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ABSTRACT

The increasing demand for storage, computation, and business continuity has 
driven the growth of data centers. Managing data centers efficiently is a difficult 
task because of the wide variety of datacenter applications, their ever-changing 
intensities, and the fact that application performance targets may differ widely. 
Server virtualization has been a game-changing technology for IT, providing the 
possibility to support multiple virtual machines (VMs) simultaneously. This 
dissertation focuses on how virtualization technologies can be utilized to develop 
new tools for maintaining high resource utilization, for achieving high application 
performance, and for reducing the cost of data center management.

For multi-tiered applications, bursty workload traffic can significantly deteriorate 
performance. This dissertation proposes an admission control algorithm AWAIT, 
for handling overloading conditions in multi-tier web services. AWAIT places on 
hold requests of accepted sessions and refuses to admit new sessions when the 
system is in a sudden workload surge. To meet the service-level objective, 
AWAIT serves the requests in the blocking queue with high priority. The size of 
the queue is dynamically determined according to the workload burstiness.

Many admission control policies are triggered by instantaneous measurements 
of system resource usage, e.g., CPU utilization. This dissertation first 
demonstrates that directly measuring virtual machine resource utilizations with 
standard tools cannot always lead to accurate estimates. A directed factor graph 
(DFG) model is defined to model the dependencies among multiple types of 
resources across physical and virtual layers.

Virtualized data centers always enable sharing of resources among hosted 
applications for achieving high resource utilization. However, it is difficult to 
satisfy application SLOs on a shared infrastructure, as application workloads 
patterns change over time. AppRM, an automated management system not only 
allocates right amount of resources to applications for their performance target 
but also adjusts to dynamic workloads using an adaptive model.

Server consolidation is one of the key applications of server virtualization. This 
dissertation proposes a VM consolidation mechanism, first by extending the fair 
load balancing scheme for multi-dimensional vector scheduling, and then by 
using a queueing network model to capture the service contentions for a 
particular virtual machine placement.
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1 Introduction

1.1 Overview of Data Centers

Data centers are rapidly becoming the standard IT solution to host internet and 

businesses applications due to their great potential in providing highly reliable ser

vice and reducing operation cost. According to a definition from Wikipedia [25], 

Data Center is

"a facility used to house computer systems and associated compo

nents, such as telecommunications and storage systems. It generally 

includes redundant or backup power supplies, redundant data commu

nications connections, environmental controls (e.g., air conditioning, fire 

suppression) and security devices. "

It is reported that more than one million servers are scattered in three dozen 

data centers around the world [6]. Effective management of resources in such 

environment results in many challenging and interesting research problems.

Virtualization brings dramatic changes in data centers. It enables partitioning 

a single physical server into multiple virtual machines, each with its own indepen

dent application and operating system. Instead of provisioning a single, physical 

server with enough spare (often idle) capacity to support the peak load of a single 

application, virtualization provides a way to isolate and partition server resources 

to meet the variable demands of application workloads. The trend to use server
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virtualization technologies to consolidate multiple data center servers is growing 

rapidly. It is reported that 48% percent of x86 server OS instances are operated as 

virtual servers by 2012 and this number is expected to grow by 74% over the next 

two years [19].

Server virtualization enables the rapid and fine-grained resource management 

in server systems. Enterprise virtualization products allow dynamically adjusting 

CPU and memory resources while the virtual machine (VM) is running. How

ever, as data centers continue to deploy virtualized solutions, new challenges have 

also emerged: accurately monitoring virtualized applications demand; correct re

source allocation for meeting performance goals; determining optimal VM place

ments strategies to reduce the workload interference, are some examples of press

ing challenges.

This dissertation aims at developing a systematic methodology that allows for 

improved solutions when dealing with challenges related to virtualization overhead 

measurement, autonomic resource management, and optimized VM placement. 

This dissertation provides answers to the following questions:

• How can we effectively design an admission control policy for prevalent ap

plications used by data center tenants?

• How can we estimate accurate resource utilizations of an application running 

in a virtualized environment when we need to consider virtualization over

heads?

• How can we automatically and efficiently set the resource controls for VMs 

and resource pools to meet the applications SLOs? How can the system 

ensure performance to individual application in spite of dynamically-changing 

workloads?

• What is the best way to collocate applications, i.e., what are the workload
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characteristics of competing applications that are best to be matched in order 

to obtain an optimal workload "mix" such that performance interference is 

minimized?

The above questions cover many of resource and workload management prob

lems from optimizing workloads placement to system monitoring and performance 

enforcement. Under the requirement of rapid response and scalability for data cen

ters, the questions become more challenging. If these questions are solved, data 

centers can be made more efficient, autonomic, and significantly cost effective in 

management.

1.2 Dissertation Contributions

This dissertation mainly focuses on providing automated solutions to system mon

itoring and resource management challenges that data centers face today. Tech

niques that combine virtualization with intelligent control algorithms and system 

modeling are developed in this dissertation.

1.2.1 Summary of Contributions

Overall, the key contributions of this dissertation are:

• AWAIT: a novel admission control policy that utilizes the concept of blocking 

queue as an overload protection mechanism for bursty workloads [90],

• DFG: an automated technique that quantifies the cost of virtualization layer 

overheads to accurately calibrate VM resource demands [91],

• AppRM: a performance management tool that automatically adjusts resource 

control settings at the individual virtual machine level or at the resource pool
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level such that the virtualized applications running in a virtual data center can 

meet their respective performance goals [93], and

• PREMATCH: an automated placement engine that provides multi-dimensional 

min-max load balancing and minimizes interference among co-located VMs [92],

1.2.2 Management of Application Workloads

Multi-tier web service is a popular application paradigm in data centers. Meet

ing SLOs in web services is a challenging and complex problem. While capacity 

planning is widely used to size the system and meet SLOs under normal operat

ing conditions, it is exceedingly difficult to effectively meet performance and op

eration targets when web traffic conditions become bursty. The deficiency of well- 

accepted techniques for admission control for single-tiered systems when applied in 

the prevalent multi-tier setting under bursty conditions has been documented [98]. 

Such policies unavoidably result in rejecting requests of already accepted sessions, 

which directly translate into significant business loss.

To remedy this problem, a novel autonomic admission control policy, called 

AWAIT is proposed. It utilizes the concept of "blocking queue" as an overload 

protection mechanism. When the system experiences sudden overload and starts 

operating above capacity, requests from accepted sessions are not aborted but are 

instead stored in a blocking queue that effectively operates like a "waiting room" 

but with the unavoidable caveat of jeopardizing the targeted request latency due 

to the extra waiting. After overload subsides, requests in the blocking queue are 

served with high priority. AWAIT effectively adjusts the size of the blocking queue 

in an autonomic way and strikes a good balance among two conflicting goals: re

stricting the size of the blocking queue to best meet target SLOs, while continuously 

adapting its size in order to best react to workload burstiness.
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1.2.3 Virtualized Server Measurement

Server virtualization brings benefits in autonomic resource management, but also 

leads to new challenges. The challenge addressed in this dissertation is on profil

ing physical resource utilization information of VMs when consolidated on a single 

server. Profiling is very difficult due to dynamic mapping relationships of resource 

activities between the virtual layer and the physical layer. The problem is further ex

acerbated by cross-resource utilization causality relationships due to virtualization 

overhead and resource utilization multiplexing across different VMs.

The profiling problem is formulated as a source separation problem as studied 

in digital signal processing and uses a directed factor graph (DFG) to model the 

multivariate dependence relationships among different resources (CPU, memory, 

disk, network) across virtual and physical layers. A benchmark-based methodology 

is designed to build a DFG based model for the VM information calibration problem. 

A run-time calibration mechanism is proposed based on the DFG based model and 

further enhanced with a robust remodeling method based on guided regression. 

The proposed methodology outputs estimates of physical resource utilization on 

individual VMs and physical server aggregate resource utilization.

1.2.4 Autonomic Resource Control

Virtual data centers (VDC) and Resource pools (RPs) are logical containers repre

senting an aggregate resource allocation for a collection of virtual machines being 

managed by VMware's cloud management software. Resource pools offer pow

erful resource control primitives including reservations, limits, and shares that can 

be set at a VM or at a resource pool level. These primitives allow administrators 

to control the absolute and relative amount of resources a VM or a resource pool 

consumes. However, as the virtual machine sprawl continues, it has become in
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creasingly difficult to set these knobs properly such that virtualized applications 

(referred to as vApps) can get enough resources to meet their respective SLOs.

In this dissertation, a tool called AppRM is presented. It is able to automatically 

set the resource controls for VMs and resource pools to meet the application SLOs. 

AppRM contains a hierarchy of vApp Managers and RP Managers, where a vApp 

Manager translates the SLO for an application into the resource control settings 

for the individual VMs running that application. An RP Manager ensures that all 

applications within the resource pool can meet their SLOs by adjusting the knobs 

at the resource pool level. Each vApp Manager consists of a model builder, an 

application controller, and a resource controller.

1.2.5 Virtual Machine Consolidation Strategy

Effective consolidation of different applications on common resources is often akin 

to a black art as unexpected application performance interference may result in 

unpredictable system and workload delays. The problem of fair load balancing on 

multiple servers within a virtualized data center setting is addressed in this disser

tation. Especially it is focused on multi-tiered applications with different resource 

demands per tier and address the problem on how to best match each application 

tier on each resource such that performance interference is minimized.

For this specific problem, a two-step approach is proposed. First, a load bal

ancing algorithm is developed that assigns different virtual machines across differ

ent servers by applying min-max load balancing on individual server loads, aiming 

at balancing the load across all servers. This process is formulated as a multi

dimensional vector scheduling problem that uses a polynomial time approximation 

scheme to minimize the maximum utilization across all server resources and re

sults in several load balancing solutions. As a second step, a queueing network 

analytic model is applied on the proposed min-max solutions. The model predicts
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the application performance under multiple consolidation choices and selects the 

optimal balancing solution.

1.3 Organization

The rest of this document is organized as follows. Chapter 2 gives background 

and related work on virtualized data centers to set the context of this work. Chap

ter 3 describes an admission control policy for handling overloading conditions in 

multi-tier web services. This is followed in Chapter 4 with a discussion of how to 

quantify the cost of virtualization layer overheads in order to calibrate measured 

VM resource demand. Chapter 5 discusses a performance management tool that 

automatically adjusts resource control settings at individual virtual machine levels 

to allow virtualized applications meeting their respective performance goals. Chap

ter 6 proposes how to co-locate multi-tiered applications on a given set of physical 

resources in a multi-tenant data center. Finally, in Chapter 7 gives a summary of 

contribution and outlines future work.
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2 Background and Related Work

This chapter presents the background material and detailed related work that puts 

the contribution of this dissertation into perspective.

2.1 Application Architecture Overview

The main purpose of data centers is hosting and running the core business appli

cation environment of corporations. Most of today's enterprise applications use a 

web-based front end. Since a successful design of resource and workload man

agement policy requires good understanding of the application characteristics, this 

section provides a high-level overview of today's application architecture.

2.1.1 The Client/Server and n-Tier Models

Most applications today are developed according to the client/server or n-tier mod

els. In fact, for most enterprise software, the client/server model has evolved to the 

n-tier model. The client/server model was originated from Xerox PARC during the 

1970s [2]. In this architecture, as shown in Figure 2.1(a), the client application is 

a part of the application program running at the client's computer to retrieve data 

from the server and present it to the user. The server, most commonly a database 

management system, stores application data, such as user information. The pre

sentation, business logic, and data provision are separated in the n-tier model to
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minimize the impact of logic changes, see Figure 2.1(b). According to this model, 

the application functions are divided into the following software tiers:

• The client tier -  The client software (usually a web browser) renders the user 

interface.

• The presentation tier -- This software provides the function of user interface 

generation. It comprises static objects, such as images, and dynamically 

generated objects to translate the results of the application computation to 

something that the user can understand. On web-based applications, the 

presentation tier is implemented by web servers.

• The application tier -  This tier provides the business logic, coordinates the 

application, and performs calculations. The application tier typically connects 

the presentation tier and database tier. It receives remote procedure calls 

from the presentation tier, stores and retrieves data from the database, and 

returns the result of the computation to the presentation tier. The typical tech

nologies are ASP, Java servlets, and EJB [13].

• The database tier -- This software stores application data.

2.1.2 Admission Control in Web Servers

Admission control is mostly focused on web servers to prevent computing system 

from being overloaded. The Apache server binary is called httpd in Linux and runs
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Figure 2.1: The Client/Server and n-Tier Model
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as daemon processes that listen to the specified socket port. When a request 

appears, the server attaches a child process to it by either spawning a new one 

or awakening one from process pools. The request is then passed to that child 

process for processing. MaxClients sets the limit on the number of simultaneous 

requests (i.e. worker pool) that will be served, thus imposing a limitation on the 

processing capacity of the server. A large MaxClients value may allow Apache 

to handle more client http requests. However, this high value can also result in 

excessive resource usage that finally increases the response time dramatically.

2.1.3 Related Work on Admission Control

There has been a lot of research in the areas of overload control, service differenti

ation, request scheduling, and request distribution for web servers and web server 

clusters. We provide an overview here.

The use of admission control for overload management has been proposed 

and explored in several systems. Iyer et al. [78] employ a simple admission control 

mechanism based on bounding the length of the web server listen queue. The au

thors try to minimize the work spent on a request which is eventually not serviced 

due to overload. They analyze different queue management approaches and use 

multiple thresholds, though they do not specify how these thresholds should be set 

to meet a given performance target. Cherkasova and Phaal [54] introduce session- 

based admission control, driven by a CPU utilization threshold, which performs an 

admission decision based on user sessions rather than individual requests. During 

periods of overload, it rejects new sessions while serving requests from already 

accepted sessions. Carlstrom and Rom [42] proposed a performance model for 

scheduling client requests and session-level admission control using a general

ized processor scheduling discipline. To improve the efficiency of session-based 

admission-control mechanisms and reduce its overhead, Voigt et al. [121,122]
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present several kernel-level mechanisms for overload protection and service dif

ferentiation. In general, these earlier works consider a single tier web server and 

the proposed techniques do not directly provide a solution for a multi-tier system.

