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ABSTRACT

This dissertation presents an analysis of performance effects of burstiness (formalized by the 
autocorrelation function) in multi-tiered systems via a 3-pronged approach, i.e., experimental 
measurements, analytic models, and policy development. This analysis considers (a) systems 
with finite buffers (e.g., systems with admission control that effectively operate as closed 
systems) and (b) systems with infinite buffers (i.e., systems that operate as open systems).

For multi-tiered systems with a finite buffer size, experimental measurements show that 
if autocorrelation exists in any of the tiers in a multi-tiered system, then autocorrelation 
propagates to all tiers of the system. The presence of autocorrelated flows in all tiers signifi­
cantly degrades performance. Workload characterization in a real experimental environment 
driven by the TPC-W  benchmark confirms the existence of autocorrelated flows, which orig­
inate from the autocorrelated service process of one of the tiers. A simple model is devised 
tha t captures the observed behavior. The model is in excellent agreement with experimental 
measurements and captures the propagation of autocorrelation in the multi-tiered system as 
well as the resulting performance trends.

For systems with an infinite buffer size, this study focuses on analytic models by proposing 
and comparing two families of approximations for the departure process of a BM AP/MAP/1 
queue that admits batch correlated flows, and whose service time process may be auto­
correlated. One approximation is based on the ETAQA methodology for the solution of 
M /G /l-type processes and the other arises from lumpability rules. Formal proofs are pro­
vided: both approximations preserve the marginal distribution of the inter-departure times 
and their initial correlation structures.

This dissertation also demonstrates how the knowledge of autocorrelation can be used to 
effectively improve system performance, D_EQAL, a new load balancing policy for clusters 
with dependent arrivals is proposed. D_EQAL separates jobs to servers according to their 
sizes as traditional load balancing policies do, but this separation is biased by the effort to 
reduce performance loss due to autocorrelation in the streams of jobs that are directed to 
each server. As a result of this, not all servers are equally utilized (i.e., the load in the system 
becomes unbalanced) but performance benefits of this load unbalancing are significant.

xviii
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Chapter 1

Introduction

Internet servers are developing into complex but central components in the information 

infrastructure, and are accessed by an ever-increasing and diversified user population. In 

such computing or networking systems, burstiness, as a form of temporal dependence within 

the workload, has been widely recognized as a significant factor affecting performance.

Prior work in the context of networking [22] has shown that burstiness in the arrival 

process in a single server system may result in user response times that are slower by several 

orders of magnitude when comparing to a system with independent arrivals. To appreciate 

this, we present performance measures of a single server queue with different degrees of de­

pendence in its inter-arrival process. Three sets of experiments are presented here labeled 

as “independent” , “weakly dependent” , and “strongly dependent” , but all other stochastic 

characteristics of these inter-arrival processes, i.e., the mean and all higher moments, are 

identical. The service process in all experiments is exponentially distributed and appropri­

ately scaled such tha t we examine performance under different utilization levels.

Figure 1.1 presents performance measures for this queuing model as a function of system 

utilization. The figure shows average response time (see Figure 1.1(a)) defined as the sum

2
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3

of the request service time and its waiting time in the queue, average queue length (see 

Figure 1.1(b)) which is the total number of requests in the queue including the one in 

service, and average request slowdown (see Figure 1.1(c)) which is the ratio of the response 

time of a request to its service time. The effect of dependence on system performance is 

tremendous: the stronger the dependence, the worse the system performance, which can 

worsen by 3 orders of magnitude when comparing to the case with independent arrivals.1

1 1 1 1 I 1 1 1 1 35000 1 1 1 1 1 1 ! 1 1' 1.26408 1 1 1 1 1 1 1 1 1

independent --------
30000

independent -------- le+08 independent --------
weakly dependent------ •5 weakly dependent------ 8e+07 weakly dependent------

strongly dependent ......... 20000 strongly dependent ......... * * strongly dependent .........
-J 6e+07 ,

15000 *
u

3 10000 - - 4e+07

5000 - - 2e+07

..........................................................
0

1 I 1 1 1 ! 1 1 1
0

i i i i i i i i i
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F ig u re  1.1: (a) Average response tim e, (b) average queue length, and (c) average slowdown as a 
function of system  utilization when inter-arrivals are independent, weakly dependent, and strongly 
dependent.

These performance measures illustrated in Figure 1.1 serve as motivation for the work

presented in this dissertation. We stress that none of prior work has considered the effect

of dependent flows on multi-tiered systems. Multi-tiered architectures, such as the ones

in e-commerce web sites tha t separate the database server from the web and application

servers, are widely used today to improve performance. But they also introduce difficulty in

identifying the source of burstiness (e.g., burstiness may not exist due to arrivals from a wide-

area network), and hence make it hard for effective development of resource management

policies that improve performance or provide service level provisioning. Dependence in the

1 Because of the linear scale used in the figure, the performance measures with independent arrivals appear 

flat. With independent arrivals for utilization equal to 0.9, queue length is equal to 152 as expected, but 

this number is dwarfed in comparison to the numbers under dependent flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

arrival or service flows of one tier propagates into its lower tiers in an open system or all the 

tiers in a closed system.

The focus of this dissertation is on identifying dependent flows in multi-tiered systems 

and on understanding their performance implications. Such understanding is significant for 

the development of robust resource allocation policies that remain effective under variable 

workload conditions. Analytic performance models are usually excellent tools to quickly 

compare the performance of alternative system designs, but they are often limited due to 

restrictive assumptions [60], e.g., the inter-arrival and service processes must be independent 

and identically distributed. These assumptions do not apply in current bursty environments.

This dissertation provides a formalization of burstiness based on the autocorrelation 

function [44] tha t characterizes the temporal dependence structure in request flows. New 

analytic models are devised to capture the performance effects of autocorrelation in queueing 

systems for both open and closed systems. Based on these, development of new resource 

allocation policies is proposed to take advantage of temporal dependence in the workload 

arrivals and service demands in a variety of applications. To best address the above open 

problems, this dissertation uses a 3-pronged approach:

- Experimental evaluation: Obtain a better understanding of autocorrelation and its 

performance effects using an experimental system of an on-line bookstore using TPC- 

W, the current industry standard for e-commerce benchmarks. This work concentrates 

on characterizing the propagation of workload burstiness in a multi-tiered system. We 

also use an array of metrics ranging from average throughput and average utilization 

to response time distributions to better understand the behavior of the system and the 

triggering of different bottlenecks that may bring the system to overload.
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- Analytic models: Devise two families of finite approximations for the departure process 

of a BM AP/MAP/1 queue. A BM AP/MAP/1 queue is a general queueing model of a 

system having input that is best described as dependent flows with batch arrivals, and 

where the service time is also dependent. It can be used as a building block to model 

a single tier in a multi-tiered system.

- Policy development: Use dependence information in flows (i.e., autocorrelation) to 

provide advice for resource management, such as capacity planning, admission control, 

scheduling and load balancing. The development of such policies makes an important 

step toward autonomic servers.

1.1 C ontributions

The contributions of this dissertation are summarized as follows.

1.1.1 E xp erim enta l E valuation

• We observe the existence of dependent flows and present how it propagates through the 

network on an e-commerce system that is built according to the TPC-W benchmark by 

measuring the autocorrelation of the arrival and departure processes of each tier. This 

characterization shows that autocorrelation in the service process can be the source of 

dependent flows in all tiers of this system, even to the ones that precede the source 

tier of autocorrelation.

• By quantitatively comparing the performance effects of the presence of autocorrelated 

flows in multi-tiered systems with the performance of the same system with inde­

pendent flows, we show tha t end-to-end performance significantly deteriorates while
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bottleneck devices are less utilized. Lower utilization levels in such systems falsely 

indicate tha t the system is able to sustain higher loads.

• We show tha t in contrast to systems where no burstiness is observed, the tails of the 

overall response time distributions do not necessarily reflect the time spent at the 

bottleneck tier, but instead are shaped by the response time tail at the tier that is the 

source of autocorrelation, irrespective of its utilization level.

• We show that both the transient excessive load in the system (i.e., higher than usual 

number of users, number of web sessions, or number of network flows) and the effects 

of transient excessive work (i.e., sudden increase in the demand of system resources 

by the current users of the system) could results in system overload. The further 

load/work propagates down the system hierarchy, i.e., the memory/disk, the higher 

the performance penalty, and the more difficult it is to recover performance effectively.

1.1.2 A n a ly tic  M odels

• The traditional analytic techniques of closed systems, e.g., MVA models [53, 43], cease 

to apply in systems with dependent flows. We use a queueing model to model an 

e-commerce system based on the TPC-W  benchmark by representing the service times 

of the dependent server with an autocorrelated process. The model and experimental 

results are in excellent agreement, despite the fact that no rigorous fitting method is 

used to fit the measured data of the service processes. Stochastic processes that capture 

autocorrelation show promise to effectively model complex systems via surprisingly 

simple queuing models.

•  For open systems, the departure process is an effective way of solving the network of
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queues. We present two families of finite approximations for the departure process 

of a BM AP/M AP/1 queue. One is derived via an exact aggregate solution technique 

called ETAQA applied to M /G/1-type Markov processes, and the second one is based 

on lumpability. The proposed approximations are indexed by a parameter n  (n > 1), 

which determines the size of the output model as n +  1 block levels of the M /G /l-type 

process.

• We formally prove tha t these two output approximation models preserve exactly the 

marginal distribution of the true departure process and the lag correlations of the 

inter-departure times up to lag (n — 2) with the ETAQA-based approximation and 

up to lag (n — 1) with the lumpability-based approximation. A comparison of these 

two approximations is carefully done, focusing on both accuracy and time complexity. 

The asymptotic properties of the approximations are examined, which then aid in 

identifying the level n  tha t maintains well the queueing behavior of the real departure 

process.

• For queues with high utilization and strong dependence in arrival/service process, 

we present multiple lumping as a way to use significantly smaller size models while 

maintaining nearly the same performance properties as the lumpability-based approx­

imations of much larger size.

1.1.3 P o licy  D evelop m en t

• We present results on how to take advantage of the knowledge of autocorrelation in 

flows for resource management via a preliminary study of admission control algorithms 

that consider dynamic system behavior. Instead of doing admission control at the
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bottleneck tiers, this algorithm controls the flows in the tier that is the source of 

autocorrelation in the system, and achieves promising performance improvements. This 

dissertation also shows a first proof-of-concept of self-adaptive resource management 

at the lower tiers tha t can detect and handle overload. Such mechanisms can help to 

achieve graceful performance degradation and to improve system availability.

•  This dissertation also presents a size-based load balancing policy in a cluster of servers 

with a single system image. The policy is called D_EQAL. It aims at reducing the 

performance degradation due to autocorrelation in each server by distributing the 

work guided by the correlation structure of the arrivals to each server. This policy 

does not assume any a priori knowledge of the job service time distribution nor any 

knowledge of the intensity of the dependence structure in the arrival streams. Using 

trace-driven simulation, we show that D_EQAL is an effective on-line policy: by 

monitoring performance measures it self-adjusts its parameters to transient workload 

conditions and achieves superior performance in comparison to other classic policies.

1.2 Organization

The dissertation is organized as follows: Chapter 2 presents an overview of basic concepts 

and terminology tha t are used in this dissertation. Chapter 3 uses a simple queuing network 

to quantify the performance effects of autocorrelation in closed systems. This chapter also 

presents an experimental study using the TPC-W benchmark, and shows how autocorre­

lation propagates across all the tiers in a multi-tiered system if it is found in the service 

process of one of the tiers. A simple queuing model that captures the benchmark’s behav­

ior is given. Chapter 4 further characterizes the e-commerce workload driven by TPC-W
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benchmark, specially focusing on system overload. Chapter 5 presents ETAQA-based depar­

ture process models of BM AP/MAP/1 queues, and Chapter 6 presents lumpability-based 

departure process models. Comparison of these two models and asymptotic properties of 

the approximated departure process are also discussed in Chapter 6. Chapter 7 presents 

DJEQAL, a size-based load balancing policy to illustrate a case study of policy develop­

ment for handling systems with autocorrelated flows. A summary of this dissertation and 

future work are outlined in Chapter 8.
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Chapter 2

Background

This chapter presents an overview of basic concepts and terminology tha t are used in this 

dissertation. Section 2.1 gives a the definition of autocorrelation function, a metric used 

in this dissertation to quantitatively describe dependence in a flow. Section 2.2 gives an 

overview of the definitions and properties of the Batch Markovian Arrival Process (BMAP) 

and Markovian Arrival Process (MAP), a special case of BMAP. These processes can be used 

to model dependent flows and can be used as inputs to analytic models.

2.1 A utocorrelation

The autocorrelation function is used as a statistical measure of the relationship between a 

random variable and itself [9]. Consider a stationary time series of random variables { X n}, 

where n = 0 , . . . ,  oo, in discrete time. The autocorrelation function ACF(fc) shows the value 

of the correlation coefficient for different time lags k > 0:

\C F ( 1 A  A P F  E \ ( X t — f i ) ( X t+k — fj,)]ACF{k) -  ACFXt,xt+k  ------------- p -------------- ,

10
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where // is the mean and S2 is the common variance of {X n}. The argument k is called 

the lag and denotes the number of observations that separate X t and X t+k- The values of 

ACF(k)  may range from -1 to 1. The higher | ACF(/t) | is, the stronger the dependence 

between X t and X t+k- If ACF(k) = 0, then there is no dependence at lag k.

In most cases ACF approaches zero as k increases. The decay rate of the ACF distin­

guishes the time series as short-range dependent (SRD) or long-range dependent (LRD). The 

ACF essentially captures the “ordering” of random values in the time series. Intuitively, if 

there is no autocorrelation (i.e., ACF is zero, which implies there is independence in the 

stochastic process), a random variable is generated as follows: first a random number is 

drawn between 0 and 1 and then this random number is mapped into the distribution space 

via the inverse distribution function to obtain the random value. This way of sampling 

does not create any temporal locality, i.e., given the current drawn value, any value of the 

distribution space is equally likely to occur in the next drawing. In distributions tha t have 

correlation there is a temporal bias in this sampling, i.e., random variables are sampled 

within a certain range for some time before moving into another range. This creates tem­

poral locality, yet overall all the values of the distribution space are sampled as dictated by 

the distribution function. High positive ACF values imply that in the time series a value of 

the random variable has a high probability to be followed by another variable of the same 

order of magnitude, while negative ACF values imply the inverse.

To show that the ACF measure is not artificial but instead can be found in real systems,

we present small examples that give strong indication about the existence of autocorrelated

flows in real systems1. Case 1 in Figure 2.1 shows the ACF for a collection of enterprise

storage systems, i.e., a web server, an E-mail server, a Software Development server, and

1The data presented here are generously provided by Seagate Research.
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a User Accounts server. Measurements are taken of the arrival process at the disk in an 

open-loop, finite buffer, enterprise server - user arrivals feed into the server (first tier) where 

they are modified by caches and other processing before being passed to the disk (second 

tier). Figure 2.1(a) shows the ACF of the arrival times at the disk (departure process from 

the server), while

CL.
u<

CL.
U<

Figure 2.1: ACF
systems and consum er electronics devices.

Case 2 in Figure 2.1 shows the ACF for a collection of traces from consumer electronics 

devices, i.e, a Personal Video Recorder (PVR) in two different application scenarios, an MP3 

player, and a Game console, which represents classical closed-loop systems such as the one 

we consider in Chapter 3. Since there is only a single user, the first tier server (caches and
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application processing) passes requests directly to the disk (second tier) which feeds back 

to the request arrival process. Figure 2.1(c) shows the ACF of the arrival times at the disk 

(departure process from the server), which also differs markedly from the ACF of the service 

process at the disk in Figure 2.1(d) in some cases.

In both sets of measurements, arrivals and service times are correlated, with some cases 

of pronounced long-range dependence, i.e., ACF lines that decay slowly to zero, ACF is 

stronger pronounced in the service times of the Web server in Figure 2.1(b) and the Game 

console in Figure 2.1(d). These measurements show tha t autocorrelation exists at the disk 

tier for different workloads in large and small systems. Server processing - in particular the 

cache hierarchy and algorithms along the I/O  path - determines how arrivals and service 

demands are shaped at this lowest tier.

2.2 B atch M arkovian Arrival Processes (B M A Ps)

A BMAP, as introduced by Lucantoni [48], is controlled by an ergodic Continuous-Time 

Markov Chain (CTMC) with finite state space { 1 ,2 ,. . . ,  mBMAp}- In state i, the sojourn 

time of the process is exponentially distributed with mean rate A*. At the end of such a 

sojourn time, a batch of size k (k > 1) may occur with probability p ■ ̂  , and the CTMC 

passes to state j  (1 <  i , j  < mBMAP). Alternatively, no customer arrives ( “batch of size 0”) 

with probability p f j . while the CTMC passes to state j  (j  ^  i). Naturally, we require that

WlDMAP OO mBMAP
£  p(S  +  p{3  =  1  f o r  1  - i -  m B M A p  ■

k = 1 j = 1

The corresponding transition rates Aip\^ may be grouped into the BMAP-matrices D*, (k =  

0 ,1, . . .) according to (Dfc)jj =  Xip^j for k = 0 ,1, . . . with the exception that (D0)i,i =  — Aj
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in order to obtain a true CTMC generator Q BMap  =  Yl'kLo^k- Consequently, matrix D*, 

governs transitions that correspond to arrivals of batches of size k. All BMAP-matrices are 

of order mBMAP x mBMAP, where

- D 0 is a matrix with negative diagonal elements and nonnegative off-diagonal elements,

- D fc are nonnegative rate matrices (k > 1).

We require the infinitesimal generator Q BMap to be irreducible and Q BMap  7̂  D 0 so that D 0

is a nondegenerate, stable matrix, and as a consequence invertible.

Let 7tbmap be the stationary probability vector of the CTMC generator (i.e., 7rBMAPQ BMAP =  

0 ,7rBMAPe =  1, where 0 and e denote vectors of zeros and ones of the appropriate dimension). 

Then, the mean rate of BMAP is computed as

and

‘B M A P B M A P (2 .1 )

Often, performance measures related to the inter-arrival times between batches are considered

for BMAPs The batch arrival rate and the squared coefficient of variation of the inter-batch

arrival process X  are given by

A,‘b a tc h 7 r B M A p (  D 0)e (2 .2 )

batch
E [ X2}

T m w
1 — 2 A batci17TBMAP ( D o )  G 1 . (2.3)
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The lag-A; coefficients of autocorrelation (k > 0) of the (stationary) inter-batch arrival process

are computed as [62] :

ACF (k)
E[(Xo -  E[X})(Xk -  E[X})}

‘b a tc h  n  B M A P iB M AP

‘b a tc h B M A P

(2.4)

where X 0 and X k denote two inter-batch times k lags apart.

2.2.1 M arkovian A rrival P rocesses (M A P s)

A MAP is a special case of BMAP with the batch of size equal to one, i.e., k =  1. Corre-

Q m a p  =  Do +  D i is the irreducible infinitesimal generator of a CTMC, where D 0 governs 

transitions tha t do not correspond to events, while D i governs those transitions that do 

correspond to events.

Note tha t different from a BMAP, a MAP can provide a variety of precise performance 

measures of inter-arrival times directly from its matrix representation. Let 7tmap be the 

stationary probability vector of the CTMC generator (i.e., 7tmapQ map =  0 ,7rMAPe =  1). The 

mean rate and the squared coefficient of variation of the MAP with inter-event time X  are

The autocorrelation function of a stationary MAP, i.e., the la.g-A: coefficients of autocorrela-

spondingly only two matrices D i and D 0 are used to describe a MAP, such that the matrix

given by

A,‘M A P ^MApPie , (2.5)

C M A P

E [ X 2}
(E[X ])2

1 — 2Amap7tmap( D o) e 1 . (2 .6 )
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tion (k > 0), is computed as :

ACF(A;) =
E[(Xo -  E[X})(Xk -  E[X})}

Var[X]
^ M A P 7r M A p ( (  —D q) 1D 1)fc( —D 0) 1e  — 1

2AMAP7rMAp( Do) le  1 

where X 0 and X^  denote two inter-event times k lags apart.

(2.7)

2.2 .2  M ark ovian -M od ulated  P o isson  P rocesses (M M P P s)

For many experiments in the later chapters, we use a 2-state Markovian-Modulated Poisson 

Process (MMPP), a special case of the Markovian Arrival Process (MAP) [42], to model auto­

correlated flows because it is analytically tractable. The matrix representation of MMPP(2) 

is denoted by the following equations:

■ p v M M P P ( 2 )  ___JJq —

j ~j M M P P ( 2 )  ___

~(h  +  ^i) 
v2 

h  0 
0 l2

Vl
-{l2 +  v2)

(2 .8 )

where l\ and l2 are the mean rates of the two Markovian states, and V\ and v2 describe the 

mean rates of transitions between these two states, as illustrated in Figure 2.2.

h  h

F ig u re  2.2: S tate  transitions of M M PP(2).

MMPP models can be easily parameterized so that they show correlation. To match a 

pre-defined mean, squared coefficient of variation and ACF(l) of a process, one may use 

Eqs.(2.5), (2.6), and (2.7). The two 2 x 2  matrices of the MMPP model, d “mpp(2) and
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D “ mpp(2), have four parameters, i.e., tq, v2) h,  and l2■ Hence, this matching technique has 

one degree of freedom, and one can set k  as the free parameter to obtain a solution.

Other stochastic processes have been shown in the literature to capture burstiness and 

dependence, but their parameterization is not as easy for our purpose in this dissertation. 

By appropriate parameterization, one could create a MMPP tha t gives an independent 

process (no ACF) and a MMPP with dependence (ACF), while keeping the same mean 

and variance. This property is critical for examining the performance of systems with and 

without dependence because we can concentrate on the performance effects of ordering in 

two samples from the same distribution.

2.2 .3  H yp erexp on en tia l P rocesses

Hyperexponential is another special case of the Markovian Arrival Process (MAP) [42], 

A Hypterexponential is an independent process with high variance, which also makes it 

attractive in analytical models. The matrix representation of a two-order Hyperexponential 

process (H2) is as the following equations:

D 0H2 -

D?H2

/ 0
0 - l 2

hp ll (l  - p )  
kp  k ( l ~ p )

(2.9)

where l\ and l2 are the mean rates of services in the two Markovian states, and p describes 

the probability of re-entering the first Markovian state, as illustrated in Figure 2.3.

The H2 models are easily parameterized as well. Similarly with tha t of M MPP(2), the 

moment matching approach can be used to get a H2 matrix solution for a pre-defined mean 

and a squared coefficient of variation. Since its ACF is 0 for all lag values, one freedom 

variable is also needed here, which is often the probability p. In the following chapters H2
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Figure 2.3: State transitions of H2 . 

processes are typically used to fit or model independent processes of high variability.
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Chapter 3

Autocorrelation in Closed System s

A system with finite buffers and/or admission control, which is indeed the case in a multi­

tiered system as buffer sizes or the maximum number of simultaneous connections is restricted 

by software and/or hardware, behaves in essence like a closed system, i.e., a system with a 

closed loop structure [63]. Workload characterization studies of such systems usually examine 

the stochastic characteristics of arrivals to the system and wait/service times at various 

tiers aiming at bottleneck identification, diagnosing the conditions under which bottlenecks 

are triggered, and assisting the development of resource management policies to improve 

performance or provide service level provisioning [21, 38, 49, 18].

This chapter complements prior workload characterization studies of multi-tiered sys­

tems [8] by examining how burstiness in the arrival or service process of any of the tiers 

affects end-to-end performance. The burstiness is expressed by the dependence structure of 

the request flows across the various tiers of a closed loop, which is described and quantified 

via the autocorrelation function (ACF) as introduced in Chapter 2. In multi-tiered systems 

with a closed loop structure, if autocorrelation exists in the service process of any of the 

tiers, then it propagates across the entire loop in the closed system and is present in the

19
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arrival stream of tiers (queues) that precede that tier (queue), unexpectedly affecting their 

performance as well as end-to-end performance.

The existence of autocorrelation flows in a multi-tiered system is confirmed via a case 

study based on the TPC-W  benchmark. A simple queueing model of this system demon­

strates that autocorrelated flows can originate from the stochastic behavior in the service 

processes of only one of the tiers and captures the system performance very well. This chapter 

also presents some discussion on how to take advantage of the knowledge of autocorrelation 

in flows for the development of admission control algorithms tha t consider dynamic system 

behavior.

This chapter is organized as follows. Section 3.1 overviews related work of workload 

characterization in multi-tiered systems. In Section 3.2 we describe a simple queueing net­

work that is used to quantify the performance effects of autocorrelation in closed systems. 

Section 3.3 presents how autocorrelation propagates through the queueing network. Per­

formance implications of the autocorrelation propagation are discussed in Section 3.4. In 

Section 3.5, we present an experimental study with the TPC-W benchmark that shows auto­

correlation propagation a multi-tiered system and a simple queuing model that captures the 

benchmark’s behavior. Section 3.6 presents an example of how one can use autocorrelation 

for system design. Finally, Section 3.7 summarizes the contributions of this chapter.

3.1 R elated Work

Internet servers and services have evolved from centralized and information based only to 

distributed peer-to-peer, global storage, and grid-based services, personalized e-commerce, 

and sensor networks. Burstiness as expressed by self-similarity has been identified as a salient
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characteristic of traffic in communication networks [45, 19, 67, 56, 20] tha t critically impacts 

their capacity and performance [45, 8]. It has also been show to exist in computer systems 

including CPU utilization levels in a cluster of workstations [95], inter-arrival times at a large 

memory system with nonblocking caches [79], and file system activity [31]. Recent studies 

show tha t burstiness persists [92, 15], but emphasize that attention needs to be paid to the 

more complex and sophisticated nature of both Internet services and systems [6, 64, 66]. 

The latter is a direct result of the personalized nature of Internet-related services that need 

an array of resources, i.e., CPU, memory, and I/O , for serving requests. All the above 

works concur that burstiness results in unpredictability of system performance and argue for 

feedback-control frameworks to dynamically adapt resource allocation to changing service 

demands [18, 80].

Current workload characterization studies focus on bottleneck identification of multi­

tiered systems [27]. Multi-tiered architectures that separate the database server from the 

web and application servers are used to improve performance, but introduce more points 

where bottlenecks may occur [5]. Furthermore, current Internet servers, such as e-commerce 

systems, have stricter requirements for quick response time, high security transactions, and 

persistent and reliable storage [89, 25, 47, 51] making the need of detailed workload knowledge 

even more pressing. Several recently published studies indicate that different e-commerce 

servers do share similar characteristics: arrivals are best characterized as bursty with high de­

grees of self-similarity, the most significant portion of requests are for dynamically generated 

objects, and the popularity distribution is Zipf-like [89, 50, 86, 6].

Data on actual e-commerce sites are difficult to obtain as they are subject to non­

disclosure agreements. Consequently, one can only resort to synthetic workload generators 

to study such systems, the most prominent being the TPC-W benchmark for an e-commerce
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site [83]. Studies based on TPC focus on bottleneck identification and find a variety of 

causes [27, 3, 90, 49]. Note that the TPC benchmarks implement stationary arrivals only, 

which gives a restricted system view: observing the system in steady state does not tell us 

how the systems behaves iri transient overload.

All the workload characterization studies aim at guiding the development of admis­

sion control strategies that improve peak throughput [21, 38], prioritized scheduling at the 

database server to meet different service level agreements [49], and scheduling policies that 

minimize consistency overheads in clustered environments that support query caching and 

database replication [4], However, none of the above characterization studies of multi-tiered 

systems has identified autocorrelation as an important system characteristic for performance.

Traditionally, models of multi-tiered systems focus on modeling the bottleneck tier [87, 70] 

or modeling all tiers using a single queue [38]. A closed-system model of a multi-tiered system 

that is based on Mean Value Analysis (MVA) and does consider all tiers has been proposed 

in [85]. In the method of layers, the system performance model is viewed as a sequence 

of layers, and each layer is solved separately [75, 78]. Aggregation of models of individual 

resource demands and interaction overheads for each tier in a multi-tiered system is also 

proposed to predict system throughput and response times [80]. The effect of autocorrelation 

in open systems has been examined in [22] where it was shown via simulation tha t long-range 

dependence in the arrival process of a single queue results in sharp performance degradation. 

Similar results are reported in [2] where the performance effects of short-range dependence 

versus longerange dependence in the arrival streams are examined.

