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Abstract

The overload of the servers and the resulting decrease in the Quality of Service (QoS)

and performance becomes more serious as the use of Web services grows. In order to avoid

this, service providers use large distributed networks of servers to attend the requests of the

increasing number of visits in popular sites.

The main objective of this thesis focuses on the design of an adaptive algorithm for

admission control and content-aware load balancing for Web traffic. In order to set the

context of this work, several reviews are included to introduce the reader in the background

concepts of Web load balancing, admission control and the Internet traffic characteristics

that may affect the good performance of a Web site.

The admission control and load balancing algorithm described in this thesis manages

the distribution of traffic to a cluster of Web servers (or Web cluster) based on QoS re-

quirements. The goal of the proposed scheduling algorithm is to avoid situations in which

the system provides a lower performance than desired due to servers’ congestion. This is

achieved through the implementation of forecasting calculations. Obviously, the increase

of the computational cost of the algorithm results in some overhead. This is the reason

for designing an adaptive time slot scheduling that sets the execution times of the algo-

rithm depending on the burstiness that is arriving to the system. Therefore, the predictive

scheduling algorithm proposed includes an adaptive overhead control.

Once defined the scheduling of the algorithm, we design the admission control module

based on throughput predictions. The results obtained by several throughput predictors

are compared and one of them is selected to be included in our algorithm. The utilisation

level that the Web servers will have in the near future is also forecasted and reserved for

each service depending on the Service Level Agreement (SLA).

Our load balancing strategy is based on a classical policy. Hence, a comparison of several

classical load balancing policies is also included in order to know which of them better fits

our algorithm.

A simulation model has been designed to obtain the results presented in this thesis.
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Resumen

La sobrecarga de los servidores y la disminución resultante en la calidad de servicio

(QoS ) y rendimiento se agrava conforme la demanda de servicios Web aumenta. Con el fin

de evitarlo, los proveedores de servicio utilizan redes distribuidas de servidores para atender

el creciente número de visitas en sitios Web populares.

El objetivo principal de esta tesis se centra en el diseño de un algoritmo adaptativo de

control de admisión y equilibrio de carga para tráfico Web. Con el fin de establecer el

contexto de esta tesis, se realiza una descripción exhaustiva de los conceptos de distribución

equilibrada de carga Web, control de admisión y las caracteŕısticas del tráfico de Internet

que pueden afectar el buen desempeño de un sitio Web, además de su estado del arte.

El algoritmo de control de admisión y equilibrio de carga descrito en esta tesis gestiona

la distribución del tráfico en un clúster de servidores Web en base a los requisitos de calidad

de servicio. El objetivo del algoritmo propuesto es evitar situaciones en las que el sitio Web

proporciona un rendimiento más bajo de lo deseado debido a la congestión de servidores.

Esto se consigue en base a cálculos de predicción. Obviamente, el aumento del coste com-

putacional durante la ejecución del algoritmo supone una carga adicional en los recursos

del sistema (overhead). Por esta razón, se ha diseñado una planificación adaptativa en la

ejecución del algoritmo que vaŕıa en función de las ráfagas de tráfico Web que se detectan en

el sistema (burstiness). Por lo tanto, el algoritmo propuesto incluye un control adaptativo

del overhead.

Una vez definida la planificación del algoritmo, diseñamos el módulo de control de ad-

misión basado en predicciones de productividad (throughput). Los resultados obtenidos por

varios predictores de productividad se comparan y uno de ellos es seleccionado para ser

incluido en nuestro algoritmo. El nivel de utilización de los servidores Web también se

predice y se reserva para cada servicio en función de compromiso adquirido (SLA).

Nuestra estrategia de equilibrio de carga se basa en una poĺıtica clásica de distribución.

Por tanto, se incluye una comparación de varias de estas poĺıticas ejecutadas en el algoritmo

con el fin de saber cuál de ellas proporciona mejores resultados.

Se ha diseñado un modelo de simulación con el que se han obtenido los resultados que

se presentan en esta tesis.
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Chapter 1

Introduction

1.1 Context

The increase of the use of Internet in all areas of common life has been very significant

during last decade. Internet has indeed become an essential tool for our lives and it is evident

that it has not stopped growing as it can still be improved in many aspects of its architecture.

Many research groups worldwide continue their Internet research trying to speed up the

communication protocols and improve the performance at the Web application level. Also

new applications are being developed to be executed across Internet connections such as

the Voice Over Internet Protocol (VOIP) telephony, on-line games and social networks.

In this thesis we focus on the Web server site by trying to offer a Web cluster solution

that balances the load at the application layer and includes Quality of Service (QoS)-based

admission control. We develop a content-aware load balancing algorithm for a cluster of

Web servers that distributes the load based on different priorities in the services. We have

considered it interesting to include a detailed survey of previous works in this area.

Overhead is controlled by an adaptive scheduling of our algorithm which permits it to

be execute more frequently when intense workload and burstiness is detected in the Web

site, and less frequently when there is a low risk of overload. Hence, the invocation times

of our algorithm are adapted to the demand of the Web system.

An important aspect of this work focuses on the admission control of requests when

the Web server side is overloaded. We deal with the resource allocation performed in the

servers in order to guarantee the SLA contracted with the service provider. Based on a

throughput predictor, our admission control algorithm permits a Web system to maintain

3
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its performance despite the Web requests arrival rate variations that occur due to the

heavy-tailed nature of Internet traffic.

Surveys of burstiness detection and monitoring in Web traffic, and the admission control

policies recently proposed are also included in order to describe the state-of-the-art.

In this introductory chapter, we introduce the main objectives of this work and its

structure.

1.2 Main Objectives

The main objectives of this thesis are:

• To establish an up-to-date context of load balancing solutions during the last years in

order to situate our work.

• To review the admission control proposals that exist in literature, analysing their main

characteristics.

• To analyse the effects that burstiness in arrival rate may cause in a Web system and

propose a burstiness factor that detects the variations in workload.

• To develop an adaptive time slot scheduling that allows a low overhead in the execution

of the algorithm.

• To develop a QoS-aware admission control and content-aware load balancing algorithm

that ensures the good performance of the Web system considering an intense arrival

rate.

• To study the effects of different classical load balancing solutions included in our

content-aware load balancing algorithm.

• To compare our algorithm with similar proposals.

1.3 Outline

Hence, we have divided this thesis into three main parts: Background, Contribution and

Conclusions, Appendix and References. The first two parts help the reader in making a
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clear distinction among others work and our own research work and findings. The last part

includes the general conclusions and open problems of this thesis.

Part I: Background In the first part we have included two different surveys. Firstly, we

have studied and reviewed most of the Web load balancing policies that have been proposed

recently in literature in Chapter 2. We have organised this survey by distinguishing between

architecture and request distribution proposals. Secondly, a survey of burstiness detection

and monitoring and the most significant admission controls solutions are included in Chapter

3.

Part II: Contribution The second part of this work includes two chapters. The design

of a burstiness monitoring and detection mechanism that aims for low overhead is included

in Chapter 4, and the description of the admission control and content-aware load balancing

algorithm we propose is described in Chapter 5.

Part III: Conclusions, Appendix and References The third and last part includes

the conclusions, an appendix, the bibliography and the acronyms list. The thesis conclusions

and open problems are presented as Chapter 6. We have developed a simulation model to

analyse the performance of the algorithm based on OPNET Modeler. The implementation

details of our algorithm are added to this thesis as an appendix (Appendix A).
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Chapter 2

Web Traffic Load Balancing

This chapter introduces an up-to-date state-of-the-art in load balancing mechanisms that

includes all possible classifications and focuses on the advantages of using load balancing

solutions to increase the performance of the Web system. A general description of the Web

load balancing solutions is included and organised by differentiating the Open Systems

Interconnection (OSI) protocol stack layer the load balancing is based on. We also describe

the most important request distributing policies that are included in literature.

2.1 Introduction

The main reason of the increasing popularity of server-based clusters, also called server

farms, is due to the fact that Web applications must be able to run on multiple servers

in order to accept an increasing number of users that demand Web content. In essence,

load balancing is the ability to make several servers participate in the same service and

do the same work, since the capacity of servers is finite. This implies important benefits

such as scalability, availability, manageability and security of Web sites. First and foremost,

load balancing improves scalability of an application or server cluster by distributing the

load across multiple servers. Load balancing is also able to direct the traffic to alternate

servers if a server or application fails. The ability of maintaining service unaffected during a

predefined number of simultaneous failures is called availability. Manageability is improved

by load balancing in several ways by allowing network and server administrators to move an

application from one server to another easily. Last, but not least, load balancing solutions

provide security improvement by protecting the server clusters against multiple forms of

9
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Denial-of-Service (DoS) attacks.

The rest of this chapter is organised as follows:

• Section 2.2 briefly revises the load balancing classifications that appear in the litera-

ture.

• Section 2.3 introduces the concept of scalability as a main requirement of a modern

Web-based system.

• Section 2.4 covers the load balancing scheduling solutions that are based on the TCP

layer, also called layer-4 or content-blind load balancing solutions.

• Section 2.5 deals with the architectures that balance the load based on the application

layer, also called content-based distribution.

• Finally, we include the summary of the chapter.

2.2 Load Balancing classifications

Several classifications of load balancing techniques exist in literature. In this section we

sum up them.

• Depending on the taxonomy of the Web-server architectures, a distinction is made

among the local scale-out and global scale-out approach [27]. The main difference

consists of the geographical locations where the set of server nodes resides. In the

global scale-out approach the nodes are located at different geographical locations

while the nodes are in the same location in a local scale-out architecture. An example

of a global scale-out organisation is the Content Distribution Networks (CDNs) [89,

21]. The local scale-out architectures are also called locally distributed Web systems.

• Another distinction can be made in this group depending on the visible Internet

Protocol (IP) addresses the Web system presents to the client. If the IP addresses of

the Web server nodes are visible to the clients, then we are referring to a Distributed

Web System. When the only visible address to the client application is the Virtual

IP (VIP) of the front-end of the Web system, then the architecture is a Cluster-based

Web System (or Web cluster).
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• Cardellini et al. in [28] proposed a classification depending on where the distribution

decision is taken when routing a request to one server of a locally distributed Web-

server system: client-based, Domain Name System (DNS)-based, dispatcher-based and

server-based. In this work we mainly consider the dispatcher-based clusters, where

a front-end of the Web system receives all incoming requests and distributes them

among the servers. Client-based and DNS-based approaches are out of the scope of

this thesis, however more information about client-based and DNS-based can be found

in [28] and [26, 18, 80, 46], respectively.

• The classification proposed by Choi in [41] depends on the level the load balancing

is applied to: hardware level (referred basically to commercial products), system

software level, middleware software level and application software level. Despite being

a very interesting classification, we do not consider it in this work as sometimes the

proposals that appear in literature do not specify the level they are implemented in.

• Focusing on Web cluster load balancing, it is also quite usual to group the load

balancing solutions depending on the OSI protocol stack layer the load balancer, also

named Web switch or front-end, is based on. In the next sections we classify the load

balancing solutions by distinguishing the layer they are based on.

• Also referring to Web cluster load balancing, there is an alternative classification de-

pending on the return way of the data flow from the object server to the client. The

response from the server can either go through the load balancer (two-ways archi-

tecture) or it can follow an alternative path direct to the client avoiding the load

balancer (one-way architecture or single arm server load balancing). This last one

mainly consists of a different path of traffic flow from the server to the client rather

than passing through the load balancer in order to avoid a possible bottleneck in the

load balancer.

In Figure 2.1 the classification we have used in this work is detailed.

2.3 Introducing scalability in load balancing

Among all the reasons for using load balancing solutions, we are going to focus on

scalability as user demands placed on Web services continue to grow and Web server systems
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are becoming more stressed than ever. There should therefore no longer be a limit on the

performance of an application that is running on a single server. Load balancing avoids this

bound by the ability of growing the number of servers that host the application.

Even though both network and server capacity have improved in recent years and new

architectures have been developed, there are still some problems to be solved from the user

point of view in terms of perceived response time. When a server is congested, the response

times obtained by the user increase and this can lead to a lost sale operation when we are

referring to an e-business site. Therefore response time continues to challenge server system

and cluster related research.

We are going to focus in this thesis on the Web system infrastructure as it is the only

component that can be under the direct control of the site administrator in a distributed

network system as Internet. Other elements that compose the network such as DNS systems,

backbones and routers are not controllable by a single organization and are out of the scope

of this work.

The Web system architecture we consider consists of a collection of server computers that

are locally distributed and interconnected through a high speed network. This architecture

provides a single interface to the outside, hence, it can be seen as a single host. The users

are not aware of the names and addresses of the servers that compose the Web architecture,

they access the applications hosted in the system directing their requests to the VIP address

corresponding to the device that acts as the front-end of the Web architecture. This kind

of architecture is also named Cluster-based Web System [27].

2.4 Content-blind Load Balancing

The load balancing solutions covered in this section are called content-blind because the

load balancer is unaware of the application information contained in incoming requests.

Load balancers that perform content blind routing are normally referred as layer-4 load

balancers. The selection of the target server that is going to attend the request is done

based on the information contained in the TCP SYN packet at the load balancer. The OSI

layer used to forward the incoming packet to the target server can be either the link or the

network layer.

Table 2.1 summarises all the solutions covered in this section.

We have divided this section into three subsections:
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Table 2.1: Content-blind Load Balancing Solutions

Layer-2 forwarding Layer-3 forwarding

Two-ways - Network Address Translation

One-way - Direct Routing - IP Tunneling

• Subsections 2.4.1 and 2.4.2 detail the techniques that balance the load depending on

the OSI layer (2 or 3, respectively) the front-end uses to forward the packets to the

servers.

• Subsection 2.4.3 details the scheduling policies that can be applied in a content-blind

load balancing solution.

2.4.1 Layer-2 Forwarding

Layer-2 forwarding (or bridging Server Load Balancing (SLB)) is the most simplistic

solution for load balancing and can be considered when all interfaces of the Web system

architecture are in the same Virtual LAN (VLAN) and IP network, including the client-side

router. There is no need to alter the topology of the network nor redefine the IP addressing

map. It is only necessary to include a bridge device between the client-side router and the

server’s side.

The client basically establishes a TCP connection with the server that is going to at-

tend its request through the VIP of the Web site. The function of the front-end device,

that acts as the load balancer, is to select the server and translate the destination Media

Access Control (MAC) address to leave no evidence there is an intermediary device in the

communication [128].

Figure 2.2 illustrates an example of layer-2 forwarding, detailing the role of the load

balancer that has to re-write the layer-2 destination address to the MAC address of the

selected Web server and then forward the incoming request to that server. Reverse trans-

lations are performed when the response is sent back to the Web client. It is important

to notice that the load balancer does not change the IP address of the incoming request

because all the devices in the IP subnet (the load balancer and the servers) share the same

IP address. Hence, there is no need to change the network information of the packet and

consequently, there is also no need to recompute the IP checksum, which means less over-

head. It is important to disable the Address Resolution Protocol (ARP) when using layer-2
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Figure 2.2: Example of a two-ways layer-2 forwarding implementation

forwarding to avoid a possible collision because the same IP address has been assigned to

all the nodes of the system. A layer-2 load balancer uses the MAC address available in the

data link layer information to determine the output interface port for that packet [88, 56].

Layer-2 forwarding has been widely used in commercial solutions in its one-way architec-

ture version, and is normally named layer-4 switching with layer-2 packet forward (L4/2)

[37, 73, 120] or Direct Routing (DR) [132, 149]. As the same IP address has been assigned

to all the devices of the subnet, the outgoing packets can be sent directly from the server to

the clients without going through the load balancer. Figure 2.4 shows the TCP connection

establishment with DR technique.

Some pioneering prototype implementations of L4/2 load balancing were ONE-IP [49]

and LSMAC [56]. Nortel Networks also consider this mechanism in their actual Nortel

Application Switches [105]. Linux Virtual Server (LVS) is a layer-4 load balancing solution

that is included in an open source project that was started by Zhang in 1998 [121, 149]. It

can be configured to support DR, and also other forwarding techniques that are included

in the next subsection.

2.4.2 Layer-3 Forwarding

Layer-3 forwarding (also called routing SLB) differs from bridging SLB in that the client-

side router can be in different VLANs and IP subnets in the Web system architecture. In
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fact, in this case, the load balancer of the Web system architecture is now routing rather

than bridging the frames between the client and the server. Figure 2.3 illustrates an example

of layer-3 forwarding and shows that a layer-3 load balancer de-encapsulates a packet up to

the network layer to determine where to send the packet.

Two forwarding techniques have been implemented in a dispatcher-based web cluster

with layer-3 routing: Network Address Translation (NAT) and IP Tunneling (IPTun). NAT

is the simplest technique and consists of rewriting the layer-3 destination address of the

incoming packet to the IP address of the real server selected by the load balancer. The

example of Figure 2.3 represents a NAT implementation. While NAT is implemented in a

two-ways architecture, IPTun is implemented in a one-way the architecture. This means

that the response from the chosen Web server goes directly to the client. IPTun consists

of the encapsulation of IP datagrams within IP datagrams with the source and destination

IP address specifying the VIP address of the system and the target server IP address,

respectively. More information about NAT and IPTun can be found in [142, 132, 27].

Figure 2.4 also shows the TCP connection establishment when using NAT and IPTun.

Layer-3 forwarding solution based on NAT have also been classified as layer-4 switching

with layer-3 packet forwarding (L4/3) by some authors [37, 73, 120].

The main disadvantage of this approach is the fact that the load balancer can become

the bottleneck of the system as the workload increases. This is due to the overhead of
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recomputing the IP checksums for every packet that have to go through the load balancer

in both ways.

Most of the commercial content-aware switches that are nowadays on the market also

provide NAT forwarding, that is the case of the CSS 11500 Series Content Services Switch

of Cisco System, Inc. [1, 43], ServerIron layer 4-7 switches of Foundry Networks [104] and

Nortel Layer 2/7 Gigabit Ethernet Switch Module (GbESM) for IBM BladeCenter [105, 79],

for example. The Linux software framework, LVS [121], also can be configured to support

NAT and IPTun but the most efficient mechanism is DR [95, 40]. Microsoft also implements

a layer-3 forwarding mechanism named Network Load Balancing (NLB) that is included in

the Windows Server 2003 Family [32].

2.4.3 Content-blind Request Distribution Policies

Content-blind load balancing permits the front-end device to be aware of the TCP con-

nections among the clients and the servers. Hence, the load balancer dispatches the requests

according to the IP address and the TCP port. There are several load balancing scheduling

policies that are normally used by content-blind load balancers. Some examples of these

policies are:

• Round Robin (RR) Algorithm : the TCP connections are assigned on a RR basis,

with the first connection going to server 1, the second to server 2, and so on. As the

connections are assigned sequentially among the servers, each server receives the same

number of connections over time independently of how fast it is able to process them.
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For this reason, RR is one of the best distributing methods for homogeneous servers

but, unless used with a per-server weighting, it is less effective in environments where

the servers are heterogeneous.

• Weighted Round Robin (WRR) Algorithm : the traffic will be assigned to the servers

according to their configured relative capacities, in the case that the servers are het-

erogeneous. The administrator specifies the percentage of traffic to be directed to

each of the servers.

• Least Connection (LC) Algorithm : connections are assigned to the server with the

least number of connections. This is a dynamic scheduling algorithm as the load

balancer needs to count the number of connections that are established among the

clients and each Web server in the cluster.

• Weighted Least-Connection (WLC) Algorithm : similar to LC, in this algorithm apart

from counting the number of connections, a weight assigned to each server is also con-

sidered. The servers with higher weight will receive a larger percentage of connections

than the rest of the servers.

• Least Loaded (LL) Algorithm : the dispatcher assigns the next request to the server

that has the lowest load. In this case an agent on the server keeps the load balancer

updated on the server utilization and capacity. Connections are assigned to the server

having the most spare capacity. It is also called baseline algorithm.

• Random Server Selection : connections are assigned uniformly among the servers but

not in a deterministic sequence.

2.5 Content-aware Load Balancing

A content-aware load balancer works at application layer. This means that the load

balancer is aware of the application content of the incoming request. The TCP connection

must be established first among the client and the front-end of the Web system, to then

receive the HyperText Transfer Protocol (HTTP) request and analyse the content of it (see

Figure 2.5). This makes the content-aware routing more specific to applications that can

offer differentiated services, but also more complex than the content-blind approach.
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Despite the fact that some content-aware load balancing commercial solutions have been

implemented, it is a subject that is still being investigated. In this section we are going to

analyse the most recent content-aware solutions described in literature. Some works prove

that using the content of requests and loading information from the servers, more flexible

and intelligent distributing algorithms can be developed [9, 12, 27, 31, 38, 93, 107, 110, 125].