Many of the proposed techniques are based on static admission policies, such 

as bounding the maximum request rate of requests to some constant value. For 

example, PACERS [51] limits the number of admitted requests based on estimated 

web server capacity. The authors use a very simple simulated service where re

quest processing time is a linear function of the requested web page size. Simi

lar ideas (and similar problems with fixed threshold settings) are pursued in [113]. 

Web2K presents a mechanism prioritizing requests into two classes: premium and 

basic. Connection requests are forwarded into two different request queues. Ad

mission control is performed using two metrics: the accepted queue length and 

measurement-based predictions of arrival and service rates from that class. Bar- 

tolini et al., in their recent work [35,36], introduce a quite elaborate session admis

sion algorithm, called AACA, that self-configures a dynamic constraint on the rate of 

incoming new sessions to satisfy Service Level Objectives (SLO) guarantees. The 

rate limitation for the next iteration interval is based on a relatively straightforward 

prediction of the session arrival rate from the previous interval measurements.

Many early papers combine differentiated services with admission control [30, 

60,80,86,122]. Kanodia and Knightly [80] develop an admission control and service 

differentiation mechanism which is based on a general framework of request and 

service envelopes. Such envelopes statistically describe the server's request load 

and service capacity as a function of the interval length. The proposed mechanism 

integrates latency targets with admission control and improves the percentage of re

quests that meet their Quality of Service (QoS) delay requirements. The approach 

is evaluated via a trace-driven simulation. A number of systems have explored a 

controlled content adaptation [28,46,62] for scaling web site performance, i.e., de
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grading the quality of static web content by reducing the resolution and the number 

of images delivered to clients. This helps to reduce the use of server memory and 

network bandwidth.

Several research papers have examined how control theory can be applied in 

the context of web servers [29,89,103]. Lu et al. [89] present a control-theoretic 

approach to provide guaranteed relative delays between different service classes. 

The main challenge in such works is that good models of system behavior are dif

ficult to derive. Web applications are subject to widely varying traffic patterns and 

resource demands. Linear models may be inaccurate in describing systems with 

bursty loads and resource requirements. Lama et al. [84] combine neural fuzzy 

control theory and machine learning techniques for performance assurance. The 

parameters and structure of the neural fuzzy controller are dynamically "learned" 

at run time. The structure learning phase dynamically determines the input node 

space and fuzzy logic rule nodes depending on the measured error and change in 

errors. The parameter learning phase adaptively modify the position and shape 

of membership functions to mitigate dynamic workload variation. Urgaonkar et 

al. [117] argue that dynamic resource provisioning of multi-tier applications is very 

different from provisioning of single tier applications. The authors design an ana

lytical model of multi-tier applications that practically reflects the required capacity 

at different tiers for a given workload. The authors employ a combination of predic

tive models and reactive techniques at different time scales for dynamic resource 

provisioning.

Many earlier papers study the additional request and connection scheduling for 

improving web server performance [52,57,61]. While shortest job first scheduling 

for static content web sites can improve performance of a web server, it can not pre

vent it from overload. Elnikety et al. [61] present an elegant solution for admission 

control and request scheduling for multi-tier e-commerce sites. Their method is
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based on measuring the execution costs of online requests, distinguishing different 

request types, and performing both overload protection and preferential schedul

ing using a straightforward control mechanism. They implement their admission 

control using a proxy, called Gatekeeper, with standard software components on 

the Linux operating system. There exists a few other works close to Gatekeeper in 

spirit; SEDA [125] is a prime example. In SEDA, applications consist of a network 

of event-driven stages connected by explicit queues. SEDA makes use of a set of 

dynamic resource controllers by preventing resources from being over-committed 

when demand exceeds service capacity. It keeps stages within their operating 

regime despite large fluctuations in load and allows services to be well-conditioned 

to load, i.e., preventing their performance degradation under severe overload. The 

authors describe several control mechanisms for automatic tuning and load condi

tioning, including thread pool sizing, event batching, and adaptive load shedding.

2.2 Virtualization of Data Centers

2.2.1 Background

Virtualization is not a new technology, it was first developed during late 1960s and 

early 1970s. In a virtualized system environment, a hypervisor or Virtual Machine 

Manager (VMM) is a layer of software that manages the allocation of hardware re

sources, and also creates, and runs virtual machines. The real hardware resources 

are owned by the VMM and it is its responsibility to make the resources available 

to one or more guest operating system that alternately execute on the same hard

ware. Thus, a guest operating system is given the illusion of owning a complete 

set of standard hardware.

The first version of IBM virtual machine operating system was VM/370 (or of

ficially Virtual Machine Facility/370) released in 1972 [56]. VM/370 was built as a
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general purpose OS for IBM System/370 mainframe machines. The virtualization 

features are mainly used for supporting time-sharing systems, maintaining back

ward compatibility of IBM System/360, and providing a private, secure and reli

able computing environment [56]. The virtual machine manager of VM/370 was 

called the control program (CP). It ran on the physical hardware to create the vir

tual machine environment. Virtual machines ran a single-user, lightweight operat

ing system called the conversational monitor system (CMS). The CP/CMS design 

successfully makes a separation of resource management and of the services that 

users cared about. With the rising of personal computers, interest in these classic 

virtualization techniques faded.

Virtualization has regained its popularity in recent years because of the promise 

of improved resource utilization through server consolidation, guaranteed resource 

allocation, and performance isolation. Disco [41], one of the first research operating 

systems, has led to a wide range of commercial virtualization techniques [9,10,21, 

34].

2.2.2 Virtualization Conditions

In a classic paper [105], Popek and Goldberg formulate the sufficient conditions for 

an instruction set architecture (ISA) to efficiently support virtual machines. Accord

ing to Popek and Goldberg, there are three properties that a VMM must satisfy: 

efficiency, resource control, and equivalence.

1. Efficiency means that a statistically dominant subset of machine instructions 

must be executed directly by the real processor, with no software intervention 

by the VMM.

2. Resource control means the VMM must have complete control of the virtual

ized resources.
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3. Equivalence means that any program run under the VMM should exhibit an 

effect identical with that demonstrated if the program had been run on the 

original machine directly, with only a few exceptions.

Popek and Goldberg [105] derive the sufficient (but not necessary) conditions 

for virtualization in a famous theorem. They first divide an ISA into three different 

groups:

• Privileged instructions: Those that trap if the processor is in user mode and 

do not trap if it is in system mode.

• Control sensitive instructions: Those that attempt to change the configu

ration of resources in the system.

• Behavior sensitive instructions: Those whose behavior or result depends 

on the configuration of resources (the content of the relocation register or the 

processor's mode).

With the above definition, Popek and Goldberg state that:

Theorem 1. For any conventional third generation computer, a virtual machine 

monitor may be constructed if the set of sensitive instructions for that computer is 

a subset of the set of privileged instructions.

Their reference to "third generation computer" is an integrated circuits based 

computer with a processor and linear, uniformly addressable memory. The as

sumptions regarding the operation of "third generation computer" are: relocation 

mechanisms, supervisor/user mode, and trap mechanisms [105].

The theorem says that if sensitive instructions executed in the user mode al

ways trap to the VMM (force control to go back to VMM), an efficient virtual ma

chine implementation can be constructed. All the non-privileged instructions can 

be executed natively on the host platform and no emulation is needed.
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It is known that Intel x86 ISA has several instructions that are sensitive but not 

privileged [106]. They do not trap when they are executed in user mode. Therefore 

Intel x86 ISA violates Theorem 1. However, since the theorem provides a sufficient 

but not necessary condition, it does not mean that it is not virtualizable. It means 

that additional steps must be taken in order to implement a virtual machine with 

possible loss of some efficiency. For convenience, the instructions that are sensi

tive but not privileged are called critical instructions. The VMM can scan the guest 

code when it is first executed and replace the critical instructions with a trap to the 

VMM. This process is known as patching [112].

Paravirtualization is another technique used to support high performance virtual 

machines on x86 hardware. Paravirtualization presents a software interface to vir

tual machine to a system that is similar but not identical to the underlying native 

hardware and requires making modifications to the guest operating system [126]. 

Xen [34] is an example system that specifically targets the Intel IA-32 ISA. As men

tioned, Intel x86 ISA has critical instructions that are difficult to be efficiently vir

tualized. The Xen [34] system takes the hosted operating system, such as Linux 

or Windows, and makes minimal modifications to the machine-dependent parts of 

the system to eliminate the need to perform complex virtualization tasks such as 

patching.

In this thesis, we focus on the Xen and VMware [23] virtualization platforms. 

Both systems support fine grain management of memory and CPU resources, as 

well as the ability to transparently migrate running virtual machines from one phys

ical server to another.
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2.3 Server Consolidation

One of the key applications of using virtualization in data center is server consoli

dation. The idea is to take under utilized servers in the corporations, convert them 

into VMs and run them on a smaller number of physical servers, thus achieving a 

better utilization of hardware resources. This dissertation first introduces several 

fundamental virtualization techniques and present the server consolidation related 

work.

2.3.1 Virtual Machine Migration

Virtual machine migration refers to transfer the entire virtual machine -- the in

memory state of the kernel, all processes, and all application states across distinct 

physical hosts. Migration can be either live or cold, with the distinction based on 

whether the instance is running at the time of migration. In a cold migration [115], 

the virtual machine is powered off, saved and sent to another physical machine. In 

a live migration [55], the domain continues to run during transfer and downtime is 

kept to a minimum.

Xen live migration requires multiple stages [55]. It begins by issuing a request 

from host A (source), to host B (target), reserving the resources that the source will 

need. If the target acknowledges the request, the source moves into the iterative 

pre-copy stage, in which the source copies all memory pages to the target through a 

TCP connection. While transferring, memory pages in the source could be changed 

or marked dirty and these pages are copied in the next round of transfer. Xen 

iterates the memory transfer until only a set of very frequently changed pages is 

left and begins the stop-and-copy stage. Host A suspends the running OS and 

copies the remaining pages to host B. During the final commitment stage, the target 

informs the source that a complete OS image is received and reinstantiates the
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migrated VM.

2.3.2 Performance Isolation Among Virtual Machines

During server consolidation, multiple under-utilized virtual machines are packed 

into a single physical host, sharing the available hardware resources including 

CPU(s), memory, network adapter(s), and disk(s). This causes unpredictability 

in the performance of each individual VM. In this occasion, it is desirable to provide 

mechanisms that can prevent VMs from monopolizing resources and guarantee 

predictable performance. Multiple techniques are used to multiplex physical hard

ware across VMs.

For the CPU resource, multiple scheduling techniques are proposed in order to 

guarantee that every running VM receives some amount of CPU time. For exam

ple, on the Xen hypervisor, the Borrowed Virtual Time (BVT) [59], Simple Earliest 

Deadline First (S-EDF) [4], and the Credit scheduler [3] have been used for con

trolling how the computing power is distributed among competing VMs. On recent 

versions, Xen uses the credit scheduler as the default choice [115]. This scheduler 

provides two properties for each domain: a weight and a cap. The weight is a rela

tive value, e.g., a domain with a weight of 512 gets twice as much CPU as a domain 

with a weight of 256 on a contended host. In contrast, the cap is an absolute value, 

expressed in percentage of one physical CPU. A comparison study of these three 

schedulers have been conducted by Cherkasova et. al. [53].

Regarding memory, memory ballooning is a technology for a virtual machine 

to give up memory or to request more memory from the hypervisor. It was first 

introduced in VMware ESX [123]. VMM controls a balloon module running in the 

virtual machine. When VMM wants to reclaim memory, it instructs the driver to "in

flate" the balloon. Inflating the balloon calls the kernel interface in virtual machine 

to allocate physical memory and return these pages to VMM. Similarly, VMM may
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deallocate the memory by instructing it to "deflate" the balloon.

Regarding storage, the local I/O bandwidth management at each host was done 

using Start-time Fair Queuing (SFQ) [79]. However, in enterprise applications, host 

level scheduling is not sufficient, since multiple hosts can access the same storage 

array. There are prior works that provide mechanisms for allocating storage re

sources to individual VMs [68,70]. mclock [70] is an 10 scheduler that provides 

resource controls (shares, limits, reservations) for storage array at a per-VM level. 

This is known as Storage I/O control and released in VMware's vSphere5 [119].

For the network resource, it is possible to use network traffic shaping techniques 

to enforce limit and weight-based allocation [22,39]. In VMware's vSphere, network 

I/O controls are implemented by three key software layers: teaming policy layer, 

shaper, and scheduler. Since virtual machines and physical machines could be 

configured with multiple Network Interface Controllers (NICs), team policy layer is 

to determine which traffic from virtual ports will be sent over which physical NICs. 

Shaper layer enforces the configured limit parameter. For example, if one VM's traf

fic is limited to 1 Gib, any additional traffic is dropped by the shaper, even if physical 

NIC has the capacity. Finally, one scheduler is instantiated for each physical NIC 

and it distributes the network bandwidth among VMs based on their shares value.

2.3.3 Related Work on Consolidation

Consolidating multiple applications on a single physical server can solve issues 

related to low utilization, however, how to autonomically and accurately perform 

server consolidation at enterprise level is still an unsolved research problem that 

faces significant technical challenges [120] including how to accurately measure 

and characterize an application's resource requirements, how optimally to distribute 

the virtual machines hosting the applications over the physical resources, how 

much resource each virtual machine should be allocated, and how to balance the
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workloads at run time when applications and servers become overloaded.

To solve these questions, there has been early studies in the areas of application 

measurement and characterization, server consolidation strategies, and dynamic 

resource management. We provide and overview here.

