
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2014

Effective Resource and Workload Management in Data Centers Effective Resource and Workload Management in Data Centers

Lei Lu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Lei, "Effective Resource and Workload Management in Data Centers" (2014). Dissertations, Theses,
and Masters Projects. Paper 1539623637.
https://dx.doi.org/doi:10.21220/s2-xfd5-y603

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.wm.edu%2Fetd%2F1539623637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-xfd5-y603
mailto:scholarworks@wm.edu

Effective Resource and Workload Management in Data Centers

Lei Lu

Tianjin, China

Bachelor of Science, Nanjing University, 2005
Master of Engineering, Nanjing University, 2008

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
January, 2014

UMI Number: 3580411

All rights reserved

INFO RM ATIO N TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&iori Publishing

UMI 3580411

Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 -1346

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(A a Iâ
Lei Lu

Approved by the Committee, October 2013

Committee Bfiair

Professor Evgenia Smirni, Computer Science
The College of William and Mary

Professor Weizhen Mao, Computer Science
The College of William and Mary

^ / / i . lA *
Associate Professor Peter Kemper, Computer Science

The College of William and Mary

Associate Professor Haining Wang, Computer Science
The College of William and Mary

Dr. HcnZhang, NEC Labs America J

ABSTRACT

The increasing demand for storage, computation, and business continuity has
driven the growth of data centers. Managing data centers efficiently is a difficult
task because of the wide variety of datacenter applications, their ever-changing
intensities, and the fact that application performance targets may differ widely.
Server virtualization has been a game-changing technology for IT, providing the
possibility to support multiple virtual machines (VMs) simultaneously. This
dissertation focuses on how virtualization technologies can be utilized to develop
new tools for maintaining high resource utilization, for achieving high application
performance, and for reducing the cost of data center management.

For multi-tiered applications, bursty workload traffic can significantly deteriorate
performance. This dissertation proposes an admission control algorithm AWAIT,
for handling overloading conditions in multi-tier web services. AWAIT places on
hold requests of accepted sessions and refuses to admit new sessions when the
system is in a sudden workload surge. To meet the service-level objective,
AWAIT serves the requests in the blocking queue with high priority. The size of
the queue is dynamically determined according to the workload burstiness.

Many admission control policies are triggered by instantaneous measurements
of system resource usage, e.g., CPU utilization. This dissertation first
demonstrates that directly measuring virtual machine resource utilizations with
standard tools cannot always lead to accurate estimates. A directed factor graph
(DFG) model is defined to model the dependencies among multiple types of
resources across physical and virtual layers.

Virtualized data centers always enable sharing of resources among hosted
applications for achieving high resource utilization. However, it is difficult to
satisfy application SLOs on a shared infrastructure, as application workloads
patterns change over time. AppRM, an automated management system not only
allocates right amount of resources to applications for their performance target
but also adjusts to dynamic workloads using an adaptive model.

Server consolidation is one of the key applications of server virtualization. This
dissertation proposes a VM consolidation mechanism, first by extending the fair
load balancing scheme for multi-dimensional vector scheduling, and then by
using a queueing network model to capture the service contentions for a
particular virtual machine placement.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Overview of Data Centers... 1

1.2 Dissertation Contributions... 3

1.2.1 Summary of Contributions... 3

1.2.2 Management of Application W orkloads.. 4

1.2.3 Virtualized Server Measurement.. 5

1.2.4 Autonomic Resource Control.. 5

1.2.5 Virtual Machine Consolidation Strategy 6

1.3 Organization... 7

2 Background and Related Work 8

2.1 Application Architecture O verv iew .. 8

2.1.1 The Client/Server and n-Tier M o d e ls ... 8

2.1.2 Admission Control in Web Servers .. 9

2.1.3 Related Work on Admission Control.. 10

2.2 Virtualization of Data Centers... 13

2.2.1 Background.. 13

2.2.2 Virtualization Conditions.. 14

i

2.3 Server Consolidation .. 17

2.3.1 Virtual Machine Migration.. 17

2.3.2 Performance Isolation Among Virtual M ach in es 18

2.3.3 Related Work on Consolidation.. 19

2.3.3.1 Measurement and Characterization.................................. 20

2.3.3.2 Consolidation Strategies.. 22

2.4 Feedback Control-based Resource Allocation....................................... 24

3 Admission Control for Busy Multi-tier Services 27

3.1 Motivation: Capacity Planning and Admission C ontro l....................... 30

3.1.1 Basic Capacity P lanning.. 30

3.1.2 Introducing Burstiness... 33

3.1.3 Burstiness in Flows and Admission Control.................................. 35

3.2 AWAIT Algorithm... 37

3.2.1 Static AWAIT .. 38

3.2.2 Performance Evaluation: Conservative or Aggressive? 43

3.2.3 Performance Effect of the Blocking Queue S i z e 46

3.2.4 Handle the Effects of Bottleneck Switch.. 47

3.3 Autonomic A W A IT .. 49

3.4 Comparisons with an Approach Based on Control T h eo ry 56

3.5 Sum m ary.. 59

4 Calibrating Resource Utilization in VMs 60

4.1 Problem Formulation .. 62

4.1.1 Xen Virtualization.. 62

4.1.2 Information Mismatching Paradox... 63

4.1.3 Problem Formulation.. 64

4.1.3.1 Virtual Resource Monitored Inform ation....................... 65

ii

4.1.3.2 Physical Resource Monitored Information...................... 66

4.2 Background Information.. 66

4.2.1 Source Separation ... 66

4.2.2 Factor G raphs... 67

4.3 Directed Factor G rap h s .. 68

4.3.1 Graph Model.. 68

4.3.2 DFG in VM Information Calibration .. 69

4.4 DFG Based M odel.. 70

4.4.1 Methodology.. 70

4.4.2 Regression A n a lys is .. 71

4.4.2.1 Source Node: Virtual CPU Load 71

4.4.2.2 Source Node: Virtual Memory Load 71

4.4.2.3 Source Node: Virtual Network Load 72

4.4.2.4 Source Node: Virtual Disk IO L o a d 73

4.4.2.5 System O v e rh e a d ... 75

4.5 Information Calibration .. 75

4.5.1 Run-time Calibration M echanism ... 75

4.5.2 Robust Remodeling: Guided Regression..................................... 77

4.6 Evaluation .. 80

4.6.1 Experimental Methodology... 80

4.6.2 Results... 81

4.6.2.1 Scenario 1: R U B iS ... 82

4.6.2.2 Scenario 2: Co-hosting Network- and IO-intensive Apps 83

4.6.2.3 Scenario 3: Co-hosting IO-intensive A p p s 85

4.7 Sum m ary... 85

5 Auto-Scaling of VMs in Resource Pools 87

5.1 Architecture... 90

iii

5.2 Design .. 92

5.2.1 S e n s o rs ... 92

5.2.2 Model B u ilder.. 93

5.2.3 Application Controller.. 94

5.2.4 Resource Controller... 96

5.2.5 Resource Pool (RP) M an ag er... 97

5.3 Testbed S e tu p ... 101

5.4 Performance Evaluation.. 102

5.4.1 Achieving Performance Targets for Multiple M etrics..................... 103

5.4.2 Detecting and Mitigating Dynamically-Changing Workload De

mands ..106

5.4.3 Applying Control on Multiple Applications..108

5.4.4 Enforcing Performance Targets under Competing Workloads . . 110

5.4.4.1 Non-expandable and Unmodifiable Resource Pool . . . 110

5.4.4.2 Non-expandable but Modifiable Resource P o o l 111

5.4.4.3 Expandable Resource P o o l... 115

5.5 Sum m ary.. 116

6 Predictive VM Consolidation 117

6.1 Background: Fair Load Balancing on a Single Resource....................... 119

6.1.1 Max-Min Fairness... 120

6.1.2 Min-Max Load Balancing... 120

6.1.3 Fair Load Balancing.. 120

6.2 Fair Load Balancing on Multiple Resources: Challenges....................... 121

6.3 Fair VM Allocation Algorithm ... 123

6.3.1 Vector Bin P ack ing .. 123

6.3.2 Discussion... 126

6.3.3 Vector Scheduling with Predictive M o d e l..127

iv

6.4 A Predictive Queueing M odel.. 129

6.4.1 RUBiS Multi-tiered Benchmark.. 129

6.4.2 Application Profiling: Service Demand Estimation........................ 130

6.4.2.1 Assumptions... 131

6.4.2.2 Per-tier Service T im e... 131

6.4.2.3 Average Network Demand..132

6.4.2.4 Average Disk Dem and.. 133

6.4.2.5 Average CPU Demand.. 134

6.5 Evaluation ...134

6.5.1 RUBiS with Different Number of Clients...136

6.5.2 Browsing and Bidding Mix Consolidation..136

6.5.3 Browsing Mix Consolidation... 140

6.6 Sum m ary..143

7 Summary of Contributions and Future Work 144

7.1 Future Work ... 146

7.1.1 Autonomic Resource Allocation... 146

7.1.2 VM Auto-scaling.. 148

7.1.3 Predictive Server Consolidation in Multi-cores...............................148

7.1.4 Server Consolidation with Performance Target...............................149

A Markovian Arrival Processes 151

References 154

VITA 172

v

ACKNOWLEDGMENTS

This dissertation would not have been accomplished without the guidance of my
advisor and the support of many people. First and foremost, I want to express my
deep and sincere gratitude to my advisor Professor Evgenia Smirni. Her work ethic
and commitment to the high quality research have set a model for me to follow. In
the long journey to my doctoral degree, she taught me the key knowledge and skills
to be competent for a researcher. I am grateful for the freedom and trust she gave
me to explore my own research interests, the guidance and encouragement when
ever I needed it. It has been my great honor to be one of her students.

I would like to thank Hui Zhang, my mentor at NEC Labs. He gave me the opportu
nity to do research in an industry environment and introduced me to performance
research in virtualization. He spent countless hours giving me invaluable advice
and collaborating on the research projects. I am also grateful to Xiaoyun Zhu, my
mentor at VMware. She guided me patiently through my internship and explained
the details of theory knowledge to me. She also gave me valuable advice and firm
support in my career development.

I have collaborated with researchers outside of W&M. I thank Lucy Cherkasova,
Vittoria De Nitto Person^, and Ningfang Mi for their invaluable feedback during our
close collaboration. Guofei Jiang, Kenji Yoshihira, and Haifeng Chen of NEC Labs
collaborated on my project in NEC Labs. Rean Griffith, Pradeep Padala, Aashish
Parikh, and Parth Shah in VMware helped in completing the AppRM project.

I would also like to thank my committee members, Professors Weizhen Mao, Pe
ter Kemper, and Haining Wang for their valuable feedback and suggestions that
beneficially helped me improve this dissertation. I cordially thank Professors Gang
Zhou, Andreas Stathopoulos, Phil Kearns, and Qun Li for their superb teaching.
In addition, I would like to deeply thank Vanessa Godwin and Jacqlyn Johnson for
their direction on many administrative works over the years.

My peers in the Computer Science department played an important role during
my Ph.D. time. Andrew Caniff answered my questions and assisted with my first
project. Feng Yan provided information and discussions whenever I needed. Thanks
also go to Zhen Ren, Xin Qi, Bo Dong, Fengyuan Xu, Zhenyu Wu, Chuan Yue, Ruth
Lamprecht, Jidong Xiao, Zhijia Zhao, and too many others to list who helped me
and made my time in Williamsburg more enjoyable.

I would never come this far without the unconditional love from my family. My par
ents have always been supporting, understanding, and encouraging me along the
way. Finally, a very special thanks goes to my wife, Haiyan Zhu. She walked to
gether with me through my happy times and hard times over years. I look forward
to continuing our journey together.

vi

To my wife and my parents,
for their dedicated love and continued support...

vii

LIST OF TABLES

3.1 Configuration... 34

4.1 Network regression model.. 73

4.2 Blktap based device regression m o d e l.. 74

4.3 Loopback based device regression m o d e l.. 74

4.4 Example of DFG error that triggers remodeling m echanism 84

5.1 Notation.. 94

5.2 Configuration of h o s ts ...102

5.3 Definition of three changing workloads..106

6.1 Profiling of browsing and bidding workload... 135

6.2 Configuration ta b le ...137

6.3 Service loads for three workloads...138

6.4 Min-max load balancing for the bidding and browsing mix consolidation 138

6.5 Predicted performance for min-max configs.. 139

6.6 Min-max load balancing for browsing mixes consolidation..................141

6.7 Predicted performance for min-max configs.. 141

viii

LIST OF FIGURES

2.1 The Client/Server and n-Tier M odel.. 9

3.1 The basic structure of TPC-W m odel... 31

3.2 Capacity Planning study for SBAC under exponential (i.e., not bursty)

new session arrivals. Performance measures are presented as a

function of the maximum number of active requests in the system. . 33

3.3 The burstiness profiles of the three arrival MAPs................................... 34

3.4 Three different burstiness profiles. The capacity planning results and

SLO targets are now violated. It appears that a queue size of 256

(i.e., maximum active requests for the baseAC configuration) is not

sufficient to meet SLO requirements... 36

3.5 The model of AWAIT algorithm .. 37

3.6 AWAIT with fixed size of the blocking queue. The graphs illustrate

performance values for the aggressive and conservative versions

(see white and shaded bars, respectively) for various fixed sizes of

the blocking queue B. In all experiments, the limit of accepted re

quests A is set to 256, based on capacity planning.............................. 44

3.7 CCDF of system response time for different strategies for aggressive

AWAIT that operates with a blocking queue size of 16 slots and a

blocking queue size has 128 slots... 46

3.8 SBAC performance under the three different burstiness profiles with

highly overloaded back-end server.. 48

ix

3.9 Aggressive AWAIT: strategy performance for various fixed sizes of

the blocking queue B with highly overloaded back-end server. In

the first row, the horizontal lines inside the bars reflect the average

request processing time.. 50

3.10 Autonomic AWAIT: illustration of how the capacity of the blocking

queue B changes as a function of the workload.................................... 53

3.11 (a) Arrival process with different burstiness levels; (b) Blocking queue

capacity changes as a function of the workload.................................... 54

3.12 Moving 95th percentile of response time and moving average of aborted

ratio, drop ratio and completed session ratio under the request arrival

pattern shown in Figure 3.11 (a).. 56

3.13 Comparison of performance of autonomic AWAIT and the control

theory-based algorithm developed in [29]... 58

4.1 Measurement information mismatching: a disk I/O utilization example 63

4.2 Measurement information mismatching: a CPU utilization example . 64

4.3 An example factor graph.. 67

4.4 A directed factor graph example ... 68

4.5 The directed factor graph in VM monitoring information calibration. . 69

4.6 Compute intensive workload has no impact on privileged domain per

formance .. 72

4.7 The run-time calibration m echanism ... 75

4.8 Relative error of in-VM monitoring method and DFG based model in

RUBiS a p p ... 83

4.9 Relative error for in-VM monitoring method and run time calibration

m echanism ... 85

4.10 Relative error for in-VM monitoring and DFG model in mixed signal

decomposing.. 86

x

5.1 An example VDC containing two resource pools hosting two multi

tier vApps and two single-tier VMs.. 88

5.2 AppRM at work across VMs in a single vApp... 91

5.3 AppRM at work across vApps in a resource pool................................... 92

5.4 Experimental setup with a Mongodb cluster and Rain benchmark . . 103

5.5 Mean response time target (300 m s) ... 104

5.6 Resource utilization for under-provisioning...104

5.7 Resource utilization for over-provisioning ...105

5.8 95th percentile response time target (2000 m s)105

5.9 Throughput target (50,000 reqs/s) .. 105

5.10 Measured performance under dynamic workloads with target 500 ms 107

5.11 Measured performance under dynamic workloads with target 600 ms 108

5.12 Resource utilization for dynamic w orkloads...108

5.13 Measured performance uhder dynamic workloads with target 800 ms 109

5.14 Resource utilization for dynamic w orkloads...109

5.15 Application 1 mean target 1000 ms and Application 2 target 600 ms 109

5.16 Testbed setup for resource pool experim ents..110

5.17 Measured application relative performance in non-expandable and

unmodifiable RP (targets: 600ms) .. 111

5.18 Measured application relative performance in non-expandable and

modifiable RP (targets 6 0 0 m s).. 112

5.19 Application and RP level reservations .. 112

5.20 Measured application relative performance in non-expandable and

modifiable RP (targets 6 0 0 m s).. 113

5.21 RP level reservation.. 113

5.22 Measured application relative performance in non-expandable and

modifiable RP (targets 6 0 0 m s).. 114

5.23 RP level reservation setting .. 114

5.24 Measured application relative performance in expandable RP (tar

gets 600m s)..115

5.25 Application and RP level reservations .. 115

6.1 A simple load balancing problem on two resources (CPU, memory). 122

6.2 Closed queueing network model for multi-tier server and multi-class

workload..130

6.3 An example of tcprstat query result...132

6.4 PREMATCH architecture graph... 135

6.5 Measured vs. predicted average response time and throughput. . . 1 3 6

6.6 Measured vs. predicted average response time for browsing and

bidding mix...139

6.7 PREMATCH, random, and worst consolidation comparison....................140

6.8 Measured vs. predicted average response time for the browsing mixes. 142

6.9 PREMATCH, random, and worst consolidation comparison....................142

xii

1 Introduction

1.1 Overview of Data Centers

Data centers are rapidly becoming the standard IT solution to host internet and

businesses applications due to their great potential in providing highly reliable ser

vice and reducing operation cost. According to a definition from Wikipedia [25],

Data Center is

"a facility used to house computer systems and associated compo

nents, such as telecommunications and storage systems. It generally

includes redundant or backup power supplies, redundant data commu

nications connections, environmental controls (e.g., air conditioning, fire

suppression) and security devices. "

It is reported that more than one million servers are scattered in three dozen

data centers around the world [6]. Effective management of resources in such

environment results in many challenging and interesting research problems.

Virtualization brings dramatic changes in data centers. It enables partitioning

a single physical server into multiple virtual machines, each with its own indepen

dent application and operating system. Instead of provisioning a single, physical

server with enough spare (often idle) capacity to support the peak load of a single

application, virtualization provides a way to isolate and partition server resources

to meet the variable demands of application workloads. The trend to use server

1

virtualization technologies to consolidate multiple data center servers is growing

rapidly. It is reported that 48% percent of x86 server OS instances are operated as

virtual servers by 2012 and this number is expected to grow by 74% over the next

two years [19].

Server virtualization enables the rapid and fine-grained resource management

in server systems. Enterprise virtualization products allow dynamically adjusting

CPU and memory resources while the virtual machine (VM) is running. How

ever, as data centers continue to deploy virtualized solutions, new challenges have

also emerged: accurately monitoring virtualized applications demand; correct re

source allocation for meeting performance goals; determining optimal VM place

ments strategies to reduce the workload interference, are some examples of press

ing challenges.

This dissertation aims at developing a systematic methodology that allows for

improved solutions when dealing with challenges related to virtualization overhead

measurement, autonomic resource management, and optimized VM placement.

This dissertation provides answers to the following questions:

• How can we effectively design an admission control policy for prevalent ap

plications used by data center tenants?

• How can we estimate accurate resource utilizations of an application running

in a virtualized environment when we need to consider virtualization over

heads?

• How can we automatically and efficiently set the resource controls for VMs

and resource pools to meet the applications SLOs? How can the system

ensure performance to individual application in spite of dynamically-changing

workloads?

• What is the best way to collocate applications, i.e., what are the workload

2

characteristics of competing applications that are best to be matched in order

to obtain an optimal workload "mix" such that performance interference is

minimized?

The above questions cover many of resource and workload management prob

lems from optimizing workloads placement to system monitoring and performance

enforcement. Under the requirement of rapid response and scalability for data cen

ters, the questions become more challenging. If these questions are solved, data

centers can be made more efficient, autonomic, and significantly cost effective in

management.

1.2 Dissertation Contributions

This dissertation mainly focuses on providing automated solutions to system mon

itoring and resource management challenges that data centers face today. Tech

niques that combine virtualization with intelligent control algorithms and system

modeling are developed in this dissertation.

1.2.1 Summary of Contributions

Overall, the key contributions of this dissertation are:

• AWAIT: a novel admission control policy that utilizes the concept of blocking

queue as an overload protection mechanism for bursty workloads [90],

• DFG: an automated technique that quantifies the cost of virtualization layer

overheads to accurately calibrate VM resource demands [91],

• AppRM: a performance management tool that automatically adjusts resource

control settings at the individual virtual machine level or at the resource pool

3

level such that the virtualized applications running in a virtual data center can

meet their respective performance goals [93], and

• PREMATCH: an automated placement engine that provides multi-dimensional

min-max load balancing and minimizes interference among co-located VMs [92],

1.2.2 Management of Application Workloads

Multi-tier web service is a popular application paradigm in data centers. Meet

ing SLOs in web services is a challenging and complex problem. While capacity

planning is widely used to size the system and meet SLOs under normal operat

ing conditions, it is exceedingly difficult to effectively meet performance and op

eration targets when web traffic conditions become bursty. The deficiency of well-

accepted techniques for admission control for single-tiered systems when applied in

the prevalent multi-tier setting under bursty conditions has been documented [98].

Such policies unavoidably result in rejecting requests of already accepted sessions,

which directly translate into significant business loss.

To remedy this problem, a novel autonomic admission control policy, called

AWAIT is proposed. It utilizes the concept of "blocking queue" as an overload

protection mechanism. When the system experiences sudden overload and starts

operating above capacity, requests from accepted sessions are not aborted but are

instead stored in a blocking queue that effectively operates like a "waiting room"

but with the unavoidable caveat of jeopardizing the targeted request latency due

to the extra waiting. After overload subsides, requests in the blocking queue are

served with high priority. AWAIT effectively adjusts the size of the blocking queue

in an autonomic way and strikes a good balance among two conflicting goals: re

stricting the size of the blocking queue to best meet target SLOs, while continuously

adapting its size in order to best react to workload burstiness.

4

1.2.3 Virtualized Server Measurement

Server virtualization brings benefits in autonomic resource management, but also

leads to new challenges. The challenge addressed in this dissertation is on profil

ing physical resource utilization information of VMs when consolidated on a single

server. Profiling is very difficult due to dynamic mapping relationships of resource

activities between the virtual layer and the physical layer. The problem is further ex

acerbated by cross-resource utilization causality relationships due to virtualization

overhead and resource utilization multiplexing across different VMs.

The profiling problem is formulated as a source separation problem as studied

in digital signal processing and uses a directed factor graph (DFG) to model the

multivariate dependence relationships among different resources (CPU, memory,

disk, network) across virtual and physical layers. A benchmark-based methodology

is designed to build a DFG based model for the VM information calibration problem.

A run-time calibration mechanism is proposed based on the DFG based model and

further enhanced with a robust remodeling method based on guided regression.

The proposed methodology outputs estimates of physical resource utilization on

individual VMs and physical server aggregate resource utilization.

1.2.4 Autonomic Resource Control

Virtual data centers (VDC) and Resource pools (RPs) are logical containers repre

senting an aggregate resource allocation for a collection of virtual machines being

managed by VMware's cloud management software. Resource pools offer pow

erful resource control primitives including reservations, limits, and shares that can

be set at a VM or at a resource pool level. These primitives allow administrators

to control the absolute and relative amount of resources a VM or a resource pool

consumes. However, as the virtual machine sprawl continues, it has become in

5

creasingly difficult to set these knobs properly such that virtualized applications

(referred to as vApps) can get enough resources to meet their respective SLOs.

In this dissertation, a tool called AppRM is presented. It is able to automatically

set the resource controls for VMs and resource pools to meet the application SLOs.

AppRM contains a hierarchy of vApp Managers and RP Managers, where a vApp

Manager translates the SLO for an application into the resource control settings

for the individual VMs running that application. An RP Manager ensures that all

applications within the resource pool can meet their SLOs by adjusting the knobs

at the resource pool level. Each vApp Manager consists of a model builder, an

application controller, and a resource controller.

1.2.5 Virtual Machine Consolidation Strategy

Effective consolidation of different applications on common resources is often akin

to a black art as unexpected application performance interference may result in

unpredictable system and workload delays. The problem of fair load balancing on

multiple servers within a virtualized data center setting is addressed in this disser

tation. Especially it is focused on multi-tiered applications with different resource

demands per tier and address the problem on how to best match each application

tier on each resource such that performance interference is minimized.

For this specific problem, a two-step approach is proposed. First, a load bal

ancing algorithm is developed that assigns different virtual machines across differ

ent servers by applying min-max load balancing on individual server loads, aiming

at balancing the load across all servers. This process is formulated as a multi

dimensional vector scheduling problem that uses a polynomial time approximation

scheme to minimize the maximum utilization across all server resources and re

sults in several load balancing solutions. As a second step, a queueing network

analytic model is applied on the proposed min-max solutions. The model predicts

6

the application performance under multiple consolidation choices and selects the

optimal balancing solution.

1.3 Organization

The rest of this document is organized as follows. Chapter 2 gives background

and related work on virtualized data centers to set the context of this work. Chap

ter 3 describes an admission control policy for handling overloading conditions in

multi-tier web services. This is followed in Chapter 4 with a discussion of how to

quantify the cost of virtualization layer overheads in order to calibrate measured

VM resource demand. Chapter 5 discusses a performance management tool that

automatically adjusts resource control settings at individual virtual machine levels

to allow virtualized applications meeting their respective performance goals. Chap

ter 6 proposes how to co-locate multi-tiered applications on a given set of physical

resources in a multi-tenant data center. Finally, in Chapter 7 gives a summary of

contribution and outlines future work.

7

2 Background and Related Work

This chapter presents the background material and detailed related work that puts

the contribution of this dissertation into perspective.

2.1 Application Architecture Overview

The main purpose of data centers is hosting and running the core business appli

cation environment of corporations. Most of today's enterprise applications use a

web-based front end. Since a successful design of resource and workload man

agement policy requires good understanding of the application characteristics, this

section provides a high-level overview of today's application architecture.

2.1.1 The Client/Server and n-Tier Models

Most applications today are developed according to the client/server or n-tier mod

els. In fact, for most enterprise software, the client/server model has evolved to the

n-tier model. The client/server model was originated from Xerox PARC during the

1970s [2]. In this architecture, as shown in Figure 2.1(a), the client application is

a part of the application program running at the client's computer to retrieve data

from the server and present it to the user. The server, most commonly a database

management system, stores application data, such as user information. The pre

sentation, business logic, and data provision are separated in the n-tier model to

8

minimize the impact of logic changes, see Figure 2.1(b). According to this model,

the application functions are divided into the following software tiers:

• The client tier - The client software (usually a web browser) renders the user

interface.

• The presentation tier -- This software provides the function of user interface

generation. It comprises static objects, such as images, and dynamically

generated objects to translate the results of the application computation to

something that the user can understand. On web-based applications, the

presentation tier is implemented by web servers.

• The application tier - This tier provides the business logic, coordinates the

application, and performs calculations. The application tier typically connects

the presentation tier and database tier. It receives remote procedure calls

from the presentation tier, stores and retrieves data from the database, and

returns the result of the computation to the presentation tier. The typical tech

nologies are ASP, Java servlets, and EJB [13].

• The database tier -- This software stores application data.

2.1.2 Admission Control in Web Servers

Admission control is mostly focused on web servers to prevent computing system

from being overloaded. The Apache server binary is called httpd in Linux and runs

(a) | | | ^ | •+

ClientClient

Databaae
S « v *r

■ SI s-•—H T T P -*- E g M -*-r p c -»- flw a a

Client Web Server App Server

Figure 2.1: The Client/Server and n-Tier Model

9

as daemon processes that listen to the specified socket port. When a request

appears, the server attaches a child process to it by either spawning a new one

or awakening one from process pools. The request is then passed to that child

process for processing. MaxClients sets the limit on the number of simultaneous

requests (i.e. worker pool) that will be served, thus imposing a limitation on the

processing capacity of the server. A large MaxClients value may allow Apache

to handle more client http requests. However, this high value can also result in

excessive resource usage that finally increases the response time dramatically.

2.1.3 Related Work on Admission Control

There has been a lot of research in the areas of overload control, service differenti

ation, request scheduling, and request distribution for web servers and web server

clusters. We provide an overview here.

The use of admission control for overload management has been proposed

and explored in several systems. Iyer et al. [78] employ a simple admission control

mechanism based on bounding the length of the web server listen queue. The au

thors try to minimize the work spent on a request which is eventually not serviced

due to overload. They analyze different queue management approaches and use

multiple thresholds, though they do not specify how these thresholds should be set

to meet a given performance target. Cherkasova and Phaal [54] introduce session-

based admission control, driven by a CPU utilization threshold, which performs an

admission decision based on user sessions rather than individual requests. During

periods of overload, it rejects new sessions while serving requests from already

accepted sessions. Carlstrom and Rom [42] proposed a performance model for

scheduling client requests and session-level admission control using a general

ized processor scheduling discipline. To improve the efficiency of session-based

admission-control mechanisms and reduce its overhead, Voigt et al. [121,122]

10

present several kernel-level mechanisms for overload protection and service dif

ferentiation. In general, these earlier works consider a single tier web server and

the proposed techniques do not directly provide a solution for a multi-tier system.

Many of the proposed techniques are based on static admission policies, such

as bounding the maximum request rate of requests to some constant value. For

example, PACERS [51] limits the number of admitted requests based on estimated

web server capacity. The authors use a very simple simulated service where re

quest processing time is a linear function of the requested web page size. Simi

lar ideas (and similar problems with fixed threshold settings) are pursued in [113].

Web2K presents a mechanism prioritizing requests into two classes: premium and

basic. Connection requests are forwarded into two different request queues. Ad

mission control is performed using two metrics: the accepted queue length and

measurement-based predictions of arrival and service rates from that class. Bar-

tolini et al., in their recent work [35,36], introduce a quite elaborate session admis

sion algorithm, called AACA, that self-configures a dynamic constraint on the rate of

incoming new sessions to satisfy Service Level Objectives (SLO) guarantees. The

rate limitation for the next iteration interval is based on a relatively straightforward

prediction of the session arrival rate from the previous interval measurements.

Many early papers combine differentiated services with admission control [30,

60,80,86,122]. Kanodia and Knightly [80] develop an admission control and service

differentiation mechanism which is based on a general framework of request and

service envelopes. Such envelopes statistically describe the server's request load

and service capacity as a function of the interval length. The proposed mechanism

integrates latency targets with admission control and improves the percentage of re

quests that meet their Quality of Service (QoS) delay requirements. The approach

is evaluated via a trace-driven simulation. A number of systems have explored a

controlled content adaptation [28,46,62] for scaling web site performance, i.e., de

11

grading the quality of static web content by reducing the resolution and the number

of images delivered to clients. This helps to reduce the use of server memory and

network bandwidth.

Several research papers have examined how control theory can be applied in

the context of web servers [29,89,103]. Lu et al. [89] present a control-theoretic

approach to provide guaranteed relative delays between different service classes.

The main challenge in such works is that good models of system behavior are dif

ficult to derive. Web applications are subject to widely varying traffic patterns and

resource demands. Linear models may be inaccurate in describing systems with

bursty loads and resource requirements. Lama et al. [84] combine neural fuzzy

control theory and machine learning techniques for performance assurance. The

parameters and structure of the neural fuzzy controller are dynamically "learned"

at run time. The structure learning phase dynamically determines the input node

space and fuzzy logic rule nodes depending on the measured error and change in

errors. The parameter learning phase adaptively modify the position and shape

of membership functions to mitigate dynamic workload variation. Urgaonkar et

al. [117] argue that dynamic resource provisioning of multi-tier applications is very

different from provisioning of single tier applications. The authors design an ana

lytical model of multi-tier applications that practically reflects the required capacity

at different tiers for a given workload. The authors employ a combination of predic

tive models and reactive techniques at different time scales for dynamic resource

provisioning.