In contrast to all of the above works, in this dissertation autocorrelation is proposed as 

a compact characterization of burstiness in multi-tiered systems. Our work further demon­

strates tha t stochastic processes that capture autocorrelation can be used in surprisingly
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simple models that can effectively capture performance trends of burstiness in complex sys­

tems.

3.2 C losed Tandem Queues

We use the simplest closed queuing system (see Figure 3.1) that resembles the topology of 

a multi-tiered application. The purpose of this analysis is twofold: (1) to observe how auto­

correlation propagates through all tiers in the system and (2) to observe how autocorrelation 

affects system performance.

point (1) point (2) point (m)

Figure 3.1: A closed system with M  queues.

Autocorrelation in the arrival or service processes directly implies that the system is 

non-product-form [43], therefore one can only use simulation for its analysis. We stress that 

although we present performance results for closed systems, these results readily apply to 

open systems with admission control. For a sketch of the proof of equivalence of closed 

systems and open systems with admission control, see Appendix.

3.2.1 A 2-tier System

To establish a basic understanding of how autocorrelation affects system performance in a 

closed system, we consider the simplest case of the system depicted in Figure 3.1, i.e., a 

closed queuing network with two queues only, Q\ and Q-2 , with mean service rates /q and
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fi2 i respectively. We assume that a fixed number of jobs circulate in the queuing network. 

This number is also known as the multiprogramming level (MPL).

We assume tha t Q2 is the bottleneck device and tha t Q\ is twice as fast as Q2 l The 

source of any autocorrelation in the flows of this network is the service process of at least 

one of the queues. We use a 2-state Markovian-Modulated Poisson Process (MMPP), a 

special case of the Markovian Arrival Process (MAP) [42], as illustrated in Chapter 2, to 

model autocorrelated service times. The MMPP process allows to build two distinct sets of 

samples that share the same PDF but allow for different ordering in each set. Therefore, by 

appropriate parameterization, one could create an MMPP that gives an independent process 

(no ACF) and an MMPP with dependence (ACF), while keeping all moments identical, 

essentially maintaining the same PDF. We evaluate two scenarios.

Scenario 1: The service times of Q i are exponentially distributed with mean rate pi =  2, 

while the service times of Q2 are drawn from a 2-state MMPP with mean service rate 

p2 = 1 and squared coefficient of variation S C V  — 20. The service process of the 

bottleneck device Q2 has autocorrelation.

Scenario 2: The service time of Qi is autocorrelated and is drawn from a 2-state MMPP 

with pi = 2, S C V  = 20. The service process of Q2 is exponentially distributed with 

mean service rate p 2 =  1. Now, Q j, with ACF in its service process, is not the 

bottleneck.

In order to quantify the effect of autocorrelation on system performance, we also conduct

experiments with different MMPPs for Scenario 1 and Scenario 2 such tha t we maintain the

1 Experiments with varying relative speed of the two devices yield qualitatively the same results as those 

reported here .
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same mean, SCV, and higher moments in the service process, but we change its autocorrela­

tion structure to be short-range dependent, long-range dependent, or independent (i.e., ACF 

equal to 0 in all lags). These experiments are labeled as SRD, LRD, or NOACF. We obtain 

a SRD process with ACF equal to 0.47 at lag= l but decaying to 0 at lag=100, and a LRD 

process with ACF equal to 0.47 at lag= l but flattening to 0.28 beyond lag=500. Table 3.1 

summarizes the two scenarios. The matrix representations of these MMPPs are presented 

in Table 3.2. All simulations are done in a ten million sample space.

T a b le  3.1: Sum m ary of th e  two scenarios.

Qi Q2 (Bottleneck)

Scenario 1 Exponential MMPP 

(SRD, LRD or NOACF)

Scenario 2 MMPP 

(SRD, LRD or NOACF)

Exponential

3.3 A utocorrelation  Propagation

First, we present how autocorrelation propagates through the queuing network by measuring 

the ACF of the departure process of queue Q i (i.e., at point 1 in Figure 3.1) and the ACF of 

the departure process from queue Q2 (i.e., at point 2 in Figure 3.1). Note that the departure 

process of queue Q 1 becomes the arrival process to queue Q2. Similarly, the departure process 

of queue Q2 becomes the arrival process to queue Q 1 .

Figure 3.2 illustrates the autocorrelation propagation for Scenario 1 and Scenario 2, 

respectively, for M P L  = 25. These results are representative of other MPL levels. The 

ACF of the 2-state MMPP that generates the service times at Q2 and Qi for Scenario 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Table 3.2: Sum m ary of the M M PPs used in the two scenarios.

D0 Dt

Scenario 1 (Q2)

SRD
-12.048956 0.048956 

0.004079 -0.088048

12.000000 0.000000 

0.000000 0.083969

LRD
-12.000975 0.000975 

0.000081 -0.088001

12.000000 0.000000 

0.000000 0.087920

NOACF
-13.061404 1.061404 

0.096491 -0.096491

12.000000 0.000000 

0.000000 0.000000

Scenario 2 (Q ^

SRD
-12.041012 0.041012 

0.007571 -0.161417

12.000000 0.000000 

0.000000 0.153846

LRD
-12.000818 0.000818 

0.000150 -0.161292

12.000000 0.000000 

0.000000 0.161142

NOACF
-12.877193 0.877193 

0.175439 -0.175439

12.000000 0.000000 

0.000000 0.000000

and Scenario 2, is also shown in the figure. In Scenario 1 (see Figure 3.2(a)/(b)), ACF 

propagates through all tiers of the closed system with almost identical strength as the one 

at the service process of the bottleneck device, i.e., queue Q2, which injected autocorrelation 

into the system. In Scenario 2 (see Figure 3.2(c)/(d)), autocorrelation propagates through 

the tiers, but with reduced strength compared to the autocorrelation of the service process 

tha t injected autocorrelation into the system (i.e., queue Qi), which is not the bottleneck 

queue in the system.

The behavior observed in both experiments is explained by the general queuing theoretic 

observation that the departure process of a busy queue resembles its service process rather
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Scenario 1
(a) Scenario 1 (Bottleneck: Q2, with ACF) 

0.5

SRD(service process of Q2) 
departure from QI 
departure from Q2

0.2

(b) Scenario 1 (Bottleneck: Q2, with ACF)

0.5 -------- 1---------1---------1--------- 1-------
_LRD(service process of Q2)

200 300 400
lag (k)

V 0.2

departure from Q1 
departure from Q2

j_____ i_____ i_
200 300

lag (k)
500

Scenario 2
(c) Scenario 2 (Bottleneck: Q2, exponential) (d) Scenario 2 (Bottleneck: Q2, exponential)

- SRD(service process of QI) 

departure from QI
0.2

departure from Q2
_J_________I________ i—

100 200 300 400
lag (k)

LRD(service process QI)

Q 0.2
departure from QI 
departure from Q2

500 100 200 300 400
lag (k)

500

Figure 3.2: ACF of departures from Q\ (arrivals to Q2), departures from Q2 (arrivals to Q1) for 
both scenarios, and the ACF of the correlated service process. ACF of the MMPP service process 
in (a)/(c) is SRD and that in (b)/(d) is LRD.

than its arrival process. Instead, for a lightly loaded queue, its departure process resembles 

its arrival process [100]. Hence, for Scenario 1, the departure process from the heavily 

loaded queue Q2, and consecutively the arrival and departure processes of the lightly loaded 

queue Q1 resemble the service process at Q2. Therefore, autocorrelation propagates with the 

same strength across all tiers. In Scenario 2, because the heavy loaded Q2 has exponential 

service times, the autocorrelation injected in its arrivals from the service of queue Qi is 

reduced since departures from this server are spaced further apart, thanks to the exponential 

service times of Q2 (see Figure 3.2(c)/(d)). Experiments with variable MPL levels show the 

same qualitative behavior for both of the above scenarios and for different autocorrelation
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strengths. Our first observation is summarized as follows.

O bservation  1 Autocorrelation becomes present at all queues in a closed queuing network 

as long as it is exhibited in the service process of one queue.

3.4 Perform ance Effects

We now turn to the effects of autocorrelation on system performance. We evaluate the 

mean response time (i.e., wait time plus service time), the mean queue length, and the mean 

utilization in each server. Furthermore, we also report on the mean round trip time (i.e., sum 

of all response times) tha t captures end-to-end system performance. In an effort to quantify 

the effect of SRD and LRD on system performance, we also conduct the same experiments 

as those described in Scenario 1 and Scenario 2 but with the MMPP process adjusted so 

that it does not have any autocorrelation but maintains the same mean, SCV, and higher 

moments.

Figure 3.3 shows performance under Scenario 1 and Figure 3.4 shows performance under 

Scenario 2. The presence of autocorrelation (both SRD and LRD) in the closed system 

degrades the overall system performance -  compare round trip times in Figure 3.3(a) and 

Figure 3.4(a). Looking closely into how round-trip time is distributed between the two 

servers, we notice that performance of the non-bottleneck queue significantly decreases as 

MPL increases. This is also reflected in Figures 3.3(b) and 3.4(b) that plot the average queue 

length in each server.

Although the overall performance effects on the non-bottleneck queue are the same in 

both scenarios, the reasons are different. In Scenario 1, performance degrades due to au­

tocorrelated arrivals to the non-bottleneck queue -  recall that there is no autocorrelation
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Figure 3.3: Performance measures: (a) mean round trip time, (b) mean queue length, (c) mean 
utilization, and (d) mean throughput at each queue for Scenario 1. The bottleneck queue (Q2 ) has 
autocorrelated service times.

in its service process. In Scenario 2, autocorrelation in both arrival and service processes 

of the non-bottleneck queue degrades performance. Longer queues at the non-bottleneck 

server cause the mean queue length of the bottleneck queue to surprisingly decrease (see 

Figure 3.3(b) and Figure 3.4(b)) as requests spend now more time in Qx. This redistribu­

tion of requests in the system “balances” the load, as reflected in the per queue utilizations, 

which are now lower than when there is no autocorrelation, Comparing the systems with and 

without correlation, although the overall performance degrades in presence of correlation, 

the per queue utilizations decrease (see Figures 3.3(c) and 3.4(c)). The above p erfo rm an ce  

trends persist and become slightly more pronounced in the LRD experiments, but are clearly 

not commensurate with the degree of dependence in the LRD process. This is due to the 

fixed MPL level, that in effect acts as an upper bound on the number of jobs tha t circulate
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Figure 3.4: Performance measures: (a) mean round trip time, (b) mean queue length, (c) mean 
utilization, and (d) mean throughput at each queue for Scenario 2. The non-bottleneck queue (Qi) 
has autocorrelated service times.

in the system at all times.

Figures 3.3(d) and 3.4(d) show the system throughput for the two scenarios as a function 

of MPL. Consistent with the utilization behavior, we see that the system with no auto­

correlation reaches its maximum throughput at MPL=100, which is equal to the service 

rate of the bottleneck queue, and remains flat after that point. For the experiments with 

ACF, we see tha t throughput increases very slowly as MPL increases, consistent with the 

very slow growth of utilization at the bottleneck queue. Indeed, maximum throughput and 

the corresponding 99.5% utilization are reached with much higher MPL=1500 for the SRD 

experiments and with MPL=70000 for the LRD experiments! Therefore, throughput and 

utilization, metrics that are easily obtainable from measurements and are prevalently used 

to gauge system capacity, give a distorted view of the user-perceived performance. Our
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observations are summarized as follows.

O bservation  2 Autocorrelated flows in a closed system degrade overall system performance, 

i.e., increase mean round trip time and decrease mean throughput. Counter-intuitively, they 

also decrease the anticipated utilization of each queue, including the anticipated utilization 

at the bottleneck device.

O bservation  3 Autocorrelated flows in a closed system balance the load among all queues, 

i.e., decrease mean queue length and mean response time of the bottleneck queue and increase 

those of the non-bottleneck queue.

These observations have an important effect on capacity planning. If autocorrelated flows 

exist in the system, then reduced utilization levels at a queue do not mean that the system 

can sustain more load.

To better understand where each job spends most of its time waiting, we plot in Fig­

ure 3.5 and Figure 3.6 the CDFs of response times (per queue and round-trip) for the LRD 

experiments.2 For a substantial range of response times the performance of the system with 

LRD is better than tha t with no autocorrelation (see the cross-over points in CDFs in Fig­

ures 3.5(c) and 3.6(c) as well as cross-over points in CDFs that show per-server response 

times). However, response time tails at servers with ACF (Figure 3.5(b) and Figure 3.6(a)) 

dominate tails of round-trip times and significantly bias mean response times.

O b s e r v a t io n  4  In  a closed system , the service process with uutocorrelated structure (be it

in the bottleneck queue or not) is the source of tails in the end-to-end response times and

dominates average performance measures.

2The CDF results of the SRD experiment are qualitatively the same.
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Figure 3.5: CDFs of (a) response time at Qi, (b) response time at Q2 , and (c) round trip time 
for Scenario 1 with MPL=25. The bottleneck queue (Q2 ) has autocorrelated service times.
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Figure 3.6: CDFs of (a) response time at Q1 , (b) response time at Q2 , and (c) round trip time 
for Scenario 2 with MPL=25. The non-bottleneck queue (Q\ ) has autocorrelated service times.

The immediate implication of the above observation is tha t capacity planning or admission 

control at a server with autocorrelation that aims at reducing the response time tail, may 

incur significant performance improvements. We will return to this point in Section 3.6.

3.5 A utocorrelation A nalysis in T P C -W

In this section, we confirm the existence of autocorrelation flows in a multi-tiered system via 

a case study based on the TPC-W benchmark [83]. TPC-W is a widely used e-commerce 

benchmark that simulates a Business-to-Consumer (B2C) site [27].
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3.5 .1  E xp erim enta l E nvironm ent

We collect measurements of a multi-tiered e-commerce site implemented according to TPC- 

W, which simulates the operation of an on-line bookstore. A high-level overview of the 

experimental set-up is illustrated in Figure 3.7 and specifics of the software/hardware used 

are given in Table 3.3.

Image Server

Clients

★

Image requests

★
HTTP requests

1, MySQL reply

Front Server

i Disk accesses

Database Server

MySQL queries
HTTP reply

★  ★

Figure 3.7: E-commerce experimental environment.

Table 3.3: Hardware components on the on-line bookstore implementation

Processor Memory OS

Clients [68] Pentium 4 /  2 GHz 256 MB Redhat 9.0

Web Server -

Apache2.0/Tomcat4.0 [82]
Pentium III /  1.3GHz 2 GB Redhat 9.0

DB Server - MySQL4.0 [58] Intel Xeon /  1.5 GHz 1GB /  768 MB Redhat 9.0

Disk SEAGATE: ST373453LC; SCSI; 73 GB; 15,000 rpm

Because we focus on the activity across all tiers in the system, we collect measurements
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at the front-end server (that hosts the web and application servers), the back-end database 

server, and the disk. In Figure 3.7, all measurement points are denoted with a star (*). 

Trace data are collected via the following utilities:

• Arrivals at the front-end server are obtained by tracing the workload generation mod­

ules.

• CPU and memory activity at each server is measured via the sysstat Linux utility.

• Query activity at the database server is provided by MySQL logs.

• VMware [88] is used to run the database server in a Linux virtual machine hosted by 

the database server machine. This allows the physical SCSI disk to appear as a process 

in the database host. We use the strace Linux utility to trace all I/O  activity.

The host of the database server has 1 GB of memory but the virtual machine uses only 768 

MB. We also separate the image files at the front-end server in an effort to minimize their 

effect. Our experiments show that images, i.e., static content attached to each dynamically 

generated page, have negligible service times when compared to that of dynamic requests, 

thus their impact is not considered.

According to TCP-W specifications, the number of customers or emulated browsers (EBs) 

is kept constant throughout the experiment. For each EB, TCP-W statistically defines the 

user session length, the user think time, and the queries that are generated by the session. 

To better simulate the behavior of a real system, there is a time-out period (uniformly 

distributed between 5 and 15 minutes) tha t is associated with each EB. If a time-out occurs, 

then the session ends and a new session starts immediately. Four Pentium 4 machines are 

used to simulate the EBs. If there are n  EBs in the system, each machine simulates n /4  

EBs.
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The database of the online store has 10 tables. One of the most important ones is the 

ITEM table which stores information on the items available for purchase. The database size 

is determined by the number of items and the number of customers. In our experiments, 

we found tha t the size of the ITEM table is critical for performance. Therefore, we present 

results on different databases that are distinguished by the size of the ITEM table. We 

run experiments in three databases: one with 10,000 items (small), one with 100,000 items 

(medium), one with 500,000 items (large), and one with 1,000,000 items (very large). Ta­

ble 3.4 shows the size of the most important tables in the databases used in our experiments.

Table 3.4: Sizes of important tables

DB ITEM CUSTOMER ORDER_LINE Total

10 K 5.1 MB 362 MB 338 MB 1.5 GB

100 K 51 MB 362 MB 338 MB 1.5 GB

500 K 256 MB 362 MB 338 MB 1.9 GB

1 M 510 MB 362 MB 338 MB 2.1 GB

TPC-W defines 14 different Web interactions which are coarsely classified as either brows­

ing or ordering. According to the weight of each type of activity in a given traffic mix, 

TPC-W defines 3 types of traffic mixes, namely, the browsing mix with 95% browsing and 

5% ordering, the shopping mix with 80% browsing and 20% ordering, and the ordering mix 

with 50% browsing and 50% ordering.
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3.5 .1 .1  C ap acity  P lann ing

The purpose of this section is to give an initial analysis of the system capacity and bottleneck 

that will be used in the analysis of Section 3.5.2. We will return to the detailed bottleneck 

analysis under various workloads using different stochastic metrics in Chapter 4.

Figure 3.8 illustrates system throughput (measured in interactions per second) at the 

front server, the front-end CPU utilization, and the database CPU and memory utilizations 

(i.e., the second tier) as a function of the number of emulated browsers in the system (i.e., 

system load). We do not report on the front-end memory utilization as it is always low. 

Results are presented for one TPC-W mix type, the browsing mix, and four database sizes. 

Overall, Figures 3.8 shows that it is the database server that becomes the bottleneck inde­

pendently of the load in the system. In the following sections, we specifically focus on the 

browsing mix with a database of 10,000 items, where the system’s throughput flattens out 

after the number of EBs greater than 256.
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liLOCH)
100,000

S  20

500.000
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Figure 3.8: (a) Throughput, (b) front-end CPU utilization, (c) database CPU utilization, and (d) 
database memory utilization for the browsing mix and database sizes of 10,000, 100,000, 500,000, 
and 1,000,000 items.
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3.5 .2  A u tocorre la tion  P rop agation  in  T P C -W

Here, we report on the existence of autocorrelated flows in a multi-tiered system tha t is 

built according to the TPC-W specifications. Corresponding to Figure 3.7, Figure 3.9 also 

illustrates the flow of requests from the clients to the front server (which hosts the web and 

application servers) and the back-end database server. Data is collected at several points as

(2) Client Departures (6) DB Server Departures

HTTP requests (3) Front Server 
Arrivals

MySQL reply

0
Front Server Database Server

(4) Front Server

HTTP reply r Departures MySQL queries

(1) Client Arrivals (5) DB Server Arrivals

Clients

Figure 3.9: TPC-W experimental environment.

illustrated in Figure 3.9. Specifically, we record

• all responses sent from the front-end server to the client at point (1) labeled “client 

arrivals” , collected at the workload generation modules;

• all requests sent from the clients to the front-end server at point (2) labeled “client 

departures” , collected at the workload generation modules;

• all requests received by the front server (i.e., both client requests and database re­

sponses) at point (3) labeled “front server arrivals” , collected at the workload genera­

tion modules and MySQL logs;

• all responses sent from the front-end server (i.e., to both the clients and database 

queries) at point (4) labeled “front server departures” , collected at the workload gen­

eration modules and MySQL logs;
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• all queries sent from the front server to the database server at point (5) labeled “DB 

server arrivals” , collected at the MySQL logs;

• all query results sent from the database to the front server at point (6) labeled “DB 

server departures” , collected at the MySQL logs.

Figure 3.10 shows the measured ACF at the various points indicated in Figure 3.9 for 

three browsing mix experiments and a database of 10,000 items for different numbers of 

concurrent EBs in the system (i.e., different workload intensities). Figure 3.11 plots the 

average queue lengths, average response times, and average CPU utilizations, at the clients, 

front-end, and database servers.
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(1) Client Arrival 
(2) Client Departure 

(3) Front Arrival — 
(4) Front Departure

(5) DB Arrival-----
(6) DB Departure

(b) 384 EBs

j i i i i i i i i

(c) 512 EBs
i I r

(1) C lient Arrival 
(2) C lient Departure 

(3) F ront A rrival 
(4) F ront Departure 

(5) DB Arrival 
(6) DB Departure

(3) Front Arrival 
(4) F ront Departure 

(4 ) (5) DB Arrival
(6) DB Departure

■J

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Lag (k) Lag (k) Lag (k)

Figure 3.10: ACF at various points in the system. Experiments are done using the browsing mix, 
a database with 10,000 items, and (a) 128 EBs, (b) 384 EBs, and (c) 512 EBs.
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Figure 3.11: Average performance measures with the browsing mix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



With only 128 EBs, the system is lightly loaded, the front-end utilization is 20% and the 

database server utilization is 38%. The ACF in Figure 3.10(a) is very close to zero in almost 

all measurement points. The ACF at point (5), i.e., at the DB arrival process, is oscillating 

at low lags (from -0.05 to 0.2) and quickly decreases to nearly zero. The ACF of the database 

departure process, i.e., at point (6), follows the ACF of arrivals, consistently with discussion 

in Section 3.3, where we showed tha t under low load in a queuing system the arrival process 

rather than the service process determines the shape of the departure process. Looking 

carefully into the traces, we notice tha t the source of the correlated arrivals to the database 

comes from the JDBC drivers connecting Tomcat Java servlets and MySQL database server 

as one long query usually follows several small queries there.

As we increase the number of EBs in the system to 384, the system load increases to 38% 

utilization at the front-end and to 82% at the bottleneck DB server. This is a case of heavy 

load, where oscillating ACF values are not observed anymore. Figure 3.10(b) shows tha t au­

tocorrelation is higher now in almost all measurement points, with the exception of points (1) 

and (6) which represent client arrivals and database departures, respectively. Experiments 

with 512 EBs capture very similar, although much stronger, trends on ACF propagation as 

depicted in Figure 3.10(c). Inspecting the ACFs at points (3) and (4) in Figures 3.10(b)-(c), 

we infer that the service process at the front-end server is correlated because ACF at its 

departure point is much higher than ACF in its arrivals. The autocorrelation measured at 

point (4) is the strongest among all measurement points, and becomes even stronger as load 

increases, see Figure 3.10(c). These ACF values suggest that there is no correlation in the 

DB service process as measurements at point (6) show a flat-to-zero ACF line -  the service 

process in the DB “takes away” the correlation in the flow of arrivals.
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Average performance values are presented in Figure 3.11. Despite the fact that queue 

lengths and response times increase fast as a function of EBs (see Figures 3.11(a) and (b)), 

utilization levels increase very slowly, consistently with the results presented in Section 3.4.

We have conducted several experiments using different TPC-W workload mixes (i.e., 

shopping and ordering) and larger database sizes (i.e., 100,000 and 1,000,000 items). These 

experiments can be summarized as follows. The amount of ACF that propagates through 

the system and measured at various points is different for the three TPC-W  workload mixes. 

This is expected as each workload has different service demands. Autocorrelated flows are not 

always observed. In some experiments there is very little or no autocorrelation. For the cases 

tha t ACF is observed, we attribute its presence to autocorrelated service processes in the 

front and/or database servers because the workload generation at the EBs guarantees that 

there is no autocorrelation in the arrival process coming from the clients. In the following 

section, we present a simple model tha t captures the performance trends observed here and 

that confirms our conjecture about the existence of autocorrelation in the service process.

3 .5 .3  T P C -W  M odel

The model is illustrated in Figure 3.12. Queues Q\ and Q2 correspond to the front-end 

server and the back-end database server, respectively. Because the TPC-W benchmark is 

session-based, we use an infinite-server queue Q0 with as many servers as the system’s MPL 

to emulate client activity. The collected TPC-W  trace data shows that each dynamic request 

at the application server generates several database requests. We capture this behavior by 

adding a feedback loop: with probability p a completed request from Qi is forwarded to 

queue Q2 and with probability 1 — p it goes back to the client, in Q0. We also define the 

same six measurement points as in the real system of Figure 3.9.
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Figure 3.12: A queuing model of TPC-W.

This model is solved using simulation and is parameterized using measurements from a 

lightly loaded system, where there is virtually no queuing. Measuring the service process in 

each of the system tiers is not straightforward but in a lightly loaded system tha t guarantees 

nearly zero wait times, response times gives a good approximation of service times

• The think time in each server of Q0 is exponentially distributed with mean 7sec, as 

specified by TPC-W.

• We use a 2-state MMPP to generate service times in the front-end server with mean 

Pi =  582.70 and S C \\  = 20. This MMPP has autocorrelation which is equal to 0.47 

at lag 1 and decays to nearly zero at lag 300. The MMPP used here has the following 

MAP parameterization:

Note that we do not perform a rigorous fitting to capture the exact shape of autocor­

relation in the service process, we simply match the first two moments of the empirical 

data and we adjust the MMPP parameters in order to induce autocorrelation.

-2001.004655 1.00465
0.384642 -40.457034

2000 0 
0 40.072392 '

(3.1)
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• Service times at the database server are generated using a 2-stage hyperexponential 

with /j2 =  224.34 and SCV\ =  100.This distribution is MAP presentation is as follows:

• The probability p is set to 0.876, which is again obtained by measurements.

Figures 3.13(a)-(c) show the ACF propagation with MPL set to 128, 384, and 512, 

respectively. The queuing model captures well the autocorrelation trends observed in the 

TPC-W experiments, compared to Figure 3.10. Consistently with experimental results, the

server at (5) have the highest autocorrelation. The slowest decaying ACF is at point (2), i.e., 

the departures from the clients. Note that the independent service process at the database 

server results in independent departures at (6), which also minimally affects arrivals to  the

in the service process of the front-end server. Existence of autocorrelation only at the

and arrival processes at all the queues. When the load is high (Figures 3.13(b)-(c)), the 

autocorrelated service process at Q i (i.e., front-end server) dominates the departure process 

at Qi and as showed in Section 3.3 propagates in the entire closed system.

Average performance measures from the model are presented in Figure 3.14 where per­

formance measures of the TPC-W experiments are also presented for easy comparison. The 

dependent service process in Q i significantly affects system performance, especially round-

-1 0 0 0  0
0 -3.461149 J ’

987.991444 12.008556 
3.419586 0.041563

(3.2)

departure intervals from the front-end server at (4) and the arrival intervals at the database

clients at (1). Figure 3.13 verifies our speculation about the existence of autocorrelation

service process of Qi (i.e., front-end server) causes the entire system to operate under almost

independent flows when the load is low (Figure 3.13(a)) because the workload generation

at the clients (which is driven by the exponential distribution) dominates the departure
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F ig u re  3.13: Autocorrelation propagation in our queuing model parameterized using the mea­
surements of Section 3.5.2 with M P L  equal to (a) 128, (b) 384, and (c) 512.

trip times. Model and experimental results are in excellent agreement, despite the fact that 

no rigorous fitting method was used to fit the experimentally collected service times and their 

autocorrelation of the front-end server to the 2-stage MMPP that was used in the model.
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F ig u re  3.14: Model prediction and experimental performance measures.

3.6 Taking Advantage of ACF

After having established the importance of autocorrelated flows for the performance of multi­

tiered systems, we now turn to how to use this information for effective system design. In 

general, capturing burstiness in the flows of complex systems can be used to implicitly 

model caching, context switching overhead, contention for memory or locks, while keeping 

the model surprisingly simple. Here, we present a case study that illustrates how ACF
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can guide admission control. Naturally, a myriad of policies exist for admission control. 

Presenting an ideal admission control policy is outside the scope of this work. Instead, we 

focus on how to use knowledge of autocorrelated flows to improve policy development.

In Section 3.4 we show tha t the server with ACF in its service process is the one that 

most contributes to the response time tails. Based on this observation, we devise a simple 

admission control strategy that rejects the jobs which are highly probable to contribute to 

the long tail of round trip times. Identification of these jobs is based on the temporal locality 

of autocorrelated flows.