2.3.3.1 Measurement and Characterization

To support autonomic application management functions, we need an accurate 

monitoring infrastructure reporting resource usage of different VMs. However, the 

standard monitoring systems which directly profile VM resource utilization inside 

the VM might not reflect the true usage of resources by different VMs. The reason 

is that virtualization of I/O devices or network devices results in a model where 

the data transfer process involves additional system components, e.g., hypervisor 

or device driver domain. Hence the resource usage when the hypervisor or device 

driver domain handles the I/O or network data on behalf of a particular VMs needs to 

be charged to the corresponding VM. Meanwhile, disk I/O activities measured at VM 

and hypervisor level could have significant differences due to page cache or write 

coalescing mechanism in VMM. In sum, real application resource consumption in 

virtualized environment can be quite different from its measured usage because of 

additional virtualization overhead and interactions with the underlying VMM.

Several early papers measure the impact of virtualization overhead on bench

marks. Gupta et al. [72] present the design and evaluation of a set of primitives 

implemented in Xen to enforcing performance isolation among VMs. They look 

into per-VM CPU overhead in the driver domain caused by network traffic and use 

a linear model to approximate their relationships. In this thesis, our work is com

plementary to [72] on driver domain CPU overhead modeling and extends to other 

resources including disk I/O and memory. Disk I/O activity is also related to the CPU 

overhead. Wood et al. [127] investigates the virtualization overheads and use it to
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accurately predict the resource needs of virtualized applications, allowing them to 

be smoothly transitioned into a data center. They propose a combination of applica

tion modeling and virtualization overhead profiling for estimating the hypervisor and 

virtual machine CPU utilization of an application. They use micro-benchmarks to 

profile the relationships of different I/O activities to the CPU overhead, apply robust 

stepwise linear regression method to build the models, and predict an application's 

CPU demand after virtualization based on the benchmark models and the applica

tion's native resource utilization. The work presented in this dissertation is different 

from theirs in the following aspects: (1) our calibration process is a run-time pro

cess where a feedback loop controls the remodeling process, while their prediction 

process is a one-time offline profiling with a fixed set of regression models; (2) our 

calibration process covers three other resources in addition to CPU, and there are 

situations where the virtual activities are not equal to their physical activities for 

some non-CPU resources. (3) our DFG method is a source separation framework 

where different functional modeling approaches can be used as plug-ins, as it is 

not limited to linear regression.

Isci et al. [76] study the run-time CPU demand estimation in VM consolidation 

for effective dynamic resource management. They derive a simple and accurate 

alternative estimate of CPU demand even when a server is overloaded with VMs 

hosting CPU-intensive applications. Extending their idea to other type of applica

tions (e.g., IO-intensive) and other type of resources is interesting and important. 

Pacifici et al. [101] consider a dynamic CPU demand estimation problem for web 

applications. They use statistical and classification methods to determine the CPU 

demand for different web request types.

Since many virtualization platforms introduce additional virtualization overhead, 

many research works [65,107,110,118] provide a capability to scale the resource 

usage of the original workloads by a specified multiplier. For some applications it
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might be a reasonable approach, however, in general, additional CPU overhead 

highly depends on system activities and operations performed by the application. 

Simplistic constant scaling may result in significant modeling error and resource 

over-provisioning.

Virtualization technologies evolve in a fast speed, and many new approaches 

have been proposed to address virtualization overhead concern. For example, Liu 

et al. [87] propose hypervisor-bypassing in Xen to reduce the performance penalty 

of network I/O; Santos et al. [109] designs an optimized network IO scheduling al

gorithm to improve network throughput in Xen. These results bring more dynamics 

into the relationships between physical and virtual resource activities, and call for 

the necessity of an adaptive calibration solution like the one presented in this thesis.

2.3.3.2 Consolidation Strategies

Virtual infrastructure platforms typically include software that can help to balance 

virtual machine workloads across hosts and to locate VMs on the best possible 

servers for their workload in a resource pool; VMware Distributed Resource Sched

uler (DRS) [75] and XenServer Workload Balancing [27] are examples of load bal

ancing solutions. However, both of these solutions require to manually tune the 

weightings. The weightings are a way of ranking resources according to how much 

you want them to be considered and are used to determine the processing order. 

That is, after workload balancing determines its needs to make a recommendation, 

it uses specifications on the importance of resources to determine which host's 

performance to address first and which virtual machines to recommend migrating 

first. As this dissertation illustrates in Section 6.2, it is very hard to find a general 

approach for utilization normalization across different application under different 

workloads.

Wood et. al [128] present Sandpiper, a system that automates the task of mon
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itoring, detecting and migrating hotspots to least loaded server. They define a new 

metric volume as the product of server's CPU, network and memory loads. The vol

ume captures the degree of (over)load along multiple dimensions in a unified fash

ion and can be used by the mitigation algorithms to handle all resource hotspots 

in an identical manner. Sandpiper is designed to balance the volume across all 

physical servers. They implicitly assume that each resource has the same weight 

when balancing.

Bejerano et al. [38] study the user-AP associations for max-min fair bandwidth 

allocation in wireless LANs. They showed the strong correlation between fairness 

and load balancing, and devised load balancing algorithms that achieve constant- 

factor approximations. Their work extended the long-lined networking research on 

fair bandwidth allocation [66,82].

Ghodsi et. al [64] present dominant resource fairness (DRF), a methodology 

that generalizes max-min fairness to the field of multiple users making heteroge

neous demands on multiple resource types. In the DRF model, users record their 

task requirement using a demand vector of two metrics, CPU and memory. It ap

plies the max-min fairness to the user's dominant resource to balance the load. 

This dissertation considers four dimensional resources (CPU, memory, network, 

and disk) for min-max load balancing and present a multi-class closed queuing 

model to predict the performance of multiple applications in order to select the best 

performance.

Lee et. al [85] study the performance degradation problem of VM consolidation. 

For computation and network resources, there is no performance degradation in 

low utilized workload while performance degradation in the presence of high re

source contention is gradual and fair. This observation agrees with the motivation 

in minimizing the maximum server allocated load to reduce the competition for re

sources and to improve application performance.
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2.4 Feedback Control-based Resource Allocation

Early studies of dynamic resource allocation in distributed systems have largely 

focused on allocating resources across multiple physical nodes. In [47], cluster 

power management is done by allocating resources appropriately to maximize the 

global utility, while minimizing the power usage. In [111], an integrated framework is 

proposed by combining a cluster-level load balancer and a node-level class-aware 

scheduler to achieve both overall system efficiency and individual response time 

goals. However, these existing techniques are not directly applicable to allocating 

resources to applications running in VMs. They also fall short of providing a way of 

allocating resources to meet end-to-end application SLOs.

To meet a target SLO for a multi-tiered web-application, [40] presents a method

ology that automatically determines the amount of required resources expressed 

as an integer number of EC2 instances of a specific type. That implies that applica

tion resources are scaled horizontally in coarse-grained VM instance increments. 

In contrast, in [33], resource containers are proposed to achieve fine-grained re

source control for applications. In [123], new memory management techniques are 

proposed to allow dynamic re-allocation of memory between different VMs. The 

work presented in this dissertation relies on similar management techniques from 

modern hypervisors such as VMware ESX [20], Xen [34], and Microsoft Hyper- 

V [26].

Control theory has been successfully applied to the resource management of 

computer systems [74,81]. In [29], a control loop is designed to guarantee Web 

server performance via online content adaptation. Similar techniques are used to 

dynamically adjust the cache sizes for multiple request classes [94], In [131], appli

cation level resource management with feedback Is achieved by having "friendly" 

VMs that adjust their resource demands for fair resource sharing. In [100], the au

24



thors model performance interference between co-located VMs and apply closed- 

loop control to mitigate such interference if feasible. In this dissertation, we directly 

model the relationship between the application performance and the resource uti

lization levels of individual VMs, in effect taking into consideration implicitly any 

performance interference.

Many feedback control techniques manage only one type of resource. For ex

ample, AppRaise [124] is a system that uses queuing models to represent appli

cation performance in a virtualized environment and applies predictions from the 

models to put CPU caps on virtual machines. Multiple resources are managed 

in [63,102]. In [63], the authors apply multiple-input multiple-output control to tune 

two configuration parameters within a single Apache Web server to regulate its 

CPU and memory. AppRM also manages multiple resources (CPU and memory), 

using online models instead of the offline models used in [63].

A similar two-level resource control architecture was presented in [129], where 

a local controller estimates the amount of resource needed by each VM using a 

fuzzy-local-based modeling and prediction approach, and a global controller runs 

at each host (aka. node) to mediate the resource requests from different local con

trollers. This work considers only one resource type (CPU) and applications hosted 

in a single VM. Another two-level resource control system in [102] applies online 

statistical learning and adaptive control theory to translate the SLO of a multi-tiered 

application to the capacity requirements for multiple resource types (CPU and disk 

I/O) in multiple VMs, which is the approach we adopt in this dissertation. We stress 

that our work differs from both [129] and [102] in the following aspects: (1) Both prior 

works use CPU limit and neither utilizes reservation for any resource type, which 

we believe to be a powerful resource control knob whose utility should be explored. 

In contrast, AppRM employs all three resource control knobs (reservation, limit, 

shares). (2) The higher-level controller in both papers deals with a single physical
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host with fixed capacity, whereas our RP Manager deals with a logical container 

such as a resource pool whose capacity itself can be a moving target. The latter 

is a unique resource allocation model supported by VMware DRS [69]. (3) Both 

the global controller in [129] and the node controller in [102] handle the resource 

requests from individual VMs at the same time and with the same frequency, which 

poses synchronization constraints on the lower-level controllers. The RP Manager 

in AppRM interacts with multiple vApp Managers asynchronously so that each vApp 

Manager can work at its own pace based on the application need. As a result, Ap

pRM provides a holistic resource management tool that works seamlessly within 

the hierarchy of a virtual data center, i.e., across multiple resource types, multiple 

applications and VMs, but more importantly within the resource pools where these 

VMs are located.
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3 Admission Control for Busy Multi 

tier Services

Capacity planning plays an important role in "sizing" IT systems and needs to be 

even more effective in case of e-commerce sites where customers have high ex

pectations for QoS support, given an environment that is characterized by unpre

dictability. Over-provisioning offers only a partial solution as its benefits may be 

offset by higher energy and operating costs of a system that is rarely needed to 

be that large. To contain the size of the system and yet maintain user-perceived 

performance levels in the form of service-level objectives (SLOs), several method

ologies have been proposed that rely on admission control and/or techniques for 

service differentiation that are threshold based [29,35,36,54,80]. Yet, we show in 

this chapter that these techniques may be unable to provide robust business solu

tions. If the site experiences temporal surges in user arrivals or service demands 

(i.e., bursts) [98,99], triggered by sales or seasonal events, then threshold-based 

overload control is largely ineffective.

To get the intuition on why prevailing techniques may not be effective for system 

management under bursty conditions, consider a web service that is built accord

ing to the industry-standard, multi-tier paradigm. Typically, a user access to a web 

service occurs in the form of a session consisting of many individual requests. Plac

ing an order through the web site involves further requests relating to selecting a
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product, providing shipping information, arranging payment agreement and finally 

receiving a confirmation. For a customer trying to place an order, or a retailer trying 

to make a sale, the real measure of a web server performance is its ability to pro

cess the entire sequence of requests needed to complete a transaction. Utilization- 

based policies [29,54] accept a new session only if there is enough capacity in the 

system to guarantee that future requests of this session can be processed and the 

entire session can complete successfully. If the system operates on or above a 

certain capacity threshold, then a new session is rejected (or redirected to another 

server, if available).

In a multi-tier system that operates under bursty workload conditions (in the form 

of bursty arrivals and/or bursty service demands at tiers), threshold-based policies 

become ineffective. The main reason is that if flows are bursty, then the system 

is subject to the phenomenon of persistent bottleneck switch [98]. When this phe

nomenon is present, average utilizations of the various tiers may be moderate, but 

during a workload burst the system may experience nearly simultaneous arrivals of 

requests in a tier that gets overloaded for a period of time. After the tier processes 

these requests, they arrive again nearly simultaneously on the next tier, which now 

experiences a period of overload. Interleaving time periods of intense activity with 

almost no activity on the various tiers results in persistent bottleneck switch, i.e., the 

bottleneck continuously shifts from one tier to the next across time, hindering the 

effectiveness of a threshold based policy. Several questions are raised, including 

whether it is advisable to activate a control on one tier (e.g., the bottleneck tier), 

multiple tiers, or all tiers, and under what conditions.

In this chapter, we design a solution to the above problem by first studying the 

reasons why threshold-based policies that are documented to work well in single

tiered system may fail in a multi-tiered system with bursty workloads. We show 

that threshold-based policies have a slow reaction to bursts, and therefore cannot
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maintain low ratios of aborted sessions. The new solution that is offered here can be 

summarized as follows: we aim to dynamically control the number and the type of 

user requests admitted for processing into the multi-tier system and continuously 

differentiate between requests from already accepted sessions and requests for 

new sessions. When the system enters the overload state, we advocate buffering 

of requests from the already accepted sessions in a so-called "blocking" queue, 

that effectively acts as a waiting room [32,104]. This blocking queue successfully 

differentiates among the requests of already accepted sessions to those of new 

sessions, and implicitly gives them a higher priority.

The performance of accepted sessions remains directly bounded by the time the 

accepted requests spent in the blocking queue. The larger the size of the blocking 

queue, the lower the number of aborted sessions but at a cost that may result in 

SLO violations due to additional waiting in the queue. We perform a sensitivity study 

to explore the different blocking queue limits under a variety of burstiness profiles. 

The conclusion is that the effectiveness of the proposed construction is strongly 

related to the workload burstiness. Based on this analysis, we present an effective 

blocking mechanism that autonomically adjusts the blocking queue capacity to the 

degree of burstiness of the workload. Note, that in this chapter, we consider the 

response time as the target SLO. The designed approach can be used similarly 

for different target SLOs (e.g., loss probabilities in terms of aborted or dropped 

requests).

The resulting policy is an autonomic session-based admission control policy, 

called AWAIT, that adjusts the blocking queue capacity in response to workload 

burstiness. We perform detailed simulations using the TPC-W benchmark with ex

tended functionality for generating bursty session arrivals [99] to demonstrate the 

effectiveness and robustness of the new strategy. AWAIT supports a simple and in

expensive implementation. It does not require significant changes or modifications
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to the existing Internet infrastructure, and at the same time, it significantly improves 

the performance of overloaded multi-tier web sites. Extensive experiments illustrate 

AW AIT 's ability to closely maintain target SLOs across realistic workloads (where 

the degree of burstiness changes over time) by effectively adapting the blocking 

queue size to the workload bursts.