Many earlier papers study the additional request and connection scheduling for

improving web server performance [52,57,61]. While shortest job first scheduling

for static content web sites can improve performance of a web server, it can not pre

vent it from overload. Elnikety et al. [61] present an elegant solution for admission

control and request scheduling for multi-tier e-commerce sites. Their method is

12

based on measuring the execution costs of online requests, distinguishing different

request types, and performing both overload protection and preferential schedul

ing using a straightforward control mechanism. They implement their admission

control using a proxy, called Gatekeeper, with standard software components on

the Linux operating system. There exists a few other works close to Gatekeeper in

spirit; SEDA [125] is a prime example. In SEDA, applications consist of a network

of event-driven stages connected by explicit queues. SEDA makes use of a set of

dynamic resource controllers by preventing resources from being over-committed

when demand exceeds service capacity. It keeps stages within their operating

regime despite large fluctuations in load and allows services to be well-conditioned

to load, i.e., preventing their performance degradation under severe overload. The

authors describe several control mechanisms for automatic tuning and load condi

tioning, including thread pool sizing, event batching, and adaptive load shedding.

2.2 Virtualization of Data Centers

2.2.1 Background

Virtualization is not a new technology, it was first developed during late 1960s and

early 1970s. In a virtualized system environment, a hypervisor or Virtual Machine

Manager (VMM) is a layer of software that manages the allocation of hardware re

sources, and also creates, and runs virtual machines. The real hardware resources

are owned by the VMM and it is its responsibility to make the resources available

to one or more guest operating system that alternately execute on the same hard

ware. Thus, a guest operating system is given the illusion of owning a complete

set of standard hardware.

The first version of IBM virtual machine operating system was VM/370 (or of

ficially Virtual Machine Facility/370) released in 1972 [56]. VM/370 was built as a

13

general purpose OS for IBM System/370 mainframe machines. The virtualization

features are mainly used for supporting time-sharing systems, maintaining back

ward compatibility of IBM System/360, and providing a private, secure and reli

able computing environment [56]. The virtual machine manager of VM/370 was

called the control program (CP). It ran on the physical hardware to create the vir

tual machine environment. Virtual machines ran a single-user, lightweight operat

ing system called the conversational monitor system (CMS). The CP/CMS design

successfully makes a separation of resource management and of the services that

users cared about. With the rising of personal computers, interest in these classic

virtualization techniques faded.

Virtualization has regained its popularity in recent years because of the promise

of improved resource utilization through server consolidation, guaranteed resource

allocation, and performance isolation. Disco [41], one of the first research operating

systems, has led to a wide range of commercial virtualization techniques [9,10,21,

34].

2.2.2 Virtualization Conditions

In a classic paper [105], Popek and Goldberg formulate the sufficient conditions for

an instruction set architecture (ISA) to efficiently support virtual machines. Accord

ing to Popek and Goldberg, there are three properties that a VMM must satisfy:

efficiency, resource control, and equivalence.

1. Efficiency means that a statistically dominant subset of machine instructions

must be executed directly by the real processor, with no software intervention

by the VMM.

2. Resource control means the VMM must have complete control of the virtual

ized resources.

14

3. Equivalence means that any program run under the VMM should exhibit an

effect identical with that demonstrated if the program had been run on the

original machine directly, with only a few exceptions.

Popek and Goldberg [105] derive the sufficient (but not necessary) conditions

for virtualization in a famous theorem. They first divide an ISA into three different

groups:

• Privileged instructions: Those that trap if the processor is in user mode and

do not trap if it is in system mode.

• Control sensitive instructions: Those that attempt to change the configu

ration of resources in the system.

• Behavior sensitive instructions: Those whose behavior or result depends

on the configuration of resources (the content of the relocation register or the

processor's mode).

With the above definition, Popek and Goldberg state that:

Theorem 1. For any conventional third generation computer, a virtual machine

monitor may be constructed if the set of sensitive instructions for that computer is

a subset of the set of privileged instructions.

Their reference to "third generation computer" is an integrated circuits based

computer with a processor and linear, uniformly addressable memory. The as

sumptions regarding the operation of "third generation computer" are: relocation

mechanisms, supervisor/user mode, and trap mechanisms [105].

The theorem says that if sensitive instructions executed in the user mode al

ways trap to the VMM (force control to go back to VMM), an efficient virtual ma

chine implementation can be constructed. All the non-privileged instructions can

be executed natively on the host platform and no emulation is needed.

15

It is known that Intel x86 ISA has several instructions that are sensitive but not

privileged [106]. They do not trap when they are executed in user mode. Therefore

Intel x86 ISA violates Theorem 1. However, since the theorem provides a sufficient

but not necessary condition, it does not mean that it is not virtualizable. It means

that additional steps must be taken in order to implement a virtual machine with

possible loss of some efficiency. For convenience, the instructions that are sensi

tive but not privileged are called critical instructions. The VMM can scan the guest

code when it is first executed and replace the critical instructions with a trap to the

VMM. This process is known as patching [112].

Paravirtualization is another technique used to support high performance virtual

machines on x86 hardware. Paravirtualization presents a software interface to vir

tual machine to a system that is similar but not identical to the underlying native

hardware and requires making modifications to the guest operating system [126].

Xen [34] is an example system that specifically targets the Intel IA-32 ISA. As men

tioned, Intel x86 ISA has critical instructions that are difficult to be efficiently vir

tualized. The Xen [34] system takes the hosted operating system, such as Linux

or Windows, and makes minimal modifications to the machine-dependent parts of

the system to eliminate the need to perform complex virtualization tasks such as

patching.

In this thesis, we focus on the Xen and VMware [23] virtualization platforms.

Both systems support fine grain management of memory and CPU resources, as

well as the ability to transparently migrate running virtual machines from one phys

ical server to another.

16

2.3 Server Consolidation

One of the key applications of using virtualization in data center is server consoli

dation. The idea is to take under utilized servers in the corporations, convert them

into VMs and run them on a smaller number of physical servers, thus achieving a

better utilization of hardware resources. This dissertation first introduces several

fundamental virtualization techniques and present the server consolidation related

work.

2.3.1 Virtual Machine Migration

Virtual machine migration refers to transfer the entire virtual machine -- the in

memory state of the kernel, all processes, and all application states across distinct

physical hosts. Migration can be either live or cold, with the distinction based on

whether the instance is running at the time of migration. In a cold migration [115],

the virtual machine is powered off, saved and sent to another physical machine. In

a live migration [55], the domain continues to run during transfer and downtime is

kept to a minimum.

Xen live migration requires multiple stages [55]. It begins by issuing a request

from host A (source), to host B (target), reserving the resources that the source will

need. If the target acknowledges the request, the source moves into the iterative

pre-copy stage, in which the source copies all memory pages to the target through a

TCP connection. While transferring, memory pages in the source could be changed

or marked dirty and these pages are copied in the next round of transfer. Xen

iterates the memory transfer until only a set of very frequently changed pages is

left and begins the stop-and-copy stage. Host A suspends the running OS and

copies the remaining pages to host B. During the final commitment stage, the target

informs the source that a complete OS image is received and reinstantiates the

17

migrated VM.

2.3.2 Performance Isolation Among Virtual Machines

During server consolidation, multiple under-utilized virtual machines are packed

into a single physical host, sharing the available hardware resources including

CPU(s), memory, network adapter(s), and disk(s). This causes unpredictability

in the performance of each individual VM. In this occasion, it is desirable to provide

mechanisms that can prevent VMs from monopolizing resources and guarantee

predictable performance. Multiple techniques are used to multiplex physical hard

ware across VMs.

For the CPU resource, multiple scheduling techniques are proposed in order to

guarantee that every running VM receives some amount of CPU time. For exam

ple, on the Xen hypervisor, the Borrowed Virtual Time (BVT) [59], Simple Earliest

Deadline First (S-EDF) [4], and the Credit scheduler [3] have been used for con

trolling how the computing power is distributed among competing VMs. On recent

versions, Xen uses the credit scheduler as the default choice [115]. This scheduler

provides two properties for each domain: a weight and a cap. The weight is a rela

tive value, e.g., a domain with a weight of 512 gets twice as much CPU as a domain

with a weight of 256 on a contended host. In contrast, the cap is an absolute value,

expressed in percentage of one physical CPU. A comparison study of these three

schedulers have been conducted by Cherkasova et. al. [53].

Regarding memory, memory ballooning is a technology for a virtual machine

to give up memory or to request more memory from the hypervisor. It was first

introduced in VMware ESX [123]. VMM controls a balloon module running in the

virtual machine. When VMM wants to reclaim memory, it instructs the driver to "in

flate" the balloon. Inflating the balloon calls the kernel interface in virtual machine

to allocate physical memory and return these pages to VMM. Similarly, VMM may

18

deallocate the memory by instructing it to "deflate" the balloon.

Regarding storage, the local I/O bandwidth management at each host was done

using Start-time Fair Queuing (SFQ) [79]. However, in enterprise applications, host

level scheduling is not sufficient, since multiple hosts can access the same storage

array. There are prior works that provide mechanisms for allocating storage re

sources to individual VMs [68,70]. mclock [70] is an 10 scheduler that provides

resource controls (shares, limits, reservations) for storage array at a per-VM level.

This is known as Storage I/O control and released in VMware's vSphere5 [119].

For the network resource, it is possible to use network traffic shaping techniques

to enforce limit and weight-based allocation [22,39]. In VMware's vSphere, network

I/O controls are implemented by three key software layers: teaming policy layer,

shaper, and scheduler. Since virtual machines and physical machines could be

configured with multiple Network Interface Controllers (NICs), team policy layer is

to determine which traffic from virtual ports will be sent over which physical NICs.

Shaper layer enforces the configured limit parameter. For example, if one VM's traf

fic is limited to 1 Gib, any additional traffic is dropped by the shaper, even if physical

NIC has the capacity. Finally, one scheduler is instantiated for each physical NIC

and it distributes the network bandwidth among VMs based on their shares value.

2.3.3 Related Work on Consolidation

Consolidating multiple applications on a single physical server can solve issues

related to low utilization, however, how to autonomically and accurately perform

server consolidation at enterprise level is still an unsolved research problem that

faces significant technical challenges [120] including how to accurately measure

and characterize an application's resource requirements, how optimally to distribute

the virtual machines hosting the applications over the physical resources, how

much resource each virtual machine should be allocated, and how to balance the

19

workloads at run time when applications and servers become overloaded.

To solve these questions, there has been early studies in the areas of application

measurement and characterization, server consolidation strategies, and dynamic

resource management. We provide and overview here.

2.3.3.1 Measurement and Characterization

To support autonomic application management functions, we need an accurate

monitoring infrastructure reporting resource usage of different VMs. However, the

standard monitoring systems which directly profile VM resource utilization inside

the VM might not reflect the true usage of resources by different VMs. The reason

is that virtualization of I/O devices or network devices results in a model where

the data transfer process involves additional system components, e.g., hypervisor

or device driver domain. Hence the resource usage when the hypervisor or device

driver domain handles the I/O or network data on behalf of a particular VMs needs to

be charged to the corresponding VM. Meanwhile, disk I/O activities measured at VM

and hypervisor level could have significant differences due to page cache or write

coalescing mechanism in VMM. In sum, real application resource consumption in

virtualized environment can be quite different from its measured usage because of

additional virtualization overhead and interactions with the underlying VMM.

Several early papers measure the impact of virtualization overhead on bench

marks. Gupta et al. [72] present the design and evaluation of a set of primitives

implemented in Xen to enforcing performance isolation among VMs. They look

into per-VM CPU overhead in the driver domain caused by network traffic and use

a linear model to approximate their relationships. In this thesis, our work is com

plementary to [72] on driver domain CPU overhead modeling and extends to other

resources including disk I/O and memory. Disk I/O activity is also related to the CPU

overhead. Wood et al. [127] investigates the virtualization overheads and use it to

20

accurately predict the resource needs of virtualized applications, allowing them to

be smoothly transitioned into a data center. They propose a combination of applica

tion modeling and virtualization overhead profiling for estimating the hypervisor and

virtual machine CPU utilization of an application. They use micro-benchmarks to

profile the relationships of different I/O activities to the CPU overhead, apply robust

stepwise linear regression method to build the models, and predict an application's

CPU demand after virtualization based on the benchmark models and the applica

tion's native resource utilization. The work presented in this dissertation is different

from theirs in the following aspects: (1) our calibration process is a run-time pro

cess where a feedback loop controls the remodeling process, while their prediction

process is a one-time offline profiling with a fixed set of regression models; (2) our

calibration process covers three other resources in addition to CPU, and there are

situations where the virtual activities are not equal to their physical activities for

some non-CPU resources. (3) our DFG method is a source separation framework

where different functional modeling approaches can be used as plug-ins, as it is

not limited to linear regression.

Isci et al. [76] study the run-time CPU demand estimation in VM consolidation

for effective dynamic resource management. They derive a simple and accurate

alternative estimate of CPU demand even when a server is overloaded with VMs

hosting CPU-intensive applications. Extending their idea to other type of applica

tions (e.g., IO-intensive) and other type of resources is interesting and important.

Pacifici et al. [101] consider a dynamic CPU demand estimation problem for web

applications. They use statistical and classification methods to determine the CPU

demand for different web request types.

Since many virtualization platforms introduce additional virtualization overhead,

many research works [65,107,110,118] provide a capability to scale the resource

usage of the original workloads by a specified multiplier. For some applications it

21

might be a reasonable approach, however, in general, additional CPU overhead

highly depends on system activities and operations performed by the application.

Simplistic constant scaling may result in significant modeling error and resource

over-provisioning.

Virtualization technologies evolve in a fast speed, and many new approaches

have been proposed to address virtualization overhead concern. For example, Liu

et al. [87] propose hypervisor-bypassing in Xen to reduce the performance penalty

of network I/O; Santos et al. [109] designs an optimized network IO scheduling al

gorithm to improve network throughput in Xen. These results bring more dynamics

into the relationships between physical and virtual resource activities, and call for

the necessity of an adaptive calibration solution like the one presented in this thesis.

2.3.3.2 Consolidation Strategies

Virtual infrastructure platforms typically include software that can help to balance

virtual machine workloads across hosts and to locate VMs on the best possible

servers for their workload in a resource pool; VMware Distributed Resource Sched

uler (DRS) [75] and XenServer Workload Balancing [27] are examples of load bal

ancing solutions. However, both of these solutions require to manually tune the

weightings. The weightings are a way of ranking resources according to how much

you want them to be considered and are used to determine the processing order.

That is, after workload balancing determines its needs to make a recommendation,

it uses specifications on the importance of resources to determine which host's

performance to address first and which virtual machines to recommend migrating

first. As this dissertation illustrates in Section 6.2, it is very hard to find a general

approach for utilization normalization across different application under different

workloads.

Wood et. al [128] present Sandpiper, a system that automates the task of mon

22

itoring, detecting and migrating hotspots to least loaded server. They define a new

metric volume as the product of server's CPU, network and memory loads. The vol

ume captures the degree of (over)load along multiple dimensions in a unified fash

ion and can be used by the mitigation algorithms to handle all resource hotspots

in an identical manner. Sandpiper is designed to balance the volume across all

physical servers. They implicitly assume that each resource has the same weight

when balancing.

Bejerano et al. [38] study the user-AP associations for max-min fair bandwidth

allocation in wireless LANs. They showed the strong correlation between fairness

and load balancing, and devised load balancing algorithms that achieve constant-

factor approximations. Their work extended the long-lined networking research on

fair bandwidth allocation [66,82].

Ghodsi et. al [64] present dominant resource fairness (DRF), a methodology

that generalizes max-min fairness to the field of multiple users making heteroge

neous demands on multiple resource types. In the DRF model, users record their

task requirement using a demand vector of two metrics, CPU and memory. It ap

plies the max-min fairness to the user's dominant resource to balance the load.

This dissertation considers four dimensional resources (CPU, memory, network,

and disk) for min-max load balancing and present a multi-class closed queuing

model to predict the performance of multiple applications in order to select the best

performance.

Lee et. al [85] study the performance degradation problem of VM consolidation.

For computation and network resources, there is no performance degradation in

low utilized workload while performance degradation in the presence of high re

source contention is gradual and fair. This observation agrees with the motivation

in minimizing the maximum server allocated load to reduce the competition for re

sources and to improve application performance.

23

2.4 Feedback Control-based Resource Allocation

Early studies of dynamic resource allocation in distributed systems have largely

focused on allocating resources across multiple physical nodes. In [47], cluster

power management is done by allocating resources appropriately to maximize the

global utility, while minimizing the power usage. In [111], an integrated framework is

proposed by combining a cluster-level load balancer and a node-level class-aware

scheduler to achieve both overall system efficiency and individual response time

goals. However, these existing techniques are not directly applicable to allocating

resources to applications running in VMs. They also fall short of providing a way of

allocating resources to meet end-to-end application SLOs.

To meet a target SLO for a multi-tiered web-application, [40] presents a method

ology that automatically determines the amount of required resources expressed

as an integer number of EC2 instances of a specific type. That implies that applica

tion resources are scaled horizontally in coarse-grained VM instance increments.

In contrast, in [33], resource containers are proposed to achieve fine-grained re

source control for applications. In [123], new memory management techniques are

proposed to allow dynamic re-allocation of memory between different VMs. The

work presented in this dissertation relies on similar management techniques from

modern hypervisors such as VMware ESX [20], Xen [34], and Microsoft Hyper-

V [26].

Control theory has been successfully applied to the resource management of

computer systems [74,81]. In [29], a control loop is designed to guarantee Web

server performance via online content adaptation. Similar techniques are used to

dynamically adjust the cache sizes for multiple request classes [94], In [131], appli

cation level resource management with feedback Is achieved by having "friendly"

VMs that adjust their resource demands for fair resource sharing. In [100], the au

24

thors model performance interference between co-located VMs and apply closed-

loop control to mitigate such interference if feasible. In this dissertation, we directly

model the relationship between the application performance and the resource uti

lization levels of individual VMs, in effect taking into consideration implicitly any

performance interference.

Many feedback control techniques manage only one type of resource. For ex

ample, AppRaise [124] is a system that uses queuing models to represent appli

cation performance in a virtualized environment and applies predictions from the

models to put CPU caps on virtual machines. Multiple resources are managed

in [63,102]. In [63], the authors apply multiple-input multiple-output control to tune

two configuration parameters within a single Apache Web server to regulate its

CPU and memory. AppRM also manages multiple resources (CPU and memory),

using online models instead of the offline models used in [63].

A similar two-level resource control architecture was presented in [129], where

a local controller estimates the amount of resource needed by each VM using a

fuzzy-local-based modeling and prediction approach, and a global controller runs

at each host (aka. node) to mediate the resource requests from different local con

trollers. This work considers only one resource type (CPU) and applications hosted

in a single VM. Another two-level resource control system in [102] applies online

statistical learning and adaptive control theory to translate the SLO of a multi-tiered

application to the capacity requirements for multiple resource types (CPU and disk

I/O) in multiple VMs, which is the approach we adopt in this dissertation. We stress

that our work differs from both [129] and [102] in the following aspects: (1) Both prior

works use CPU limit and neither utilizes reservation for any resource type, which

we believe to be a powerful resource control knob whose utility should be explored.

In contrast, AppRM employs all three resource control knobs (reservation, limit,

shares). (2) The higher-level controller in both papers deals with a single physical

25

host with fixed capacity, whereas our RP Manager deals with a logical container

such as a resource pool whose capacity itself can be a moving target. The latter

is a unique resource allocation model supported by VMware DRS [69]. (3) Both

the global controller in [129] and the node controller in [102] handle the resource

requests from individual VMs at the same time and with the same frequency, which

poses synchronization constraints on the lower-level controllers. The RP Manager

in AppRM interacts with multiple vApp Managers asynchronously so that each vApp

Manager can work at its own pace based on the application need. As a result, Ap

pRM provides a holistic resource management tool that works seamlessly within

the hierarchy of a virtual data center, i.e., across multiple resource types, multiple

applications and VMs, but more importantly within the resource pools where these

VMs are located.

26

3 Admission Control for Busy Multi

tier Services

Capacity planning plays an important role in "sizing" IT systems and needs to be

even more effective in case of e-commerce sites where customers have high ex

pectations for QoS support, given an environment that is characterized by unpre

dictability. Over-provisioning offers only a partial solution as its benefits may be

offset by higher energy and operating costs of a system that is rarely needed to

be that large. To contain the size of the system and yet maintain user-perceived

performance levels in the form of service-level objectives (SLOs), several method

ologies have been proposed that rely on admission control and/or techniques for

service differentiation that are threshold based [29,35,36,54,80]. Yet, we show in

this chapter that these techniques may be unable to provide robust business solu

tions. If the site experiences temporal surges in user arrivals or service demands

(i.e., bursts) [98,99], triggered by sales or seasonal events, then threshold-based

overload control is largely ineffective.

To get the intuition on why prevailing techniques may not be effective for system

management under bursty conditions, consider a web service that is built accord

ing to the industry-standard, multi-tier paradigm. Typically, a user access to a web

service occurs in the form of a session consisting of many individual requests. Plac

ing an order through the web site involves further requests relating to selecting a

27

product, providing shipping information, arranging payment agreement and finally

receiving a confirmation. For a customer trying to place an order, or a retailer trying

to make a sale, the real measure of a web server performance is its ability to pro

cess the entire sequence of requests needed to complete a transaction. Utilization-

based policies [29,54] accept a new session only if there is enough capacity in the

system to guarantee that future requests of this session can be processed and the

entire session can complete successfully. If the system operates on or above a

certain capacity threshold, then a new session is rejected (or redirected to another

server, if available).

In a multi-tier system that operates under bursty workload conditions (in the form

of bursty arrivals and/or bursty service demands at tiers), threshold-based policies

become ineffective. The main reason is that if flows are bursty, then the system

is subject to the phenomenon of persistent bottleneck switch [98]. When this phe

nomenon is present, average utilizations of the various tiers may be moderate, but

during a workload burst the system may experience nearly simultaneous arrivals of

requests in a tier that gets overloaded for a period of time. After the tier processes

these requests, they arrive again nearly simultaneously on the next tier, which now

experiences a period of overload. Interleaving time periods of intense activity with

almost no activity on the various tiers results in persistent bottleneck switch, i.e., the

bottleneck continuously shifts from one tier to the next across time, hindering the

effectiveness of a threshold based policy. Several questions are raised, including

whether it is advisable to activate a control on one tier (e.g., the bottleneck tier),

multiple tiers, or all tiers, and under what conditions.

In this chapter, we design a solution to the above problem by first studying the

reasons why threshold-based policies that are documented to work well in single

tiered system may fail in a multi-tiered system with bursty workloads. We show

that threshold-based policies have a slow reaction to bursts, and therefore cannot

28

maintain low ratios of aborted sessions. The new solution that is offered here can be

summarized as follows: we aim to dynamically control the number and the type of

user requests admitted for processing into the multi-tier system and continuously

differentiate between requests from already accepted sessions and requests for

new sessions. When the system enters the overload state, we advocate buffering

of requests from the already accepted sessions in a so-called "blocking" queue,

that effectively acts as a waiting room [32,104]. This blocking queue successfully

differentiates among the requests of already accepted sessions to those of new

sessions, and implicitly gives them a higher priority.

The performance of accepted sessions remains directly bounded by the time the

accepted requests spent in the blocking queue. The larger the size of the blocking

queue, the lower the number of aborted sessions but at a cost that may result in

SLO violations due to additional waiting in the queue. We perform a sensitivity study

to explore the different blocking queue limits under a variety of burstiness profiles.

The conclusion is that the effectiveness of the proposed construction is strongly

related to the workload burstiness. Based on this analysis, we present an effective

blocking mechanism that autonomically adjusts the blocking queue capacity to the

degree of burstiness of the workload. Note, that in this chapter, we consider the

response time as the target SLO. The designed approach can be used similarly

for different target SLOs (e.g., loss probabilities in terms of aborted or dropped

requests).

The resulting policy is an autonomic session-based admission control policy,

called AWAIT, that adjusts the blocking queue capacity in response to workload

burstiness. We perform detailed simulations using the TPC-W benchmark with ex

tended functionality for generating bursty session arrivals [99] to demonstrate the

effectiveness and robustness of the new strategy. AWAIT supports a simple and in

expensive implementation. It does not require significant changes or modifications

29

to the existing Internet infrastructure, and at the same time, it significantly improves

the performance of overloaded multi-tier web sites. Extensive experiments illustrate

AW AIT 's ability to closely maintain target SLOs across realistic workloads (where

the degree of burstiness changes over time) by effectively adapting the blocking

queue size to the workload bursts.

3.1 Motivation: Capacity Planning and Admission Con

trol

In this section, we present a short case study that illustrates how burstiness may

impact the performance of admission control. We present some initial experiments

that illustrate the problem and show that burstiness can spoil the effectiveness of

an admission control mechanism that is deployed on a single-tier.

3.1.1 Basic Capacity Planning

Overload management is a critical business requirement for today's Internet ser

vices. A common approach to handle overload is to apply specific resource limits

that typically bound the number of simultaneous socket connections or threads. For

example, in traditional web servers that employ thread-per-connection implementa

tion, the server configuration specifies the number of processes (and connections)

that are allocated for admitting the user requests. Therefore, in the Apache web

server [1], when all the server threads are busy, the system stops accepting new

connections. The same principle applies for providing the basic overload protection

in multi-tier applications. The system administrators may set limits on the number

of simultaneous client sessions (we call them active requests) in the system. Lim

iting the number of active requests is critical for quality of service: setting this limit

too low results in achieving a good response time but at a price of lower system

30

DatabaseFront Server Server

New Session
Generator

Figure 3.1: The basic structure of TPC-W model

throughput and also of high number of dropped user sessions. Setting this limit too

high may lead to better throughput and reduced drop rates but at a price of a much

higher user response time.

Figure 3.1 shows a high-level model of an e-commerce site used in this chapter.

It is based on the TPC-W benchmark implemented as a multi-tier application. It

consists of a web server, an application server, and a back-end database. The web

server and the application server usually reside within the same physical server,

which is called a front server. After a new session connection is generated, client

requests circulate among the front and database server before they are sent back

to the client. After a request is sent back, the client spends an average think time

E[Z] before sending the next request. A session completes after the client has

generated a series of requests. The TPC-W benchmark defines 14 transactions,

that can be generally classified as "browsing" or "ordering". There are three widely

used transaction mixes: browsing, shopping, and ordering.

We first focus on the capacity planning aspect and design an experiment that

31

can first identify the number of simultaneously active requests that can guarantee

a certain QoS to the end user. We use the benchmark's ordering mix, that consists

of 50% browsing and 50% ordering transactions. Request service times in the front

and database servers are derived using the methodologies and models presented

in [43,98] that have been shown to capture very accurately the performance and

behavior of TPC-W. Consistent with the specifications of the TPC-W benchmark,

the average user think time is equal to 7 seconds, exponentially distributed, i.e.,

here is no burstiness in the arrival stream of new sessions.We set new session

arrivals with a constant rate of 35 requests per second. Each session consists

of a sequence of requests (i.e., essentially a series of visit "rounds" to the front

and database server that define the session length) that is uniformly distributed

with parameters 5 and 35, that is with expected mean equal to 20.1 Note that the

mixture of requests for new and existing sessions is not pre-defined but determined

by the average user think time and the session length. In this experiment, the ratio

of new to existing session is close to 0.2.

It is a typical situation when after a certain waiting time an impatient client might

"click again" and reissue the original request. Client request timeouts and retries

can be added to our model to reflect a more complex and realistic scenario. A client

with a timeout value of t sec can be considered as an additional QoS requirement:

A request latency must have a limit of t sec. If this requirement is not met, after

a given number of retries, the session is aborted. This could decrease the useful

system throughput (due to the processing overhead of these additional requests)

but it would not fundamentally change the results of our study [54]. In this chapter,

we use a simplified model without request timeouts and retries in order to focus on

the effects of burstiness.

1 We could have used another distribution or different parameters to the uniform distribution of visit
rounds. Experiments with different parameters are qualitatively the same as the results presented
here and are omitted due to lack of space. Modeling tier visits with a uniform distribution is consistent
with experimental results in [43,98].

32

(a) 95th Percentile Response Time
r i i i

(b) Aborted (Existing Session) Ratio (c) Drop (New Session) Ratio

sb & &
Active Requests (Maximum)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Active Requests (Maximum)
<bs * *

Active Requests (Maximum)

Figure 3.2: Capacity Planning study for SBAC under exponential (i.e., not bursty) new ses
sion arrivals. Performance measures are presented as a function of the maximum number
of active requests in the system.

Figure 3.2(a) illustrates the 95th percentile of user end-to-end response time as

a function of the predefined value of the maximum active requests in the system.

We define the ratio of aborted sessions as the ratio of aborted accepted sessions

to the total number of accepted sessions. The new session drop rate is defined

as the ratio of dropped new sessions over the generated sessions. Figures 3.2(b)

and 3.2(c) present the aborted rate of accepted (existing) sessions and the drop

rate of new sessions, respectively, as a function of the allowed active requests. If

an SLO of 4.0 seconds is the performance objective for request's response time,

then Figure 3.2 suggests that one may use 256 as the recommended limit on active

requests. This value strikes a good balance among all desired measures: the

request response time (below 4 seconds) and the minimized number of aborted

and dropped sessions. Note that the value of 256 is a configuration parameter of

web server set by the system administrator and by no means a parameter of the

AWAIT controller that we introduce in this chapter.

Table 3.1 summarizes the system configuration parameters that are used in the

remaining of this chapter.

3.1.2 Introducing Burstiness

Because our purpose is to evaluate the different admission control algorithms under

bursty arrival conditions, we introduce here three burstiness profiles that we use in

33

Table 3.1: Configuration

average user think time 7 sec.
new session arrival rate 225 req/min.
session length uniformly distributed between 5 and 35
active request limit 256 reqs

the rest of this chapter. We use a Markovian Arrival Process (MAP) to generate

three arrival processes. For details on the generation of the three MAP processes

as well as on their effectiveness in mimicking bursty arrivals such those reported in

the 1998 World Cup web server we direct the reader to [99]. MAPs have also been

shown to be surprisingly compact yet very effective models of the service process

in multi-tier systems, modeling implicitly conditions such as caching or database

locks (see [98]).

The burstiness profiles (i.e., the number of arrivals as a function of time) for the

three MAPs that we use for the arrival process are illustrated in Figure 3.3. The

three levels are distinguished by the way the number of active clients fluctuates

across time, with burst level 1 showing moderate fluctuation, while burst level 3

showing periods of intense activity to alternate with periods of negligible activity. We

stress that the distributions that correspond to the three processes share the same

mean and coefficient of variation. In the appendix, we provide the configuration

parameters used for these three MAPs, as well as pseudo-code for reading the

MAP configuration file and for generating MAP random variates.

(a) Burst Level 1 (b) Burst Level 2 (c) Burst Level 3
1200
1000
BOO

•8 600
400

| 200
0

■8 600

a 200

50 100 150
time (min)

50 100 150 200
time (mln)

1200
I 1000
I BOO
■8 600
| 400
g 200

0
SO 100 150 200

time (mln)

Figure 3.3: The burstiness profiles of the three arrival MAPs.

34

3.1.3 Burstiness in Flows and Admission Control

Here we investigate the effect of burstiness in the arrival process to a classic ad

mission control algorithm. Session-based admission control (SBAC) [54] has been

shown to be the effective policy for web servers. It is based on monitoring the CPU

utilization of the web server. SBAC accepts a new session only when the system

utilization is below a certain threshold, to guarantee a successful session comple

tion. If the observed utilization is above a specified threshold, then for the next

time interval, the admission controller rejects all new sessions and only serves re

quests from already admitted sessions. Once the observed utilization drops below

the given threshold, the admission controller changes its policy for the next time

interval and begins admitting and processing new sessions again. A web server

employs a configurable size queue for buffering the incoming requests. If the ar

riving request belongs to the already accepted session and the queue is full, then

the entire session is aborted. The useful throughput of the system is measured

as a function of the number of completed sessions. Aborted requests of already

accepted sessions are highly undesirable because they compromise the server's

ability to process all requests needed to complete a transaction and result in wasted

system resources.