Assuming that we know a priori which is the tier tha t is the source of autocorrelation, we 

deploy admission control at tha t tier.3 Admission control is triggered when the queue length 

at the ACF tier reaches a pre-defined threshold Qt  of MPL. Upon each job completion, 

the current queue length is checked to see whether it exceeds threshold Qt ■ If this is the 

case, then the request at the head of the waiting queue is dropped (i.e., directed back to 

Qo, the client queue), with probability weighed by the ACF value of the stream at lag(l), 

provided that ACF has a positive value. Then, the next waiting request is also dropped with 

a probability weighed by the ACF value at lag(2). The dropping of waiting requests stops 

when the queue length reaches Qt  or a job is admitted for service.4

We use the model in Section 3.5 to evaluate this admission control policy. The base line 

for the evaluation is the case with no admission control. For comparison, we also evaluate 

a policy with random dropping at the same tier. Similar to the ACF-guided policy, the

3 Even if the autocorrelation function of the flow in the tier is not known a priori, it is possible to calculate 

it on-line using a modified version of Welford’s one-pass algorithm to calculate the mean and variation of a 

sample [91].
4 We experimented with different probability weights that gave us qualitatively similar performance. Here, 

we present results with weight equal to 1, i.e., we use directly the ACF function as the dropping probability.
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random policy drops always from the head of the waiting queue with probability equal to 

the overall dropping rate of the ACF-guided admission control policy. This way, we maintain 

equal dropping rates in both admission control policies.

We first evaluate exactly the same setting as in Section 3.5, i.e., the front server has ACF 

in its service process tha t starts at 0.47 for lag 1 and decays to nearly zero beyond lag 300. 

MPL is set to 512. QT is defined as 60% of MPL because the front tier is not the bottleneck 

and it is expected to be less loaded than the DB tier. Consistently with experiments presented 

in Section 3.5, we assume tha t the service process at the DB tier is not correlated and that the 

DB is the bottleneck. The dropping rate for the ACF-guided policy is 8.2% and average round 

trip times become 8.93 seconds. The round trip times under the no-dropping and random 

dropping scenarios are 11.55 and 10.07 seconds, respectively. To focus on tail performance, 

Figure 3.15 illustrates the complementary cumulative distribution function (CCDF) of round 

trip times and of response times at the front server and the database server. The figure shows 

that ACF-guided policy improves the tail of the front server response times and respectively 

round trip times, given tha t the tails of response times at the DB server of the two admission 

control policies are almost identical.

We now use the model of Section 3.5 but assume that the bottleneck tier (i.e., the 

database server) has ACF in its service times. This is motivated by the disk ACF service 

times in Figure 2.1. Again MPL is 512 but Qt  is now set to 90% of the MPL, because the 

DB is the bottleneck and we expect most of the jobs to be stuck there. The ACF-guided 

admission control drops only 5.8% of the total requests and achieves an average round 

trip of 4.50 seconds. Round trip times with no-dropping and random dropping are 16.65 

and 16.63 seconds, respectively. Both round trip times and database server response times 

significantly improve with the ACF-guided policy (see the CCDFs in Figures 3.16). With
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F ig u re  3.15: CCDFs of (a) round trip time, (b) response time of front server, (c) response time 
of database server using the model of Section 3.5 where the front server has ACF in its service 
process. In all experiments MPL is equal to 512.

random dropping, improvements are very small. Both experiments, although preliminary, 

confirm tha t selective dropping as guided by ACF can dramatically improve performance. 

By selectively dropping those requests tha t contribute most to ACF, the queue lengths in the
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Figure 3.16: CCDFs of (a) round trip time, (b) response time of front server, (c) response time of 
database server when the database server has ACF in its service process. In all experiments MPL 
is equal to 512.

queue w ith  autocorrelation significantly reduce, the A C F flows in the entire system  weaken, 

and perform ance in every server improves.

Similar analysis can be done for capacity planning studies. There, the focus should be on
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first identifying and then  bolstering the server th at is th e  source of autocorrelation, which is 

not necessarily th e  system  bottleneck.

3.7 Sum m ary

We presented a stu d y  th a t shows the presence of autocorrelated flows in a m ulti-tiered system  

w ith  a closed-loop structure and their perform ance effects. Com paring the perform ance 

effects of th e  presence o f autocorrelated flows in m ulti-tiered system s w ith the perform ance of 

the sam e system  w ith  independent flows, we show th a t end-to-end perform ance significantly  

deteriorates w hile bottleneck  devices are less utilized , falsely indicating th at the system  is 

able to  sustain  higher load. Furthermore, we show  th a t in contrast to  system s where no 

burstiness is observed, th e  ta ils of th e  overall response tim e distributions do not necessarily  

reflect the tim e spent at th e  bottleneck tier, but instead  are shaped by the response tim e  

ta il at the tier th a t is th e  source of autocorrelation, irrespective of its u tilization  level. If 

autocorrelated flows are ignored, then throughput and utilization  of specific devices - m etrics 

often used in capacity  p lanning and adm ission control - m ay give a distorted view  of system  

load.

The m easurem ents from a real system  based th e  T P C -W  benchm ark dem onstrate the  

existence of autocorrelation flows in a closed m ulti-tiered system . A  queueing m odel is used  

to  m odel th is system  by representing the service tim es of the guess-dependent server w ith  an 

autocorrelated 2 -sta te  M M PP. M odel and experim ental results are in excellent agreem ent, 

despite the fact th at no rigorous fitting m ethod was used to  fit the measured results, which  

proves th at stochastic processes th a t capture autocorrelation m ay be used to  effectively  

m odel com plex system s v ia  sim ple queuing m odels.
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T his chapter also presents a case study of adm ission control guided by the knowledge of 

th e  autocorrelation inform ation. T he case study illustrates th at dependence in flows w ithin  

the system  is critical for effective adm ission control, thus should be the focus of the resource 

m anagem ent strategies.
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Chapter 4

Bottleneck Analysis in TPC -W

In addition to the significant impact of autocorrelation flows on a multi-tiered system, the 

mostly dynamically generated contents in contemporary servers also make it very challenging 

to understand the resource requirements of dynamic requests. It is possible that a request 

can cause a substantial portion of the database to be accessed even when just a few kilobytes 

of text are eventually sent back to the client. The “size” of a request is not a simple one­

dimensional property, and thus is difficult to quantify a priori. For a dynamic request, the 

amount of data accessed from storage, the computational requirements for processing in order 

to generate the page content, and the amount of data sent back to the client are unrelated 

and unpredictable. Furthermore, wide disparities in the various resource requirements of 

different dynamic requests trigger multiple bottlenecks in the system. Resource allocation 

is further complicated by bursty user request rates that fluctuate dramatically even within 

short periods of time, resulting in systems that operate often under conditions of transient 

overload.

Effective system provisioning in such complex systems requires a detailed understanding 

of the system workload. While over provisioning helps Internet systems to operate under

50
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light to medium load conditions, it does not preclude the fact that they are still susceptible 

to transient overload. Overload can be controlled via admission control mechanisms either 

at the front-end of the system (usually the network link) or at the application level, with 

the intention of stabilizing performance [15, 57], or via effective resource management that 

focuses on graceful performance degradation [92]. Performance degradation is by far more 

desirable than service unavailability. The latter, even if it occurs for a short time period 

only, can be detrimental for business profitability [52],

The purpose of this chapter is to present a detailed analysis of the resource demands in 

a typical e-commerce server under steady load and under transient load, to identify how the 

workload propagates through all system tiers, and to determine the conditions under which 

bottlenecks occur. We still use the typical configurations of an e-commerce site following 

TPC-W as in Chapter 3.5, which consists of a web and application server, a database server, 

and a storage system (see Figure 3.7).

We are particularly interested in how the workload’s transient characteristics propagates 

through the system hierarchy and places resource demands on CPU, memory, and I/O  de­

vices. Our experiments show that the lower tiers of the system, i.e, the database server 

and the storage system, become the bottleneck while the resources at the front-end remain 

underutilized. The system capacity, directly related with the existence of bottlenecks in the 

system, depends not only on the load, but also on the characteristics of the system workload. 

Some workloads utilize system resources much faster than others, for the same number of 

users in the system. These workloads are more I/O  bound than others.

This chapter is organized as follows. In Section 4.1 and 4.2 we present performance results 

that can be used for capacity planning, focusing on response time analysis for bottleneck 

identification. In Section 4.3 we show how overload develops and propagates in the system
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under transient conditions that are distinguished by sudden changes in the customer arrival 

intensity and/or changes in the requested work. System implications of the presented analysis 

are presented in Section 4.4. Finally Section 4.5 summarizes the contributions of this chapter.

4.1 C apacity Planning

In a multi-tiered system, the load of each tier has an impact on the user-perceived perfor­

mance. The personalized nature of the requests sent to e-commerce servers makes the second 

tier, i.e., the database server, the bottleneck [49]. Our experiments show tha t this bottleneck 

is triggered either by excessive load, as reflected by the number of simultaneous requests in 

the system, or by excessive work, as reflected by the amount of required system resources to 

service the requests.

Initially, we illustrate how load and work affect user perceived performance and conse­

quently capacity planning. The system performance under different loads has been reported 

in Section 3.5.1.1 (see Figure 3.8). Results are presented for one TPC-W mix type, the 

browsing mix, and four database sizes.

Figure 4.1 illustrates the effect of different TPC-W mixes. In this case, we experiment 

with only one database, i.e., the one with 500K items, and report on the system throughput, 

front-end CPU utilization, and database CPU and memory utilizations for the ordering, 

shopping, and browsing mixes. Figure 4.1 indicates that mixes affect system performance 

and resources availability. Observe tha t different mixes determine different levels of the 

sustainable system load. Overall, Figures 3.8 and 4.1 show that it is the database server 

tha t becomes the bottleneck independently of the load or the work in the system. In the 

following, we focus on the database server performance and the characteristics of dynamic
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F ig u re  4.1: (a) Throughput, (b) front-end CPU utilization, (c) database CPU utilization, and (d) 
database memory utilization as a function of system load for the database with 500,000 items and 
various TPC-W mixes.

Figure 4.2 illustrates query tim e distributions, as a m etric of th e  database server perfor­

m ance. B ecause we focus on understanding the system  behavior under a variety of workloads, 

we introduce tw o additional traffic m ixes th at stress the system  further by increasing the  

I /O  traffic:

•  modified browsing mix', the percentage o f new  product searches accounts for 90% of all 

requests and the rem aining of the requests proportionally adjusted according to  the  

browsing m ix, w hile in the original browsing m ix new product searches are on ly  11% 

of requests, and

•  modified ordering', where we raise the portion  of adm inistration interactions of the  

ordering m ix from originally 0.11% to  10%, and adjust the percentage of the rest of
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F igu re 4.2: Query time distribution (CDF) for the browsing mix under various loads (left column) 
and under medium load for various TPC-W  mixes (right column).

the requests in the ordering mix.

Since the database server is the bottleneck, this metric directly relates to the user per­

ceived performance. We focus on the query time distribution for various database sizes, 

loads, and mixes. For each database size, which essentially determines the level of system
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resources availability, higher load degrades database server performance. For the two large 

databases, where the system resources are limited, the impact of higher load is more ap­

parent, resulting in distributions with considerably longer tails (see Figure 4.2(c)-(d)). For 

various TPC-W mixes (see the right column of Figure 4.2), the query time distribution for 

work-intensive workloads, such as the modified browsing mix, is quite different from tha t of 

less work-intensive workloads, such as shopping or ordering mix. We identify a workload as 

work-intensive when it requires more CPU, memory, and I/O  to generate the response to a 

dynamic request.

4.2 System  Im plications o f the Stationary W orkloads

To better understand the behavior of the service process, we take a close look at the database 

behavior using the modified browsing mix (see Figure 4.3). The number of EBs is set to 32, 

which results in the significant arrival rate at the database disk (see Figure 4.3(a)). Note 

tha t in the same experiment but with the original browsing mix the arrival rate to the disk is 

at most 50. Figure 4.3(b) reports on the disk access pattern as a function of time. The entire 

disk is mapped on the y-axis which also marks the physical layout of each database table 

on the disk. The figure clearly shows that I/O  accesses are bursty. Figure 4.3(c) reports on 

the memory utilization of the database server and shows that memory is periodically freed 

because of memory pressure. Intuitively, if there is memory pressure at the database, a mem­

ory miss suggests that another memory miss will soon occur, or if the disk is accessed then 

more accesses to the disk are to follow, which suggests that the service process is correlated. 

Such bulks of disk I/O  operations result in heavier tail of the query-time distribution (see 

Figure 4.2(h)), which is attributed to the slower service rates at the disk and the FCFS-like
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F ig u re  4.3: Disk access pattern for the 1,000,000 items database. The system is under 90% new 
searches mix.

scheduling discipline. On the other hand, the burstiness of the disk accesses indicates that 

the system does not consistently suffer from memory misses. During the less I/O  intensive 

period, CPU/memory performance, which employs PS scheduling discipline, dominates the 

response time.
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4.3 Transient W orkload Propagation

After having understood what the system bottlenecks are under steady state conditions, we 

now turn to transient analysis as systems in the real world are rarely subject to stability in 

their workloads. For the specific case of the e-commerce server, a popular new product or 

a seasonal sale could lead to sudden increases in arrival intensity. Different arrival patterns 

may be experienced during day or night times. Furthermore, the pattern of user requests, 

i.e., the information they request may be substantially different from the expected one, 

affecting the demands put on system resources. First, we concentrate on how ephemeral 

changes in the arrival intensity (i.e., load) propagate through the system tiers and affect 

system performance. Then, we focus on how changes in the type of requests (i.e., work) 

affect the bottleneck resource and how these patterns are inherited into lower system levels. 

For all experiments, we present activity in all three tiers across time. All experiments are 

run for 60 minutes. Results of the first 20 minutes are ignored to mask out warm up effects.

E xp erim ent O ne (10K  D atab ase , T ransient Load): The first experiment uses the 

browsing mix of TPC-W but changes the number of active browsers in a controlled manner. 

For the experiment that uses the small database (see left column of Figure 4.4), for the first 

600 seconds the number of browsers is set to 64, for the next 300 seconds it is set to 384 

to induce a short-lived overload condition, and for the remaining 25 minutes of the experi­

ment the number of EBs is reset to 64. Figures 4.4(I.a)-(I.c) show the intensity of arrivals 

across time at the front-end server, database server, and the database disk, respectively. 

Note the flux of arrivals from one server to the other, as well as the time where significant 

increases/decreases are shown. The transient load causes a severe increase in the arrival 

intensity at all tiers except the disk, where short arrival bursts are detected over time with
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Figure 4.4: Throughputs and utilizations in multiple tiers under transient load of the browsing 
mix.

an exception toward the end of the overload period (after the 800^ second) where the arrival 

burst is sustained longer.

Figure 4.4(1.d) reports on the disk access pattern as a function of time. The entire disk 

is mapped on the y-axis which marks the physical layout of each database table on the disk.
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Vertical lines in this figure indicate disk sequential accesses that correspond to an entire table 

being scanned. Clearly, there is higher intensity of disk activity during the period of the 

arrival burst, which makes disk transfers slower, especially after the 800th second. Note that 

entire table accesses are not shown as vertical lines anymore, indicating that these accesses 

take now longer. The effect of the bursty arrivals on the query response time are reported 

in Figure 4.4(I.e). As expected, during the overload period database queries take longer to 

complete which negatively affects user perceived performance.

Note tha t since TPC-W simulates a closed system, the arrival rate to the first server is 

an equivalent indicator of system throughput. During the overload condition both arrival 

intensity and system throughput increase (Figures 4.4(1.a) and 4.4(1.b)). This overload 

propagates from the front-end web server down to the database server, but not to the disk. 

System performance is affected (Figure 4.4(I.e)), but not to the point of affecting system 

throughput. We conclude that the system sustains its performance during the short-lived 

overload period.

E x p erim en t Tw o (1M  D atab ase , T ran sien t Load): The right column of Figure 4.4 

reports on system performance at various levels for the large database and the browsing mix. 

Recall tha t for the experiments with the large database, memory may become the bottleneck 

as the ITEM table is 512 MB and the available memory only 768 MB. In this experiment, 

for the first 600 seconds the number of browsers is set to 16, for the next 300 seconds it 

is set to 96 to cause a short-lived overload condition, and for the remaining 25 minutes is 

reset to 16. Note that the arrival intensity propagates from one tier to the next, reaching 

the database disk finally. Yet, there is a significant drop in the arrival rate/throughput at 

the front server after the 900t/l second despite the fact tha t the bursty period ended and the 

number of EBs is restored to 16 (see Figure 4.4(11.a)). This drop persists for the next 400
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seconds and it is reflected on the database server also (see Figure 4.4(11.b)).

The opposite is observed during the same time period at the disk as in Figure 4.4(11.c). 

High arrival rates at the disk imply the presence of severe queueing at the storage system, 

resulting in slower response times. Because the TPC-W  simulates a closed system (i.e., the 

number of EBs in the system remains the same during the experiment), the majority of 

the requests are accumulated in the slowest tier, resulting in a significant drop in the rate 

of request completions, which reduces the throughput and consequently arrival rates to the 

front and database servers (see Figures 4.4(II.a)-(II.b)). We emphasize that the drop of the 

throughput at the front-end and at the database server is as drastic as to imply conditions 

of service unavailability for the period of time tha t the storage system suffers from overload.

Figure 4.4(11.d) sheds light to this behavior. After the 80(Th second the system operates 

under conditions of severe overload. The system recovers after the 1300th second, well after 

the burst ends and the number of browsers is reset to 16. This overload period at the disk 

is the result of memory thrashing at the database server, causing repetitive, long sequential 

scans to the ITEM table. Under normal conditions the ITEM table is fully stored in memory. 

In this experiment, the sequential scans of the ITEM table are represented as almost hori­

zontal lines in Figure 4.4(II.d) indicating that it takes a long time to complete some of the 

database queries. This is also reflected in the large gap between the query response time dis­

tributions during normal and overload conditions in Figure 4.4(II.e). Approximately 5% of 

all queries have a response time of more than 1 minute, which indicates service unavailability.

Concluding on experiments one and two, we stress tha t it is important for performance 

that overload propagates up to the database server CPU only (experiment one, Figure 4.4(1)) 

rather than further down to the database disk (experiment two, Figure 4.4(H)). In experiment 

one, overload does not affect system throughput and the system recovers as soon as the bursty
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period ends. In experiment two system throughput drops to the point of service unavailability 

and the recovery process is much longer than the bursty period itself. Overload propagation 

down to the storage system slows down the entire system operation, and significantly affects 

system availability. The deeper overload propagates down the system hierarchy, the more 

severe the performance degradation and the slower the system recovery.

The results of the first two transient load experiments highlight a case that can be 

managed via admission control at the front-end. However, it is possible that overload happens 

when the number of arrivals remains the same at the upper system tiers: all that is needed 

is to change the type of work requested by the customers. For this new set of experiments 

tha t simulate transient work in the system, we fix the number of customers but we change 

the nature of their work for 300 seconds (from the 600th until the 900</l second).

E xp erim en t T h ree  (10K  D atab ase , T ransien t W ork): We report results for the 

small database using the ordering mix with 640 EBs on the left column in Figure 4.5. Recall 

tha t under the ordering mix the front-end rather than the database server operates close 

to its capacity and 640 EBs do not saturate system resources in the lower tiers. In this 

experiment, we keep the number of EBs steady but from the 600th to the 900th seconds 

of the experiment, we change the work done by the browsers as follows: we increase the 

percentage of ORDERJDISPLAY requests from 0.22% to 30% and we proportionally adjust 

the percentage of the rest of the requests in the ordering mix. ORDERJDISPLAY requests 

search in the CUSTOMER, ADDRESS, and ORDER_LINE tables to generate reports on 

all orders placed by a single customer and on related best-selling items for each order. Note 

tha t we do not introduce any new query in the TPC-W workload mix, we only modify the 

weight that each of the pre-defined transactions have to simulate an unusual workload mix 

in the system
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Figure 4.5: Arrival rates and system utilizations in multiple levels under transient work, for the 
ordering mix and a variant (I) and the browsing mix and a variant (II).

Figures 4.5(I.c)-(I.d) confirm that there is significantly higher disk activity in multiple 

tables, in contrast to the disk activity of the browsing mix in experiment one (see Fig­

ure 4.4(1.d)), indicating tha t the database working set is substantially larger under the or­

dering mix and its variant than for the browsing mix. Recall that the size of the entire small
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database is approximately 1.5 GB, suggesting that a large working set would not fit into the 

database server memory of 768 GB. This is the reason that the disk becomes the bottleneck 

with the ordering mix variant. As a result, arrival rates (and consequently system through­

put) at the front-end and database servers significantly drop from the 600^ until the 950th 

second (see Figures 4.5(1.a) and 4.5(I.b)), suggesting that the system operates in overload. 

System throughput is reduced during the period of bursty work, but does not become zero 

as in experiment two. Overwork in experiment three, similarly to the overload in experiment 

one, impacts negatively the user-perceived performance (see Figure 4.5(I.e)) but does not 

drive the system to unavailability. Comparing results of experiments one and three, one can 

see that while load did not propagate down to the lowest tier, work did propagate. This 

indicates a critical difference between overload and overwork: work can propagates further 

down to the database disk and can make the system susceptible to overload independently 

of the available system resources.

E xp erim ent Four (1M  D atabase, Transient W ork): The last experiment reports 

on performance data using the large database and the browsing mix and is illustrated on 

the right column of Figure 4.5. Now the number of browsers is set to 32 throughout the 

experiment. In the TPC-W  browsing mix, the percentage of requests that ask for new 

products is 11%. For 5 minutes (from the 600f,i till the 900t/l second), 90% of requests are for 

new products, with the remaining of the requests proportionally adjusted. After the 900t/l 

second, the system operates under the default browsing mix again. This change drastically 

increases the arrival rate to the database disk, as the ITEM and AUTHOR tables need 

to be accessed (see Figures 4.5(II.c)-(II.d)). These disk accesses significantly increase the 

average query response time during the sensitive period (see Figure 4.5(11.e)). During the 

bursty work period, throughput at the front-end web server reduces to zero for nearly 200
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seconds beyond the end of the bursty period at the 900t/l second (see Figures 4.5(11.a)). This 

behavior, similar to experiment two, indicates system unavailability during the transient 

overwork period.

Recall that the system with the large database has less available resources than the system 

with the small database as its working set is larger but the available system memory is the 

same. Under both transient load (experiment two) and transient work (experiment four), the 

system becomes unavailable. For the experiments with the small database (experiments one 

and two) the system resources are well provisioned, as a result during overload or overwork 

performance drops but the system quickly recovers and does not become unavailable.

In contrast to the transient load which may be detected by simply monitoring the arrival 

rate at the system front-end, transient work may be detected by observing slower response 

times, despite the fact tha t the number of users in the system (or the number of connections) 

remains relatively unchanged. Yet, we show that even for the small database where steady 

state analysis (see Section 4.1) shows that memory is hardly the bottleneck, scenarios that 

make the system suffer from severe overload are not hard to devise.

To summarize, in this section we present experiments using the TCP-W that do show 

that transient overload as:

• load-related, where the number of simultaneous customers may force the system to 

operate beyond its capacity, and to

• work-related, where the number of simultaneous customers remains the same but the 

changes in the work done by them brings the system to the brink of thrashing.

If overload due to transient load or transient work propagates down to the lowest tier, i.e., 

the database disk, the effect is reflected in the system hierarchy up to the highest tier, as
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dips in the arrival ra te / throughput in the front end indicate that the system shows signs of 

service unavailability.

Effective system provisioning is difficult, as changes in the work done may quickly drive 

system resources to saturation, and system recovery from these states may become very slow. 

In the next section we elaborate on methods to speed up system recovery, focusing on the 

resource allocation policies at the storage system.

4.4 System  Im plications of th e Transient W orkloads

The previous sections show via measurements how the system workload propagates down 

the tiers of an e-commerce site. The goal is to understand the conditions under which certain 

tiers of the system become the bottleneck and negatively affect service availability and user- 

perceived performance. The straightforward conclusion is that too much load at the front- 

end generates too much load at the lower levels of the system, increasing the average request 

service time and causing the service to become unavailable. The experiments also show 

that excessive work, especially in the lower tiers, may also cause response times to become 

so slow that can considerably degrade user-perceived performance. By propagating down 

the system hierarchy, excessive work critically affects system performance and, similarly to 

excessive load, might bring system availability to a halt as depicted in Figures 4.4(II.a)-(II.b) 

and 4.5(II.a)-(II.b.) Consequently, effective handling of such overload conditions, e.g., via 

work-shedding of some form, becomes as important as any load-shedding technique.

The straightforward way to avoid overloading is admission control, i.e., rejecting service 

to new customers at the system front-end and/or interrupt service to existing users. Note 

that from the perspective of the service provider, service interruption to existing users bears
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more penalty than rejection of service to new users. As shown in Section 4.3, excessive 

work might result even from the same set of users, which leaves service interruption at the 

front-end as the main alternative to sustain service availability during the transient overwork 

period.

Complementary to front-end admission control is the development of work-shedding poli­

cies at the lower tiers of the system tha t adapt their configuration parameters according to 

the current resource demands. In fact, it is possible for system resources to achieve much of 

the benefits of work-shedding by taking advantage of local information and by understanding 

their own behavior.

Figure 4.6 illustrates the number of outstanding requests (i.e., the queue length) at 

the database server and the storage system during the overload and overwork scenarios in 

experiments two and four of the previous section. In the overload case (see Figure 4.6(a)), 

queue lengths of both resources follow the same pattern, while for the overwork case (see 

Figure 4.6(b)) spikes in the queue length at the disk and the database are complementary 

to each other across time.

This further shows tha t lower tiers may have an advantage in work-shedding over the 

front-end. The front-end cannot easily distinguish the source of slow response time: is it 

because of increased arrival intensity (overload), or is it because of a slower service process 

(overwork)? Furthermore, the front-end cannot make the best decisions about which requests 

to drop, as it cannot accurately assess which are expensive and which are not. As a result, 

it may end up dropping requests randomly, leaving a large fraction unserviced [92] instead 

of a small fraction of well-chosen requests. For requests that have already reached deep in 

the system hierarchy and cannot be easily rejected, simple work reordering, i.e., preferential 

scheduling in the same spirit as in [34], may result in faster system recovery from overload.
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Figure 4.6: Outstanding requests (queue lengths) at the disk and at the database during overload 
and overwork scenarios of (a) experiment two and (b) experiment four.

For example, the system resource may choose to postpone certain actions in order to achieve 

graceful degradation in system performance and avoid service unavailability. This can be an 

effective strategy especially if the overload (or overwork) condition is only temporary. In the 

following part, we give a proof-of-concept that it is possible for system resources to make 

independent decisions toward effective overload/overwork handling.

Case study: handling overload/overwork at the storage system

Now, we focus only at the lowest level in the system, i.e., the storage system, and propose 

a technique to handle disk overload/overwork. The goal is to adapt disk operation such that 

during overload, or overwork, graceful performance degradation is achieved. In order to 

handle overload at the disk where service rejection is not straightforward, we prioritize the
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work such tha t the tail of disk response time, i.e., the worst case, is contained.

Note tha t a single request for a database table gets transformed to several, sometimes 

hundreds of, I/O  requests. If these I/O  requests are for consecutive blocks of the disk 

media, they are considered to be a sequential stream. A fully random I/O  workload instead 

consists of requests uniformly distributed over the disk media. In an e-commerce system, 

usually, the disk workload consists of a mix of sequential streams and random requests, 

as Figures 4.4(I.d), 4.4(II.d), 4.5(I.d), and 4.5(11.d) illustrate. By characterizing the I/O  

workload as a set of streams, one can identify long running streams and short running 

streams. This characterization becomes very useful in times of overload where it may be 

better to prioritize service of short-running streams and postpone service of the long-running 

ones, in the same spirit as the Shortest Job First (SJF) family of policies. We implemented 

this prioritization of streams into the Shortest Positioning Time First (SPTF) policy [96], 

which is widely implemented in disk drives today. We detect overload/overwork at the 

disk by monitoring its queue length. Once queue length reaches a predefined threshold, 

SPTF serves short-running streams and postpones the long-running ones for the future. The 

postponed requests are served after the transient overload period ends or a predetermined 

time interval has elapsed. By viewing the I/O  workload as streams of requests, decisions at 

the disk level can affect only a small number of database requests.