3.1 Motivation: Capacity Planning and Admission Con

trol

In this section, we present a short case study that illustrates how burstiness may 

impact the performance of admission control. We present some initial experiments 

that illustrate the problem and show that burstiness can spoil the effectiveness of 

an admission control mechanism that is deployed on a single-tier.

3.1.1 Basic Capacity Planning

Overload management is a critical business requirement for today's Internet ser

vices. A common approach to handle overload is to apply specific resource limits 

that typically bound the number of simultaneous socket connections or threads. For 

example, in traditional web servers that employ thread-per-connection implementa

tion, the server configuration specifies the number of processes (and connections) 

that are allocated for admitting the user requests. Therefore, in the Apache web 

server [1], when all the server threads are busy, the system stops accepting new 

connections. The same principle applies for providing the basic overload protection 

in multi-tier applications. The system administrators may set limits on the number 

of simultaneous client sessions (we call them active requests) in the system. Lim

iting the number of active requests is critical for quality of service: setting this limit 

too low results in achieving a good response time but at a price of lower system
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Figure 3.1: The basic structure of TPC-W model

throughput and also of high number of dropped user sessions. Setting this limit too 

high may lead to better throughput and reduced drop rates but at a price of a much 

higher user response time.

Figure 3.1 shows a high-level model of an e-commerce site used in this chapter. 

It is based on the TPC-W benchmark implemented as a multi-tier application. It 

consists of a web server, an application server, and a back-end database. The web 

server and the application server usually reside within the same physical server, 

which is called a front server. After a new session connection is generated, client 

requests circulate among the front and database server before they are sent back 

to the client. After a request is sent back, the client spends an average think time 

E[Z] before sending the next request. A session completes after the client has 

generated a series of requests. The TPC-W benchmark defines 14 transactions, 

that can be generally classified as "browsing" or "ordering". There are three widely 

used transaction mixes: browsing, shopping, and ordering.

We first focus on the capacity planning aspect and design an experiment that
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can first identify the number of simultaneously active requests that can guarantee 

a certain QoS to the end user. We use the benchmark's ordering mix, that consists 

of 50% browsing and 50% ordering transactions. Request service times in the front 

and database servers are derived using the methodologies and models presented 

in [43,98] that have been shown to capture very accurately the performance and 

behavior of TPC-W. Consistent with the specifications of the TPC-W benchmark, 

the average user think time is equal to 7 seconds, exponentially distributed, i.e., 

here is no burstiness in the arrival stream of new sessions.We set new session 

arrivals with a constant rate of 35 requests per second. Each session consists 

of a sequence of requests (i.e., essentially a series of visit "rounds" to the front 

and database server that define the session length) that is uniformly distributed 

with parameters 5 and 35, that is with expected mean equal to 20.1 Note that the 

mixture of requests for new and existing sessions is not pre-defined but determined 

by the average user think time and the session length. In this experiment, the ratio 

of new to existing session is close to 0.2.

It is a typical situation when after a certain waiting time an impatient client might 

"click again" and reissue the original request. Client request timeouts and retries 

can be added to our model to reflect a more complex and realistic scenario. A client 

with a timeout value of t sec can be considered as an additional QoS requirement: 

A request latency must have a limit of t sec. If this requirement is not met, after 

a given number of retries, the session is aborted. This could decrease the useful 

system throughput (due to the processing overhead of these additional requests) 

but it would not fundamentally change the results of our study [54]. In this chapter, 

we use a simplified model without request timeouts and retries in order to focus on

the effects of burstiness.

1 We could have used another distribution or different parameters to the uniform distribution of visit 
rounds. Experiments with different parameters are qualitatively the same as the results presented 
here and are omitted due to lack of space. Modeling tier visits with a uniform distribution is consistent 
with experimental results in [43,98].
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Figure 3.2: Capacity Planning study for SBAC under exponential (i.e., not bursty) new ses
sion arrivals. Performance measures are presented as a function of the maximum number 
of active requests in the system.

Figure 3.2(a) illustrates the 95th percentile of user end-to-end response time as 

a function of the predefined value of the maximum active requests in the system. 

We define the ratio of aborted sessions as the ratio of aborted accepted sessions 

to the total number of accepted sessions. The new session drop rate is defined 

as the ratio of dropped new sessions over the generated sessions. Figures 3.2(b) 

and 3.2(c) present the aborted rate of accepted (existing) sessions and the drop 

rate of new sessions, respectively, as a function of the allowed active requests. If 

an SLO of 4.0 seconds is the performance objective for request's response time, 

then Figure 3.2 suggests that one may use 256 as the recommended limit on active 

requests. This value strikes a good balance among all desired measures: the 

request response time (below 4 seconds) and the minimized number of aborted 

and dropped sessions. Note that the value of 256 is a configuration parameter of 

web server set by the system administrator and by no means a parameter of the 

AWAIT controller that we introduce in this chapter.

Table 3.1 summarizes the system configuration parameters that are used in the 

remaining of this chapter.

3.1.2 Introducing Burstiness

Because our purpose is to evaluate the different admission control algorithms under 

bursty arrival conditions, we introduce here three burstiness profiles that we use in
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Table 3.1: Configuration

average user think time 7 sec.
new session arrival rate 225 req/min.
session length uniformly distributed between 5 and 35
active request limit 256 reqs

the rest of this chapter. We use a Markovian Arrival Process (MAP) to generate 

three arrival processes. For details on the generation of the three MAP processes 

as well as on their effectiveness in mimicking bursty arrivals such those reported in 

the 1998 World Cup web server we direct the reader to [99]. MAPs have also been 

shown to be surprisingly compact yet very effective models of the service process 

in multi-tier systems, modeling implicitly conditions such as caching or database 

locks (see [98]).

The burstiness profiles (i.e., the number of arrivals as a function of time) for the 

three MAPs that we use for the arrival process are illustrated in Figure 3.3. The 

three levels are distinguished by the way the number of active clients fluctuates 

across time, with burst level 1 showing moderate fluctuation, while burst level 3 

showing periods of intense activity to alternate with periods of negligible activity. We 

stress that the distributions that correspond to the three processes share the same 

mean and coefficient of variation. In the appendix, we provide the configuration 

parameters used for these three MAPs, as well as pseudo-code for reading the 

MAP configuration file and for generating MAP random variates.

(a) Burst Level 1 (b) Burst Level 2 (c) Burst Level 3
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Figure 3.3: The burstiness profiles of the three arrival MAPs.
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3.1.3 Burstiness in Flows and Admission Control

Here we investigate the effect of burstiness in the arrival process to a classic ad

mission control algorithm. Session-based admission control (SBAC) [54] has been 

shown to be the effective policy for web servers. It is based on monitoring the CPU 

utilization of the web server. SBAC accepts a new session only when the system 

utilization is below a certain threshold, to guarantee a successful session comple

tion. If the observed utilization is above a specified threshold, then for the next 

time interval, the admission controller rejects all new sessions and only serves re

quests from already admitted sessions. Once the observed utilization drops below 

the given threshold, the admission controller changes its policy for the next time 

interval and begins admitting and processing new sessions again. A web server 

employs a configurable size queue for buffering the incoming requests. If the ar

riving request belongs to the already accepted session and the queue is full, then 

the entire session is aborted. The useful throughput of the system is measured 

as a function of the number of completed sessions. Aborted requests of already 

accepted sessions are highly undesirable because they compromise the server's 

ability to process all requests needed to complete a transaction and result in wasted 

system resources.

We have implemented the SBAC mechanism in a simulation model of a client- 

server system that is built according to the TPC-W specifications. The SBAC mech

anism uses a front server utilization threshold for admitting new sessions.2 Fig

ure 3.4 illustrates the ineffectiveness of the threshold-based techniques in the pres

ence of bursty arrivals. We compare the results of two different admission control 

strategies. A first strategy (called baseAC) employs a traditional overload control

2 For the TPC-W testbed with the ordering mix, SBAC is based on the CPU utilization of the 
front server because the front server is the system bottleneck for this particular mix. In general, the 
admission control should be based on the utilization of the bottleneck resource, e.g., if the DB tier 
is a bottleneck then its CPU utilization should be used for SBAC decisions.
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based on admitting a fixed, predefined number of active requests for processing.

Here, we set ActiveRequests = 256 as suggested by capacity planning (see Fig

ure 1). The second strategy is SBAC where the front server utilization threshold is 

set to 85% and 95% respectively.
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Figure 3.4: Three different burstiness profiles. The capacity planning results and SLO 
targets are now violated. It appears that a queue size of 256 (i.e., maximum active requests 
for the baseAC configuration) is not sufficient to meet SLO requirements.

Figure 3.4(a) illustrates the 95th percentile of user response time. While SBAC 

is effective in maintaining good response times under bursty arrivals, this is achieved 

at the expense of a relatively high ratio of aborted sessions as well as a high ratio 

of rejected new sessions, see Figure 3.4(b)-(c). The baseAC strategy does not 

differentiate between the requests from new and existing sessions and this leads 

to a very high ratio of aborted sessions.

Both of these threshold-based strategies might be a reasonable choice under 

non-bursty traffic. However, they clearly exhibit their deficiencies under bursty traf

fic conditions. This simple experiment shows that the admission control mechanism 

has to take traffic burstiness into account and adapt the system configuration and/or 

thresholds in order to effectively deal with bursty traffic conditions. In the next sec

tion, we present a new algorithm that effectively deals with the above problem.
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3.2 AWAIT Algorithm

In this section, we describe AWAIT, a novel session-based admission control al

gorithm that aims to provide additional support for bursty session arrivals. AWAIT 

has two different mechanisms to regulate request acceptance for processing. The 

first mechanism uses a counter of ActiveRequests that is defined according to ca

pacity planning for achieving a given SLO for response time. Until this counter 

reaches its maximum any incoming request is accepted, this request may repre

sent a new session or it may belong to an already accepted session. The second 

mechanism uses a special queue, called blocking queue, which is created to store 

the requests from already accepted sessions after the number of ActiveRequests 

reaches its maximum capacity. Figure 3.5 shows how the two mechanisms are 

incorporated in the TPC-W model. The AWAIT controller rejects new session re

quests if ActiveRequests reached its capacity but the system still admits requests 

from earlier accepted sessions. When the blocking queue becomes full, incoming 

requests from accepted sessions are unavoidably aborted. We aim to minimize the 

likelihood of this event, because it leads to business loss.

Active
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Blocking
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Database
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Figure 3.5: The model of AWAIT algorithm
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The capacity of the blocking queue is a critical parameter for the performance 

of the accepted sessions since the time spent there contributes to the user end- 

to-end time, thus may violate the target SLOs. The larger the capacity is of the 

blocking queue, the longer the contribution of the time waiting there to the user 

end-to-end time. Similarly, the larger the capacity of the blocking queue, the smaller 

the expected aborted ratio of accepted requests. Striking a good balance between 

these two conflicting measures is the purpose of AWAIT.

To ease the presentation of AWAIT, we first present a static version that con

siders a fixed blocking queue size. In the adaptive version of AWAIT, the size of 

this blocking queue is autonomically adjusted according to the burstiness of the 

workload. In all cases, AWAIT ensures that the response time SLOs are met.

3.2.1 Static AWAIT

To formally describe the AWAIT algorithm, we introduce the following notions:

• New session request -- a request that is generated by a new client (i.e., it is 

a first request in a new session);

• Accepted session request -  a request that is issued by a client within an 

already accepted session;

• ActiveRequests -- a counter that reflects the number of accepted requests 

which are currently in processing by the system. These active requests could 

be either of new sessions or of already accepted sessions. The maximum 

value for this counter is set to a value defined by capacity planning (see Sec

tion 3.1). Let us denote this value as A',

• BlockedRequests -- a counter that reflects the number of blocked requests 

which are received from the clients of already accepted sessions and which
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are stored in the BlockingQueue. Note this difference: the blocking queue 

stores requests from already accepted sessions only. Let B  denote the max

imum value of this counter that also defines the capacity of this queue;

• AdmitNew -- a boolean variable that defines whether a new session can be 

accepted by the system. If AdmitNew =  1 then a new session can be ac

cepted by the system. If AdmitNew  =  0 then all the new sessions are rejected 

by the system;

Now, we describe the iteration steps of the algorithm. Let a new request req arrive 

for processing. The system can be in one of the following states.

• AdmitNew — 1 and ActiveRequests < A.

This state corresponds to normal system processing when there is enough 

system capacity for processing requests from new sessions and requests 

from already accepted sessions. Therefore, independent on the request type, 

req is accepted for processing and the counter ActiveRequests increases by 

one.

When this counter reaches its maximum value A, then AdmitNew  =  0, and 

this corresponds to a new system state when any requests from new sessions 

are rejected.

• AdmitNew  =  0 and BlockedRequests < B.

In this state the incoming requests are treated differently depending on their 

type. If the incoming request is from a new session, then it is rejected. If it 

belongs to an already accepted session, then it is stored in the BlockingQueue 

and the queue's counter is updated.

• AdmitNew  =  0 and BlockedRequests =  B.

This state reflects to the situation when BlockedRequests has reached its max

imum value B. Any incoming request, independent on its type, is rejected. If
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the request comes from an already accepted session, then its entire session 

is aborted.

Now, we describe how the system counters ActiveRequests and BlockedRequests 

are updated when a processed request leaves the system, i.e., the reply is sent to 

the client. The system can be in one of the following states (similar to the states 

described above).

• If ActiveRequests < A,

then ActiveRequests ActiveRequests — 1.

• If AdmitNew  =  0, ActiveRequests =  A, and BlockedRequests =  0,

then ActiveRequests «- ActiveRequests -  1 and AdmitNew  =  1, i.e., the 

admission control status changes and the system again starts accepting both 

types of requests: from new sessions and already accepted sessions.