Let us introduce the fact that HTTP/1.1 permits persistent (keep-alive) connections

[55]. This means that several HTTP requests from a client can go through the same TCP

connection. Hence, this causes a reduction in response time, server overhead and network

overhead of HTTP [103]. In order to take advantage of these benefits, some TCP modifica-

tions have been developed to permit an HTTP request granularity in the content-aware load

balancing, instead of a connection granularity. These modifications depend on the one-way

or two-way architecture of the Web cluster.

Table 2.2 summarises all the solutions covered in this section, indicating if they include

request granularity when using the HTTP/1.1 protocol.

Let us divide then this section into one-way and two-ways architectures as it is crucial to

describe their TCP behaviour to know how the load balancing is done. Hence, this section

contains the following subsections:

• Subsections 2.5.1 and 2.5.2 review the load balancing proposals depending on the

return path of responses from the Web severs.
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Table 2.2: Content-aware Load Balancing Solutions

HTTP/1.0 HTTP/1.1

Two-ways - TCP Splicing [98] - TCP Connection Binding [141]

- Redirect Flows [47]

One-way - TCP Hand-off [77] - Multiple Connection TCP Hand-off [12]

- TCP Connection Hop [4] - One-packet TCP State Migration

to Packet Filter [93]

- Socket Cloning [124]

- TCP Rebuilding [94] - Multiple TCP Rebuilding [95]

- One-way Connection Binding [97]

• Subsection 2.5.3 describes the scheduling policies that can be applied in a content-

aware load balancing solution, including an up-to-date survey of recent proposals in

literature.

2.5.1 Two-ways Architectures

This subsection introduces three mechanisms to route the requests from the load balancer

to the target Web server in a two-ways architecture, that are: TCP Connection Binding

[141], TCP Splicing [98] and Redirect Flows [47].

TCP Connection Binding

Yang and Luo proposed TCP Connection Binding in [141]. It is also called TCP Gateway

by other authors [45, 27], Relaying front-end in [12] or Relaying with Packet Rewriting in

[125], and basically consists of maintaining two TCP connections: one between the client

and the load balancer, and a second one between the load balancer and the Web server.

Before receiving any request, the load balancer establishes a persistent connection with

each Web server. When the load balancer receives a request from a client, one of these pre-

established TCP connections is used to transfer the request to the selected target server.

The main advantage of this proposal is that it permits a content-based distribution at

the granularity of individual requests because the persistent connections between the load

balancer and the back-end servers do not depend on the incoming traffic [12]. In a later work

[96], the authors improve the request distribution and the reliability of the TCP Connection
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Figure 2.6: Layer-7 load balancing techniques in a two-ways architecture: TCP Connection
Binding and TCP Splicing

Binding mechanism, and also include a Java implementation of their proposal. The main

problem of this approach is that the packets need to be analysed up to their application

layer information when passing through the load balancer. This implies an overhead that

can be avoided by the other mechanisms detailed below.

Figure 2.6 shows the TCP Connection Binding procedure, detailing Initial Send Sequence

(ISS) number of the client and the Initial Receive Sequence (IRS) number of the load bal-

ancer used in the three-way handshake [50] of the client connection with the load balancer.

Different numbers, ISS2 and IRS2, are used in the pre-forked connection between the load

balancer and the Web server. All these numbers do not need to have any relation at all as

the load balancer is responsible for changing the ISS and IRS TCP header field numbers

depending on which connection it is using to transmit the packets.

IBM Network Dispatcher [78] was an example of a TCP Connection Binding commercial

implementation, but was withdrawn from marketing some years ago.
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TCP Splicing

The second mechanism, TCP Splicing, was proposed by Maltz and Bhagwat in [98]. This

proposal is similar to TCP Connection Binding, but the performance is improved due to the

fact that the TCP client connection and the TCP server connection with the load balancer

are spliced together (at the TCP layer) and all the work can be carried out directly by the

operative system forwarding the data at the IP level. Figure 2.6 also shows an example of

TCP Splicing detailing the ISS and IRS TCP header field numbers of both connections.

Some software and hardware implementation designs of Web switches that use TCP

Splicing have been proposed. Cohen et al. in [45] describe the implementation details of a

Web switch based on the Linux Operative System (OS). Rosu and Rosu in [116] propose a

socket-level implementation of TCP Splicing and compare it to an IP-level implementation

on AIX RS/6000 machines concluding that the socket-level implementations provides more

flexibility and improves the transfer rates. Other authors like Apostolopoulos et al. [10],

Zhao et al. [151] and Kachris and Vassiliadis [81] propose a hardware design for a Web

switch based on a PowerPC 603e processor, an Intel IXP2400 network processor and a

multi-processor reconfigurable logic platform (Xilinx Virtex 4 FPGA), respectively.

Some authors have included modifications to the TCP Splicing mechanism in their re-

search studies. This the case of Marwah et al. [99]. They propose some enhancements that

include the possibility to split the splice in the Web server and then send the responses

directly to the clients. This permits the implementation of a one-way architecture when

using TCP Splicing. The authors also propose in [99] to resplice an already established

TCP connection with one server to attend an incoming request in another (possibly more

appropriate) target server, which permits request granularity in the load balancing instead

of TCP connection granularity when using HTTP/1.1. The authors also provide a proto-

type implementation in Linux that include some of the enhancements to the TCP Splicing

mechanism they propose.

An extension of TCP Splicing is documented by Chang et al. in [33]. It consists of having

pre-forked connections between the load balancer and the Web Servers that are spliced to

the connections between the clients and the load balancer when a request is received in the

system. This approach is very similar to the TCP Connection Binding approach proposed

in [141].

Kobayashi and Murase in [86] deal with persistent TCP connections trying to provide a
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request granularity in the load balancing. They propose an asymmetric TCP Splicing that

permits it to receive pipelined HTTP requests through a TCP connection. After analysing

the application layer of the requests, their proposal change the target server that is serving

the requests coming through that TCP connection for a more appropriated server, in case

it is necessary.

Similar mechanisms to TCP Splicing have been implemented in some commercial content-

aware solutions such as the Cisco CSS 11500 Series Content Services Switch [1, 43], F5’s

BIG-IP [53], Foundry’s ServerIron layer 4-7 switches [104], Radware OnDemand switches

[112] and Nortel Layer 2/7 Gigabit Ethernet Switch Module (GbESM) for IBM BladeCen-

ter [105, 79]. Also a Linux framework has been developed to support TCP Splicing named

Linux Layer7 switching (L7SW) [127].

Redirect Flows

The third and last two-ways mechanism, Redirect Flows developed by Colby et al. [47],

is very similar to the TCP Splicing approach but based on the NAT architecture [40, 95].

It was a proprietary mechanism of Arrowpoint Communications Inc., a company that was

acquired by Cisco Systems Inc. [1] in year 2000.

2.5.2 One-way Architectures

The main disadvantage of the two-ways architecture proposals is that response data must

be forwarded by the load balancer, that may become the bottleneck of the system when

high volume of traffic needs to be processed.

This subsection describes the approaches that permit the Web servers to return responses

directly to clients. Some mechanisms have been proposed to route the requests from a target

Web server to clients in a one-way architecture: TCP Hand-off [77], One-packet TCP State

Migration to Packet Filter [93], TCP Connection Hop [4], Socket Cloning [124] , One-way

Connection Binding [97] and TCP Rebuilding [95] .

TCP Hand-off

The most popular solution for a layer-7 one-way Web cluster architecture is TCP Hand-

off, that was proposed by Hunt et al. in [77]. It requires some modifications in the OS

of the load balancer and the Web servers because once the TCP connection between the
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Figure 2.7: Content-aware load balancing techniques in a one-way architecture: TCP Hand-
off and One-packet TCP State Migration to Packet Filter

client and the load balancer is established, the load balancer’s end point of the connection

is transferred to the selected server, as illustrated in Figure 2.7. The IRS number of the

first connection and the client’s IP address are sent to the Web server because the handed-

off connection between the load balancer and the Web server has to be a “copy” of the

client’s connection in order to permit the Web server to send the responses directly to the

client. Hence, the same ISS and IRS numbers have to be used in both connections. Pai et

al. in [107] introduce some modifications to Hunt’s Hand-off and apply it to their request

distribution algorithm (Locality-Aware Request Distribution (LARD)), that is covered in

the next subsection.

Aron et al. include some modifications to the TCP Hand-off mechanism to permit a

granularity of individual requests when using HTTP/1.1 persistent connections in [12]. In

this work, they propose the Multiple Connection TCP Hand-off and Back-end Request
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Forwarding mechanisms. Multiple Connection TCP Hand-off basically permits pipelined

incoming requests to be attended by different Web servers by migrating the connection

between the servers. Back-end Request Forwarding avoids the overhead introduced by

Multiple TCP Hand-off by permitting the redirection of requests from one server to another

after a decision of the load balancer. Simple Hand-off is used when a new TCP connection

request arrives to the load balancer. In [12], the authors study the performance of both

methods and conclude that the Back-end Forwarding has a better performance for small

response sizes while Multiple TCP Hand-off is better for large responses.

In a later work [14], Aron et al. compare the performance of TCP Splicing and TCP

Hand-off and show how TCP Hand-off is more scalable with the number of Web servers

in the cluster [14]. They also affirm in this work that the TCP Hand-off mechanism has a

limited scalability of cluster sizes up to four Web servers, despite this mechanism implements

a one-way architecture. They propose in [14] an alternative distributed load balancing

solution with a layer-4 front-end, where a centralised node called the dispatcher takes the

load balancing decisions and the overhead is carried out by the several distributor nodes

that are connected in the network as they distribute the client requests to the selected Web

servers by handing off the connections.

Similar content-aware mechanisms based on a content-blind Web switch as [14] are pro-

posed in [109, 83, 38, 144]. Knowledgeable Node Initiated TCP Splicing (KNITS) [109] is a

proposal of Papathanasiou and Hensbergen that uses NAT to forward the client’s requests

from the front-end to the Web servers, and multiple hand-off mechanisms are used when

a session has to be migrated to another server, splicing the connection between the client

and the front-end. The authors implement a prototype within the Linux Netfilter infras-

tructure. The Kerdlapanan and Khunkitti proposal [83] distributes the incoming requests

to the servers by multicast through a layer-2 or 3 front-end (when the first SYN datagram

is received). One of the servers of the cluster establishes the TCP connection with the

client based on a hash function. The distribution decision is done by the servers, after

being aware of the content requested. If the most appropriate server for the request is not

the “connected server”, then the connection needs to be transferred by using the Hand-off

mechanism. Cherkasova and Karlsson describe a solution in [38] that reduces the forward-

ing overhead of the Multiple Hand-off in their strategy named Workload-Aware Request

Distribution (WARD)(described in Subsection 2.5.3). Zeng-Kai et al. also propose in [144]

a layer-7 load balancing distribution based on a layer-4 front-end. The content-aware distri-
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bution is done by the distributors that are located in the Web servers. The authors compare

the performance of their proposal to LARD and WARD [107, 38], respectively, and show

its benefits.

Considering request granularity on HTTP/1.1, Kokku et al. suggest another mecha-

nism based on Hand-off, named Half-pipe Anchoring, that permits the distribution among

different servers of individual requests that come through the same TCP connection [87].

Their proposal is based on the consideration of a TCP connection as two unidirectional

half-pipes, one from the Web cluster to the client (data pipe) and one from the client to the

Web cluster (control pipe). The selection of a different server to attend a pipelined request

is possible by changing the origin of the data pipe of a connection. The authors extend

the TCP header by including more TCP options in the message structure and implement a

prototype in the Linux kernel. Comparison results between this proposal and KNITS [109]

show that Half-pipe Anchoring has a maximum of 25% of the overhead produced by KNITS.

Another implementation of TCP Hand-off, this one based on STREAMS-based TCP/IP is

presented in [130]. This solution does not require any modification on the TCP/IP code.

TCP Hand-off has been implemented in Linux in the TCPHA project [5]. In this subpro-

ject of LVS, a layer-7 kernel level is implemented for Linux. Persistent HTTP connections

are also supported in this one-way content-aware load balancing solution.

One-packet TCP State Migration to Packet Filter

The second mechanism, One-packet TCP State Migration to Packet Filter, was proposed

by Lin et al. in [93]. They include a Packet Filter process in each Web server to intercept

the connection from the load balancer without modifying the OS kernel and implement

their proposal in LVS [121]. In order to provide more scalability, a pre-allocation scheme

is also proposed in this work. It establishes a TCP connection with a Web server when

receiving the first SYN (acting as a content-blind load balancer). Once the HTTP request

is received, the load balancer determines if the selected server is correct or not. If the server

is the right one, then the request is attended. If it is wrong (possibly because the content the

client is asking for is not stored in the selected server) then the load balancer redirects the

request to a more appropriate server, after a three-way handshake connection establishment

as illustrated in Figure 2.7. A RST packet is sent to the previous server in order to keep

silent this connection. TCP persistent connections are also supported. When a connection
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Figure 2.8: Content-aware load balancing techniques in a one-way architecture: Socket
Cloning and TCP Rebuilding

that was previously used is needed again, the three-way handshake can be avoided because

the connection was previously established and it is in a waiting status after the RST.

TCP Connection Hop

TCP Connection Hop is a proprietary solution of Resonate [4] and the core of their

Resonate Central Dispatch. A software component called Resonate Exchange Protocol

(RXP) has been developed to provide several useful functions [113]. It is installed in all

the components of the cluster. RXP establishes the TCP connection with the client and

performs the load balancing by transferring the connection to the selected Web server. The

mechanism used to transfer the connection to the server is based on the TCP connection

migration protocol proposed in [25] and is proprietary of Resonate [4]. It is a similar

mechanism to TCP Hand-off and is also referred to as TCP State Migration in [97].

Socket Cloning

Sit et al. propose a mechanism to redirect the processing of a client’s request from one

server to another by migrating an open socket. This mechanism is named Socket Cloning
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and is proposed in [124]. The load balancer the authors consider in this work is a layer-4

switching with layer-2 packet forwarding, that makes the distribution decision when the

client’s SYN packet is received (see Figure 2.8). If the decision was not correct and the

request has to be attended by another server, then the socket is cloned to it. Hence, Socket

Cloning supports HTTP/1.1 persistent connections. A synchronisation process between

the original and the cloned socket needs to be performed in order to update the sequence

and ACK numbers after a response packet is sent. This synchronisation process is done

by the packet router (that is an additional layer in all the nodes’ architecture proposed

by the authors), therefore it does not involve additional inter-node communication. The

implementation of Socket Cloning requires some modifications to the OS kernel.

Takahashi et al. in [129] propose a similar solution. They use a layer-3 NAT forward-

ing mechanism to perform a layer-7 load balancing that provides TCP session redirection

between the Web servers that compose the Web cluster, named TCP-migration by the au-

thors. They physically separate the packet forwarding and request dispatching mechanisms.

An implementation in Linux kernel is also described and its results reported in this paper.

Very similar mechanisms have been designed to avoid a failover [126, 148]. Snoeren et al.

in [126] implement an architecture in Linux that provides a connection failover mechanism.

The dispatching decision is taken in the Web servers, which can migrate the connection

with the client to another more appropriate server. Zang et al. design a transparent TCP

connection failover mechanism to recover connections that were lost due to a failure in the

server that is attending Web requests [148]. They propose that each connection in the Web

cluster system has to be visible by at least two servers: the primary server and one or more

backup servers that will act in case of a failure of the primary. In both cases [126, 148], the

backup servers need a constant synchronisation with the primary server.

One-way Connection Binding

The One-way Connection Binding mechanism has some similarities with TCP Connec-

tion Binding described in previous section (see Figure 2.6). It is introduced by Luo et al.

in [97] and solves the problem of persistent connections in content-aware routing mecha-

nisms by establishing long-lived connections at the server-side. When a request arrives to

the front-end of the system, the client-side connection is bound to an appropriate server’s

connection and the request sent to the server to be attended. The server-side connection is
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reused by other requests avoiding the connection migration and termination that would re-

quire the execution of the slow-start mechanism and, consequently, the loss of performance

that would involve. The authors compare the performance of their mechanism to the TCP

Hand-off.

TCP Rebuilding

The fifth and last mechanism is TCP Rebuilding which was proposed by Liu et al. in

[94, 95] to be implemented in a LVS-Content-Aware Dispatching (CAD) platform (this

is described in Subsection 2.5.3). Figure 2.8 details its procedure: when the connection

between the client and the load balancer is established and the HTTP request has arrived

to the load balancer, it is sent to the selected Web server which starts rebuilding the TCP

connection without the need of interchanging any more packets. Thus, the Web server

has to guess the sequence and ACK number used in client’s connection. The Maximum

Segment Size (MSS) is set to the standard value of 1460. In order to handle HTTP/1.1

persistent connections, the authors propose the multiple TCP Rebuilding mechanism in

[95]. As LVS cannot perform content-aware distribution, they have introduced a fast TCP

module handshaking in the IP-layer of the front-end so that it can establish the connection

with client in order to know the request’s type.

2.5.3 Content-aware Request Distribution Policies

After studying the content-aware load balancing architectures, let us analyse in more

detail the content-aware request distribution policies that have been proposed in recent

literature. We have considered a distinction between the policies that try to exploit the

cache of the system, named locality-aware solutions, and the ones that do not include the

cache performance in the evaluation, named non locality-aware solutions. Table 2.3 sums

up, in chronological order, the policies that are described in this subsection including some of

their most important characteristics. The year of the publication of the paper that describes

the distribution policy is detailed in the first column. The second column of this table

indicates whether the policy has the locality-awareness feature. The third column details if

dynamically generated Web content is considered in the workload. The fourth column deals

with HTTP/1.1 persistent connections and request granularity. The fifth and sixth indicate

the one- or two-ways architecture, and whether the Web switch is content- or blind-aware,
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respectively. Finally the seventh column indicates the load balancing mechanism used in

the policy.

Locality-aware solutions

Several locality-aware solutions have been proposed as distribution policies in a content-

aware load balancing design. The aim of these policies is to exploit the cache locality of

the Web servers by sending the requests that ask for a determined Web page to a server

that is likely to have it in its cache module. As it can be observed in Table 2.3, most of

the solutions that are in literature between the years 1998-2001 improve the performance

of the Web cluster increasing the number of cache hits in the Web server nodes.

Locality-aware policies deal with a working set that normally consists of static Web

pages. Thus, in order to obtain an increase in the performance by improving cache hit rates

and if the working set is too large to fit in one server’s cache, it is divided among the nodes

of the cluster. This is the idea that Pai et al. introduced in their distribution strategy

named LARD [107]. They define a set of nodes to serve a target file, and modify the set

dynamically depending on the number of active connections of the nodes. The content-

aware load balancer sends the request to the least loaded node of the set. They implement

TCP Hand-off to send the connections from the front-end to the selected back-end node.

An extension of LARD (extLARD) is introduced in [12] which permits LARD to deal with

persistent connections. Also LARD is used to evaluate a prototype implementation that

includes a resource management facility for cluster based Web servers named cluster reserves

[13]. This facility permits the performance isolation of the different server resources in order

to effectively reserve them for different classes of service.

As an alternative to using the TCP Hand-off, which introduces an important overhead in

the Web Switch [14], a DNS infrastructure is used by Cherkasova et al. in [37, 38]. FLEX is

defined in [37] as a two-ways locality-aware solution that does not require any modification

in the protocol nor special hardware support. It is mainly based on a DNS infrastructure

that allocates different sites to the nodes of the cluster. Based on the access rates and

the size of the files, the working set is dynamically partitioned among the servers equally.

Periodical monitoring permits detection of changes in the access pattern and repartition

of the working set . In a later work [38], the authors propose WARD, a locality-aware

distribution that defines a core of files that contains the most frequently accessed files.
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These files can be served by any node in the cluster while the rest of the working set is

divided among all the nodes. In this case, Multiple TCP Hand-off is used when a request

has to be sent from one server to another. The optimal size of the core is determined by an

algorithm that considers the workload, the Random Access Memory (RAM) of the cluster

and the overhead of the Hand-off operation and disk access.