We have implemented the SBAC mechanism in a simulation model of a client-

server system that is built according to the TPC-W specifications. The SBAC mech

anism uses a front server utilization threshold for admitting new sessions.2 Fig

ure 3.4 illustrates the ineffectiveness of the threshold-based techniques in the pres

ence of bursty arrivals. We compare the results of two different admission control

strategies. A first strategy (called baseAC) employs a traditional overload control

2 For the TPC-W testbed with the ordering mix, SBAC is based on the CPU utilization of the
front server because the front server is the system bottleneck for this particular mix. In general, the
admission control should be based on the utilization of the bottleneck resource, e.g., if the DB tier
is a bottleneck then its CPU utilization should be used for SBAC decisions.

35

based on admitting a fixed, predefined number of active requests for processing.

Here, we set ActiveRequests = 256 as suggested by capacity planning (see Fig

ure 1). The second strategy is SBAC where the front server utilization threshold is

set to 85% and 95% respectively.

6
_ 5

l 4
i z
H 1

(a) 95th Percentile Response Time (b) Aborted (Existing Session) Ratio (c) Drop (New Session) Ratio

baseAC I
hSBAC85 tzzzz -
SBAC95 i

Burst Level

. baseAC
SBAC85 izzza
SBAC95

baseAC
-SBAC85 izzza
SBAC95

§ 0.25

^ 0 ft'>IS\ jev e '^ v.eve'21

Burst Level

^ o * ^ N * '1 V *ve' 1
Burst Level

Figure 3.4: Three different burstiness profiles. The capacity planning results and SLO
targets are now violated. It appears that a queue size of 256 (i.e., maximum active requests
for the baseAC configuration) is not sufficient to meet SLO requirements.

Figure 3.4(a) illustrates the 95th percentile of user response time. While SBAC

is effective in maintaining good response times under bursty arrivals, this is achieved

at the expense of a relatively high ratio of aborted sessions as well as a high ratio

of rejected new sessions, see Figure 3.4(b)-(c). The baseAC strategy does not

differentiate between the requests from new and existing sessions and this leads

to a very high ratio of aborted sessions.

Both of these threshold-based strategies might be a reasonable choice under

non-bursty traffic. However, they clearly exhibit their deficiencies under bursty traf

fic conditions. This simple experiment shows that the admission control mechanism

has to take traffic burstiness into account and adapt the system configuration and/or

thresholds in order to effectively deal with bursty traffic conditions. In the next sec

tion, we present a new algorithm that effectively deals with the above problem.

36

3.2 AWAIT Algorithm

In this section, we describe AWAIT, a novel session-based admission control al

gorithm that aims to provide additional support for bursty session arrivals. AWAIT

has two different mechanisms to regulate request acceptance for processing. The

first mechanism uses a counter of ActiveRequests that is defined according to ca

pacity planning for achieving a given SLO for response time. Until this counter

reaches its maximum any incoming request is accepted, this request may repre

sent a new session or it may belong to an already accepted session. The second

mechanism uses a special queue, called blocking queue, which is created to store

the requests from already accepted sessions after the number of ActiveRequests

reaches its maximum capacity. Figure 3.5 shows how the two mechanisms are

incorporated in the TPC-W model. The AWAIT controller rejects new session re

quests if ActiveRequests reached its capacity but the system still admits requests

from earlier accepted sessions. When the blocking queue becomes full, incoming

requests from accepted sessions are unavoidably aborted. We aim to minimize the

likelihood of this event, because it leads to business loss.

Active
Request

New Session
Generator ►

Blocking
Queue

C lie n t I

C lie n t 2

C lie n t N

f'ront
Server

Database
Server

Figure 3.5: The model of AWAIT algorithm

37

The capacity of the blocking queue is a critical parameter for the performance

of the accepted sessions since the time spent there contributes to the user end-

to-end time, thus may violate the target SLOs. The larger the capacity is of the

blocking queue, the longer the contribution of the time waiting there to the user

end-to-end time. Similarly, the larger the capacity of the blocking queue, the smaller

the expected aborted ratio of accepted requests. Striking a good balance between

these two conflicting measures is the purpose of AWAIT.

To ease the presentation of AWAIT, we first present a static version that con

siders a fixed blocking queue size. In the adaptive version of AWAIT, the size of

this blocking queue is autonomically adjusted according to the burstiness of the

workload. In all cases, AWAIT ensures that the response time SLOs are met.

3.2.1 Static AWAIT

To formally describe the AWAIT algorithm, we introduce the following notions:

• New session request -- a request that is generated by a new client (i.e., it is

a first request in a new session);

• Accepted session request - a request that is issued by a client within an

already accepted session;

• ActiveRequests -- a counter that reflects the number of accepted requests

which are currently in processing by the system. These active requests could

be either of new sessions or of already accepted sessions. The maximum

value for this counter is set to a value defined by capacity planning (see Sec

tion 3.1). Let us denote this value as A',

• BlockedRequests -- a counter that reflects the number of blocked requests

which are received from the clients of already accepted sessions and which

38

are stored in the BlockingQueue. Note this difference: the blocking queue

stores requests from already accepted sessions only. Let B denote the max

imum value of this counter that also defines the capacity of this queue;

• AdmitNew -- a boolean variable that defines whether a new session can be

accepted by the system. If AdmitNew = 1 then a new session can be ac

cepted by the system. If AdmitNew = 0 then all the new sessions are rejected

by the system;

Now, we describe the iteration steps of the algorithm. Let a new request req arrive

for processing. The system can be in one of the following states.

• AdmitNew — 1 and ActiveRequests < A.

This state corresponds to normal system processing when there is enough

system capacity for processing requests from new sessions and requests

from already accepted sessions. Therefore, independent on the request type,

req is accepted for processing and the counter ActiveRequests increases by

one.

When this counter reaches its maximum value A, then AdmitNew = 0, and

this corresponds to a new system state when any requests from new sessions

are rejected.

• AdmitNew = 0 and BlockedRequests < B.

In this state the incoming requests are treated differently depending on their

type. If the incoming request is from a new session, then it is rejected. If it

belongs to an already accepted session, then it is stored in the BlockingQueue

and the queue's counter is updated.

• AdmitNew = 0 and BlockedRequests = B.

This state reflects to the situation when BlockedRequests has reached its max

imum value B. Any incoming request, independent on its type, is rejected. If

39

the request comes from an already accepted session, then its entire session

is aborted.

Now, we describe how the system counters ActiveRequests and BlockedRequests

are updated when a processed request leaves the system, i.e., the reply is sent to

the client. The system can be in one of the following states (similar to the states

described above).

• If ActiveRequests < A,

then ActiveRequests ActiveRequests — 1.

• If AdmitNew = 0, ActiveRequests = A, and BlockedRequests = 0,

then ActiveRequests «- ActiveRequests - 1 and AdmitNew = 1, i.e., the

admission control status changes and the system again starts accepting both

types of requests: from new sessions and already accepted sessions.

• If AdmitNew = 0, ActiveRequests = A, and 0 < BlockedRequests < B,

then one of the blocked requests is accepted for processing in the system and

only the counter BlockedRequests is updated: BlockedRequests <— BlockedRequests—

1.

We call this version of algorithm the conservative AWAIT. Under this algorithm the

differentiation of requests from new and accepted sessions starts when ActiveRequests

reaches its maximum value A. Then new sessions are rejected and requests

from accepted sessions have extra buffering space in the blocking queue. Once

s ActiveRequests counter gets below A, then the admission restriction is lifted and

new session requests are again accepted.

We also introduce a different version of the algorithm, called aggressive AWAIT,

which at a first glance is only slightly different from the conservative AWAIT above.

However, the performance evaluation of these two versions shows a surprising

40

difference in behavior and in the numbers of aborted and rejected sessions. As

we see later, the aggressive AWAIT decreases forcefully the number of aborted

sessions while supporting the same useful system throughput as the conservative

AWAIT.

For the aggressive AWAIT strategy we introduce the additional variable Overload:

• Overload is a boolean variable that defines whether the system is under se

vere overload. Typically, Overload = 0 while the system can process all the

requests from the already accepted sessions. Overload = 1 when system ob

serves an aborted request from the accepted session. This may happen when

ActiveRequests = A and BlockedRequests = B, and the incoming request is

from an accepted session. The aborted session triggers an "emergency sit

uation" that is treated aggressively. New session requests are not accepted

during overload until both blocking queue and the ActiveRequests in the sys

tem are flushed. This helps in providing a prolonged preferential treatment of

requests from the accepted sessions to rapidly overcome the overload state.

When the overload condition is triggered, i.e., Overload = 1, there are slightly dif

ferent rules for updating the system state when a processed request leaves the

system:

• If AdmitNew — 0, Overload = 1, ActiveRequests = A, and BlockedRequests =

0,

then ActiveRequests <- ActiveRequests-1 , but the system is considered to be

still under severe overload and its admission control status does not change:

the system still rejects requests from new sessions and only processes re

quests from the already accepted sessions.

• If Overload = 1 and ActiveRequests = 0, then the operation of the system

goes back to normal: Overload = 0 and AdmitNew = 1.

41

The pseudo-code shown in Algorithm 3.1 summarizes both versions of the A WAIT

algorithm: conservative and aggressive. To unify the description, in the conserva

tive version of the algorithm the state of variable Overload does not change, i.e.,

Overload = 0.

Algorithm 3.1: AWAIT: Admission control algorithm, aggressive version. The
conservative AWAIT is obtained by removing the statements labeled Aggr.

for every request req that arrives for processing do
if AdmitNew and ActiveRequests < A then

Accept req;
ActiveRequests <- ActiveRequests + 1;
if ActiveRequests == A then AdmitNew <- 0 ;

else if iAdmitNew and BlockedRequests < B then
if type (req) == NewSession then reject req;
if type(req) == AcceptedSession then

accept req into BlockingQueue;
BlockedRequests 4- BlockedRequests +1;

else if iAdmitNew and BlockedRequests == B then
reject req;
// Aggressive version: trigger overload state
if type(req)~AcceptedSession then Overloads-1 ;Aflflr

Aggr

Aggr

for every request req that leaves the system do
if ActiveRequests < A then ActiveRequests 4 - ActiveRequests -1 ;
if ActiveRequests~A and 0<BiockedRequests<B then

move one request from blocking queue to queue;
BlockedRequests 4- BlockedRequests -1;

else if ActiveRequests == A and BlockedRequests == 0 then
ActiveRequests 4 - ActiveRequests -1;
// Aggressive version: queue flashed
if ActiveRequests==0 then

Overload 4- 0;
AdmitNew 4- 1;

In sum, the rationale for the conservative versus the aggressive version of the

algorithm is the following. If the system operates under a burst, then queues tend to

build up fast. An accepted session that is aborted signals the system about insuffi

cient resource capacity for processing requests from already accepted sessions. To

42

mitigate the performance effects of this, it is more effective to completely dedicate

system resources for processing only the accepted session requests by flushing

the system queues at the expense of a higher ratio of rejected new sessions. This

strategy benefits accepted sessions by implicitly giving them high priority and "re

serving" the system for exclusive processing of accepted session requests, until

overload subsides. In the following subsection, we present experimental evidence

that shows the relative performance of the conservative versus the aggressive

version of the algorithm.

3.2.2 Performance Evaluation: Conservative or Aggressive?

We evaluate the performance of AWAIT via trace driven simulation. A high level

system description of the simulated system is given in Figure 3.5. We use the same

three MAPs for the arrival process as those introduced in Section 3.1. The service

processes at the front server and the database server are also modeled via MAPs

(see [43,98]) that accurately capture the service demands of TPC-W's ordering

mix3.

Figure 3.6 illustrates the performance of the two versions of AWAIT as a func

tion of the capacity of the blocking queue B. For reference, we also report on the

performance of the system with simple admission control based on the number

of ActiveRequests only (labeled: "baseAC") as well as the performance of SBAC

with CPU utilization threshold set to 85%. Note that for all experiments, we set

the ActiveRequests counter to 256, as suggested by the capacity planning study

of Section 3.1. The aborted existing session ratio in Figure 3.6 is defined as the

ratio of the aborted existing sessions to the total accepted sessions, the new ses

sion drop rate is defined as the ratio of dropped new sessions over the generated

sessions, and the completed session ratio is the completed number of sessions

Experiments with TPC-W’s shopping and browsing mixes were also conducted. Results are
qualitatively the same as with the ordering mix and are not reported here due to lack of space.

43

divided by the generated sessions.

Burst Level 1 Burst Level 2 Burst Level 3
Aggressive AWAIT KSSHSSSSSConservative AWAIT ■■■■■■■Base Admission Control ■ ■ ■ M S B A C S S

(a) 95th Percentile Response Time

\f> # ft*
Blocking Queue Capacity (B)

0>) Aborted (Existing Session) Ratio

JJLa
ft \ft ftl ft* \l*l&

Blocking Queue Capacity (B)

(c) Drop (New Session) Ratio

f i r i n g rala.ft \ft ft2 ft* \2ft 2*6 ****$&
Blocking Queue Capacity (B)

(d) Completed Session Ratio

l*5ft \6 ftft ft*

Blocking Queue Capacity (B)

(a) 05th Percentile Response Time

ft \ft ft2 ft* \ftft 2#
Blocking Queue Capacity (B)

0) Aborted (Existing Session) Ratio

ft \ft ftft ft*
Blocking Queue Capacity (B)

(g) Drop (New Session) Ratio

1Z ft* \2»2ft&b
Blocking Queue Capacity (B)

(h) Completed Session Ratio

O.B

0.6I 0.4

0.2

\ft 22 ft* \lftft5ftba*$
Blocking Queue Capacity (B)

95th Percentile Response Time10
8

6

4

2

0
Blocking Queue Capacity (B)

()) Aborted (Existing Season) Ratio

IS
« \6 ■& 6* \H ll>SbWoftM5

Blocking Queue Capacity (B)

(k) Drop (New Session) Ratio

ft \ft 3l ft* \2ft 2&6
Blocking Queue Capadty (B)

(0 Completed Session Ration—

iift \ft 2l ft* \2»2ft9\i
Blocking Queue Capacity (B)

Figure 3.6: AWAIT with fixed size of the blocking queue. The graphs illustrate perfor
mance values for the aggressive and conservative versions (see white and shaded bars,
respectively) for various fixed sizes of the blocking queue B. In all experiments, the limit of
accepted requests A is set to 256, based on capacity planning.

The figure presents results for the three burstiness profiles in the arrivals of

new sessions. First, one can easily see that the degree of burstiness in the arrivals

dramatically impacts the user perceived performance, see the 95th percentiles of

user response times for the various policies, see first row of graphs in Figure 3.6.

Looking just at the percentiles, it is clear that the addition of the blocking queue

deteriorates the user end-to-end times but the real benefit of blocking can be seen

in the decrease of the aborted session ratio, see the second row of graphs, as well

as in the decrease of new session drop ratio, see the third row of graphs. The useful

44

throughput of the system (measured in successfully completed sessions) is shown

in the last row of graph that demonstrate the improved metric for both versions of

AWAIT strategy compared to SBAC and baseAC.

Under low burstiness conditions, see first column of graphs, it is apparent that

SBAC remains a good choice, at the expense of a very high percentage (nearly as

high as 30%) of new session rejections. The aggressive and conservative versions

of AWAIT result in longer response times but in significantly lower drop ratios, see

Figure 3.6(b).

The effectiveness of the aggressive version to keep the aborted session ratio

low is apparent across all burstiness levels, see Figures 3.6(b), 3.6(f), and 3.6(j)

(second row of graphs). These figures show that the aggressive version very ef

fectively differentiates between existing and new sessions, and treats existing ses

sions preferentially.

Naturally, because of the limited system capacity, if the number of accepted

sessions that are aborted is low, then the ratio of rejected new sessions is bound to

increase. This effect is shown for the aggressive policy in the third row of graphs in

Figure 3.6, but this is unavoidable since our purpose is to bias the system for pro

cessing the requests of already accepted sessions against admitting new sessions,

especially under periods of bursty traffic.

There is an additional question on the effectiveness of the aggressive AWAIT

strategy compared to its conservative version: whether' “flushing" the system queues

might result in a less efficient resource usage and potentially may lead to a lower

useful throughput. The last row of graphs in Figure 3.6 answers this question.

It shows that the useful throughput of the system measured in successfully com

pleted sessions is very similar for both conservative and aggressive versions of

AWAIT and also significantly higher than SBAC or the simple baseAC policy. Over

all, Figure 3.6 argues for the effectiveness of the aggressive version of AWAIT. In

45

the remaining of this chapter we focus on how to provide an autonomic version of

AWAIT that adapts its configuration parameters to the workload. Before we move

into the adaptive version, we examine the existing results more closely.

3.2.3 Performance Effect of the Blocking Queue Size

CCDF comparison o f different algorithms CCDF comparison o f different algorithms CCDF comparison o f different algorithms
tuu tuu100

live 16
baseAC baseAC 4f& w r

Aggressive 128

Aggressive 16

gg A jp a s lv e i;

Aggressive 128Aggressive 16

Aggressive 128
baseACA.

100 100 100
Response time (s) Response time (s)Response time (s)

(a) Burst Level 1 (b) Burst Level 2 (c) Burst Level 3

Figure 3.7: CCDF of system response time for different strategies for aggressive AWAIT
that operates with a blocking queue size of 16 slots and a blocking queue size has 128
slots.

One of the special goals we pursue in this chapter is the overload manage

ment design that can support the application SLO requirements. Figure 3.7 shows

the detailed latency profiling for all four strategies under study and different traffic

burstiness. The graphs in Figure 3.7 present the complementary cumulative distri

bution function (CCDF) that helps in understanding how often the random variable

(response time in our study) is above a particular value. We focus on AWAIT with

two different blocking queue sizes equal to 16 and 128.

The figure confirms that increasing the blocking queue capacity leads to a sig

nificant increase in the latency of completed sessions, especially for arrivals with

higher burstiness level. For smaller size of the blocking queue and higher levels of

burstiness there is less difference between all the four strategies, and the latencies

of completed sessions are closer in their profiles to the baseAC strategy. However,

the larger blocking queue capacity changes the behavior of the underlying system

in a significant way leading to the higher throughput of completed sessions but at

a price of their higher latency. These results do stress the importance of correct

46

sizing of the blocking queue capacity. The workload burstiness combined with the

size of the blocking queue have a critical impact on the request latency. If we aim

to build an efficient overload management mechanism, then it should adapt its be

havior to take into account traffic burstiness and to tune appropriately the blocking

queue size.

3.2.4 Handle the Effects of Bottleneck Switch

Typically, the resources of the front tier present a bottleneck in the multi-tier system.

In these cases, the usage-based admission control, applied to the front tier, pro

vides a reasonable protection against overload. For example, the original SBAC

that was proposed for a single-tier web server can be adopted for the multi-tier

system in such a way that it allows accepting a new session only when the front

server CPU utilization is below a certain threshold. In Section 3.1, we analyzed the

SBAC performance for the multi-tier system that is processing the ordering trans

action mix of the TPC-W benchmark. Under this workload, the front server is the

system bottleneck. With the utilization threshold set to 85% and 95% respectively,

SBAC provides a good overload protection for workloads without burstiness or low

level burstiness. However, for higher levels of burstiness, the simulation results

show that SBAC becomes quite inefficient as a protection mechanism and leads

to a significant ratio of aborted sessions. This was the motivation to search for the

alternative admission control mechanisms and introduce AWAIT.

The question is how sensitive the AWAIT strategy becomes to a change of the

bottleneck in the system? How robust is AWAITs performance in case that the

back-end server (and not the front server or front servers) is the primary system

bottleneck?

Figure 3.8 shows the SBAC strategy performance (with the CPU utilization thresh

old of the front server set to 85% and 95% respectively) under a scenario when

47

the back-end server is being a primary system bottleneck, i.e., when the back-end

server becomes highly overloaded with the increased load. The performance of

SBAC is compared to the simple admission control strategy, called baseAC (see

Section 3.1 for more details). The baseAC strategy employs a traditional over

load control based on admitting a fixed, predefined number of active requests for

processing (the number of active requests is set to 256 as suggested by capacity

planning described in Section 3.1).

As we can see from Figure 3.8 that the SBAC strategy looses its performance

advantages which we observed earlier in Figure 3.4. Now its performance is prac

tically the same as the baseAC strategy which is regulated by a fixed number of

active requests in the system. As Figure 3.8 shows that all metrics for baseAC,

SBAC85% and SBAC95% are similar: the 95th percentiles of the user response

time shown in Figure 3.8 (a) are identical for all three strategies, the ratios of aborted

sessions coincide for the considered three strategies (see Figure 3.8 (b)), and the

ratios of rejected new sessions (Figure 3.8 (c)) are the same.

(a) 95th Percentile Response Time

baseAC
- SBAC85 B333

SBAC95

(b)\borted (Existing Session) Ratio (c) Drop (New Session) Ratio

<2

Burst Level

baseAC - >

-SBAC85
SBAC95

baseAC
SBAC85

-SBAC95

§ 0.08

>io6'i*SV.eve\ V
Burst Level

o B "t v,e''eV X U veV 1 U veV *

Burst Level

Figure 3.8: SBAC performance under the three different burstiness profiles with highly
overloaded back-end server.

The explanation of this changed behavior is straightforward: it is due to the

bottleneck switch from the front server to the back-end tier. A single-tier admission

control like SBAC is usage-based: it is checking the front server utilization level to

determine whether to accept a new session request or not. When the front server

is not a bottleneck resource it always has a CPU utilization below 85%, and the

48

back-end server gets highly overloaded. In this case, the usefulness of a single

tier admission control policy like SBAC is severely diminished.

Now, our question is whether the proposed AWAIT strategy is robust to the

bottleneck switch and whether it performs equally well when different tiers in the

system represent the resource bottleneck. Figure 3.9 shows the performance of

the aggressive of AWAIT as a function of the capacity of the blocking queue B with

the back-end server being highly overloaded.

It is apparent that the proposed AWAIT strategy is robust to the bottleneck

switch phenomenon, as it bases its decisions on the number of ActiveRequests,

which is defined at the whole system level. Naturally, a larger capacity of the block

ing queue leads to a smaller fraction of aborted sessions as well as to a smaller

ratio of rejected new sessions. Figure 3.6 shows that completed session ratio (4th

row) is related to both aborted ratio (2nd row) and new session drop ratio (3rd row).

AWAIT significantly reduces the aborted ratio at the cost of an increased new ses

sion drop ratio, as desired. In general, the larger capacity of the blocking queue

improves the ratio of completed sessions, but at a price of the higher values of 95th

percentile of the response time and the increased average response time that is

shown with the horizontal line inside the bars (see the first row of graphs). Over

all, the results highlight the fact that the effectiveness of AWAIT is related to the

blocking queue size.

3.3 Autonomic AWAIT

Here, we show how we can adjust on-the-fly the size of the blocking queue B in or

der to achieve a certain predefined SLO. To dynamically adjust the blocking queue

size, we use both historical information of the achieved 95th percentiles of all re

quests served by the system (irrespective of the blocking queue capacity used --

49

Burst Level 1 Bunt Level 2 Burst Level 3
f " tAggrwivp AWAIT ■■■■■■■Base Admission Control ■ ■ ■ ■ ■ ■ ■ SBAC85

(e) 95di Percentile Response Time95th Percentile Response Time

Blocking Size

Aborted (Existing Session) Ratio

Blocking Size

(0 Aborted (Existing Session) Ratio
0.4

0.35
0.11

0.07
0.06
0.05
0.04
0.03
0.020.01

0.25

0.15

0.05

V6 M *4
Blocking Size

(c) Drop (New Session) Ratio

Blocking Size

(g) Drop (New Session) Ratio
0.14
0.12

0.45
0.4

0.35

0.25

0.04
0.02

0.15

0.058 \6 $2 *4
Blocking Size

(d) Completed Session Ratio

8 \8 6*
Blocking Size

(h) Completed Session Ratio

0.7
0.60.8

0.6

0.4

0.20.2

8 \8 ii 6*
Blocking Queue Capacity (B)

9 12 &4 2S®
Blocking Queue Capacity (B)

(i) 95th Percentile Response Time

Blocking Size

0) Aborted (Existing Session) Ratio
0.55
0.5

0.45
0.4

0.35
0.3

0.25

0.15

0.05 LU JJL.1 L .11 n , j p - J L .
8 \8 37 eA v26 258

Blocking Size

(k) Drop (New Session) Ratio
0.55

0.5
0.45

0.35

0.25

0.15

Blocking Size

Completed Session Ratio
0.6

0.5

0.2

8 \6 32 84 \28 # 6

Blocking Queue Capacity (B)

Figure 3.9: Aggressive AWAIT: strategy performance for various fixed sizes of the blocking
queue B with highly overloaded back-end server. In the first row, the horizontal lines inside
the bars reflect the average request processing time.

this value should reflect the target system SLO as the size of the blocking queue

is transparent to the user) and response time percentiles that correspond to ev

ery other blocking queue capacity B used since the inception of the system. We

use this information to decide whether the current blocking queue capacity is suf

ficient or not. Changing the blocking queue capacity B throughout the lifetime of

the system is critical as during workload surges smaller B's result in better perfor

mance rather than large B's.4 To make the values of the 95th percentiles of the

4This may initially seem counter-intuitive as workload surges would result in large numbers of
requests that exist simultaneously in the system. However, in order to maintain the target SLOs
during a surge it is necessary to limit the blocking queue capacity, otherwise the time spent there
dominates user response times and SLOs are violated.

50

user response times readily available, we maintain for each blocking capacity B a

corresponding histogram of the user response times for that B. Therefore, for each

completed request, two response time histograms are updated: the histogram of all

requests in the system (irrespective of the blocking capacity B) and the histogram

that corresponds to the current block capacity B used.

We change the capacity of the blocking queue for every group of K = 10,000

requests served.5 The autonomic algorithm then compares the achieved response

time percentiles of all jobs in the system and the response times percentiles of the

current configuration B with the target SLOs. If both percentiles are less than the

SLO and there are aborted sessions, then it is clear that we can reduce the aborted

ratio because there is room to increase B (since response times percentiles do not

violate the SLO). If both percentiles are greater than the SLO, then the blocking

queue should be reduced in an effort to meet the SLO target. If none of the above

two conditions are met, we opt to leave the blocking queue capacity in its current

level, otherwise the system may suffer from thrashing. For example, if the response

time percentile of all requests is violated, but the percentile of the current B is not,

the algorithm still stays with the current blocking queue size B, since the system is

on a positive state and its accumulated statistics eventually correct the percentile

of all requests.

The steps of increase/decrease of the blocking queue capacity can be arbitrary.

In the experiments presented in this section, the capacity of the blocking queue B

can have sizes as small as 1 and as large as 120. The increase/decrease step is

equal to 5 for values of B less than 10 and equal to 20 for values of B greater than

20. We stress that other step values could also work, their selection affects how

quickly the algorithm converges to a desirable B range. Algorithm 3.2 summarizes

5We selected K = 10,000 to be able to collect meaningful statistics for a group of requests. We
performed a sensitivity analysis with the K value varying from 5,000 to 15,000. The results shows
that the performance is nearly insensitive to the setting of K.

51

the policy.

Algorithm 3.2: Autonomic AWAIT: algorithm for changing the blocking queue
size B on-line.

for every aborted session do
|_ AbortedSessions++;

for every finished request do
counter ++;
update total_RT_histogram (all requests, irrespective of B)\
update current_B_RT_ histogram (with current blocking queue B)\
if counter = = K then

if total_RT_percentile < SLO and current_B_RT_percentile < SLO
and AbortedSessions > 0 then

// Reduce aborted ratio
increase current blocking capacity B\

if total_RT_percentile > SLO and current_B_RT_percentile > SLO
then

// Meet SLO target
reduce current blocking capacity B\

counter <- 0;
AbortedSessions <- 0;

The effectiveness of the autonomic AWAIT strategy is illustrated in Figure 3.10.

Here, we experimented with the three different burst levels but also using differ

ent target SLOs. The figure illustrates how the blocking queue size changes as a

function of the number of requests that are processed by the system for the various

experiments. In each graph we also report on the achieved 95th percentile of the

response time, as well as on the aborted and new session drop ratios. The figure

shows that the autonomic AWAIT is remarkably robust: it reaches the target SLOs

exceptionally well for all cases, while maintaining very low aborted rates. For each

burst level, as the target SLO increases, the algorithm effectively increases the

blocking queue capacity while reducing the aborted ratio. If we maintain the same

SLO but change the burstiness of arrivals, the algorithm decreases the capacity of

the blocking queue B. In all experiments, requests from existing sessions are pref-

52

Burst Level 1 Burst Level 2 Burst Level 3

I
140

120

100
80

60

40
20

0

Target SLO-4 .0

95thpercenRT >4.0106
Aborted Ratio >0.0093
New Drop Ratio >0.1145

Completed Sesn Ratio >0.8759

_J------------1------------I—

140

£ 120
</)

100I 80
60
40

CO 20

0

0 50 100 150 200 250 300
Number of Requests (x 10K)

Target SLO > 4.5

/ tjiuilH
95thpercenRT >4.4548
Aborted Ratio >0.0081
New Drop Ratio >0.1112

Completed Sesn Ratio >0.8788

160
140

t / i 120
| 100

O' 80

I 60

ft 40
CQ 20

0

50 100 150 200 250
Number of Requests (x 10K)

Target SLO > 5.0

300

JJIR.
95th percen RT >5.0218
Aborted Ratio >0.0069
New Drop Ratio -0.1209

Completed Sesn Ratio -0.8721

50 100 150 200 250 300
Number of Requests (x 10K)

100

1 80

S 60
O'

f 40

S 20

0

Target SLO > 4.0

' 9f)th percen tfT >4.0358
Aborted Ratio >0.0355
New Drop RaUo >0.3639

Completed Sesn Ratio >0.6108

l l A A ,

100

I 80

J, 60
f 40
1 20 GO

0

120

£ ioo
i / i

I 80
a 60 £
I 40

oo 20

0

0 20 40 60 80 10012014016018020C
Number of Requests (x 10K)

Target SLO - 4.5
1-------1-------1-------l“ —l-------1-------1-------1-------T”

Completed Sesn Ratio -0.5840

U U L]
95th percen RT >4.5155
Aborted Ratio -0.0037
New Drop Ratio -0.3907

_i__ i— i— i—a— i— i__ i l-
0 20 40 60 80 10012014016018020C

Number of Requests (x 10K)

Target SLO - 5.0

W S J
95th percen RT -5.0183
Aborted Ratio >0.0314
New Drop RaUo >0.3783

Completed Sesn RaUo >0.6019 i_
0 20 40 60 80 10012014016018020C

Number of Requests (x 10K)

Target SLO-4 .0

95th percen RT -4.0382
Aborted RaUo -0.0519
New Drop RaUo -0.4962

Completed Sesn RaUo -0.4749

120

| 100
80

60

| 40
co 20

20 40 60 80 100 120 140 160
Number of Requests (x 10K)

Target SLO > 4.5

95th percen RT >4.5041
Aborted RaUo -0.0514
New Drop Ratio >0.5122

Completed Sesn RaUo -0.4607

140

£ 120
Z ioo

0 20 40 60 80 100 120 140 160
Number of Requests (x 10K)

Target SLO - 5.0
T —f—- I T“ t ».........1....

95th percen RT >5.0044
Aborted RaUo >0.0468
New Drop Ratio -0.4939

Jlr~liFl n _ :
C om pleted Sesn Ratio >0.4793

0 20 40 60 80 100 120 140 160
Number of Requests (x 10K)

Figure 3.10: Autonomic AWAIT: illustration of how the capacity of the blocking queue B
changes as a function of the workload.

erentially treated as low aborted ratios across all experiments are reported, and the

ratio of successfully completed sessions is higher under the autonomic AWAIT pol

icy compared to the aggressive static AWAIT strategy introduced in Section 3.2.1.

These results demonstrate the effectiveness and robustness of the proposed au

tonomic mechanism of the aggressive AWAIT policy.

Note that the target SLO can be achieved with a fixed blocking size queue, but

the size of the blocking queue needs to be different depending on the degree of

burstiness (e.g., SLO = 4 seconds can be achieved with a blocking queue size

set to 8 for the burst levels 2 and 3, but if the system operates under burst level

1, then the blocking queue size could be set to 32, see Figure 3.6). Any fixed

configuration does not adapt to a changing traffic pattern. The proposed autonomic

53

72

strategy is specially designed to "auto-tune" the blocking queue size for achieving

and supporting a given SLO in the most optimal way.