• If AdmitNew  =  0, ActiveRequests = A, and 0 <  BlockedRequests <  B, 

then one of the blocked requests is accepted for processing in the system and

only the counter BlockedRequests is updated: BlockedRequests <— BlockedRequests— 

1.

We call this version of algorithm the conservative AWAIT. Under this algorithm the 

differentiation of requests from new and accepted sessions starts when ActiveRequests 

reaches its maximum value A. Then new sessions are rejected and requests 

from accepted sessions have extra buffering space in the blocking queue. Once 

s ActiveRequests counter gets below A, then the admission restriction is lifted and 

new session requests are again accepted.

We also introduce a different version of the algorithm, called aggressive AWAIT, 

which at a first glance is only slightly different from the conservative AWAIT above. 

However, the performance evaluation of these two versions shows a surprising
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difference in behavior and in the numbers of aborted and rejected sessions. As 

we see later, the aggressive AWAIT decreases forcefully the number of aborted 

sessions while supporting the same useful system throughput as the conservative 

AWAIT.

For the aggressive AWAIT strategy we introduce the additional variable Overload:

• Overload is a boolean variable that defines whether the system is under se

vere overload. Typically, Overload =  0 while the system can process all the 

requests from the already accepted sessions. Overload =  1 when system ob

serves an aborted request from the accepted session. This may happen when 

ActiveRequests =  A and BlockedRequests =  B, and the incoming request is 

from an accepted session. The aborted session triggers an "emergency sit

uation" that is treated aggressively. New session requests are not accepted 

during overload until both blocking queue and the ActiveRequests in the sys

tem are flushed. This helps in providing a prolonged preferential treatment of 

requests from the accepted sessions to rapidly overcome the overload state.

When the overload condition is triggered, i.e., Overload = 1, there are slightly dif

ferent rules for updating the system state when a processed request leaves the 

system:

• If AdmitNew —  0, Overload =  1, ActiveRequests =  A, and BlockedRequests =  

0,

then ActiveRequests <- ActiveRequests-1 ,  but the system is considered to be 

still under severe overload and its admission control status does not change: 

the system still rejects requests from new sessions and only processes re

quests from the already accepted sessions.

• If Overload =  1 and ActiveRequests =  0, then the operation of the system 

goes back to normal: Overload =  0 and AdmitNew  =  1.
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The pseudo-code shown in Algorithm 3.1 summarizes both versions of the A WAIT 

algorithm: conservative and aggressive. To unify the description, in the conserva

tive version of the algorithm the state of variable Overload does not change, i.e.,

Overload =  0.

Algorithm 3.1: AWAIT: Admission control algorithm, aggressive version. The 
conservative AWAIT is obtained by removing the statements labeled Aggr.

for every request req that arrives for processing do 
if AdmitNew and ActiveRequests < A then 

Accept req;
ActiveRequests <- ActiveRequests + 1; 
if ActiveRequests == A then AdmitNew <- 0 ; 

else if iAdmitNew and BlockedRequests < B then 
if type (req) == NewSession then reject req; 
if type( req) == AcceptedSession then 

accept req into BlockingQueue;
BlockedRequests 4-  BlockedRequests +1;

else if iAdmitNew and BlockedRequests == B then 
reject req;
// Aggressive version: trigger overload state 
if type(req)~AcceptedSession then Overloads-1 ;Aflflr

Aggr

Aggr

for every request req that leaves the system do
if ActiveRequests <  A then ActiveRequests 4 -  ActiveRequests -1 ; 
if ActiveRequests~A and 0<BiockedRequests<B then 

move one request from blocking queue to queue; 
BlockedRequests 4-  BlockedRequests -1; 

else if ActiveRequests == A and BlockedRequests == 0 then 
ActiveRequests 4 -  ActiveRequests -1;
// Aggressive version: queue flashed 
if ActiveRequests==0 then 

Overload 4-  0;
AdmitNew 4-  1;

In sum, the rationale for the conservative versus the aggressive version of the 

algorithm is the following. If the system operates under a burst, then queues tend to 

build up fast. An accepted session that is aborted signals the system about insuffi

cient resource capacity for processing requests from already accepted sessions. To
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mitigate the performance effects of this, it is more effective to completely dedicate 

system resources for processing only the accepted session requests by flushing 

the system queues at the expense of a higher ratio of rejected new sessions. This 

strategy benefits accepted sessions by implicitly giving them high priority and "re

serving" the system for exclusive processing of accepted session requests, until 

overload subsides. In the following subsection, we present experimental evidence 

that shows the relative performance of the conservative versus the aggressive 

version of the algorithm.

3.2.2 Performance Evaluation: Conservative or Aggressive?

We evaluate the performance of AWAIT via trace driven simulation. A high level 

system description of the simulated system is given in Figure 3.5. We use the same 

three MAPs for the arrival process as those introduced in Section 3.1. The service 

processes at the front server and the database server are also modeled via MAPs 

(see [43,98]) that accurately capture the service demands of TPC-W's ordering 

mix3.

Figure 3.6 illustrates the performance of the two versions of AWAIT as a func

tion of the capacity of the blocking queue B. For reference, we also report on the 

performance of the system with simple admission control based on the number 

of ActiveRequests only (labeled: "baseAC") as well as the performance of SBAC 

with CPU utilization threshold set to 85%. Note that for all experiments, we set 

the ActiveRequests counter to 256, as suggested by the capacity planning study 

of Section 3.1. The aborted existing session ratio in Figure 3.6 is defined as the 

ratio of the aborted existing sessions to the total accepted sessions, the new ses

sion drop rate is defined as the ratio of dropped new sessions over the generated

sessions, and the completed session ratio is the completed number of sessions

Experiments with TPC-W’s shopping and browsing mixes were also conducted. Results are 
qualitatively the same as with the ordering mix and are not reported here due to lack of space.
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divided by the generated sessions.
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Figure 3.6: AWAIT with fixed size of the blocking queue. The graphs illustrate perfor
mance values for the aggressive and conservative versions (see white and shaded bars, 
respectively) for various fixed sizes of the blocking queue B. In all experiments, the limit of 
accepted requests A is set to 256, based on capacity planning.

The figure presents results for the three burstiness profiles in the arrivals of 

new sessions. First, one can easily see that the degree of burstiness in the arrivals 

dramatically impacts the user perceived performance, see the 95th percentiles of 

user response times for the various policies, see first row of graphs in Figure 3.6. 

Looking just at the percentiles, it is clear that the addition of the blocking queue 

deteriorates the user end-to-end times but the real benefit of blocking can be seen 

in the decrease of the aborted session ratio, see the second row of graphs, as well 

as in the decrease of new session drop ratio, see the third row of graphs. The useful
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throughput of the system (measured in successfully completed sessions) is shown 

in the last row of graph that demonstrate the improved metric for both versions of 

AWAIT strategy compared to SBAC and baseAC.

Under low burstiness conditions, see first column of graphs, it is apparent that 

SBAC remains a good choice, at the expense of a very high percentage (nearly as 

high as 30%) of new session rejections. The aggressive and conservative versions 

of AWAIT result in longer response times but in significantly lower drop ratios, see 

Figure 3.6(b).

The effectiveness of the aggressive version to keep the aborted session ratio 

low is apparent across all burstiness levels, see Figures 3.6(b), 3.6(f), and 3.6(j) 

(second row of graphs). These figures show that the aggressive version very ef

fectively differentiates between existing and new sessions, and treats existing ses

sions preferentially.

Naturally, because of the limited system capacity, if the number of accepted 

sessions that are aborted is low, then the ratio of rejected new sessions is bound to 

increase. This effect is shown for the aggressive policy in the third row of graphs in 

Figure 3.6, but this is unavoidable since our purpose is to bias the system for pro

cessing the requests of already accepted sessions against admitting new sessions, 

especially under periods of bursty traffic.

There is an additional question on the effectiveness of the aggressive AWAIT 

strategy compared to its conservative version: whether' “flushing" the system queues 

might result in a less efficient resource usage and potentially may lead to a lower 

useful throughput. The last row of graphs in Figure 3.6 answers this question.

It shows that the useful throughput of the system measured in successfully com

pleted sessions is very similar for both conservative and aggressive versions of 

AWAIT and also significantly higher than SBAC or the simple baseAC policy. Over

all, Figure 3.6 argues for the effectiveness of the aggressive version of AWAIT. In
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the remaining of this chapter we focus on how to provide an autonomic version of 

AWAIT that adapts its configuration parameters to the workload. Before we move 

into the adaptive version, we examine the existing results more closely.

3.2.3 Performance Effect of the Blocking Queue Size

CCDF comparison o f different algorithms CCDF comparison o f different algorithms CCDF comparison o f different algorithms
tuu tuu100

live 16
baseAC baseAC 4f& w r

Aggressive 128 

Aggressive 16
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Aggressive 128
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(a) Burst Level 1 (b) Burst Level 2 (c) Burst Level 3

Figure 3.7: CCDF of system response time for different strategies for aggressive AWAIT 
that operates with a blocking queue size of 16 slots and a blocking queue size has 128 
slots.

One of the special goals we pursue in this chapter is the overload manage

ment design that can support the application SLO requirements. Figure 3.7 shows 

the detailed latency profiling for all four strategies under study and different traffic 

burstiness. The graphs in Figure 3.7 present the complementary cumulative distri

bution function (CCDF) that helps in understanding how often the random variable 

(response time in our study) is above a particular value. We focus on AWAIT with 

two different blocking queue sizes equal to 16 and 128.

The figure confirms that increasing the blocking queue capacity leads to a sig

nificant increase in the latency of completed sessions, especially for arrivals with 

higher burstiness level. For smaller size of the blocking queue and higher levels of 

burstiness there is less difference between all the four strategies, and the latencies 

of completed sessions are closer in their profiles to the baseAC strategy. However, 

the larger blocking queue capacity changes the behavior of the underlying system 

in a significant way leading to the higher throughput of completed sessions but at 

a price of their higher latency. These results do stress the importance of correct
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sizing of the blocking queue capacity. The workload burstiness combined with the 

size of the blocking queue have a critical impact on the request latency. If we aim 

to build an efficient overload management mechanism, then it should adapt its be

havior to take into account traffic burstiness and to tune appropriately the blocking 

queue size.

3.2.4 Handle the Effects of Bottleneck Switch

Typically, the resources of the front tier present a bottleneck in the multi-tier system. 

In these cases, the usage-based admission control, applied to the front tier, pro

vides a reasonable protection against overload. For example, the original SBAC 

that was proposed for a single-tier web server can be adopted for the multi-tier 

system in such a way that it allows accepting a new session only when the front 

server CPU utilization is below a certain threshold. In Section 3.1, we analyzed the 

SBAC performance for the multi-tier system that is processing the ordering trans

action mix of the TPC-W benchmark. Under this workload, the front server is the 

system bottleneck. With the utilization threshold set to 85% and 95% respectively, 

SBAC provides a good overload protection for workloads without burstiness or low 

level burstiness. However, for higher levels of burstiness, the simulation results 

show that SBAC becomes quite inefficient as a protection mechanism and leads 

to a significant ratio of aborted sessions. This was the motivation to search for the 

alternative admission control mechanisms and introduce AWAIT.

The question is how sensitive the AWAIT strategy becomes to a change of the 

bottleneck in the system? How robust is AWAITs performance in case that the 

back-end server (and not the front server or front servers) is the primary system 

bottleneck?

Figure 3.8 shows the SBAC strategy performance (with the CPU utilization thresh

old of the front server set to 85% and 95% respectively) under a scenario when
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the back-end server is being a primary system bottleneck, i.e., when the back-end 

server becomes highly overloaded with the increased load. The performance of 

SBAC is compared to the simple admission control strategy, called baseAC (see 

Section 3.1 for more details). The baseAC strategy employs a traditional over

load control based on admitting a fixed, predefined number of active requests for 

processing (the number of active requests is set to 256 as suggested by capacity 

planning described in Section 3.1).

As we can see from Figure 3.8 that the SBAC strategy looses its performance 

advantages which we observed earlier in Figure 3.4. Now its performance is prac

tically the same as the baseAC strategy which is regulated by a fixed number of 

active requests in the system. As Figure 3.8 shows that all metrics for baseAC, 

SBAC85% and SBAC95% are similar: the 95th percentiles of the user response 

time shown in Figure 3.8 (a) are identical for all three strategies, the ratios of aborted 

sessions coincide for the considered three strategies (see Figure 3.8 (b)), and the 

ratios of rejected new sessions (Figure 3.8 (c)) are the same.

(a) 95th Percentile Response Time
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- SBAC85 B333  
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Figure 3.8: SBAC performance under the three different burstiness profiles with highly 
overloaded back-end server.

The explanation of this changed behavior is straightforward: it is due to the 

bottleneck switch from the front server to the back-end tier. A single-tier admission 

control like SBAC is usage-based: it is checking the front server utilization level to 

determine whether to accept a new session request or not. When the front server 

is not a bottleneck resource it always has a CPU utilization below 85%, and the
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back-end server gets highly overloaded. In this case, the usefulness of a single

tier admission control policy like SBAC is severely diminished.

Now, our question is whether the proposed AWAIT strategy is robust to the 

bottleneck switch and whether it performs equally well when different tiers in the 

system represent the resource bottleneck. Figure 3.9 shows the performance of 

the aggressive of AWAIT as a function of the capacity of the blocking queue B  with 

the back-end server being highly overloaded.

It is apparent that the proposed AWAIT strategy is robust to the bottleneck 

switch phenomenon, as it bases its decisions on the number of ActiveRequests, 

which is defined at the whole system level. Naturally, a larger capacity of the block

ing queue leads to a smaller fraction of aborted sessions as well as to a smaller 

ratio of rejected new sessions. Figure 3.6 shows that completed session ratio (4th 

row) is related to both aborted ratio (2nd row) and new session drop ratio (3rd row). 

AWAIT significantly reduces the aborted ratio at the cost of an increased new ses

sion drop ratio, as desired. In general, the larger capacity of the blocking queue 

improves the ratio of completed sessions, but at a price of the higher values of 95th 

percentile of the response time and the increased average response time that is 

shown with the horizontal line inside the bars (see the first row of graphs). Over

all, the results highlight the fact that the effectiveness of AWAIT is related to the 

blocking queue size.