We evaluate this disk overload-aware policy via trace driven simulation. DiskSim [26] 

is used as the disk-level simulator, which is driven by traces from the testbed described 

in Section 3.5, specifically traces from experiments two and four (see Figure 4.4(11) and 

Figure 4.5(H)). Here, we concentrate on handling overload at the disk level only. A com­

prehensive evaluation of the performance implications of this disk scheduling policy in the 

entire system is the subject of future work.
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Figures 4.7 and 4.8 present the response times of all disk requests during the overload 

and overwork periods in experiments two and four, respectively. Results are presented as
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Figure 4.7: Response time at the disk as a function of time under (a) normal scheduling, (b) 
overload-aware scheduling, and (c) the complementary cumulative distribution during the overload 
period of experiment two.

a function of time using the normal SPTF scheduling policy and the overload-aware SPTF. 

Observe tha t for both experiments, disk response times using the overload-aware scheduling
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Figure 4.8: Response time at the disk as a function of time under (a) normal scheduling, (b) 
overload-aware scheduling, and (c) the complementary cumulative distribution during the overwork 
period of experiment four.

algorithm are diminished to less than half. This fact is emphasized also in the complementary 

distribution functions of the response times for both policies (see Figures 4.7(c) and 4.8(c)), 

which show that there is a clear reduction in the tail of the response time distribution when 

overload-aware scheduling is used. This reduction can greatly help in avoiding the time
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during which the system operates on a “red” zone, i.e., when the system is so slow that it 

is unavailable. By modifying the disk scheduling discipline, we reduced the worst response 

times at the disk by a factor of two, clearly improving the responsiveness of the lowest tier 

and improving on the overall system availability.

4.5 Sum mary

In this chapter, we present a detailed workload characterization study via experimental 

measurements in a 3-tier e-commerce system built according to the TPC-W specifications 

to study the system performance under overloads and evaluate how workload propagates 

through all levels of the system hierarchy. By measuring resource utilization through all 

3 tiers of the system, i.e., at the front end web server, at the database server, and at the 

database storage system, we show tha t it is the lower tiers i.e., the database server and 

the disk, tha t suffer most from such overload/overwork conditions. More specifically, we 

summarize our observations as follows:

- The time spent at the database server (including the disk) is the one that dominates 

user-perceived performance. The workloads which utilize mostly the database server 

memory and less the disk, can sustain more load, while the workloads tha t are more 

I/O  oriented sustain less load as a result of a slower service process and FCFS-like 

service discipline at the disk.

- Both the transient excessive load in the system (i.e., an higher than usual number of 

users, number of web sessions, or number of network flows) and the effects of transient 

excessive work (i.e., sudden increase in the demand of system resources by the current 

users of the system) could results in system overloading. The further overload/overwork
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propagates down the system hierarchy, i.e., the memory/disk, the higher performance 

penalty, and the more difficult it is to recover performance effectively.

- Complementary to front-end admission control mechanisms, effective resource manage­

ment at the various devices can significantly aid system performance. We have showed 

a first proof-of-concept that self-adaptive resource management at the lower tiers that 

can detect and handle overload and overwork cases can help in graceful performance 

degradation and in avoiding system unavailability.
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Chapter 5

A nalytic M odels in M ulti-tiered  

System s

The experiments in previous chapters indicate the existence of autocorrelation in closed 

systems. The impact of autocorrelation in an open multi-tiered system is different from that 

in a closed system, first because the correlated tier can only affect its descending tiers and 

second because there is no upper bound of system performance due to the unlimited customer 

population in an open system. In this chapter we focus on analytic models of multi-tiered 

systems with no restriction in their buffer sizes, i.e., open systems. An abstraction of such 

systems is illustrated in Figure 5.1. It resembles the structure of tandem queues, i.e., queues 

whose departure process becomes the arrival process of the next queue.

- h z x > - c x > — n o - *

Front Server Database Server Storage System

F ig u re  5.1: A queuing m odel of the experim ental environm ent in C hapter 3 bu t w ith infinite 
buffers.

Developing analytic techniques for solving networks of queues as the one depicted above 

is very challenging. A queue-by-queue analysis of such networks [35] often is the only ana-

73
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lytic alternative to simulation, especially when queues exhibit autocorrelations in the arrival 

and/or service processes. The persistent presence of rare events in simulations of such sys­

tems require several replications of a tremendously large sample space in the order of hun­

dreds of millions to reach results within accepted confidence intervals, even for the simplest 

case of a single queue, necessitating analytic models. Modeling the departure process of a 

queue accurately is essential to queue-by-queue analysis, as the departure process may serve 

as arrival process to downstream queues.

It has been extensively shown that batch arrivals and long-range dependence are charac­

teristics of Internet systems [40, 22], while there are clear indications that dependence exists 

in the service process of systems as well[71]. The presence of (positive) autocorrelation in the 

arrival and/or service process has detrimental effect on performance [22]. Therefore, it is of 

critical importance for departure processes to capture as accurately as possible autocorrela­

tion in the departure flows of a queue, else analytic models may fail to capture performance 

degradation due to dependence in flows.

The models presented in this chapter are as general as possible and do consider correlation 

in their arrival and/or service processes. Customers (or packets) in such systems may arrive 

in batches, significantly impacting queueing behavior. As introduced in Chapter 2, correlated 

flows with batches can be represented by the Batch Markovian Arrival Process (BMAP) [48]. 

Correlated service processes may be described by MAPs. Data fitting to BMAPs, MAPs, 

and their subclasses is subject of several recent works [37, 10, 11, 74],

In this chapter we present a family of finite approximations for the departure process of 

a BMAP/MAP/1 queue, which is derived via an exact aggregate solution technique called 

ETAQA [72] applied to M /G /l-type Markov processes. This chapter is organized as follows. 

In Section 5.1 we give an overview of related work. We present techniques for the solution
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of M /G /l-type Markov processes in Section 5.2. In Section 5.3, we construct the family 

of finite matrix-exponential (ME) matrix representations, from which characteristics of the 

departure process are computed and formally proved that the approximation preserves the 

marginal distribution and certain autocorrelation of the exact departure process. Section 5.4 

gives a summary of this chapter.

5.1 R elated Work

Characteristics of departure processes of BM AP/GI/1 queues are studied in [24], i.e., queues 

with general, but uncorrelated service times and batches. Algorithms and explicit formulas 

to compute various measures, including the moments and covariances of the inter-departure 

times, are developed for different types of queues, including queues with finite buffers and 

vacation servers. The methods presented in this dissertation could be applied to servers 

with vacation (at the expense of increased QBD block dimensions), but are not designed for 

finite queues. In contrast to [24], we can treat correlated service times and not only deliver 

a set of output characteristics, but also an approximate output model tha t matches these 

characteristics exactly.

Different approximation models of departure processes, which also capture the inter­

departure distribution and the first lag coefficients of correlation of the departure process, 

have been proposed for single-server queues (e.g., [30, 77, 41]) -  all of them based on arrival 

and service processes in matrix notation. Kumaran et al. [41] suggest a model for the 

departure process of an M E/M E/1 queue. The notation used to decide matrix-exponential 

(ME) processes strongly resembles tha t of a MAP. It is more general than MAP but lacks 

MAP’s stochastic interpretation. The approximation models proposed by Green [29, 30]
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work for M AP/PH/1 queues (i.e., when there is no correlation among service times), and 

the proofs of the preserved properties of the output models, such as marginal distribution 

and correlation coefficients can be found in [29]. Among the alternative approaches in the 

literature, the family of models proposed in [77] is the most general, it guarantees that the 

output approximations are MAPs, but it only applies to M AP/M AP/1 queues. However to 

the best of our knowledge, none of the others’ work considers batch arrival processes in such 

traffic-based decomposition techniques. Additionally, this dissertation presents thorough 

analytic proofs of how well the approximation matches the lag correlations as a function of 

the size of the approximation model.

5.2 Background

In this section, we recall the definitions and properties of M /G/1-type Markov processes and 

cite a theorem on the aggregate solution of such Markov processes upon which the analysis 

of the departure process is based.

5.2.1 M /G /1 - ty p e  P ro cesses

A BM AP/MAP/1 queue defines an M /G/1-type Markov process. The infinitesimal generator 

Qoo of such a CTMC1 has an upper block Hessenberg form

Q o c  =

L F(i) F(2) p(3) F(4)
B L F(b f (2) F(3)
0 B L F(b F(2)
0 0 B L F(b

(5.1)

1Note that although we restrict the presentation to continuous-time queues, the presented techniques can 

be directly adapted to discrete-time queues.
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where the state space is partitioned into levels, i.e., = { .s ^ ,. . . ,  Sm }, for j  > 0  and

m  > 1. Intuitively, represents the state configuration when the queue is empty. The 

states tha t account for the state of the system when the queue is nonempty (with j  customers) 

correspond to sets for j  > 1 , and the interaction of successive sets has a “repetitive”

structure (see Figure 5.2(a)). In Eq. (5.1), The letters “L” , “F” and “B” are used according 

to “local” , “forward” and “backward” transition rates, respectively, in relation to a set of 

states for j  > 0. For BM AP/MAP/1 queues, the block matrices are defined as follows 

using Kronecker notation:

L =

L =  © D[,5) =  D(,A) ® I5 +  I A ® D '5)

B =  I a ® D (1s)

® Is for * > 1 ,

where the matrices (i > 0) describe the BMAP of the arrival process of order rri^ and

D^5) and describe the MAP of the service process of order mg- All matrices B , F ^ ,  L 

and L are square (m  x m)-matrices, where m = m Am s. For general M /G /l-type processes, 

the set iS(0) might differ in cardinality from m, but for presentation simplicity we need not 

consider this here.

Let 7 for j  > 0  be the stationary probability vectors (of dimension m) for states in 

S ^ .  For the computation of the stationary probability vector

TToo =  [ tt(0) 7T(1) . . .  ] , (5.2)

defined by tTqoQ oo = 0  and Tr^e =  1 , matrix-analytic methods have been proposed [61]. 

Commonly, the sub-vectors 7r ^  are determined using Ramaswami’s recursive formula [69],
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(a) Original M /G /l (standard state space partitioning)

S(0) &l) &2)

o
o

o

o
o

o
o

o
o

o  o  o

(b) ETAQA partitioning of M/G/l

S® S<1) s(*>

O

(c) Partitioning the M/G/l preserving n levels

s® s ' 0  s'"'

O

O

0 \ IO  
O

O

Figure 5.2: State-space partitioning of a M /G /l solved (a) via the traditional matrix-analytic
method, (b) via ETAQA, and (c) ETAQA that preserves the first n M /G /l levels, n > 1.

which is based on matrix G, the key element to matrix-analytic methods and solution of

OO

B +  LG +  ^ F (i)G i+ 1  =  0 . (5.3)
i=  1

Matrix G has an important probabilistic interpretation: an entry (I, k ) in G expresses the 

conditional probability of the process first entering through state k, given tha t it starts 

from state I of S ^  [61, page 81]. Iterative algorithms are used to calculate G, with the cyclic 

reduction algorithm being the most efficient [42].

To formulate Ramaswami’s formula, we define the matrices

OO

S U) = ^ F w G i_j for j  > 0 , (5.4)
i = j

where we additionally set F ^  =  L. Note tha t Eq. (5.3) then takes the form B +  S ^ G  =  0.
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Ramaswami’s formula defines the following recursive relation:

^ 7r (i)S(j- l) (S(o)) 1 fOT all j  > 1 (5.5)

Before applying Eq. (5.5) to iteratively compute 7r ^  for j  > 1, we first have to solve the 

following system of m  linear equations to obtain vector 7r ^ :  where the last column in the

matrix corresponds to normalization, which replaces any one of the other equations.

In [72], ETAQA was proposed as a methodology for the exact analysis of M /G/1-type 

Markov processes. Originally, ETAQA truncates these infinite Markov processes on level 

n = 2  in such a way that the stationary level distributions tt1-0'1 and 7r^b are preserved 

(see Figure 5.2(b)). However, it is easily seen from [72] that aggregation can occur for any 

level n > 2 (and in fact, also for n = 1 with a structure as in Eq. (5.1)), as illustrated 

in Figure 5.2(c). The main theorem for the solution of M /G /l-type processes can then be 

restated as follows:

T heo rem  5.1 [ETAQA] Given an ergodic CTMC with infinitesimal generator Qoo (see 

Eq. (5.1)/ and with stationary probability vector (see Eq. (5.2)/, the system of linear 

equations (parameterized with n)

^nQn 0
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where Q n € R(n+l)mx(n+l)m ^ defined by

OO OO OO
L jrd) p (2) . . . p (" -2)

F(n-1) -  5 Z  s(i)G
2=71+1OO

Y  s w g
2=71 2=71+1 OO OO

B L f ( p  . . . Jp(n-3) jp(ra—2) _  ^  SW q
2=71OO

Y  F (i) +  ^ S WG
2=71—1 2=71 

0 0  OO

0 B L F ("-3) -  Y  S(i)G
2=71—1

Y  F W +  Y  s(i)G
2=71—2 2=71—1

Q n  = 0 0 I'd)
OO OO OO

L Fd) -  J ^ S WG
2 = 3

0 0

^ F w +  J ^ S (i)G
2 = 2  2 = 3  

OO 0 0

0 0 . . .  o B L - j ^ S w G
2 = 2

OO

J ^ F W +  ^ S WG
2= 1  2 = 2  

OO OO

0 0 . . .  0 0 B - ^ S WG
2= 1

5 ^ F (<) +  l  +  ^ s w g
2= 1  2= 1

(5.6)

admits a unique solution

7T„ =  [ 7 T ^  7 T ^ _ ( n - l )  _ o o  7T ’ 7T„

where*™  =  E S n 7 r W ; given that we discard one column (any) and replace it with a column 

of l ’s due to the normalization condition, i.e., * ne — 1.

Proof: The proof follows directly from the main theorem in [72], ■

Qn is not necessarily an infinitesimal generator, since non-diagonal numbers might be 

negative due to the subtractions in Eq. (5.6). However, from Q„, the initial sequence of 

(invariant) stationary probability vectors 7 (j =  0 , 1 , . . . ,  n — 1 ) and + " ’*) may be derived 

similarly as for Markov chains. The case n =  1 with two block levels only (namely 0 and 1) 

may also be included. However, we will see that this particular case (unlike n > 1) does not 

prove favorable for the desired output approximations of BM AP/MAP/1 queues.
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5.2 .2  E xam ple: E T A Q A  R ep resen tation  o f  th e  Q ueue

For illustrative purposes, we present here the aggregate ETAQA representation of Theorem

5.1 for the simplest queue with arrival batches of 1 and 2, namely an M ^ /M /l system. With 

the settings

F (1) =  [A!] F<2> =  [A2] F w =  [0 ] if i > 3

B =  [/r] L =  [—(Ao +  p)] L =  [ —A0 ] =  [ —(Aj +  A2) ]

SW =  [A1 +  A2] S(2) =  [A2] S «  =  [0] if i - 0 ,3 ,4 , . . . ,

we obtain the “matrix” G =  [1], where obviously all block matrices are of dimension 1 (= 

mAms)- The resulting ETAQA representation

—Ao Ai A2 0 0 0

M — (Ao +  fj,) Ai A2 0 0

0

Ai a 2 0

0 0 0 —(A0 +  n) Ai a 2

0 0 0  ••• — (A0 +  A2 +  fj.) Ao +  A2

0 0 0  ••• 0 fj, — Aq — A2 —// +  Aq +  A2

defines a true infinitesimal generator, if p > A0 +  A2 =  Ai +  2A2, which corresponds to the 

stability condition > Abmap =  7t B M a p  YlkLi assuming tha t the mean service time

of the queue is E[S} = K
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5.3 ETAQ A-based A pproxim ation of the B M A P /M A P /1  

D eparture Process

5.3.1 E xact D eparture P rocess o f  th e  B M A P /M A P /1  Q ueue

Starting from the infinitesimal generator Qoo (see Eq. (5.1)), we give the exact departure 

process of a BMAP/MAP / 1  queue as a MAP of infinite order. By “filtration” (see [29]), i.e., 

by collecting in matrix D i )00 “backward” transitions of that correspond to departures, 

we arrive at the following MAP representation:

D 0,oo —

' L f P) F(2) F(3) FP) ' 0 0 0 0 0
0 L FP) F(2) F(3) • B 0 0 0 0
0 0 L f P) F(2) • ) Dl,oo — 0 B 0 0 0 •
0 0 0 L F 0 0 B 0 0

Applying the MAP definitions, the mean rate of this exact departure process is:

-̂ oo TTooDiooe

The SCV of the exact departure process is

Cqq 2A007T00( D o , o o )  6  1  >

and the associated autocorrelation function

ACF (k) = A°°7r°°((~Do-0°)~lD l'0°)A:(~ Do-0°)~le ~ 1

(5.8)

(5.9)

(5.10)

(5.11)

The infinite order of the above MAP is impractical for further processing. In the next 

subsection, we present a finite representation, from which several performance measures of 

the exact departure process can be computed.
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5.3 .2  T runcating  th e  E xact D eparture P rocess

One obvious way to obtain a tractable (approximate) representation of the BM AP/MAP/1 

departure process is to truncate the infinite representation in Eq. (5.8). For arrival processes 

without batches, as for the M AP/M AP/1 queue, This has been done in different ways (e.g., 

see [77]). Then, it suffices to adjust the last block row (chosen at an arbitrary block level n, 

n > 1 ) to obtain a representation that preserves the marginal distribution and the coefficients 

of correlation up to the first n — 1 lags.

The applicability of ETAQA to M /G/1-type Markov processes allows to obtain an ap­

propriate truncation for the BM AP/M AP/1 departure process. W ith similar “filtration” as 

for the exact departure process in Section 5.3.1, one can easily construct the following matrix 

representations from the ETAQA matrix:

L F (1) F (2) 

0 L F «

F ("-2) f ("-1) -  ^ 2  SWG ^ F w +  ^ 2  SWG
2=n+l i —n i = n + 1

oc oo oo

p(n-3) p(n-2) _  ^  SWG ^ 2  +  ^ 2
i = n
oo

0 0 L F(n~3) -  '̂ 2 S (*h
i = n —1

Fd)
oo

0 0 0 L F «  -
2=3

oo

0 0 0 0 L - ^ S WG
i = 2

0 0 0 0 0

i = n —1 
oo

i —n —2

t —n
oo

i = n —1

j T F (<) +  j ^ S w G
i = 2  i =  3
OO 0 0

£ ^ F W +  ^ S (i)G
i =  1 2=2

oo

Y  F(i) +  L
2=1

(5.12)
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- p v ( M E )  _

l.n —

' 0 0 0  • 0 0 0

B 0 0 0 0 0

0 B 0 0 0 0

0 0 0 . 0 0 0

0 0 0 . B 0
oo

0
oo

0 0 0  • • 0 B -  J ^ S WG
1=1

j ^ S (i>G
i=1

(5.13)

Index n (n > 1) indicates tha t the dimensions of matrices DoMnE) and may be chosen

flexibly. The order of the truncated representation is (n + l)m  =  (n+l)msrriA. Furthermore, 

the block elements of and D / ] /  are given directly in terms of the arrival and service

process representations and the fundamental-period matrix G.

The notation D ^ f Y D ^  resembles tha t of a MAP, and indeed moments of the marginal 

distribution and coefficients of correlation (of the true departure process) are computed cor­

respondingly (e.g., Eqs. (2.5), (2.6), (2.7)). However, the subtractions in the next-to-last 

columns of both matrices may violate the non-negativity constraint imposed on off-diagonal 

elements of D ] / /  and D /] / .  Still, we have (D / / 1 +  0 ^ ) 1  =  0. In fact, representation

(5.12)/(5.13) defines a matrix-exponential (ME) process [41]. Such correlated sequences 

of matrix exponentials are generalizations of MAPs used in linear-algebraic queueing the­

ory [46, 55]. ME matrices can be used analogously to the corresponding MAP matrices in 

computational procedures for queueing systems, which do not rely on this probabilistic in­

terpretation. Thus, we may also use the ME representation (5.12)/(5.13) as an approximate 

output model of the BMAP/MAP/1 queue. The corresponding notations for the mean rate,
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the squared coefficient of variation and the autocorrelation function of the above ME are:

ACF T (k ) (C M E )2

where 7r„ =  [ t t^  7r ^  7t^°] as defined in Theorem 5.1.

As the last two columns of Do^E)/D (,“ E) in Eq. (5.12)/(5.13) are now different from the 

exact departure process due to the aggregation, only the first (n—2 ) coefficients of correlation 

can be preserved for an nth-level truncation. However the marginal distribution remains 

invariant for n > 2 because Theorem 5.1 guarantees that the stationary distribution of 

the embedded Markov chain of the true departure process (i.e., of the original M /G /1-type 

process) is maintained by ETAQA technique. The above mentioned properties of the exact 

departure process are formally proved in Section 5.3.3.

5.3.2.1 Special Case: O utput A pproxim ations for th e  M A P / M A P / 1  Q ueue

The ETAQA methodology for the M AP/M AP/1 departure process has been first proposed 

in [36]. Here, we customize the results of the previous section to the M AP/MAP/1 queue, 

i.e., when the queue accepts batches of size 1 only. Note that the subtractions in the next- 

to-last column of the ME representation (5.12)/(5.13) disappear, which causes one more 

coefficient o f co rre la tio n  to  be  m a tch ed  (i.e., n  — 1 in s te a d  of n  — 2 ) .  T h e  m a trices  D //E> and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

D (1MnE) for the M AP/M AP/1 case are:

‘ L F 0 0 - 0 0 0 0 0 '
0 L F B 0 0 0 0

n (M E ) _  
u 0,n ~ 0

P |(M E) _
i l ,n 0

0 0 L F B 0 0
0 0 0 L +  F _ 0 0 0 B - F G FG  .

(5.14)

The block matrix FG  in Eq. (5.14) now fully captures the flow backward within the aggregate 

state encompassing original levels n to oo, while B —FG  corresponds to the flow that actually 

leads from the aggregate state to level n — 1 (see [36] for a detailed treatment).

5.3.2.2 Illustration for th e  M ^ / M / l  D eparture  Process

Specializing our output process results to the stable M ^ /M /l queue described in Sec­

tion 5.2.2, we obtain from Eqs. (5.12) and (5.13) the following output MAP approximation:

-A0 Ai A2 0 0 0

0 — (Aq +  n) Ai A2 0 0

0 0
• , "■

Ai ^ 2 0

0 0 0 — (A0 +  jj) Al A2

0 0 0  ••• 0 — (A0 +  A2 +  fi) Ao +  A2

0 0 0 0 0 - V  .

' 0 0 0  ••• 0 0 0

V 0 0  ••• 0 0 0

0 t1 0 0 0 0

i-v(ME) _
1,71 —

0 0 0 0 0 0

0 0 0 M 0 0

_ 0 0 0  ••• 0  /i -■ Ao — A2 Aq +  A2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

5.3 .3  P ro o f o f  th e  M arginal D istr ib u tion s and A C F  o f th e  M E

D eparture A p proxim ation

Theorem 5.2 contains the proof tha t the marginal distributions of the true and the approxi­

mated departure processes are identical. As a prerequisite of this proof, we show A“ E =  Aqo 

for all n > 1 :

T heo rem  5.2 The complete inter-departure time distribution of the true departure process 

is preserved by the ME output approximation.

P roof: For both the infinite and truncated output ME representations (5.8) and (5.12)/(5.13), 

respectively, the inter-departure time can be seen as a composition of

ME enters a level greater than 0 and

a convolution of an idle period (described by L) and a service time when the respective ME 

enters level 0 .

Note that in the bottom row of the ME presentation (5.12)/(5.13) the service-terminating 

rates also sum up to matrix B, since

\  M E  ___ T V M E ) on Tfn L )  i „  e

n —1 oo oo

=  Y  t t « B  +  < ° ( B  -  Y ,  S (l)G) +  T C j ]  S « G  e

o o  ̂  1  ,O G  ^  - ^ o o

a service time (whose transient phases are described by L +  F ^ )  when the respective

oo oo

( B - J 2 s(i)G ) +  s(i)G  =  B *
i =1
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Let the vectors x / i0 0 / x b i00 (of block dimension m ) be the stationary distributions that the 

BM AP/MAP/1 queue is empty/nonempty (or idle/busy) immediately after a departure. 

With / x g n , we denote the respective counterparts for the lumped Markov chain in 

Eq. (5.6). In PH-type notation, the outlined composition of the true inter-departure time 

distribution can be expressed by the initial phase distribution c* and the transient rate matrix 

T  as follows:

As mentioned above, matrix T  remains the same for the lumped model. Thus, the invariance

a  =  [ x /i00  x Bj00 ] =  [ y7T(1)B

of the inter-departure time distribution is proved, if we show that X/]0O =  x /*rf an(I xb,oo 

x Bn ■ Note that we have already shown tha t A“ E =  A^ =  A for n > 1.

For n > 1, we obtain

M E
x I,n

M E
B,n

oo

For n = 1, we obtain

X/,l

XB, 1 \ir™ FG = \  B  =  x B,,
A  A

l

This concludes the identity proof for the inter-departure time distribution.
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The above theorem implies =  c2n for all n >  1 and identity for all higher moments. 

In the remainder of this section, we prove that representation (5.12)/(5.13), indexed by n, 

preserves the first n — 2  coefficients of correlation coefficients, i.e.,

ACF“ E(A;) =  A C F ^ k ) ,  for all n > 3 and 1 < k < n  — 2.

Before stating this theorem (see Theorem 5.3), we first introduce three auxiliary lemmas. 

L em m a 5.1 Matrix (—D 0jOO) _ 1  can be rewritten as:

{ — D 0,oo)

' 1 hd: o Pi p 2 P3 ...
X _ 0 Po Pi P2

0 0 Po P l (5.15)

where

Po = ( -L )- \  

Pi 

Po 

P,

^ P i ^ F ^ - L ) - 1, for * > 1 ,
3 - 1

( - L ) - 1,

^ P i - j F W ^ - L ) -1 , for i > 1 .
j = i

Proof: Eq. (5.15) is directly obtained by the closed-form formula of the inverse of an upper 

diagonal matrix. ■
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L em m a 5.2 Matrix (—Dq„ ) 1 can be represented as

Po Pi p 2 ' P n-2 U„_! Vn
0 Po Pi ' P n—3 Un_2 V„_!
0 0 Po ' P71—4 U„_3 V„_2

0 0 0 • • Po Ui V2
0 0 0 • 0 Uo V!
0 0 0 • 0 0 Vo

where and P i, i > 0, are defined in Lemma 5.1 , and

n— 1
U„_! =

u, =

Uo =

v n =

V,; =

Vo =

( F « -  £  S « G ) ( - ( L - ^ S « G ) ) - 1,
j =1 l = j + 2 1=2

i oo oo
^ P ^ ( F «  -  £  S « G ) ( - ( L  -  ^ S « G ) ) - \  for 1 < t <

= 1 l = j +2
oo

- ( L - ^ S ^ G ) - 1,
1=2

oo
E

3=1
n

1=2

j=n-l
OO

P j — U,_i. for 1 < i < n — 1,
j=i- 1 

00

E p ,
j=0

Proof: By the closed-form formula of the inverse of an upper diagonal matrix, 

directly get

( - D ‘7 ) ) - 1 =

1
TJ> 0 Pi p 2 P 71-2 Uu_! V 'n

0 Po Pi P 71-3 Un_2 V '_ !
0 0 Po • • Pti-4 Un_3 v ; _ 2

0 0 0 ■ • Po Ui v i
0 0 0 • 0 Uo Vi
0 0 0 • 0 0 V(,
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2 ,

we can

(5.17)
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where

v ;  =  X ) P n - j ( E F (0 +  E  sW G )(-(L  +  J ] F « ) ) - 1
j=2 l=j 1=3 + 1 /=1

OO 0 0  0 0

+ U „_ 1 ( J ] f W  +  ^ S W G ) ( - ( L  +  ^ F « ) ) - 1, 
1=1 1=2 1=1 

i oo oo oo

v '  =  ^ p w ( £ f ( ' ) +  £  s ^ g x - c l  +  ^ f W ) ) - 1

j = 2 l = j  / = j + l  Z=1
oo

+ U i_1 ( ^ F «  +  ^ S ^ G ) ( - ( L  +  ^ F « ) ) - 1, for 2 < t < n - l ,
Z= 1 1=2 1=1

oo oo oo

v i =  U o( ^ F W  +  ^ S W G ) ( - ( L  +  ^ F ^ ) ) - 1, for 1 < Z < n — 2,
1=1 1=2

oo

V' =  - ( L  +  ^ F W ) - 1-

1=1 1=2 1=1 
oo

1=1

To prove tha t =  V n and V' =  V, for all 0  < i < n — 1 , we only need to prove that

( i- 2

£ p  j +  Uj_! +  V- =  ^ P j ,  for all 0 < i < n -  1
j =o j = 0
n —2 oo

^ P j  +  U ^ + V ^ ^ P ; .
j=0 j=0

It is easy to show that

OO OO 0 0  OO

£  Pi = -(L + £ f (V ,  £  P, = (-LJ-^-L) -  (L + £
j —0 i=i j =o ;=i

Then we prove Eq. (5.18) step by step.