In the following experiment, we designed a special workload that goes through

different request arrival patterns. Initially, the arrival process starts with burst level

3, after that it is followed by burst level 1, and finally it follows the pattern defined

by burst level 2. The overall workload arrival pattern is shown in Figure 3.11 (a).

(a) Mixed Burst Level
1 2 0 0 .----------------------------------.----------------------------------r

Time (minutes)

(b) Blocking queue capacity change
160

§ 140
I 120 | 100
o" 80

f 60
40

3 20

0 0 500 1000 1500 2000 2500
Time (minutes)

Figure 3.11: (a) Arrival process with different burstiness levels; (b) Blocking queue capacity
changes as a function of the workload.

For this experiment, we set the SLO target to be 4.0 seconds and examine how

well the autonomic version of AWAIT respects this target but also how it adjusts

the capacity of the blocking queue as a function of the observed workload pattern.

Figure 3.11 (b) reports how autonomic AWAIT changes the size of the blocking

queue as the burstiness in arrivals changes: the policy reduces the size of the

blocking queue to small values (as low as 1) after entering the burst level 3 time

period, dramatically increasing it during level 1, and reducing it back to 10 after

burst level 2. The autonomic strategy reaches a 95th percentile of response time

equal to 4.03 seconds (perfectly on target), aborted ratio equal to 0.0304, and new

54

session drop ratio equal to 0.336.

To compare the effectiveness of the autonomic version comparing to the ag

gressive AWAIT with fixed blocking queue capacity, we experiment with the arrival

process varies as shown in Figure 3.11 (a) and the aggressive version with the

blocking size fixed and set to 8 (i.e., the best configuration for burst level 3 to meet

the SLO of 4.0 seconds, see Figure 3.6), and to 32 (i.e., the best configuration for

burst level 1, see Figure 3.6). For these experiments, the aggressive AWAIT with

queue capacity 8, the 95-th percentile of response time is 3.81 seconds, the aborted

session ratio is 0.0319, and the new session drop ratio is 0.345. With queue capacity

equal to 32, the 95-th percentile of response time is 4.18 seconds (which is above

the desirable SLO target), the aborted session ratio is 0.0286, and the new session

drop ratio is 0.347.

To closely examine the performance values of the three policies, we show in

Figure 3.12 the accumulated moving averages of the three metrics of interest. Fix

ing the blocking queue to 32 results in clear and constant violations of the SLO,

see last column of graphs. A blocking queue set to 8 is effective at the beginning

of the time, but then clearly stays well below the SLO target with the expense of

a higher aborted ratio. The flexibility of dynamically adjusting the queue capacity

to match the incoming workload is clearly shown on the improved values of the

autonomic version (left column of graphs in Figure 3.12), where all metrics of inter

est are clearly in favor of autonomic. These experiments further corroborate that

the proposed autonomic AWAIT strategy indeed manages to automatically adjust

the blocking queue capacity to meet the desirable SLO targets by taking into ac

count the observed pattern of arrival process, the system behavior, and the target

performance metrics.

55

Autonomic Aggressive. Blocking ■= 8 Aggressive. Blocking = 32

95th Percentile Response Time

4.03

0.2

0.15

0.1

0.05

500 1000 1500 2000 2500
Time (minutes)

Aborted (Existing Session) Ratio

0.5

0.4

0.3

0.2

0.1

0

0.3358

0.0304

500 1000 1500 2000 2500
Time (minutes)

Drop (New Session) Ratio

500 1000 1500 2000 2500
Time (minutes)

Completed Session Ratio
0.9

0.63410.8
0.7

0.6
0.5

0.4

0.3

0.2
0 500 1000 1500 2000 2500

Time (minutes)

95th Percentile Response Time

0.2

0.15

1 -
0.05

500 1000 1500 2000 2500
Time (minutes)

Aborted (Existing Session) Ratio

0.0319

\
500 1000 1500 2000 2500

Time (minutes)

Drop (New Session) Ratio

0.3494

500 1000 1500 2000 2500
Time (minutes)

Completed Session Ratio

0.6292

” 0 500 1000 1500 2000 2500
 Time (minutes) _______

95th Percentile Response Time

0.2

0.15

0.1

0.05

500 1000 1500 2000 2500
Time (minutes)

Aborted (Existing Session) Ratio

0.0286
\

500 1000 1500 2000 2500
Time (minutes)

Drop (New Session) Ratio

0.3470

500 1000 1500 2000 2500
Time (minutes)

Completed Session Ratio

0.6341

500 1000 1500 2000 2500
Time (minutes)

Figure 3.12: Moving 95th percentile of response time and moving average of aborted ra
tio, drop ratio and completed session ratio under the request arrival pattern shown in Fig
ure 3.11 (a).

3.4 Comparisons with an Approach Based on Con

trol Theory

Control-theory approaches have been proposed as an alternative way to maintain

quality of service targets in web environments. In this section we evaluate AWAIT

versus a classic, control-theoretic approach first proposed in [29]. Note that this

approach focuses on a single tier as well. Our analysis focuses on its effectiveness

but also highlights the fact that if the phenomenon of persistent bottleneck switch

56

is present due to burstiness, then single-tier techniques are clearly not effective.

The feedback-based approach given in [29] can be summarized as follows. Uti

lization control is central to the algorithm in [29]. The server’s utilization is aimed

to be kept at or below the target utilization value of U* = 0.58, a "hard coded"

value that has been proved to be effective in meeting the deadline constraints of

real-time systems [29]. To maintain this target utilization, the server is able to offer

"degraded" service levels in addition to the normal service level. Rejection can be

considered as an extreme degradation point, at which the client receives no ser

vice. The service contents are pre-processed and stored in multiple copies that

differ in quality and size. For example, a URL, such as, "my_picture.jpg" can be

served from either "full_content/my_picture.jpg" or "degraded_content/

my_picture.jpg” depending on the load conditions. In general, a server has M dis

crete service levels, numbered from 1 to M in increasing order of quality for the

same content, while a service level of 0 means that the request is rejected.

The control variable m is an indicator of current service levels offered to clients

and is in the range [0,M]. If m is an integer, all clients are served with level m.

If m is a real number, then two levels of service are provided: |mj and [m + l j .

More specifically, a fraction F of the requests is served at level [m + l j , and 1 - F

of the requests are served at level [m \• The algorithm periodically monitors the

current utilization (U) and measures the "utilization error” E = JJ* - U. It uses the

well-known integral controller to produce the control output m. At each sampling

time the controller performs the following computation:

m = m + kE\ If (m < 0) then m = 0; If (m > M) then m = M; where A ; is a

constant equal to 0.5

In the context of this work, M is set to 1 because only one service level is pro

vided, i.e., m can have two possible values, 0 and 1. Here, we use the front server

to measure its utilization and drive the algorithm. We experiment with two different

57

(a) 95th percentile response time (b) Aborted (Existing Session) Ratio

i

■■ i.-*. . m .
1 M 2 bW $ 3

(c) Drop (New Session) Ratio

bl M 2 bl§ M 3
(d) Completed Session Ratio

5U e $ 2 b ^ t je ^ 3

autonomic AWAIT *

btggieYeJ 2 bursUeytil 3

control based

Figure 3.13: Comparison of performance of autonomic AWAIT and the control theory-based
algorithm developed in [29].

burst levels with two different SLOs: burst level 2 with SLO equal to 4.0 and burst

level 3 with SLO equal to 5.0. Figure 3.13(a) illustrates the comparative perfor

mance of AWAIT and the algorithm in [29]. In both experiments, AWAIT does not

miss its SLO target. The control-based algorithm almost misses the SLO equal to

4.0 target in the first experiment but in both experiments it is not effective in differen

tiating the existing versus new sessions, see the high aborted ratio of existing ses

sions in Figure 3.13(b) and the relatively low ratio of new sessions in Figure 3.13(c).

Meanwhile, the useful throughput of the system measured in completed session

ratio of AWAIT is clearly significantly higher than that of the control-theory based

algorithm, see Figure 3.13(d).

Overall, Figure 3.13 argues for the effectiveness of AWAIT versus a classic con

trol theory approach and also highlights the fact that existing autonomic controllers

that may work well in single-tier systems are ineffective in multi-tiered cases. Es-

58

pecially under bursty workloads, where the phenomenon of persistent bottleneck

switch is present, there is a clear need to address the overload problem across

all servers and not only within a single one. AWAIT clearly succeeds from this

perspective.

3.5 Summary

This chapter presented an autonomic policy for service differentiation and admis

sion control during overload for multi-tier system management. We focused on

the pitfalls of existing policies under bursty conditions and remedy the problem by

proposing the concept of a blocking queue where requests from already accepted

sessions are stored if the system operates under overload. A novel autonomic

algorithm, called AWAIT is proposed. AWAIT can limit the increase of the end-

to-end response times within predefined SLO targets while dynamically adjusting

the capacity of the blocking queue to the workload burstiness. Detailed simulations

with the widely used TPC-W e-commerce benchmark under a variety of workload

burstiness levels support the effectiveness and robustness of AWAIT.

The current algorithm adapts the blocking queue capacity to shield the offered

web service from bursty arrivals, to provide service differentiation, and to prevent

the system from overload. It complements the basic overload mechanism that sets

a limit on the number of active client requests that are simultaneously processed

by the system. Currently, this limit is defined by capacity planning.

59

4 Calibrating Resource Utilization in

VMs

Autonomic resource management becomes increasingly required in large-scale

computing systems for reducing administrator burdens. Autonomic resource man

agement and system capacity planning often rely on analytic performance mod

els [72,76,130]. Correct parameterization of such models is critical for their effec

tiveness [130]. Server virtualization clearly enhances flexibility in resource control,

but introduces new challenges in parameterization of performance models. The

relationship between application workload and physical resource utilization can be

greatly obscured by the virtualization layer.

This chapter addresses a fundamental problem in virtual machine resource

management: how to effectively profile physical resource utilization of individual

VMs. Our focus is not just on collecting usage statistics but on extracting the uti

lization of physical resources by a VM across time, where the resources include

CPU (utilization in CPU cycles), memory (utilization in memory size), network (uti

lization in traffic volume), and disks (utilization in disk l/Os). Correct VM resource

utilization information is tremendously important in any autonomic resource man

agement that is model based. For example, in dynamic provisioning, correct per-

VM resource utilization information is the basis for the right VM sizing decision; in

application management, performance modeling requires correct per-VM resource

60

utilization information to build the relationship between application performance and

resource demands.

Profiling is a hard problem because mapping virtual-to-physical (V2P) resource

activity mapping is not always one to one and may depend on application workload

characteristics. The problem is further exacerbated by cross-resource utilization

causality among different resources due to virtualization and multiplexing among

VMs in a consolidated environment.

Here, we formulate the VM resource utilization profiling as a source separa

tion problem, which is originally studied in digital signal processing. The aggregate

utilization information of one physical resource is viewed as a mixed signal super

imposed by the utilization signals of every individual VM. The objective is to figure

out what are the original per-VM "signals". In this chapter we extend the factor

graph model [83] with directionality and factoring generalization, and design a di

rected factor graph (DFG) that models the multivariate dependence relationships

among different resources and across virtual and physical layers.

To build the base DFG model, we first focus on building separately DFG sub

graphs using micro-benchmarks and benchmark applications that are CPU-intensive

(SPEC CPU 2006 [15]), memory-intensive (SPEC CPU2006), network- intensive

(Netperf [12]) and disk l/O-intensive (lOzone [8], SysBench [16]). We also design a

run-time calibration mechanism which outputs physical resource utilization estima

tion on individual VMs based on monitoring information and the DFG based model.

The run-time calibration mechanism also includes a robust remodeling process that

can make a new guided regression model to adapt to the temporal dynamics in the

modeled resource relationships.

We use the Xen virtualization environment and apply the calibration mechanism

on a set of consolidated VMs hosting diverse applications including RUBiS (a 3-

tier app), Netperf, lOzone, and SysBench. The VM resource calibration output

61

is compared with the "baseline" case defined as the physical resource utilization

when that VM is hosted alone on the same server and with the same application

workload. The results show that the calibration mechanism significantly improves

the accuracy of the resource utilization information that are collected within guest

VMs, reducing the relative error in CPU utilization from 44.8% down to 3.9% for CPU

intensive applications, and the relative error in disk write rate from 383% down to

16.7% for IO-intensive applications.

4.1 Problem Formulation

In this section, we first present background to Xen virtualization and then report a

few cases of representative VM measurement information mismatching that moti

vate us for the development of a reliable information calibration approach. Then,

we present the problem formulation.

4.1.1 Xen Virtualization

Xen [34] is an open source x86 virtual machine monitor which can create multiple

virtual machines on a physical server. Each virtual machine runs an instance of an

operating system. A scheduler is running on the Xen hypervisor to schedule virtual

machines on the processors. Domain-0 in Xen is a privileged control domain used

to manage other domains and resource allocation policies.

Xen does not account for resource consumption in the hypervisor on behalf of an

individual VM, e.g., for I/O processing. On Xen's I/O model, a special privileged vir

tual machine called driver domain (by default "Domain-0") hosts unmodified device

drivers and directly controls physical devices. Other virtual machines, called guest

domains in Xen, have to communicate through the driver domain to access the de

vices (e.g., network cards or disks). This I/O model results in a complex resource

62

utilization model. For example, an IO-intensive application has two components

in its CPU utilization: CPU consumed by the guest domain where the application

runs and CPU consumed by the driver domain which performs I/O processing on

behalf of the guest domain. When multiple VMs are co-hosted on a single physical

server, a problem posed by the Xen I/O model is to classify the driver domain's

CPU consumption across the various guest domains. Similar problems arise for

classifying the resource consumption of network and disk activities.

4.1.2 Information Mismatching Paradox

1000
) i - * -x- * ■ x- -x- * • * • x- -x- x * -x x • * x • * -x- ' * • x ■'*

'hysical 1/0 — +—
y ir tu f l l/Q

Tim e (S econd)

Figure 4.1: Measurement information mismatching: a disk I/O utilization example

Directly profiling VM's resource utilization inside the VM does not always give

the correct information. For example, on a Xen-virtualized physical server hosting

a single VM running lOzone [8] (a filesystem benchmark application), Figure 4.1

shows the disk I/O activities (write requests per second) measured inside the VM

(called virtual l/Os) and the I/O activities measured on the physical disk (called

physical l/Os). Both IO measurements are collected from the /proc file system

in the guest domain and Domain-0 separately. There is more than one order of

63

magnitude difference between the two readings.

100
lizatlon
ization

80

£
a cn

00 2 3 4 5 6 7 8 9
T im e (Min.)

Figure 4.2: Measurement information mismatching: a CPU utilization example

Figure 4.2 shows another example on CPU utilization. On a Xen-virtualized

physical server hosting a single VM running an Apache web server, we use the VM

monitoring tool XenMon [73] to measure the VM's CPU utilization and the physical

server's CPU utilization. While only a single VM is running, the server's CPU utiliza

tion is more than twice of the CPU utilization of the VM. This mismatching is mainly

caused by the CPU overhead of Domain-0 in network and disk 10 processing.

4.1.3 Problem Formulation

We define the problem as profiling physical resource utilization for an individual

VM. That is, we want to profile how many physical resources have been utilized by

each VM across time, where resources include CPU, memory, network, and disk.

1 Careful examination reveals that this is caused by write coalescence at the cache subsystem
in the disk I/O layer.

64

4.1.3.1 Virtual Resource Monitored Information

Per-VM resource utilization information can be collected within the VM (e.g., via

the sar utility tool) or from the VM Manager (e.g., Domain-0 of Xen). We implement

the monitoring system to track various VM resource usage without modifying any

virtual server:

• CPU: we monitor the consumed CPU by every individual guest VM. In Xen's

Domain-0, CPU usage of guest VMs and Domain-0 itself are provided by the

XenMon utility [73].

• Memory: we collect the memory usage as the ratio of used memory and

the total memory allocated to the guest VM. While memory utilization is only

known to the OS within each VM, tracking accesses to swap partitions from

Domain-0 can infer such information [128].

• Disk: we collect the disk lOs issued from the guest VM to the privileged

Domain-0 in four metrics - wtps (write requests per second), bwrtn/s (data writ

ten to vbd block device in blocks per second), rtps (read requests per second),

bread/s (data read from vbd block device in blocks per second). In Domain-0

of Xen, such information for the guest VMs is available at /sys/devices/xen-

backend/vbd-<domid>-<devid> for virtual block devices.

• Network: we collect the network traffic issued from guest VMs to Domain-

0 in four metrics - rxpck/s (packets received per second), txpck/s (packets

transmitted per second), rxbyt/s (bytes received per second), txbyt/s (bytes

transmitted per second). In Domain-0 of Xen, such information on guest VMs

is available in the proc filesystem at /proc/net/dev for virtual network devices.

65

4.1.3.2 Physical Resource Monitored Information

The following resource utilization information is collected at the privileged driver

domain (e.g., Domain-0 of Xen):

• CPU: consumed CPU by the privileged domain.

• Memory: memory utilization as the ratio of used memory to total allocated

memory of the privileged domain.

• Disk: four types of metrics are collected for aggregate physical IO that are

the same as those for virtual disks.

• Network: four metrics are collected for aggregate traffic on physical network

cards that are the same as those for virtual network devices.

4.2 Background Information

In this section, we describe the source separation problem defined in signal pro

cessing and a solution framework called factor graphs.

4.2.1 Source Separation

In digital signal processing, source separation problems [114] are those in which

several signals have been mixed together and the objective is to find out what

are the original signals. In particular, blind source separation is the source sepa

ration problem without any information about the source signals or the mixing pro

cess. Several approaches have been proposed for the solution of this problem type

such as Singular Value Decomposition (SVD) and Principal Components Analysis

(PCA). These approaches typically rely on the assumption that the source signals

are mutually statistically independent. Unfortunately, such assumption does not

66

always hold in our application. For example, CPU overhead and network traffic

originated from multiple VMs may have strong correlation when they belong to the

same application services. VM disk write requests can be accumulated (delayed)

and executed in batches on physical disks due to the page cache mechanism at

the OS layer. Therefore, we focus on model based source separation approaches

where domain knowledge on the mixing process can be encoded in the separation

process.

4.2.2 Factor Graphs

Figure 4.3: An example factor graph

Factor graphs [88] are graphical representations of complex mathematical mod

els. They allow a unified approach to many source separation problems in signal

processing and beyond. A factor graph is a bipartite graph representing the factor

ization of a global function of several variables. For example, assume that some

global function, f (x u x 2,x3ix4,x&) can be factored as multiple local functions, e.g.,

f{x 1, X2, X3, X4, X5) = fi(xi, x2)f j(x2, x 3, X4) fk(x3, X4, X5)

This factorization is represented by the factor graph in Figure 4.3. In our applica

tion, we have to bring directionality into a factor graph so as to model a general

decomposition of a global function into multiple local functions. We give details on

this extension in the following section.

67

4.3 Directed Factor Graphs

In this section, we present the factor graph model that we use in the VM resource

calibration problem.

4.3.1 Graph Model

Formally, a directed factor graph (DFG) is a bipartite digraph G - (V, F ,E) .V and

F are two disjoint node sets. V represent the set of variables, F represents the set

of functions. One edge x -> / in E connects a vertex x in V to one vertex / in F

when x is an input parameter of the function represented by / . One edge / -> y

in E connects a vertex / in F to one y in V when y is an output parameter of the

function represented by / .

Figure 4.4: A directed factor graph example

Figure 4.4 shows the directed factor graph for a global function Y0 = g(xi , ® 2 . *s)

with decomposition given as

g(x 1,X2,X3) = fa(xi,x2) + fb(x2,x3)

in Figure 4.4. The new variable nodes yo', Yl are two temporary variables recording

the output of the functions f a and f b.

68

Figure 4.5: The directed factor graph in VM monitoring information calibration.

4.3.2 DFG in VM Information Calibration

We use the directed factor graph in Figure 4.5 as the base for VM information cal

ibration. From left to right, the virtual resource activities are first transformed into

the physical resource activities generated by each VM, and then are aggregated

to render the physical resource activities of the hosting server. The left-most vari

able nodes represent observable virtual resource activities, the right-most variable

nodes represent observable physical resource activities, see Section 4.1.3. The

intermediate variable nodes, such as CPC/vm-i representing the physical CPU

consumption by VM-1, are the data we want to infer and we derive them through

statistical inference techniques on the function nodes such as f e w 1-

We choose the DFG model in Figure 4.5 as it naturally describes the resource

demand transformation and aggregation processes in a virtualization environment.

The edges in the graph depict statistical causality relationships between resource

69

utilization at different components/layers. The generalization of this graph model

is possible thanks to the flexibility in the identification of the function nodes, which

may be different for different hypervisor architectures. In the following section, we

show how to build a base model for Xen by identifying the function nodes through

benchmark profiling and regression analysis.

4.4 DFG Based Model

In this section, we run different benchmark applications in one guest domain to

generate the workload on each virtualized resource separately and to build the

DFG based model for our calibration mechanism.

4.4.1 Methodology

The modeling process consists of the following steps:

1. Host a single VM in a server.

2. Run a benchmark for a specific virtual resource (e.g., a CPU-intensive bench

mark).

3. Apply statistics analysis to find out the set of physical resources on which

the benchmark incurs non-negligible utilization and learn the models for the

function nodes such as f e w 1-

The benchmark based modeling process aims at capturing the stable causality

relationships between virtual and physical resource demands. We carefully select

a fixed set of benchmark applications to cover all the four resources (CPU, memory,

disk, and network) at the virtual layer. If the causality relationship changes across

time, as for example in the disk 10 access patterns of an application, then we resort

to the guided regression method that is described in Section 6.2.

70

4.4.2 Regression Analysis

In Step 3, stepwise regression [58] is applied to the collected data to find out cor

related measurement variables and to remove co-linearity that may exist between

variables. Stepwise regression uses the same analytical optimization procedure as

multiple regression but differs in that only a subset of predictor variables is selected

sequentially from a group of predictors by means of statistical testing of hypotheses.

4.4.2.1 Source Node: Virtual CPU Load

We first run a micro-benchmark in the guest VM that alternates between sleeping

and calculating Fibonacci numbers, the ratio of which determines the VM CPU uti

lization. Figure 4.6 shows the CPU overhead in the privileged domain while the

micro-benchmark VM's CPU utilization changes from 5% to 50%. The Domain-0

CPU overhead is stable and remains close to 0. Figure 4.6 also shows the Domain-

0 overhead when the guest VM runs gromacs, a CPU-bound SPEC CPU2006

benchmark. The Domain-0 overhead is close to 0 while the guest VM uses up

its allocated CPU capacity (one core of the dual-core processor in the server). We

also observe (not shown on this graph) that the CPU-intensive guest VM did not

incur overhead on other server resources (e.g., network or disk).

4.4.2.2 Source Node: Virtual Memory Load

We examine how memory-intensive applications on guest domains impact the re

source utilization in the privileged domain. Figure 4.6 shows the Domain-0 CPU

overhead when running libquantum, a memory-bound SPEC CPU2006 benchmark,

and the overhead is close to 0. We also observe (but not include these results here)

that the memory-intensive guest VM did not impose overhead on other server re

sources (e.g. network or disk).

71

eo

aD
Da .O
w

£
c3

2.5 h

2

1.5

1

0.5

0
-e—e-e-

1 -------------1-------------r
M icrobechm ark

grom acs -X- -■
libquantum - - x r •

-0- 0 I
JL

10 20 30 40
V M CPU U tilization (%)

50 60

Figure 4.6: Compute intensive workload has no impact on privileged domain performance

4.4.2.3 Source Node: Virtual Network Load

We use Netperf [12] to perform controlled network load generation. Netperf allows

both UDP and TCP stream tests. Here, we measure the number of packets (bytes)

sent/received per second for both guest and privileged domains.

For the UDP case, we change the packet sending rate from 1,000 to 36,000

pkts/sec, the packet payload size from 100 bytes to 1,400 bytes, and measure server

resource metrics on both sender and receiver sides. Since the TCP protocol is not

allowed to specify the transfer speed, we can not change the sending rate settings

as in the UDP protocol.

The regression coefficients of different metrics from stepwise regression algo

rithm is shown in Table 4.1, and only the correlated variables are presented. Each

row corresponds to a Domain-0 resource metric and each column corresponds to

a guest domain variable. For example, the first row in the figure means the priv

ileged domain CPU overhead(%) = 6.64 x 10~4 x recv_pkt_rate + 5.02 x 10-4 x

send_pkt_rate - 0.06. It shows that the Domain-0 CPU overhead has a clear linear

relationship with the packet sending and receiving rates, but not with the network

72

throughput in bytes. The same observation is also reported by Wood et al. [127].

Table 4.1: Network regression model.

Domain-U
rxbyt/s rxpkt/s txbyt/s txpkt/s intercept

D CPU(%) 0 6.64e-04 0 5.02e-04 -0.06
0 rxbyt/s 1.01 0 0 0 -49.51
m rxpkt/s 2.24e-06 1.00 0 0 2.56
- txbyt/s 0 0 1.00 20.38 1094.2
0 txpkt/s 0 0 -4.14e-06 1.01 4.26

4.4.2.4 Source Node: Virtual Disk IO Load

Xen supports many different storage options for the guest domain. These options

can be divided into three categories: file based, device based, and LVM-based. The

file-based block devices can be differentiated by how Xen accesses them: blktap

and loopback. Blktap replaces the common loopback driver for file-based images

because it allows for improved performance and more versatile filesystem formats,

such as QCOW [14]. It also avoids problems related to flushing dirty pages which

are present in the Linux loopback driver.

We build our model for guest domains with file based disk storage. For the

other two storage options, the same methodology can be also applied. Here, we

perform controlled IO-intensive experiments with SysBench [16]. SysBench is a

multi-threaded benchmark tool for evaluating database (e.g., MySQL) server per

formance under intensive load. We exploit its file IO performance testing function

ality to generate different IO activities. To control the write/read operation rate, we

add different sleeping time between each write/read operation in the source code.

The SysBench IO testing module supports six IO operations: sequential write, se

quential rewrite, sequential read, random read, random write, and combined ran

dom read/write. We take samples of each IO operation and create a data set based

on all the samples. The block size is set to 16K bytes. The total size of testing files

73

is set to 4G bytes. We choose "default" for other option settings.

Tables 4.2 and 4.3 show the regression models extracted by blktap based and

loopback based devices. We note that besides the difference on CPU overhead,

the relationship functions from virtual disk IOs to physical IOs are also different

for blktap based and loopback based devices. For example, the coefficient of vir

tual rtps to physical rtps is 1.29 for blktap based devices, while the coefficient is

0.34 for loopback based devices. We observe (but not include the results here)

that the regression models for disk IOs are dynamic and dependent on workload

patterns (e.g., sequential vs random access, high vs low access locality). The co

efficients in the regression models of Tables 4.2 and 4.3 represent the resource

relationships under the standard SysBench workload. Later, we present a model

relearning scheme for online information calibration that adapts to inevitable work

load dynamics, see Section 4.5.

Table 4.2: Blktap based device regression model

Domain-U
rtps bread/s wtps bwrtn/s intercept

D CPU(%) 0 2.02e-04 0 2.21 e-04 0.47
0 rtps 1.29 0 0 0 10.57
m bread/s 0 1.00 0 0 1.59

- wtps 0 0 0.11 0.0018 1.6
0 bwrtn/s 0 0 0.07 0.998 15.3

Table 4.3: Loopback based device regression model

Domain-U
rtps bread/s wtps bwrtn/s intercept

D CPU (%) 0 8.27e-05 0 1.11e-04 0.23
0 rtps 0.34 0 0 0 0.14
m bread/s 0 1.0 0 0 -0.53
- wtps 0 0 0.10 0 1.52
0 bwrtn/s 0 0 0 0.997 22.1

74

4.4.2.5 System Overhead

When multiple VMs are consolidated in one physical machine and lead to heavy 10

utilization, possible system overhead needs to be considered. One example of the

source of such overhead is the ksoftirqd daemon process, ksoftirqd is a per-CPU

kernel thread that runs when the machine is under heavy soft-interrupt load. If a

soft interrupt is triggered for a second time while soft interrupts are being handled,

the ksoftirq daemon is triggered to handle the soft interrupts in process context.

The sudden run of ksoftirqd daemon process under heavy network workload could

lead to unexpected CPU utilization bursts. In our solution, this type of overhead

is taken as system noise and is excluded from the aggregate resource utilization

contributed to guest VMs.

4.5 Information Calibration

In this section, we present the run-time calibration mechanism. The mechanism

takes as input the VM monitoring information as described in Section 4.1.3 and

outputs per VM physical resource utilization information based on the DFG model

in Section 4.3.

4.5.1 Run-time Calibration Mechanism

(v m) [v m] - -

Server

DFG model

VM resource
.utilization Information

physical server resource
. utilization information

calibrated VM resource
utilization informationrun-time calibration process

Figure 4.7: The run-time calibration mechanism

75

Figure 4.7 shows the overview of our run-time calibration mechanism. The in

puts to the mechanism are the resource utilization monitoring information within the

guest VMs and the privileged domain (for aggregate physical server load informa

tion). The mechanism uses the DFG model to decode the input information and

outputs per-VM physical resource utilization information. In the run time, the cali

bration process may also update the DFG model if the existing one incurs non-trivial

estimation errors.

We exemplify the algorithmic steps in the context of CPU utilization, but the

same steps apply for all four resources. The run-time process on per-VM CPU

utilization information calibration is given in Algorithm 4.1.

Algorithm 4.1: per-VM CPU utilization information calibration algorithm
0 Initialize the model parameters of DFG function nodes;
1 Feed the DFG model with per-VM virtual resource utilization information;
2 Calculate the value of DFG latent variables on per-VM CPU utilization

information;
3 Calculate the value of server CPU utilization variable;
4 while CPUjerr > thresh do
s Re-learn the DFG function models;
e Re-calculate the value of the DFG latent variables for per-VM CPU

_ utilization information;

7 Output per-VM CPU utilization information;

In Step 0, the initial model parameters are obtained from benchmark based

profiling, see Section 4.4, or from offline application-specific profiling for calibrated

VMs. While the latter method is expected to give a more accurate model than the

former one, it comes with an extra profiling overhead. In the evaluation, we use the

benchmark based profiling results for this step.

Step 4 brings a feedback loop to make our calibration process adaptive to in

evitable model dynamics, typically caused by the change of workload patterns. As

shown in Section 4.4, the relationship between a virtual resource activity and its

overhead on physical resources can vary and depend on the workload contents.

76

The mapping of virtual I/O to physical I/O activities is one such example. To be

robust to transient workload changes or monitoring noise, the discrepancy is cal

culated on the average of the estimation errors during a sliding window including

the past K time points. The threshold is chosen as (e + Za * a), where (c, a2) is the

mean and variance of the regression model estimation error from the last remodel

ing process (or those learned from the benchmark based profiling at the beginning

of the process). ZQ is the standard score in statistics [95], and here measures how

unlikely an estimation error is if the current model is correct. If Za = 3, a = 99.75%,

then an estimation error larger than (c + 3 * a) is unlikely (with probability < 0.25%)

to appear if the virtualization environment were the same as during the last remod

eling process. Therefore, if several large estimation errors in a row indicate the

change of some factors in the virtualization environment, then a remodeling pro

cess is triggered. This process is presented in the following subsection.

4.5.2 Robust Remodeling: Guided Regression

While we use linear regression models in Section 4.4 for single VM based bench

mark profiling, a new problem arises in the calibration process when multiple VMs

are co-hosted in a single server: now y represents a physical resource utilization

which is the summation of physical resource utilization of multiple VMs. Since the

physical resource utilization of each individual VM is a latent variable, a straightfor

ward regression model is as follows, assuming m co-hosted VMs:

y(‘> = + + +

where yVM~^v> = jg |atent variable for the

j th VM.