3.3 Autonomic AWAIT

Here, we show how we can adjust on-the-fly the size of the blocking queue B  in or

der to achieve a certain predefined SLO. To dynamically adjust the blocking queue 

size, we use both historical information of the achieved 95th percentiles of all re

quests served by the system (irrespective of the blocking queue capacity used --
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Figure 3.9: Aggressive AWAIT: strategy performance for various fixed sizes of the blocking 
queue B with highly overloaded back-end server. In the first row, the horizontal lines inside 
the bars reflect the average request processing time.

this value should reflect the target system SLO as the size of the blocking queue 

is transparent to the user) and response time percentiles that correspond to ev

ery other blocking queue capacity B  used since the inception of the system. We 

use this information to decide whether the current blocking queue capacity is suf

ficient or not. Changing the blocking queue capacity B  throughout the lifetime of 

the system is critical as during workload surges smaller B's result in better perfor

mance rather than large B's.4 To make the values of the 95th percentiles of the

4This may initially seem counter-intuitive as workload surges would result in large numbers of 
requests that exist simultaneously in the system. However, in order to maintain the target SLOs 
during a surge it is necessary to limit the blocking queue capacity, otherwise the time spent there 
dominates user response times and SLOs are violated.
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user response times readily available, we maintain for each blocking capacity B  a 

corresponding histogram of the user response times for that B. Therefore, for each 

completed request, two response time histograms are updated: the histogram of all 

requests in the system (irrespective of the blocking capacity B) and the histogram 

that corresponds to the current block capacity B used.

We change the capacity of the blocking queue for every group of K  =  10,000 

requests served.5 The autonomic algorithm then compares the achieved response 

time percentiles of all jobs in the system and the response times percentiles of the 

current configuration B with the target SLOs. If both percentiles are less than the 

SLO and there are aborted sessions, then it is clear that we can reduce the aborted 

ratio because there is room to increase B  (since response times percentiles do not 

violate the SLO). If both percentiles are greater than the SLO, then the blocking 

queue should be reduced in an effort to meet the SLO target. If none of the above 

two conditions are met, we opt to leave the blocking queue capacity in its current 

level, otherwise the system may suffer from thrashing. For example, if the response 

time percentile of all requests is violated, but the percentile of the current B is not, 

the algorithm still stays with the current blocking queue size B, since the system is 

on a positive state and its accumulated statistics eventually correct the percentile 

of all requests.

The steps of increase/decrease of the blocking queue capacity can be arbitrary. 

In the experiments presented in this section, the capacity of the blocking queue B 

can have sizes as small as 1 and as large as 120. The increase/decrease step is 

equal to 5 for values of B  less than 10 and equal to 20 for values of B greater than 

20. We stress that other step values could also work, their selection affects how 

quickly the algorithm converges to a desirable B  range. Algorithm 3.2 summarizes

5We selected K = 10,000 to be able to collect meaningful statistics for a group of requests. We 
performed a sensitivity analysis with the K  value varying from 5,000 to 15,000. The results shows 
that the performance is nearly insensitive to the setting of K.
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the policy.

Algorithm 3.2: Autonomic AWAIT: algorithm for changing the blocking queue 
size B  on-line.

for every aborted session do
|_ AbortedSessions++;

for every finished request do
counter ++;
update total_RT_histogram (all requests, irrespective of B)\
update current_B_RT_ histogram (with current blocking queue B)\
if counter = =  K then

if total_RT_percentile <  SLO and current_B_RT_percentile <  SLO
and AbortedSessions > 0 then

// Reduce aborted ratio
increase current blocking capacity B\

if total_RT_percentile > SLO and current_B_RT_percentile >  SLO
then

// Meet SLO target
reduce current blocking capacity B\

counter <- 0;
AbortedSessions <- 0;

The effectiveness of the autonomic AWAIT strategy is illustrated in Figure 3.10. 

Here, we experimented with the three different burst levels but also using differ

ent target SLOs. The figure illustrates how the blocking queue size changes as a 

function of the number of requests that are processed by the system for the various 

experiments. In each graph we also report on the achieved 95th percentile of the 

response time, as well as on the aborted and new session drop ratios. The figure 

shows that the autonomic AWAIT is remarkably robust: it reaches the target SLOs 

exceptionally well for all cases, while maintaining very low aborted rates. For each 

burst level, as the target SLO increases, the algorithm effectively increases the 

blocking queue capacity while reducing the aborted ratio. If we maintain the same 

SLO but change the burstiness of arrivals, the algorithm decreases the capacity of 

the blocking queue B. In all experiments, requests from existing sessions are pref-
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Figure 3.10: Autonomic AWAIT: illustration of how the capacity of the blocking queue B 
changes as a function of the workload.

erentially treated as low aborted ratios across all experiments are reported, and the 

ratio of successfully completed sessions is higher under the autonomic AWAIT pol

icy compared to the aggressive static AWAIT strategy introduced in Section 3.2.1. 

These results demonstrate the effectiveness and robustness of the proposed au

tonomic mechanism of the aggressive AWAIT policy.

Note that the target SLO can be achieved with a fixed blocking size queue, but 

the size of the blocking queue needs to be different depending on the degree of 

burstiness (e.g., SLO =  4 seconds can be achieved with a blocking queue size 

set to 8 for the burst levels 2 and 3, but if the system operates under burst level 

1, then the blocking queue size could be set to 32, see Figure 3.6). Any fixed 

configuration does not adapt to a changing traffic pattern. The proposed autonomic
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strategy is specially designed to "auto-tune" the blocking queue size for achieving 

and supporting a given SLO in the most optimal way.

In the following experiment, we designed a special workload that goes through 

different request arrival patterns. Initially, the arrival process starts with burst level 

3, after that it is followed by burst level 1, and finally it follows the pattern defined 

by burst level 2. The overall workload arrival pattern is shown in Figure 3.11 (a).

(a) Mixed Burst Level
1 2 0 0   .----------------------------------.----------------------------------r

Time (minutes)

(b) Blocking queue capacity change
160 
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3  20
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Figure 3.11: (a) Arrival process with different burstiness levels; (b) Blocking queue capacity 
changes as a function of the workload.

For this experiment, we set the SLO target to be 4.0 seconds and examine how 

well the autonomic version of AWAIT respects this target but also how it adjusts 

the capacity of the blocking queue as a function of the observed workload pattern. 

Figure 3.11 (b) reports how autonomic AWAIT changes the size of the blocking 

queue as the burstiness in arrivals changes: the policy reduces the size of the 

blocking queue to small values (as low as 1) after entering the burst level 3 time 

period, dramatically increasing it during level 1, and reducing it back to 10 after 

burst level 2. The autonomic strategy reaches a 95th percentile of response time 

equal to 4.03 seconds (perfectly on target), aborted ratio equal to 0.0304, and new
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session drop ratio equal to 0.336.

To compare the effectiveness of the autonomic version comparing to the ag

gressive AWAIT with fixed blocking queue capacity, we experiment with the arrival 

process varies as shown in Figure 3.11 (a) and the aggressive version with the 

blocking size fixed and set to 8 (i.e., the best configuration for burst level 3 to meet 

the SLO of 4.0 seconds, see Figure 3.6), and to 32 (i.e., the best configuration for 

burst level 1, see Figure 3.6). For these experiments, the aggressive AWAIT with 

queue capacity 8, the 95-th percentile of response time is 3.81 seconds, the aborted 

session ratio is 0.0319, and the new session drop ratio is 0.345. With queue capacity 

equal to 32, the 95-th percentile of response time is 4.18 seconds (which is above 

the desirable SLO target), the aborted session ratio is 0.0286, and the new session 

drop ratio is 0.347.

To closely examine the performance values of the three policies, we show in 

Figure 3.12 the accumulated moving averages of the three metrics of interest. Fix

ing the blocking queue to 32 results in clear and constant violations of the SLO, 

see last column of graphs. A blocking queue set to 8 is effective at the beginning 

of the time, but then clearly stays well below the SLO target with the expense of 

a higher aborted ratio. The flexibility of dynamically adjusting the queue capacity 

to match the incoming workload is clearly shown on the improved values of the 

autonomic version (left column of graphs in Figure 3.12), where all metrics of inter

est are clearly in favor of autonomic. These experiments further corroborate that 

the proposed autonomic AWAIT strategy indeed manages to automatically adjust 

the blocking queue capacity to meet the desirable SLO targets by taking into ac

count the observed pattern of arrival process, the system behavior, and the target 

performance metrics.
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Figure 3.12: Moving 95th percentile of response time and moving average of aborted ra
tio, drop ratio and completed session ratio under the request arrival pattern shown in Fig
ure 3.11 (a).

3.4 Comparisons with an Approach Based on Con

trol Theory

Control-theory approaches have been proposed as an alternative way to maintain 

quality of service targets in web environments. In this section we evaluate AWAIT 

versus a classic, control-theoretic approach first proposed in [29]. Note that this 

approach focuses on a single tier as well. Our analysis focuses on its effectiveness 

but also highlights the fact that if the phenomenon of persistent bottleneck switch
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is present due to burstiness, then single-tier techniques are clearly not effective.

The feedback-based approach given in [29] can be summarized as follows. Uti

lization control is central to the algorithm in [29]. The server’s utilization is aimed 

to be kept at or below the target utilization value of U* =  0.58, a "hard coded" 

value that has been proved to be effective in meeting the deadline constraints of 

real-time systems [29]. To maintain this target utilization, the server is able to offer 

"degraded" service levels in addition to the normal service level. Rejection can be 

considered as an extreme degradation point, at which the client receives no ser

vice. The service contents are pre-processed and stored in multiple copies that 

differ in quality and size. For example, a URL, such as, "my_picture.jpg" can be 

served from either "full_content/my_picture.jpg" or "degraded_content/ 

my_picture.jpg” depending on the load conditions. In general, a server has M  dis

crete service levels, numbered from 1 to M  in increasing order of quality for the 

same content, while a service level of 0 means that the request is rejected.

The control variable m is an indicator of current service levels offered to clients 

and is in the range [0,M ]. If m is an integer, all clients are served with level m. 

If m  is a real number, then two levels of service are provided: |mj and [m +  l j .  

More specifically, a fraction F  of the requests is served at level [m +  l j , and 1 -  F  

of the requests are served at level [m \• The algorithm periodically monitors the 

current utilization (U ) and measures the "utilization error” E =  JJ* -  U. It uses the 

well-known integral controller to produce the control output m. At each sampling 

time the controller performs the following computation:

m =  m +  kE\ If (m < 0) then m =  0; If (m > M ) then m =  M; where A ; is a 

constant equal to 0.5

In the context of this work, M  is set to 1 because only one service level is pro

vided, i.e., m can have two possible values, 0 and 1. Here, we use the front server 

to measure its utilization and drive the algorithm. We experiment with two different
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Figure 3.13: Comparison of performance of autonomic AWAIT and the control theory-based 
algorithm developed in [29].

burst levels with two different SLOs: burst level 2 with SLO equal to 4.0 and burst 

level 3 with SLO equal to 5.0. Figure 3.13(a) illustrates the comparative perfor

mance of AWAIT and the algorithm in [29]. In both experiments, AWAIT does not 

miss its SLO target. The control-based algorithm almost misses the SLO equal to 

4.0 target in the first experiment but in both experiments it is not effective in differen

tiating the existing versus new sessions, see the high aborted ratio of existing ses

sions in Figure 3.13(b) and the relatively low ratio of new sessions in Figure 3.13(c). 

Meanwhile, the useful throughput of the system measured in completed session 

ratio of AWAIT is clearly significantly higher than that of the control-theory based 

algorithm, see Figure 3.13(d).

Overall, Figure 3.13 argues for the effectiveness of AWAIT versus a classic con

trol theory approach and also highlights the fact that existing autonomic controllers 

that may work well in single-tier systems are ineffective in multi-tiered cases. Es-
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pecially under bursty workloads, where the phenomenon of persistent bottleneck 

switch is present, there is a clear need to address the overload problem across 

all servers and not only within a single one. AWAIT clearly succeeds from this 

perspective.

3.5 Summary

This chapter presented an autonomic policy for service differentiation and admis

sion control during overload for multi-tier system management. We focused on 

the pitfalls of existing policies under bursty conditions and remedy the problem by 

proposing the concept of a blocking queue where requests from already accepted 

sessions are stored if the system operates under overload. A novel autonomic 

algorithm, called AWAIT is proposed. AWAIT can limit the increase of the end- 

to-end response times within predefined SLO targets while dynamically adjusting 

the capacity of the blocking queue to the workload burstiness. Detailed simulations 

with the widely used TPC-W e-commerce benchmark under a variety of workload 

burstiness levels support the effectiveness and robustness of AWAIT.

The current algorithm adapts the blocking queue capacity to shield the offered 

web service from bursty arrivals, to provide service differentiation, and to prevent 

the system from overload. It complements the basic overload mechanism that sets 

a limit on the number of active client requests that are simultaneously processed 

by the system. Currently, this limit is defined by capacity planning.

59



4 Calibrating Resource Utilization in 

VMs

Autonomic resource management becomes increasingly required in large-scale 

computing systems for reducing administrator burdens. Autonomic resource man

agement and system capacity planning often rely on analytic performance mod

els [72,76,130]. Correct parameterization of such models is critical for their effec

tiveness [130]. Server virtualization clearly enhances flexibility in resource control, 

but introduces new challenges in parameterization of performance models. The 

relationship between application workload and physical resource utilization can be 

greatly obscured by the virtualization layer.

This chapter addresses a fundamental problem in virtual machine resource 

management: how to effectively profile physical resource utilization of individual 

VMs. Our focus is not just on collecting usage statistics but on extracting the uti

lization of physical resources by a VM across time, where the resources include 

CPU (utilization in CPU cycles), memory (utilization in memory size), network (uti

lization in traffic volume), and disks (utilization in disk l/Os). Correct VM resource 

utilization information is tremendously important in any autonomic resource man

agement that is model based. For example, in dynamic provisioning, correct per- 

VM resource utilization information is the basis for the right VM sizing decision; in 

application management, performance modeling requires correct per-VM resource
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utilization information to build the relationship between application performance and 

resource demands.