There are other proposals that also includes a set of the most accessed files to be cached

in all the servers [110, 125, 54, 40]. A prefetching policy named Time and Access Probability-

based Prefetch (TAP2) is proposed by Park et al. in [110]. It predicts the next Web requests

the clients are going to ask by considering the costs of prefetching and the probability of

the Web object to be requested, and if worth, it prefetches the requested objects from local

disks. A client session is assigned to a back-end server by a RR policy, and a TCP connection

between them remains during all the session. Sit et al. in [125] describe a distribution policy

based on Socket Cloning that uses a L4/2 front-end, named Cyclone. They also select a

set of most frequently requested files to be served, in this case, by a set of servers, stored

in a hash table in each of the servers. The replication of the files is done progressively as

the reference count increases. Hence, if a file’s reference count reaches a certain level, the

file ends up replicated in all node’s caches. Faour and Mansour propose a content-aware

distribution policy named Weblins in [54] and implement their proposal in Gobelins OS. A

cooperative caching mechanism is used to replicate the most requested files in all the nodes

of the cluster. They distribute the requests from a layer-4 switch to the servers by the

RR algorithm. When a request needs to be transferred to another Web server, it is done

by using the TCP Hand-off protocol. Based on WARD policy, Chiang et al. implement

two distribution policies (Content-based Workload-Aware Request Distribution with Core

Replication (CWARD/CR) and Content-based Workload-Aware Request Distribution with

Frequency-based Replication (CWARD/FR)) in a cluster named LVSCAD/FC (LVS with

Content-Aware Dispatching and File Caching) in [40]. All the nodes prefetch the set of the

most frequently accessed files and the less frequently accessed files are partitioned among

the nodes in the CWARD/CR policy,. While in the CWARD/FR policy, the replication of

the files in the nodes is proportional to their access frequencies. In both cases, the requests

are assigned to servers based on the RR policy among the servers that have the requested

file replicated. Results show that CWARD/FR outperforms CWARD/CR.

Persistent connections are not considered in some of the previous proposals [107, 37, 110]

because they mean an increase in cost when distributing the load based on locality, as the
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connection has to be migrated from server to server. The overhead effort of the TCP

connections portability among Web servers is studied by Carrera and Bianchini in [29].

They propose a solution named PRESS that has two modes of operation. It starts serving

requests with a content-blind distribution policy until the cache miss rate reaches a certain

threshold, then the policy switches to a locality-aware mechanism as the TCP Hand-off

cost is now justified. TCP Hand-off is used when a request has to be served by another

server in the cluster. The authors conclude that portability should be promoted in fast-

communication clusters as it has a low cost in terms of performance, but efficiency should

be promoted in slow-communication cluster as in this case portability is very expensive.

Tang and Chanson investigate how request- and session-grained allocations affect caching

performance under persistent connections in [131]. They compare two algorithms: Balanced

Content-Based (BCB) and Session Affinity-Aware (SAA). The authors conclude that the

locality-aware performance benefits of request-grained content-aware distribution policies

are not easily extended to session-grained allocations.

Ciardo et al. in [42] develop a distribution policy named EQUILOAD based on the sizes

of the requested documents. They partition the sizes of the working set into some subsets

(the same as number of servers in the cluster). EQUILOAD is modified in [114] in order to

avoid the need of an a priori knowledge of the working set size distribution. The modified

solution, named ADAPTLOAD, dynamically sets empirically-based fuzzy boundaries to the

intervals of the response sizes. Despite EQUILOAD and ADAPTLOAD not being designed

as locality-aware mechanisms, they also obtain the benefits of caching as they always direct

requests for the same document to the same server. EQUILOAD and ADAPTLOAD only

consider static Web traffic. In a later work [147], ADAPTLOAD is tested with a workload

that also includes dynamically generated Web content. As it not possible to know the size

of the dynamic content requested, the authors distribute dynamic requests based on the

Join Shortest Queue (JSQ) policy. We have included this version as ADAPTLOAD v2 in

Table 2.3.

Also considering dynamic traffic, Harvard Array of Clustered Computers (HACC) is a

request distribution developed by Zhang et al. in [150] that dynamically divides the entire

working set among the number of nodes in the cluster. The load balancing scheme of this

proposal is based on a two-ways architecture that does not take into account persistent

connections.

In a recent work [95], Multiple TCP Rebuilding is implemented in LVS platform and
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named as LVS-CAD. As LVS cannot perform content-aware distribution, a fast TCP mod-

ule handshaking has been introduced in the IP-layer of the front-end in order to establish

the connection with the client. Liu et al., in this work, describe three different distri-

bution policies: Content-Aware Weighted Least Load (CAWLL), Extended Locality-Aware

Request Distribution with Replication Policy (xLARD/R) and Content-Aware Hybrid Re-

quest Distribution (CAHRD). CAWLL is not a locality-aware policy, it selects the least

loaded back-end server. xLARD/R is an extension of LARD that considers some addi-

tional costs in order to estimate the load of the back-end nodes when taking load balancing

decisions. Finally, CAHRD mixes both CAWLL and xLARD/R. It switches to CAWLL

when a dynamic request arrives, and to xLARD/R when the request is static. Results show

that the locality-awareness is more suitable for static than dynamic requests as CAWLL,

and hence, CAHRD, perform better than xLARD/R when more than 30% of the workload

corresponds to dynamic Web content.

Most of the works referenced in this subsection do not take into account dynamic Web

content [107, 12, 37, 38, 110, 29, 42, 114, 131, 125, 54, 40], as shown in Table 2.3. This is

due to the unpredictability of service times of generating dynamic Web pages. In the next

subsection, dynamic Web traffic is considered in the design of most of the proposals.

Non locality-aware solutions

From the year 2001, more non locality-aware solutions appear in literature. They do

not consider cache hits in the performance evaluation of the Web system. Therefore, other

factors are included in these policies as, for instance, the evaluation of the resource utilisation

by the different types of requests [31, 143, 123], the introduction of QoS in the service

provided [122, 91, 123, 106], or the inclusion of an admission control in the load balancing

solution [123].

Considering only the content of the incoming request, Casalicchio and Colajanni propose

a policy named Client-Aware Policy (CAP) in [31] that obtains good performance results

when serving dynamic and secure Web content. As the requests are classified depending on

the expected impact they will have on the server resources, CAP takes distributing decisions

depending on the service type required by them. The state of the servers is not considered

in this solution. All the servers of the cluster provide all the service types considered.

Considering the content of incoming requests and obtaining some metrics from the Web
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switch that permit to estimate the load of the Web servers, Yao et al. in [143] propose

Message-Aware Adaptive (MAA). It is a scheduling policy that is developed to be executed

in the Application Oriented Networking (AON) product of Cisco Systems [1]. This policy

distinguishes among types of messages and balances the load based on their resource con-

sumption. Hence, when a request arrives to the system, an estimation of the completion

time is calculated and the server that obtains the earliest is chosen to serve the request.

There are other proposals that do include monitored information obtained from the Web

servers of the cluster to take distribution decisions. This is the case of Fuzzy Adaptive

Request Distribution (FARD) [24]. This work of Borzemski and Zatwarnicki describes a

content-aware load balancing mechanism that estimates the response time of each request

in every server of the cluster using a fuzzy estimation mechanism. This estimation is based

on some metrics obtained from the server, such as the CPU, the disk and the commu-

nication link load. FARD selects the server with the lowest estimated response time in

order to attend the request. The authors compare their proposal to LARD and WRR in a

prototype, concluding that FARD improves their performance, specially in heterogeneous

environments. Another work that also obtains performance information by monitoring the

applications running on the nodes is Adaptive Load Balancing Mechanism (ALBM) [41].

Choi describes in this paper a load balancing mechanism that provides scalable services

in a multi-cluster system. The front-end of the system is a layer-4 Web switch that bal-

ances the load by using DR and NAT, and then the content-aware distribution is done from

the nodes of the cluster. ALBM is compared to LVS using RR, LC and WLC scheduling

algorithms.

When taking decisions based on information obtained from the servers it is very impor-

tant that the information is updated. Some authors [48, 118, 123] express their concern

about the accuracy of the information obtained as it might not be very realistic in the

moment the decision is taken. Worried about the problem of load balancing with stale

information, Satake and Inai propose a scheduling method named Non Probabilistic Server

Selection Method (NPSSM) that obtains the information periodically from the Web servers

of the cluster in [118]. Based on this information, the authors try to compensate the differ-

ences in load among the nodes and once the load is balanced, they apply the RR policy for

the next requests. By simulation, the authors conclude that their method is scalable with

the number of servers and that it is immune to the impact of load information acquisition

intervals.
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QoS requirements are included in some other proposals that also obtain monitored in-

formation from the Web server [122, 91]. Considering Stochastic High-Level Petri Net

(SHLPN) modelling, Shan et al. develop a QoS-aware load balancing strategy named

Extended Fewest Server Processes First (E-FSPF) in [122]. They combine a process schedul-

ing policy in the Web servers, that considers the priority of the requests, with a load bal-

ancing mechanism in the front-end of the system that sends the request to the Web server

with the fewest number of processes with higher or equal priorities. Li et al. describe in [91]

a Web distribution system named Gage that balances the load among a set of Web servers

and supports QoS. They use a front-end that splices the TCP connection with the chosen

server in a one-way architecture. The resource consumption is considered as the QoS metric

and the SLA is guaranteed by the allocation of multiple system resources. The requests are

scheduled following a WRR algorithm.

When including QoS requirements in a load balancing mechanism, often admission con-

trol policies are also introduced in order to avoid a sudden collapse of the servers due to

an increase in the demand. The content-aware load balancing algorithm with QoS-aware

admission control proposed by Shafirian et al. is named IQRD [123]. The authors moni-

tor the Web servers in order to dynamically compute the remaining capacity of the Web

system. The requests are classified depending on the resources they consume in the server

nodes and are assigned to the nodes based on their load status. The authors compare their

strategy to CAP and WRR and conclude that, despite IQRD introducing more overhead,

it improves the performance of the system in terms of response time and throughput.

Dynamic traffic is specially considered in [145, 106]. Zhang et al. in [145] propose an

enhancement to the ADAPTLOAD policy. As the ADAPTLOAD policy described in [147]

did not include an original treatment for dynamic requests, the authors study now how the

autocorrelation in the arrival process affects the performance of the load balancing policies

and propose a load unbalancing mechanism that tries to reduce the autocorrelation of the

requested file sizes. They named their policy as D EQAL. In this case, the aim for being

locality aware is less clear than in ADAPTLOAD, this is the reason to include D EQAL as

a non locality-aware solution. Ok and Park in [106] describe an algorithm that focuses on

dynamically generated Web content (Around k-Bounded). As it is not possible to know the

load that the execution of the scripts involves in the Web server in advance, they propose

an algorithm running in a layer-4 Web switch that monitors the load of the servers. If

the servers are attending the same number of requests then the Web switch balances the
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requests following a RR fashion. The switch sends the next request to the least loaded server

in the cluster when the load values of the servers are not equal. Persistent connections when

using HTTP/1.1 are considered, hence in case the target server for a request is other than

the one that is connected to the client, the TCP Hand-off protocol is used to migrate the

connection to the appropriate server. The authors show the benefits of their proposal in

terms of scalability and QoS guarantees.

2.6 Summary

This chapter sums up the load balancing mechanisms that have been developed and

classifies them by differentiating the OSI protocol stack layer the load balancing is based

on. Content-blind load balancing mechanisms have been widely developed in literature

and have also been considered to be included in commercial products (some of which have

already been withdrawn from the market). As the content-aware load balancing solutions

become more popular (mainly because they introduce much more differentiation in the

workload and hence, a more accurate distribution of the requests), more effort is dedicated

to avoid their drawbacks. Some of these drawbacks are related to the possibility that the

layer-7 Web switch becomes the bottleneck of the system and also the request granularity

difficulties when using HTTP/1.1 protocol. These problems are solved by using content-

blind Web switches and transferring the distribution task to the Web server nodes.

Locality-aware policies have been extensively investigated during the first years of the

2000 decade, with the aim of exploiting the cache performance benefits in the Web servers.

Most of these algorithms only consider static content in the Web pages. The fact of con-

sidering dynamic Web pages in the workload complicates the load balancing as the service

times of the scripts that generate the dynamic content are not easily predictable. Also the

cost of generating a dynamic Web page is more expensive in terms of performance than the

cost of serving static Web pages and it is difficult to measure or predict. This is still one

open problem that needs more research.

The “freshness” of the information obtained from the Web servers that the algorithm

uses to take the load balancing decisions is also a problem that has to be more researched, as

most of the proposals described here do not consider the possibility that the load information

is stale. We are also referring to this point in next chapters.
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Table 2.3: Content-aware Request Distribution Policy characteristics: (1) Year; (2)
Locality-awareness (Y=yes; N=no); (3) Dynamic content served; (4) Request granular-
ity with HTTP/1.1; (5) One-way architecture; (6) Web Switch layer; (7) Load balancing
mechanism

.

(1) (2) (3) (4) (5) (6) (7)

LARD [107] 98 Y N N Y 7 TCP Hand-off

extLARD [12] 99 Y N Y Y 7 TCP Hand-off

HACC [150] 99 Y Y N N 7 TCP Splicing

FLEX [37] 01 Y N N Y 3 DNS load balancing

WARD [38] 01 Y N Y Y 4 RR-DNS,Multiple TCP Hand-off

TAP2 [110] 01 Y N N N 7 TCP Connection Binding

PRESS [29] 01 Y N Y Y 4 TCP Hand-off

CAP [31] 01 N Y N Y 7 TCP Hand-off

EQUILOAD [42] 01 Y N N N ? Not specified

ADAPTLOAD [114] 01 Y N N N ? Not specified

E-FSPF [122] 02 N N N N 7 TCP Splicing

FARD [24] 03 N Y N N 7 TCP Connection Binding

Gage [91] 03 N N N Y 7 TCP Splicing

BCB and SAA [131] 03 Y N Y Y 7 TCP Hand-off

Cyclone [125] 04 Y N Y Y 4 Socket Cloning

ALBM [41] 04 N Y N N 4 DR and NAT

ADAPTLOAD v2 [147] 05 Y Y N Y 7 Not specified

D EQAL [145] 06 N N N ? ? Not specified

Weblins [54] 06 Y N N Y 4 TCP Hand-off

around k-Bounded [106] 06 N Y Y Y 4 TCP Hand-off

NPSSM [118] 06 N N N Y 7 Not specified

CAWLL [95] 07 N Y Y Y 7 Multiple TCP Rebuilding

xLARD/R [95] 07 Y N Y Y 7 Multiple TCP Rebuilding

CAHRD [95] 07 Y Y Y Y 7 Multiple TCP Rebuilding

CWARD/CR [40] 08 Y N Y Y 7 Multiple TCP Rebuilding

CWARD/FR [40] 08 Y N Y Y 7 Multiple TCP Rebuilding

MAA [143] 08 N Y N Y 7 Not specified

IQRD [123] 08 N Y N N 7 Not specified
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Chapter 3

Burstiness and Admission Control

in a Web system

This chapter briefly describes Internet traffic characteristics in order to establish the context

to review burstiness detection and monitoring research in literature. The most significant

admission control mechanisms that have been recently proposed are also described. Some

parts of this chapter have been previously published in [67].

3.1 Introduction

The Internet community is continuously growing and the need of performance studies

in this field is essential in order to obtain better response times for the Web users. The

performance of a Web server can be seriously affected when there is a sudden increase in

the Web pages demand. This leads to a necessary study of Internet traffic characteristics

in order to define the mechanisms that will avoid a congestion in the Web server when it

cannot attend all the incoming requests. In order to maintain the performance of a Web

system, we have considered two possibilities.

On one hand, a possible prevention is to monitor the traffic arrival related attributes

at Web servers and set some policies that will avoid the overload. Hence, a review of the

works that analyse the characteristics of Web traffic is included in this chapter. We are

more specifically interested in the works that deal with the burstiness of the Web traffic.

On the other hand, it is necessary also to monitor some performance metrics at the Web

system’s resources continuously to ensure that the service is guaranteed. Moreover, and in

39
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case QoS is considered, this monitoring leads to scheduling and admission control decisions

that permit user’s requests with high SLA to be attended faster and more accurately than

others with a lower SLA and also to reject low priority requests when the servers are

overloaded.

This chapter is organised in the next different sections:

• The characteristics that are observed in Internet traffic and that may affect Web

servers, are briefly detailed in Section 3.2.

• Related studies on burstiness analysis in Internet traffic are considered in Section 3.3.

• Section 3.4 describes related works on admission control and includes a table that

sums up the characteristics of these proposals we are most interested in.

• Finally, we include the summary of the chapter.

3.2 How Internet traffic characteristics affect Web servers

The fact that Internet traffic flows exhibit heavy-tailed probability distributions has

been widely discussed in the Internet literature [11, 100]. As Web traffic inter-arrival times

normally follow a heavy-tailed distribution, maintaining a good performance of the Web

system is normally more difficult than if this distribution were easily predictable. Hence, it

is possible that in a few seconds a Web server that is not overloaded receives an increase in

the number of connections, which produces a situation of congestion [16, 146]. This occurs

when the server reaches the connection number limit it can handle. Even, without reaching

this limit, if the client’s request for a connection is accepted, the response time for that

request may experience a long delay because of the long queue of requests waiting to be

served by the Web system [146]. The problem would be substantially simplified in the case

the Web system were receiving arrivals that follow a constant distribution. Unfortunately

this is not applicable on Web traffic. Moreover, Internet traffic’s behaviour is based on

bursty patterns, then a monitor and control of burstiness in the arrival rate is essential to

ensure a good response from the system.

Internet service providers often offer different QoS levels to supply different priorities to

different users. When the congestion situation is severe, admission policies are normally
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applied. This leads to the challenge of satisfying the performance requirements for different

types of requests at all times.

In the next sections we review the studies that appear in literature related to burstiness

detection and admission control in a Web system.

3.3 Burstiness in Internet

In this section, burstiness modelling and detection related research is introduced. We

have classified the related work depending on the context the burstiness is analysed. Hence,

we have distinguished among burstiness detected in network traffic, in TCP protocol, in

databases and in service times.

3.3.1 Burstiness detection based on network traffic

The pioneers in modelling burstiness in a network are Wang et al. [137]. They analyse

the relation between jitter and burstiness in real-time communications. In this paper, the

burstiness detection mechanism is defined for individual packets. The authors define the

burstiness of the mth packet as a measure of time that expresses the distance between the

actual arrival time and the right edge of the mth packet arrival interval because they consider

the servers usually process packets one by one at a constant rate. An implementation of

this mechanism has been defined in our simulation scenario. More details and results are

described in Section 4.3.

Burstiness detection based on the traffic rate and independent of individual packets is

defined in other papers [101, 20, 134, 92, 75]. Menascé and Almeida [101] are the first to

introduce a burstiness factor. They define it as the fraction of time during the time slot

arrival rate that exceeds the average arrival. In this case, burstiness monitoring is carried

out following fixed time slot scheduling. In Section 4.3, we describe in detail how this

burstiness factor is defined and works and introduce some modifications to it. Baryshnikov

et al. [20] study how traffic predictions can be very useful to reduce latencies and perfor-

mance degradation in Web servers. They use linear extrapolation as a prediction technique

and state that this technique for burstiness detection is not a good predictor. In general,

however, they conclude that even simple prediction algorithms have a significant prediction

power. We also consider their mechanism in the burstiness factors we define in Section 4.3.

In [134], van de Meent et al. detect burstiness through the average traffic rate and the peak
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rate each second. They define a non-linear relation between these two variables to model

the variation in the traffic rate that shows burstiness. Li et al. in [92] detect burstiness in

their model by defining thresholds. If the arrival rate exceeds the thresholds in a number of

successive slots, then sustained burstiness occurs. In [75], Gusella characterises burstiness

of packet arrival process with indexes of dispersion for inter-arrival times and packet counts,

that are based on their variance.

Other papers deal with the characteristics of Internet traffic by focusing on the burstiness

implicit to it. Sarvotham et al. [117] define an alpha/beta traffic model, considering the

traffic bursts as the alfa-traffic and analyse why the bursts occur in network traffic. Lan

et al. in [90] define a burst as a train of packets with a lower inter-arrival time than a

threshold and study the correlations between size, rate and burstiness.

3.3.2 Burstiness detection based on TCP protocol

Burstiness has also been modelled for TCP traffic in other studies such as [58, 138].