77

If we directly solve the above problem with the least square solution

0 = (xTx)-1xTy , (4.1)

it could lead to re-learning the models of all the VMs in the server. We seek to

enhance the original regression modeling method for remodeling robustness due

to three reasons. The first comes from common run-time monitoring data error and

noise (e.g., system noise, transient VM migration overhead) that might add tran

sient perturbation onto otherwise stable resource relationships. The second is due

to the factor that some relationships (such as virtual disk l/Os and its resource over

head) are naturally dynamic due to their content dependence. Re-learning those

models should not affect the model of other stable relationships. The third reason

is due to the fact that since the co-located VMs are all involved in the regression

model, the number of unknown parameters in 0 is large. In order to obtain accu

rate estimation of those parameters, a significant amount of measurements [x,y] is

usually required. However, in the model relearning process, sometimes we do not

have so many observations due to the quick dynamics of the system. The lack of

(enough) data may lead to large variances of the final solution 0.

In order to enhance the robustness of model estimation, we propose a guided

regression process to solve the model of Eq. (4.1). We add some constraints to

describe the range of possible 0 values and embed those constraints into the esti

mation process. The constraints can come from various sources, such as the prior

model knowledge based on the benchmark profiling or the model learned during

the previous time period. By including such knowledge to guide the estimation, we

can obtain a more reliable solution 0 for the regression model.

The prior constraints on 0 are represented by a Gaussian distribution with the

78

mean 0 and covariance £

P (/ V) = (a*) -Ke x p { - ^ W ~ P)TZ - ' (P - 5) } (4.2)

The mean 0 represents the prior expectation on the values of 0, and is deter

mined from the 0 values learned in Section 4.4. The covariance £ represents

the confidence of our prior "knowledge". We choose £ as a diagonal matrix £ =

diag(c i , c2, • • • , cp), in which the element c* determines the level of variances of /?»

in the prior distribution. If we are confident that the value of 0t is located closely

around 0, the corresponding c* value is small. Otherwise we choose large e* val

ues to describe the uncertainty of 0t values. Note that the least squares method in

Eq (4.1) solves the regression without any prior knowledge, i.e., the values of Cj's

are infinite, which may be inaccurate when the number of collected measurements

is insufficient.

There is also an unknown parameter a2 in Eq (4.2), which represents the vari

ance of the data distributions. Here, we use the inverse-gamma function [95] to

represent the distribution of <r2:

p(ff2) = r^ 2)-(°+M~;y (4-3>
where a, b are two parameters to control the shape and scale of the distribution, r (a)

is the gamma function of a. We choose the inverse-gamma function because: 1) it

is one of the common distributions for non-negative variables such as the variance

studied here; 2) it is easy to tune its shape by setting (a, b) parameters. 3) By using

the inverse-gamma function as the prior of Gaussian variance, we can obtain a

closed-form solution for optimizing the posterior distribution estimation.

Given the prior distribution P{0), the guided regression finds the solution by

79

maximizing the following posterior distribution

P{0 |x, y, a2) oc P(y\0, %)P(0\a2)P{a2) (4.4)

which leads to the following solution

0* = (xTx + S-1)-1(E_1/9 + xt x/3). (4.5)

Due to the space limit, we do not present the detail of the above derivations.

To summarize, the robust remodeling process takes the following steps: 1) de

cides the prior coefficients 0 and their weight metric £ (e.g., learned through the

benchmark profiling in Section 4.4); 2) solves Eq.(4.1) based on the run-time mon

itoring data for the standard least square solution; 3) calculates the final solution

0*, which is a weighted average of the two components from 1) and 2).

4.6 Evaluation

As discussed in the previous sections, the proposed DFG based model and run

time calibration mechanism constitute the two building blocks for VM resource uti

lization information calibration process. These building blocks can be directly ap

plied to existing applications. In this section, we demonstrate three case studies

that clearly show the effectiveness of the calibration methodology.

4.6.1 Experimental Methodology

We evaluate the effectiveness and accuracy of our calibration technique with dif

ferent applications. The test-bed runs the Fedora release 8 operating system with

Linux kernel 2.6.18-8. The evaluation is based on the Xen virtualization platform

version 3.3.1. Our test-bed platform uses Supermicro 1U Superservers with Intel

80

Core 2Duo E43001.86 GHz processors, 2MB L2 cache. All servers have a RAM of

2GB and 250GB 5400RPM disk. The servers are connected through D-LINK DES-

3226L 10/100Mbps switches. The test-bed is managed by Usher [96], an open

source VM management middleware with a centralized monitoring database. The

run-time calibration process is co-located with the monitoring DB and it calibrates

the raw monitoring data in batches with fixed time window size.

The following applications are used in our evaluation:

• RUBiS is an auction site prototype modeled after eBay. A client workload

generator emulates the behavior of users browsing and bidding on items. We

use the Apache/EJB implementation of RUBiS version 1.4.3 with a MySQL

database server version 5.0.77.

• lOzone is used for filesystem benchmarking. It is used to generate and mea

sure various disk I/O activities.

• SysBench is a multi-threaded benchmark tool for evaluating database (e.g.,

MySQL) server performance under intensive load. We use SysBench to gen

erate MySQL workloads which lead to various I/O activities.

• Netperf is tool for network benchmarking (see Section 4.4.2.3). We use Net

perf to generate different network traffic workloads.

4.6.2 Results

Here, we present three scenarios to test the accuracy of the DFG based model.

In scenario 1, we consider the RUBiS application. We collect baseline information

from every component server i.e., web server, application server, and database

server. We demonstrate substantial improvements in resource information estima

tion with the DFG based model for two different server consolidation environments.

81

In scenario 2, we illustrate how guided regression can be used to improve on the

DFG based model. The estimation after the remodeling process shows dramatic

improvements. In scenario 3, we illustrate how the DFG model is used to separate

a mixed disk 10 stream into its component streams.

4.6.2.1 Scenario 1: RUBiS

RUBiS is a multi-tier web service application composed by open-source software,

i.e., Apache Web Server, JBoss EJB Server, and MySQL relational database. For

all servers, we use blktap based virtual block devices. The resource usage base

line of each server is collected when it is virtualized and run in the same physical

machine alone. Here, RUBiS is initialized with 700 simultaneous clients with the

browsing workload. For the baseline comparison, we run RUBiS for 30 minutes

and collect usage statistics.

We setup the following server consolidation environment (two physical machines):

on Machine #1, the virtualized App server and DB server are consolidated together;

the web server VM is placed on Machine #2. We collect each virtual and physical

machine run-time information using the techniques described in Section 4.1.3. The

calibrated usage information is calculated with the DFG based model described in

Section 4.4.

Figure 4.8 illustrates the relative errors1 of both in-VM monitoring and DFG

based model. The figure shows results for all three component servers. We ob

serve that RUBiS is mainly a compute and network IO intensive application with

very low disk activities. In the figure, we only show metrics with significant values

and ignore those close to zero. One can easily see that the DFG based model

significantly reduces the relative error, e.g., the error in web server CPU utilization

drops from 44.8% down to 3.9%.

1 Relative error is defined as the ratio of absolute error to its corresponding baseline value.

82

The substantial improvements in CPU utilization estimation is due to the fact

that DFG based model takes the intensive network activity overhead into consid

eration. In the web server example, on the average, the server transmits about

12,500 packets per second to the clients and application server. Meanwhile, it also

receives about 13,400 packets per second. According to the DFG based model,

this amount of network traffic leads to 13% privileged domain CPU overhead that

is not reported by in-VM monitoring.

0.5

0.4

0.3

0.2

0.1

0

(a) Web server

in -V M Mon < = = >
DFG ceed

1 n n . nral

0.5

I “(5 0.3
%
I 02

0.1

0

(b) App server

in -V M Mon i
DFG z z z a

1

(b) DB server

I

in -V M Mon

C?V5 o^ s t * ^ s

Figure 4.8: Relative error of in-VM monitoring method and DFG based model in RUBiS app

4.6.2.2 Scenario 2: Co-hosting Network- and IO-intensive Apps

For this experiment we consolidate two virtualized servers on one physical ma

chine. Both VMs are configured with loopback based virtual block devices. The

first VM runs Netperf that sends out UDP packets at the rate of 25Mbps and the

second VM runs SysBench. SysBench is set to run in the "oltp" test mode, to em

ulate a real database. For our test-bed, we choose the MySQL implementation and

set the number of rows in the testing table to 5,000,000. To make the testing more
I

real, we select the execution mode to be "advanced transactional" in which each

thread performs transactions.

In the experiment, we set a sliding window length to 15 minutes. At the beginning

of the first window, the parameters of DFG are initialized according to Tables 4.1

and 4.3. The system is set to take monitoring samples every 10 seconds and re

port to the center database. According to the run time calibration mechanism in

83

section 4.5, at the end of each window, the program calculates the estimation error

between the current DFG model and physical server measurement as shown in

step 4 of Algorithm 4.1.

Table 4.4 shows the in-VM monitoring information, the DFG model result, and

the resource usage of the physical server which is hosting the two VMs. We only

report the metrics with significant values.

Table 4.4: Example of DFG error that triggers remodeling mechanism

CPU txbyt/s txpkt/s wtps bwrtn/s
in-VM 1-mon 27.45 0 0 2052.77 30859.36
in-VM2-mon 0.83 3.08e+06 3000 0 0

DFG 5.14 3.15e+06 3021 214.81 30773.46
Server resource 5.74 3.14e+06 3009 176.96 7927.70

The large estimation error highlighted in bold triggers the remodeling mecha

nism. Note that remodeling is only applied for the IO write metrics. The model of

other resources is kept unchanged. The new model is based on the data points

collected in the previous time window. The new disk IO write model replaces the

original one. Close examination indicates that the large estimation error (see the

bold value in the table) happens because that loopback based storage uses the

Domain-0 kernel page cache. When a file write occurs, the page backing the par

ticular block is looked up. If it is already found in cache, the write is done to that

page in memory.

Figure 4.9 illustrates the relative error for in-VM monitoring method and run

time calibration mechanism. Note the log-scale on the Y-axis. One can easily

see the significant improvement in the estimation accuracy. The relative error of

the "bwrtn/s" is reduced from 276% down to 3.5%. The "txpkt/s" metric in Fig

ure 4.9(a) is still better than the calibration result after remodeling but the run time

calibration has already given a good estimation which only has a relative error of

0.5% only.

84

(a) Netperf (b) SysBench
100

in-VM Mon

0.01

in-VM Mon t — 1
DFG CZ2Z3

Urn

1
0)
>
33 0.01

0.001

Figure 4.9: Relative error for in-VM monitoring method and run time calibration mechanism

4.6.2.3 Scenario 3: Co-hosting IO-intensive Apps

In scenario 3, we show the case study of how the DFG based model is useful in

decomposing disk 10. We setup two virtualized servers on one physical machine.

The first VM server executes the lOzone benchmark to perform only writes and

re-writes. The second VM server runs the SysBench benchmark and writes to disk

at the rate of 8MBps. The block size is set to 16K bytes and the total size of testing

files is 8GB. We choose "default" for other options. In both cases, we use blktap

based virtual block devices.

The effectiveness of DFG based model in decomposing mixed 10 and CPU is

shown in Figure 4.10. The DFG based model successfully decomposes the mixed

CPU utilization and reduces the relative error in write request rate from 391.5% down

to 10.6% in Figure 4.10(a) and from 304.4% to 31% in Figure 4.10(b). Meanwhile,

the figure shows that relative error in CPU is also reduced significantly.

4.7 Summary

In this chapter, we present the design and evaluation of a VM monitoring infor

mation calibration mechanism. We formulate the problem as a source separation

85

w0

1jg
Ctf

10

0.1

(a) IOzone
----------- 1--p

in-VM Mon c
DFG CZ2Z3

vAVs W

u0
w

1(3
os

10

0.1

(b) SysBench

in-VM Mon
DFG ^7771

t./A... M
vW8

Figure 4.10: Relative error for in-VM monitoring and DFG model in mixed signal decom
posing

problem and base our solution on a directed factor graph. We show how to build a

base DFG model through benchmarking and design a run-time remodeling solution

which is adaptive and guided by the base DFG model. Our evaluation shows that

the proposed methodology is robust as it successfully calibrates the VM monitoring

information and compares well to baseline measures.

86

5 Auto-Scaling of VMs in Resource

Pools

Most modern hypervisors such as VMware ESX [20], Xen [34], and Microsoft Hyper-

V [26] offer a rich set of resource control primitives at the individual virtual machine

(VM) level to guide the sharing of physical resources among co-hosted VMs. For

example, ESX offers the concepts of reservations, limits, and shares for both CPU

and memory. Hyper-V provides reserves, limits, and relative weights for CPU, and

Startup RAM, Maximum RAM, buffer, and weight for memory.

Additionally, VMware's Distributed Resource Scheduler (DRS) [69] offers the

abstraction of a resource pool (RP), a logical container representing an aggregate

resource allocation for a collection of virtual machines (VMs). One type of resource

pool, referred to as a virtual datacenter (VDC), encapsulates an aggregation of

resources allocated to an individual organization, either in a public or a private

cloud. The configured capacity of the VDC can be tied to how much the organization

is being charged. A VDC can contain multiple resource pools, each supporting a

specific department of the organization; each resource pool can contain multiple

applications, each supporting a specific business process.

Resource control settings can be specified at both a VM and an RP level. DRS [69]

periodically divides the total capacity of a parent resource pool and distributes it to

child VMs or RPs, according to the resource control settings and estimated re-

87

VDC

AppRM \ No RnJ AppRMRP1

vApp2

/ T v
vAppl

VM

Figure 5.1: An example VDC containing two resource pools hosting two multi-tier vApps
and two single-tier VMs.

source demands of individual VMs and RPs. This allows resources to flow across

VMs or RPs in order to achieve better resource utilization.

Fig. 5.1 shows an example of a VDC containing two resource pools, RP1 and

RP2. We refer to a virtual application running on one or more VMs as a vApp.

RP1 contains two multi-tier vApps, each containing web, application, and database

tier VMs, and running business critical production workloads. RP2 has two VMs

running batch jobs that have less stringent performance requirements.

To protect the high priority applications from their neighbors, a VDC administra

tor can use the resource controls to achieve the following goals:

• Resource guarantees: Provide a guaranteed amount of a certain resource to

a specific application or department within an organization, even when this

resource is over-committed. For example, a resource reservation can be set

on RP1 or on the individual VMs running important vApps.

• Performance isolation: Prevent demand spikes within one application or re

source pool from affecting others. For example, a resource limit can be set

on RP2 or its child VMs.

88

• Proportional sharing: Allow multiple applications or resource pools within the

same organization to share resources in proportion to their relative priorities.

For example, the administrator can set relatively higher shares on VMs run

ning vAppI than on those running vApp2 to provide performance differentia

tion between the two under resource contention.

Translating an application-level SLO to VM-level resource requirements is a

well-known, difficult problem, due to the distributed nature of most modern appli

cations, their dependency on multiple resource types, as well as the typically time-

varying demands faced by the applications. There has been much research tack

ling this problem in the past several years [40,102,129], using statistical machine

learning, fuzzy logic, as well as control theory. However, no prior work has studied

automatic adjustment of resource control settings at the resource pool level. The

industry has largely relied on heuristics [119], which is laborious and error-prone.

Therefore, even though resource pools offer additional powerful knobs to con

trol resource allocation, converting application-level SLOs to these knob settings

remains a challenging open problem. In this chapter, we propose a holistic so

lution that aims at providing SLO guarantees to individual applications within a

resource pool hierarchy. The developed tool called AppRM is deployed on the

VMware vSphere platform and is able to automatically translate application-level

SLOs into individual VM or RP settings. To this end, AppRM employs a hierarchi

cal architecture consisting of a set of vApp Managers and RP Managers. A vApp

Manager determines the resource controls for a specific vApp and a RP Manager

determines the resource controls for a specific resource pool.

Each vApp Manager contains a model builder, an application controller, and a

resource controller. We use control theory and the online optimization approach

in [102] as a building block for designing the model builder and the application

controller within the vApp Manager. At the same time, we make the following key

89

contributions in the overall design of AppRM:

1. We design a resource controller in each vApp Manager that computes the

desired resource control settings for the individual VMs. Although most prior

work utilizes only limits or shares, AppRM specifically incorporates dynamic

adjustment of resource reservations as an effective knob to ensure guaran

teed access to specified amounts of resources.

2. We design an RP Manager that takes desired VM-level settings as inputs and

computes the actual knob settings at both the VM and the RP levels, taking

into account whether there is resource contention within the resource pool

and whether the RP-level resource settings are expandable or modifiable.

Furthermore, the RP Manager interacts with its associated vApp Managers

asynchronously to relax timing constraints on the vApp Managers.

To the best of our knowledge, this is the first development of a holistic method

ology that manages resource settings at both VM and resource pool levels. Our

experimental results indicate that AppRM can achieve different targets for an ap

plication SLO in both under-provisioned and over-provisioned scenarios, in spite

of dynamically-changing workloads. When the capacity of a VDC cannot satisfy

the demands of all its applications, AppRM can ensure performance for the more

important vApps by automatically adjusting the reservation and limit for the RP con

taining these vApps (e.g., RP1 in Fig. 5.1). If, however, the resource settings of this

RP are unmodifiable, the RP Manager gracefully degrades the performance of all

the child vApps in proportion to their respective demands.

5.1 Architecture

In Fig. 5.2, we show the overall architecture of the AppRM system that operates in

the context of a single virtual application (vApp) to ensure that the vApp achieves

90

vApp

VM, VM, VM.

App Sensor

System Sensor

Pt I
r----- il
1 i

Observed app |
performance (p,]|
-----------------f

Application
Controller

App-level
* SLO (p j

Desired resource
Model: p = f(u) , allocations (ut+1)

Model
Builder

Current resource
allocations (ut) •»» <

Desired VM resource settings (S fl)
output to RP Manager

Resource
Controller

v A p p iV b 'V i ;->i

Figure 5.2: AppRM at work across VMs in a single vApp.

its user-defined, application-level SLO.

The App Sensor module collects various application-level performance metrics

such as throughput and response times for each vApp. Note that an application

may require more than one VM, e.g., a multi-tiered application. We use the Sys

tem Sensor module to measure and keep track of current resource allocations for

all the VMs associated with the target vApp. These two sets of statistics are input to

the Model Builder module that first constructs and then iteratively refines a model

for the observed application performance as a function of the VM-level resource

allocations. The Application Controller module inverts this function to compute a

new set of "desired" resource allocations in order to meet the user-defined appli

cation SLO. The Resource Controller module then determines a set of individual

VM-level resource settings that would cause the VMs in the RP to acquire the de

sired resource allocations in the next control interval. Together, the Model Builder,

Application Controller and Resource Controller modules constitute an instance of

the vApp Manager for a single vApp.

In Fig. 5.3, we show how multiple vApps in a Resource Pool (RP) are managed

by AppRM when they contend for resources in the RP. The App Manager from

each vApp talks to the RP Manager where an Arbiter module addresses resource

contention and computes the ideal values of VM-level and RP-level resource set-

91

Resource Pool (RP)

Desired VM resource settings

VM or RP-level resource settings
via VM ware vSphere API

VMjVM

ActuatorArbiter

V M ,

App/System Sensors j

vApp Manager I

VM„V M j

App/System Sensors j

vApp Manager |

VM„

Resource Pool Manager
(RP Manager)

vAppj

Figure 5.3: AppRM at work across vApps in a resource pool.

tings. These values are then set by the Actuator module, which uses the VMware

vSphere WebServices API [24] to communicate with the inventory management

layer.

5.2 Design

In this section, we describe the detailed design of each component module in Ap

pRM. One set of sensor, model builder, application controller, and resource con

troller is instantiated for each application. There is one resource pool manager per

resource pool.

5.2.1 Sensors

The sensor modules periodically collect two types of measurable statistics: real

time resource utilizations of individual VMs and application performance. Resource

utilization statistics are collected by the system sensor through the vSphere Web

Services API [24]. This API allows collection of an extensive set of ESX run time

performance counters. We collect the average per-VM CPU utilization over a time

interval using the usage performance counter, and the per-VM memory utilization

using the consumed counter.

92

For application performance, we measure the request throughput, client side

response time, and percentile response time. Although the application sensor is

currently implemented in the client workload generator, it can potentially be im

plemented as a Hyperic [5] agent, which can provide performance statistics for a

variety of applications without requiring any application modifications.

5.2.2 Model Builder

To determine the amount of resources needed for a vApp to meet its performance

target, we first build a model of the relationship between the application resource

allocation and its performance. As with most real-world systems, this relationship

is often nonlinear and workload-dependent. Nevertheless, many nonlinear models

can be approximated by a linear model in small-enough regions around an operat

ing point. This linear model can then be updated periodically to adapt to changes

in the workload and/or system conditions.

This is the fundamental assumption behind the online adaptive modeling ap

proach in [102]. In this section, we explain how the same approach can be applied

to our specific modeling problem. We first define, in Table 5.1, the key variables

used in our model and the corresponding application controller.

For application a e A, we define the resource allocation variable ua to be a vec

tor that contains all measured resource allocations for application a. For example,

for an application running in two VMs (M0 = {vmi, vm2}), if two resources are con

sidered (R = {cpu, memory}), then ua is a vector ua = (ua>vmltCpu, ua<vmhmem,

Uayvm2,cpu,ua,vm2,mem)- ua(/) represents the measured resource allocation values for

application a during a control interval t.

In every control interval, the model builder recomputes the following auto-regressive-

moving-average (ARMA) model that approximates the relationship between an ap-

93

Table 5.1: Notation

A set of applications ^a,m,r measured allocation of resource type
M a set of VMs in application a e A r in VM m of application a,

e.g., M a = 0 £> uajm<r < 1
t index for control interval Pa measured performance of application a
R set of resource types controlled P le f target performance of application a

e.g., R = {cpu, memory} Pa normalized performance of application
^o,m,r desired allocation of resource type a, where pa = p j p raef

r in VM m of application a, P T d predicted performance of application a
0 < u l m,r < 1 b coefficient vector, b = [6i • • • 6„]T

plication's normalized performance and its resource allocations:

Pa(t) = a(t)pa(t - 1) + br (t)ua(t). (5.1)

Experiments here indeed confirm that this first-order ARMA model can predict ap

plication performance with satisfactory accuracy. The model is self-adaptive as its

parameters a(t) and b(t) are re-estimated in every control interval.

5.2.3 Application Controller

The application controller determines the resource requirements for all the VMs

running the application such that the application can meet its performance SLO.

Although we apply the same online optimization approach in [102] to the design

of the application controller, we offer further discussions of the optimal controller

solution and intuitive interpretation of the key parameters. More specifically, the

controller seeks the VM-level resource allocation vector, ua(f + 1), for the next con

trol interval t + 1 that minimizes the following cost function:

J(Ua(t + 1)) = (p£"*(t + 1) - l) 2 + A ||Ua(* + 1) - Ua(*) | |2 . (5.2)

Here, p^ed(t + 1) is the predicted value for the normalized application performance

in internal t + 1, using the model estimated in interval t (as shown in Eq. (5.1)), for

94

a certain resource allocation vector ua{t + 1). More specifically,

P^ed{t + 1) = a(t)pa(t) + bT(t)ua(t + 1). (5.3)

The scaling factor, A, captures the trade-off between the performance cost that

penalizes the application's performance for deviating from its target (denoted by the

normalized value equal to 1), and the stability cost that penalizes large oscillations

in resource allocation values. Solving this quadratic optimization problem leads to

the following optimal resource allocations:

ul(t + 1) = (bbT + Al)"1 ((1 - a(t)pa(t))b + A u ,(t)), (5.4)

where I is an identity matrix. Alternatively, let ua,i be the i - th resource allocation

variable, then the above equation can be re-written as

K.,(t + 1) = + 1 <5-5>

We make the following key observations:

(1) When bi = 0, indicating no impact from the i - th resource allocation variable

on the application performance, then the % - th resource allocation variable will see

no change in the next control interval;

(2) When > 0, indicating a positive correlation between the i - th resource

allocation variable and the performance value, if the model-predicted performance

is below the target, i.e., p^ed(t + 1) < 1, then the i - th resource allocation variable

will be increased such that the performance value can be increased in the next

interval; and the opposite is true if 6* < 0 or if p^ed(t + 1) > 1.

(3) The scaling factor A affects the amount of resource allocation changes. As

A increases, the oscillation in each resource allocation variable is reduced.

95

5.2.4 Resource Controller

The goal of the resource controller is to translate the optimal resource allocation

values computed by the application controller to desired VM-level resource control

settings. The translation is needed for two reasons:

• The output of the application controller is in percentage units, whereas the

reservation and limit values for both CPU and memory are in absolute units,

i.e., megahertz (MHz) or megabytes (MB).

• We explicitly allocate more resources than the computed values as a "safety

buffer", to deal with inaccuracies in the computed optimal allocations.

The pseudo-code in Algorithm 5.1 summarizes the algorithm applied to every VM

within the same vApp, for both CPU and memory resources. The algorithm cal

culates the resource capacity based on the specific resource type (line 4-7). The

desired resource reservation is computed by multiplying the optimal value and the

capacity (line 8). The "safety buffer" size is determined by the reservation, the

normalized performance, and a precomputed constant value delta (line 12). In this

algorithm, we set delta to a low or high value depending on whether the measured

application performance is below or above the target (line 10). When the perfor

mance is better than the SLO (perf < 1), a relatively small buffer size can reduce

the performance fluctuation around its target. When the performance is worse than

the SLO (perf > 1), a relatively large buffer size is needed to improve the perfor

mance convergence rate. We set low = 0.1 and high = 0.3 after experimenting with

different values. The resource limit value is set to the sum of the reservation and

buffer size (line 12). We also explored additional ways of setting the limit value in

cluding: 1) l im it «— resv, 2) l im it « - resv +const, and 3) limit 4- resv+perf *resv.

The one presented in the algorithm has the best performance. The nonzero, adap

tive buffer between limit and reservation allows the resource scheduler to adjust

96

run time allocations if needed. The limit is then compared against the available

capacity and the minimum capacity a VM needs in order to ensure that the final

value is feasible (line 13-17).

Algorithm 5.1: Calculate desired Reservation and Limit settings
input : optimal allocation u*, resource type type, and normalized

performance perf (i.e., pa)
output: Reservation and Limit value pair

1 if u* < 0 then u* «- 0;
2 If u* > 1 then u* t - 1 ;
3 capacity 4- 0 ;
4 if type = CPU then
5 | capacity 4- getNumVirtualCPUs() * getCPUMHz();
e else if type = MEM then
7 [_ capacity 4- getMemoryMB();

8 resv 4— u* * capacity', delta 4— 0 ;
9 if perf < 1 then delta 4- low',

10 else delta 4— high;
11 buffer 4- delta * perf * resv',
12 limit 4— resv + buffer ;
13 if limit > capacity then limit 4— capacity',
14 if type = CPU then
15 | limit 4— max(MINCPU, limit)',
16 else if type = MEM then
17 [_ limit 4- max(MINMEM, limit)',
18 return < resv, limit > ;

5.2.5 Resource Pool (RP) Manager

For each resource pool, an RP Manager determines the allocation of resources

to the applications running under this RP, based on the resources requested by

the associated vApp Managers, the available resource pool capacity, and resource

pool settings. This is required because the vApp Managers act independently of

one another and may, in aggregate, request more resources than the resource pool

has available.

A resource pool is defined as modifiable if the RP-level resource settings can be

97

modified by an administrator or through an API. This allows the resources to flow

from low priority RPs to high priority RPs (e.g., from RP2 to RP1 in Fig. 5.1) within

the same VDC. In addition, a resource pool is expandable if it can automatically

increase its own reservation, when it is exceeded by the sum of its children's reser

vations. Suppose that a resource pool has a reservation R, and VM* represents a

virtual machines under this RP with a reservation r t. Then we have the following

constraints:

Constraints

Expandable Vr* < R

Non-expandable][T n < R

For a resource where the total reservation requested is less than the RP-level reser

vation, the RP Manager honors each vApp Manager's requests. For a contested

resource where the sum of VM-level reservations is greater than the RP-level reser

vation, the following attribute information about the resource pool has to be consid

ered:

1. Expandable: The RP Manager sets the VM-level resource knobs directly as

requested by the vApp Managers, and the RP expands its reservation auto

matically to accommodate the total demand.

2. Non-expandable but modifiable: The RP Manager modifies the RP-level reser

vation to the sum of the requested VM-level reservations.

3. Non-expandable and unmodifiable: The RP Manager throttles the VM-level

reservations in proportion to the requested reservation for each VM.

Each vApp Manager sends the resource setting requests to the RP Manager pe

riodically. Each request is a 4-tuple of VM name, resource type, requested reser

vation and requested limit: (vmname, type, resv, lim it). For each resource, the RP

Manager maintains a global vector (e.g., cpu_alloc_table). Each element in the

98

vector is a 3-tuple of VM name, requested reservation, and allocated reservation:

{vmname, reqjresv, allocjresv). This table is updated to keep track of each VM's

resource requests over time.

The RP Manager processes the requests from vApp Managers asynchronously.

Instead of waiting for all managed vApps to send their requests and processing

them all, the RP manager is designed to start processing the vApp request and

then setting the values when a request arrives. Once receiving a request from

a vApp Manager, the RP Manager runs Algorithm 5.2 to calculate the actual VM-

level and RP-level resource values. Based on the attribute of the resource pool, the

values are set by the Actuator differently. This design allows the vApp Managers

under the same RP Manager to have different control intervals based on different

application needs.

Algorithm 5.2 first checks the expandability and modifiability of the resource

defined by type (line 1-2). It reads the currently used and available RP reservation

settings and computes the total RP capacity (line 3-5). Then it gets the requesting

VM's current reservation value (line 6). If the RP is expandable or modifiable, it

sets the VM reservation value directly (line 8). If the RP is non-expandable and

unmodifiable, the RP Manager scans the global vector to get the total value of

the requested reservations from all VMs in the resource pool and computes the

proportionally-allocated value prop_resv for the requesting VM (line 10-12). The

RP-level reservation and limit are set and the global vector is updated with the new

tuple (vname,resv,vmjresv) in the end (line 15-17).

Depending on the expandable and modifiable attribute of the resource pool, the

RP Manager sets the calculated values as follows:

1. Expandable: only VM-level setting (vm_resv,vm_limit) changes are applied

while RP-level settings are handled automatically by VMware resource man

agement system.

99

Algorithm 5.2: Calculate VM and RP settings
Input : vApp Manager request tuple (vmname, type, resv, limit)]
Output: VM and RP level setting tuple

(vmjresv, vmjlimit, rpjresv, rpjlimit)
1 isExpandable 4- isExpandable (type)]
2 isModifiable 4— isModifiable (type)]
3 curRpResv 4- getRpReservationUsed (type)]
4 rpAvail 4- getRpAvailReservation(t?/pe);
5 rpCapacity 4— curRpResv + rpAvail]
6 curVmResv 4— getVmReservation(wnnarae, type)]
7 if isExpandable or isModifiable then /* Expandable or modifiable */
8

9

if resv > rpCapacity then vmjresv rpCapacity]
else vmjresv 4— r e s u ;

else /* Non-expandable and unmodifiable */
10 othersjresvjreq 4— totalResvReqExceptVM (vmname)]
11 to ta ljrp jresv jreq 4- others jresv jreq + resv]
12 propjresv 4 - rpCapacity * resv/total j r p jresvjreq]
13 vmjresv 4— min(propjresv, rpAvail + curVmResv, resv);

14 if iirm t < vmjresv then v m jlim it 4— vmjresv]
15 else v m jlim it 4—
16 rpjresv 4— vmjresv + curRpResv — curVmResv]
17 rpjlimit 4— rpjresv]
18 updateTable (vmname, type, resv, vmjresv)]
19 return < vmjresv, v m jim it, rpjresv, r p j im it >

100

2. Non-expandable but modifiable: Case 1: apply both VM-level and RP-level

changes; Case 2: only RP-level reservation and limit (rpjresv, rp jim it) are

set. For case 2, VM level settings are not applied explicitly, but rely on VM

shares to adjust resource allocations among resource-competing VMs.