Profiling is a hard problem because mapping virtual-to-physical (V2P) resource 

activity mapping is not always one to one and may depend on application workload 

characteristics. The problem is further exacerbated by cross-resource utilization 

causality among different resources due to virtualization and multiplexing among 

VMs in a consolidated environment.

Here, we formulate the VM resource utilization profiling as a source separa

tion problem, which is originally studied in digital signal processing. The aggregate 

utilization information of one physical resource is viewed as a mixed signal super

imposed by the utilization signals of every individual VM. The objective is to figure 

out what are the original per-VM "signals". In this chapter we extend the factor 

graph model [83] with directionality and factoring generalization, and design a di

rected factor graph (DFG) that models the multivariate dependence relationships 

among different resources and across virtual and physical layers.

To build the base DFG model, we first focus on building separately DFG sub

graphs using micro-benchmarks and benchmark applications that are CPU-intensive 

(SPEC CPU 2006 [15]), memory-intensive (SPEC CPU2006), network- intensive 

(Netperf [12]) and disk l/O-intensive (lOzone [8], SysBench [16]). We also design a 

run-time calibration mechanism which outputs physical resource utilization estima

tion on individual VMs based on monitoring information and the DFG based model. 

The run-time calibration mechanism also includes a robust remodeling process that 

can make a new guided regression model to adapt to the temporal dynamics in the 

modeled resource relationships.

We use the Xen virtualization environment and apply the calibration mechanism 

on a set of consolidated VMs hosting diverse applications including RUBiS (a 3- 

tier app), Netperf, lOzone, and SysBench. The VM resource calibration output
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is compared with the "baseline" case defined as the physical resource utilization 

when that VM is hosted alone on the same server and with the same application 

workload. The results show that the calibration mechanism significantly improves 

the accuracy of the resource utilization information that are collected within guest 

VMs, reducing the relative error in CPU utilization from 44.8% down to 3.9% for CPU

intensive applications, and the relative error in disk write rate from 383% down to 

16.7% for IO-intensive applications.

4.1 Problem Formulation

In this section, we first present background to Xen virtualization and then report a 

few cases of representative VM measurement information mismatching that moti

vate us for the development of a reliable information calibration approach. Then, 

we present the problem formulation.

4.1.1 Xen Virtualization

Xen [34] is an open source x86 virtual machine monitor which can create multiple 

virtual machines on a physical server. Each virtual machine runs an instance of an 

operating system. A scheduler is running on the Xen hypervisor to schedule virtual 

machines on the processors. Domain-0 in Xen is a privileged control domain used 

to manage other domains and resource allocation policies.

Xen does not account for resource consumption in the hypervisor on behalf of an 

individual VM, e.g., for I/O processing. On Xen's I/O model, a special privileged vir

tual machine called driver domain (by default "Domain-0") hosts unmodified device 

drivers and directly controls physical devices. Other virtual machines, called guest 

domains in Xen, have to communicate through the driver domain to access the de

vices (e.g., network cards or disks). This I/O model results in a complex resource
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utilization model. For example, an IO-intensive application has two components 

in its CPU utilization: CPU consumed by the guest domain where the application 

runs and CPU consumed by the driver domain which performs I/O processing on 

behalf of the guest domain. When multiple VMs are co-hosted on a single physical 

server, a problem posed by the Xen I/O model is to classify the driver domain's 

CPU consumption across the various guest domains. Similar problems arise for 

classifying the resource consumption of network and disk activities.

4.1.2 Information Mismatching Paradox
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Figure 4.1: Measurement information mismatching: a disk I/O utilization example

Directly profiling VM's resource utilization inside the VM does not always give 

the correct information. For example, on a Xen-virtualized physical server hosting 

a single VM running lOzone [8] (a filesystem benchmark application), Figure 4.1 

shows the disk I/O activities (write requests per second) measured inside the VM 

(called virtual l/Os) and the I/O activities measured on the physical disk (called 

physical l/Os). Both IO measurements are collected from the /proc file system 

in the guest domain and Domain-0 separately. There is more than one order of
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magnitude difference between the two readings.
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Figure 4.2: Measurement information mismatching: a CPU utilization example

Figure 4.2 shows another example on CPU utilization. On a Xen-virtualized 

physical server hosting a single VM running an Apache web server, we use the VM 

monitoring tool XenMon [73] to measure the VM's CPU utilization and the physical 

server's CPU utilization. While only a single VM is running, the server's CPU utiliza

tion is more than twice of the CPU utilization of the VM. This mismatching is mainly 

caused by the CPU overhead of Domain-0 in network and disk 10 processing.

4.1.3 Problem Formulation

We define the problem as profiling physical resource utilization for an individual 

VM. That is, we want to profile how many physical resources have been utilized by 

each VM across time, where resources include CPU, memory, network, and disk.

1 Careful examination reveals that this is caused by write coalescence at the cache subsystem 
in the disk I/O layer.
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4.1.3.1 Virtual Resource Monitored Information

Per-VM resource utilization information can be collected within the VM (e.g., via 

the sar utility tool) or from the VM Manager (e.g., Domain-0 of Xen). We implement 

the monitoring system to track various VM resource usage without modifying any 

virtual server:

• CPU: we monitor the consumed CPU by every individual guest VM. In Xen's 

Domain-0, CPU usage of guest VMs and Domain-0 itself are provided by the 

XenMon utility [73].

• Memory: we collect the memory usage as the ratio of used memory and 

the total memory allocated to the guest VM. While memory utilization is only 

known to the OS within each VM, tracking accesses to swap partitions from 

Domain-0 can infer such information [128].

• Disk: we collect the disk lOs issued from the guest VM to the privileged 

Domain-0 in four metrics - wtps (write requests per second), bwrtn/s (data writ

ten to vbd block device in blocks per second), rtps (read requests per second), 

bread/s (data read from vbd block device in blocks per second). In Domain-0 

of Xen, such information for the guest VMs is available at /sys/devices/xen- 

backend/vbd-<domid>-<devid> for virtual block devices.

• Network: we collect the network traffic issued from guest VMs to Domain- 

0 in four metrics - rxpck/s (packets received per second), txpck/s (packets 

transmitted per second), rxbyt/s (bytes received per second), txbyt/s (bytes 

transmitted per second). In Domain-0 of Xen, such information on guest VMs 

is available in the proc filesystem at /proc/net/dev for virtual network devices.
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4.1.3.2 Physical Resource Monitored Information

The following resource utilization information is collected at the privileged driver 

domain (e.g., Domain-0 of Xen):

• CPU: consumed CPU by the privileged domain.

• Memory: memory utilization as the ratio of used memory to total allocated 

memory of the privileged domain.

• Disk: four types of metrics are collected for aggregate physical IO that are 

the same as those for virtual disks.

• Network: four metrics are collected for aggregate traffic on physical network 

cards that are the same as those for virtual network devices.

4.2 Background Information

In this section, we describe the source separation problem defined in signal pro

cessing and a solution framework called factor graphs.

4.2.1 Source Separation

In digital signal processing, source separation problems [114] are those in which 

several signals have been mixed together and the objective is to find out what 

are the original signals. In particular, blind source separation is the source sepa

ration problem without any information about the source signals or the mixing pro

cess. Several approaches have been proposed for the solution of this problem type 

such as Singular Value Decomposition (SVD) and Principal Components Analysis 

(PCA). These approaches typically rely on the assumption that the source signals 

are mutually statistically independent. Unfortunately, such assumption does not
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always hold in our application. For example, CPU overhead and network traffic 

originated from multiple VMs may have strong correlation when they belong to the 

same application services. VM disk write requests can be accumulated (delayed) 

and executed in batches on physical disks due to the page cache mechanism at 

the OS layer. Therefore, we focus on model based source separation approaches 

where domain knowledge on the mixing process can be encoded in the separation 

process.

4.2.2 Factor Graphs

Figure 4.3: An example factor graph

Factor graphs [88] are graphical representations of complex mathematical mod

els. They allow a unified approach to many source separation problems in signal 

processing and beyond. A factor graph is a bipartite graph representing the factor

ization of a global function of several variables. For example, assume that some 

global function, f ( x u x 2,x3ix4,x&) can be factored as multiple local functions, e.g.,

f{x 1, X2, X3, X4, X5) =  fi(xi, x2)f j(x2, x 3, X4) fk(x3, X4, X5)

This factorization is represented by the factor graph in Figure 4.3. In our applica

tion, we have to bring directionality into a factor graph so as to model a general 

decomposition of a global function into multiple local functions. We give details on 

this extension in the following section.

67



4.3 Directed Factor Graphs

In this section, we present the factor graph model that we use in the VM resource 

calibration problem.

4.3.1 Graph Model

Formally, a directed factor graph (DFG) is a bipartite digraph G -  ( V, F ,E ) .V  and 

F  are two disjoint node sets. V  represent the set of variables, F  represents the set 

of functions. One edge x -> /  in E  connects a vertex x in V  to one vertex /  in F  

when x is an input parameter of the function represented by / .  One edge /  -> y 

in E  connects a vertex /  in F  to one y in V  when y is an output parameter of the 

function represented by / .

Figure 4.4: A directed factor graph example

Figure 4.4 shows the directed factor graph for a global function Y0 =  g(xi ,  ® 2 . *s) 

with decomposition given as

g(x 1,X2,X3) = fa(xi,x2) +  fb(x2,x3)

in Figure 4.4. The new variable nodes yo', Yl are two temporary variables recording 

the output of the functions f a and f b.
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Figure 4.5: The directed factor graph in VM monitoring information calibration.

4.3.2 DFG in VM Information Calibration

We use the directed factor graph in Figure 4.5 as the base for VM information cal

ibration. From left to right, the virtual resource activities are first transformed into 

the physical resource activities generated by each VM, and then are aggregated 

to render the physical resource activities of the hosting server. The left-most vari

able nodes represent observable virtual resource activities, the right-most variable 

nodes represent observable physical resource activities, see Section 4.1.3. The 

intermediate variable nodes, such as CPC/vm-i representing the physical CPU 

consumption by VM-1, are the data we want to infer and we derive them through 

statistical inference techniques on the function nodes such as f e w 1-

We choose the DFG model in Figure 4.5 as it naturally describes the resource 

demand transformation and aggregation processes in a virtualization environment. 

The edges in the graph depict statistical causality relationships between resource
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utilization at different components/layers. The generalization of this graph model 

is possible thanks to the flexibility in the identification of the function nodes, which 

may be different for different hypervisor architectures. In the following section, we 

show how to build a base model for Xen by identifying the function nodes through 

benchmark profiling and regression analysis.

4.4 DFG Based Model

In this section, we run different benchmark applications in one guest domain to 

generate the workload on each virtualized resource separately and to build the 

DFG based model for our calibration mechanism.

4.4.1 Methodology

The modeling process consists of the following steps:

1. Host a single VM in a server.

2. Run a benchmark for a specific virtual resource (e.g., a CPU-intensive bench

mark).

3. Apply statistics analysis to find out the set of physical resources on which 

the benchmark incurs non-negligible utilization and learn the models for the 

function nodes such as f e w 1-

The benchmark based modeling process aims at capturing the stable causality 

relationships between virtual and physical resource demands. We carefully select 

a fixed set of benchmark applications to cover all the four resources (CPU, memory, 

disk, and network) at the virtual layer. If the causality relationship changes across 

time, as for example in the disk 10 access patterns of an application, then we resort 

to the guided regression method that is described in Section 6.2.
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4.4.2 Regression Analysis

In Step 3, stepwise regression [58] is applied to the collected data to find out cor

related measurement variables and to remove co-linearity that may exist between 

variables. Stepwise regression uses the same analytical optimization procedure as 

multiple regression but differs in that only a subset of predictor variables is selected 

sequentially from a group of predictors by means of statistical testing of hypotheses.

4.4.2.1 Source Node: Virtual CPU Load

We first run a micro-benchmark in the guest VM that alternates between sleeping 

and calculating Fibonacci numbers, the ratio of which determines the VM CPU uti

lization. Figure 4.6 shows the CPU overhead in the privileged domain while the 

micro-benchmark VM's CPU utilization changes from 5% to 50%. The Domain-0 

CPU overhead is stable and remains close to 0. Figure 4.6 also shows the Domain- 

0 overhead when the guest VM runs gromacs, a CPU-bound SPEC CPU2006 

benchmark. The Domain-0 overhead is close to 0 while the guest VM uses up 

its allocated CPU capacity (one core of the dual-core processor in the server). We 

also observe (not shown on this graph) that the CPU-intensive guest VM did not 

incur overhead on other server resources (e.g., network or disk).

4.4.2.2 Source Node: Virtual Memory Load

We examine how memory-intensive applications on guest domains impact the re

source utilization in the privileged domain. Figure 4.6 shows the Domain-0 CPU 

overhead when running libquantum, a memory-bound SPEC CPU2006 benchmark, 

and the overhead is close to 0. We also observe (but not include these results here) 

that the memory-intensive guest VM did not impose overhead on other server re

sources (e.g. network or disk).
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Figure 4.6: Compute intensive workload has no impact on privileged domain performance

4.4.2.3 Source Node: Virtual Network Load

We use Netperf [12] to perform controlled network load generation. Netperf allows 

both UDP and TCP stream tests. Here, we measure the number of packets (bytes) 

sent/received per second for both guest and privileged domains.

For the UDP case, we change the packet sending rate from 1,000 to 36,000 

pkts/sec, the packet payload size from 100 bytes to 1,400 bytes, and measure server 

resource metrics on both sender and receiver sides. Since the TCP protocol is not 

allowed to specify the transfer speed, we can not change the sending rate settings 

as in the UDP protocol.