In [58], the authors detect bursts of TCP acknowledgement packet transmissions in order

to increase the size of the congestion window. A burstiness model is defined in [138] that

assigns a burstiness value to each TCP packet based on the Round-Trip Time (RTT) in

order to control the actual sending rate.

3.3.3 Burstiness detection in databases

With regards to databases, Vlachos et al. [135] detect short-term and long-term bursts

in on-line search queries by comparing the moving average (of 7 days and 30 days for

short-term and long-term bursts, respectively) of user demands with its mean value.

3.3.4 Burstiness detection in service times

A new methodology for capacity planning under bursty workload conditions is defined by

Mi et al. in [102]. They introduce a index of dispersion based on the one proposed in [75],

that detects variability and burstiness. They test their index in a multi-tier e-commerce

site based on TCP-W specifications.
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3.4 Admission control policies

The problem of the admission control in a Web server has been widely addressed in

literature. The most significant Web admission control related algorithms are introduced in

this section. We have included in Table 3.1 a summary of the characteristics we consider the

most important of the admission control proposals cited in this section, that are organised

in chronological order as it is indicated in the row (1) of the table.

3.4.1 QoS-aware scheduling policies

There are several pioneering QoS-aware scheduling policies that should be mentioned

in this subsection, despite no explicit admission control mechanism is introduced. We are

referring to the work of Almeida et al. [7], Pandey et al. [108] and Eggert and Heidemann

[51]. They develop priority-based scheduling methods that permit to differentiate between

several types of traffic in the Web server and require modifications on the Web server

[108, 51] or both the Web server and the OS kernel [7]. In [7], the authors develop a strategy

to improve the response time of the most priority requests by controlling the number of

processes in the Web server. In [108], an implementation of a distributed HTTP server that

sets resource usage constraints to the requests based on their priority is described. In [51],

three different application-level mechanisms for a Web server are considered that provide

different levels of Web service. QoS-awareness of the related work is indicated in the row

(2) of Table 3.1.

3.4.2 Classic Control Theory-based admission control policies

Feedback control theory has been used by some authors in admission control algorithms

[6, 136, 84]. It is included in the row (3) of Table 3.1. An admission control strategy

that includes QoS differentiation is detailed by Abdelzaher et al. in [6]. They propose a

mechanism based on the classical control theory to guarantee the performance of requests

by establishing a deadline for each request. A CPU monitor is used to maintain the utili-

sation at a threshold by using a classical linear feedback control problem formulation. The

admission control decision is taken for a subset of requests based on these server utilisa-

tion measures. Voigt and Gunningberg in [136] propose a request-based admission control

that includes service differentiation. It is based on feedback control loops that determine

the maximum rate of accepted requests. Based on the monitored performance metrics the
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algorithm decides to accept or drop a SYN request. Kihl et al. [84] consider control theory

to develop a non QoS-aware admission control mechanism for new requests that monitors

server’s CPU utilisation at fixed time intervals.

3.4.3 E-commerce-based admission control policies

Other works describe proposals that consider session-based workload and that are defined

for e-commerce environments [82, 15, 39, 85, 34, 52, 19, 111]. It is indicated in the row (4)

of Table 3.1. Kanodia and Knightly in [82] develop a multi-class session admission control

based on latency targets. A class-based admission control decision is taken when a new

session request arrives to the system. The decision considers whether the request class target

delay is guaranteed, or not, and the effect its acceptance will have on the latency of the rest

of the classes. Considering also session-based workload, Aweya et al. [15] propose a load

balancing scheme in a cluster of Web servers that includes an admission control algorithm

based on the CPU utilisation metric, that is retrieved from the Web servers at fixed intervals.

The acceptance rate of client requests is adaptively set based on the CPU performance

measures. Cherkasova and Phaal in [39], consider the rejection of sessions when the Web

server is overloaded in order to avoid the consumption of the server resources by a user

session that may be interrupted. The metric used to monitor the Web system performance

is the CPU utilisation, which is measured during predefined time intervals and used to

compute a predicted utilisation. In case the predicted utilisation gets above a threshold,

then all the new sessions that arrive for the next interval are rejected, but the service

of already accepted sessions continues. Sessions are admitted again when the predicted

utilisation goes below the threshold. In [85], Kihl and Widell monitor the processing delay

of each request and, based on this information, the admission control algorithm considers

the admission, or not, of a new session or request on commercial QoS-aware Web sites. They

model the arrivals to the Web system according to a Poisson process. Chen and Mohapatra

propose a capacity planning to avoid overload in Web servers and design a scheduling scheme

based also on the session-level traffic model in [34]. They design a Dynamic Weighted Fair

Sharing (DWFS) scheduling algorithm to control overloads in Web servers that is based

on the probability of session completion. Elnikety et al. in [52] develop an admission

control and request scheduling for e-commerce environments also based on sessions. They

consider the TPC-W model to classify the workload in transactions. The admission control
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algorithm estimates the load that a particular job will generate and the capacity of the

system. The job is delayed in a Shortest-Job First (SJF) queue in case of overload. The

load of the system is measured each second, but the admission control is executed each time

a servlet requests a database connection. One of the benefits of this proposal is that it does

not require any modification in the operative system nor the Web software (Web server,

application server or database). Bartolini et al. describe in [19] a policy that switches

between two modes depending on the arrival rate detected at the system. When the system

is not overloaded, their approach takes admission control decisions at fixed intervals of time.

In case the arrival rate exceeds a limit, then the admission control decisions are taken each

time a new session arrives to the system. They limit the 95th percentile of the response time

of each type of requests. Another proposal for an e-commerce environment is described by

Poggi et al. in [111]. They describe a system that learns the user’s behaviour and obtains

the predicted probability of purchase that a new session has. The prediction is updated

periodically (daily, weekly, etc.). They obtain this prediction off-line based on a log of an

e-commerce site. During an overload situation, the new session is accepted or denied based

on this prediction.

3.4.4 Web cluster-based admission control policies

Some proposals consider a Web system composed of more than one Web server, that

normally is referred as Web cluster or Web cluster-based network servers [108, 82, 15, 85,

19, 111, 22, 152, 133, 123]. The row (5) of Table 3.1 details this characteristic. As some

of them have already been commented on above, we describe the rest here. Bhatti and

Friedrich [22] consider a tiered architecture that includes an admission control mechanism

that is based on two fixed thresholds: one that counts the total number of requests in the

system and another that counts the number of the most priority requests. The rejection

of less priority requests starts when one of the thresholds is reached. In this case, the

performance metric that is monitored is the number of requests queued in the system.

Zhou and Yang [152] describe an early request termination policy for the long requests that

may affect the performance of a Web server. They monitor the load of the server and the

running time of the requests and, based on them, set an adaptive termination threshold for

each request. Their proposal includes a resource accounting module that ensures that all the

allocated resources are correctly deallocated when a request is terminated. Sharifian et al.
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in [123] describe a load balancing algorithm that includes an admission control policy for a

cluster of Web servers. They differentiate the requests depending on their service times and

estimate the load of the Web server using a queueing model that is based on performance

metrics that are obtained periodically. Rejection starts when there is no remaining capacity

for a specific class of requests. Urgaonkar and Shenoy in [133] propose a very interesting

low-overhead admission control algorithm for handling extreme overloads. In this work, the

authors introduce some dynamically adjusted class-based delays to invoke the admission

control algorithm and vary these delays with the workload changes when the system is

not overloaded. They switch the admission control policy to a periodical threshold-based

strategy when the load increases.

3.4.5 Other types of admission control policies

There are also other works that should be mentioned. Chen et al. in [35] describe an

admission control algorithm that includes differentiated services. They try to guarantee a

maximum response time by adjusting periodically the resource allocation of the system on

the basis of a service time prediction for each request class. They monitor the CPU cycles

in a previous experiment in order to know the service time of the requests. The admission

control is done following a per-request basis. Cheng et al. in [36] develop a threshold-based

admission control algorithm with different priorities that searches a sub-optimal solution to

adjust the threshold values when the system workload changes. They compare their solution

with an optimal solution obtained by a Petri net. We also include the work of Welsh and

Culler [139] who propose an approach that split the Web services in several stages, each of

them with a specific admission controller. They use the 90th-percentile of the response time

as the performance metric used to drive overload control. The response time is measured

for each request that passes through a stage, but the admission control decision is taken

based on the 90th-percentile response time over some interval. Andersson et al. in [8]

describe an admission control algorithm that is based on static thresholds for the response

time of different classes of requests. The performance metrics that are monitored by the

algorithm are the CPU utilisation, the arrival rate and the response time of the classes of

requests. They apply a linear optimisation algorithm to maximise the total revenue for

the Web site during overload. Schroeder and Harchol-Balter, in [119], avoid overload by

executing an unfair connection schedule instead of an admission control policy that would
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lead to the deny of the service to some requests. They give priority to requests that demand

small static content files by using the Shortest-Remaining-Processing-Time-First (SRPT)

scheduling algorithm. Their proposal requires modifications at the kernel level of the OS.

Table 3.1 sums up some of the characteristics of these previous works, as it is difficult

to classify most of them in less than one category. The columns are the references of the

previous works in chronological order. Rows (1)-(5) have already been commented on above.

The row (6) indicates the performance metric that is monitored by the algorithm and the

row (7) considers the invocation frequency of the admission control algorithm, that normally

is the same as the monitoring frequency of the performance metric that is used as the input

of the algorithm. This performance metric is needed to take admission control decisions

and can be demanded in different ways depending on the proposal. Some authors define a

fixed time interval to obtain monitored performance values and invoke the admission control

algorithm [6, 15, 39, 139, 123, 84, 111], while others check the performance metric selected

and then execute the admission control algorithm when a determined event has occurred,

i.e. each time a new request or session arrives to the Web system [7, 108, 22, 51, 82, 85,

136, 35, 34, 36, 52, 8, 119, 152]. Two recent works introduce a dynamic variation of the

invocation times of the admission control algorithm that depend on the workload [133, 19]

with the goal of overhead reduction. In both cases, there is a switch in the admission control

policy depending on the overload of the Web system.

3.5 Summary

This chapter reviews the literature of two technical aspects: burstiness in Internet and

admission control policies. Despite at first glance they are not very related, it is a fact that

the burstiness in arrival rate affects to the Web servers’ performance and might cause a

congestion when it is not treated adequately.

As we have seen in Section 3.3 the related research on burstiness varies depending on

the context it is studied. We are most interested in burstiness detection on network traffic.

As indicated above, we have included some ideas from some papers [137, 101, 20] in our

burstiness definition, which is detailed in the next chapter. We have also used the non-linear

relation defined in [134] to analyse some of the results obtained.

Referring to the admission control proposals, it can be observed in Table 3.1 that not

many of them consider the arrival rate, and then the burstiness, among the performance
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metrics the admission control mechanism is based on [15, 136, 34, 8, 123, 133]. Hence

changes in the arrival rate are not detected. Furthermore, in some proposals, the invocation

frequency of the admission control is periodical with the aim of not introducing an excessive

overhead in the system.

Among the proposals that include a non-periodical invocation frequency, only two of

them do not consider the arrival of a new session or request as the trigger to execute the

algorithm [133, 19]. These two recent works introduce a two different invocation methods,

one that acts when the system is not overload and the other that acts when it is. In fact,

it catches our attention that while [133] switches to a periodical threshold-based strategy

when the system is overloaded, [19] starts taking admission control decisions each time a

new session arrives to the system. In both cases, there is a switch in the admission control

policy depending on how overloaded the Web system is. We consider these two works a

step forwards in the planning of the invocation of an admission control algorithm. It is a

subject that needs to be more researched. Our invocation scheduling proposal is described

in the next chapters.
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Table 3.1: Main characteristics of admission control policies: (1) The year the reference is published; (2) QoS-aware algorithm
(Y=yes, N=no); (3) Classic Control Theory-based; (4) Session-aware; (5) Cluster of Web servers considered; (6) Performance
metric monitored (1=CPU utilisation, 2=service or response time, 3=number of requests, 4=arrival rate, 5=transaction size,
6=number of processes running in the Web server) and (7) Invocation Frequency (P=Periodical, NP=Non Periodical).

Reference: [7] [108] [22] [51] [82] [6] [15] [39] [85] [136] [35] [34] [36] [139] [52] [8] [119] [152] [84] [123] [133] [19] [111]

(1) Year 98 98 99 99 00 02 02 02 02 02 03 03 03 03 04 05 06 06 08 08 08 09 09

(2) QoS-aware Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y Y

(3) Feedback

Control

Theory

N N N N N Y N N N Y N N N N N N N N Y N N N N

(4) Session

aware

N N N N Y N Y Y Y N N Y N N Y N N N N N N Y Y

(5) Web Cluster N Y Y N Y N Y N Y N N N N N N N N Y N Y Y Y Y

(6) Performance

metric

2,6 1-3,5 3 6 2 1 1,4 1 2 1,4 2 2,4 3 2 1,2 1-2,4 5 1-3,5 1 1-3 2-4 2,4 3

(7) Invocation

Frequency

NP NP NP NP NP P P P NP NP NP NP NP P NP NP NP NP P P NP NP P
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Chapter 4

Analysis of Burstiness Monitoring

and Detection

Due to the heavy tailed pattern of Internet traffic, it is crucial to monitor the incoming

arrival rate in a Web system to preserve its performance. In this chapter, we focus on the

arrival rate processing mechanism as part of the design of an adaptive admission control

and load balancing Web algorithm. The arrival rate is one of the most important metrics

to be monitored in a Web site to avoid the possible congestion of Web servers. Six methods

are analysed to detect the burstiness of incoming traffic in a Web system. We define six

burstiness factors to be individually included in an adaptive admission control and load bal-

ancing algorithm, which also needs to monitor some Web servers’ parameters continuously,

such as the arrival rate at the server or its CPU utilization in order to avoid an unexpected

overload situation.

We also define adaptive time slot scheduling based on the burstiness factor, which reduces

considerably the overhead of the monitoring process by increasing the monitoring frequency

when bursty traffic arrives at the system and by decreasing the frequency when no bursts

are detected in the arrival rate. Simulation results of the behaviour of the six burstiness

factors and the adaptive time slot scheduling when sudden changes are detected in the

arrival rate are presented and discussed. We have considered a scenario made up of a

locally distributed cluster-based Web information system for simulations. An early study of

burstiness monitoring and detection was included in [66]. Most of the work in this chapter

has been previously published in [67].

53
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4.1 Introduction

Our main concern in the design of an admission control and load balancing Web system

is how to monitor some Web servers’ parameters in a very adaptive way in order to reduce

the algorithm overhead. Some of the Web servers’ parameters likely to be monitored are the

arrival rate, the CPU/disk utilisation, I/O performance, etc. The performance of the nodes

that compound the Web system have to be monitored continuously in order to know their

status and make the appropriate decisions in case of overload to avoid a possible congestion

situation. This can be done in several ways: (i) each time a request arrives at the front-end

of the Web system; (ii) at fixed times by using static time slot scheduling; or (iii) at non-

fixed times by using dynamic time slot scheduling. The overhead introduced by option (i)

is the biggest because each time a request arrives at the Web system, Web node parameters

are monitored. While option (ii) introduces a constant overhead, option (iii) monitors the

system at non-fixed intervals, hence, its overhead will depend on the frequency of those

intervals. The drawback of defining monitoring in a constant duration interval schedule

(option (ii)) is the choice of monitoring time interval. It is very difficult to set a duration

interval that fits with all possible Internet arrival rates at the Web system due to its heavy

tailed pattern.

We propose using adaptive time slot scheduling (option (iii)) where the frequency of

monitoring depends on a burstiness factor that will increase its value when bursty arrivals

reach the system, and decrease it, if no burstiness is detected. The adaptive time interval we

define depends directly on this burstiness factor. Therefore, the monitoring task’s overhead

is related to the burstiness of the arrivals in the Web system and time slot scheduling is

completely adaptive to the burstiness detected in the arrival rate that reaches the system.

We have included six burstiness factors in a content-aware load balancing model designed

with OPNET Modeler [3] to compare the effect of including different burstiness factors in

the Web system performance. The admission control and load balancing algorithm used is

fully described in the next chapter.

The following sections of this chapter are organised as follows:

• Section 4.2 details the definition of monitoring slots.

• The burstiness factors we have considered for our experiments are detailed in Section

4.3.
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• The adaptive time slot scheduling mechanism is described in Section 4.4.

• Section 4.5 details the simulation scenario and shows the results obtained.

• Finally we include the summary of the chapter.

4.2 Defining Monitoring Slots

The fact of introducing monitoring to a real system may introduce a relative error in the

measurements taken. The most precise measuring of the system parameters could be carried

out if monitoring is executed continuously and then all the changes in the system parameters

are recorded in a database. The main problem involved is the extremely high overhead that

is introduced in the system when many hundreds of requests per second arrive in the Web

system and the monitoring process may modify the system’s performance. Therefore, the

monitoring itself may vary the values of the monitored parameters.

Moreover, obtaining average times of the values measured is a usual technique, even if

all the system components are precisely and completely measured. This also leads to an

implicit error in the accuracy of the final value of the observed metrics. We consider that

this error cannot be avoided because without it, monitoring a system would get bogged

down in the extraction and determination of minute details, which may make the overall

analysis more difficult.

As previously stated, we propose monitoring the system by using adaptive time slot

scheduling. To our knowledge there are no prior studies that set this scheduling to monitor

the HTTP arrival rate at a Web system.

Obviously, an implicit error will be introduced. Let us analyse this fact with an example.

Suppose we are monitoring the arrival rate of HTTP requests that arrive at the front-end

of a Web system. It is evident that the arrival rate of the incoming requests is a random

metric. If it is monitored by using fixed intervals, the resulting curve is different to the

curve of the arrival rate monitored following adaptive time slot scheduling, which is due

to the different values in the x-axis. Figure 4.1 represents both curves and the monitoring

intervals scheduled for each one. At the bottom of the plot, the observation times of the

arrival rate monitored following a fixed time slot are illustrated. In this case the arrival

rate is monitored every 20 seconds. At the top of the plot, the monitored time intervals are

represented when following an adaptive time slot. It is clear that on average both arrival
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Figure 4.1: Arrival rate monitored following different observation times

rate curves are equivalent but at each moment of the observation period one varies with

respect to the other because of the different observation times. In Section 4.4, we explain

how we set the duration of the adaptive monitoring time slots.

We are going to define the burstiness factors considered in this chapter in order to study

their behaviour, and then we detail how the adaptive time slot scheduling is defined.

4.3 Burstiness Factors

We have considered six different approaches to define burstiness factors in order to com-

pare their behaviour and detect their benefits or drawbacks under the same circumstances.

Some of these approaches are based on previous articles we cited in Section 3.3 and the rest

are modifications of them, as indicated below.

All the burstiness factor values are defined in [0,1] in order to limit the range of the

factor because its value will be used later in the algorithm, for instance, to make some

decisions to avoid a congestion situation. Hence, all the burstiness factors defined here can

be easily adapted to be used in an admission control algorithm, despite being beyond the

scope of this chapter. The factor calculation is made for each time interval or slot defined

by adaptive time slot scheduling, that is described in Section 4.4.

We start with the burstiness factor defined in [101] (BF1) and we propose some modifi-

cations to it to try to adapt it more accurately to the variations of incoming traffic (BF2,
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BF3, BF4). Some modifications are also included to introduce linear extrapolation in order

to detect the bursty slots (BF5), as Baryshnikov et al. suggested in [20]. We have also

considered a sixth burstiness factor (BF6) by including the proposal of Wang et al. [137].

In this case, the factor is computed for each incoming HTTP request to a Web server.

A description of each burstiness factor is given in the following subsections, and at the

same time the reader can observe a representation of them in Figures 4.2a - 4.2j. We have

simulated all the burstiness factors proposed in this section in a discrete event simulator,

OPNET Modeler [3]. The scenario consists of 5 Web servers that receive requests from

30 clients. The workload is fully described in Section 4.5. We show the behaviour of the

factors we propose together with the arrival rate monitored in a Web server plotted on two

scales (on the right the burstiness factor scale; on the left, the arrival rate scale). At the

bottom of the figures the monitor time intervals of the arrival rate is given. All of the plots

included in Figure 4.2 have been obtained from the same simulation scenario that receive

exactly the same workload, although some variations in the arrival rate can be observed.

These variations are due to the different lengths of the time intervals when we monitor the

system, as explained in the previous section, which depends directly on the burstiness factor

applied .