3. Non-expandable and unmodifiable: only proportionally-throttled VM-level val

ues (vmjresv, vmjlimit) are set.

The actuator module sets the resource reservation and limit values of virtual ma

chines through the vSphere Web Service API [24]. The resource (CPU or memory)

reconfiguration of a virtual machine is done by one explicit call of the reconf igVM_task

method.

5.3 Testbed Setup

For testing the effectiveness of AppRM, we chose MongoDB [11] as the benchmark

application because it is fairly representative of a modern distributed data process

ing application. As shown in Fig. 5.4a, we set up a MongoDB (version 1.8.1 Linux

64-bit) cluster consisting of 3 VMs. VM-1 and VM-2 are MongoDB shards running

mongod instances. VM3 runs a mongos instance, which load balances and routes

queries to the shards. A configuration mongod server that stores the metadata

for the MongoDB cluster also runs on VM-3. The MongoDB application defines

two types of transactions, each of which can be generally classified as a "read" or

"write" operation.

For generating dynamically changing workloads, we chose Rain [37] as our

workload generation toolkit. Rain provides the ability to generate variable amounts

of load in multiple patterns along with different mix of operations. Here we assume

that the workload is defined by two characteristics: the number of clients and the

percentage of read/write operations.

101

Each of the VMs in the MongoDB cluster have 2 vCPUs while the Rain VM has

2 vCPUs. All of these VMs have been configured with memory size of 4GB. We run

the Rain VM and the MongoDB cluster VMs on two separate ESXi 5.0 virtualized

hosts. We also run some co-hosted VMs on ESX2 along with the MongoDB cluster

VMs to induce some resource contention. The full host configuration is shown in

Table 5.2. All VMs run Linux Ubuntu 2.6.35 as their guest operating system. AppRM

runs on a separate VM on ESX1 along with Rain.

Table 5.2: Configuration of hosts

Host ESX1 ESX2
Model HP ProLiant BL460c G7 HP ProLiant BL465 G7
CPU Intel Xeon CPU X5650

24 cores @ 2.10GHz
AMD Opteron 6172
12 cores @ 2.67 GHz

Memory 128 GB 96 GB
Storage DGC Fibre Channel Disk DGC Fibre Channel Disk

5.4 Performance Evaluation

In this section, we present our experimental results for AppRM. These experiments

are designed to test the following capabilities:

1. Enforce performance targets for metrics including mean response time, through

put, and 95th response time percentile.

2. Automatically detect and mitigate dynamically-changing workload demands

3. Apply control on multiple applications

4. Enforce performance targets under competing workloads

102

5.4.1 Achieving Performance Targets for Multiple Metrics

This scenario is designed to evaluate the effectiveness of AppRM with different

performance targets. For this set of experiments, we use the setup shown in Fig

ure 5.4(a), where two physical nodes host the three MongoDB application VMs,

workload generator VM, and AppRM VM. This set of experiments allow us to gain

insight into the system behavior and validate the internal working of the model

builder and controller.

ESX 1 ESX 2

Shard 1

Mongos

AppRM Shard 2

(a)

ESX 1 ESX 2

Rain 1

AppRM

31
Rain 2 $ Z Z

Mongos * * Shard 1

4
V

Shard 1 Shard 2

3
Mongos Shard 2

(b)

Figure 5.4: Experimental setup with a Mongodb cluster and Rain benchmark

In this experiment, we set the MongoDB application with 300 threads emulat

ing 300 concurrent clients connecting to the MongoDB server. The workload is

composed of 50% read and 50% write requests. For each emulated client, there

is no thinking time between receiving the last reply and sending the next request.

We set the target for mean response time as 300 milliseconds. Figure 5.5 shows

how performance changes across time under two initial resource settings: under

provisioning 1 and over-provisioning2. The under-provisioning describes a scenario

where the initial settings of the application VM resources are not sufficient to meet

application needs leading to high response time. In the Over-provisioning case, ini

tial VM resource settings are more than the application needs leading to resource

over-allocation and wastage. Figure 5.5 illustrates the performance for both cases

1all VMs are set to Rcpu = Rmem = 0, Lcpu = Lmem = 512 (MHz/MB)
2all VMs are set to Rcpu = /?mem = 0, Lcjm = Lmem = unlimit

103

as a function of the control intervals. Note that, "white" area represents the pe

riod of model learning, where only the sensor module is active. The "gray" area

represents the period in which all modules are activated, during which the system

model is updated and the control actions are performed. We can see that AppRM

can adjust the resource allocations to achieve the target in both under-provisioned

and over-provisioned cases.

Figure 5.5: Mean response time target (300 ms)

Figure 5.6 shows the resource utilization changes for all the MongoDB VMs with

under-provisioning initial settings. It is apparent that for both CPU and memory

resources, the initial allocation is not sufficient for the application to achieve its

target. When AppRM is turned on, the resource allocation automatically increases

to meet the target.

Mongos —b— Shard 1 Shard2
(a) (b)

Figure 5.6: Resource utilization for under-provisioning

Naturally, if the amount of allocated resources is more than the target, then

104

it maybe preferable to reduce its allocation. This effect is shown in Figure 5.7,

especially for CPU. The utilization of CPU is reduced and stabilized in Figure 5.7(a)

after AppRM is turned on. Figure 5.7(b) shows that memory is hardly affected in

this case. This is because of the design of the Application controller which aims to

meet the target with minimal resource changes.

0.5

0.4

0.5

0.4
QO

1 0.3

1
S 0.2
a.
U

0.1

0

s
'B

0.3
fr i H , ‘ ^V «,WSY< ®
* • V ' « v< . jg 0.2

3 d □ □ o

■ ■ •.*■•• - 1 ■ _l_ 1— _l
0 10 20 30 40 50 60 70 80 90

Mongos —a— Shardl
(a)

0 - I ui .1,,; . . I :
0 10 20 30 40 50 60 70 80 90

Shard2
(b)

Figure 5.7: Resource utilization for over-provisioning

2

*S 1-5a

I 1
£ 0.5

0

95th-resp ttihe -o -
* "* V, l* & „ \ *'t
• >* e t * -

0 10 20 30 40 50 60 70 80 90

Figure 5.8: 95th percentile response time target (2000 ms)
12

-B 10
8. 8
U
>
13
OS

6
4

2
0

<x>
9 o o

<?<& <£

l i t " 0*"

0 10 20 30 40 50 60 70 80 90

Figure 5.9: Throughput target (50,000 reqs/s)

Can AppRM work correctly with other performance targets, especially percentile

105

Table 5.3: Definition of three changing workloads

Target Period 1 Period 2 Control interval
mean RT clients read/write mix clients read/write mix
500ms 300 50r/50w -> 500 50r/50w 1 min.
600ms 300 50r/50w 500 80r/20w 1 min.
800ms 300 50r/50w -¥ 500 20r/80w 5 min.

response time, which is intrinsically difficult to control? Figures 5.8 and 5.9 answer

this question. They show the experiment results with the same experiment setup

but different performance targets, i.e., 95tft-percentile response time and through

put. AppRM successfully adjusts the resources settings to meet these targets as

seen in the figures. In summary, results in scenario 1 show that for different per

formance targets, AppRM can allocate the right amount of resources for each ap

plication VM to meet end-to-end SLOs.

5.4.2 Detecting and Mitigating Dynamically-Changing Workload

Demands

In this scenario, we evaluate the effectiveness of AppRM in meeting the target SLO

under dynamically-changing workloads. Table 5.3 defines the three experiments

with changing workload conditions. In all three experiments, a mean response

time target is used. Here, we intentionally show different target values across ex

periments to demonstrate AppRM's robustness within a dynamic environment. Ad

ditionally, in the third experiment, we change the control interval from 1 minute to 5

minutes to demonstrate that AppRM also works correctly for different intervals.

In the first experiment, we use a target mean response time of 500 milliseconds.

The experiment starts in an over-provisioned condition (R ^ = J?mem = 0, L ^ =

Lmem = unlimited) before AppRM is turned on. Fig. 5.10 shows that during Period

1 (interval 0-90), the normalized mean response time gradually converges to the

performance target in 15 minutes. During Period 2 (91-150), the workload increases

106

to 500 clients as indicated in Table 5.3. The normalized performance deteriorates

to 1.41 but quickly converges back to its target.

Figure 5.10: Measured performance under dynamic workloads with target 500 ms

In the second experiment, the target mean response time is set to 600 mil

liseconds. Fig. 5.11 shows that the application is over-provisioned initially (Rcpu —

Rmem = 0, = Lmem = Unlimited) resulting in very low response times. AppRM

gradually reduces its resources allocations (see Fig. 5.12) while maintaining the

mean response time near its target. At interval 61, the workload increases to 500

clients and becomes read-intensive (with 80% of read operations). This change

does not cause a significant increase of response times and thus all VMs' resource

utilizations are relatively stable, as shown in Fig. 5.12.

In the third experiment, the target mean response time is set to 800 ms. Fig. 5.13

shows that in Period 1 (0-90), the application performance is initially up to 10 times

worse than its target, due to the initial under-provisioned resource settings (R ^ =

Rmem = 0, = Lmem = 512 (MHz/MB)). At interval 23, AppRM is activated

and it increases both CPU and memory allocations (see Fig. 5.13), bringing the

measured performance down to its target. In Period 2 (91-150), 200 more threads

are added to the workload client and the workload is dominated by write operations

(80% of operations are writes). This sudden workload increase initially degrades the

application performance, up to 50% worse than the target (see Fig. 5.13). AppRM

rapidly responds to this change and correctly re-adjusts the resource allocations.

107

Figure 5.11: Measured performance under dynamic workloads with target 600 ms

Mongos —b— Shard 1 Shard2 ~ o —
(a) (b)

Figure 5.12: Resource utilization for dynamic workloads

Note that both CPU and memory utilizations of the MongoDB VMs are increased

(see Fig. 5.14), to mitigate the increased workload while maintaining the target

response time.

5.4.3 Applying Control on Multiple Applications

In this scenario, we evaluate the case of multiple AppRM instances to control mul

tiple applications. This experiment has the setup shown in Figure 5.4(b), where

two physical nodes host two sets of MongoDB applications, workload generators,

and AppRMs. When there is no resource contention, the two AppRMs work inde

pendently in monitoring and adjusting application resources. The benefit of having

two instances of AppRMs simplify the design of AppRM and allow users setting

different performance metrics and target at will.

Figure 5.15 shows the achieved mean response time with different targets: app1

108

Figure 5.13: Measured performance under dynamic workloads with target 800 ms

0 20 40 60 80 100 120 140 160

Shard2 —
0 20 40 60 80 100 120 140 160

Mongos —b— Shard 1 " A'

Figure 5.14: Resource utilization for dynamic workloads

has mean response time of 1000 millisecond as target and app2 has mean response

time of 600 millisecond. It is clear that AppRM helps for performance to converge

to the target line after it is activated at interval 23. Note that in this scenario, two

AppRM instances do not have resources contention, which means that the aggre

gate resource demands is less than the configured resource pool size or host size.

Several cases of contention are discussed in the next section.

2.5 r

Figure 5.15: Application 1 mean target 1000 ms and Application 2 target 600 ms

109

5.4.4 Enforcing Performance Targets under Competing Work

loads

The testbed setup for the experiments in this scenario is shown in Figure 5.16. Two

instances of MongoDB application are configured within a resource pool in order

to have a better isolation of all resources in a cluster. We run 10 VMs outside the

resource pool in the same cluster/host to mimic intensive competing workloads.

Each competing VM is running a CPU intensive job to consume all possible CPU

resources once allocated. We show that AppRM is able to help the applications to

achieve performance targets under different resource pool settings.

Node 1 Node 2

Rain workload
generator 1

I

AppRM 1! AppRM 2

Resource Pool

Rain workload j/J,
generator 2 | n

M ongos

Shard 1

- 4 ^ Shard 1

Shard 2

J-JLfo Mongos Shard 2

Competing
VM 1

C om peting

VM 2

Competing j
VM 3

Competing j
VM 10 i

Figure 5.16: Testbed setup for resource pool experiments

5.4.4.1 Non-expandable and Unmodifiable Resource Pool

In this scenario, CPU of the resource pool is configured to be non-expandable and

the resource pool settings are unmodifiable at run time. If the resource pool is large

enough and can always satisfy the non-expandable constraints, then every VM

requested resource is always satisfied and the result is the same as is Section 5.4.3.

If the resource pool is insufficient for satisfying reservation of all virtual machines

combined, then AppRM has to throttle reservation values back proportionally to

110

the requested reservation value. Otherwise, the resource setting operation of each

VM could fail due to invalid value. We show a case result with initial settings as

following:

Reservation Limit

Each VM 0 unlimit

Resource Pool 2000 MHz 2000 MHz

This setting makes a clear partition of CPU resources between resource pool and

the rest 10 CPU intensive competing VM. Both application have a mean response

time equal to 600ms as targets. Figure 5.17 shows that AppRM can not help to

improve the performance because resource pool itself does not have sufficient re

source and not allowed to increase its size. AppRM throttles back each VM re

quested reservation settings proportionally and balances the performance degra

dation of the two applications.

Figure 5.17: Measured application relative performance in non-expandable and unmodifi
able RP (targets: 600ms)

5.4.4.2 Non-expandable but Modifiable Resource Pool

In this scenario, CPU of resource pool is non-expandable but resource pool reser

vation value is allowed to change at run time. There are three cases based on the

methodologies for setting VM and RP values:

Case 1: AppRM change both RP and VM resource settings according to Algo

rithm 5.2. The benefit of this method is to allow AppRM take fine-grained control

111

on the per-VM resource setting and needs to be set accurately. The experiment for

this case has the initial setting:

Reservation Limit Share

Each VM 0 unlimit Normal

Resource Pool 0 unlimit Normal

Figure 5.18 illustrates the measured performance as a function of control intervals.

The initial setting does not provide any guaranteed CPU resource for both applica

tions but let applications compete CPU resources with the 10 CPU intensive VMs.

The allocated CPU resource based on shares is insufficient for both applications

to meet their performance targets as shown in the first 23 intervals. When their Ap

pRM controllers are activated, they change both RP and VM reservation values and

help both applications meet their targets. Figure 5.19 shows how the application

level and RP reservation change over time.

Figure 5.18: Measured application relative performance in non-expandable and modifiable
RP (targets 600ms)

3.5

0
0 10 20 30 40 50 60 70 80 90

£ 2
S 2
W 1
£ i

° 0 10 20 30 40 50 60 70 80 90
appl app2 e = j rp reservation - o —

Figure 5.19: Application and RP level reservations

112

Case 2: In this case, AppRM only changes the RP reservation setting. For individ

ual VMs within the resource pool, they are always set to R = 0, and L = unlimit.

The benefit of this method is its easy setting. When resources in the RP are con

tested, it relies on shares to regulate resource allocation. The initial setting is shown

in the table:

Reservation Limit Share

Each VM 0 unlimit Normal

Resource Pool 0 unlimit Normal

It is apparent that during the initial (interval 0-23), the inferior performance in Fig

ure 5.20 is improved by the increased resource pool reservation value (see Fig

ure 5.21)as set by AppRM. Although individual VMs are not set with specific reser

vations, the RP level reservation setting guarantees the right amount of CPU re

source which can be shared with application VMs.

0 10 20 30 40 50 60 70 80 90

Figure 5.20: Measured application relative performance in non-expandable and modifiable
RP (targets 600ms)

3500
v 3000
& 2500
S> 2000
£ 1500
2 1000

500 I£P reservation

Figure 5.21: RP level reservation

Case 3: This case differs from case 2 in only one point, i.e. the RP limit value is to

113

set the same as the reservation value. This method makes a clear CPU resource

isolation between RP and the 10 CPU intensive VMs. Still, for individual VMs in the

resource pool, these values are always set to R = 0, and L = unlim it. AppRM

never sets the reservation and limit values on individual VMs. The initial settings

are as follows:

Reservation Limit Shares

Each VM 0 Unlimit Normal

Resource Pool 2000 MHz 2000 MHz Normal

Figure 5.22 demonstrates that the performance of both applications improves

after their AppRM controllers are activated. The reservation and limit value of RP

increase to a proper value which can guarantee the needed CPU resource of two

applications, see Figure 5.23.

2 r

Figure 5.22: Measured application relative performance in non-expandable and modifiable
RP (targets 600ms)

4000
3500
3000
2500
2000

2 1500

500

Figure 5.23: RP level reservation setting

114

Figure 5.24: Measured application relative performance in expandable RP (targets 600ms)
3000 r

appl ■ ■ ■ app2 RP reservation --o--

Figure 5.25: Application and RP level reservations

5.4.4.3 Expandable Resource Pool

Expandable reservation allows the resource pool to expand automatically when the

combined reservation of all virtual machines is larger than the resource pool reser

vation. Under this situation, AppRM only needs to check the Expandable Con

straints and set the VM level settings. We use the following initial settings for their

experiment:

Reservation Limit Shares

Each VM 0 Unlimit Normal

Resource Pool 0 Unlimit Normal

Figure 5.24 shows that the allocated CPU resource based on share is not enough

to allow the applications to meet their targets. When the AppRM controllers are ac

tivated, the guaranteed reservation of CPU to each application VM is set, thus it

allows the applications to meet their targets. Figure 5.25 shows the increase of the

115

two application level reservations.

5.5 Summary

This chapter gave an overview on AppRM, a performance management tool that

automatically adjusts resource control settings at individual virtual machine level

or at resource pool level such that the virtualized applications running in a virtual

datacenter can meet their respective performance goals. The experimental results

demonstrate the effectiveness of AppRM in a number of different scenarios, with

one or more virtualized applications either under dynamically changing workloads,

or under resource contention among neighboring applications within the same re

source pool or within the same virtual data center.

116

6 Predictive VM Consolidation

To shield application performance from infrastructure management and performance

interference due to VM co-location, resource management in virtualized data cen

ters requires careful VM placement that avoids (or minimizes) resource contention

on diverse physical resources in order to control queueing delays. From the man

agement perspective, assuming that all applications have the same priority, re

sources should be allocated to the application VMs in an egalitarian manner unless

specific, per application QoS targets need to be met. With multiple VMs exhibit

ing diverse resource demands, it is natural to assume that these VMs should be

placed on servers in a way that server resources are best utilized, such that single

bottlenecks are minimized.

Originally introduced in network management, fair load balancing ensures fair

resource allocation among users through balancing of the server workload. This

can lead to desirable system properties (e.g., Pareto efficiency [64]) in data center

resource management. While previous work on fair load balancing focuses on a

single resource (e.g., network), in this chapter, we consider a more complicated and

challenging problem: how to best match multiple resources with specific VMs. The

new methodology presented here is called predictive virtual machine consolidation

(PREMATCH) and focuses on how to best co-locate different VMs within different

servers such that performance interference between co-located VMs is minimized.

PREMATCH targets max-min fairness in VM resource allocation and min-max load

117

balancing in server workload assignment.

Load normalization and total ordering are two entwined research challenges in

multi-resource load balancing. In single-resource load balancing, candidate solu

tions can always have a total order, while in multi-resource load balancing, there

may not be a single solution that is best across each resource dimension. For ex

ample, consider a two-machine system, two resource dimensions (CPU and disk),

and two candidate consolidations: one consolidation defines the load vectors as

A i = (0.9{cpu),0.7(disk)), A2 = {0.5(cpu),0.7(disk))-, another proposes the load

vectors as Ai = (0.7(cpu),0.6(disk)), A2 = (0.7{cpu),0.8(disk)). From these two

consolidations, the maximum load on the first one is on the CPU, while the maxi

mum on the second one is on the disk. It is completely unclear to determine without

a priori experimentation which of the two consolidations reduces the execution time

of both applications and why. The problem is further exacerbated by introducing

more resource dimensions and more servers as performance interference between

applications and different co-location schemes may vary dramatically. Exhaustive

experimentation to select the best of all possible combinations is non-feasible, es

pecially within a dynamic environment.

The focus of this chapter is on the development of a robust prediction framework

that suggests how to best match multiple resources on multiple servers with VMs.

We focus on developing a flexible egalitarian scheme where all applications have

the same priority, i.e., the target is to minimize their collective execution. While

the problem of non-egalitarian allocation of resources to meet different application

priorities is also very important, it is not the subject of this dissertation but part of

our future work. The main contributions of this chapter are:

• A polynomial time algorithm is developed for the multi-dimensional VM re

source placement problem, such that the maximum load over all resource

dimensions and all servers is minimized. The algorithm removes the assump

118

tion of cross-resource demand normalization required by previous work and

outputs all valid VM consolidation strategies that achieve min-max load bal

ancing on at least one resource.

• A consolidation performance prediction methodology that is based on a multi

class, closed queueing network, is proposed. This methodology moves be

yond finding an assignment configuration where loads on the various physi

cal components are equalized by encapsulating the effect of queueing (i.e.,

of overheads due to competition for resources) on performance, something

that the mix-max algorithm for VM placement is oblivious of.

We evaluate the robustness of the proposed scheme using the RUBiS multi-tiered

application in a virtualization environment that uses Xen and show that indeed

the proposed solution is robust, i.e., it can automate the difficult process of multi

resource provisioning across multiple servers very effectively. We stress that the

selection of RUBiS as a workload makes the problem more challenging as it re

quires good responsiveness for the three different tiers that are located on three

different physical servers in order to minimize the application end-to-end response

times.

6.1 Background: Fair Load Balancing on a Single

Resource

We first present the fairness and load balancing in a general job scheduling problem

where each of m users has to be assigned to a subset of n machines (i.e., each

machine is considered as a single resource).

119

6.1.1 Max-Min Fairness

Given m users with resource demands {Du D2,--- > Dm), let ax = (A ^ l), Ax(2),

••• ,Ax(m)) be the allocated resource ranked in increasing order by scheme x.

Ax(i) is the i-th smallest component. For two allocation outputs ax and ay, ax is

said to have higher lexicographical value than ay if there is an index j such that

Ax(j) > Ay(j) and Ax(i) = Ay(i) for every index i < j . In all feasible allocations

of a resource allocation problem, an allocation a* is called max-min fair if it has the

same or higher lexicographical value than any other feasible allocation.

6.1.2 Min-Max Load Balancing

Let n machines with load (Lu L2, - - - , Ln). Let lx = (Lx(1), Lx(2), • • • , Lx(m)) be the

allocated load by scheme x, ranked in decreasing order. Lx(i) is the i-th largest

component. For two allocation outputs lx and ly, lx has lower lexicographical value

than ly if there is an index j such that Lx(j) < Ly(j) and Lx{i) = Ly(i) for every

index i < j . In all feasible allocations of a load allocation problem, an allocation I*

is called min-max load balanced if it has the same or lower lexicographical value

than any other allocation.

6.1.3 Fair Load Balancing

Fair load balancing ensures fair resource allocation among users through "balanc

ing" of the machine load. With careful association between users and machines,

fair load balancing targets max-min fairness in resource allocation among users and

targets min-max load balancing on machine load. This can lead to provable system

properties, e.g., Pareto efficiency [64], in data center resource management. Fair

load balancing maximizes total user satisfaction when individual user satisfaction

can be modeled by a concave function [116]. In VM consolidation where individ

120

ual user satisfaction can be described by the virtualized application performance

in a VM, fair load balancing can lead to optimal total system performance if the

application performance is a concave function of allocated resources.

When a user can use resources from multiple machines simultaneously, it is

called multiple-association. In this case, there is a strong correlation between min-

max fairness and max-min load balancing. Bejerano et al. [38] proved the following

property:

Lemma 1. In the multiple-association case, a min-max load balanced assignment

defines a max-min fair resource allocation and vice-versa.

When a user can use resources from no more than one machine at any time

(called single-association), Bejerano et al. [38] showed that a min-max load bal

anced assignment may still define a 2-approximation max-min fairness. Therefore,

in the rest of the chapter, we aim at min-max load balancing, which can lead to

optimal max-min fair resource allocation (approximation in single-association).

6.2 Fair Load Balancing on Multiple Resources: Chal

lenges

Ghodsi et al. [64] propose the concept of dominant resource fairness, a generaliza

tion of max-min fairness to multiple resource scenario. For each user, the maximum

among all resource shares allocated to that user is called his/her dominant share,

and the resource corresponding to the dominant share is called the dominant re

source. Dominant resource fairness allocation seeks for max-min fairness across

users' dominant shares.

One problem with dominant resource fairness is on the multi-resource load bal

ancing side. Since it considers only one resource for each user, there is no defi

nition on how to handle the rest of the resources when load unbalancing on those

121

resources could still affect user performance. For example, in a simple VM con

solidation scenario shown in Figure 6.1(a), there are four VMs (each is configured

with 1 VCPU and 1GB-memory), each hosting one SPEC CPU2006 benchmark

application [15], to be assigned onto two 2GB-memory 2-core servers. Two VMs

host instances of gobmk and two host instances of lbm. The resource usage of the

two SPEC applications is : gobmk (CPU: 100%, Mem: 15.8% (of 1GB)), lbm (CPU:

100%, Mem: 80.1% (of 1GB)).

All 4 VMs are CPU-intensive, and the two hosting lbm have also higher mem

ory intensity than those hosting gobmk. In dominant resource fairness, CPU is the

dominant resource for all VMs since each one has the maximal 100% share for

it. However, consider two consolidation plans: P1, where the two gobmk VMs are

consolidated onto one machine and the two lbm VMs onto another, and P2, where

each machine hosts one gobmk VM and one lbm VM. Figure 6.1(b) shows that P2,

a balanced placement on both CPU and memory usage, can significantly improve

the performance: the job completion time of lbm is 34% less than in P1, while per

formance of gobmk is merely impacted. In the following section, we present a for

malization of the problem and its proposed solution.

(a) A load balanc ing problem on tw o resources (CPU, M em ory)

VMs gobmk) ^ g o b m ^ ^ b m ^ j ^ I b n ^

(b) SPEC 2006 performance in two plans

2500

t ? 'v t ? 'v * ' ? t ? t

Machines

gobm

•S 1000

Figure 6.1: A simple load balancing problem on two resources (CPU, memory).

122

6.3 Fair VM Allocation Algorithm

We define a vector scheduling problem for fair load balancing in virtualized data

centers. This problem has a set of n VMs with d-dimensional resource demand

vectors A = {D\,D?-,. . . ,Dd), 1 < i < n, and m homogeneous machines with

resource capacity C = (C \ C2 , . . . , Cd). The objective of the vector scheduling

is to assign n VMs onto m machines and minimize maxi<j<m H^Hoo, where =

Y^jeAi Dj *s sum of the VM demand vectors placed on machine i. That is, we

seek min-max load balancing such that the maximum load over all dimensions and

all machines is minimized. The multi-dimensional vector scheduling problem is

NP-complete [48].

Our algorithm is an extension of the vector scheduling algorithm in [48]. The

basic idea is a primary-dual approach where the scheduling problem is solved in

directly through a bin packing problem. By guessing the optimal solution for the

vector scheduling problem as h, the scheduling algorithm aims to place all VMs

(balls) into the machines (bins) of resource capacity h. The bin packing either is

infeasible or can be done successfully. The scheduling algorithm takes this bin

packing as a decision procedure to do a binary search for the optimal value h* and

the companion VM consolidation (bin packing) decision.

While [48] defined h as a scalar value, we define h as a vector (h1, h2 , . . . , hd),

where d is the number of resources. We do not assume uniform normalization

across different resources, and address the multi-dimensionality by integrating a

performance prediction model with a polynomial time approximation scheme (PTAS).

6.3.1 Vector Bin Packing

The vector bin packing algorithm takes an error-tolerance parameter e > 0 and, in

polynomial time, produces a solution that is within a factor 1 + e of being optimal.

123

Before presenting the algorithm, we first define a few terms:

• A capacity configuration is a d - tuple of integers A = (au a2, . . . ,a d) such that

0 <a>i< There are at most t = + I7 I) caPacity configurations.

• Given a capacity configuration A, its corresponding empty capacity configu

ration is the d - tuple obtained by subtracting each from (1 + f^]).

• Bin configuration is a t - tuple of integers M = such that

0 < mi < m and m* = m.

• Given a bin configuration M, its corresponding M is the one obtained by tak

ing the empty capacity configurations for each i in M .

• A packing of VMs in a machine is said to fit a capacity configuration (ai, a2, . . . , ad)

if the sum of VM load in each resource dimension i is less than e • ai.

A capacity configuration describes approximately how a machine is filled in terms

of aggregated load size and a bin configuration describes the number of machines

of each capacity configuration. They together describe a load volume allocation

scheme on the m machines. The algorithm consists of the following steps:

1. Reduce to zero all coordinates of the load vectors that are too small. Specif

ically, let 5 = 3: for each VM i, D(= 0 if D{ < <5||A||oo- This step bounds

the ratio of the largest coordinate to the smallest non-zero coordinate in VM

load vectors, and helps the next step to discretize the large VMs into a small

number of distinct-sized classes.

2. Classify each VM into either small or large based on their load vectors. Specif

ically, for each VM i, assign it into the large group if HAIU > <5; otherwise, it

is assigned into the small group.

3. Pack all large VMs onto the machines as follows:

124

(a) For each resource dimension i, notice the smallest non-zero coordi

nate of a large VM is at least 82; Discretize the load interval [82, h'] into

q = \ lo g (l -I- e)«*] intervals of the form (x0, (1 + e)x0l , (x i , (1 + e) x i] , ..

(xg-uhf], where x0 = 82 and xi+i = (1 + efa. Next, round each none-

zero coordinate of a large VM's load vector down to the left end point of

the interval in which it falls, and have the discretized load vectors for all

large V M s .

(b) For each defined bin configuration M, use a simple dynamic program

ming algorithm to decide if there is a packing of large VMs that fits M

as follows: Order all m machines in some arbitrary way, and assigns a

capacity configuration from M to each machine; for 1 < j < m , compute

recursively computes all possible subsets of the discretized load vectors

from the large VMs that can fit into the first i machines; the dynamic

programming algorithm ends at j = m , and either reports "no" on the

proposed bin configuration M , or reports one valid solution on placing

the large VMs according to M.

This step takes the fact of a logarithmic number of distinct-sized classes in

large VMs and places them on the machines through dynamic programming.

4. Pack all small VMs in the small group on top of large VMs. Given a valid bin

configuration M and each of its valid solution placing the large VMs onto the

m machines, find an approximate feasible solution to pack the small VMs onto

the valid solution in M as follows:

(a) Assume the small group size is K, and number the VMs in the small

group from 1 to K\

(b) Formulate the small VM packing as a linear programming problem with

125

the min-max load balancing optimization objective:

Y2 Vij = h l < i < K

^ 2 DiV*i ^ m , l < d < D
i : l<i<K

Vij > 0

where bj is the height bound for each machine j and the resource di

mension d defined in the bin configuration M .

(c) After solving the above linear program, let S' be the set of small VMs

that are assigned to more than one machine. Partition the set S' into

m subsets of at most d VMs each in a uniform random way and assign

each subset to each machine accordingly.

This step places the small VMs on top of the large VMs using a linear pro

gramming relaxation and a careful rounding to avoid multiple associations.

6.3.2 Discussion

Step 3 dominates the time in the whole process. There are approximation algo

rithms that can speed up this step, such as the linear programming relaxation and

rounding approach used in Step 4, but the approximation factor is usually large [38].

Practical constraints in VM placement problems such as affinity rules, VM-based

machine subset specification, can be introduced in the dynamic programming of

Step 3 and the linear programming of Step 4.

While we assume all VMs have the same priority, there are consolidation sce

narios where some VMs are considered more important than others when there is a

resource contention. Then, a possible approach is to assign weights to VMs based

126

on their priorities. A VM's weight can be multiplied by its resource demand so that

higher-priority VMs have inflated resource demand. While this inflation might lead

to non-feasible solution in server physical resource capacities, min-max load bal

ancing is not affected when server virtual capacities are introduced, as the guessed

optimal solution h itself is also a server virtual capacity.