(1 )
o o  OO

v ' =  - ( l  +  x ; f ('))-i =  £ p j,
1=1 j = 0

(5.18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

(2)

OO

Uo +  V l =  ( - ( L - J ] S (')G ) -1) +
1=2

OO 00 oo oo

( - (L  -  j r  S ^ G ) - 1) ^ F «  +  Y  S « G ) ( - (L  +  ] T  FW) ) - 1

1=2 1=1 1=2 1=1
00 oo oo

=  ( - (L  -  £  S « G ) - 1) ( - (L  +  £ F « ) ) ( - (L  +  £  FW))-1
*=2 /= 1  1=1

oo oo oo oo

+ ( —(L -  Y  S(° G )" 1) ( ^  F<'> +  Y  S(° G )( - (L  +  Y  F ( 0 ) ) _1  

1=2 1=1 1=2 1=1 
oo oo oo

=  ( - (L  -  5 ]  SW G )-1) ( - (L  -  Y  SWG ))(- (L  +  Y  fW))_1
1=2 1=2 1=1

oo oo
_(L +  ^ F (0 ) - 1  =  ^ P J . 

(= 1  j = 0

(3) For any 0 < k < n — 3,

k+2
u fc+1 +  v ; + 2  = u k+1 + Y P k+2-j( Y Fil)+ E  SW G )(-(L  +  ^ F W ) ) - 1

j = 2 l = j  l = j + 1 1=1
oo oo oo

+ufc+1 + Y s(l)G)(-(L+ E F(i)))_1 
1=1 1= 2 1=1

fc+1 oo oo

= £ p fc+w(F tf> - Y  S « G )( - (L  + £ ; F < V )
3 =  1 l = j + 2 1=1

k + 2  oo oo oo

+ Y F k+2-J( Y F{l) + E  S « G )( - (L  +  ^ F « ) ) - 1
j —2 l = j  1=3 + 1  i = l

fc+1 00 oo

= ^ P fc+1_j (X ;F W )(-(L  +  ^ F « ) ) - 1.
j = i  i = j  i = i
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Then

fc+i fc+i
£ P ,  + Ul+1+ V i+2 = ^ P m ^  + ^ P m . ^ F ^ H L  + ^ f W))-1
3 = 0  3 = 1  J  =  1 1=3 1=1

k+1 k + 1 oo oo

=  E p * + w  +  E p * + w ( E F(()) H L + E fW ))_1
3 = 2  j = 2 l = j  /= 1

oo
+ P fe +  P fc( ^  F « ) ( - ( L  +  Y  F(0))_1 

1 = 1  1 = 1  

fc+1 k + 1 oo oo

= E P k + i ~ j +E p fc+i-j
j = 2  j = 1  l = j  1=1

k  oo

+  ^ P , _ jF W (-(L  +  £ F « ) ) - 1
j = l  Z=1

k  k  oo oo

= E p*-; + E P̂ (E pW)(-(L + E F(,)))_1
3 =  1 3 =  1 l = j  1=1

= Po + P o ( E f (I))(-(L + E f(0 ))_1
Z= 1  1=1

OO 0 0

=  - { L + Y ^ r ^ Y ^
1=1 3 = 0

(4) With the similar way as in (3), we can prove that

n —2 oo oo

^ p J + u „ _ 1 + v ;  =  ^ + p 0( E F(,)) ( - ( L + E FW) r 1
j =0 1=1 1=1

oo

( -L )-1(-L)(-(L  +J^ F W )-1) = Y PJ
i = 1 j =0

Summering (l)-(4), Eq. (5.18) is true, and Lemma 5.2 is proved. 

Based on Lemma 5.1 and Lemma 5.2, one can easily show that

/  (-Do,oo)-1e = [ X 0e,X 1e,X 1e,---]T 
1 (—Do“E))_1e =  [X0e, X i e , • • • , X ie ]T , (5.19)
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where n > 1, X 0 =  ( - L ) - 1 ( - L ) ( - ( L  +  E ^ F ^ ) - 1), and X x =  - ( L  +  E ^ F M ) " 1. For 

more general cases, the following lemma is introduced.

L em m a 5.3 Matrix ((—D o ,0o ) _ 1 D i , o o ) i : ( — Do,oo)- 1e; for 0 < k < n — 2, has the form

r y ^ p  7^1o y(kl o 7 & 1T[ 0 e> 1̂ i 2 e) > *Jk+ie’ '̂*:+le: ' ' ' J >

and. the matrix ((—Dg“E;) 1D j“£;)fc(—Dq“e;) *e has the f(orm

[ 7 {fc)P  7 W p  7 (fc)P  7 (fc)f> 7 (fc) p  7 W  _ iT  L 0 e > ^ 1  e > ^ 2  e ’ ^fc+ie ) > ^k + 1 J i

where

17(0)   Y  7 (0)   Y

and /o r all i > 1,

Z «  =  ^ P iB Z [ri1)+  ^ P ;BZ|
/= 1  /=i+ 1

i-j 00

Z ?  =  £ p ,B Z ^ 1}+  ^  P ,B Z t<<_1), l < j < i  +  l.
/=0 l —i + l —j

P roof: We prove this Lemma using induction.

(1) From Eq. (5.19), we know the statement is true for k = 0, where Zq0̂  =  X 0 and 

Z f } =  X j.

(2 ) Assume that for all 0 < i < k, where 0 < k < n — 3, the statement is true, i.e.,

( ( - D c i . c o r ' D ^ r i - D o ^ r 'e  =  [Zf’e .Z f ’e .Z f e , - - -  , Z f e ,  Z g je , z g .e ,  • • •]T, 

( ( -D |,“ ' ) - 1DS”B)‘( - D i“B) - ' e  =  [Z «e. Z<‘>e, Z « e . • • • , Z<"e, Z f^ e , • ■ • , Z « e ] T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

Then the following will prove that the statement is also true for case i — k +  1 .

((—D 0 ,oo) Di.oo) + (—D 0,oo J

P jB  P 2B P 3B P 4B 

P 0B P iB  P 2B P 3B 

0 P 0B P jB  P 2B 

0 0 P 0B P jB

fc+i

Z ^ e
Z ^ e
Z f e

Z ^  e^k+ le
7 M e^Jc+le

^ < 8 ^ 6 +  E P < B Z « e
1=1 \i=fc+ 2 /

k  /  o o  \

j > 3 Z , ' * > e + (  ^ P i j B z j f t e
i = 0 \2 = fc + l /
A:—1 /  oo \

5 > B Z £ >1e +  ( ^ P . l B Z & e
2=0 v 2=/c

P „ B Z f e +  l B Z & e
\ i =  1 /

'  OO \

Ep< BZS.e
V 2=0 /
i OO \

B Z ^ e
, 2=0

Zofc+1)e
Z(*+1)e
'7.(/c+1)q

C >e
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For 0 <  k < n — 3,

( ( - D ^ E)) - 1D^nE,)(fc+1)( - D ^ nB)) - 1e
oo  oo

P jB  P 2B  ••• P„_2B  U„_!B V „ ( B - ^ S « G )  v „ J ] s « g
i=rn

00
i —n

oo

P 0B  P  iB  ••• P„_3B  U„_2B V „_1(B -  ^ 2  S ^ G )  V n - ^ S W G
i = n  i —n
oo  oo

0 p 0B  p„_4B  u „_3b  V„_2( B - ^ S ^ G )  v „_2^ s « g

0  0

0  0

0  0

P 0B

0

0

U iB

U 0B

0

V 2( B - ] T s (i)G)
i —n
oo

V i ( B - J ^ S (i)G)
i —n
oo

V 0( B - ^ S « G )

V 2 ^ S « G
i = n
oo

V ^ S ^ G
i —n
oo

V 0 ^ S « G

Z<fc)e
rW,Z\K)e

Z(k)e

Z(k)e
ec ‘k +  i e

fc+1 n - 2

J ^ B Z ^ e  +  £  P , +  U„_r +  V„ B Z j& e
i = l  \ i = k + 2  /
k  /  n —3 \

J ^ B Z ^ e  +  ^  P i +  U „ _ 2 +  B Z j^ e
1=0 \i=Jfc+ l /
k —1 / n —4 \

^ P i B Z S e  +  +  U„_3 +  V„_2 B Z ^ e
1=0 ». i —k

(  n —k —3

PoBZ^. ^  P j +  U n_fc_ 2 +  Y n-k ~ \j  B Z j^ e

/ n - k - 4  \

(  P i +  U n _fc_3  +  V n _ ( t _ 2 J B Z j ^ e

i= 0

(P 0 +  U i +  V 2) B Z ^ e  
(Uo +  V O B Z ^ e  

V 0B Z g ie

z£fc+1)e
Z(*+1)e
Z{k+1)e

Z(A:+1)eA:+2
z(fc+i)e
L ‘k + 2 e

z(fc+i)e fc+ 2  e
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Therefore the statement is also true for i = k +  1.

Summarizing the proof of induction, the statement of Lemma 5.3 is true for all 0 < k < 

n -  2 . ■

Theorem  5.3 ACF00(k) = ACF£E(k) for all n > 3 and 1 <  k < n — 2.

Proof: According to Lemma. 5.3, we have that

COVoo(fc) =  A007T((—Do,00)"1D 1,00)fc(—D 0,oo) - 1e  -  1
k  oo

=  A00( ^ 7r « z f )e +  £  wWZg ie ) - l .
i =0 i = h + 1

c o v r w  =

=  A„(jr<0>Z0e +  ■ ■ ■ +  ir<‘>Z<*>e +  7r<*+‘> Z g1e +  • • •

+7r<”- 1>Zg1e + < z £ 1e ) - l  

= A „ (^ Ir»zf> +  ] T  ^ z f i e  + ^ Z g . e ) - !
i=0 i=k+ 1

=  COVo0(k).

Then

COV0 0 (A:) _  COV“E(*0 
(C E) 2

ACF0 0(/c) =  — ^  J = ACF“ (*)•

R em ark  1 The lemma/theorem, in this section can be trivially adjusted for the departure 

process approximations from a M AP/M AP/1 queue. The proof is the same as above given 

that F ^  is equal to 0  for all i > 2, and is omitted here.
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5 .3 .4  E xp erim en ta l R esu lts

In this section, we present a set of experimental results that show the effectiveness of the

ETAQA departure approximation under different systems and utilizations. The purpose of

the experiments is to illustrate tha t a level-n approximation of the departure process captures

the exact lag coefficients up to n — 2 for n > 3. For all experiments, we use a dual tandem

queue (see Figure 5.3) and consider performance measures under two utilization levels (30%

and 80%) for both servers. We first show the autocorrelation function (ACF) of the arrival

server 1 server 2

B

F ig u re  5.3: D ual tandem  queues

process to the tandem queue (i.e., at point “A” in Figure 5.3) and the ACF of the departure 

process of the first queue (at point “B”) for different approximation level n. For the BMAP 

at point “A” , both the ACF of the inter-batch arrival process (see Eq. (2.7)) and the ACF, 

which does not ignore the zero inter-arrival times (as obtained by simulation) are given. 

In traffic-based decomposition, the approximation of the departure process from server 1 

becomes the arrival process to the second queue. To appreciate the quality of the departure 

process approximation, we also illustrate the average queue length and its distribution in 

server 2 for different level n. Finally, in an effort to show how correlation propagates in the 

system, ACF of the departure process from the second server is shown, i.e., at point “C” 

in Figure 5.3. All analytic results are obtained via MAMSolver, a matrix-analytic methods 

tool [73]. To assess the quality of the approximations, simulation results are also presented. 

The simulation space is 100M requests. Each simulation is run 10 times with 10 different 

random number generator seeds. The reported small 99% confidence intervals indicate the
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high accuracy of the simulations. The figures only plot the mean of the summary measures 

of the replications without confidence intervals to increase the readability of the graphs.

E xam ple  1: M ^ / M / l  —> E r la n g -2 /1

0.1 0.1 0.1 0.1 0.1

0 .3 0 .3 03 0 .3

1.0 / 1.0 / 1.0 / 1.0/

Figure 5.4: The Markov chain that models an M ^ /M /l  queue.

In the first example, we use a simple dual tandem queue M ^ /M /l —> Erlang-2/1. Fig­

ure 5.4 illustrates the Markov chain that models the first queue (M ^ /M /l) , with values as 

assumed in the experiment. The arrival process is a BMAP of order 1:

D qA) =  [—0-4] , D ^  =  [0-3] , =  [0.1] ._ (4) _

This M® process has a mean arrival rate of 0.5 and a squared coefficient of variation (c2) 

equal to 1.5. Its two ACFs, i.e., taking into account of zero inter-arrival times and ignoring 

zero inter-arrival times (simulation vs. analytic, respectively), are given in Figure 5.5.

The service process in the first queue is an exponential distribution with mean rate equal 

to 1.0Z, where I is a scaling coefficient equal to |  or |  resulting in a system lightly loaded

(i.e., with 30% utilization) or highly loaded (i.e., with 80% utilization). The independent

Erlang-2 services in the second queue are given in the following MAP notation with mean

service rate equal to I and c2 equal to 0.5:

D (S2) _ - 2

0
-

0  0  

2 0 (5.20)
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Autocorrelation of M[2]
0.02

request —  
batch —0.01

eo

■§ - 0.01 g
u  -0 .0 2  O
<  -0.03

-0.04

-0.05
8 10 122 4 6 14 16 18 20

lag k

Figure 5.5: ACF of inter-arrival times of batches in the system (dashed curve) and of inter-arrival 
times of actual arrivals (solid curve).

Figure 5.6 gives the analytic and simulation results of this network. Figures 5.6(a) and 

5.6(b) plot the ACF of the departure processes from server 1 (which are also the arrival 

processes to server 2) for several truncation levels (as given by parameter n) under 30% and 

80% utilizations. Note that the generic form of these output approximations for the 

system is presented in Section 5.3.2 .2 and represents MAP. To avoid overloading the graphs, 

we only plot the ACF for representative values of n. As expected, the approximation with 

n =  3 is rather poor as it only captures the lag-1 coefficient of correlation (which is negative 

for low load and positive for high load). Case n =  5 captures the first 3 coefficients and 

diverts after that point. Consistently, the ACFs of experiments n =  10 and n = 50 capture 

the correlations up to lag k — 8  and k = 48, respectively. For instance, under 30% utilization, 

the correlation coefficient of lag k = 8  is 0.00038 with the truncation models (n =  10 and 

n = 50) and 0.00038 ±  0.000083 for the sim ulation. In light load (Figure 5.6 (a )), n =  5 

appears sufficient for a good approximation. As load increases (see Figure 5.6(b)), more 

levels prior to truncation are needed to achieve a comparable quality of approximation. 

The inset graph in Figure 5.6(b) provides a better look of how close the ACFs of various
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Figure 5.6: Experimental results for example 1: ACF of departures from server 1/arrivals to server 
2 ( a - b ) ,  m e a n  q u e u e  le n g th  a t  se rv e r 2 ( c - d ) ,  q u e u e  le n g th  d is tr ib u t io n  a t  se rv e r 2 for d iffe ren t 
approximation levels (e-f), and ACF of departures from server 2 (g-h).

departure approximations match simulation results for lags greater than 2 0  (such a graph 

is not provided for Figure 5.6(a) since all approximations only insignificantly deviate from
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0 for k > 10). Also note that the higher utilization slows down the decay of the departure 

ACF for the same arrival process thus intensifying the correlation structure. For lower loads, 

the ACF of the departure process (Figure 5.6(a)) and the arrival process (Figure 5.5) bear 

a stronger similarity.

Figures 5.6(c) and 5.6(d) show the average queue length in server 2 as a function of 

the truncation level. Under 30% utilization, the approximation with n — 5 approaches 

the simulation closely (relative error of 0.08%), while n > 10 gives virtually exact results. 

For example, the average queue length is 0.4324 ±  0.000078 for simulation and 0.43244 for 

n =  10. Under 80% utilization, the approximations with n > 25 have a relative error less 

than 0.055% (the average queue lengths are 3.5020 ±  0.0018 for simulation and 3.5001 for 

n =  25). Figures 5.6(e) and 5.6(f) present the queue length distributions. Up to queue 

length equal to 5 we use linear scale for the y-axis. Beyond 5, we use logarithmic scale as 

this allows us to better distinguish the tail of the distributions for different truncation levels. 

In both figures, results for n =  50 match simulation results. Figures 5.6(e) and 5.6(f) offer 

the same conclusions as Figures 5.6(c) and 5.6(d): systems with higher load need higher 

truncation levels to meet the same accuracy requirements.

Figures 5.6(g) and 5.6(h) give the ACF of the departure process from server 2 (i.e., point 

“C” in Figure 5.3). We plot the simulation curve and analytic curves with approximation 

parameters equal to n =  10 for server 1 and n = 3,5,10 for server 2. The notation n = 

x, n = y on the graph legend means that the approximation level for server 1 is equal to 

x  and for server 2 equal to y. Since n = 10 for server 1 is good enough for both cases, 

the approximation of the departure process from server 2 may provide good results. In 

Figure 5.6(g), approximations with n =  3 at the second queue are in good agreement with 

simulation. For higher utilization, Figure 5.6(h) exhibits a less regular behavior.
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We also note that at point “B” (see Figure 5.3), the marginal distribution is preserved 

for any approximation. Depending on the utilization, the c2 of the departure process at 

point “B” is 1.35 (for 30%) and 1.1 (for 80%). While we conserve the flow also at point “C” , 

the level-n approximation of the internal traffic at “B” distorts the marginal distribution 

of the output approximation at the second server. At point “C” , the “n =  10, n = 10” 

approximation yields the values of c2 as 1.2513 (for 30%) and 0.7223 (for 80%).

E xam ple 2: B M A P (3 ) /H 2/ 1  —> E rlan g-2 /1

Here we study another dual tandem queue with a more complicated arrival process. 

The following BMAP of order 3 admits finite batches with sizes of up to 5. Note that 

D ^ i  =  § D ^ , l < i < 4 .

=

04) _D

D (>4) _

D (-4 )  _

-0.290083 0.003728 0.000000
0.004349 -0.014549 0.000621
0.000000 0.001243 -1.207105

0.005625 0.000000 0.142171 
0.000000 0.004773 0.000170 
0.619824 0.001364 0.001193
0.002813 0.000000 0.071085 
0.000000 0.002387 0.000085 
0.309912 0.000682 0.000596
0.001406
0.000000
0.154956
0.000703
0.000000
0.077478

0.000000
0.001193
0.000341
0.000000
0.000597
0.000170

0.035543
0.000043
0.000298
0.017771
0.000021
0.000149

0.000352 0.000000 0.008886 
0.000000 0.000298 0.000011 
0.038739 0.000085 0.000075

This BMAP(3) has mean rate 0.5000 and c2 30.2335. Figure 5.7 gives the ACF of the inter­

batch times as provided by (2.7) and the simulated ACF, which considers the zero inter-
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arrival times of the arrival process. Figure 5.7 illustrates the noticeable difference between

these correlation structures, especially the jagged shape of the analytic ACF in Figure 5.7.

Autocorrelation of BMAP(3)
0.16

0.14
0.12e

■2 0.1CQ
|  0.08
Q 0.06
3  0.04

0.02

request —  
batch —

0.0015

0.001
0.0005

-0 .0005

-0.001
-0 .0015

-0.02

lag k

Figure 5.7: ACF of inter-arrival times of batches in the system (dashed curve) and of inter-arrival 
times of actual arrivals (solid curve).

The service in the first server is a two-stage hyper-exponential distribution H2, which we 

again give in MAP notation:

D iSl) =
-10 0 
0 -0.52632 I D p l} = 5 5

0.26316 0.26316 I. (5.21)

This H2 process has (a controllable) mean rate of I and (a fixed) c2 of 2.6197. The Erlang-2 

service at the second node is the same as in the first example (see Eq. (5.20)).

Figures 5.8(a) and 5.8(b) illustrate the autocorrelation of the departure process from 

server 1 for the two server utilization levels 30% and 80%. Again, approximations with 

n = x  (here ME processes and not MAPs) capture the lag correlations up to k — x  — 2. It is 

interesting to observe how erratic the correlation structure of the output model may behave 

beyond k = n  — 2, especially for high utilizations. Often, dips occur at k = n, which shrink 

for increasing n. The deviation between the analysis and the simulation result at lag k =  n 

is 0.4033 with n — 3 and 0.0912 with n — 50, suggesting that a larger number of levels is 

now required for high-quality approximations.
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F ig u re  5.8: Experimental results for example 2: ACF of departures from server 1/arrivals to server 
2 (a—b ), mean queue length at se rv e r 2 ( c -d ) ,  q u e u e  le n g th  d is tr ib u t io n  a t  se rv e r 2 fo r d iffe ren t 
approximation levels (e-f), and ACF of departures from server 2 (g-h).

Average queue lengths are displayed in Figures 5.8(c) and 5.8(d) and confirm the above 

observation. Here, n =  25 yields an accurate average queue length in the lightly loaded 

system with relative error of 0.05% (0.9314 ±  0.00079 for simulation and 0.9310 for n = 25).
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Again, the output models tend to underestimate the average queue length. In Figure 5.8(d) 

the approximated average queue length still has a 10% relative error even when n =  100. 

Figures 5.8(e) and 5.8(f) show the queue length distribution in server 2. Comparing them 

with Figures 5.6(e) and 5.6(f), one can easily observe that high autocorrelation and c2 

(29.3905 for 30% utilization, and 14.8456 for 80% utilization) in the arrivals to server 2 

increase the queue length significantly. Note that the x-axis in Figure 5.8(f) is up to 100, 

which still corresponds to a non-negligible probability value.

To plot the autocorrelation of the departure process from server 2, we use a truncation 

level n = 10 for the first server, and truncations equal to 3, 5, and 10 for the second server 

(see Figures 5.8(g) and 5.8(h)). Under 30% utilization, even with n =  3 in the second 

server, the ACF can be captured well in the approximation. Under 80% utilization, the 

approximate ACF for n =  10 rather closely follows the shape of of the simulated ACF curve 

(see Figure 5.8(b)).

E xam ple 3: B M A P (3 )/ M A P ( 2 ) / l  —► E rlan g-2 /1

To evaluate the importance of correlation in the service process (with different loads), 

we use the same scheme as in example 2, but substitute the renewal H2 service in server 1 

with a correlated MAP(2), which describes alternating exponential service times:

D (5l)u o
-10  0 
0 -0.52632 I , d ( 5i) = 0 10 

0.52632 0 I. (5.22)

Note that this MAP(2) has the same marginal distribution as H2 in example 2 (see Eq. (5.21)). 

Thus, any difference in departure process characteristics should stem from the observed cor­

relation in the service process. This strong (but alternating) correlation oscillates between 

the values —0.3 and 0.3 (for the coefficients of correlation).
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Figure 5.9(a) shows the autocorrelation of departures from server 1 under 30% utilization. 

Clearly, this ACF is dominated by the arrival process, while the service autocorrelation 

is reflected to some extent by the lightly oscillatory curves (note the jag in Figure 5.9(a), 

especially in the tail as shown in the inset figure). Figure 5.9(c) and (e) give the average queue 

length and queue length distribution of server 2. Observe that the oscillating autocorrelation 

introduced to the system by the service of queue 1 decreases queueing in the second node (the 

average queue length for simulation is 0.8705 ±0.00096 as compared with 0.9314 ±0.00079 in 

the previous example for this load). Figure 5.9(g) gives the ACF of departures from server 

2 and illustrates tha t the Erlang-2 service process in server 2 smoothes the jagged behavior 

of the arrivals from this server.

Under heavy load, the influence of the service process is significantly more prominent, 

as illustrated in Figure 5.9(b). The autocorrelation of departures from server 1 drops from 

0.14 in Figure 5.8(b) to 0.1 for lag k — 1, with pronounced subsequent oscillations. Due 

to the nature of the approximation (which as before are ME processes), adding a level to a 

small n causes inverted oscillations in the ACF for lag k > n — 1 (observe the approximation 

results for n = 3,4 and 5). With increasing truncation levels, this behavior is attenuated 

and the analytic curve converges to the simulation result (note how the curve of n = 10 is 

closer to simulation than n = 4). Again, under heavy load, we need more levels to capture 

the departure process from server 1. According to Figure 5.9(d), the average queue length in 

server 2 of the approximation with n — 100 has an 11% relative error when compared with 

that of simulation (the numbers are 21.66 for n — 100 and 24.15 ±  0.21 for simulation).

Finally Figure 5.9(h) gives the autocorrelation of departures from server 2 when the 

approximation level at point “B” is 10. The Erlang-2 service process in server 2 increases 

the ACF for lag k = 1 and smoothes the oscillation. As we observe in Figure 5.9(b), n =  10
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F ig u re  5.9: Experim ental results for example 3: A CF of departures from server 1 /arrivals to  server 
2 (a—b ), m e a n  q u e u e  le n g th  a t  se rv e r 2 ( c -d ) ,  q u e u e  le n g th  d is tr ib u t io n  a t  s e rv e r  2 fo r d iffe ren t 
approxim ation levels (e-f), and ACF of departures from server 2 (g h).

does not capture well the departure process from the first server, which contributes to the 

differences between simulation and analytic curves in Figure 5.9(h).
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5.4 Sum m ary

In this chapter, a family of approximation models for the departure process of a BM AP/MAP/1 

queue arising from ETAQA is presented. This family of approximations are indexed by a 

parameter n, which determines the size of the output model as n +  1 block levels of the 

M /G /l-type process. The approximations lend themselves to further use in network decom­

position.

We formally proved tha t this approximation model can preserve the marginal distribu­

tion and the autocorrelation function up to lag (n — 2) of the exact departure process of 

a BMAP/MAP/1 queue. This model is also shown to be efficient by experimental results, 

especially under light loaded systems. However, it is hard to achieve an accurate approxima­

tion for the system existing long-range dependence. Moreover, the output traffic descriptors 

formally belong to the class of matrix-exponential (ME) processes, which lack the physical 

interpretability of the rate matrices. In the next chapter, we address these drawbacks by 

presenting an alternative output approximation that is a MAP.
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Chapter 6 

Improved Truncation M odels for the 

B M A P /M A P /1  Departure Process

In this chapter, we present an alternative family of analytic approximation models of the 

departure process of BM AP/MAP/1 queues that results in a MAP output process. The 

approximations have a form of a finite MAP and are developed based on the original (infinite) 

MAP departure process using lumpability arguments that are similar to the flow arguments 

presented in [77] for M AP/M AP/1 queues. The family of MAP approximation models that 

are proposed here can be broadly classified in two categories. The first category includes 

models that preserve the original first n levels of the infinite departure process and lump the 

remaining levels starting from level n into a single level. (Level numbering starts with 0.) 

This category preserves exactly the first n — 1 lag correlations of the true inter-departure 

process (i.e., one more accurate lag than the ME approximation in Chapter 5). Here, n +  1 

is the size of the output model in terms of block levels. The second category includes models 

that do not focus on preserving the first n — 1 lag correlations exactly but instead aims at 

reducing significantly the size of the models while maintaining nearly the same performance

110
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properties as models of much larger size in the first category. We provide proofs that both 

categories preserve exactly the marginal distribution of the original departure process. We 

also provide proofs tha t the first category matches exactly the first n  — 1 lag coefficients of 

correlation.

Deciding the truncation level n of the output model is no trivial. As that also discussed 

in Chapter 5, the higher n is, the more lag coefficients of correlation of the true departure 

process are matched and the time series properties of the true departure process are better 

preserved. But using large n ’s is not always possible, as this output model serves as input to 

downward queues. It is of paramount importance to minimize its size to avoid the problem of 

state space explosion to allow queue-by-queue analysis. To this end, we present a study that 

identifies the conditions tha t require an exact representation of higher lags and consequently 

identify the size of the output model. We use the probability mass of the lumped level as 

an indicator of the ideal size of the MAP departure process. Additionally, for cases that 

the asymptotic analysis suggests a prohibitively large output model, we propose ways to 

reduce it via alternative ways to further lump the state space of the output MAP without 

significant loss in the time series properties of the MAP and consequently in performance 

accuracy. Extensive experimentation illustrates the effectiveness of the proposed methods.

