. M. W o o d s id e . Layered analytic performance modeling of dis­
tributed database systems. In Proceedings o f the International Conference on Dis­
tributed Computer Systems, pages 482-490, Baltimore, MD, May 1997.

[79] D. J. S o r in , J. L. L e m o n , D. L. E a g e r , a n d M. K. V e r n o n . Analytic evalua­
tion of shared-memory architectures. IEEE Transactions on Parallel and Distributed
Systems, 14(2):166-180, February 2003.

[80] C. Stew a rt a n d K. S h e n . Performance modeling and system management for
multi-component online services. In Proceedings of USENIX NSDI, Boston, MA, May
2005.

[81] Y. M. T e o AND R. A y a n i . Comparison of load balancing strategies on cluster-based
web servers. Simulation: Transactions of the Society for Modeling and Simulation
International, 77(5-6):185-195, November 2001.

[82] T h e A p a c h e S o f t w a r e F o u n d a t io n . Apache Web Server.
http: / / www.apache.org.

[83] T r a n sa c t io n P rocessing a n d P er fo r m a n c e C o u n c il . TPC-W.
http://www .tpc.org.

[84] V . U n g u r e a n u , B . M e l a m e d , P . G. B r a d f o r d , a n d M . K a te h a k is . Class-
dependent assignment in cluster-based servers. In Proceedings of the 2004 ACM sym­
posium on Applied computing (SAC ’04), pages 1420-1425, Nicosia, Cyprus, March
2004.

[85] B. U r g a o n k a r , G. P a c ific i, P .J . S h e n o y , M. S p r e it z e r , an d A .N .s Ta n ta w i.
An analytical model for multi-tier internet services and its applications. In Proceedings
of the Conference on Measurement and Modeling of Computer Systems (SIGMET­
R IC S’05), pages 291-302, Banff, Canada, June 2005.

[86] U. V a l l a m s e t t y , K . K a n t , a n d P . M o h a p a t r a . Characterization of e-commerce
traffic. In Advanced Issues of E-Commerce and Web-Based Information Systems
(W ECW IS 2002), pages 137-144, Newport Beach, California, June 2002.

[87] D. VlLLELA, P. P r a d h a n , a n d D. R u b e n ste in . Provisioning Servers in the Appli­
cation Tier for E-commerce Systems. In Proceedings of the Twelfth IEEE International
Workshop on Quality o f Service (IW Q o S 2004), pages 57-66, Montreal, Canada, June
2004.

[88] V M W are INC. VMWare Workstation, http://www.vmware.com.

[89] Q. W a n g , D. M a k a r o f f , H. K. E d w a r d s , a n d R. T h o m p s o n . Workload char­
acterization for an e-commerce web site. In Proceedings of the 2003 conference of the
Centre for Advanced Studies on Collaborative research (CASCON 2003), pages 313-
327, Toronto, Ontario, Canada, October 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.apache.org
http://www.tpc.org
http://www.vmware.com

186

[90] H. W .C a in , R . R a j w a r , M. M a r d e n , a n d M. H. L ip a s t i . An architectural
evaluation of java tpc-w. In Proceedings of the Seventh International Symposium on
High-Performance Computer Architecture (H PCA’01), pages 229-240, Nuevo Leone,
Mexico, January 2001.

[91] B. P . W e l f o r d . Note on a method for calculating corrected sums of squares and
products. Technometrics, 4:419-420, 1962.

[92] M. W e l s h a n d D. C u l l e r . Adaptive overload control for busy Internet servers.
In Proceedings o f the fth USENIX Symposium on Internet Technologies and Systems,
(U SITS’03), Seattle, WA, 2003.

[93] A. W ie r m a n a n d M. H a r c h o l - B a l t e r . Classifying scheduling policies with re­
spect to unfairness in an M /G I/1. In Proceedings of the Conference on Measurement
and Modeling of Computer Systems (SIG M ETRICS’03), pages 238-249, San Diego,
CA, June 2003.

[94] A. W ie r m a n , M. H a r c h o l - B a l t e r , a n d T. O s o g a m i . Nearly insensitive bounds
on smart scheduling. In Proceedings o f the Conference on Measurement and Modeling
of Computer Systems (SIG M ETRICS’05), pages 205-216, Banff, Canada, June 2005.

[95] R. W o l s k i , N. T. S p r i n g , a n d J. H a y e s . Predicting the CPU availability of
time-shared unix systems on the computational grid. Cluster Computing: the Journal
of Networks, Software Tools and Applications will provide a forum for presenting,
3(4):293-301, 2000.

[96] B. L. W o r t h in g t o n , G. R. G a n g e r , a n d Y. N. P a t t . Scheduling for modern
disk drives and non-random workloads. Technical Report CSE-TR-194-94, Computer
Science and Engineering Division, University of Michigan, 1994.

[97] F. X u e a n d S. J. B. Y oo. Self-similar traffic shaping at the edge router in optical
packet-switched networks. In Proceedings of the IEEE International Conference on
Communications (ICC’02), volume 4, pages 2449-2453, April 2002.

[98] Q. Z h a n g , L. C h e r k a s o v a , a n d E. S m ir n i . Flexsplit: A workload-aware, adaptive
load balancing strategy for media clusters. In Proceedings of the 13th Annual Multime­
dia Computing and Networking (MMCN’06), volume 6071, pages 01(1-12), San Jose,
CA, January 2006.

[99] Q. Z h a n g , A. H e in d l , a n d E. S m ir n i . Characterizing the BM AP/MAP/1 depar­
ture process using matrix exponentials. Technical Report WM-CS-2005-10, Depart­
ment of Computer Science, College of William and Mary, September 2005.

[100] Q. Z h a n g , A. H e in d l , a n d E. S m ir n i . Characterizing the BMAP/MAP/1 depar­
ture process via the ETAQA truncation. Stochastic Models, 21(2-3):821-846, 2005.

[101] Q. Z h a n g , A. R is k a , W. S u n , E. S m ir n i , a n d G. C ia r d o . Workload-aware load
balancing for clustered web servers. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 16(3):219-233, March 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

VITA

Qi Zhang

Qi Zhang received the BS and MS degrees in computer science from the Huazhong Uni­

versity of Science and Technology and the University of Science and Technology of China,

in 1998 and 2001, respectively. She has been a PhD candidate of Computer Science at

the College of William and Mary since 2003. Her research interests are system modeling

and performance analysis, resource management and capacity planning in multi-tiered sys­

tems, quality of services provision in e-commerce Web servers, and load balancing in cluster

systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	The effect of workload dependence in systems: Experimental evaluation, analytic models, and policy development
	Recommended Citation

	tmp.1539734415.pdf.3R7Od