6.3.3 Vector Scheduling with Predictive Model

Our vector scheduling algorithm consists of three steps:

1. Given an e > 0 and a guess for the optimal maximum load vector h, call the

vector bin packing algorithm with e and h, which either returns a VM consoli

dation of maximum load (1 + e)h, or proves that the guess h is infeasible.

2. Repeat step 1 through a multi-dimensional binary search for the optimal value

h*. The multi-dimensional binary search is done as follows:

(a) for each dimension i, the maximum load vector guess starts with

(b) use binary search to find the minimal ti* which can lead to at least one

valid solution with the vector bin packing algorithm and the maximum

load constraint vector < C \ . . . , t i * , . . . , Cd >;

(c) use binary search to find the minimal t i* (0 < t i* < 1) which can lead to

at least one valid solution with the vector bin packing algorithm and the

maximum load constraint vector < t i*C l , . . . , t i* , . . . , t i*C d >;

(d) record (t i* ,t i*) and the companion solutions as successful VM consoli

dations for dimension i.

3. Predict the consolidation performance of the successful solutions from Step

2 and output the VM consolidation scheme with the best performance.

127

For the guess of optimal maximum load vector t i on each dimension i, there

is a naive lower bound of 0. We can use tighter low bounds such as the maximal

value of the VM load vectors along dimension i, or the average VM load on that

dimension.

Theorem 2. Given any fixed e > 0, our algorithm is a (1+e) approximation algorithm

for the vector scheduling problem that runs in 0{dm ln \ {^) 0 W) time, where s =

q ^ W ^ Y).

Proof. Step 1 of the vector bin packing algorithm will increase the load of the

machines by only a (1 + e) factor after restoring those reduced-to-zero load co

ordinates back to their original values; Step 2 of the vector bin packing algorithm

also brings only a (1 + e) factor since each discretized coordinate value is at least

(1 + e)-1 times the original values; in Step 3 of the vector bin packing algorithm,

each small VM has every coordinate value < ̂ and any machine is assigned at

most d small VMs, therefore Step 3 does not violate the machine load by more

than e inn any dimension. Overall, the vector bin packing algorithm yields a result

with (1 + e)-approximation.

On the polynomial time complexity, we assume that the resource capacity C

and dimensions d are constants. The run time is dominated by Step 2 for packing

large VMs. There are at most rti = 0 (n ° (€ _ d)) bin configurations; for each bin con

figuration, the running time of the dynamic programming algorithm is)s),

where s = (1 + *ln8~1])d is the distinct discretized load vectors in Step 2. There

fore, the time for completing one run of the vector bin packing algorithm is (^) ° (s\

while the multi-dimensional binary search takes 0(dln\) guesses to finish. □

Next, we present a queueing-network based methodology for application perfor

mance prediction that is required in Step 3 of the vector scheduling algorithm. The

queuing network prediction is necessary to incorporate the queueing effect (due to

128

co-location and competition for common resources) of the multiple VMs, This ef

fect is not captured by the min-max allocation which is the core of the fair allocation

algorithm and it is necessary to select from the multiple allocation options the most

fitting one.

6.4 A Predictive Queueing Model

Closed queuing network models have been successfully used in modeling multi

tier applications on shared physical resources (e.g., network, disk) [98,130]. In this

section, we propose a consolidation performance prediction methodology based

on a closed queuing network model.

The vector bin packing algorithm significantly reduces the number of candidate

schemes for the queueing model prediction step. Theoretically, the number of

ways to place n distinct VMs into m identical hosts with r 0 empty hosts, rx hosts

containing 1 VM, r2'hosts containing 2 VMs, r „ hosts containing n VMs [108] is:

(i!riri!.(2!)>2r2!.:-(r»!)mrn!- For example, if one is to place n = 6 VMs among m = 3

hosts and r 2 = 3 hosts contain 2 VMs (all other r{s are zero), the number of place

ment is p frj, = 1 5 . If n = 9 VMs is placed into m = 3 hosts and r 3 = 3 hosts

contain 3 VMs, the number is 2 8 0 .

6.4.1 RUBiS Multi-tiered Benchmark

RUBiS [45] is an auction site prototype modeled after eBay.com and is widely used

in performance studies of system and multi-tiered applications. In the RUBiS im

plementation, there are three tiers of servers: the Apache Web server, the EJB

server, and the MySQL relational database. They usually reside in three different

virtual machines.

In Figure 6.2, we show the closed queueing network model to represent the

129

Broesing *ii
Ridding six

m] Think 1 1
1 Server 1 1

-- ;

l=j0)J

iiif©)~

-nm©-

j| j;

-Trn3 *̂'Ht
l! "1 M

Physical |l Physical ! j
Machine 1 1J Machine 2 ̂ \

r^ S h

= = (S H

— iiii©)~
1
1

-in©]-
I

Physical |
Machine 3 1

Figure 6.2: Closed queueing network model for multi-tier server and multi-class workload

RUBiS three-tier application. Three dashed boxes are used to abstract the web

server, the application server, and the database server, respectively. The think

server represents the average client think time Z between receiving a web page

and submitting a new page request.

6.4.2 Application Profiling: Service Demand Estimation

To utilize the queuing model, it is critical to accurately measure the application av

erage total service demands per resource, i.e., the total time an application spends

on each resource excluding the time spent waiting to gain access to a resource

due to contention. This metric is called average service demand [97]. Since the

demand is the total service time at a device, it can be thought of as a product of

the average number of "visits" to the device and the average amount of time re

quired at the device per visit. We define the following average service demands for

applications as follows:

• Sc: average CPU service demand, i.e., average CPU time during one execu

tion of a workload class.

• Sn: average network service time, i.e., average networking time during one

execution of a workload class. For modeling accuracy, we subdivide this met

ric into two metrics — the average sending service time Sn,a and the average

receiving service time Sn,r.

130

• Sd'. average disk service demand, i.e., aggregate disk I/O service time during

one execution of a workload class.

There are related studies focusing on obtaining resource demands of a single

application using fine-grained and detailed information [49]. To this end, the stan

dard approach is to explore a large number of hardware counters or even modify

the application source code, a process that is cumbersome, intrusive, and neither

portable nor scalable. Using hardware performance counters is clearly the prefer

able approach but it is challenging to collapse such diverse information into a single

value parameter like the resource demand. In the following four sections, we illus

trate how we achieve the above targets via a light-weight profiling methodology that

can capture the average resource demands. A similar approach has been used to

model Java workloads [31,50].

6.4.2.1 Assumptions

We now describe two assumptions of our proposed queuing network model. For

simplicity, we assume that each VM hosting an application is assigned to one core

on a multi-core server consistent with the literature where each VM runs on a sep

arate core [67,77], but the proposed approach is not restrained by this assump

tion [50]. Second, we assume that the performance degradation due to memory

and cache contention during consolidation is captured via the average CPU service

demand Sc. Prior works have shown that it is not necessary to explicitly model mem

ory and cache, this can be implicitly modeled via the distribution of the service pro

cess (i.e., the service demand) [98] or using load dependent service times [50,97].

6.4.2.2 Per-tier Service Time

To measure the per-tier service time, we utilize packet level capturing and filtering

tools to extract the service time of each tier of RUBiS servers. The response time

131

of each tier is the time from the moment the last packet of the request arrives to

the moment the last packet of the response is sent, tcprstat [17] is an open

source tool to capture and analyze packets to extract the delay between requests

and responses, during a measurement interval. The tool can be set to monitor

network traffic on a specified port, which makes it suitable for timing requests and

responses to a single daemon process such as mysql, httpd, or any of other server

processes. We modified the original code to store the response-time statistics in a

central database for every measurement interval. This change allows PREMATCH

to query the response information in real time. Figure 6.3 shows the an example of

query result of response-time information collected.

t ia o s tn a p 1 hootnano 1 count t M X n i n avg nod •tddov 1 m x _96 1 *vg_9& 1 s td_961 m x _99 lnvg_99lotd_99l

2013-07-29 18:53:31 1 v«b 1 97 1 96806 1196 4176 1281 11802 1 26748 1 1936 3786 1 39981 1 3221 7238 1
2013-07-29 16:63:30 1 opp 1 102 1 96005 606 4003 669 12622 1 26973 1 1340 3690 1 39149 1 2566 7062 I
2013-07-29 16:63:37 1 db 1 29 i 39169 98 7734 366

sIDO 1 20130 1 5693 7619 1 31397 1 6611 8873 i
2013-07-29 16:63:61 1 vob 1 122 I 67543 1166 3693 1256 9054 1 26879 I 1642 2674 1 41399 1 2917 6762 i
2013-07-29 15:53:50 1 *pp 1 169 1 42194 496 2696 634 7456 1 25060 1 982 2731 1 36659 1 2181 6314 !
2013-07-29 15:63:67 1 db 1 35 1 8860265 96 261222 366 1478183 1 21040 1 6983 8607 1 32088 1 7721 9482 1

Figure 6.3: An example of tcprstat query result

6.4.2.3 Average Network Demand

Measuring the demands of the network is done by monitoring the collected net

work traffic issued from guest VMs in two metrics: rxbyt/s (bytes received per

second) and txbyt/s (bytes transmitted per second). These two metrics can be

obtained by running the sar utility [18] in the guest domain or the proc filesystem

at /proc/net/dev in Xen driver domain.

To obtain the average network service demand, the following measurements

are required to collect during the execution of the application:

• t -- total execution time.

• As, Ar - average sending/receiving network traffic rate of the guest VM.

132

• n -- the number of requests issued by the clients during time t.

• R ~ transmission rate of the Ethernet link.

The average service demand for network is computed as follows:

<6-1)

6.4.2.4 Average Disk Demand

Measuring the performance of the disk is particularly difficult due to the multiple

buffers present at all storage levels, the high number of run time optimizations,

e.g., out-of-order writes, and parallel writing across different disk platters. Profiling

of disk demand must incorporate the inherent disk parallelism due to consolidation.

Here, we rely on disk operation statistics, instead of disk utilization, for the fol

lowing reasons. First, to measure/compute disk utilization, one has to know its

capacity. However, for disk operations, this value differs under workloads, e.g., for

sequential read/write and random read/write. Second, the utilization is a biased

metric due to possible I/O buffering. To compute the disk demand Sd, we need to

figure out the disk parallelism and total disk execution time. We apply a method

similar to the one in [31] that uses the average service queue size, denoted by q,

as an indicator of the disk parallelism. For the total disk execution time, we use

the product of the average disk operations per second (i.e., the disk throughput),

denoted by Xd, and the average service time, denoted by s, which is obtained by

the iostat utility [7]. Sd is estimated as the total disk time divided by the disk par

allelism:

5 , = ^ (6.2)

133

6.4.2.5 Average CPU Demand

To compute the CPU demand per tier, we follow the steps:

1. Measure the per-tier service time T via the tshark utility.

2. Compute the average network demand SUiS and Sn<r using Eq. (6.1).

3. Compute the average disk demand Sd using Eq. (6.2).

4. Deduce the average CPU demand as

Sc = T - Sn,s - Sn,r - Sd. (6.3)

By this method, Sc implicitly includes the service demands of memory and cache.

This simplification is accurate for our purposes.

6.5 Evaluation

We evaluate the effectiveness and accuracy of our algorithm and model with the

RUBiS application. The testbed runs the Fedora release 8 operating system with

Linux kernel 2.6.18-8. The evaluation is based on the Xen [34] virtualization plat

form version 3.3.1. Our testbed platform uses Supermicro 1U Superservers with In

tel Core 2Duo E 43001.86GHz, 2MB L2 cache. All servers have a RAM of 2GB and

250GB 5400RPM disk. The servers are connected through D-LINK DES-3226L

10/100Mbps switches. PREMATCH is implemented on Usher, a virtual machine

management framework developed by McNett et al [96]. Figure 6.4 shows the

overview of the PREMATCH architecture. It makes the fair load balancing consol

idation decision through the two-step mechanism and handles it to Usher for the

VM placement execution.

134

Fair load balancing
consolidation scheme

Multi-d vector scheduling

Prediction guided
ordering

Usher controllerPREMATCH
Engine

VM & host Consolidation rules
information (affinity,...)

Figure 6.4: PREMATCH architecture graph.

Table 6.1: Profiling of browsing and bidding workload

Demand Browsing Bidding
web app db web app db

5C 5.2ms 4.8ms 10.3ms 3.7ms 4.8ms 25.5 ms
5n,s 5.8ms 5.2ms 0.2ms 4.6ms 4.4ms 0.2ms
5n,r 5.7ms 0.6ms 0 4.7ms 0.6ms 0
5d 0 0 0 0 0 2.2ms

Typically, RUBiS has two different workload mixes: the browsing mix and the

bidding mix. The browsing mix includes browsing items, consulting the bid history

and obtaining seller information. The browsing mix is made up of only read-only

interactions. The bidding mix includes 1 5 % write interactions and is considered

the most representative of an auction site workload according to an early study

of the eBay [44]. We summarize the estimated average CPU, network, and disk

demands in Table 6.1. Note that the bidding mix has an average of 2.2 ms demand

on disk writing operation because of saving bidding, buying, or selling items, leaving

comments on other users. Disk usage for the browsing mix is initially observable

in order to load records into memory, but then drops off to a very low value and is

therefore neglected. One can see that the two workloads have different properties:

for the bidding mix the database, CPU is the bottleneck (2 5 . 5 ms), while for the

browsing mix the network is the bottleneck (5 . 7 + 5 . 8 = 1 1 . 5 ms).

135

6.5.1 RUBiS with Different Number of Clients

To demonstrate the accuracy of the profiling technique in Section 6.4.2, Figure 6.5

reports both measured and modeled average response times and throughput for

RUBiS as a function of the number of clients for the two workloads. The number of

emulator client changes from 200 to 1200 for the browsing mix and from 100 to 400

for the bidding mix. Each run takes 30 minutes and we average three runs of RUBiS

for each data point. The think times of the browsing and the bidding mix are set to

7 and 4.5 seconds respectively, which are the default values. Both figures illustrate

that the profiling technique and queuing network model have a good accuracy in

predicting the RUBiS performance for different client numbers. The difference of

the two workloads are shown in Figure 6.5(b) where the bidding mix reaches the

throughput bound at 41 interactions per second while the browsing mix reaches the

maximum throughput at 102.

1 6000

| 5000t 4000

8- 3000
es

J 2000

I 1000
JB 0....“ 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Number of clients Number of clients

Browsing measured— 1— Bidding measured •-Q--
Browsing predicted — Bidding predicted ■ "<>•■

Figure 6.5: Measured vs. predicted average response time and throughput.

6.5.2 Browsing and Bidding Mix Consolidation

With the assumptions in Section 6.4.2, consolidating two RUBiS applications (one

browsing and one bidding workload) on three machines leads to 15 consolidation

schemes (see Table 6.2). To understand the "settings" column, consider W i A2--

136

(a) Response time (b) Throughput

■a

100

80

60

40

20

Ai D2--D i W2 as an example. The subscripts denote which RUBiS application the

virtualized server belongs to, e.g., Wi means virtualized Webserver of RUBiS appli

cation 1 (browsing mix). The dashes separate each physical server and group

the VMs on the same machine, e.g., ” W i A2--" means a configuration that has the

virtualized Webserver of RUBiS application 1 and the virtualized appserver of RU

BiS application 2 on the same machine. It has three groups of consolidated VMs

since three physical machines are used in the experiments.

Table 6.2: Configuration table

Cfg# Settings Cfg# Settings Cfg# Settings
Cfg 1 W1W 2--A1A2- D 1D2 Cfg 6 W 1D2--A1A2 --D1W2 Cfg 11 W i D1-A i A2-W2D2
Cfg 2 W 1A2--A1W2- D 1D2 Cfg 7 W iA i-D jD a—W2A2 Cfg 12 A1D1-W 1W2--A2D2

Cfg 3 WiA2—A1D2--D1W2 Cfg 8 W1Ai ~D i A2~W2D2 Cfg 13 W i D1-A i D2-W 2A2
Cfg 4 W 1W2-A 1D2--D1A2 Cfg 9 W1A1~D1W2-A2D2 Cfg 14 WaAa-WiDa-AiDj
Cfg 5 WjDa-AiWa-DjAa Cfg 10 W 1D1-A 1W2--A2 D2 Cfg 15 W iD i"A 1W2“ A2D2

For the first scenario, we run two classes of workloads on client emulators: the

first one uses the browsing mix with 600 clients and a thinking time of 7 seconds

(default value) and is denoted as application 1. The second uses the bidding

mix with 200 clients and 4.5 seconds (default value) thinking time and is denoted as

application 2. PREMATCH takes the following steps:

Step 1: Measure multi-dimensional resource demands. We collect the re

source baseline usage for each tier of RUBiS when it is virtualized and runs in one

physical machine alone. It serves as the input to the bin packing algorithm de

scribed in section 6.3.1. We show the multi-dimensional demands of workloads in

Table 6.3.

Step 2: Run the vector bin packing algorithm for each dimension. The vec

tor bin packing algorithm takes two sets of vector loads Lweb, Lapp, and (in total

of 6 demands vectors) as inputs. It outputs the min-max load balancing configura

tion and association for each resource as shown in Table 6.4. Take the first row in

Table 6.4 as an example: it shows that when considering the CPU resource, the al-

137

Table 6.3: Service loads for three workloads

Bidding mix 200 Browsing mix 600 Browsing mix 800
t-tue6 Lapp Ldt Luieb L0pp Ldt Lmefc L app L db

CPU 6.2% 7.3% 44.7% 18.5% 17.0% 44.3% 21.6% 19.9% 55.1%
Net Send 13.7% 1.6% 0.1% 39.9% 37.2% 1.4% 45.6% 42.6% 1.6%
Net Recv 13.8% 13.0% 0.7% 40.8% 4.35% 0.2% 46.5% 5% 0.3%

Disk 0.03% 0.06% 0.3% 0.39% 0.06% 0.04% 0.44% 0.07% 0.04%
Memory 5.8% 23.6% 31.9% 36.9% 23.%6 15.9% 31.4% 23.5% 15.5%

Table 6.4: Min-max load balancing for the bidding and browsing mix consolidation

Min-max config Machinel
CPU Net Disk Mem

Cfg3 on CPU 2 5 . 9 % 4 7 . 6 % 0 . 4 5 % 6 0 . 6 %
Cfg14 on NET 1 4 . 2 % 2 1 . 1 % 0 . 0 9 % 2 9 . 4 %

Cfg1 on DISK/MEM 2 5 . 3 % 5 4 . 2 % 0 . 4 2 % 4 2 . 7 %
Mac iine2

CPU Net Disk Mem
60.9% 2 1 . 1 % 0 . 3 6 % 5 5 . 6 %
6 2 . 4 % 40.7% 0 . 3 6 % 6 9 . 8 %
2 4 . 4 % 2 8 . 0 % 0 . 1 2 % 4 7 . 3 %

Machine3
CPU Net Disk Mem

5 1 . 1 % 1 4 . 6 % 0 . 0 7 % 2 1 . 7 %
6 1 . 3 % 2 1 . 6 % 0 . 4 3 % 3 9 . 6 %
8 8 . 2 % 1 . 1 % 0.43% 47.9%

gorithm outputs configuration 3 (see Table 6.2). The following readings in the same

row denote the estimated resource consumption. We highlight the computed min-

max value of the corresponding resource (the boldfaced, underlined value). The

results show that three different configurations achieve min-max load balancing. In

the next step, we use the predictive queuing model to compare the performance of

each configuration and choose the best one as final decision.

Step 3: Queuing model prediction. We plug both bidding and browsing pro

filing parameters from Table 6.1 into the queuing model shown in Figure 6.2. We

apply mean value analysis (MVA) [97] to solve the model and get the predicted

response time and system throughput for each application in Table 6.5.

138

Table 6.5: Predicted performance for min-max configs

App1 (Browsing) App2 (Bidding)
Min-max config Response Time Throughput Response Time Throughput

Predicted (Measured) Predicted (Measured)
Cfg3 on CPU 162(169) ms 83.7(83.2) req/s 689(704) ms 38.5(38.2) req/s
Cfg14 on NET 122(150) ms 84.2(83.9) req/s 775(745) ms 37.9(38.2) req/s

Cfg1 on DISK/MEM 184(190) ms 83.5(83.1) req/s 896(1099) ms 37.0(35.5) req/s

Figure 6.6 illustrates that the predicted configuration indeed gives the best per

formance among all possible configurations in real measurements. Table 6.2 shows

the details of each configuration. Figure 6.6 also shows the comparison of mea

sured and predicted values for all configurations. With few exceptions, the model

prediction is in excellent agreement with experimental data.

1200 — i------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1-------1-------1-------1------ r
irow se mea
jrow se prei

C onfigura tions

Figure 6.6: Measured vs. predicted average response time for browsing and bidding mix.

For each resource, Figure 6.7(a) compares the maximum load of the three ma

chines for the PREMATCH configuration and the worst measured configuration.

One can see that, for the network resource, the worst configuration consumes twice

as much as the PREMATCH. The maximum memory usage of worst configuration

is 13% more than PREMATCH's.

Figure 6.7(b) illustrates a side-by-side comparison of the measured performance

of the PREMATCH, random, and worst configuration schemes. By random config

uration, we run a naive randomized algorithm 100 times, which randomly picks one

of the 15 configurations. Hence, the data we show is averaged across all outputs.

The PREMATCH configuration reduces the worst configuration response time by

139

46% for bidding and 17.9% for browsing. It also reduces the random configuration

response time by 24.5% for bidding and 11.7% for browsing.

(a) PREMATCH vs. worst conflg utilization (b) PREMATCH, random and worst conflg compari
100

1

9

§

PREMATCH Worst
iAAAj|\ietworir [am gzza Disk

7> 1000

a 400

PREMATCH Random Worst

b id -R T ' ■browse-RT'

Figure 6.7: PREMATCH, random, and worst consolidation comparison.

6.5.3 Browsing Mix Consolidation

In this scenario, we give another example of consolidation of two browsing mixes.

We have the same testbed setup as the one described in Section 6.5.2, but we run

two client emulators with the same workload: two instances of the browsing mix

with 800 clients and 7 seconds thinking time.

Table 6.6 contains the vector bin packing algorithm's configurations for each

resource. Notice that, for this scenario, we have two candidate configurations

achieving min-max load balancing for each resource because of the two identi

cal workloads (two browsing mix with 800 clients). Calculated min-max value over

all resources are highlighted (boldfaced and underlined).

The MVA results of estimated response time and system throughput for each

application are in Table 6.7. The model selects "Cfg 6" and "Cfg 11" as the ones

with best performance. In Figure 6.8, we present a side by side comparison of mea

sured and predicted response time of 15 possible configurations. "app1" denotes

the first RUBiS application and "app2" the second. The figure shows the accuracy

of the model and corroborates the fact that the queueing model always selects the

140

Table 6.6: Min-max load balancing for browsing mixes consolidation

Min-max config
Machinal

CPU Net Disk Mem
Cfg4 on CPU 43.2% 92.1% 0.88% 62.7%
Cfg12 on CPU 75% 24.75% 0.88% 39%

Cfg6 on NET/DISK/MEM 76.7% 47% 0.48% 46.9%
Cfg11 on NET/DISK/MEM 76.7% 47% 0.48% 46.9%

Machine2
CPU Net Disk Mem
75% 24.75% 0.11% 39%

43.2% 92.1% 0.11% 62.7%
39.8% 47.6% 0.14% ...47%...
39.8% 47.6% 0.14% 47%

Machine3
CPU Net Disk Mem
75% 24.75% 0.11% 39%
75% 24.75% 0.11% 39%

76.7% 47% 0.48% 46.9%
76.7% 47% 0.48% 46.9%

Table 6.7: Predicted performance for min-max configs

Min-max config App1 App2
Response Time Throughput Response Time Throughput

Cfg4 on CPU
Cfg12 on CPU

2568 ms
2568 ms

86.2 req/s
86.2 req/s

2568 ms
2568 ms

86.2 req/s
86.2 req/s

Cfg6 on NET/DISK/MEM
Cfg11 on NET/DISK/MEM

1616 ms
1616 ms

96.1 req/s
96.1 req/s

1616
1616

96.1 req/s
96.1 req/s

141

optimal prediction

4000
3500
3000

6 2500
Z 2000
| 1500 | 1000
£ 500

0

appl measured
appl predicted appc pre

1
& $ $ $ $ $ $ $ $ & & & & &

Configurations

Figure 6.8: Measured vs. predicted average response time for the browsing mixes.

Figure 6.9(a) compares the maximum allocated load of three machines for our

PREMATCH configuration and the worst measured configuration. For maximum

network resource, the worst configuration consumes twice as much as PREMATCH.

The maximum memory usage of worst configuration is 12% more than PREMATCH.

Figure 6.9(b) illustrates a side-by-side comparison of the measured performance

of PREMATCH, random, and worst configuration schemes. On average, the PRE

MATCH configuration reduces the worst configuration response time by 25.6% and

reduces the random configuration response time by 13.7%. Meanwhile, for the

worst configuration, the performance imbalance of the two applications results in

poor performance.

(a) PREMATCH vs. worst config utilization (b) PREMATCH, random and worst config RT
, 100 |-----------1---------------- .---------- 3500 |-------.----------- 1----------- .------

80 - B • i 3000 ■ I ■
H ra I §■ 2500 ' I

6 0 ' $ s: 9, ‘ S 2000 - I

PREMATCH Worst PREMATCH Random Worst
ap p l-R T ^ ™ a p p 2 -R T t = j

Figure 6.9: PREMATCH, random, and worst consolidation comparison.

142

6.6 Summary

In this chapter, we propose a method to assign VMs whose per-resource demands

for multiple resource types (CPU, disk, etc.) are known to underlying hardware in a

min-max fair way. Conflicts between min-max fairness of different resource types

are resolved by using a queuing network model of each application to determine

which resource should be prioritized. The experiment results with RUBiS applica

tions demonstrate that the approach achieves good performance in consolidation

decision making.

143

7 Summary of Contributions and Fu

ture Work

The main contribution of this dissertation is on the design of automatic system man

agement with virtualized data centers. To this end, a set of new techniques and

tools are developed and are summarized as follows.

• For application workload management, this dissertation describes and ana

lyzes a session and request admission algorithm for session-based web ser

vices. The algorithm accepts requests until a threshold of active requests

is reached. When this threshold is reached, incoming requests from newly

starting sessions are dropped, while requests from already active sessions

are queued. Only when this queue is empty and the number of active ses

sions is below the threshold, requests from new sessions are accepted for

service again (in a more aggressive version, the system has to become idle

before starting to accept new sessions again).

Simulation experiments with bursty session arrival patterns show that the

above algorithm can reduce the number of dropped active sessions at the

price of drops of newly starting sessions and increased response time. As

the size of the request queue controls this trade-off, we propose an adaptive

algorithm in which the request queue size is adapted in order to meet a cer

tain response time requirement. We also show illustrations of the behavior of

the adaptive algorithms in different scenarios using the TPC-W e-commerce

benchmarks.

• For server measurement, this dissertation presents a signal processing-based

technique to estimate the amount of physical resources utilized by consolidate

VMs. The dissertation first argues that profiling resource utilization from in

side a VM does not always lead to accurate estimate. It then formulates the

resource utilization profiling problem as a source separation problem studied

in the area of digital signal processing. A directed factor graph model is de

fined to model the dependencies among multiple types of resources across

physical and virtual layers. The results are presented from case studies that

involve a diverse suite of applications, indicating improved accuracy of re

source utilization estimates.

• For resource management, the dissertation presents AppRM, a system that

automatically sets various resource control knobs provided by VMware vSphere

in order to meet service level objectives. AppRM consists of various parts.

The vApp manager collects statistics of the VMs comprising an application

and builds a performance model of the application. The Application Con

troller in the vApp manager then figures out what resources the application

needs in order to meet its SLO, and the Resource Manager translates these

needs into actually vSphere settings. The Resource Pool Manager deals with

the desires of multiple applications, making tradeoffs if needed or allocating

more resources if available. The system is evaluated on two machines. One

machine runs one or more MongoDB instances in a collection of VMs, while

the other runs one or more workload generators in VMs. Each machine also

runs AppRM in a VM. A large variety of experiments shows that AppRM is

effective in achieving the SLOs even as loads change over time and compet-

145

ing VMs are using up resources as well. AppRm is implemented within the

current release of VMware's vSphere. The current system deals only with

CPU and memory resource as vSphere does not provide knobs for I/O and

networking.

• For server consolidation, this dissertation addresses the multi-dimensional

mapping problem for data centers, considering the CPU, disk, and network

dimensions. It proposes a VM consolidation mechanism, first by extending

the fair load balancing scheme for multi-dimensional vector scheduling and

then by using a queueing network simulation to capture contentions for a par

ticular VM placement. Experiments demonstrates that this approach indeed

achieves good performance. The evaluation shows that it is useful to take

into account VM consolidation when mapping VMs, since there can be large

differences between best and worst configurations if interference is not taken

into account.

7.1 Future Work

There are several extensions to the results presented in this dissertation.

7.1.1 Autonomic Resource Allocation

• Scalability: We do not have experimental results that demonstrate the scal

ability of AppRM due to the limited hardware we had access to. However,

we deal with scalability in the design of AppRM using the following mech

anisms: a) separation of concerns: AppRM utilizes a two-layered approach

where vApp Managers translate per-vApp SLOs to desired VM-level resource

settings and RP Managers determine actual resource settings based on avail

able capacity; b) decentralized design: AppRM does not use a centralized

146

controller that determines resource allocations for everyone, which would not

scale. Instead, each vApp Manager deals with only one vApp and each RP

Manager handles only one resource pool; c) asynchronous communication:

The RP Manager interacts with multiple vApp Managers asynchronously and

determines value settings using Algorithm 2 thus markedly improve the scal

ability compared with previous work. On vSphere systems today, each DRS

cluster can have up to 3000 VMs on 32 hosts and multiple RPs. Neverthe

less, the number of settings each vApp Manager controls is only proportional

to the number of VMs in that vApp and is not affected by the overall inventory

size. In the extreme case, each RP Manager can take inputs from thousands

of vApp Managers. However, the current DRS algorithm already performs

fairly sophisticated computation for up to thousands of VMs every five min

utes, hence, AppRM should not pose a scalability bottleneck given that it also

runs on the order of minutes and does only simple calculation with the inputs.

We plan to validate the scalability of AppRM empirically in future work.

• Handling storage and network resources: Network and storage control

knobs are not fully implemented in VMware vSphere product at the time of

this project. However, the modeling techniques used in our work can be ap

plied to other resources as well. For storage, research prototypes [70,71] can

provide I/O operations per second (IOPS) reservations and resource pools.

For network, though bandwidth reservations for outgoing bandwidth are avail

able, we do not know of any implementation of network resource pools. As

these mechanisms mature, we hope to extend our work to other resources.

• AppRM across virtual data centers: Virtual data centers provide good ab

straction of aggregation of resource pools, but AppRM cannot perform the re

source control tuning, if not enough resources are allocated to a virtual data

147

center. AppRM can be extended to make recommendations to administrator

and can also be extended to flow resources from a lower priority virtual data

center, similar to the approach described in Chapter 5 for resource pools.

7.1.2 VM Auto-scaling

In Chapter 5, we demonstrate that dynamically adjusting the effective "size" of

individual servers can successfully meet application SLO target. Another approach

to solve the same problem is to change the number of servers (physical or virtual)

hosting an Internet service or a multi-tiered application. A natual extensioin is to

develop a system mechanism to add or remove an VM instance for one tier of

a multi-tiered system while maintaining the system functionality. A new model is

needed to determine the number of VM instances of a specific tier in order to meet

a target SLO for a multi-tiered application. We will extend the current feedback

control model or explore other methods, e.g., a queueing model or reinforcement

learning model. By online monitoring the arrival flow and its statistics, the model

should appropriately compute the number of virtual machines required at each tier.

For instance, if a burst of arrivals is observed, then the system may need to add

more VMs at presentation tier or application tier. Meanwhile, the system may stop

VMs to save energy when the arrival flow reduces. We expect the algorithm to

provide a relative coarse-grained resource scaling and complements the work in

Chapter 5.