This chapter is organized as follows. Section 6.1 constructs the new lumpability-based 

approximation of the departure process that represents a MAP. Proofs tha t this representa­

tion matches exactly the lag coefficients of correlation up to a predefined lag are also given. 

Section 6.2 compares the performance of MAP approximation with that of ME approxima­

tion via experimental results. Complexity issues are also discussed here. Section 6.3 further 

studies the asymptotic behavior of the approximation and provides a methodology to identify 

the appropriate truncation level, which is validated by numerical examples in Section 6.4.
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The second category of MAP approximations is given in Section 6.5. Section 6.6 summarizes 

this chapter.

6.1 M A P A pproxim ation O utput M odels

To aid in the presentation, we first define a diagonal operator diag(-). Given the n-dimensional 

vector x =  [x0 xi x2 • ■ • xn], diag(x) is the n-dimensional matrix whose diagonal entries are 

the elements of vector x and whose other entries are zero. Obviously, x  (diag(x))-1 =  

[1 1 1  ■ • • 1] and xdiag(y) (diag(x))-1 =  x  (diag(x))-1 diag(y) =  y, where y is a vector of 

same dimension as vector x.

Applying basic lumpability rules (or flow arguments as in [77]), we can construct a finite 

Markov chain from the infinite original one Qoo of the BM AP/MAP/1 process in Eq. (5.1). 

Both chains are identical up to the (n — l) th  level, whereas the finite chain “lumps” all states 

from the nth level onward. Correspondingly, the infinitesimal generator Q„ € R(n+1)mx(n+1)m
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of this new process is expressed as follows:

OO
L F<!) F(2) . . F("_1) y~^Fw

i= n
oo

B L ]? (1 ) . . . f (”-3) jp(n-2) E F“
i= n —1 

00

0 B L F("“3) E F(i
1=71 — 2

F (1)
oo

0 0 0 L pd) E f «
i= 2
oo

0 0 0 B L ' y F n )

i — 1

diag(7C+1)d ia g « ° )  :B +
0 0 0 0 diag(7r^” )̂ (diag(7r^°))_1 B

i—1
(6.1)

This representation requires knowledge of vectors 7r“  =  7r^  an(i tt̂ i =  S S n + i7r^^’

which can be computed by solving the ETAQA system Eq. (5.6) with the parameter n  +  1. 

Note tha t 7r^") +  'Kr̂+l = 7r£°. The flow out of the lumped state is the original downward 

flow B weighted by diag(7r^ni) (diag(7r“ ))-1 . These weights are the probability ratios, with 

which the original chain is in states of level n. Note that in the original chain level n — 1 

can only be reached from level n. One easily verifies that Eq. (6.1) represents a generator 

matrix and thus defines a true stochastic process. Therefore, filtration yields the following

L +  > F (i)
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t -v (M A P )
0 ,n

the departure process:

OO

L p (l) p ( 2 ) . . . p ( " - 2 ) F f " - 1) EF<,)
i = n
00

0 L p(l) ... F ( n - 2 ) y ^  F ( i)

i = n — 1 
OO

0 0 L p ( r a - 3 ) y ^  F (i)

i = n —2

F ( i )

00

0 0 0 L F ( P EF<i>
i = 2 
00

0 0 0 0 L
i=  1

00

0 0 0 0 0 L +  F (l
i=  1

(6.2)

'  0 0  • • 0 0 0
B 0 • 0 0 0

0 B • 0 0 0

0 0 . 0 0 0

0 0 . B 0 0

0 0 0 d ia g (7 r (n )) (d ia g (7 r“ ) ) _1 B d ia g (7 r“ +1) ( d i a g ( 7 r “ ) ) _ 1 B  _

n (M A P)
l , n

(6.3)

According to  Eqs. (2 .5), (2 .6) and (2.7) in Chapter 2, th e  m ean rate, the squared coefficient 

of variation and th e  autocorrelation function of the above M AP are denoted as follows:

\  M A P  _  n ( M A P )
~  n l,n e >

/ ■ „ M A P \ 2  _ _  q \ M A P _  (  - p v ( M A P ) \ — 1 
\ c n  )  -  l K  ^ n l - U o . n  )  e  -  1

ACFMAp(A.) A „7 T „((-D ™ )-1D ir PT ( - D [ ) T ,) - 1e -  1
( C M A P ) 2

where 7r„ =  [tt^  7r^  7r“ ] as defined in Theorem  5.1.

This truncated M A P process w ith level n  can preserve the marginal distributions of the  

exact departure process and m atches the autocorrelation function up to  lag (n  — 1). A s a
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prerequisite of the proof, we show A“AP =  Aqo for all n >  1:

\  M A P  An

n ( M A P ) ,7rn1J l,n

f ^ 2  wWb +  7r“ diag(7T(n)) (diag(7r“ ))_1 B +  7r“ d ia g « ° +1) (d ia g « ° ) ) -1 B  ] e
\  i = l

= ( E  wWb +  (ff(n) +  e =  ( E  e

TTooDl.ooe A :x

T heorem  6.1 The complete inter-departure time distribution of the true departure process 

is preserved by the M AP output approximation.

Proof: With the similar proof of Theorem 5.2, we prove that the complete inter-departure 

time distribution is preserved by the MAP output approximation (6.2)/(6.3).

In the bottom row of Eq. (6.2)/(6.3) the service-terminating rates sum up to matrix B, 

since

diag(7r(”))(diag(7r~))“ 1B +  d ia g « ° + 1)(diag(7r~))_1B 

=  (diag(7r(n)) +  d ia g « ° + J )  (diag(7r“ ))“ 1B 

=  diag(7r~)(diag(7r^°))“ 1B =  B .

L e t  v e c to r s  x / ( / J p  /  x  / / ( of  b lo c k  d im e n s io n  m )  b e  t h e  s t a t i o n a r y  d i s t r i b u t i o n s  t h a t  t h e  

respective lumped Markov chain of the BMAP/MAP/1 queue (see Eq. (6.1)) is empty/nonempty 

(or idle/busy) immediately after a departure. Thus, the invariance of the inter-departure 

time distribution is proved, if we show that x /i0O =  ^-YnP and x b j00 =  x ^ Ap.
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For n > 1, we obtain

M A P  _  I - h - W r - , , ,  
X / , n  —  \  7 1  - D  —  X / ?00

V M A P  _  1

Xb'" ~  A

A
71— 1  \

£  tt«  B +  7r~diag(7r("))(diag(7r“ ) ) -1B + 7r“ diag(7r~+ ̂ ( d i a ^ O ) - ^
2=2

XB, 0

For n =  1, we obtain

x J T  =  ^ 7 r f >d ia g ( 7 r (1)) ( d ia g (7 r ? ° ) )  XB

=  7̂r(1)B = X/>°°

=  ^ r diag(7r20)(diag(7r~))_1B

= xB ,

This concludes the identity proof for the inter-departure time distribution. ■

T h eo rem  6.2 ACF00(k) =  A C F fAP{k) for all n > 2 and 1 < k < n  — 2.

P roof: The proof is similar with tha t of Theorem 5.3 in Section 5.3.3 and is omitted here 

for the sake of brevity. ■

R em ark  2 For the ME departure approximation of a BM AP/M AP/1 queue, the last two 

columns of ~Dt0M/ > are adjusted, but here for the MAP departure approximation, only the last 

one column is adjusted. j4s a result the inverse matrix only has the last column

different from  (—Do)00)-1 , as shown in Lemma 6.1. Therefore in Theorem 6.2, A C F fAP 

matches AC F ^ up to lag (n — 1) instead of (n  — 2) for all n > 2.
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L em m a 6.1 Matrix (—DgiTi ') 1 can be represented as

( - D ^ r r 1 =

r p 0 P i p 2 • Pn-2 P  n—1

1---£

0 Po P i P n—3 P n-2 W„_!
0 0 Po ' Pn-4 P n—3 W„_2

0 0 0 • Po P i w 2
0 0 0 0 Po Wj
0 0 0 • 0 0 Wo

(6.4)

where P , and P i; i > 0, are defined in Lemma 5.1 , and

3=1 3= 1

Proof:

From Lemma 5.1, we get

(  — D o , o o ) (  — D q .o o )
-1

LPo L P X +  ^ F « P ! _ , l p 2 + L P 3 +  J > WP 3-i
i= 1 i=1 

1
i=l
2

0 L P 0 l p : + j y (i)Pi~i
i=1

l p 2 + j y (i)P2-i
i—i

0 0 L P 0
i

L P i +
i= 1

=  I ,

Where I is an identity matrix with appropriate demission. So that

LP0 =  - I  , LP0 =  - I  , LPi +  F ij)p i-j = 0 > Lpi +  Y1 F i j ) p i - 3  = 0 for alH > 1 .
3 = 1 j=l

(6.5)
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Let us define matrix A  as

Po Pi p2 • P n-2 P n—1 w„
0 Po Pi P n—3 P n-2 W„_!
0 0 Po ' Pn-4 P n—3 W„_2

0 0 0 • Po Pi w2
0 0 0 0 Po Wi
0 0 0 • 0 0 Wo
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Then

( - D r P>)A

LP0 L P i
+ F « P 0

LP»-i
n — 1

+ ^ F « P „ .-1-2
i = 1

71—1
L W „  +

i = 100
+ J ] F (,)Wo

L P n

L P  n-2
71—2

+ ^ F WP
2=1

71—2—2

71-2
LW n_! +

2=100
+  F (i)w «

1-2

2= n —1

F P  3
72 — 3

+  ̂ F « P „ _ 3 - ,
2=1

72 — 3
l w „ _ 2 +  wn_2_

2=100
+  5 ]  F « W 0

2=71—2

0 0 L P 0 L W i  +  ^ F ( i ) W 0

0 0 0

i = 1

L  +  ]  W 0

i = 1

From above, we see tha t (—Dq„ ) A  =  I  for the all columns except for the last one. To prove
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that this identity also holds for the last column, we first note that the closed-form formula 

of the inverse of an upper diagonal matrix implies Wo =  P , =  — (L +  Y lit i  F ^ )  

This shows — (L +  F ^ )  W 0 =  I. The first element in the last column of (—Do^AP))A

can be manipulated to

n — 1 oo

L W n +  ^  fW 'W »-< +  X FW Wo
2 = 1  i= n

oo n —1 oo oo oo

£Ep;+EF<'' E pj+Ef<i,Epj
j = n  i=  1 j = n —i  i = n  j = 0

oo n — 1 oo oo oo

= E£pJ+EF“,Ep̂ +EFl‘,Epj-»
j=n i— 1 j=n i=n j=n

oo oo n—1 oo j
= E£p»+EEF(‘T-.+EEF“>pi-<

j = n  j —n  2 = 1  j = n  i= n

oo /  j  \  oo

= E £pi+EF“)pi-< =E° = ° •
j=n \  2=1 /  j —n

The last line is due to Eq. (6.5). In the same way, we get LW*, +  Yli=i F ^ W ^ ,  + 

Y Z k  F (<)W 0 =  0 for k = 1, • • • , n -1  so that indeed (-D ^„ap))A =  I and thus (-D qM„ap))_1 =  

A, which completes the proof. ■

6.2 Com parison of M A P A pproxim ation and M E A p­

proxim ation

6 .2 .1  E x p e r i m e n t a l  C o m p a r i s o n

The experiments of this section show the effectiveness of the MAP output models under 

different systems and utilizations and compare its performance to the results of ME repre­

sentation. The very same systems are investigated in Section 5.3.4 with ME output approx­
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imations (5.12)/(5.13) only. Since we have proved tha t the marginal distribution and the 

first lags of the autocorrelation structure of the inter-departure times are preserved by both 

families of approximations, we focus on the behavior of the correlation structure beyond the 

invariance threshold and the performance impact of the approximations of the inter-queue 

process on the downstream node. In each experiment, we show the autocorrelation function 

(ACF) of the departure process from server 1 (i.e., at point “B” in Figure 5.3) and the mean 

queue length (QLEN) at server 2 for selected truncation levels n.

E xam ple 1: M ^ /M / l  —> E rlan g-2 /1

The first example represents the dual tandem queue M ^ /M /l —► Erlang-2/1. The 

arrival process is a BMAP of order/dimension 1 with rates —0.3 and —0.1 for batch arrivals 

of size 1 and 2, respectively. This process has a mean arrival rate of 0.5 and a squared 

coefficient of variation (c2) equal to 1.5. Its inter-batch ACF equals zero, while the ACF, 

which takes into account the “zero inter-arrival times” , has a negative first coefficient of 

around —0.04 and a positive second coefficient of around 0.01 (see Figure 5.5). The service 

processes are an exponential distribution (c2 of 1) at the first queue and Erlang-2 distribution 

(c2 of 0.5) at the second one. The rates of the service processes of the two nodes are scaled 

simultaneously in order to achieve light system load (30% utilization) and high system load 

(80% utilization) across both nodes. These functions are depicted in Section 5.3.4.

Figure 6.1 gives analytic and simulation results of this network. Figures 6.1(a) and 6.1(b) 

plot the ACFs of the departure processes from server 1 (which are also the arrival processes 

to server 2) for several truncation levels of the MAP output model (6.2)/(6.3) under 30% 

and 80% utilizations. The chosen values of the truncation parameter n are the same as in the 

corresponding example in Section 5.3.4 for the ME output representation (5.12)/(5.13). The
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inset graph in Figure 6.1(b) provides a better look of how close the ACFs of the departure 

approximations match simulation results for lags greater than 40. Comparing low (a) and 

high (b) load situations, we observe the stronger long-term correlations in the departure 

process for the system in high load.
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F ig u re  6.1: Experimental results of MAP approximation for example 1: ACF of departures from 
server 1/arrivals to server 2 (a-b), mean queue length at server 2 (c-d).

As proven, the ACF of the MAP output model with parameter n  matches exactly the 

first (n — 1) lag coefficients, e.g., cases n = 3 and n = 5 capture the correlation up to 

lag 2 and 4, respectively. The MAP approximation not only matches one more coefficient 

than the ME representation, but also the tail of its ACF deviates less from simulation 

results. Given that both approximations preserve the marginal distribution of the original 

departure process, we now explore how matching one more lag affects performance results 

for server 2. Figures 6.1(c) and 6.1(d) plot the average queue length (QLEN) at server 2 as a 

function of the truncation level n of the departure approximation from server 1. Results for 

both the MAP and the ME output model are shown for comparison. Both approximations
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generally underestimate the mean queue length. For the MAP output model under light load, 

truncation n = 3 already gives a relative error of only —0.015% compared with simulation, 

and n > 5 yields exactly average queue lengths. The ME approximation results in virtually 

exact results only when n > 10. Under 80% utilization, both approximations have higher 

errors: for case n = 10, the relative error of —0.6% with the ME approximation is reduced 

to —0.2% with the MAP approximation. In this example, MAP output models with very 

small n  appear sufficient for good approximations of the downstream mean queue length, 

where slightly larger n are required for the ME output model to achieve the same accuracy.

E xam ple 2: B M A P (3 ) /H 2/1  —> E rlan g -2 /1

The second dual tandem queue has a more complicated external BMAP, which is of order 

3 and admits finite batches with sizes of up to 5. Its mean rate is 0.5 and its c2 30.2335. 

Both inter-batch and inter-arrival ACFs start around 0.14 (positive lag-1 coefficient) and 

decay to negligible values (i.e., less than 0.0025 in absolute terms) within the first 20 lags 

(see Figure 5.7). Also, the service process at the first server is changed with respect to the 

first example, namely to a two-stage hyper-exponential distribution H2 with rate ratio of 

5.2632 and c2 of 2.6197. Again, in this experiment service rates are adjusted to obtain the 

desired utilization levels at both servers. More details on this BMAP and the H2 service are 

found in Section 5.3.4.

In Figure 6.2, we show analogous plots as for example 1. The ACFs of the departure 

process from server 1 in Figures 6.2(a) and 6.2(b) computed with the MAP output model 

can again be compared with the corresponding figures in Section 5.3.4 for the ME output 

representation. Especially for high loads, the level-n ME representation suffered erratic dips 

for the lag-n coefficient of correlation with significant deviations (see Figure 5.8(b)). These
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dips disappear with the MAP output model, which makes the overall ACF approximation

smoother and accounts for an improved tail behavior.
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Figure 6.2: Experimental results of MAP approximation for example 2: ACF of departures from 
server 1/arrivals to server 2 (a b), mean queue length at server 2 (c-d).

Since additionally the lag (n — 1) correlation coefficient is matched exactly, level-n ap­

proximations with MAPs are noticeably more accurate than their ME counterparts, also 

with respect to the mean queue lengths at server 2 (see Figures 6.2(c) and 6.2(d)). This is 

especially true under low load (c): for n — 3, the MAP approximation only yields a relative 

error of —1.5% and a exactly average QLEN with n = 10. Under high load (d) with n = 100, 

the MAP approximation reduces the relative error to —5.7% from —11% with the ME ap­

proximation. From Figure 6.2(d) we see for both families of approximations tha t mean queue 

lengths only slowly converge to the simulated value in high load. In both cases, it requires 

more than 100 levels (n > 100) to achieve fair approximations to the mean queue length.

E xam ple 3: B M A P (3 ) /M A P (2 ) /1  —> E rlan g -2 /1

This dual tandem queue differs from the one in the previous section only in the corre-
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lation structure of the service process at server 1. The exponential phases of the two-stage 

hyper-exponential distribution H2 are not chosen with equal probabilities, but alternate with 

each service. This defines a MAP service process of order 2, which has the same marginal 

distribution H2, but a non-zero ACF, which oscillates between —0.3 and 0.3. More details 

on this MAP are found in Section 5.3.4.

The impact of the introduced service correlations at server 1 as compared to  example 

2 can be studied in Figure 6.3. Figures 6.3(a) and 6.3(b) clearly demonstrate how the 

service oscillations become more and more visible in the ACF of the departure process 

from server 1 with increasing utilization. Observe also that this oscillating autocorrelation 

decreases queueing in the second node as compared with the previous example. Besides 

the features mentioned before, another qualitative difference between the MAP and the 

ME output models can be identified: in the discussion of the corresponding example in 

Section 5.3.4, the ME output model gave rise to out-of-sync oscillations in the ACF of the 

output approximation for specific truncation levels ((see Figure 5.9(b)). For the MAP output 

model, Figure 6.3(b) shows that all oscillations are in the same phase independent of the 

value of n. Quantitatively, the ACF of the MAP output model also outperforms the ACF of 

the ME approximation of the same order. For example, the maximal absolute deviation of 

the ACFs from the simulated ACF occurs in both cases for lag 3 with level n — 3 and takes 

the value 0.04 in the MAP case and 0.2 in the ME case.

Figure 6.3(c) illustrates that the MAP approximation with small values of n can pro­

vide accurate average queue lengths in the second queue under 30% utilization. Mean 

queue lengths in high load are not as easily approximated. Under 80% utilization (see 

Figure 6.3(d)), the relative error in case n — 100 is still around —8% for the MAP ap­

proximation, reduced from —11% for the ME approximation. Generally, the approximation
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Figure 6.3: Experimental results of MAP approximation for example 3: ACF of departures from 
server 1/arrivals to server 2 (a-b), mean queue length at server 2 (c-d).

behavior for the downstream QLEN is similar to the previous example (see Figure 6.2), 

except tha t the accuracy gain of the MAP output model is even more mitigated in high 

loads.

6.2 .2  C om p lex ity  Issues

We first compare the computational effort related to the ME representation (5.12)/(5.13) 

and the MAP output model (6.2)/(6.3). For this discussion, we assume that the lag k 

autocorrelation of the inter-departure times of a BMAP/MAP/1 queue with true batches 

needs to be computed exactly. The autocorrelation function is simply the numerator in 

equation (2.7). At the end, we also outline the time complexity using the BM AP/GI/1 

approach in [24] to compute the lag k autocorrelation for a BM AP/PH/1 system of identical 

dimensions. In all three cases, ACFs of lag i < k come at essentially no extra cost in the 

course of lag k computations.
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6.2 .2 .1  M E  O u tp u t M odel

For both ME and MAP representations, the level dimension of the involved block matrices 

is m =  rriAms- However, with true batches, the ME representation to approximate the 

departure process requires one more level for the exact lag k autocorrelation computation. 

The truncation parameter of representation (5.12)/(5 .13) must be chosen as n = k  +  2 so 

that the ME output model assumes the total order of mME =  (k +  3)m =  (k +  3

The time complexity in constructing the ME representation (5.12)/(5.13) is dominated 

by computing matrix G of dimension m  (see Eq. (5.3)). This matrix is often sparse and 

can be efficiently computed by matrix-analytic techniques [42, 59] with complexity 0 (m 3). 

The series, which appear in (5.12)/(5.13), are usually finite sums due to batches of limited 

size. In any case, the summations of (5.4) are efficiently computed via backward recursions 

gO) _  p(j) gO'+bQ for j  = &max — 1, • • ■ ,1, where 6max denotes the maximal batch size. 

Note that at this point, without any further matrix-matrix multiplications, the complete ME 

output model is at hand.

In order to compute the lag k autocorrelation (according to the numerator in (2.7)), one 

has to deal with vectors and matrices of dimension m ME = (k + 'i)mAms- Both obtaining the 

inverse of D  JjJa and the ETA.QA. stationary solution tt^ . 2 in Eq. (5.6), which becomes tTmap 

in Eq. (2.7), are rather expensive operations of worst-case complexity 0 (m :(fE) =  0 (((k  +  

3)m)3) =  0 ( k 3m 3). Note, however, that the M /G /l-type structure of involved matrices and 

their sparsity allows efficient implementations to lower the complexity significantly (i.e., k2 

instead of k3 and (m x #  [ non-zero entries in sum of all block matrices in Qoo plus G ]) 

instead of m3, see [72]). Explicit expressions for ( D q ^ 2)_1, similar to the ones given in 

Lemma 5.1, are found in [99]. Finally, with (k +  2) additional vector-matrix and one more
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matrix-matrix multiplication, the lag k autocorrelation is obtained.

6.2.2.2 M A P  O u tp u t M odel

The main advantage of the MAP output model (6.2)/(6.3) with respect to efficiency consists 

in that it requires one block level less, i.e., the truncation parameter can be chosen as 

n = k +  1 and the model dimension is mMAP — (k + 2)m  =  (k +  2)niA'nis- Further use of 

such a model in network decomposition and the computation of the lag k autocorrelation 

profit from this fact which has to be paid for by a slightly more expensive construction of 

the MAP model. At a first glance at the model representation (6.2)/(6.3), this construction 

even seems simpler: matrices and related series expressions do not occur, neither does 

matrix G. Still, exactly the same block matrices are needed as in the ME case, since vectors 

7r(fc+1) and 7r^j_2 have to be computed from the ETAQA matrix Qjt+ 2  from (5.6). Note that 

matrix Qfc+2  has the same dimensions as the ME output model of Section 6.2.2.1. The 

identical system of linear equations has to be solved as for 7rfc+2 above, and this is exactly 

the overhead in the construction of the MAP output model1.

When computing the lag k autocorrelation with Eq. (6.2)/(6.3) for n =  k +  1, the 

“overhead computation” addressed before will be reused in an efficient implementation to 

extract the stationary solution 7tmap of the MAP for Eq. (2.7). Considering this, the MAP 

approach actually outperforms the ME approach by the difference of dealing with vectors 

and matrices of dimension mMAP instead of m ME in the following situations:

• when inverting matrix instead of D q“ ^ 2,

• for (k +  2) vector-matrix multiplications, and

1Here, we ignore multiplications/inversions of diag-matrices in (6.2)/(6.3), which boil down to scalar- 

matrix multiplications.
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• for 1 matrix-matrix multiplication.

Formally, while the construction of the MAP output model has complexity 0 ((m MAP + 

m )3) =  0 (((k  +  3)m )3) = 0 ( k 3m 3) (ETAQA solution), the additional effort for the lag 

k autocorrelation amounts to 0(m®AP) =  0(((fc +  2)m)3) =  0 {k 3m 3). Again, exploiting 

sparsity and the M /G /l-type structures yields similar gains as pointed out in the ME case. 

Overall, a complexity of 0 (k 2m x  #  [ non-zero entries in sum of all block matrices in Qoo 

plus G]) may be achieved.

Generally, one not only constructs an output model, but also further processes it -  for 

computing performance characteristics or for employing it in downstream queue analyses. 

Especially in the latter case, where the order of the output model usually enters the calcula­

tions multiplicatively, the MAP output model is clearly advantageous. This superiority (due 

due lower order) vanishes without proper arrival batches, e.g., for the M AP/MAP/1 queue, 

where the ME representation might be preferred. Recall that all suggested output models 

also preserve the marginal distribution of the original departure process.

6 .2 .2 .3  D eparture Lag C oefficients v ia  th e  B M A P /G I /1  A pproach

Although our approach mainly aims at providing output models, it may still be worthwhile 

to compare the efficiency with another methodology that might as well be used to compute 

the lag k autocorrelation for BM AP/PH/1 queues (but does not deliver an output model). 

This methodology by Ferng/Chang [24] is based on the BM AP/GI/1 framework and as such 

does not admit correlated service processes. Ferng and Chang mostly deal with vectors and 

matrices of the BMAP order m  a , as they arise from matrix-analytic techniques for M /G /l- 

type queues embedded at the departure epochs. Clearly, the algorithms of Ferng and Chang 

benefit from the lower dimensions of the matrices involved in the computations. However, a
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detailed analysis of the computation of the lag k autocorrelation, which presupposes the first 

k sub-vectors of the queue length distribution at departures (see [48] for their computation), 

shows that

• at least 3k +  1 series with matrix-matrix multiplications (dependent on uniformization 

coefficients),

• ^k3 + ^k2 + vector-matrix multiplications and

• 4 matrix inversions

constitute a high computational requirement. Especially, the first item may easily exceed 

the effort for computing matrix G  as needed for the ME and MAP output models, despite 

the lower dimension of compared to m Arris of G. Due to the more compact notation and 

also due to the diverse series computations, the sparsity of the arrival and service processes 

cannot be as fully exploited as in the approaches via the ME and MAP output models.

Overall, a precise performance comparison is difficult and would depend very much on 

actual batch sizes, sparsity of service and arrival processes, series truncation rules, and actual 

implementation. In the light of the fact that our approaches to departure process charac­

terizations are conceptually simpler and easier to implement, we claim that they are to be 

preferred when computing lag k coefficients for low and moderate values of k. This is espe­

cially valid, if a low-order PH (or MAP) service is specified. For example, with exponential 

service times, any performance advantage due to lower block dimensions disappears for the 

approach in [24], On the contrary, for large values k (and non-MAP service), the algorithm 

by Ferng and Chang is expected to outperform the techniques presented here to compute 

the lag k departure autocorrelations.
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6.3 Identifying a Truncation Level

We have proved that the autocorrelation function of the real departure process is exactly 

preserved up to lag (n — 1) in a finite system with n +  1 block levels. For lags larger than 

(n — 1) the autocorrelation is an approximation to the exact one. Naturally, the higher the 

value of n, the better the approximation accuracy. Large values of n, however, result in 

large output models and commensurate increase in the associated computational cost (see 

Section 6.2.2).

Here we concentrate on identifying the minimum size of the truncation level n tha t yields 

a sufficiently small approximation error from the true departure process so tha t the final 

error in the target performance metrics is negligible. Besides small computational costs, 

smaller n  also offers better scalability of the analytic model. From Eq. (6.2)/(6.3), DqN)1ap> 

and Dj))lAP) are square matrices of size ( +  1) x m^m<,(rt +  1)), where tua and m s  

are the order of the arrival and service processes, respectively. Obviously, large n may result 

in state-space explosion in downward queues, making network decomposition infeasible.

A n  E xam ple: B M A P (3 ) /H 2/1  departure process

We first use the same example of the BMAP(3)/H2/1 system as in the previous sections that 

will help us characterize the behavior of the ACF of the departure process, and thus choose 

an appropriate truncation level n. By scaling the rates of the service process we control the 

utilization level of the queue. We consider two cases: a low system load (30% utilization) 

and a high system load (80% utilization).
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6.3 .1  A sy m p to tic  B ehavior o f  th e  A C F

In the formula for ACF“ AP(/c), the matrix (—DQMnAP))- 1D (1̂ lAP) is stochastic. Therefore, when 

raised to the power of k , the inner products it defines should decay geometrically according 

to its second largest eigenvalue, This is stated in the following theorem. W ithout loss 

of generality, we assume tha t the matrix is diagonalizable to avoid a complicated proof. 