4.3.1 BF1: Menascé proposal

The first burstiness factor we use was proposed by Menascé and Almeida in [101]. Its

definition requires knowing the mean arrival rate of HTTP transactions for a Web server

measured during some time intervals or slots 0, 1, ..., k − 1, denoted as µλ. For a slot k and

a Web server, λ(k) represents its corresponding arrival rate. If λ(k) > µλ, then the slot

is considered a bursty slot. Given m slots, the burstiness factor is defined as the relation

between the cumulative number of slots that satisfy λ(k) > µλ, called k+, and the current

number of slots, k [101]:

borig(k) =
k+

k
(4.1)

This burstiness factor smooths the arrival rate curve. Figure 4.2a illustrates that it

follows the arrival rate but does not accurately represent its quick variations. We consider

that the burstiness factor should alert the system as quickly as possible of an increase in the

arrival rate, and this factor increases or decreases along with the increasing or decreasing
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arrival rate trend but very slowly and delayed.

We propose the direct inclusion of the arrival rate value in the burstiness factor in the

next proposal, as a way to modify it quantitatively.

4.3.2 BF2: Arrival rate included

The second burstiness factor considered modifies the previous one by including the rel-

ative difference of the arrival rate of the two previous slots. Hence, the burstiness factor

modification also depends on how much the arrival rate increases or decreases. Its expression

is the following:

barr rate(k) =
k+

k
·

(

1 +
λ(k) − λ(k − 1)

λ(k − 1)

)

, (4.2)

0 < barr rate(k) < 1

Notice that barr rate(k) can be greater than 1 in this definition. When this happens we

set it to 1 to fulfill the 0 < barr rate(k) < 1 restriction.

Figure 4.2b shows that, in this case, the burstiness factor also varies with the variations

of the arrival rate. Nevertheless, there are some peaks in the arrival rate that are not

followed by the factor. In the next proposal, we introduce a penalisation when detecting a

consecutive number of bursty slots.

4.3.3 BF3: Penalisation included

We also want the burstiness factor to accurately represent the increasing traffic peaks

incoming to a Web server. Hence, we consider that a maximum of j consecutive bursty

slots should cause a proportional increase in the burstiness factor. This is the reason for

including a penalisation in the factor that depends on a record of previous bursty slots.

This penalisation is limited with a record of j slots, being α = 0.1 · j, for j ∈ 1, .., 10 . We

have chosen to have a maximum record of 10 slots to penalise the burstiness factor because

if the burstiness detected in the arrival rate is extreme, then the burstiness factor will be

doubled every 10 slots. Hence, the maximum value of the burstiness factor can be easily

reached.

bpenalis(j)(k) =
k+

k
· (1 + α) , 0 < bpenalis(j)(k) < 1 (4.3)
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Figure 4.2: Arrival rate and burstiness factors: a) BF1; b) BF2; c) BF3 with j = 3; d) BF3
with j = 4; e) BF3 with j = 10; f) BF4 with j = 3; g) BF4 with j = 4; h) BF4 with j = 10;
i) BF5; j) BF6.
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We have simulated the scenario with different values of j to compare its behaviour.

Figures 4.2c, 4.2d and 4.2e represent the results obtained with this burstiness factor and a

record of 3, 4 and 10 slots, respectively. We have omitted the plots corresponding to the

rest of the values of j in Figure 4.2 because we consider that the behaviour of this factor

is perfectly understood with these three values of j and in this way we avoid the inclusion

of more plots. It can be observed that as j increases the burstiness factor penalisation also

increases. We need to check if this penalisation (possibly excessive for high values of j) leads

to an increase in the system performance or otherwise, decreases its performance because

of an overreaction to the arrival rate.

4.3.4 BF4: Arrival rate and penalisation included

This proposal includes the relative arrival rate difference between the last two slots,

which will permit the burstiness factor to follow all the arrival rate variations, and the

penalisation.

barr rate penalis(j)(k) =
k+

k
·

(

1 +
λ(k) − λ(k − 1)

λ(k − 1)
+ α

)

(4.4)

We also limit the value of barr rate penalis(j):

0 < barr rate penalis(j) < 1.

The burstiness factor values in the simulation are shown in Figures 4.2f, 4.2g and 4.2h,

representing the results obtained with a maximum record of 3, 4 and 10 slots. We can

observe that the resulting curves of BF4 are similar to the BF3 curves, but in this case the

burstiness factor is also sensitive to changes in the arrival rate.

4.3.5 BF5: Linear extrapolation approach

In this case, we have used linear extrapolation of the arrival rate in order to detect bursty

slots instead of the average of the arrival rate, as described by Baryshnikov et al. in [20].

We compute the prediction of the arrival rate in the next slot for a Web server as the next

expression, t (k) being the final time of the slot k:

λ̂(k) = λ(k − 2) +
t(k) − t(k − 2)

t(k − 1) − t(k − 2)
· (λ(k − 1) − λ(k − 2)) (4.5)
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We consider a bursty slot when λ(k) > λ̂(k) and then we apply expression (4.1), consid-

ering k+ as the number of bursty slots and k as the current number of slots. This burstiness

factor will be represented as bextrap(k).

Figure 4.2i shows the results obtained with this burstiness factor and the resulting curve

can be observed as being even smoother than the one obtained from the original Menascé

proposal.

4.3.6 BF6: Wang approach

This last proposal, introduced by Wang et al. in [137], has been considered in order to

analyse its behaviour and compare it with the other proposals. The main difference between

this proposal and all the previous ones is that this factor is computed for each incoming

HTTP request that reaches a Web server.

Considering t(1) and t(m) as the times when packets 1 and m arrive at the Web server,

and c(t(1), t(m)) = m − 1 as the number of packets between t(m) and t(1), the expression

that Wang et al. used to represent the burstiness of each packet is the following [137]:

b(m) = t(1) +
c(t(1), t(m))

ρmin

− t(m) (4.6)

where ρmin represents the minimum throughput:

ρmin = min
[

c(t(1),t(2))
t(2)−t(1) , c(t(1),t(3))

t(3)−t(1) , · · · , c(t(1),t(m))
t(m)−t(1)

]

In this case, burstiness is calculated in seconds and represents a measure of time that

expresses the distance between the actual arrival time and the right edge of the mth packet

arrival interval. As this definition of burstiness is expressed in seconds, we have modified it

to be applicable to slots.

Hence, µb(k) being the mean of the burstiness of the packets that arrive in a slot k, and

µb the mean of the burstiness of all the previous packets, we consider a bursty slot when

µb(k) > µb and then we apply expression (1), considering k+ as the number of bursty slots

and k as the current number of slots. This burstiness factor will be represented as bwang(k).

In Figure 4.2j, it can be observed that the BF6 curve does not accurately follow the

arrival rate changes. The BF6 curve decreases in some points of Figure 4.2j when the

arrival rate curve increases. We will obtain more results with this burstiness factor in order

to know its possible benefits with different workloads despite the fact that its calculation
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Figure 4.3: Arrival rate monitored following adaptive time slot scheduling and detail of
some of the slots using the BF1.

is made for each incoming HTTP request and then it needs a huge computational effort,

which leads to a considerable overhead compared to the other proposals.

4.4 Adaptive Time Slot Scheduling

Once we have defined the burstiness factors, let us describe how we use them to set up

adaptive time slot scheduling.

We divide the total observation time T of the experiment into several slots of variable

duration. While the experiment is simulated, the duration of the slot changes based on the

value obtained by the burstiness factor. Hence, the duration of the slot k + 1 is dependent
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on the burstiness of the two previous slots, b(k) and b(k − 1), as follows:

d(k + 1) =
d(k)

1 + b(k) + b(k − 1)
, if b(k) ≥ b(k − 1) (4.7)

d(k + 1) =
d(k)

1 + b(k) − b(k − 1)
, if b(k) < b(k − 1)

Therefore, the number of slots defined during the simulation time is also variable. We

can calculate the total number of slots that divide the observation time T during each slot.

Considering the duration of the slot k + 1, the frequency of slots is defined as:

e(k + 1) = T
d(k+1)

The burstiness factor will never be 0 because we consider the first slot of the experiment

as bursty to avoid a division by 0.

As the duration of the following slot is defined by the value of the burstiness factor on

the current slot, when a burstiness increase is detected, the following testing time is brought

nearer in order to check the incoming arrival rate early enough and then tune again the

algorithm parameters. If a decrease in burstiness is perceived, the duration of the following

slot is enlarged to reduce the overhead. By controlling the burstiness in the arrival rate,

and then the duration of testing slots, a sudden reduction in the future performance of the

Web servers may be forecasted.

An example of adaptive time slot scheduling is depicted in Figure 4.3. In the upper part

of the figure the arrival rate and the burstiness factor curve are drawn following adaptive

time slot scheduling. As the arrival rate increases from time instant 910 seconds, the

burstiness factor also increases. We have used BF1 to illustrate burstiness factor behaviour

in this case. Below this figure, the slot duration is represented in another scale. It can be

observed how the duration of the slots decreases when the arrival rate increases. Some slots

have been zoomed in to detail the decrease of their durations.

4.5 Simulation Scenario and Results

We have tested the six burstiness factors described in Section 4.3 in the discrete event

simulator OPNET Modeler [3]. The architecture is made up of a set of clients that request

Web contents from the Web system as depicted in Figure 4.4. The main advantage of
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Figure 4.4: The Web architecture is made up of 20 mirrored Web servers and their cor-
responding database servers. All the Web servers are connected to a load balancer that
distributes the load. The model architecture is one-way, which means that the incoming
HTTP requests go through the load balancer but their HTTP responses use a different way
to prevent the load balancer from becoming the system bottleneck.

defining a burstiness factor is that is can be located in any part of the Web system that

receives an arrival rate. We have chosen to detect the burstiness in the Web servers of

the Web system [68, 65]. The admission control and load balancing algorithm employed

in this scenario is fully described next chapter. The architecture is modeled as a one-way

architecture that provides an alternative way for the responses to reach the clients, instead

of going through the load balancer, in order to prevent the load balancer from becoming the

system bottleneck. There is more information about the implementation of the architecture

in OPNET Modeler in the Appendix A.

We have considered 30, 40 and 50 clients in order to compare the results obtained by

the six burstiness factors. Each of the tests has been simulated with four seeds for 5, 10,

15 and 20 Web servers in the system.

The workload generated by the set of Web clients contains dynamic and static HTTP
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Table 4.1: Workload specification

Number of Web servers 5, 10, 15, 20

Number of clients 30, 40, 50

File size Lognormal body and heavy tailed

User Think Time (s) Pareto (k = 0.3, α = 1.4)

User session duration (s) Exponential (µ = 600)

Session Inter-repetition Time (s) Exponential (µ = 30)

requests to the Web cluster and has been modeled according to recent results in Internet

traffic literature. We have considered four types of applications that can be executed con-

currently by the Web clients. Each of these applications asks for Web content with a user

think time that follows a Pareto distribution (k = 0.3, α = 1.4) [17, 30]. As our intention is

to stress the system with intense workload by using a low number of clients in order to sim-

plify the scenario design, the equivalent of 30, 40 and 50 clients requesting for Web content

with four concurrent application means that an average of 125, 160 and 200 requests per

second reach the Web system. The session duration and the session inter-repetition time

are modeled according to an exponential distribution, as it is documented in [39] and [23],

respectively.

The size of the Web pages the clients ask for has been obtained from the logs of the 24th

of June of the 1998 World Cup Web Site [2]. Arlitt et al. in [11] estimate, after analysing

these logs, that the body of the unique file size distribution follows a lognormal distribution

and also that it is heavy-tailed. A summary of the workload specification is shown in Table

4.1.

Two experiments have been carried out in the scenario shown in Figure 4.4. The first

experiment stresses the system during a total simulation time of 2000 seconds with the

workload specified in Table 4.1. The second experiment considers an increase in the arrival

rate at 1000 seconds of the simulation time and for 200 seconds by changing the user think

time from a Pareto (k = 0.3, α = 1.4) distribution to a Pareto (k = 0.2, α = 1.4). This

means an important increase in the traffic that arrives at the system. The purpose of this

modification is to analyse how the burstiness factors react to a sudden increase of the arrival

rate.
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4.5.1 First experiment: no changes in the workload

As we want to know the relation between the arrival rate and the burstiness factor

detected in each server, we have chosen to compute their correlation by using the standard

Pearson method [115]. In the central set of columns, Table 4.2 shows the maximum of the

95th percentile of the correlation values between the arrival rate and the burstiness factors

detected in the servers for 30, 40 and 50 clients in this first experiment. We have considered

the differences of the values of each statistic in two consecutive slots because this is the

way we have formulated most of the expressions above. The correlation values between the

arrival rate and the slot frequency are very similar to those presented in this table due to

the definition of the slot frequency, which is directly dependent on the burstiness factor,

hence we have omitted it.

We find that both statistics are strongly correlated when the used burstiness factor

includes the arrival rate in its formula, which is the case of BF2 and BF4. Indeed, BF4 is

the most correlated, but its correlation decreases as j increases (in all cases: (i), (ii) and

(iii)). The same occurs with BF3. This means that these burstiness factors are probably

excessively penalised when j is increased for the proposed workload.

Comparing columns (i), (ii) and (iii) in Table 4.2 for the first experiment we can observe

that, despite the fact that its correlation values are less than 0.5, BF1 improves its maximum

correlation when more traffic reaches the server. The rest of the burstiness factors do not

show this improvement in the first experiment.

In order to obtain a deeper understanding of the benefits of each burstiness factor, Figure

4.5 shows the relation between the differences of the 95th percentile of the arrival rate values

and the slot frequency in two consecutive slots for 30 clients. A smooth curve computed by

Loess [44] has been added to the plots in Figure 4.5 to highlight the trend of this relation for

5, 10, 15 and 20 servers. As the workload generated by the 30 clients is the same in all the

cases, when we have 5 active servers in the Web system, more requests per second arrive at

each server than if we have 20 active servers. Hence, the Loess smooth curve differentiates

the arrival rate and slot frequency changes for each case.

It can be observed that BF1, BF5 and BF6 (see Figures 4.5a, 4.5i and 4.5j, respectively),

scarcely modify the values of slot frequency when changing the arrival rate difference for

5, 10, 15 and 20 servers. The case of BF3 (see Figures 4.5c, 4.5d and 4.5f) shows a bent

Loess curve because when a non bursty slot is detected after a sequence of bursty slots,
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Table 4.2: Maximum correlation between the 95th percentile of the differences of the bursti-
ness factor and the arrival rate in two consecutive slots for (i) 30 clients (ii) 40 clients and
(iii) 50 clients

First experiment Second experiment

(i) (ii) (iii) (i) (ii) (iii)

BF1 0.3433 0.3840 0.4078 0.2406 0.2417 0.2033

BF2 0.8205 0.8195 0.8141 0.7698 0.7263 0.7361

BF3

j = 3 0.5386 0.5677 0.5395 0.6940 0.6928 0.6764

j = 4 0.5267 0.5187 0.5467 0.7375 0.6848 0.6579

j = 10 0.5011 0.4862 0.5273 0.5996 0.6263 0.6550

BF4

j = 3 0.8711 0.8508 0.8495 0.8123 0.8287 0.8330

j = 4 0.8551 0.8393 0.8469 0.8513 0.8422 0.8390

j = 10 0.8225 0.7843 0.7974 0.8160 0.8395 0.8344

BF5 0.6313 0.6168 0.5735 0.4497 0.4663 0.4326

BF6 0.1179 0.1328 0.0798 0.1585 0.1444 0.1260
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Figure 4.5: First experiment: no changes in the workload for 30 clients. Linear relation
between the arrival rate and the frequency of slots considering different burstiness factors:
a) BF1; b) BF2; c) BF3 with j = 3; d) BF3 with j = 4; e) BF3 with j = 10; f) BF4 with
j = 3; g) BF4 with j = 4; h) BF4 with j = 10; i) BF5; j) BF6.

the burstiness factor decreases suddenly returning to its original value. This can also be

observed in Figure 4.2. In the case of BF4, there is also a decrease in the burstiness factor
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when a non bursty slot is detected, but it is smoother because it depends on the arrival rate

detected in the server. The clearer linear relation is obtained with BF2 and BF4 for 5, 10,

15 and 20 servers, which supports the results obtained by Table 4.2.

4.5.2 Second experiment: increasing the workload

In order to contrast the results obtained in the first experiment, we have increased

the workload significantly to check whether the correlation values are maintained by the

burstiness factors studied in this second experiment. A general reduction can be observed

of the correlation values in Table 4.2, in the right set of columns, due to the peak in the

arrival rate we introduce when we modify the user think time at 1000 seconds. This is not

the case for BF3, which increases its j values and seems to adapt better to this sudden

change in the arrival rate. Nevertheless, BF2 and BF4 are still the most correlated.

For a better analysis of the results, we have related the average and peak traffic rates

(see Figure 4.6a) as van de Meent et al. describe in [134]. The objective is to compare

this traffic rate relation with the relation of average and peak burstiness factor values for

each of the six burstiness factors considered, highlighting the results obtained for 5, 10,

15 and 20 servers (see Figures 4.6b-k). The more similar the traffic rate relation figure

and the burstiness factor relation figure are, the better the burstiness factor represents the

variations of the arrival rate and consequently adapts its value.

The comparison shows an excessive penalisation on BF3 and BF4 for all the values of j.

The reason is that when a large number of consecutive slots are bursty, then these factors

increase their own values more and more. Hence, they easily reach their maximum values

(that is 1) and remain near it most of the simulation time. The greater the j of BF3 and

BF4 is, the more times they reach 1. This makes it almost impossible for them to detect a

sudden, even greater peak in the arrival rate reaching the system because most of the times

these factors have reached their maximum values.

BF1, BF5 and BF6 (Figures 4.6b,j,k), respectively) reach their maximum values of 1

fewer times during the simulation time of this second experiment. We can label them as

the most conservative because they react to the arrival rate variations by slightly changing

their values, which is a drawback if there is a sudden increase in the arrival rate.

BF2 shows almost the same behaviour for 5, 10, 15 and 20 servers (see Figure 4.6c)

compared to the variations of the arrival rate plot for a different number of servers (Figure
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Figure 4.6: Second experiment: increasing the workload for 30 clients. a) Mean and peak
traffic rates for each Web server; Mean and peak burstiness factors for each Web server: b)
BF1; c) BF2; d) BF3 with j = 3; e) BF3 with j = 4; f) BF3 with j = 10; g) BF4 with
j = 3; h) BF4 with j = 4; i) BF4 with j = 10; j) BF5; k) BF6.
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4.6a), due to the fact that BF2 adaptively changes with the variations in the workload in

each case. However, the comparison among the different number of servers in not very

important because their results correspond to different simulations.

4.6 Summary

The aim of this chapter is to study several burstiness factors that detect the variations in

the arrival rate at a Web system. This leads to a monitoring scheduling that is defined by

adaptive time slot scheduling to minimise the execution overhead of the monitoring itself

and the actions of the algorithm that uses the monitored information. If the burstiness

factor detects an increase in the arrival rate trend to the system, the adaptive time slot

scheduling proposed permits checking times to be closer in the terms of time, or viceversa

if an arrival rate decrease is detected. The set of the slot duration is calculated based on

the burstiness factor, enabling the adaptive monitoring of the bursty arrivals at the system.

Six different burstiness factors have been considered in this chapter. The main advantage

of defining a burstiness factor is that is can be located in any part of the Web system that

receives an arrival rate. We have chosen to detect the burstiness in the Web servers of the

Web system. Some of the burstiness factors defined (BF1, BF5 and BF6) are conservative in

the sense that they do not change their values significantly with the arrival rate variations;

while others (BF3 and BF4) include some penalisation when detecting successive bursty

slots that force them to change their value considerably. We have found that a burstiness

factor that quickly follows changes in the arrival rate trend is good enough as long as its

maximum value is not easily reached. Conservative burstiness factors are not very useful if

there is a sudden increase in the arrival rate.

An accurate tracking of the arrival rate trend by the burstiness factor is mandatory. It is

also important to choose a burstiness factor that permits detecting an increase in the arrival

rate independently of the actual workload in the system. These are the main reasons for us

to conclude that BF2 seems the best candidate for an adaptive Web system.
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Chapter 5

Admission Control and Load

Balancing Algorithm

Internet traffic tends to show important growths in demand at certain times of the day or

due to special events. The consequence of these traffic peaks is that Web systems that are

attending the user demands are congested due to their inability to serve a large amount of

requests. The fact that admission control is necessary in these cases is even clearer when

QoS is considered in the Web systems. This led us to the necessity of proposing an adaptive

algorithm that is capable of adjusting its parameters according to the changes in the arrival

patterns.