7.1.3 Predictive Server Consolidation in Multi-cores

We will extend the methodology presented in Chapter 6 to be able to accurately

predict virtual machine performance interference on multi-cores. Rather than con

sidering a single performance target for both applications, we will consider two het

erogeneous applications, a primary and a secondary one, and answer the following

148

questions. Given a fixed number of VM instances and target response time for the

primary application, what is the maximum consolidated instances of the secondary

application so that the target response time of the primary application is not vio

lated. To profile the application online, we will develop fine-grained system utility

tools that can correctly monitor and store various resource utilization at the both hy

pervisor and virtual machine levels. Moreover, we should first develop fine-grained

application monitoring tools that watch the network traffic and compute response

time at each tier of web-based application. We expect that the profiling results will

require the development of a load dependent queuing model to capture the relation

ship. Models developed in [50] will be readily transferred to capture consolidation of

multi-tiered applications on multi-cores. In addition, we will aim to build a prediction

tool that provides performance prediction in real time.

7.1.4 Server Consolidation with Performance Target

In Chapter 6, we developed a methodology to optimize total performance when

placing m virtual machines on n servers. However, in some cases, applications

service level objectives (SLOs) are required to be considered. Given a set of appli

cations with their defined SLOs, it is not clear what is the number of servers needed

and what is the application placement strategy so that all application targets can be

mets. Different SLO requirements require different amount of system resources for

each application. We need to profile running applications, build their performance

models online and figure out how much resources are needed to achieve their tar

gets. Applications whose SLO violations are continuously detected are candidates

to perform live migrations so that their performance can be improved. In contrast,

applications whose measured performance is significantly better than the defined

targets are candidates to consolidate in order to reduce the number of running

servers. Models developed in Chapter 6 should guide the process of consolidation

149

or migration to avoid further SLO violations. Such a system could help applications

achieve their SLOs and at the same time reduce the number of running servers.

150

A Markovian Arrival Processes

Markovian Arrival Processes (MAPs) can be seen as a generalization of continuous

time Markov chains (CTMC) used for fitting workload traces. A major difference be

tween CTMC and MAPs is that transactions between states are classified by either

as background transitions or as completion transitions. The background transitions

only change the active state in the CTMC while completion transitions change the

active state and conventionally trigger an arrival event. An inter-arrival time sample

ATfc of a MAP model is the time between successive activation of any two comple

tion transitions.

The commonly used MAP representation is the (D0, D x) description. If MAP has

an infinitesimal generator Q of order N, the (D0, D x) representation is obtained by

decomposing the transitions of Q according to whether or not it leads to a comple

tion transition. D0 has the same diagonal as Q but its off-diagonal elements are the

rates of background transition; D x includes only the rates of completion transitions.

It can be immediately computed that Q = D0 + D x.

For instance, a two-phase MAP may be specified as,

D0 =

1

l >■ V to
1

, A =
^ 1 , 1

t..................
r-4

1

to

1
to to

•

P 2 ,2

where AM = A1)2 + /ii,i + /ii,2 and inverse of Ai.i is the mean time spent in phase 1

before a jump to other states. The off-diagonal elements Ay, i ± j , are the rates of

151

background transition. Similarly, elements of i ^ j , are the rates of following a

completion transition.

The pseudo-code for reading the MAP configuration file and leveraging the MAP

to generate random variates is shown in Algorithms A.1 and A.2. We define a new

data structure STATE to help to store the MAP information as follows:

s t r u c t S T A T E { d o u b l e m e a n ; d o u b l e * p ; } ;

Algorithm A.1 reads the D0 and D x matrices from the configuration file and

stores each state information into STATE structure. Algorithm A.2 generates a

exponential random variate interval based on a global variable which stores the

current state in MAP. Then it determines whether it performs a background or a

completion transition based on a uniformly generated variable. If it is a comple

tion transition, the algorithm outputs the interval as result; otherwise, recursively

call g e t i n t e r v a l () until an completion transition happens. The parameters for the

three MAPs that generate the three burst levels used in the paper are as follows:

-7.572 0.0715 7.500 0
Burst level 1: D0 = , A =

0.0692 -0.1899 0 0.1206

-0.0661 0 0.0548 0.0113
Burst level 2: D0 = , A =

0 -16.9363 0.0406 16.8958

-0.0661 0 0.0605 0.0057
Burst level 3: D0 =

0 -16.9363 00203 16.916

152

Algorithm A.1: readMAP() -- Read the MAP configuration file: build the D0
and £>i.___

Input : MAP config file -- input
begin

numState 4- 0 ;
read (input, &numState)]
states 4— new struct STATE [numState}]
for i 4- numState do

states[i].mean 4 - 0;
states[i].p 4— new double[2 * numState]',

for ind 4 - 0 to 1 do
for i 4 - 0 to numState — 1 do

for j 4 - 0 to numState — 1 do
read (input, &states[i].p[ind * numState + j])',
if states[i].p[ind * numState + j] < 0 then
[_ states[i].p[ind * numState + j] = 0;

states[i].mean 4 - states[i].mean +states\i].p[ind* numState+j]',

for ind 4 - 0 to 1 do
for * 4- 0 to numState — 1 do

for j 4 - 0 to numState — 1 do
states\i].p[ind * numState + j \ <—
states[i].p[ind * numState + j]/states[i).mean]
if ind * numState + j > 0 then

states[i\.p[ind * numState + 3} 4 - states[i].p[ind *
numState + jf] + states[i].p[ind * numState + j — 1];

Algorithm A.2: getlntervalQ - Generate MAP random variates.
Input : global variable state index - - curjnd
begin

mean 4 - states[cur_ind].mean]
interval 4— E x p o n e n t i a l (l / m e a n) ;
prob 4— U n i f o r m (0 , 1) ;
for i 4— 0 to 2 * numState do
[_ if prob < states[cur_ind\.p[i] then break;

complete Jdx 4 -

cur_ind 4— i mod numState;
if complete_idx = 0 then

[_ interval 4- interval + g e t I n t e r v a l () ;

return interval;

153

References

[1] Apache Software Foundation, http://www.apache.org.

[2] Client-server model. https://en.wikipedia.org/wiki/Client

[3] Credit Scheduler - Xen. http: //wiki. xen. org/wiki/Credit_Scheduler.

[4] Earliest deadline first scheduling.

http://en.wikipedia.org/wiki/Earliest_deadline_f irst_scheduling.

[5] Hyperic. http://www.hyperic.com/.

[6] leee spectrum: Tech titans building boom.

http://www.spectrum.ieee.org/green-tech/buildings/tech-titans-building-boon

[7] iostat. http://linux.die.net/man/l/iostat.

[8] lOzone Filesystem Benchmark, http://www.iozone.org.

[9] Kernel based virtual machine, http://www.linux-kvm.org/.

[10] Microsoft hyper-v. http: //www. microsof t . com/hyper-v-server.

[11] MongoDB. http://www.mongodb.org.

[12] Netperf. http://www.netperf.org/netperf/.

[13] Overview of Enterprise Applications.

http://docs.oracle.com/javaee/5/firstcup/doc/gcrky.html.

154

http://www.apache.org
https://en.wikipedia.org/wiki/Client
http://en.wikipedia.org/wiki/Earliest_deadline_f
http://www.hyperic.com/
http://www.spectrum.ieee.org/green-tech/buildings/tech-titans-building-boon
http://linux.die.net/man/l/iostat
http://www.iozone.org
http://www.linux-kvm.org/
http://www.mongodb.org
http://www.netperf.org/netperf/
http://docs.oracle.com/javaee/5/firstcup/doc/gcrky.html

[14] The qcow image format, http://www.gnome.org/ markmc/qcow-image-

format.html.

[15] Standard Performance Evaluation Corporation,

http://www.spec.org/cpu2006/.

[16] SysBench: a system performance benchmark,

http://sysbench.sourceforge.net/.

[17] tcprstat. http://launchpad.net/tcprstat.

[18] The Linux sar command, http://linux.die.net/man/l/sar.

[19] Virtual Security In The Data Center.

https://www.cisco.com/en/US/solutions/collateral/ns340/ns517/

ns224/ns376/cisco-forrester-tap.pdf.

[20] VMware ESX and VMware ESXi.

http://www.vmware.com/f iles/pdf/VMware-ESX-and-VMware-ESXi-DS-EN.pdf.

[21] VMware ESX hypervisor, http://www.vmware.com/products/vsphere/esxi-

and-esx/index.html.

[22] VMware vSphere 5 Network I/O Control.

http://www.vmware.com/products/datacenter-virtualization/vsphere/network-

io-control.html.

[23] VMware vSphere. http: //www. vmware. com/products/vsphere/overview. html.

[24] VMware vSphere Web Services SDK.

https://www.vmware.com/support/developer/vc-sdk/.

[25] Wikipedia. http://en.wikipedia.org/wiki/Datacenter.

[26] Windows Hyper-V Server, http://www.microsoft.com/hyper-v-server/.

155

http://www.gnome.org/
http://www.spec.org/cpu2006/
http://sysbench.sourceforge.net/
http://launchpad.net/tcprstat
http://linux.die.net/man/l/sar
https://www.cisco.com/en/US/solutions/collateral/ns340/ns517/
http://www.vmware.com/f
http://www.vmware.com/products/vsphere/esxi-
http://www.vmware.com/products/datacenter-virtualization/vsphere/network-
https://www.vmware.com/support/developer/vc-sdk/
http://en.wikipedia.org/wiki/Datacenter
http://www.microsoft.com/hyper-v-server/

[27] Citrix workload balancing 2.1 administrator's guide. Citrix Whitepaper,

September 2011.

[28] Tarek F. Abdelzaher and Nina Bhatti. Web Content Adaptation to Improve

Server Overload Behavior. Computer Network., 31:1563-1577, May 1999.

[29] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance Guaran

tees for Web Server End-Systems: A Control-Theoretical Approach. IEEE

Trans. Parallel Distrib. Syst., 13:80-96, January 2002.

[30] Jussara Almeida, Mihaela Dabu, and Pei Cao. Providing Differentiated Lev

els of Service in Web Content Hosting. In Proc. of SIGMETRICS Workshop

on Internet Server Performance, pages 91-102,1997.

[31] Danilo Ansaloni, Lydia Y Chen, Evgenia Smirni, and Walter Binder. Model-

driven consolidation of java workloads on multicores. In Dependable Sys

tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Con

ference on, pages 1-12. IEEE, 2012.

[32] Simonetta Balsamo, Raif O. Onvural, and Vittoria De Nitto Persone'. Analysis

of Queueing Networks with Blocking. Kluwer Academic Publishers, Norwell,

MA, USA, 2001.

[33] Gaurav Banga, Peter Druschel, and Jeffrey C Mogul. Resource containers: A

new facility for resource management in server systems. In OSDI, volume 99,

pages 45-58, 1999.

[34] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of vir

tualization. In Proceedings of the nineteenth ACM symposium on Operating

systems principles, SOSP '03, pages 164-177, New York, NY, USA, 2003.

ACM.

156

[35] Novella Bartolini, Giancarlo Bongiovanni, and Simone Silvestri. An auto

nomic admission control policy for distributed web systems, pages 138-144,

2007.

[36] Novella Bartolini, Giancarlo Bongiovanni, and Simone Silvestri. Self-*

through self-learning: overload control for distributed web systems. Com

puter Networks, 53:727-743, April 2009.

[37] Aaron Beitch, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, and

David Patterson. Rain: A workload generation toolkit for cloud computing

applications. In U.C. Berkeley Technical Publications, 2010.

[38] Yigal Bejerano, Seung-Jae Han, and Li Erran Li. Fairness and load balancing

in wireless Ians using association control, pages 315-329, 2004.

[39] Jean-Pascal Billaud and Ajay Gulati. hclock: Hierarchical qos for packet

scheduling in a hypervisor. In Proceedings of the 8th ACM European Con

ference on Computer Systems, EuroSys '13, pages 309-322, New York, NY,

USA, 2013. ACM.

[40] Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan,

and David Patterson. Statistical machine learning makes automatic control

practical for internet datacenters. In Proceedings of the 2009 conference on

Hot topics in cloud computing, pages 12-16,2009.

[41] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum.

Disco: running commodity operating systems on scalable multiprocessors.

ACM Trans. Comput. Syst., 15(4):412-447, November 1997.

[42] Jakob CarlstrGm and Raphael Rom. Application-aware Admission Control

and Scheduling in Web Servers. In 21st Annual Joint Conference of the IEEE

157

Computer and Communications Societies, INFOCOM '02, pages 506-515,

2002.

[43] Giuliano Casale, Ningfang Mi, Ludmila Cherkasova, and Evgenia Smirni.

Dealing with burstiness in multi-tier applications: Models and their param

eterization. IEEE Trans. Software Eng., 38(5): 1040-1053, 2012.

[44] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite,

and Willy Zwaenepoel. Performance comparison of middleware archi

tectures for generating dynamic web content. In Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on Middleware, Middle

ware '03, pages 242-261, New York, NY, USA, 2003. Springer-Verlag New

York, Inc.

[45] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Performance

and scalability of ejb applications. In Proceedings of the 17th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and ap

plications, OOPSLA '02, pages 246-261, New York, NY, USA, 2002. ACM.

[46] Surendar Chandra, Carla Schlatter Ellis, and Amin Vahdat. Differentiated

Multimedia Web Services Using Quality Aware Transcoding. In Nineteenth

Annual Joint Conference of the IEEE Computer and Communications Soci

eties, INFOCOM '00, pages 961-969, 2000.

[47] Jeffrey S Chase, Darrell C Anderson, Prachi N Thakar, Amin M Vahdat, and

Ronald P Doyle. Managing energy and server resources in hosting centers.

In ACM SIGOPS Operating Systems Review, volume 35, pages 103-116.

ACM, 2001.

[48] Chandra Chekuri and Sanjeev Khanna. On multi-dimensional packing prob

lems. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete

158

algorithms, SODA '99, pages 185-194, Philadelphia, PA, USA, 1999. Soci

ety for Industrial and Applied Mathematics.

[49] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. Modeling program re

source demand using inherent program characteristics. SIGMETRICS Per

form. Eval. Rev., 39:1-12, June 2011.

[50] Lydia Y Chen, Danilo Ansaloni, Evgenia Smirni, Akira Yokokawa, and Wal

ter Binder. Achieving application-centric performance targets via consolida

tion on multicores: myth or reality? In Proceedings of the 21st international

symposium on High-Performance Parallel and Distributed Computing, pages

37-48. ACM, 2012.

[51] Xiangping Chen, Prasant Mohapatra, and Huamin Chen. An Admission Con

trol Scheme for Predictable Server Response Time for Web Accesses. In

Proceedings of the 10th international conference on World Wide Web, WWW

'01, pages 545-554, 2001.

[52] Ludmila Cherkasova. Scheduling Strategy to Improve Response Time for

Web Applications. In Proceedings of the International Conference and Ex

hibition on High-Performance Computing and Networking, HPCN Europe

1998, pages 305-314,1998.

[53] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the

three cpu schedulers in xen. SIGMETRICS Perform. Eval. Rev., 35(2):42-

51, September 2007.

[54] Ludmila Cherkasova and Peter Phaal. Session-Based Admission Control:

A Mechanism for Peak Load Management of Commercial Web Sites. IEEE

Trans. Comput., 51:669-685, June 2002.

159

[55] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,

Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of vir

tual machines. In Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation-Volume 2, pages 273-286.

USENIX Association, 2005.

[56] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM J. Res.

Dev., 25(5):483-490, September 1981.

[57] Mark E. Crovella, Robert Frangioso, and Mor Harchol-Balter. Connection

Scheduling in Web Servers. In Proceedings of the 2nd conference on

USENIX Symposium on Internet Technologies and Systems - Volume 2,

pages 22-33,1999.

[58] N.R. Draper and H. Smith. A p p l i e d R e g r e s s i o n A n a l y s i s . John Wiley and

Sons, Third Edition, 1998.

[59] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (bvt) schedul

ing: supporting latency-sensitive threads in a general-purpose scheduler. In

Proceedings of the seventeenth A CM symposium on Operating systems prin

ciples, SOSP '99, pages 261-276, New York, NY, USA, 1999. ACM.

[60] Lars Eggert and John Heidemann. Application-level Differentiated Services

for Web Servers. World Wide Web, 2:133-142, March 1999.

[61] Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. A

Method for Transparent Admission Control and Request Scheduling in E-

Commerce Web Sites. In Proceedings of the 13th international conference

on World Wide Web, WWW '04, pages 276-286, 2004.

[62] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul

Gauthier. Cluster-Based Scalable Network Services. In Proceedings of

160

the sixteenth ACM symposium on Operating systems principles, SOSP '97,

pages 78-91,1997.

[63] N Gandhi, DM Tilbury, Y Diao, J Hellerstein, and S Parekh. Mimo control of

an apache web server: Modeling and controller design. In American Control

Conference, 2002. Proceedings of the 2002, volume 6, pages 4922-4927.

IEEE, 2002.

[64] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott

Shenker, and Ion Stoica. Dominant resource fairness: fair allocation of mul-

tiple resource types. In Proceedings of the 8th USENIX conference on Net

worked systems design and implementation, NSDI'11, pages 24-37, Berke

ley, CA, USA, 2011. USENIX Association.

[65] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Ca

pacity management and demand prediction for next generation data cen

ters. In Web Services, 2007. iCWS 2007. IEEE International Conference on,

pages 43-50. IEEE, 2007.

[66] Ashish Goel, Adam Meyerson, and Serge Plotkin. Approximate majoriza-

tion and fair online load balancing. In Proceedings of the 12th ACM-SIAM

Symposium on Discrete Algorithms, pages 384-390,2000.

[67] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam.

Cuanta: quantifying effects of shared on-chip resource interference for con

solidated virtual machines. In Proceedings of the 2nd ACM Symposium on

Cloud Computing, SOCC '11, pages 22:1-22:14, New York, NY, USA, 2011.

ACM.

[68] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. Parda: proportional al

location of resources for distributed storage access. In Proceedings of the

161

7th conference on File and storage technologies, FAST '09, pages 85-98,

Berkeley, CA, USA, 2009. USENIX Association.

[69] Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmuganathan, Carl Wald-

spurger, and Xiaoyun Zhu. Vmware distributed resource management: De

sign, implementation, and lessons learned. VMware Technical Journal,

1(1):45~64, 2012.

[70] Ajay Gulati, Arif Merchant, and Peter J. Varman. mclock: Handling through

put variability for hypervisor IO scheduling. In 9th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2010, October 4-6,

2010, Vancouver, BC, Canada, Proceedings, pages 437-450. USENIX As

sociation, 2010.

[71] Ajay Gulati, Ganesha Shanmuganathan, Xuechen Zhang, and Peter Var

man. Demand based hierarchical qos using storage resource pools. In Pro

ceedings of the 2012 USENIX conference on Annual Technical Conference,

USENIX ATC'12, pages 1-13, Berkeley, CA, USA, 2012. USENIX Associa

tion.

[72] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. En

forcing performance isolation across virtual machines in xen. In Proceedings

oftheACM/IFIP/USENIX 2006 International Conference on Middleware, Mid

dleware '06, pages 342-362, New York, NY, USA, 2006. Springer-Verlag

New York, Inc.

[73] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xenmon: Qos mon

itoring and performance profiling tool. Technical report, 2005.

[74] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feed

back Control of Computing Systems. Wiley-lnterscience, 2004.

162

[75] V.M. Infrastructure. Resource management with vmware drs. VMware

Whitepaper, 2006.

[76] Canturk Isci, James E Hanson, Ian Whalley, Malgorzata Steinder, and

Jeffrey 0 Kephart. Runtime demand estimation for effective dynamic re

source management. In Network Operations and Management Symposium

(NOMS), 2010 IEEE, pages 381-388. IEEE, 2010.

[77] Ravi Iyer, Ramesh lllikkal, Omesh Tickoo, Li Zhao, Padma Apparao, and Don

Newell. Vm3: Measuring, modeling and managing vm shared resources.

Comput. Netw., 53:2873-2887, December 2009.

[78] Ravi Iyer, Vijay Tewari, and Krishna Kant. Overload Control Mechanisms for

Web Servers. In Workshop on Performance and QoS of Next Generation

Networks, pages 225-244, 2000.

[79] Wei Jin, Jeffrey S Chase, and Jasleen Kaur. Interposed proportional sharing

for a storage service utility. In ACM SIGMETRICS Performance Evaluation

Review, volume 32, pages 37-48. ACM, 2004.

[80] Vikram Kanodia and Edward W. Knightly. Ensuring Latency Targets in Mul

ticlass Web Servers. IEEE Trans. Parallel Distrib. Syst., 14:84-93, January

2003.

[81] Christos Karamanolis, Magnus Karlsson, and Xiaoyun Zhu. Designing con

trollable computer systems. In Proceedings of the 10th conference on Hot

Topics in Operating Systems - Volume 10, HOTOS'05, pages 9 -9 , Berkeley,

CA, USA, 2005. USENIX Association.

[82] Jon Kleinberg, Yuval Rabani, and E=va Tardos. Fairness in routing and load

balancing. In J. Comput. Syst. Sci, pages 568-578,1999.

163

[83] V.M. Koch. A factor graph approach to model-based signal separation.

Hartung-Gorre Verlag, 2007.

[84] Palden Lama and Xiaobo Zhou. Autonomic provisioning with self-adaptive

neural fuzzy control for end-to-end delay guarantee. In Proceedings of the

2010 IEEE International Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, MASCOTS '10, pages 151—

160, Washington, DC, USA, 2010. IEEE Computer Society.

[85] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Rama-

subramanian, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Validating

heuristics for virtual machines consolidation. Microsoft Research Technical

Report, pages MSR-TR--2011--9, january 2011.

[86] Kelvin Li and Sugih Jamin. A Measurement-Based Admission-Controlled

Web Server. In Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies, INFOCOM '00, pages 651-659, 2000.

[87] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. High per

formance vmm-bypass i/o in virtual machines. In Proceedings of the annual

conference on USENIX '06 Annual Technical Conference, ATEC '06, pages

29-42, Berkeley, CA, USA, 2006. USENIX Association.

[88] H-A Loeliger. An introduction to factor graphs. Signal Processing Magazine,

IEEE, 21(1):28~41, 2004.

[89] Chenyang Lu, Tarek F. Abdelzaher, John A. Stankovic, and Sang H. Son.

A Feedback Control Approach for Guaranteeing Relative Delays in Web

Servers. In Proceedings of the Seventh Real-Time Technology and Appli

cations Symposium, RTAS '01, pages 51-62, 2001.

164

[90] Lei Lu, Ludmila Cherkasova, Vittoria de Nitto Person^, Ningfang Mi, and Ev-

genia Smirni. Await: Efficient overload management for busy multi-tier web

services under bursty workloads. In Proceedings of the 10th international

conference on Web engineering, ICWE'10, pages 81--97, Berlin, Heidelberg,

2010. Springer-Verlag.

[91] Lei Lu, Hui Zhang, Guofei Jiang, Haifeng Chen, Kenji Yoshihira, and Evge-

nia Smirni. Untangling mixed information to calibrate resource utilization in

virtual machines. In Proceedings of the 8th ACM international conference

on Autonomic computing, ICAC '11, pages 151-160, New York, NY, USA,

2011. ACM.

[92] Lei Lu, Hui Zhang, Evgenia Smirni, Guofei Jiang, and Kenji Yoshihira. Predic

tive vm consolidation on multiple resources: Beyond load balancing. In the

21st IEEE/ACM International Symposium on Quality of Service (IWQoS'13),

pages 1--10, June 2013.

[93] Lei Lu, Xiaoyun Zhu, Rean Griffith, Pradeep Padala, Aashish Parikh, Parth

Shah, and Evgenia Smimi. Application-driven auto-scaling of virtual ma

chines in resource pools. In Network Operations and Management Sym

posium, NOMS '14. IEEE, 2014, submitted for publication.

[94] Ying Lu, Tarek F Abdelzaher, and Avneesh Saxena. Design, implementation,

and evaluation of differentiated caching services. Parallel and Distributed

Systems, IEEE Transactions on, 15(5):440-452,2004.

[95] Morris L Marx and Richard J Larsen. Introduction to mathematical statistics

and its applications. Pearson/Prentice Hall, 2006.

[96] Marvin McNett, Diwaker Gupta, Amin Vahdat, and Geoffrey M. Voelker.

Usher: An Extensible Framework for Managing Clusters of Virtual Machines.

165

In Proceedings of the 21st Large Installation System Administration Confer

ence (LISA), pages 1-15, Berkeley, CA, USA, November 2007. USENIX

Association.

[97] Daniel A Menasc6, Virgilio AF Almeida, and Larry W Dowdy. Capacity plan

ning and performance modeling: from mainframes to client-server systems.

Prentice-Hall, Inc., 1994.

[98] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models.

In Proceedings of the 9th ACM/IFIP/USENIX International Conference on

Middleware, Middleware '08, pages 265-286, 2008.

[99] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. In

jecting Realistic Burstiness to a Traditional Client-Server Benchmark. In Pro

ceedings of the 6th international conference on Autonomic computing, ICAC

'09, pages 149-158, 2009.

[100] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: managing

performance interference effects for qos-aware clouds. In Proceedings of the

5th European conference on Computer systems, EuroSys '10, pages 23 7 -

250, New York, NY, USA, 2010. ACM.

[101] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and Asser Tantawi.

Dynamic estimation of cpu demand of web traffic. In Proceedings of the 1st

international conference on Performance evaluation methodolgies and tools,

valuetools '06, New York, NY, USA, 2006. ACM.

[102] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal,

Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated control of mul

tiple virtualized resources. In Proceedings of the 4th ACM European con

166

ference on Computer systems, EuroSys '09, pages 13-26, New York, NY,

USA, 2009. ACM.

[103] Sujay Parekh, Neha Gandhi, Joseph Hellerstein, Dawn Tilbury, T Jayram,

and Joe Bigus. Using control theory to achieve service level objectives in

performance management. Real-Time Systems, 23(1 -2):127—141,2002.

[104] Harry G. Perros. Queueing Networks with Blocking. Oxford University Press,

Inc., New York, NY, USA, 1994.

[105] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtual-

izable third generation architectures. Commun. ACM, 17(7):412—421, July

1974.

[106] John Scott Robin and Cynthia E. Irvine. Analysis of the intel Pentium's abil

ity to support a secure virtual machine monitor. In Proceedings of the 9th

conference on USENIX Security Symposium - Volume 9, SSYM'00, pages

10-25, Berkeley, CA, USA, 2000. USENIX Association.

[107] Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, and Artur Andrzejak. A capac

ity management service for resource pools. In Proceedings of the 5th interna

tional workshop on Software and performance, WOSP ’05, pages 229-237,

New York, NY, USA, 2005. ACM.

[108] Kenneth H Rosen and Kamala Krithivasan. Discrete mathematics and its

applications, volume 6. McGraw-Hill New York, 1999.

[109] Jose Renato Santos, Yoshio Turner, G. Janakiraman, and Ian Pratt. Bridg

ing the gap between software and hardware techniques for i/o virtualization.

In USENIX 2008 Annual Technical Conference on Annual Technical Confer

ence, ATC'08, pages 29-42, Berkeley, CA, USA, 2008. USENIX Association.

167

[110] Stefan Seltzsam, Daniel Gmach, Stefan Krompass, and Alfons Kemper. Au

toglobe: An automatic administration concept for service-oriented database

applications. In Proceedings of the 22nd International Conference on Data

Engineering, ICDE '06, pages 90--101, Washington, DC, USA, 2006. IEEE

Computer Society.

[111] Kai Shen, Hong Tang, Tao Yang, and Lingkun Chu. Integrated Resource

Management for Cluster-based Internet Services. SIGOPS Oper. Syst. Rev.,

36:225-238, December 2002.

[112] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems

and Processes (The Morgan Kaufmann Series in Computer Architecture and

Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[113] Preeti Bho] Srinivas, Srinivas Ramanathan, and Sharad Singhal. Web2K:

Bringing QoS to Web Servers. Technical Report HPL-2000-61, HPLabs,

2000.

[114] L. Surhone, M Timpledon, and S Marseken. Source Separation: Digi

tal Signal Processing, Signal (Electronics), Principal Component Analysis,

Independent Component Analysis, Auditory Scene Analysis, Magnetoen-

cephalography. Betascript Publishers, 2010.

[115] Chris Takemura and Luke Seidel Crawford. The Book ofXen: A Practical

Giude for the System Administrator. No Starch Press, 2010.

[116] Leandros Tassiulas and Saswati Sarkar. Maxmin fair scheduling in wire

less networks. In INFOCOM 2002. Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE,

volume 2, pages 763-772. IEEE, 2002.

168

[117] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and

Timothy Wood. Agile dynamic provisioning of multi-tier internet applications.

ACM Trans. Auton. Adapt. Syst., 3(1):1:1-1:39, March 2008.

[118] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource over

booking and application profiling in shared hosting platforms. SIGOPS Oper.

Syst. Rev., 36(SI):239~254, dec 2002.

[119] VMware, Inc. vSphere Resource Management Guide: ESXi 5.1, vCenter

Server 5.1. 2012.

[120] Werner Vogels. Beyond server consolidation. Queue, 6(1):20~26, January

2008.

[121] Thiemo Voigt. Overload behaviour and protection of event-driven web

servers. In Web Engineering and Peer-to-Peer Computing, pages 147--157.

Springer, 2002.

[122] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra. Kernel

Mechanisms for Service Differentiation in Overloaded Web Servers. In Pro

ceedings of the General Track: 2002 USENIX Annual Technical Conference,

pages 189-202, 2001.

[123] Carl A Waldspurger. Memory resource management in vmware esx server.

ACM SIGOPS Operating Systems Review, 36<SI):181—194, 2002.

[124] Zhikui Wang, Yuan Chen, Daniel Gmach, Sharad Singhal, Brian J. Watson,

Wilson Rivera, Xiaoyun Zhu, and Chris Hyser. Appraise: application-level

performance management in virtualized server environments. IEEE Trans,

on Network and Service Management, 6(4):240~254, 2009.

169

[125] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-

Conditioned, Scalable Internet Services. In Proceedings of the eighteenth

ACM symposium on Operating systems principles, SOSP '01, pages 230™

243, 2001.

[126] Andrew Whitaker, Marianne Shaw, and Steven D Gribble. Scale and per

formance in the denali isolation kernel. ACM SIGOPS Operating Systems

Review, 36(SI): 195-209, 2002.

[127] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy.

Profiling and modeling resource usage of virtualized applications. In Pro

ceedings of the 9th ACM/IFIP/USENIX International Conference on Middle

ware, Middleware '08, pages 366-387, New York, NY, USA, 2008. Springer-

Verlag New York, Inc.

[128] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif.

Black-box and gray-box strategies for virtual machine migration. In Proceed

ings of the 4th USENIX conference on Networked systems design & im

plementation, NSDI'07, pages 17-30, Berkeley, CA, USA, 2007. USENIX

Association.

[129] Jing Xu, Ming Zhao, Jos6 Fortes, Robert Carpenter, and Mazin Yousif. Au

tonomic resource management in virtualized data centers using fuzzy logic-

based approaches. Cluster Computing, 11 (3):213—227, 2008.

[130] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A regression-based an

alytic model for dynamic resource provisioning of multi-tier applications. In

Proceedings of the Fourth International Conference on Autonomic Comput

ing, ICAC '07, pages 27-36, Washington, DC, USA, 2007. IEEE Computer

Society.

170

[131] Yuting Zhang, Azer Bestavros, Mina Guirguis, Ibrahim Matta, and Richard

West. Friendly virtual machines: leveraging a feedback-control model for

application adaptation. In Proceedings of the 1st ACM/USENIX international

conference on Virtual execution environments, pages 2-12 . ACM, 2005.

171

VITA

Lei Lu received his B.S. degree in Computer Science from Nanjing University,

China, in 2005 and his M.E. degree in System Engineering from Nanjing University,

China, in 2008. He has been a Ph.D. candidate in Computer Science Department

at the College of William and Mary since 2009. His research interests include server

virtualization, system performance evaluation, and cloud computing.

172

	Effective Resource and Workload Management in Data Centers
	Recommended Citation

	00001.tif