The same analysis can be performed using the Jordan canonical form and the appropriate 

spectral projectors [76].

T h eo rem  6.3 The autocorrelation of the approximated departure M AP decays geometrically 

with k, with rate equal to the second largest eigenvalue l2 ,n ° f  (—T)Q '̂P',)_1D [^1P,,.

P roof: From the proof of the marginal distributions in Section 6.1, we have that A^AP =  Aoo 

and (c“ AP) 2 =  cf. for all truncation levels n > 2 .

We know that the matrix G„ =  (—Dq'^ap))_1D ^ ap) is a stochastic matrix, i.e., G n e =  e, 

where e is a column vector of all ones.Let li<n denote its 1th  largest in magnitude eigenvalue, 

x i:Tl denote the ith right eigenvector, and y jn denote the ith  left eigenvector, for 1 < i < m, 

where m is the dimension of G n. Then, l^n =  1, Xi_n =  e, and

m

G n ^  ] h,nZi,nUitn' 
i = 1
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Then we have

ACF ™AP(k) =
m

A r p^ ( E ^ ^ > ) ( - D oMnAP))_le - 1
i—1

( c M A p ) 2

m
Ar p* n ( e y l n +  Y . ltnXi,nyln) { - D ^ ) " ^  -  1
___________________________ i = 2________________________________________________  _

( c M A p ) 2

m
+  A r P7 r „ ( E  ^ y ^ - D ™ ) " ^  "  1

__________________________________________________________ i = 2 ____________________________________________
( c M A p ) 2

Since 7r„e =  1, it suffices to prove that:

A r py L ( - D o’r ,r 1e - 1 =  o.

Since Q„ =  DgM̂ P) +  D f ^ P) is the infinitesimal generator with 7t„Q„ =  0, then,

y in  =

=  v U - V ^ r ' Q n  + vln-

Therefore y^„(—DoM̂ p))_1Q =  0, so that y£„(—D o ^ p))-1 — C  ' ^n , where C  is a constant. 

Letting y f n be normalized as y^„e = 1, then

y L e =  y U - D C ^ r ^ - D o T O e

=  C ■ 7rn(—D 0,n)e =  C  • A“AP =  1.

Therefore C  =  1/A“AP, and

A I T j / U - D S r ’r ' e  -  1 =  K "  • TS5: • ” - e -  1 =  »•
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When the eigenvalue for some block level is very close to the second-largest eigenvalue 

of the matrix Goo for the true ACFoc(A:), that block level should capture very well the 

asymptotic behavior of ACFoc(A;). To identify this level n, we keep increasing n and compute 

the second eigenvalue Z2)„ of (—D o ^ p))_1D (1Mnw>) until two successive eigenvalues do not differ 

much. Then, we concentrate on the asymptotic decay of ACF, and search for the lag numbers 

koo and kn where the two ACFs have the same value, i.e., ACF00(k00) & (l2too)k°° =  (h,n)kn ~  

ACF“AP(A;n), differ by less than, say, 5%. Then, /2i„ =  Ẑ oo*” =  which gives an 

acceptable n.

Table 6.1: The second largest eigenvalue of (—Do l̂AP))_1D ^ P).

30% Util 80% Util

n 2nd Eigenvalue n 2nd Eigenvalue

3 0.840610 3 0.978824

4 0.833388 4 0.978698

5 0.823615 5 0.978562

1 0 0.862645 1 0 0.977784

25 0.935070 25 0.978720

50 0.951438 50 0.986322

1 0 0 0.956885 1 0 0 0.993959

2 0 0 0.958519 2 0 0 0.997739

400 0.958972 400 0.999000

600 0.959060 600 0.999311

2 0 0 0 0.959125 2 0 0 0 0.999614
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Let us illustrate this with the BMAP(3 )/H 2 / 1  example. Table 6 .1  gives the second 

largest eigenvalue of (—Dq^1ap))_1D (1'^ap) for this queue under the two utilization levels of 30% 

and 80%. Figure 6.4 displays the autocorrelation tails of the approximation with different 

truncation levels n under 30% and 80% utilizations. Note the asymptotically geometric 

decay of the autocorrelation with k. Figure 6.5 plots the relative error of the approximate 

ACFs for different block levels n. These are computed by integrating the absolute error and 

scaling it by the ACF area: J2k>n I ACFqo(k) — ACF™AP)(k) \ /J 2 k >l A C F^/c).

For the 30% utilization level, Z2>00 ~  0.959125, and Z2,n =  0.959125105 =  0.957126, which 

is obtained for n  around 100. Because of the fast decay, however, for n  =  50, /2i„ =  0.951438, 

the overall difference is only about 16%. For this case, we expect block levels n =50-100 to 

provide good ACF approximations. This is confirmed in Figure 6.4 where the ACF tails of 

all approximations with n > 50 are almost indistinguishable, with negligible relative error 

(see Figure 6.5).

For 80% utilization, /2,n =  0.999614105 =  0.999595, which means that n greater than 

1000, and possibly closer to 2000 is needed to have less than 5% difference with the same ACF. 

One would think that there is little hope to analyze this system, as n =  2000 would result in 

D<MApi an(j j ) ^ p> with dimension 12006 x 12006 for the output MAP. However, Figure 6.4 

shows that ACFs from block levels n = 400 and n — 600 capture the true ACF trend 

relatively well. Figure 6.5 quantifies this, measuring a 1% relative ACF error for n =  600.

Our results show that the asymptotic behavior for large lags does not capture well the 

transient effects for smaller lags, which, as we show later, turn out to be important in a 

downstream queue. Obviously, utilization plays an important role. Note that large lags k 

imply dependence of transition times between states tha t are k hops apart. If the proba­

bility of such an event is extremely low, capturing the appropriate ACF(fc) may not be as
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ACF of departures from BMAP(3)/H2/1 system
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F igu re 6.4: Autocorrelation of the departures from a 30% utilized and an 80% utilized
BMAP(3 )/H 2 / 1  systems.

important.

6.3 .2  T h e R ole  o f  U tiliza tion

The proof of Theorem 6.2 shows that it is the last two block columns in D ^PAP) and D <1̂ AP) 

(see Eq. (6.2)/(6.3)) of the approximate model tha t introduce the error. These two block 

columns correspond to the lumped level and its interaction with the rest of the Markov chain. 

Intuitively, all information about dependencies between the levels lumped into a single big 

level is overlooked. One can easily prove that if the stationary probability of the lumped state 

is zero, then the introduced error due to lumping reduces to zero as well. It is reasonable,
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F i g u r e  6 .5 :  R e la tiv e  ACF e r ro r  u n d e r  d iffe ren t t r u n c a t io n  leve l n fo r s y s te m  u ti l iz a tio n s  e q u a l to  
30% a n d  80%.

therefore, to expect very small approximation errors if the above probability is non-zero but 

sufficiently small. This is the case when the queue has a very low utilization. This suggests 

an approach for identifying the block level as the smallest n  such tha t 7r^°e < e, where e is 

a predefined small threshold.

Figure 6 . 6  gives the probabilities of the lumped states under different truncation levels n, 

for the two utilization levels of our example queue BMAP(3 )/H 2 / 1 . Under 30% utilization, 

7r“  is less than le - 6  for all n  > 54, and less than le-10 for all n > 92. This is in agreement 

with our previous asymptotic analysis, but more surprisingly, the decay of probabilities 

approximates well the relative error in the ACF approximation as shown in Figure 6.5.

Turning into the system with 80% utilization, we see that 7r£° is still larger than le — 6  

even for n = 2000. This also agrees with our asymptotic analysis. Also surprising here is 

the level of agreement between the decay of probabilities and the relative error in the ACF 

of Figure 6.5. For example, for n =  600 the relative ACF error is 0.01 while 7r ^ 0e =  0.01 ! 

It is possible, therefore, tha t an approximate departure process with two digits of accuracy 

(n =  600) produces a sufficiently accurate input to the second queue, and a sufficiently 

accurate metric such as mean queue length.
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Figure 6 .6 : Probabilities of the lumped states for different truncation levels n under system 
utilizations 30% and 80%.

More importantly, the accuracy of the final metric depends on the utilization of both 

the first and second tier systems. As we show later, if the second tier system has very low 

utilization as in Figure 6.7, even a block level n =  15 for the first queue with 80% utilization 

provides excellent approximations to the queue length. We further elaborate on this in 

Section 6.4.

6.3 .3  R em arks on  th e  M E  A pproxim ation

Although ME output model in Chapter 5 lacks of physical interpretability as

the MAP model, its preserves the same,e matrix properties. The above discussion of the 

asymptotic autocorrelation behavior is valid for the ME output as well.

Table 6 . 2  gives the second largest eigenvalue of (—Do^1E))_1D ^ E) for the BMAP(3)/H2/1 

example under the 30% and 80% utilizations. These values also confirms tha t the ME output 

model captures autocorrelation of the exact departure process worse than the MAP output 

model with compared to the second largest eigenvalues of (—D o ^ p))~1D (1'^ p> in Table 6.1.
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Table 6 .2 : T h e  se c o n d  la rg e s t  e ig en v a lu e  o f ( —D g ^E)) 1D ^ ).

30% Util 80% Util

n 2nd Eigenvalue n 2nd Eigenvalue

3 0.787447 3 0.657528

4 0.790878 4 0.648375

5 0.791682 5 0.754235

1 0 0.826577 1 0 0.891940

25 0.931856 25 0.957455

50 0.950909 50 0.980542

1 0 0 0.956804 1 0 0 0.990440

2 0 0 0.958508 2 0 0 0.997386

400 0.958970 400 0.998944

600 0.959059 600 0.999291

6.4 Experim ental R esults

We use the BMAP(3)/H2/1 system as the first queue that is the same as the one in Sec­

tion 6.3. At the second queue, we present experiments with two different service processes 

for comparison purposes. In the first experiment, the service process has an Erlang-2(E2) 

distribution with mean rate equal to 1.6667 and SCV equal to 0.50 as in Section 6.2.1. In the 

second experiment, the service process is an MMPP with the same mean rate as 1.6667, SCV 

equal to 20, and ACF starting at 0.4 at lag 1 and decaying to 0.001 beyond lag 36. Same as 

before, the rates of the service processes of the two nodes are scaled in order to achieve light 

system load (30% utilization) and high system load (80% utilization) across both nodes,

i.e., we use all four combinations of utilization levels 30%-30%, 30%-80%, 80%-30%, and
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80%-80%.

Figure 6.7 presents performance results at the second queue with MAP approximations of 

different size (i.e., block level n) as input. We focus on how well the output approximations 

of the first server can capture the mean queue length of the second server as the mean queue 

length is a performance measure that is truly affected by autocorrelated flows. Average 

throughputs and utilizations remain the same because the marginal distributions of the 

approximations are identical. The figure presents the average queue length error as a function 

of n. The figure shows tha t small block levels n consistently underestimate performance. 

The degree of error changes significantly from case to case (see the various ranges in the 

y-axes).

Under 30% utilization in the first queue, n as small as 25 is enough to provide nearly exact 

results, see Figure 6.7(I)-(II). For the 80% utilization cases in the first queue (Figure 6.7(111)- 

(IV)), the figures show that deciding the ideal n of the output of the first queue depends 

on the utilization level of the second queue. For small utilization of the second queue, small 

n  is sufficient. The more bursty service process in the second experiment with the MMPP 

requires a higher block level n  to reach a similar error level as in the first experiment with 

the more stable Erlang-2 service process.

The harder case is the 80%-80% one. Figure 6.7(IV) shows that n = 400 is required 

to achieve comparable error. This is in agreement with the asymptotic results presented 

in Section 6.3. Values of n  as high as 100 result in around -5.7% error, making the cost 

of the method prohibitive for network decomposition in networks that operate under high 

utilization levels for all queues. In the next section we propose a remedy to this problem 

that strikes a balance between the size of the approximation and performance accuracy.
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F ig u re  6.7: Experimental results of MAP approximation: mean queue length relative errors at 
server 2 of I. 30%-30% system, II. 30%-80% system, III. 80%-30% system and IV. 80%-80% system.
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6.5 Im proving Accuracy w ith M ultiple Lumping

In Section 6.1 we showed that the lumped level eliminates the existing dependence among 

the various levels beyond n  of the original infinite process, therefore higher n results in more 

accurate models. Nonetheless, the size of n needs to be kept at a minimum for any practical 

consideration. Here, we propose to break the single lumped level into several lumped levels, 

such that the dependence of the original process is recovered to some extend. Following this 

idea, we lump multiple levels up into to a certain predefined level as in Figure 6 .8 . Let w

(a) Single lump (base-case approximation)

(b) Multiple lumps

Figure 6 .8 : High level idea of lumping multiple levels.

denote the number of lumps of the departure process, and [s*, i*] be the set of levels to be 

lumped in the ith  lump, where 1 < i < w, s* < fj, and tw is equal to oo. Note that si must 

be larger than or equal to 1 to avoid losing correctness of the marginal distributions of the 

approximation.

Lem m a 6.2 I f  the boundary states are not lumped (i.e., s i > 1), then the approximated 

departure process using multiple lumps preserves exactly the marginal distributions of the 

interdeparture times o f a BM AP/M AP/1 queue, and it preserves the exact autocorrelation 

up to lag (Si — I).

Proof: Since the stationary probabilities of the lumped levels are exactly derived by the 

probabilities of the Markov chain in the original BMAP/MAP/1 system, one can easily 

extend the proof of Theorem 6.1. ■
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Consider the 80%-80% utilized system in Section 6.4 again. Here, we use multiple lumps 

by setting the number of levels tha t are lumped together to (7, as illustrated in Figure 6.9. 

All lumps are contiguous, i.e., Sj =  1 , U =  Si + C — 1, si+i =  U + 1  for all 1 < i <  w — 1. Note

(a) C = 1

® O 0 ©  • • •

Figure 6.9: High level idea of multiple lumping: consecutive C levels are lumped in single lumps.

that the limit case of C — 1 is the original approximation, i.e., all levels beyond n are lumped 

into a single level. Figure 6.10 provides the autocorrelation of the approximated departure 

process with different values of C. The number of block levels of these approximations is

0.16

0.14

e  0.12o
M, o.i 
6o 0.08u
2  0.06 
3

<  0.04

0.02 

0
2 4 6 8 10 12 14 16 18 20

lag k

Figure 6.10: Total number of block levels is 51: autocorrelation of the departures from server 
1 /arrivals to server 2 .

the same and equal to 51, i.e., their MAP matrices have the same size. ( 7 = 1  preserves 

exactly the ACF up to lag 49. When C > 1, the approximated process loses its short range 

dependence starting from lag 1. The error increases as C  increases, because dependence in

Autocorrelation of arrivals to second node
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C = 2 ------
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the initial boundary levels is ignored. Focusing our attention to higher lags (see the inset 

graph in Figure 6.10), large C's reflect better the asymptotic behavior of the second largest 

eigenvalue of the original model. Judiciously selecting C  may balance the trade-off between 

the effect of small and large lags.

In the following, we propose a greedy algorithm to decide C  for a pre-determined block 

level. Assuming that the block level n is pre-defined, our purpose is to find a good multiple-

I. Ci <— 1 /*  match exact acf for the first chunk */

II. for i — 2  —> m  /*  decide [C2, • ■ • , CmJ */

1 . /*  initialization */

c <— 0  /*  lumping level is initialized as 0 */

Q LE N 2 <— 0  /*  the avg. qlen in server 2  is set as 0 */

2 . /*  increase lumping level gradually till the optimal 

performance in the second server is found */

do

a. QLENprey <— Q LE N 2

b. Cj <r- c + 1 for i < j  < rn

c. approximate the departure process using

[Ci,C2,--- , c m\

d. use the departure process as the arrival process in 

server 2 and get its average queue length Q LE N 2

w hile (Q LE N 2 > Q LE N wtv)

3. Q * - c

Figure 6.11: Setting [C\,C2, , Cm) using a greedy algorithm.
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lumping tha t achieves good performance given the restriction of the size n. Assume tha t n is
m

to be divided in m  chunks. Let the ith chunk consist of 6, blocks so that b, = n. For each
i =  1

chunk i, the number of levels that is collapsed into a single lump is constant and is denoted 

by Ci. As both the stationary probabilities and absolute ACF values decrease geometrically, 

the matches of the first lags are important. C\ =  1 always, so that the exact autocorrelation 

values up to lag (&i — 1 ) are exactly preserved. [C'2 , C3 , • • • , Cm] are determined by the 

algorithm in Figure 6.11.

Figure 6.12 shows the relative error of the average queue length in the second queue 

using the multiple lumping algorithm of Figure 6.11. The results are for the 80%-80%

Relative error of QLEN in server 2

-10

-15

-20
E2: single lumping ■
E2: multiple lumping -  -

MMPP: single lumping —*— 
M|V1PP: multiple lumping ~ ~Q- •

-25

-30
0 10 20 30 40 50 60 9070 80 100

block level n

Figure 6.12: Relative error of average queue length in server 2.

systems in Section 6.4, and are compared with the approximation performance using the 

base-case approximation, i.e., single lumping. For very small n, i.e., 2, 3, 4 and 5, to avoid 

significant errors in the first lags, we only use single lumping even under the multiple lumping 

a p p r o x i m a t io n ,  i .e . ,  there is  only one chunk and Cj =  1. For n = 10 we equally partition 

the blocks into 2 chunks, and for n < 25, we equally partition the blocks into 4 chunks. 

The effectiveness of the approximation now improves: for n — 25, the relative error of the 

second queue length decreases to -7.6% and -6.1% for the experiments with Erlang-2(E2) and
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MMPP service processes in server 2 respectively, while the corresponding values are -14.7% 

and -11.3% with the base-case approximation; for n = 100, the relative errors are only -1.6% 

and -2 .0 % for these two experiments.

6.6 Sum m ary

In this chapter, we derive a family of finite MAP approximation models of the departure 

process of a BM AP/MAP/1 queue based on lumpability arguments, and compare it with 

the ME approximation models presented in Chapter 5. For the MAP output model, sta­

tionary probability vectors need to be computed additionally, which makes the construction 

of MAP representation more expensive than the construction of ME representation. How­

ever the MAP approximation can matches the first (n — 1) correlation coefficients of the 

inter-departure time while the ME representation can only match the first (n — 2) values. 

The benefit of matching one more correlation coefficient on the performance accuracy at the 

downstream node is also demonstrated via experimentation.

This chapter also gives asymptotic analysis to best determine the size of the approxima­

tion n. Based on eigenvalue analysis of two key matrices of the MAP model as well as on 

analysis of the decay of probabilities of the lumped level for increasing n  levels in the approx­

imation, the block level n  can be determined. We have shown that the size of n  depends on 

both the utilization level of the BM AP/MAP/1 process and the utilization level of the queue 

that it feeds to. We have further presented a second category of approximations tha t aims 

at significantly reducing the size of the output model by lumping several intermediate block 

levels without performance loss. Extensive experimentation illustrates the approximation 

quality.
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Chapter 7 

Policy Developm ent for Handling 

System s w ith Autocorrelated Flows

Both workload characterization and analytic modeling aim toward the development of prac­

tical policies that can effectively improve the performance of systems with autocorrelation. 

Although correlated flows are observed in the our work as well as in many other previous 

papers, they are seldom considered in actual system design. In this chapter we illustrate 

how autocorrelation can be used to improve performance for load balancing in a clustered 

system.

Effective Load Balancing Under A utocorrelated Flows

In the past few years there has been a renewed interest in the development of load

balancing policies for clustered systems with a single system image, i.e., systems where a

set of homogeneous hosts behaves as a single host. Jobs (or requests) arrive at a dispatcher

which then forwards them to the appropriate server. 1 While there exists no central waiting

queue at the dispatcher, each server has a separate queue for waiting jobs and a separate

Bn this chapter we use the terms “jobs” and “requests” interchangeably.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

processor, see Figure 7.1. The dispatching policy is critical for system performance and 

strongly depends on the stochastic characteristics of the jobs tha t request service as well as 

on the performance measures that the system strives to optimize.

Prior research has shown that the job service time distribution is critical for the perfor­

mance of load balancing policies in such a setting [33, 32], If job service times are highly 

variable, including job service times that are best characterized using heavy-tailed distri­

butions, then policies tha t balance the load in the system by using only the size of each 

incoming job to determine the server that will be dispatched to, have been shown optimal 

if the performance goal is to minimize the expected job completion time, job waiting time, 

and job slowdown [23, 101].

Back -  end Nodes

Front -  end ! 

Dispatcher ;
Arriving tasks

u

Figure 7.1: Model of a clustered server.

Several types of clustered systems can take advantage of size-based policies. Locally- 

distributed Web server cluster architectures that provide replicated services where a switch 

acts as the initial interface between the cluster nodes and the Internet, are one example of 

such systems [5, 101, 65]. For static requests in such systems, e.g., transfers of image files, 

the job service time is analogous to the size of the transfered file, thus it can be immediately 

used by the dispatcher to forward the request to the appropriate server. Content-distribution 

networks and media-server clusters that provide streaming of high quality audio and video
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from a central server configuration to a large number of clients are a second example of 

a centralized system where size-based policies provide good balancing solutions [98, 16]. 

Finally, large storage systems which deploy mirroring for enhanced performance and data 

availability are another case of a clustered system where load balancing based on the job 

size is beneficial.

A significant body of research in task scheduling and load balancing has been developed 

over the years, but only recently there has been a consensus that traditional load balancing 

policies, i.e., join-the-shortest queue or join-the-least-loaded server, fail to balance the load 

if job service times are highly variable and/or heavy-tailed [33]. For workloads with highly 

variable service times size-based policies that advocate dedicating servers to jobs of similar 

sizes have been shown to achieve high performance. Assuming tha t there are N  servers, the 

job sizes are partitioned into N  intervals, [s0 =  0, s ^ ,  [si, s 2), . . . ,  [sw -i, s n  = °°), so that 

server i is responsible for satisfying requests of size between Sj_i and sl . By dedicating servers 

to requests of similar size, these policies aim at reducing the average job slowdown through 

separation of long and short jobs. Despite the fact tha t size-based policies are oblivious of 

the instantaneous load in each server, they successfully load each server with approximately 

the same amount of work so that they are equally utilized [32, 23]. Note that size-based 

policies are based solely on a priori knowledge of the distribution of the incoming job sizes. 

If this distribution is known, then size-based policies can minimize the expected job waiting 

time and job completion time.

Even if the job service tim e distributions are not known a priori, on-line versions of 

size-based policies have shown to  m aintain high perform ance for workloads th at are highly  

variable across time, i.e., workloads th at show transient behavior [101]. A d a p t L o a d  has 

been developed as an on-line version of a size-based policy  th at m onitors the incom ing work­
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load and self-adjusts the above interval boundaries according to changes in the operational 

environment such as rapid fluctuations in the arrival intensities or service demand.

Nonetheless, size-based solutions are not adequate if the arrival streams in the dispatcher 

are autocorrelated. Indeed, conventional wisdom has it tha t the arrival process in Inter­

net servers is not independent and it is an effect of the self-similar nature of the network 

traffic [8 6 ]. Furthermore, autocorrelated flows in the arrival process has been observed in 

systems including multi-tiered systems [54], large storage systems [28], an effect that has 

been shown to be detrimental for performance [22], To alleviate the negative effects of au­

tocorrelation, traffic shaping has been used by dropping, reordering, or delaying selected 

requests [12, 97, 17, 1],

In this chapter, we show tha t size-based load balancing policies cease to be effective if the 

workload arrival process is autocorrelated. We show tha t as autocorrelation in the arrival 

process increases, the performance benefits of size-based policies diminish. Based on our 

observations, we propose a size-based load balancing policy tha t aims at reducing the per­

formance degradation due to autocorrelation in each server, while maintaining the property 

of similar job sizes been served by the same server. This new policy, called D_EQAL, strives 

to equally distribute work guided by autocorrelation and load, and effectively unbalances the 

load in the system: not all servers are equally utilized any more, but overall system per­

formance increases dramatically. D_EQAL does not assume any a priori knowledge of the 

job service time distribution nor any knowledge of the intensity of the dependence structure 

in the arrival streams. By observing past arrival and service characteristics as well as past 

performance, it self-adjusts its configuration parameters. To the best of our knowledge this 

is the first time that dependence in the arrival process becomes a critical aspect of load 

balancing.
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This chapter is organized as follows. In Section 7.1 we compare the performance of a 

size-based policy with several classic policies in the presence of autocorrelated arrival flows 

in the system. The proposed on-line size-based policy is presented in Section 7.2 and its 

performance is evaluated via simulation. Section 7.3 gives a summary of this chapter.

7.1 A utocorrelation Effects on Load Balancing Policies

In this section, we use trace driven simulation to examine the performance impacts of au­

tocorrelated arrivals in load balancing policies in the simple cluster depicted in Figure 7.1. 

We assume tha t the number of nodes is equal to four. 2

The service process is obtained from traces of the 1998 World Soccer Cup Web site ,3 that 

have been used in several studies to evaluate the performance in load balancing policies in 

clustered web servers [101, 81, 84], Trace data were collected during 92 days, from 26 April 

1998 to 26 July 1998, see [7] for more details. Here, we use part of the June 24th trace 

( 1 0  million requests), that corresponds to nearly ten hours of operation and we extract the 

file size of each transfered request. Because the Web site contained only static pages, the 

size of the requested file is a good approximation of the request service time. In the trace 

used for the experiments, the average size of a requested file is 5059 bytes and its coefficient 

of variation (CV) is 7.56. Figure 7.2(b) plots the average request size for batches of 10,000 

requests for the duration of the trace, and shows that the average transfered size varies across 

time.

Unfortunately, we cannot use the arrival process of the World Cup trace data because it

Experim ents with larger number of nodes have been also done but results are qualitatively the same and

are not reported here.
3Available from the Internet Traffic Archive at http://ita.ee.lbl.gov .
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is not detailed enough: arrival timestamps of requests are provided in seconds, as a result 

there are multiple requests that arrive within one second periods. To examine the effect 

of autocorrelation in the arrival process, we use a 2-stage MMPP, which with appropriate 

parameterization allows for changing only the ACF while maintaining the same mean and 

CV, tha t are equal to 1 and 4.5, respectively. The ACF of the three arrival processes that 

we use here is illustrated in Figure 7.2(a).

NOACF

3 00  400
Lag(k)

700

9 0 0 0

8 0 0 0

S  7 0 0 0

ST 6000
(D 5 0 0 0  W)
<5 4 0 0 0

3 0 0 0
0 200 40 0 60 0 80 0 1000

(b) Monitoring window (every 10K requests)

F ig u re  7.2: (a) ACF for the three arrival processes used in the simulation and (b) Average request 
size for every 10000 requests in the ten million sample space.

7.1.1 Load B alan cin g  P olicies

We compare the performance of the following policies: A d a p t L o a d , a size-based policy 

that does not require a priori knowledge of the service time distribution and has been shown 

to be effective under changing workload conditions [101], the Join Shortest Weighted Queue 

(JSWQ) policy [101], Join Shortest Queue (JSQ) [39], and Round Robbin (RR). The policies 

are summarized as follows:

• A dap tL oad : In a cluster with N  server nodes, A d a p t L o a d  partitions the possible 

request sizes into N  intervals, {[s0 =  0, Si), [si, s2) , . . .  [s j v - i , « jv  =  oo)}, so tha t if the 

size of a requested file falls in the ith interval, i.e., [st- i ,  Si), this request is routed 

to server i, for 1 < i < N . These boundaries s* for 1 < i < N  are determined
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by constructing the histogram of request sizes and partitioning it in equal areas, i.e., 

representing equal work for each server, as shown by the following equation:

where F(x) is the CDF of the request sizes and the amount of total work is S. By 

sending requests of similar sizes to each server, the policy improves average job response

jobs in the queue. For a transient workload, the value of the IV — 1 size boundaries 

si, s2, . . . ,  s n - i  is critical. A d a p t L o a d  self-adjusts these boundaries by predicting the 

incoming workload based on the histogram of the last K  requests. In the simulations, 

we set the value of K  equal to 10000.