The main goal of this research is to succeed in the design of a relatively simple algorithm

that does not have a high computational cost and that manages the dispatching mechanism

with few decisions. These decisions are related to the availability of the Web servers to

attend a particular kind of traffic.

We address three main issues in this chapter: firstly, we consider and compare five

throughput predictors to be used in a Web system in order to estimate its future perfor-

mance; secondly, we propose an adaptive QoS-aware admission control algorithm that is

based on a resource allocation scheme that includes a throughput predictor and finally, we

introduce the load balancing approach considered in the algorithm, which is based on a

classical dispatching mechanism.

In order to obtain low overhead, the monitoring of the arrival traffic to the Web system

is done following the adaptive time slot scheduling based on the burstiness factor that we

73
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defined in the previous chapter. In this chapter, we explain how we also use this scheduling

to adaptively invoke the algorithm.

The algorithm is designed to be included in a Web system made up of a set of Web

servers locally distributed, which can also form part of a wider geographically distributed

load balancing architecture.

In this chapter, we show the benefits of our adaptive time slot scheduling compared to a

fixed time slot scheduling [60, 70, 63]. Also a comparison of the behaviour of two classical

load balancing policies included in the algorithm is discussed [71, 72]. We detail and discuss

the results of the five throughput predictors and the admission control and load balancing

algorithm [59, 69]. Finally, we present some results from an implementation of IQRD, the

algorithm proposed by Sharifian et al. in [123], and comment on the performance differences

detected in comparison to our algorithm.

5.1 Introduction

It has been widely studied that Internet traffic is self-similar and that sudden bursts of

packets can reach a point in a network infrastructure that offers Web services. This affects

the performance of the system considerably when it is not prepared to process that increase

in the demand. High variance in incoming traffic and service time distributions can collapse

the system in few seconds; therefore it is necessary to control these features by an adaptive

algorithm.

We propose an adaptive admission control and load balancing algorithm that prevents

the system from a sudden overload by predicting the throughput of the Web servers. We

consider five throughput predictors in this work in order to compare their behaviour in our

algorithm. The problem of allocating the resources of a Web System that considers QoS

and the load balancing strategy is also addressed in this chapter. Our algorithm is prepared

to be implemented in a cluster of Web servers to increase the scalability of the solution.

Overloaded situations can be solved by this algorithm, which guarantees the satisfactory

performance of the system by controlling the utilisation level of the Web servers of the

cluster.

An important contribution of our work is the adaptive overhead our solution introduces

in the system. It is critical to avoid checking the system continuously, i.e. at each incoming

request because this produces an enormous overhead in the front end of the system, but it
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is also risky to check the system during fixed intervals because a sudden increase may not

be detected until the system is already overloaded. We have analysed in Chapter 3 the most

important related work in order to know how other authors handle or control overhead, and

we have observed that very few works propose methods to reduce the overhead.

The following sections of this chapter are organised as follows:

• The steps we take in order to obtain a low overhead are detailed in Section 5.2.

• Section 5.3 introduces an overview of the algorithm.

• The throughput predictors we have considered are described in Section 5.4.

• Section 5.5 details the resource allocation strategy.

• The load balancing strategy is covered in Section 5.6, including the description of

the two classical load balancing policies that we have considered to include in our

algorithm.

• Results obtained are detailed in Section 5.7. They show the benefits of the adap-

tive time slot scheduling and a comparison of the performance obtained by the five

throughput predictors in the admission control and load balancing algorithm. The

behaviour of two classical load balancing policies included in the algorithm is studied

as well. Also a comparison of our algorithm with the algorithm proposed in [123],

IQRD, is described in this section.

• Finally, we summarise the chapter.

5.2 Aiming for low overhead

We propose an admission control and load balancing algorithm that is based on through-

put prediction for a Web system. In order to achieve a low overhead of the algorithm, we

plan the invocation times based on the arrival rate. We defined a burstiness factor, b(k), in

the previous chapter. This factor varies its value in a range of [0,1] and gives an indication

of the burstiness perceived in the entry point of the system. Based on this factor, we defined

an adaptive time slot scheduling in the previous chapter that sets the frequency the Web

system asks for the monitored metrics. We are going to use this adaptive time slot schedul-

ing to set the times the admission control and load balancing algorithm is invoked, as well.
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Indeed, when the algorithm is invoked, it needs to ask for the monitored information in the

server nodes of the Web system.

Therefore, we divide the time into slots (k) of different durations (d(k)) during the

experiment. The burstiness detected in the system influences the execution of the algorithm

in this way: when an increase in the burstiness is detected, then the algorithm is invoked

more frequently, and viceversa.

There are two options to invoke an algorithm, as we previously described in Chapter 3.

Supposing the cost of executing the algorithm is O(x) and the total observation time is T ,

let us then analyse the cost each option has:

• Periodical invocation frequency: In this case, the algorithm is executed periodi-

cally and the decisions taken are maintained until the next execution of the algorithm.

The total observation time T can then be divide into n periods or slots. The approx-

imate cost of this case would be O(n · x).

• Non-periodical invocation frequency: Normally this means that the algorithm is

executed each time a new request or session arrives to the system. In this case, and

considering that r requests are received during the whole observation time, the cost

of the algorithm would be O(r · x), r being several orders of magnitude greater than

n.

Adaptive scheduling can also be included as non-periodical scheduling. This is the

case of [133, 19] that vary the invocation method depending on the load, but only

under some circumstances, as we have previously commented on in Section 3.5.

We propose a variation of the frequency of the execution of the algorithm in all cases,

always depending on the burstiness detected in the system.

5.3 Algorithm overview

The admission control and load balancing algorithm is based on throughput prediction

for a Web system. We have defined five throughput predictors that give us the trend of the

system behaviour and permit the algorithm to take decisions that maintain the performance

of the system. Different classes of requests with different priorities are considered in this

work. The Service Level Agreement (SLA) of the requests is defined in terms of CPU
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utilisation of the Web servers. We show in this section an overview of the characteristics

of the algorithm. First, we introduce the system architecture that is proposed for the

algorithm. We also describe the QoS introduced in the system by defining the SLA of the

requests. And finally, we discuss the performance metrics considered by the algorithm.

5.3.1 System Architecture

The system architecture proposed is based on Web cluster-based network servers and

includes a front-end Web switch. A layer-7 Web switch is normally described as a content-

aware switch that can de-encapsulate the requests up to the application level and classify

them on the basis of this information, but as we described in Chapter 2, it can easily be

the bottleneck of the Web system. Other authors [14, 109, 83, 38, 144] have already solved

this problem by transferring the request distribution mechanism to the back-end nodes and

replacing the content-aware Web switch with a content-blind Web switch.

Another problem of a content-aware Web switch is the distribution of requests based on

HTTP/1.1 persistent connections, that has also been solved in previous proposals by other

authors [12, 93, 125, 95, 97]. Hence, we consider our one-way content-aware architecture

includes one or more distributor nodes, leaving the underlying TCP implementation open

to implement one of these proposals.

The cluster of Web servers is locally connected to the Web switch in a two-tier organ-

isation (Web server and App/DB server). Each Web server attends the requests that ask

for static files, namely static requests and the App/DB server is accessed when the request

asks for a Web page that needs to retrieve dynamic content (dynamic requests).

The Web cluster can be considered either a part of a wider system that geographically

distributes the load or an Autonomous System (AS).

5.3.2 QoS-awareness

Different classes of requests are distinguished in the algorithm. We have already de-

scribed that a distinction between static and dynamic requests is considered as they mean

different loads in the two tiers of the server’s architecture. A QoS differentiation in the

requests is also introduced. We define the priority of each class of requests by setting a

fraction of the utilisation of the whole Web system for each class. Therefore, we consider

a set of classes, C = {c1, c2, . . . , cr}, and define for them a normalised utilisation value in
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a decreasing order. Hence the class of requests that represent c1 have more priority than

the class c2, and so on. The sum of the utilisation values of all the classes is equal to 1,

which represents the whole utilisation of the Web system. The admission control and load

balancing algorithm dynamically defines how the different classes of requests are distributed

among the Web servers.

5.3.3 Performance metrics used in the algorithm

It is important to detect the resource that can be the bottleneck of the Web system

and hence, determine the performance metrics that will manage the admission control and

load balancing algorithm. As we have previously described in Section 3.4, many authors

have considered the CPU utilisation as a metric to be checked in the admission control

mechanism [108, 6, 15, 39, 136, 52, 8, 152, 84, 123]. Indeed, it has been detected that the

main bottleneck of a Web system is the CPU when dynamic content is requested [119].

Hence, we have considered the CPU utilisation as the main metric to estimate in order

to control the performance of the Web system. Other performance metrics have to be

monitored to estimate the CPU utilisation; some of them can be obtained from the front-

end of the Web system, but others have to be requested to the Web and App/DB servers.

The monitoring results obtained have to be transferred to the distributor node/s.

Let us describe the metrics that we need to monitor to execute our algorithm:

• The arrival rate, that is used to obtain the burstiness factor and hence, to set the

adaptive time slot scheduling. The arrival rate can be easily monitored by the front-

end of the Web system, counting the requests that arrive during a slot. The arrival

rate for a slot k, λ(k), is obtained by dividing the total number of incoming request

by the slot duration, d(k).

• The service times needed to process the static and dynamic requests are obtained

from the Web and App/DB servers. We obtain the service time average at each slot,

δ(k), and use it in order to estimate the utilisation of the Web and App/DB servers.

• The average throughput for a slot k, x(k), is also obtained from the Web and App/DB

servers, and used to estimate the throughput of the Web and App/DB servers dur-

ing next slot. The throughput is also used to control the error in the throughput

prediction.
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• The average CPU utilisation of the Web and App/DB servers, u(k), that is used as

a factor in the expression of some throughput predictors, and also used in order to

control the error of our prediction.

We obtain the service times and adjust the prediction of the utilisation in the servers

based on the predicted throughput because it is known that the service times increase when

the server starts to be overloaded [35, 52].

The different metrics are monitored in the Web and App/DB servers, but only trans-

mitted to the distributor node/s and used when the admission control and load balancing

algorithm is invoked.

5.4 Throughput Prediction

First of all, our algorithm is based on throughput prediction. Thus, in this section

five throughput predictors are described. A previous version of the predictors P1-P3 were

introduced in [59]. We have extended the research in throughput prediction in order to

achieve better results. Let us present these five predictors.

5.4.1 P1: based on filtering

This predictor is a moving average between the estimated value of the throughput in the

last slot and the harmonic mean of the real throughput measured in the last two slots.

x̂1(k + 1) = (1 − a(k + 1)) · x̂1(k) + a(k + 1) ·
2

1
x(k) + 1

x(k−1)

(5.1)

a(k + 1) being the probability that balances the weight of the expression in function of

the duration of the next slot, d(k +1); hence, it indirectly depends on the burstiness factor:

a(k + 1) = 2·T−d(k+1)
2·T+d(k+1)

Therefore, this estimated throughput depends on two terms; the last computed through-

put prediction and the average of the actual and previous throughput measurements. The

result of this computation is filtering throughput values based on the probability a(k + 1).

Since the duration of the slot k + 1 depends on burstiness, the weight of a(k + 1) indirectly
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depends on burstiness too. The factor a(k + 1) normally places more weight upon previ-

ous throughput measured in the servers during the slots k and k − 1 than on the previous

throughput estimation, unless the value of d(k+1) > 2
3 ·T . The smaller is the duration of the

slot, the more weight the previous throughput measures have in this predictor. The main

effect of this estimation is smoothing traffic peaks in order to hold an accurate performance

estimation of the servers in the long run.

5.4.2 P2: based on burstiness

This predictor includes the burstiness factor we have described in Chapter 4. It is

included in order to factorise the tendency of the burstiness during the last two periods

with the throughput variation as a factor β(k + 1):

β(k + 1) = (b(k) − b(k − 1)) · |x(k) − x(k − 1)| (5.2)

This factor considers the throughput variation during the last two slots. Thus, it mea-

sures the difference between the current and the previous burstiness factors, and then multi-

plies it by the absolute value of the difference between measured throughputs at slots k and

k − 1. The resulting product expresses the amount of variation of the servers’ performance

due to the burstiness on client transaction arrivals.

This factor is then multiplied by the server utilisation in order to scale the increase or

decrease of previous slot throughput:

x̂2(k + 1) = x(k) − (β(k + 1) · u(k)) (5.3)

The goal of this estimator is to decrease the throughput prediction when a burst of

requests is detected, depending on the current utilisation of the servers.

5.4.3 P3: based on filtering and burstiness

The harmonic mean of the predictor P1 and P2 is considered as the third predictor in

order to balance the effect predictors P1 and P2 may have in the system.

x̂3(k + 1) =
2

1
x̂1(k+1) + 1

x̂2(k+1)

(5.4)
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5.4.4 P4: based on Least Mean Square (LMS)

We have also considered the LMS algorithm [140, 76] to predict the throughput. LMS

introduces an iterative procedure that makes successive corrections to a weight vector that

minimises the mean square error. This filter has been previously used in throughput pre-

diction by Garroppo et al. in [57].

Let w(k + 1) denotes the weight vector of the LMS filter that is computed at the k slot.

The operation can be expressed by the following recursive operation:

w(k + 1) = w(k) + µ · [x(k) − x̂4(k)] · x(k) (5.5)

where M is the number of tap weights used in the adaptive transversal filter, µ is the

step-size parameter and the vectors w(k) and x(k) are defined as:

w(k) = [w0(k), w1(k), ..., wM−1(k)]T

x(k) = [x(k), x(k − 1), ..., x(k − M + 1)]T

The predicted value of throughput is obtained by linear prediction with this expression:

x̂4(k + 1) =
M−1
∑

x=0

w(x) · x(k − x) (5.6)

5.4.5 P5: based on Normalised Least Mean Square (NLMS)

A normalised version of the LMS filter was proposed in [74] to avoid the sensitivity of the

LMS algorithm to the scaling of its input x(k). The solution was to normalise the previous

expression by dividing the vector x(k) by the square of its Euclidean norm.

w(k + 1) = w(k) + µ · [x(k) − x̂5(k)] ·
x(k)

‖x(k)‖2 (5.7)

5.4.6 Throughput prediction results

We have prepared a simulation experiment in OPNET Modeler [3] in order to depict

the behaviour of these predictors. The results are shown in Figure 5.1. We have included
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Figure 5.1: Throughput predictions

the throughput of a server and the five throughput predictions introduced above. It can

be observed how the predictors P1-P3 follow the throughput from the very beginning of

the simulation. As the predictors P4-P5 are based on filter theory, they need more slots in

order to obtain a good estimation. In the case of the simulation results presented in Figure

5.1, they need almost 400 seconds. This is due to the number of tap weights (M) has been

set to 20, hence during the first 20 slots there is no throughput prediction. After the 21st

slot, the prediction slowly moves during another 20 slots to an acceptable value.

Nevertheless, it is very difficult to check the effectiveness of the predictor visually in

Figure 5.1. In order to know how reliable the predictions are, we have computed the mean

squared error they introduce in the admission control and load balancing algorithm. The

complete set of results is described in Section 5.7.

Thus, let us describe first the resource allocation part of the algorithm and the load

balancing approach in order to depict the whole picture.

5.5 Resource Allocation

Throughput prediction enables us to estimate the maximum utilisation allowed in the

servers for each service class, and then to set a maximum number of accepted requests in
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order to limit the utilisation of the servers and avoid a possible congestion situation, while

guaranteeing the QoS. An earlier version of the resource allocation described in this section

was presented in [62].

With the value of one of the throughput predictors described in previous section, x̂(k+1),

and the service time, δ(k), obtained from the servers we can make an approximation of the

utilisation level the servers will have in the following slot for each class of service. An

adjustment of these utilisation levels is necessary in order to fulfil the SLA. Once we obtain

the adjusted utilisation level the servers should not exceed, we can calculate the maximum

number of requests each server can process of each class of service.

Hence, as a first step, we predict the utilisation that each class of traffic will have in each

server of the Web system with this expression:

û(k + 1) = x̂(k + 1) · δ(k) (5.8)

This prediction does not include the SLA we have defined for each class of requests. We

then normalise the predicted utilisation to guarantee the priority requirements of each class.

We need to add some subscripts to the expressions because the throughput and utilisation

predictions are calculated for each Web and App/DB server, and for each class of service.

Therefore, we include three subscripts:

• The first subscript indicates the number of the Web server and App/DB server set,

that is represented by i ∈ {1, . . . ,N}.

• The second subscript states the class of service and it is represented by j ∈ {1, . . . , r}.

• The third subscript points out whether the content requested is static or dynamic,

z ∈ {sta, dyn}. In case the content is static, then it will be attended by the Web

server. The App/DB server will carry out most of the processing work if the content

requested is dynamic. Hence, we compute the utilisation separately in the two tiers

of the Web system architecture.

The normalisation of the utilisation estimation is done to distribute the 100% of the

available capacity of the Web system between all the classes of requests, N being the

number of Web and App/DB server sets that are included in the Web system:
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û
′

i,j,z(k + 1) = (cj · N)
ûi,j,z(k)

∑

∀i ûi,j,z(k)
(5.9)

With this normalisation, we assure that each traffic class has reserved the utilisation

of the Web system that corresponds to its SLA. In order to know the maximum number

of requests that are going to be accepted for each traffic class in each server during the

following slot, we make the inverse operation and multiply the obtained throughput by the

duration of the next slot:

γi,j,z(k + 1) =
û

′

i,j,z(k + 1)

δi,z(k)
· d(k + 1) (5.10)

During the next slot, the distributor counts the number of accepted requests of each

class in each Web and App/DB server. When γi,j,z(k + 1) is reached, then the server stops

attending that class of requests until the next invocation of the admission control and load

balancing algorithm.

We can then consider that each server has a margin of unused utilisation left at the end

of each slot that is in the range of values
[

0, û
′

i,j,z(k + 1)
]

. The computation of the margin

utilisation is done by the subtraction of the reserved utilisation and real utilisation of the

slot k + 1: û
′

i,j,z(k + 1) − ui,j,z(k + 1).

5.6 Load Balancing mechanism

We have designed a dispatching mechanism that is based on classic load balancing poli-

cies, that are used to distribute the incoming requests among the Web and App/DB servers,

distinguishing among the different classes of service requested. The distributor node per-

forms a content aware analysis to learn which service class is needed to attend each request.

r being the number of service classes, we define 2 · r independent classical load balancing

policy instances; r corresponds to the static requests, and r for the dynamic requests (that

normally imply a higher computational cost in the App/DB server).

One of the classic load balancing policies selected is Round Robin (RR). In this case, the

distributor node organises the Web and App/DB servers in a cyclical manner for each class

of service. So, if there are N servers and all the servers are active for attending requests

that ask for a particular class of service, each server i ∈ 1, ..,N will receive the request
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number x, if i = (x mod N) + 1. Note that it is possible that not all the servers are active.

If a Web server or App/DB server reaches the maximum number of requests for a class of

service (j) that was set in the previous invocation of the admission control algorithm, then

it is disabled from the possible selection by the distributor node until the next algorithm’s

invocation. Therefore the rejection of requests begins when all the Web or App/DB servers

of the system are disabled for a class of service.

We also consider the Least Connection (LC) policy in the distribution of the requests

among the servers. In this case, the server that is selected to attend a request is the one

with the least number of connections. As before, when servers reach the maximum number

of requests of service class j, then the load balancer automatically changes the server status

to disabled. Therefore the distributor stops sending to those servers requests that ask for

service class j until the next algorithm’s invocation.

5.7 Simulation Results

This section includes all the simulation results we have obtained with the implementation

of the algorithm. We have implemented our algorithm in the simulation tool OPNET

Modeler [3] which permits it to simulate accurately the layers of the TCP/IP stack. Hence,

we have considered a realistic simulation model including all the protocols below in the

TCP/IP stack that take place during an application-application level communication. The

routing protocol considered at network level is RIP in all the routers of the network. We

have made modifications to some of the OPNET Modeler standard models to adapt them

to our approach. The details of this implementation are shown in the Appendix A. We

divide this section into four different subsections:

• To start with, we configure two classical load balancing policies, RR and LC, in our

distributing mechanism and compare their performance with different Web cluster

sizes. The results of this comparison are shown in Subsection 5.7.1.

• In second place, we implement the five throughput predictors defined previously in

OPNET Modeler and, after executing the algorithm with two different workloads, we

show and discuss the results obtained in Subsection 5.7.2.

• We analyse the benefits of the adaptive time slot scheduling comparing it with the

execution of the algorithm using periodical time slot scheduling in Subsection 5.7.3.
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Table 5.1: Workload specification (for each service) for the classical load balancing
comparison

Number of Web servers 5, 10, 15, 20

Number of clients 15, 30

Objects size (bytes) Lognormal (µ = 5000, σ2 = 1000)

Number of objects per page Pareto (k = 20, α = 1.4)

User Think Time (s) Pareto (k = 1, α = 1.4)

User session duration (s) Exponential (µ = 600)

Session Inter-repetition Time (s) Exponential (µ = 30)

These results show that our adaptive time slot scheduling outperforms a static ap-

proach and permits the system to better react to sudden increases in the arrival rate.

• And finally we compare our algorithm to the admission control and load balancing

mechanism proposed by Sharifian et al. in [123], and discuss the results in Subsection

5.7.4.

The workload we have used in each of the simulations in order to obtain the results

shown in the different subsections is slightly different, this is why we detail the workload

used in each of the subsections trying not to be very repetitive. We specify the workload in

the form of a table, so it is easy to compare the workloads of the different results reported

in this section.

There are some characteristics that all the simulations have in common. We consider

two different service classes, named c1 and c2, in all the simulations. Each service class

contains two types of applications: one that asks for dynamic content and another that

asks for static content. Static requests are attended by the Web servers while dynamic

requests require access to the App/DB server. Hence, we define in the system four types

of applications or services (c1 static, c1 dynamic, c2 static and c2 dynamic) that execute

concurrently in the Web system and whose service is asked, also concurrently, by the Web

clients. The SLA specified for each service class is: c1 = 0.625 for class-1 requests and

c2 = 0.375 for class-2. Requests asking for both classes of service are introduced in the

system in the same proportion. We refer indistinctly to traffic class, service class or request

type in order to indicate a class of service. We have repeated every single simulation four

times with four different seeds during a total simulation time of T = 2000 seconds.
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Figure 5.2: 95th percentile of the throughput of dynamic requests for 15 clients

5.7.1 Classical Load Balancing Policy Selection

The workload used in this comparison is specified in Table 5.1. We have simulated in

OPNET Modeler a Web cluster made up of 5, 10, 15 and 20 Web and App/DB servers in

order to compare the performance of the load balancing policies with different sizes of the

Web cluster.

The workload is generated by a set composed of 15 or 30 clients that sends requests

to the Web cluster and receives responses with an inter-arrival time that follows a Pareto

distribution. The Web pages the clients ask for include a number of objects that also follows

a Pareto distribution and the object size is modelled according to a lognormal distribution

[30].

Let us analyse first the results obtained with 15 clients. Both classical policies, RR and

LC, have been simulated in a cluster with 5, 10, 15 and 20 servers. The static requests are

all attended in the four different cluster sizes. Hence, dynamic requests load the App/DB

servers more than the static ones load the Web servers (as we have previously commented on

in Subsection 5.3.3). Figure 5.2 represents the 95th percentile of the throughput of dynamic

requests of class-1 and class-2 obtained by each of the servers, which is very similar when
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Figure 5.3: 95th percentile of the throughput of dynamic requests for 30 clients
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using the LC and RR policies. We can observe a little difference in the throughput between

the two classes of traffic in the case of a cluster composed of 5 servers. The larger number of

rejections of class-2 requests with 5 clients when using the LC policy cause this throughput

difference.

Regarding the 30 clients example, the results are quite different because now there are

more requests arriving to the Web system and the servers are more loaded. Figure 5.3 shows

the 95th percentile of the throughput of dynamic requests of class-1 and class-2 obtained

by each of the servers. In fact, it can be observed that there is a better behaviour for the

RR policy in the case of 5 servers than the LC policy. The reason is implicit on the load

balancing strategy used. When there are few servers left in an active status that can attend

requests asking for a service class, the load balancing mechanism chosen becomes crucial

to ensure the performance of the system. If the RR policy is used, then all the remaining

servers will receive the same number of requests. But when the LC policy is used, the

active server with the least number of connections will receive all the requests until its

number of connections exceeds the number of connections of other active server. This can

be a drawback because the number of connections among servers since the beginning of the

simulation may be quite different and, in the case that only two servers remain active, it

might happen that in less than a second the server with the least number of connections

ends up overloaded because all the requests are sent to it. When the cluster includes more

than 5 servers both policies get similar results. The 95th percentile of the response time of

dynamic requests obtained by both load balancing policies with 30 clients is represented in

Figure 5.4. We can observe that the response time obtained by the RR policy is lower than

the response time obtained by the LC policy for 5 servers.

Hence, in this subsection we have compared the RR policy and the LC policy in our

algorithm, detecting that the first outperforms the latter one when 5 servers or less are

active in the cluster .

5.7.2 Throughput Prediction Comparison

The five throughput predictors described in Section 5.5 have been tested in our admis-

sion control and load balancing algorithm. We configure a simulation scenario in OPNET

Modeler that consists of 5 Web and App/DB servers that attend the two different classes of

requests, c1 and c2. The workload is generated in the Web system by 30, 40, 50, 60, 70, 80,
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Table 5.2: Workload 1 specification (for each service) for the throughput prediction
comparison

Number of Web servers 5

Number of clients 30, 40, 50, 60, 70, 80, 90, 100

File size Lognormal body and heavy-tailed

User Think Time (s) Pareto (k = 0.3, α = 1.4)

User session duration (s) Exponential (µ = 600)

Session Inter-repetition Time (s) Exponential (µ = 30)

90 and 100 Web clients, as we are interested in stressing the system to test the algorithm

with an increasingly high workload. So, the Web system starts rejecting requests when it

is overloaded.

We configure two different workloads in order to test the algorithm more accurately.

Both are basically the same, the only difference is in the user think time. Let us describe

these two workloads independently.

Workload 1 The first workload specification used in this comparison is described in Table

5.2. We consider a Pareto user think time in the Web clients, and the session duration and

the session inter-repetition time are modelled according to a exponential distribution. The

file size has been obtained from the logs of the 24th of June of the 1998 World Cup Web

Site [2]. Arlitt et al. in [11] estimate, after analysing these logs, that the body of the unique

file size distribution follows a lognormal distribution and also that it is heavy-tailed.

Workload 2 The second workload is basically the same as the first one, but with one

difference. In order to configure a more variable workload, we insert traffic peaks every 300

seconds. Hence, we modify the user think time for 30 seconds in order to provide more

burstiness in the simulation. After each 300 seconds of the workload specified in Table 5.2,

we change for 30 seconds the user think time to Pareto (k = 0.2, α = 1.4). This means a

rise in the arrival rate after certain time of “stability” that permits us to test the algorithm

under more severe circumstances.

The representation of the arrival rate of the Web requests generated with both Workload

1 and Workload 2 is depicted in Figure 5.5.

As we introduce the same proportion of static and dynamic requests in the system and
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Figure 5.5: Workload 1 and Workload 2

the admission control algorithm reserves some CPU utilisation for each service type, the first

components of the Web system that become overloaded are the App/DB servers. Therefore,

the bottleneck of the architecture are the App/DB servers as we will observe in the results

reported in this subsection.

In order to check this, we have to analyse the utilisation level results, but first, let us have

a look at the error in throughput predictions [61]. We have computed the mean squared

error of the throughput predicted in a slot and the throughput monitored in the next slot in

order to compare the effectiveness of the predictions made by the five predictors we defined

in Section 5.4:

Ems =

√

∑n
k=1 (xi,j,z (k) − x̂i,j,z (k))2

n
(5.11)

The computed error for each prediction is shown in Figures 5.6 and 5.7 for static requests,

and in Figures 5.8 and 5.9 for dynamic traffic, and both workloads. We have used the same

scale for both static and both dynamic traffic results in order to compare them.

Considering static requests, it can be observed that the error in the prediction grows with
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the number of clients in both cases (it increments more in the case of Workload 2 ). This

is due to the fact that the throughput values increase with the number of clients because

static traffic is not rejected in any simulation.

The case of the prediction errors in dynamic requests’ throughput is different than static,

as it is limited by the admission control algorithm. Hence, the prediction error is reduced

at some point. On one hand, we can observe in the upper part of Figure 5.8 that the

throughput errors of all predictors for class-1 dynamic requests increase slightly until 70

clients and then, they are abruptly reduced to a value near to zero. On the other hand, we

notice in the bottom part of the figure, the decrease of the class-2 throughput starts at 50

clients.

The throughput prediction error results for Workload 2 are represented in Figure 5.9.

In this case, we can observe that it decreases with the number of clients for both class-1

and class-2 traffic. This decreasing tendency is directly related to an increasing number of

rejections carried out by the algorithm as the number of clients grows larger.

While requests are not rejected, the throughput prediction error tends to increase as

the throughput increases. However, when rejections start, the value of the prediction er-

ror remains near zero because the throughput is controlled by the algorithm, hence, the

predictions are more precise.
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Figure 5.6: Workload 1: Mean squared error of static requests’ throughput predictions
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Figure 5.7: Workload 2: Mean squared error of static requests’ throughput predictions
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Figure 5.8: Workload 1: Mean squared error of dynamic requests’ throughput predictions
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Figure 5.9: Workload 2: Mean squared error of dynamic requests’ throughput predictions
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Figure 5.10: Workload 1: 95th percentile of the average Web server utilisation for static
requests

Let us continue studying the 95th percentile of the average CPU utilisation of the Web

servers and the App/DB servers separately. Figure 5.10 represents the Web server’s CPU

utilisation. Considering that the maximum utilisation is 100%, we observe that the Web

server CPUs are not overloaded with Workload 1. We have omitted the results of Workload

2 because comparatively they increase slightly (up to 12%), but basically are very similar.

The 95th percentile of the average CPU utilisation of the App/DB servers is shown in

Figure 5.11 for Workload 1 and Figure 5.12 for Workload 2. Here we can see a difference

between both figures as Workload 2 means more traffic in the system. Furthermore, we can

also observe the differentiation of service classes. Workload 1 makes the App/DB servers

be at 100% of their reserved utilisation level for class-1 with 70 clients and Workload 2 with

50 clients. The maximum utilisation for class-2 requests is almost reached with 40 and 30

clients, respectively.

We can also observe that the average CPU utilisation achieved by the App/DB servers

guarantees the SLA defined in the algorithm. For class-1 traffic, c1 = 0.625 (62.5% of

utilisation of the servers) and for class-2 c2 = 0.375 (37.5%).
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Figure 5.11: Workload 1: 95th percentile of the average App/DB server utilisation for
dynamic requests
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Figure 5.13: Workload 1: Mean squared error of Web server utilisation margin for static
requests

It is interesting to know the margin of the utilisation left in Web and App/DB servers

during the simulations. We have represented the mean squared error of the utilisation

margin (described in Section 5.5) in Figure 5.13 for Web servers and Workload 1. We have

omitted the figure of Workload 2 as it is practically the same as Figure 5.13. The resulting

curve for class-1 and class-2 requests is very similar with both workloads, despite it being

a little lower for class-2 static requests as class-2 traffic has a more restrictive SLA. It can

be observed that there is a slightly decreasing tendency of the utilisation margin. This is

due to the increase in the number of clients which means more traffic in the Web system,

and hence, a reduction in the utilisation margin for each service class.

The mean squared error of the utilisation margin of the App/DB servers is represented

in Figures 5.14 and 5.15 for Workload 1 and Workload 2, respectively. In this case, the

resulting decreasing curve trends to zero due to the fact that the utilisation limit of each

type of service is reached. We cannot see many clear differences among Workload 1 and

Workload 2 in these figures.
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Figure 5.14: Workload 1: Mean squared error of App/DB server utilisation margin for
dynamic requests
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Figure 5.15: Workload 2: Mean squared error of App/DB server utilisation margin for
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Figure 5.16: Workload 1: 95th percentile of the service time in Web servers (sta) and
App/DB servers (dyn)

Figure 5.16 depicts the 95th percentile of the service time needed in Web and App/DB

servers to serve static and dynamic requests, respectively. We have included this figure in

order to have an idea of the service time values during the simulation, as it is used to predict

the value of the next slot’s utilisation.

We have also included the mean squared error of the utilisation prediction that compares

the predicted utilisation for a slot k, ûi,j,z(k) and the utilisation monitored during the slot

k, ui,j,z(k), in Figures 5.17 and 5.18 for Web servers, and Figures 5.19 and 5.20 for App/DB

servers. These curves are very similar to the ones that represent the mean squared error of

throughput predictions, but with a lower value because the utilisation level is always lower

than 1 and the throughput values are normally greater.



100 Chapter 5: Admission Control and Load Balancing Algorithm

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

E
rr

o
r 

p
re

d
. 

U
t.

 C
1

 (
s
ta

)

P1
P2
P3

P4
P5

30 40 50 60 70 80 90 100

0
.0

0
0

0
.0

0
5

0
.0

1
0

Number of clients

E
rr

o
r 

p
re

d
. 

U
t.

 C
2

 (
s
ta

)

P1
P2
P3

P4
P5

Figure 5.17: Workload 1: Mean squared error of Web server utilisation for static requests
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Figure 5.18: Workload 2: Mean squared error of Web server utilisation for static requests
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Figure 5.19: Workload 1: Mean squared error of App/DB server utilisation for dynamic
requests
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Figure 5.20: Workload 2: Mean squared error of App/DB server utilisation for dynamic
requests
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An important consequence of the admission control algorithm is the rejection of requests

when the Web system is overloaded. Hence, let us represent the number of rejected requests

during the experiments for dynamic traffic in Figures 5.21 and 5.22. We have not included

the static requests as none of them is rejected in any of the simulations. As we have

previously guessed when analysing the throughput prediction errors and the utilisation of

the App/DB servers, with Workload 1, rejections start from 70 clients for class-1 requests

and from 40 clients for class-2.

With Workload 2, rejections start earlier for class-1, that is at 50 clients, and for class-2,

despite the figure not being very clear at this point, there are already some rejections with

30 clients. It is also significant to observe that the total number of rejections is greater for

Workload 2 than for Workload 1.

We need to analyse a metric that differentiates the behaviour of the five throughput

predictors defined. So, we also consider the response time of requests in this subsection. It

is represented in Figures 5.23 and 5.24 for static requests and in Figures 5.25 and 5.26 for

dynamic requests.

Let us analyse first the response time of static requests for both workloads. Despite no

static request being rejected, the increase in the arrival rate that represents Workload 2 has

an impact on the response time of the static requests as it can be observed in Figure 5.24,

compared to the response time of these requests with Workload 1 in Figure 5.23. We have

used the same scale in both figures in order to make this difference clearer.

The response time of dynamic requests is more meaningful as the App/DB servers are

congested with the increase of traffic. If we analyse the case of Workload 1 in Figure

5.25, we can note some differences among the response time obtained by the predictors.

Analysing the last case, 100 clients, we can detect that the predictors P1, P2 and P3 obtain

a higher response time than predictors P4 and P5. This is also depicted in Figure 5.26,

which represents the response time for Workload 2. We can also observe that the maximum

response time for both workloads is around 2.5 seconds, that means that our algorithm

achieves an extra goal, that is the limitation of the response time regardless of the amount

of traffic arriving to the system. The predictor that shows a good response time and the

most stable behaviour is P4, as P5 shows some variability in 70, 80, 90 and 100 clients for

Workload 1. We can also observe that there is not any differentiation in the response times

obtained by class-1 and class-2 traffic, as we do not distinguish different queues in the Web

and App/DB servers in order to keep the approach simple.
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Figure 5.21: Workload 1: Number of rejected dynamic requests
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Figure 5.22: Workload 2: Number of rejected dynamic requests
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Figure 5.23: Workload 1: 95th percentile of the response time for static requests
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Figure 5.24: Workload 2: 95th percentile of the response time for static requests
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Figure 5.25: Workload 1: 95th percentile of the response time for dynamic requests
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Figure 5.26: Workload 2: 95th percentile of the response time for dynamic requests
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The number of downloaded dynamic Web pages is represented in Figure 5.27 for Work-

load 1 and Figure 5.28 for Workload 2. We have chosen to represent only the number

dynamic Web pages because we are looking for another distinction among the predictors

and the number of downloaded static Web pages would not give us that information. We can

observe how, when the system receives a higher arrival rate (from 80 client to 100 clients),

throughput predictors P4 and P5 download more class-1 dynamic Web pages comparatively

to the rest of predictors with both workloads. We consider this more important than the

fact that these predictors download less pages for 50, 60 and 70 clients, as the more traffic

detected in the system, the more crucial the behaviour of the predictor is.

The response time and the number of downloaded dynamic Web pages obtained from

the simulations leads us to the conclusion that P4 is the most suitable predictor for our

admission control and load balancing algorithm. However, we would like to remark that

the predictors P1, P2 and P3 do also obtain good performance results and that have an

important advantage: they are easily obtained from the throughput of the two previous

slots and that do not need a record of more previous slot throughput values as predictors

P4 and P5, which are more complicated to compute.
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Figure 5.27: Workload 1: Number of downloaded dynamic requests
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Figure 5.28: Workload 2: Number of downloaded dynamic requests
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5.7.3 Adaptive Time Slot Scheduling compared to Fixed Time Slot Schedul-

ing

We have configured the admission control and load balancing algorithm to be executed

on a fixed time slot scheduling in order to compare its results with our adaptive time slot

scheduling. The predictor chosen for these simulations is P3. We have redrawn some of

previous figures, including the results obtained when invoking the algorithm periodically

(named as “P3 per” in the figures). The workload chosen for this comparison is Workload

2, described in the previous subsection.

The first figures we have included in this comparison are the mean square error of

throughput predictions for both static and dynamic traffic. It can be observed in Figure

5.29 the error of static throughput predictions and in Figure 5.30 the error of dynamic

predictions. Very similar results are obtained for the adaptive time slot scheduling and

the fixed time slot scheduling, so the prediction errors do not help in differentiating the

scheduling policy.

Let us analyse therefore other metrics such as the number of rejected dynamic requests

and the utilisation level of the App/DB servers. We omit the utilisation level of the Web

servers because, as we have seen in the previous subsection, they are linear and do not add

any extra information.

Figure 5.31 shows the number of rejected requests that ask for dynamic content. Once

again, we cannot observe either a differentiation among the predictors, or in the scheduling.

The 95th percentile of the App/DB server utilisation is represented in Figure 5.32. Here

we observe that the utilisation level of the App/DB servers is lower for P3 per in the first

points of the x-axis of the graph. In the case of class-1 traffic, the servers seem to be less

loaded for 30, 40 and 50 clients with P3 per. The case of 30 clients also reaches a lower

utilisation level for class-2 traffic. However, if we analyse the P3 per utilisation level of

class-2 traffic after 40 clients, we can also observe that it is slightly greater that the rest of

the simulations. In fact, this indicates to us that the fixed time slot scheduling introduces

some errors in the utilisation level reached for each traffic class. That also means that the

algorithm is less accurate in its reservations and that the SLA is less guaranteed.
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Figure 5.29: Mean squared error of static requests’ throughput predictions
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Figure 5.30: Mean squared error of dynamic requests’ throughput predictions
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Figure 5.31: Number of rejected dynamic requests
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Figure 5.32: 95th percentile of the App/DB server utilisation for dynamic requests
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Figure 5.33: Number of downloaded dynamic requests

The response time and the number of downloaded requests gave us an idea of the predic-

tor that suits our algorithm best in the previous subsection. So, let us redraw these figures

again in order to know the behaviour of the P3 predictor under a periodical invocation

scheme.

Figure 5.33 shows the number of downloaded dynamic requests. It denotes that P3 per

downloads less class-1 requests than the rest of the simulation results. Also we can observe

this same behaviour for class-2 traffic. Despite P3 per utilisation level for class-2 requests

being greater than the rest of the simulations (as we have just seen in Figure 5.32), it

downloads less class-2 requests.

Finally, Figures 5.34 and 5.35 show the response time obtained by static and dynamic

requests, respectively. The results obtained by the static requests do not give us much

information, but the response time for dynamic request do. We can observe in Figure 5.35

how P3 per increases its response time for most of the number of clients above the rest of

the curves.