• JSW Q : The length of each queue in the system is weighed by the size of queued 

requests, therefore each incoming request is routed to least loaded server.

• JSQ : When a request arrives, it is assigned to a server with the smallest waiting queue. 

If multiple servers have the same queue length, then a server is selected randomly from 

this group of servers.

• R R : In the round-robin algorithm, requests are routed to servers in a rotated order.

7.1.2 P erform ance A n alysis

Using trace-driven simulation we compare the performance of the four policies. In all our 

experiments, we consider a cluster of four homogeneous back-end servers that serve requests 

in a first-come-first-serve (FIFO) order.

(7.1)

time and average job slowdown by avoiding having short jobs been stuck after long
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We evaluate the effect of autocorrelated inter-arrival times on the performance of load 

balancing policies by analyzing the response time (i.e., wait time plus service time), the 

average queue length (i.e., the total number of jobs in the server, both waiting and in 

service), the average slowdown (i.e., the ratio of the actual response time of a request to its 

service time ), and the mean utilization. Figure 7.3 plots performance results for the four load 

balancing policies in the three different experiments. Similar to the results in the previous
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10000

£  1000 r

ea
C/5<U04

(a)

100 r

NOACF SRD LRD

10000

1000

O
O'

(b)

58 \ x

5 8 \\

(C)

100000 

10000 

1000 

100 

10

J ! \
II
1 1 $

NOACF SRD LRD

100

100

NOACF SRD LRD (d)
10

NOACF SRD LRD

F ig u re  7.3: Performance metrics under four load balancing policies: (a) average response time,
(b) average queue length, (c) average slowdown, and (d) average utilization.

chapters, Figure 7.3 shows that correlation in the arrival process degrades overall system 

performance for all four policies. For example the overall performance under independent 

arrivals (NOACF) is two orders of magnitude better than under SRD inter-arrivals, and 

three orders of magnitude better than under LRD inter-arrivals, despite the fact that average 

system utilizations are exactly the same for all experiments, i.e., the average utilizations are
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about 62%, see Figure 7.3(d) . 4 Most importantly, the figure also shows tha t A d a p t L o a d  

outperforms all policies under independent inter-arrivals only, see Figure 7.3(a)-(c). Under 

correlated arrival processes, A d a p t L o a d ’s performance is comparable to the three other 

policies, essentially showing tha t separating requests according to their sizes is not sufficient.

To better understand this behavior, we turn to the autocorrelation of the arrival process 

in each server. Figure 7.4 shows the ACF of the arrival process at each back-end server, 

as well as the ACF of the arrival process at the front-end dispatcher (labeled as “original 

stream” in the figure). When there is no autocorrelation in the inter-arrivals at the front-end 

dispatcher, the ACF of inter-arrivals at each back-end server is almost zero for all policies 

except A d a p t L o a d , see Figure 7.4(a). Because only a few requests are for large files, 

the size-based A d a p t L o a d  routes them to the fourth server only, and these requests are 

spaced in such a way that there is autocorrelation in their arrival process to server four. The 

middle column of graphs in Figure 7.4 shows the ACFs for the experiments with short-range 

dependence in the arrival process, and the right column of graphs in Figure 7.4 shows the 

ACFs for the experiments with long-range dependence in the arrivals. JSWQ and JSQ have 

the weakest dependence while RR has the strongest dependence. Because A d a p t L o a d  is a 

size-based policy and the workload is heavy-tailed, most requests are for small files and the 

first server receives most of requests. Therefore the ACF of its arrival process is very similar 

to the original ACF of the arrival process at the dispatcher. High ACF in the arrivals at the 

first server does not affect its utilization, which remains almost the same as the rest of the 

servers, but its response time and slowdown deteriorate significantly and negatively affect

the overall performance .5 This suggests tha t perhaps in such systems unbalancing the load

4Per server utilizations for all experiments remain the same, and equal to about 62%.
5Weak ACFs in the arrival processes of all servers under JSW Q/JSQ help performance but because short

and long jobs are now be served on the same server in both policies, their performance remains low.
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Figure 7.4: ACF in inter-arrivals at each server, where the arriving requests at the front-end dis­
patcher have (a) no dependence, (b) short range dependence (SRD), and (c) long range dependence 
(LRD).
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(i.e., reducing the utilization level of the server with correlated arrivals) while maintaining 

the property of serving jobs of equal size in the same server may improve performance.

7.2 Unbalancing Load to  Improve Perform ance

In this section, we propose an enhancement to the A d a p t L o a d  policy that accounts for 

dependence in the arrival process by relaxing A d a p t L o a d ’s goal to balance the work among 

all nodes of the cluster. The proposed policy strives to judiciously unbalance the load among 

the nodes by moving jobs from the nodes with a strongly correlated arrival process to nodes 

with weaker correlation in their inter-arrival times. First we present a static version of the 

policy where the load of the severs with correlated interval times is reduced by a static per­

centage while the load of servers with no autocorrelation in their arrival process increases. 

Then, we present a dynamic version of the same policy where measured workload charac­

teristics and policy performance measures guide load unbalancing in the system to improve 

overall system performance.

7.2.1 S_EQAL: S tatic  P o licy

Recall tha t A d a p t L o a d  is based on the idea that given that in an A-server cluster the 

amount of total work is S, then the best performance is achieved if requests are assigned to 

the servers such that each server serves S /N  of the work, i.e., load is well balanced across all 

servers. Associating the request size with the work a server has to do, A d a p t L o a d  equally 

distributes the work among servers by determining boundaries of request sizes for each server. 

These boundaries s, for 1 < i < A  are determined by constructing the histogram of request 

sizes and partitioning it in equal areas, i.e., representing equal work for each server, as shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



158

by Eq. (7.1) .

S-EQ AL uses the same histogram information, but sets the new boundaries s' by weight­

ing the work assigned to each server as a function of the degree of correlation in the arrival 

process based on the observation that in order to achieve similar performance levels un­

der autocorrelated arrivals, the system utilization must be lower than under independent 

arrivals.

We introduce a shifting percentage vector p  =  (pi,P2 , • ■ • , P n ) ,  so  that the work assigned 

at server i is now equal to (1 +  p ,) jj for 1 < i < N . Note that p, can take both negative 

and positive values. A negative p, indicates that the amount of work assigned at server i 

should be less than the equal share of S /N .  A positive pt indicates tha t the amount of work 

assigned at server i should be higher than the equal share of S /N .  Because the shifting 

percentage p* simply shifts the amount of work from one server to another it should satisfy 

the equation XaliP* =  0 for 1 < i < N . The following equation formalizes this new load 

distribution:

f  x  ■ dF{x) «  (1 + P i)^ j, 1 < i < N. (7.2)
Jsi- 1 ™

Figure 7.5 gives an illustration of the high level idea of this new policy.

First, we statically define the values of pi for 1 < i < N , by letting pi be equal to a pre­

determined corrective constant R  , 0% < R  < 100%, and then by calculating the rest of the 

shifting percentages p, for 2 < i < N  using a semi-geometric increasing method, as described 

by the algorithm in Figure 7.6. Because the first server is usually the one that serves the 

small requests and has strong autocorrelated inter-arrival times, the shifting percentage p\ is 

negative, i.e., pi =  —R. For example, if we define R  — 10% then the shifting percentages for 

a 4-server cluster are pi = —10%, p2 =  —1.67%, p3 =  3.33% and p4 =  8.34%. For R  = 20% 

the shifting percentages are twice as high as in the case of R = 10%. i.e., p 4 =  —20%,
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Figure 7.5: S_EQAL’s high level idea to recalculate boundaries under autocorrelated inter-arrival 
times.

P2 =  —3.34%, p3 = 6.67%, and p4 =  16.67%.

1 . initialize variables

a. initialize a variable adjust adjust — —R

b. initialize the shifting percentages Pi = 0 for all 1 < i < N

2. for i —  1 to N  — 1 do

a. add adjust to Pi Pi Pi +  adjust

b. for j  — i +  1 to N  do

equally distribute adjust to the remaining servers a d j u s t
yj Pj N - i

c. reduce adjust to half adjust <— ad just/2

Figure 7.6: Setting the shifting percentages pi for S-EQAL.

7.2.1.1 A rrival p rocess w ith  sh o rt-ran g e  d ependence

We evaluate the performance of S-EQAL using the short range dependent arrival process 

used in Section 7.1.
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First, we quantify the effect of the corrective constant R  tha t we use to generate the

values of the shifting percentages p, for 1 < 2 < TV by computing the average slowdown

and average response time of requests under S-EQAL for different values of R. We present

our findings in Figure 7.7. R  = 0% corresponds to the the original A d a p tL o a d , i.e., 
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Figure 7.7: Average slowdown and average response time as a function of the corrective constant 
R  under SRD inter-arrival times.

no shifting of boundaries. Figure 7.7(a) shows that the average slowdown of all requests 

improves as R  increases (i.e., the boundaries are shifted to the left compared to the original 

A d a p t L o a d ). We observe tha t the best performance is achieved for R  = 80% (i.e., p\ = 

—80%). However, Figure 7.7(b) indicates that the best performance for response time is 

achieved when R  = 40%. Therefore, a good corrective constant is R — 40%, where average 

slowdown improves by 75.1%. Average response time improves by 41.9% when compared to 

the original A d a p t L o a d .

We present the per server performance in Figure 7.8. Per server utilizations shown 

in Figure 7.8(d) verify that the shifting percentages pi indeed imbalance work across the 

cluster. As R  increases, the utilization of the first two servers decrease while the utilizations 

of the last two servers increase. The last server’s utilization is now the highest in the 

cluster. Reducing utilization in the first server reduces its request slowdown, as shown in 

Figure 7.8(a), but the extra work tha t is now assigned to servers 3 and 4 do not increase their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

server4server3 E ssaserver2server!
16000
14000
12000

12000

10000

§> 8000S 10000 
8000

I k s i t  P -̂L- —

30 50
R(%)

le+06

100000

10000H o
1000c

I 100

70ORG 10 30 50 90
R(%)

100

co
ed
—

ORG 10 30 50 70 90
R(%)

Figure 7.8: Per server performance measures: (a) average slowdown, (b) average response time,
(c) average queue length and (d) average utilization as a function of the corrective constant R  with 
SRD inter-arrival times. The order of bars for each policy reflect the server identity.

slowdown significantly for small values of R. For R  — 90%, slowdown at server 4 becomes 

very high, almost twice as high as for server 1 under the original A d a p t L o a d . The average 

per-server queue length behaves similarly to the average slowdown (see Figure 7.8(c)). The 

average response time displayed in Figure 7.8(b) shows that small R  values decrease average

response time of the first server and increase the response time of the last server. If the 

portion of additional requests served by the last server is small, then the contribution of the 

last server performance values to the overall performance degradation is not significant. As 

R  increases, more jobs are assigned to higher servers, which counterbalances the benefits of 

decreased utilization at the first servers.
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7 .2 .1 .2  A rrival process w ith  long-range dep en d en ce

We evaluate the performance of S-EQ A L under long range dependent (LRD) inter-arrival 

times in the cluster. Figure 7.9 gives the average request slowdown and the average request 

response time as a function of the corrective constant R. In Figure 7.9 we observe the same 

performance trends as in Figure 7.7 but higher absolute values than under SRD. The smallest 

average request response time is achieved for R — 40%, which represents an improvement 

of 49.2% compared with the original A d a p t L o a d  (i.e., R  = 0%). The average request 

slowdown for the optimal R  value is 67.2% better than with the original A d a p t L o a d .
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u 8000(A
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C
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Figure 7.9: A v erag e  s low dow n  a n d  av e rag e  re s p o n se  t im e  as  a  fu n c t io n  o f  c o rre c tiv e  c o n s ta n t  R 
u n d e r  L R D  in te r -a r r iv a ls  tim e s .

Figure 7.10 illustrates the per server performance under LRD traffic in the cluster. Al­

though performance trends are similar as with the SRD case, they are more exaggerated here. 

Both average slowdown and average response time of the first server reduce as R  increases 

(see Figures 7.10(a)-(b)), but a turning point exists where shifting more work to subsequent 

servers adversely affects slowdown. In the following section we present a dynamic algorithm 

tha t decides the amount of work to be shifted on-the-fly and strikes a good balance across 

both performance measures.
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traffic: (a) average slowdown, (b) average response time, (c) average queue length and (d) average 
utilization. The order of bars for each policy reflect the server identity.

7.2.2 DJEQAL: O n-line P o licy

In the previous section we gave a first proof of concept that load imbalancing can be beneficial 

for performance in clusters with autocorrelated inter-arrival times and heavy tailed service 

requests, but performance improvements depend on the degree of load imbalancing that 

is introduced by the corrective constant R. A good choice of R  can result in significant 

performance improvements, but an unfortunate choice may also result in poor performance. 

Here we present an on-line version of the policy that monitors the workload as well as the 

effectiveness of load balancing, and its performance is now independent of the choice of 

R. Based on continuous monitoring, the policy readjusts the degree of load imbalancing 

on-the-fly while aiming at improving both average response time and average slowdown.

We use an updating window of C  requests that have been served by the cluster. C  must
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be large enough to allow for statistically significant performance measurement but also small 

enough to allow for quick adaptation to transient workload conditions. In the experiments 

presented here C  is set to 300K. 6 The policy starts by setting R  to zero, i.e., no load shifting 

is proposed beyond the computed A d a p t Lo ad  intervals. For every batch of C  requests, we 

compare the relative performance improvement/ decline in comparison to the previous batch 

of C  requests. The two performance measures tha t we examine are the average slowdown 

(Avgsid) and the average normalized response time {Avgnrea). which is defined as follows:

^  average response tim e o f  requests in the kth batch
nres average fi le  size o f  requests in the kth batch

Then, according to the comparison of the values of average slowdown and normalized re­

sponse times, we readjust R  by a, small pre-determined value adjief t or adjright■ The following 

four corrective actions can be taken:

• Correct left: R  <— R  +  adjief t .

• Correct right: R *— R  — adjright.

• Correct continuously: If the previous adjustment is “correct left” , then correct left. If 

the previous adjustment is “correct right” , then correct right.

•  Correct reversely: If the previous adjustment is “correct left” , then correct right. If 

the previous adjustment is “correct right” , then correct left.

In our experiments, adjief t and adjright are set to 10% under medium or heavy load (i.e.,

10% of the load is shifted left or right in the histogram of Figure 7.5 in order to recalculate

6We examined the robustness of D .EQAL by different C  values ranging from 100K to 800K, which 

achieve similar performance.
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the interval boundaries). Under light load (i.e., system is under 30% utilized), adjief t is 

set to 20% to avoid slow adjustment of reaching the best performance. Note tha t we do 

not monitor the dependence structure of arrival streams in this online algorithm, but trust 

D_EQAL to find the optimal R.

The algorithm in Figure 7.11 describes how the corrective constant R  is dynamically 

adjusted every C  requests. Once a new value for R  is set, the corrective factors pi are 

computed according to the algorithm of Figure 7.6. Finally, the per server job size boundaries 

are computed according to Eq. (7.2) using the recalculated p*.

7.2.2.1 P erfo rm an ce  o f D_EQAL

In this section, we evaluate the effectiveness of D_EQAL. As in the previous sections, 

each experiment is driven by the WorldCup 10 million request trace, the boundaries of 

A d a p t L o a d  are computed every K  =  10K requests, while the adjustment of the corrective 

factors for D_EQAL happens every C — 300K requests,

We compare the original A d a p t L o a d , S-EQ AL with various values of its corrective 

constant R, and D_EQAL. Note that in the dynamic policy, we start with a value of R = 0, 

which indicates tha t we rely on the adaptive algorithm to find the best value of R. Results 

for various system utilizations of 30%, 62% and 80% are presented in Figure 7.12-7.14. In 

all the results, the on-line policy (labeled “D_EQAL”) is comparable to the best performing 

S_EQAL, where R  is set to a set of static values. D_EQAL manages to adjust R  such that 

both slowdown (Figures 7.12-7.14(a)) and response time (see 7.12-7.14(b)) are improved.

Figures 7.12-7.14(c) show how the value of the corrective constant R  changes over time 

under NOACF, SRD and LRD arrivals under different utilizations, respectively. Observe 

that when system has no autocorrelation, R  sits in value 0 most of time no m atter what
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1. initialize

a. set R  <— 0

b. k <— 0

2. every C  requests

a. compute the current system utilization and set adjiejt and adjright

b. compute the current performance metrics Avgsid(k) and Avgnres(k)

c. if (k = 0)

th e n  I. Correct left 

I I . go to 3.

1 A v g n r es(k ) -A vg nres( fc -1) ^  Avgsld( k ) - A v g sid ( k - 1)
Avg nres (0) ^  Avgsld( 0)

th e n  I. Correct right 

II . go to 3.

e. if (Avgsid(k) > Avgsid(k -  1) or Avgnres(k) > Avgnres(k -  1)) 

th e n  Correct reversely 

else Correct continuously

3. Compute Pi for 1 < i < N  using the algorithm of Figure 7.6

4. k <— k + 1

5. goto 2.

F ig u re  7.11: D_EQAL: dynamically adjusting R.

the system utilization is. However under SRD or LRD arrival process, R, that starts from 

0, converges toward the best performing. Under 20% utilized system, R  oscillates around 

60%, while under 62% and 80% systems, R  is around 40% and 20% respectively. All these 

targeted values are the optimal R  under S-EQAL in Section 7.2.
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Figure 7.12: Performance of NOACF, SRD ad LRD traffic under average utilization 20%. The first 
two rows are average slowdown and average response time for the original A daptLoad, S_EQAL 
with various values of R, and D_EQAL. The third row is the corrective constant R  as a function 
of time (measured in processed requests) for C = 300K.

To further understand how D_EQAL adjusts R  value, we present the performance of the 

on-line policy over time. Figure 7.15 gives results under medium load, i.e., 62% utilization 

(the x-axis of all the plots in Figure 7.15 represents the number of batches of K  requests 

processed so far). 7 Figures 7.15(b) and (c) show the average request slowdown and response 

time, respectively. Note the similar shape of both metrics across time, which indicates the 

effectiveness of load imbalance. As the average size of requests is increasing starting from 

the 600th monitoring window (see also Figure 7.2(b)), the utilization in this system becomes

7we observe the same over-time behavior of light load and heavy load as that of medium load so that we 

do not report them.
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F ig u re  7.13: Perform ance of NOACF, SRD ad LRD traffic under average utilization 62%. The first 
two rows are average slowdown and  average response tim e for the original A d a p t L o a d , S_EQAL 
w ith  various values of R, and D_EQAL. T he th ird  row is the  corrective constant R  as a function 
of tim e (m easured in processed requests) for C = 300K.

larger thereafter. Correspondingly the R  value decreases during this period, especially with 

LRD arrivals (see Figure 7.15(111.a)).

7.3 Sum m ary

In this chapter, we evaluate the performance of sized-based load balancing policies for homo­

geneous clustered servers under correlated arrivals. We show' tha t under correlated arrivals 

sized-based policies, which have been shown to successfully balance load and improve per­

formance when service demands are highly variable, are now ineffective.
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w ith  various values of R ,  and D-EQAL. T he th ird  row is the  corrective constant R  as a function 
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Our experiments show tha t if the arrival process is correlated, then it is not enough for 

a size-based policy to equally distribute the work among the servers in the cluster -  if the 

arrival streams to individual servers are correlated, then performance significantly degrades. 

We propose a new size-based load balancing policy, called D_EQAL, tha t strives to distribute 

the work such tha t the load to each sever is proportional to the correlation structure of the 

arrival process to that server and still separates jobs to servers according to their sizes. As 

a result of this effort, not all servers are equally utilized (i.e., load in the system becomes 

unbalanced) but this imbalance results in significant performance benefits. D_EQAL does 

not require any prior knowledge of the correlation structure of the arrival stream or of the job
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Figure 7.15: Corrective constant R, average slowdown, average normalized response time as a 
function of time (measured in processed requests) for C =  300K under NOACF, SRD and LRD 
traffic. System utilization is 62%.

size distribution. Using trace-driven simulation, we show that D_EQAL is an effective on­

line policy: by monitoring performance measures it self-adjusts its parameters to transient 

workload conditions.
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Chapter 8

Conclusions and Future Work

This dissertation presents analysis of dependent flows and their impact on multi-tiered sys­

tems:

• by characterizing the propagation of autocorrelation and understanding its perfor­

mance effects via experimentation of an on-line bookstore based on the TPC-W bench­

mark,

• by building analytic models that can be used to solve multi-tiered systems with de­

pendent arrival/service processes, and

• by developing robust resource management policies under variable workload conditions.

More specifically, the existence of dependence in the service process is observed in the multi­

tiered system driven by TPC-W. This is identified as the source of the dependent flows 

in all tiers of this system. Such dependent flows significantly deteriorate the end-to-end 

performance in spite of the fact that the bottleneck resource in the system is far from 

saturation and tha t the measured throughput and utilizations of other resources are also 

modest. When autocorrelation is not considered, this underutilization of resources falsely
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indicates that the system can sustain higher capacities. Different from the tails of the overall 

response time distributions in the independent systems which reflect the time spent at the 

bottleneck tier, the tails are now shaped by the response time tail at the tier that is the source 

of autocorrelation. Based on this observation, an admission control algorithm is presented 

that takes autocorrelation into account and shows benefit in reducing the long tail of the 

response time distribution instead of doing admission control at the bottleneck tiers.

For systems with infinite buffer size, that performs as open systems, two families of 

analytic models tha t approximate the departure process of a BM AP/MAP/1 queue are 

presented, i.e., the ETAQA-based approximation and the lumpability-base approximation. 

These analytic models can be used to model each tier in isolation and to understand the 

following performance affected by dependent flows in multi-tiered systems. The properties 

of these two output approximation models are formally proved: the marginal distribution of 

the true departure process is exactly preserved; the lag correlations of the inter-departure 

times are matched up to lag (n — 2) with the ETAQA-based approximation and up to lag 

(n — 1) with the lumpability-based approximation for the output models with n +  1 block 

levels of the M /G /l-type process. The value of n can be automatically identified by the 

asymptotic properties of the approximations to maintain well the queueing behavior of the 

real departure process.

This dissertation also demonstrates how the knowledge of autocorrelation can be used to 

aid robust policy development by presenting D_EQAL, a size-based load balancing policy, for 

a cluster of homogeneous servers. D_EQAL aims at reducing the performance degradation 

due to autocorrelation and strives to distribute the work to each server in such a way that the 

assigned work is proportional to the correlation structure of the arrival process to that server. 

D_EQAL monitors performance measures as well as the dependence of the incoming traffic
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to the cluster and self-adjusts its parameters to transient workload conditions. Performance 

evaluation using trace-driven simulation shows that D_EQAL achieves superior performance 

in comparison to other classic policies under correlated arrivals.

8.1 Future work

The research presented in this dissertation is introducing several open problems in two di­

rections. The first direction is on the development of analytic models for closed and open 

systems with autocorrelated arrival and/or service processes. The second direction is on de­

signing robust system policies where autocorrelation in arrivals/service flows is instrumental 

in policy decisions.

8.1 .1  A n a ly tic  D irection

• A naly tic  m odels o f closed system s: We will develop effective models similar to the 

traditional Mean Value Analysis (MVA) and convolution models that are traditionally 

used in closed queuing networks [43] to obtain approximate analytic solutions. We 

will use ideas for solutions of load-dependent queuing networks [13, 14] that have been 

recently proposed and apply them to closed queuing networks with autocorrelated 

service processes. In addition to the approximate analytic solutions, we expect to 

derive performance bounds of dependent systems in the spirit of the classic Asymptotic 

B ounds A nalysis [43] a n d  B a lan ced  Jo b  B ounds [43] th a t  have b een  used  for p ro d u c t-  

form networks.

• Efficient m odels o f open  system s: The analysis of multiple lumping method in 

Chapter 6 indicates the huge potential of obtaining better approximations of departure
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processes by lumping states in different ways, intermixing lumps and exact states in 

the embedded Markov chain. We plan to further investigate this idea, understand how 

the ACF values of departure processes are controlled by more eigenvalues of the key 

matrix as well as the system utilization, and propose a more effective algorithm to 

optimize the approximation accuracy automatically.

•  F itt in g  correlated  trace: Different sample ordering of the same distribution results 

in processes with different dependent structures. Traditional fitting methods focus on 

matching the stochastic characteristics, i.e., the first moments of a real trace, while 

ignoring the development of dependence in the trace. We propose to devise MAP- 

fitting methods which will be aware of the temporal bias in a trace. This method 

will divide the trace into small portions within each no dependence is detected. Each 

portion can be modeled as an exponential or a phase-type process using simple fitting 

techniques. Then the transitions among these portions will be captured with Markov 

process and entire trace will be fitted into a MAP process.

•  P rop agation  characteristics: We have observed that autocorrelation propagates 

in both open and closed systems, while lacking the knowledge that which process 

(arrival or service) dominates the departure process, especially under medium loads. 

The theory that we will develop will address the above question. Knowing which 

of the two processes dominates the departure flow has an immediate application in 

resou rce  a llo ca tio n , gu id ing  th e  deve lopm en t of scheduling  po licies w ith in  each server 

tha t reduce correlation in the observed output, similar to input shaping tha t is widely 

used in networking research.
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8.1 .2  A p p lica tion  D irection

•  A d m ission  control: Our preliminary results on admission control guided by auto­

correlation in flows achieve promising performance improvements (see Chapter 3). We 

will continue building on this idea and develop a sophisticated and practical policy 

tha t maintains comparable performance with the existing admission control policies 

by dropping a much smaller ratio of requests. We will specifically focus on web servers 

and storage systems.

•  C ap acity  planning: The significant impact of dependence in system performance 

makes autocorrelation function a considerable factor in capacity planning and can not 

be overlooked. First, we will identify the system reasons that introduce dependence 

in the service process, e.g., the execution properties of application servers or the effect 

of caches. Once this knowledge is given, better system design, e.g., selection of the 

appropriate applications or hardware, might be able to reduce burstiness and improve 

system performance. For the systems where the dependence can not be eliminated, a 

robust capacity planning that takes correlation into account will be proposed to answer 

the typical question: How many number of clients can be supported by the existing 

system while satisfying pre-defined server level agreements.

• Scheduling classification: Research has shown that Shortest-Job-First (SJB) and 

its pre-emptive counterpart Shortest-Remaining-Processing-Time (SRPT) are superior 

to FCFS and yet do not starve large jobs if the workload is heavy-tailed [94, 93]. We 

will provide a new classification of these scheduling policies by showing what they do 

to autocorrelation of the service process. An immediate application of the observations 

for autocorrelation in scheduling can be used to improve disk scheduling. We anticipate
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tha t based on on-line measurement of autocorrelation, we will be able to devise new 

scheduling policies that are oblivious of the size of requests, but use the statistical 

knowledge of the size of the next batch of jobs (as given by the autocorrelation values 

of the first lags) to determine an effective scheduling solution.
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Appendix A

Equivalence of open /closed  system s

E quivalence o f  o p e n /c lo se d  sy stem s

Open systems with finite queue capacity or admission control behave in essence like 

closed systems [63], therefore the performance effects of autocorrelation in a closed system 

directly apply to open systems with finite buffers. This equivalence of open/closed systems 

is illustrated here via a simple example. Figure A.1(a) shows an M /M /1 system, i.e., arrivals 

are Poisson and service times are exponential with parameters A and //, respectively. The 

system has a finite buffer size equal to M , i.e., incoming requests are rejected when the buffer 

is full. The state space in this system is denoted by an integer number i, number of jobs in 

the system, see the Markov chain of this system in Figure A.1(b).

A two-queue closed system with a limitation on the number of circulating jobs as ex­

pressed by the multiprogramming level M P L  — M  is also shown in Figure A.I. The first 

queue “simulates” the arrival of jobs in the system from the outside world. The state space 

of this system is expressed by two integers 0 < i, j  < M, while i + j  = M  for all states, 

see Figure A. 1(d). There is a one-to-one correspondence of the two Markov chains, which 

implies that the probability distributions of the states in both chains are identical. Based on
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Figure A .l: I l lu s t r a t io n  o f  th e  eq u iv a len ce  o f  a n  o p e n  s y s te m  w ith  fin ite  b u ffe r o f size M  a n d  a  
c losed  sy s te m  w ith  M P L  =  M.

this observation and Little’s law, one can trivially show that the performance measures of 

the queue with rate /x are identical for both systems. This equivalence can be easily extended 

to systems with MAP distributions tha t describe the arrival/service processes.
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