This confirms the fact that the simulation of the algorithm following a periodical invo-

cation is outperformed by the adaptive invocation.
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Figure 5.34: 95th percentile of the response time for static requests
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Figure 5.35: 95th percentile of the response time for dynamic requests
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5.7.4 Comparison to IQRD

In Chapters 2 and 3, we reviewed the Web load balancing proposals and the admission

control mechanisms that exist in literature, and finally we have found a candidate proposal

to be compared with our algorithm. It has been difficult to find because we needed the

alternative solution to be QoS-aware and include an admission control and a content-aware

load balancing strategy.

We decided to compare our algorithm with the IQRD, the solution described by Sharifian

et al. in [123]. An important reason we have considered to select IQRD is because it

divides the time into small intervals in order to avoid modelling errors. They consider a

periodical algorithm invocation, and at the same time these periods (or slots) are divided

into smaller intervals in order to obtain monitoring information from the Web servers. This

is a completely different philosophy from ours and the results of this comparison may be

quite interesting and lead us to make some conclusions about the possible reduction of

overhead when invoking an algorithm in a Web environment.

The IQRD solution defines the SLA of the different services by the response time. Several

Web servers are supposed to execute in a node in order to differentiate among the services

offered. Each of the Web servers is modelled by a M/P/1 queueing network. Hence, the

inter-arrival rate the IQRD model uses follows an exponential distribution. The response

time guaranteed for each type of service permits it to obtain the maximum arrival rate that

is going to be accepted during the next period. In order to obtain this value, the mean and

the second momentum of the service time are received from the Web servers. These metrics

are monitored 100 times per period (or slot). The maximum arrival rate permits it to know

the maximum number of requests of each service type which is going to be accepted during

the next period.

For a period, the maximum number of requests decreases by one in a Web server when a

request of that class is accepted, and increases again when the request has been served. This

would add an extra overhead in a one-way architecture as the server nodes should inform the

distributor that a request has been served. The admission control starts rejecting requests

when all the Web servers have the maximum number of requests equal to zero.

In our implementation of OPNET Modeler, we have considered that only one Web server

is executing in each Web and App/DB node. Hence, in order to simulate both algorithms

under the same conditions, we have defined two different classes of service, c1 and c2, that
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in the case of IQRD have the same response time requirement, and in our case, have the

same SLA value. Requests from each class of service can be either static or dynamic as we

have previously described in Subsection 5.3.2.

In order to represent our algorithm, we have chosen to simulate the predictor P4 with

the SLA values c1 = c2 = 0.5. The workload used in both sets of simulations is the same as

the Workload 2, that is described in Subsection 5.7.2.

We have represented the number of downloaded dynamic pages in Figure 5.36. It can be

observed that both curves are very similar, although IQRD downloads more class-1 requests

for 60 and 70 clients than our algorithm, and our algorithm outperforms IQRD for 80 and

90 clients. However, both of them essentially download a similar number dynamic requests.

If we compare the plot of number of downloaded requests with Figure 5.37, that shows

the response time of dynamic requests for both algorithms, we can observe the two curves

are very similar as well. The response time obtained by both classes is always below 1.6

seconds, despite IQRD achieving a better response time in the most extreme cases, that is

with 80, 90 and 100 clients.

Figure 5.38 depicts the number of dynamic rejected requests. In this figure it is clear

that IQRD rejects more requests for most of the number of clients than our algorithm.

Therefore, we can conclude in this subsection that our algorithm obtains good perfor-

mance results in comparison to another admission control and content-aware load balancing

algorithm that considers QoS, and is named IQRD. We have compared these two algorithm

under the same circumstances and we have observed that both of them work well, despite

our algorithm rejecting less requests considering the same workload.

Several comments should be included as conclusions. In our aim to obtain low overhead,

we do not consider a periodic invocation time in our algorithm as IQRD does. Indeed, IQRD

algorithm requires always fresh information from the servers, and subdivides the intervals

100 times to get information from them. This will increase the overhead of the solution.

But, there is also another detail in the IQRD proposal that will increase the overhead of the

system, and it is the fact that the algorithm needs to control the number of requests that

can still be attended by the server: when they decrease, and more importantly, increase.

When the service of a request is finished, the IQRD proposal requires an extra feedback

from the Web servers as they have to indicate to the distributor module that the counter

should be increased by one. Hence, we prove with these results that our algorithm obtains

as good performance as that obtained by an algorithm that introduces more overhead than



Chapter 5: Admission Control and Load Balancing Algorithm 115

0
2

0
0

0
0

5
0

0
0

0

D
o

w
n

lo
a

d
e

d
 p

a
g

e
s
 C

1
 (

d
y
n

)

P4 IQRD

30 40 50 60 70 80 90 100

0
2

0
0

0
0

5
0

0
0

0

Number of clients

D
o

w
n

lo
a

d
e

d
 p

a
g

e
s
 C

2
 (

d
y
n

)

P4 IQRD

Figure 5.36: Number of downloaded dynamic requests
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Figure 5.38: Number of rejected dynamic requests

ours in the system.

5.8 Summary

We introduce a low overhead admission control and load balancing algorithm that bases

its decisions on the values obtained by a throughput predictor. The invocation times of the

algorithm are adaptively scheduled depending on the burstiness detected in the system in

order to reduce the overhead of the algorithm. Five throughput predictors are introduced

in this work and their behaviour in the admission control and load balancing algorithm is

compared under a simulation scenario in OPNET Modeler.

The resource allocation algorithm adaptively distributes the utilisation of the servers

among the different classes of requests. The results show that the algorithm guarantees

the service specified in the SLA with all the throughput predictors. However, the results

also show differences in the response times of the requests that ask for dynamic content as

the bottleneck of the system starts to be overloaded. These differences plus the number of

downloaded dynamic requests lead us to the conclusion that the predictor that better suits
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to our algorithm is based on LMS. An extra goal is acquired by this algorithm: that is

the limitation in the response time of the requests when it is congested. This means that

service is guaranteed despite the arrival rate that is reaching the Web system.

We have also compared two classical load balancing policies to be included in the algo-

rithm: RR and LC detecting that if not many servers are active for a particular type of

service, then the RR policy balances the incoming requests in the cluster better because

it sends the same number of requests to all the active servers. The LC policy in this case

sends all the requests to the server with the least number connections until the number of

connections with the rest of active servers are equal, which may quickly result in an overload

situation.

In this chapter, we have also provided results that show the benefits of an adaptive time

slot scheduling compared to a fixed time slot one.

The comparison of the results obtained by our algorithm and IQRD shows us that our

algorithm works reasonably well and its performance is very similar to the performance of

IQRD while needing less overhead.
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Chapter 6

Conclusions and Open problems

In this last chapter we sum up the conclusions we have obtained in this work and its future

trends.

6.1 Conclusions

The main goal of this dissertation is the design a low-overhead adaptive admission control

and content-aware load balancer algorithm for a Web system.

We have organised this dissertation in two main parts that are the background and the

contributions. Hence, we also structure the conclusions in the same way.

Background We have included two chapters in the background which introduce the con-

cepts regarding Web load balancing and, burstiness and admission control in a Web system:

• Chapter 2 introduces a thorough survey of the Web load balancing solutions separating

the network architecture and distribution policy. A classification is introduced by

distinguishing the OSI protocol stack layer the load balancing mechanism is based

on, concluding that content-aware mechanisms are more useful than content-blind

mechanisms because of traffic differentiation. However, some content-aware solutions

include content-blind mechanisms and leave the distribution task to be done by the

Web servers in order to avoid the drawbacks that a layer-7 front end introduce in the

Web system.

The recap of the distribution policies shows the interest by the research community

for locality-aware solutions during the first years of the decade 2000 as they try to im-
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prove the cache performance. Hence, these proposals normally only take into account

requests that ask for static Web content. More recent proposals consider dynamic

Web content, but it is a field that continues being researched as the service times of

the scripts that generate the dynamic content are not easily predictable. We situate

our work in this context.

• Chapter 3 reviews recent proposals that avoid a congestion situation in the Web

system such as burstiness detection and admission control solutions. Burstiness de-

tection is introduced in several areas of research, although we are mainly interested

in areas related to network traffic. Some of the proposals described in this survey are

considered in Chapter 4 in order to compare them with our burstiness factor.

Admission control proposals are also studied and classified. We observe that they

consider either a periodical or non-periodical invocation frequency. The non-periodical

invocation is normally activated by the arrival of a new request or session to the

system. We consider that the arrival rate has to be able to adaptively alter the

invocation frequency in order to avoid a possible congestion situation in the Web

system.

Contributions This part also includes two chapters:

• We have defined and studied six different burstiness factors in Chapter 4. Based on

the burstiness factor, an adaptive time slot scheduling is described. It is used to

set the monitoring frequency of the metrics used in the admission control and load

balancing algorithm, and also to adaptively set the slot duration based on the bursty

arrivals detected at the system.

Among the burstiness factors studied in Chapter 4 we have found that, on one hand,

BF1, BF5 and BF6 are very conservative and do not vary their values significantly

with the changes in the arrival rate. On the other hand, the factors that include a pe-

nalisation when detecting successive bursty slots (BF3 and BF4) reach the maximum

value easily, hence, further increases in the arrival rate are not detected. We select

BF2 as the burstiness factor to be included in our algorithm because permits it to be

aware of an increase in the arrival rate independently of the actual workload in the

system.
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• Chapter 5 describes the admission control and load balancing algorithm we have de-

veloped, which is based on the adaptive time slot scheduling defined in Chapter 4.

The adaptive slotted time described in Chapter 4 is also used to invoke the algorithm.

Therefore, our algorithm takes into account the burstiness factors for its own invoca-

tion times. The admission control mechanism adaptively distributes the utilisation of

the servers among the different classes of request based on the throughput prediction

and considering QoS.

The algorithm distributes the servers’ utilisation among the classes of service guar-

anteeing the SLA requirements. We have compared five throughput predictors in

Chapter 5 and conclude that the predictor that better suits our algorithm is based

on LMS as it is the one with the least response time and the most stable behaviour.

An extra goal is acquired by our algorithm in the limitation in the response time of

the requests when it is congested. This means that service is guaranteed despite the

arrival rate that is reaching the Web system.

Our load balancing strategy is based on a classical policy. Hence, we have compared

two policies: RR and LC detecting that if not many servers are active for a particular

type of service, then the RR policy balances the incoming requests in the cluster better

than LC.

Some results are also obtained of a fixed time and our adaptive time slot scheduling

observing that the second outperforms the first in terms of CPU utilisation, number

of downloaded pages and response time. We have observed that the fixed time slot

scheduling does not reserve the utilisation as accurately as the adaptive one does.

We have compared our algorithm to another QoS-aware admission control and content-

aware load balancing proposal, that is IQRD, in order to know their contrasted per-

formance and found that our algorithm manages to get the same performance than

IQRD with less overhead. Indeed, it rejects less requests while getting more or less

the same response time. Hence, we can conclude that our algorithm guarantees the

SLA contracted and comparatively means less overhead for the Web system.

6.2 Future Work

There are some open problems in our work that can be further researched.
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• On the design of a burstiness factor that includes a penalisation in Section 4.3, the

decision of the penalty amount to be included in it has to be more studied. Especially

in the case of detecting several consecutive bursty slots. The factor has to be suitable

for all possible arrival rates a Web system may expect and has to follow arrival rate

variations accurately in the range of values defined for it.

• We have developed the burstiness factor to be aware of the arrival rate considering

no differentiation among the different services the incoming requests ask for. Hence,

a further study would be to include traffic differentiation in the burstiness factor. It

may improve the performance of the Web system as all types of service may not be

demanded with the same intensity in the Web system.

• Considering the admission control algorithm described in Section 5.5, the resource’s

reservation in the Web servers is done regardless of the amount of service demanded.

Hence, it may happen that, when a low priority service class reaches its maximum

utilisation in all the servers, the requests asking for this service are rejected. This

can lead to an under-utilised reserved utilisation if no more priority requests arrive

to the system during that slot. This problem may be solved by defining a probability

index based on a record that stores the percentage index of arrival rate asking for

each class of service during some previous slots, that would estimate the chance of not

receiving more priority requests, and allow an increase in the utilisation margin of the

lower priority requests. However, this point would need further study. We leave this

possible modification of the resource allocation strategy as a future work because our

aim in this work was to check if the admission control algorithm effectively reserves

the utilisation that would guarantee the SLA requirements.

• We have tested our algorithm in a simulation scenario based on TCP hand-off, which

has the drawback of not being scalable [14]. The reason for choosing TCP hand-off

for our simulation model is described in Appendix A. But, in case our algorithm is

implemented in a real prototype, an alternative more scalable load balancing archi-

tecture has to be chosen. Hence, the modifications that would need to be done in our

algorithm in this case need also to be studied.

• Our algorithm is developed to be included in a locally distributed Web system, but

could also form part of a wider geographically distributed load balancing architecture.
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This possibility has to be further researched.
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Appendix A

Implementation in OPNET

Modeler

In this appendix we briefly describe how we have implemented our model in the simulation

tool OPNET Modeler and the modifications we have done to some of its standard models

in order to adapt them to our test bed configuration. Some parts of this appendix appear

in [64] and in [65].

A.1 Introduction

The tool OPNET Modeler 11.0 [3] has been used to implement the simulation model.

The architecture of the complete OPNET simulation model is represented in Figure A.1.

The Web cluster consists of up to 20 servers organised in a 2-tier architecture that are

connected to a Web switch (1 in the figure). Static HTTP requests are attended by the

Web servers (2), while dynamic requests are addressed to the App/DB servers (3) from the

Web servers in order to query the information requested.

The clients (4) are organised in a switched Local Area Network (LAN), that is configured

with the number of clients needed for each simulation.

The inclusion of the OPNET standard Application (5) and Profile (6) modules permits

us to configure the different profiles executed by the clients and the applications included

in these profiles. The module Tasks (7) allows us to configure the custom applications

needed to simulate the requests that access to the App/DB servers to retrieve the dynamic

information. In order to specify the parameters of the jobs executed in the servers, we have
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Figure A.1: Architecture of the simulation model

used the Server definition module (8).

We have modified the code of some of the standard OPNET models in order to get a

precise and realistic scenario. We chose to implement a layer-7 Web switch that distributes

the incoming HTTP requests based on the TCP hand-off mechanism despite the drawbacks

we commented on in Chapter 2 for several reasons:

1. Our algorithm is independent of the mechanism used in the simulations. Other un-

derlying content-aware load balancing architectures can be used to implement the

algorithm. This change would not affect to the general behaviour of our algorithm,

despite requiring some additional modifications in the implementation.

2. It is the easiest way to implement a content-aware load balancing architecture in

OPNET Modeler because of the structure of its models.

3. The most important: after the implementation, we checked if the utilisation of the

Web switch may affect the results of the simulations due to scalability problems, and
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Figure A.2: 95th percentile of the load balancer CPU utilisation

we found that the Web switch utilisation is stable when increasing the number of

servers as shown in Figure A.2.

Hence, we decided to use the TCP hand-off mechanism for all the simulations.

Among all the modifications done to the OPNET standard models. we have chosen to

describe here the most significative ones, which are the design of the process that models

the Web switch and the implementation of the TCP hand-off.

A.2 Web switch Implementation

The Web switch design is based on a Layer-3 load balancer model that is already im-

plemented in OPNET models: and that is named gna load balancer. The load balancer

process has been modified to de-encapsulate the incoming data frames in order to access to

the application layer information. Once the load balancer knows the application a packet

belongs to, it sends the packet to the corresponding Web server following the decisions

taken during the last execution of the algorithm. Hence, the load balancing is done at the

application level. The process that balances the load in the Web switch is represented in
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Figure A.3: Web switch process

Figure A.3.

Let us describe more deeply how this process works. We have defined a timer that

controls the durations of the slots. The duration of the next slot is decided during the

actual one, hence, the timer is set each time the algorithm is invoked.

The Web switch process consists of four states:

• init: In this state, the variables and functions used in the entire process are initialised.

• idle: The machine enters the idle state and waits for an incoming event. The event

can be either an incoming packet or when the clock timer that executes the algorithm

expires.

• process pkt: This state is entered when a packet is received in the load balancer.

Therefore, its role is to analyse the packet in order to know to which application does

it belong to and, in the case that it is a valid application for load balancing, then the

process calls a function that will select the appropriate Web server to attend this new

request.

• computation: The code of the implementation of our algorithm is included in this

state. It is executed each time the clock timer expires.

This process interacts with the TCP and application layer models. Some of them have
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also been modified. We describe the implementation of the TCP hand-off in the next

section.

A.3 TCP hand-off Implementation

We have implemented the TCP hand-off mechanism in the TCP protocol in OPNET

Modeler following the directions in [77, 107].

To do this we have modified the finite state machine of the TCP protocol by adding two

additional states that are marked by a square in Figure A.4, that are the HAND OFF and the

HO FORW state.

Once the connection among the client and the load balancer is established, the connection

parameters have to be transmitted from the load balancer to the Web server that is going

to attend this client Web request. The hand-off mechanism begins by sending a SYN to the

selected server that includes the client IP address, the Initial Send Sequence (ISS) number

of the connection and the Initial Receive Sequence (IRS) number. The packet also includes

the original HTTP request from the client.

After this step the load balancer’s TCP process waits in the HAND OFF state for a response

that has to come from the server. This response should include the SYN flag activated and

then, the load balancer responds with an ACK to complete the three-way handshake. Once

the second connection is established among the load balancer and the Web server, the TCP

process of the first one is in the HO FORW state while the Web server’s TCP process is in the

ESTAB state.

The server node changes the value of the remote IP in the connection parameters in

order to use the client’s IP address rather than the load balancer’s as the response packets

are going to be sent directly to the client. Once a connection is handed-off to a Web server,

incoming packets on that connection are forwarded to the Web server that is going to attend

them and the corresponding responses are sent directly to the client without going through

the load balancer.
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Figure A.4: Architecture of the simulation model



Acronyms

ALBM Adaptive Load Balancing Mechanism

AON Application Oriented Networking

App/DB Application/Database

ARP Address Resolution Protocol

AS Autonomous System

BCB Balanced Content-Based

CAD Content-Aware Dispatching

CAHRD Content-Aware Hybrid Request Distribution

CAP Client-Aware Policy

CAWLL Content-Aware Weighted Least Load

CPU Central Processing Unit

CWARD/CR Content-based Workload-Aware Request Distribution with Core Replication

CWARD/FR Content-based Workload-Aware Request Distribution with Frequency-based

Replication

CDNs Content Distribution Networks

DNS Domain Name System

DoS Denial-of-Service
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DR Direct Routing

DSR Direct Server Return

E-FSPF Extended Fewest Server Processes First

FARD Fuzzy Adaptive Request Distribution

HACC Harvard Array of Clustered Computers

HTTP HyperText Transfer Protocol

IP Internet Protocol

IPTun IP Tunneling

ISS Initial Send Sequence

IRS Initial Receive Sequence

IQRD Intelligent Queue-based Request Dispatcher

JSQ Join Shortest Queue

KNITS Knowledgeable Node Initiated TCP Splicing

LAN Local Area Network

LARD Locality-Aware Request Distribution

LC Least Connection

LL Least Loaded

LMS Least Mean Square

LVS Linux Virtual Server

L7SW Linux Layer7 switching

MAA Message-Aware Adaptive

MAC Media Access Control
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MSS Maximum Segment Size

NAT Network Address Translation

NLB Network Load Balancing

NLMS Normalised Least Mean Square

NPSSM Non Probabilistic Server Selection Method

OS Operative System

OSI Open Systems Interconnection

TAP2 Time and Access Probability-based Prefetch

TCP Transmission Control Protocol

RAM Random Access Memory

RR Round Robin

RTT Round-Trip Time

SAA Session Affinity-Aware

SLA Service Level Agreement

SLB Server Load Balancing

SHLPN Stochastic High-Level Petri Net

RXP Resonate Exchange Protocol

QoS Quality of Service

UDP User Datagram Protocol

VIP Virtual IP

VLAN Virtual LAN

VOIP Voice Over Internet Protocol



136 Appendix A: Implementation in OPNET Modeler

WAN Wide Area Network

WARD Workload-Aware Request Distribution

WLC Weighted Least-Connection

WRR Weighted Round Robin

xLARD/R Extended Locality-Aware Request Distribution with Replication Policy
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