The regression coefficients of different metrics from stepwise regression algo

rithm is shown in Table 4.1, and only the correlated variables are presented. Each 

row corresponds to a Domain-0 resource metric and each column corresponds to 

a guest domain variable. For example, the first row in the figure means the priv

ileged domain CPU overhead(%) =  6.64  x  10~4 x  recv_pkt_rate +  5.02 x  10-4 x  

send_pkt_rate -  0.06. It shows that the Domain-0 CPU overhead has a clear linear 

relationship with the packet sending and receiving rates, but not with the network
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throughput in bytes. The same observation is also reported by Wood et al. [127].

Table 4.1: Network regression model.

Domain-U
rxbyt/s rxpkt/s txbyt/s txpkt/s intercept

D CPU(%) 0 6.64e-04 0 5.02e-04 -0.06
0 rxbyt/s 1.01 0 0 0 -49.51
m rxpkt/s 2.24e-06 1.00 0 0 2.56
- txbyt/s 0 0 1.00 20.38 1094.2
0 txpkt/s 0 0 -4.14e-06 1.01 4.26

4.4.2.4 Source Node: Virtual Disk IO Load

Xen supports many different storage options for the guest domain. These options 

can be divided into three categories: file based, device based, and LVM-based. The 

file-based block devices can be differentiated by how Xen accesses them: blktap 

and loopback. Blktap replaces the common loopback driver for file-based images 

because it allows for improved performance and more versatile filesystem formats, 

such as QCOW [14]. It also avoids problems related to flushing dirty pages which 

are present in the Linux loopback driver.

We build our model for guest domains with file based disk storage. For the 

other two storage options, the same methodology can be also applied. Here, we 

perform controlled IO-intensive experiments with SysBench [16]. SysBench is a 

multi-threaded benchmark tool for evaluating database (e.g., MySQL) server per

formance under intensive load. We exploit its file IO performance testing function

ality to generate different IO activities. To control the write/read operation rate, we 

add different sleeping time between each write/read operation in the source code. 

The SysBench IO testing module supports six IO operations: sequential write, se

quential rewrite, sequential read, random read, random write, and combined ran

dom read/write. We take samples of each IO operation and create a data set based 

on all the samples. The block size is set to 16K bytes. The total size of testing files
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is set to 4G bytes. We choose "default" for other option settings.

Tables 4.2 and 4.3 show the regression models extracted by blktap based and 

loopback based devices. We note that besides the difference on CPU overhead, 

the relationship functions from virtual disk IOs to physical IOs are also different 

for blktap based and loopback based devices. For example, the coefficient of vir

tual rtps to physical rtps is 1.29 for blktap based devices, while the coefficient is

0.34 for loopback based devices. We observe (but not include the results here) 

that the regression models for disk IOs are dynamic and dependent on workload 

patterns (e.g., sequential vs random access, high vs low access locality). The co

efficients in the regression models of Tables 4.2 and 4.3 represent the resource 

relationships under the standard SysBench workload. Later, we present a model 

relearning scheme for online information calibration that adapts to inevitable work

load dynamics, see Section 4.5.

Table 4.2: Blktap based device regression model

Domain-U
rtps bread/s wtps bwrtn/s intercept

D CPU(%) 0 2.02e-04 0 2.21 e-04 0.47
0 rtps 1.29 0 0 0 10.57
m bread/s 0 1.00 0 0 1.59

- wtps 0 0 0.11 0.0018 1.6
0 bwrtn/s 0 0 0.07 0.998 15.3

Table 4.3: Loopback based device regression model

Domain-U
rtps bread/s wtps bwrtn/s intercept

D CPU (%) 0 8.27e-05 0 1.11e-04 0.23
0 rtps 0.34 0 0 0 0.14
m bread/s 0 1.0 0 0 -0.53
- wtps 0 0 0.10 0 1.52
0 bwrtn/s 0 0 0 0.997 22.1
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4.4.2.5 System Overhead

When multiple VMs are consolidated in one physical machine and lead to heavy 10 

utilization, possible system overhead needs to be considered. One example of the 

source of such overhead is the ksoftirqd daemon process, ksoftirqd is a per-CPU 

kernel thread that runs when the machine is under heavy soft-interrupt load. If a 

soft interrupt is triggered for a second time while soft interrupts are being handled, 

the ksoftirq daemon is triggered to handle the soft interrupts in process context. 

The sudden run of ksoftirqd daemon process under heavy network workload could 

lead to unexpected CPU utilization bursts. In our solution, this type of overhead 

is taken as system noise and is excluded from the aggregate resource utilization 

contributed to guest VMs.

4.5 Information Calibration

In this section, we present the run-time calibration mechanism. The mechanism 

takes as input the VM monitoring information as described in Section 4.1.3 and 

outputs per VM physical resource utilization information based on the DFG model 

in Section 4.3.

4.5.1 Run-time Calibration Mechanism

( v m ) [ v m ] - -

Server

DFG model

VM  resource 
.utilization Information

physical server resource 
. utilization information

calibrated VM resource 
utilization informationrun-time calibration process

Figure 4.7: The run-time calibration mechanism
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Figure 4.7 shows the overview of our run-time calibration mechanism. The in

puts to the mechanism are the resource utilization monitoring information within the 

guest VMs and the privileged domain (for aggregate physical server load informa

tion). The mechanism uses the DFG model to decode the input information and 

outputs per-VM physical resource utilization information. In the run time, the cali

bration process may also update the DFG model if the existing one incurs non-trivial 

estimation errors.

We exemplify the algorithmic steps in the context of CPU utilization, but the 

same steps apply for all four resources. The run-time process on per-VM CPU 

utilization information calibration is given in Algorithm 4.1.

Algorithm 4.1: per-VM CPU utilization information calibration algorithm
0 Initialize the model parameters of DFG function nodes;
1 Feed the DFG model with per-VM virtual resource utilization information;
2 Calculate the value of DFG latent variables on per-VM CPU utilization 

information;
3 Calculate the value of server CPU utilization variable;
4 while CPUjerr > thresh do
s Re-learn the DFG function models;
e Re-calculate the value of the DFG latent variables for per-VM CPU

_ utilization information;

7 Output per-VM CPU utilization information;

In Step 0, the initial model parameters are obtained from benchmark based 

profiling, see Section 4.4, or from offline application-specific profiling for calibrated 

VMs. While the latter method is expected to give a more accurate model than the 

former one, it comes with an extra profiling overhead. In the evaluation, we use the 

benchmark based profiling results for this step.

Step 4 brings a feedback loop to make our calibration process adaptive to in

evitable model dynamics, typically caused by the change of workload patterns. As 

shown in Section 4.4, the relationship between a virtual resource activity and its 

overhead on physical resources can vary and depend on the workload contents.
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The mapping of virtual I/O to physical I/O activities is one such example. To be 

robust to transient workload changes or monitoring noise, the discrepancy is cal

culated on the average of the estimation errors during a sliding window including 

the past K  time points. The threshold is chosen as (e +  Za * a), where (c, a2) is the 

mean and variance of the regression model estimation error from the last remodel

ing process (or those learned from the benchmark based profiling at the beginning 

of the process). ZQ is the standard score in statistics [95], and here measures how 

unlikely an estimation error is if the current model is correct. If Za =  3, a  =  99.75%, 

then an estimation error larger than (c +  3 * a) is unlikely (with probability < 0.25%) 

to appear if the virtualization environment were the same as during the last remod

eling process. Therefore, if several large estimation errors in a row indicate the 

change of some factors in the virtualization environment, then a remodeling pro

cess is triggered. This process is presented in the following subsection.

4.5.2 Robust Remodeling: Guided Regression

While we use linear regression models in Section 4.4 for single VM based bench

mark profiling, a new problem arises in the calibration process when multiple VMs 

are co-hosted in a single server: now y represents a physical resource utilization 

which is the summation of physical resource utilization of multiple VMs. Since the 

physical resource utilization of each individual VM is a latent variable, a straightfor

ward regression model is as follows, assuming m co-hosted VMs:

y(‘> =  +  +  +

where yVM~^v> =   jg |atent variable for the

j th VM.
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If we directly solve the above problem with the least square solution

0 =  (xTx)-1xTy , (4.1)

it could lead to re-learning the models of all the VMs in the server. We seek to 

enhance the original regression modeling method for remodeling robustness due 

to three reasons. The first comes from common run-time monitoring data error and 

noise (e.g., system noise, transient VM migration overhead) that might add tran

sient perturbation onto otherwise stable resource relationships. The second is due 

to the factor that some relationships (such as virtual disk l/Os and its resource over

head) are naturally dynamic due to their content dependence. Re-learning those 

models should not affect the model of other stable relationships. The third reason 

is due to the fact that since the co-located VMs are all involved in the regression 

model, the number of unknown parameters in 0  is large. In order to obtain accu

rate estimation of those parameters, a significant amount of measurements [x,y] is 

usually required. However, in the model relearning process, sometimes we do not 

have so many observations due to the quick dynamics of the system. The lack of 

(enough) data may lead to large variances of the final solution 0.

In order to enhance the robustness of model estimation, we propose a guided 

regression process to solve the model of Eq. (4.1). We add some constraints to 

describe the range of possible 0 values and embed those constraints into the esti

mation process. The constraints can come from various sources, such as the prior 

model knowledge based on the benchmark profiling or the model learned during 

the previous time period. By including such knowledge to guide the estimation, we 

can obtain a more reliable solution 0  for the regression model.

The prior constraints on 0  are represented by a Gaussian distribution with the
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mean 0 and covariance £

P ( / V )  =  (a*) -Ke x p { - ^ W  ~ P)TZ - ' (P  -  5 ) }  (4.2)

The mean 0 represents the prior expectation on the values of 0, and is deter

mined from the 0 values learned in Section 4.4. The covariance £  represents 

the confidence of our prior "knowledge". We choose £  as a diagonal matrix £  =  

diag(c i ,  c2, • • • , cp), in which the element c* determines the level of variances of /?» 

in the prior distribution. If we are confident that the value of 0t is located closely 

around 0, the corresponding c* value is small. Otherwise we choose large e* val

ues to describe the uncertainty of 0t values. Note that the least squares method in 

Eq (4.1) solves the regression without any prior knowledge, i.e., the values of Cj's 

are infinite, which may be inaccurate when the number of collected measurements 

is insufficient.

There is also an unknown parameter a2 in Eq (4.2), which represents the vari

ance of the data distributions. Here, we use the inverse-gamma function [95] to 

represent the distribution of <r2:

p(ff2) = r^ 2)-(°+M~;y (4-3>
where a, b are two parameters to control the shape and scale of the distribution, r (a )  

is the gamma function of a. We choose the inverse-gamma function because: 1) it 

is one of the common distributions for non-negative variables such as the variance 

studied here; 2) it is easy to tune its shape by setting (a, b) parameters. 3) By using 

the inverse-gamma function as the prior of Gaussian variance, we can obtain a 

closed-form solution for optimizing the posterior distribution estimation.

Given the prior distribution P{0), the guided regression finds the solution by
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maximizing the following posterior distribution

P{0 |x, y, a2) oc P(y\0, %)P(0\a2)P{a2) (4.4)

which leads to the following solution

0* =  (xTx +  S-1)-1(E_1/9 +  xt x/3). (4.5)

Due to the space limit, we do not present the detail of the above derivations.

To summarize, the robust remodeling process takes the following steps: 1) de

cides the prior coefficients 0 and their weight metric £  (e.g., learned through the 

benchmark profiling in Section 4.4); 2) solves Eq.(4.1) based on the run-time mon

itoring data for the standard least square solution; 3) calculates the final solution 

0*, which is a weighted average of the two components from 1) and 2).

4.6 Evaluation

As discussed in the previous sections, the proposed DFG based model and run

time calibration mechanism constitute the two building blocks for VM resource uti

lization information calibration process. These building blocks can be directly ap

plied to existing applications. In this section, we demonstrate three case studies 

that clearly show the effectiveness of the calibration methodology.

4.6.1 Experimental Methodology

We evaluate the effectiveness and accuracy of our calibration technique with dif

ferent applications. The test-bed runs the Fedora release 8 operating system with 

Linux kernel 2.6.18-8. The evaluation is based on the Xen virtualization platform 

version 3.3.1. Our test-bed platform uses Supermicro 1U Superservers with Intel

80



Core 2Duo E43001.86 GHz processors, 2MB L2 cache. All servers have a RAM of 

2GB and 250GB 5400RPM disk. The servers are connected through D-LINK DES- 

3226L 10/100Mbps switches. The test-bed is managed by Usher [96], an open 

source VM management middleware with a centralized monitoring database. The 

run-time calibration process is co-located with the monitoring DB and it calibrates 

the raw monitoring data in batches with fixed time window size.

The following applications are used in our evaluation:

• RUBiS is an auction site prototype modeled after eBay. A client workload 

generator emulates the behavior of users browsing and bidding on items. We 

use the Apache/EJB implementation of RUBiS version 1.4.3 with a MySQL 

database server version 5.0.77.

• lOzone is used for filesystem benchmarking. It is used to generate and mea

sure various disk I/O activities.

• SysBench is a multi-threaded benchmark tool for evaluating database (e.g., 

MySQL) server performance under intensive load. We use SysBench to gen

erate MySQL workloads which lead to various I/O activities.

• Netperf is tool for network benchmarking (see Section 4.4.2.3). We use Net

perf to generate different network traffic workloads.

4.6.2 Results

Here, we present three scenarios to test the accuracy of the DFG based model. 

In scenario 1, we consider the RUBiS application. We collect baseline information 

from every component server i.e., web server, application server, and database 

server. We demonstrate substantial improvements in resource information estima

tion with the DFG based model for two different server consolidation environments.
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In scenario 2, we illustrate how guided regression can be used to improve on the 

DFG based model. The estimation after the remodeling process shows dramatic 

improvements. In scenario 3, we illustrate how the DFG model is used to separate 

a mixed disk 10 stream into its component streams.

4.6.2.1 Scenario 1: RUBiS

RUBiS is a multi-tier web service application composed by open-source software,

i.e., Apache Web Server, JBoss EJB Server, and MySQL relational database. For 

all servers, we use blktap based virtual block devices. The resource usage base

line of each server is collected when it is virtualized and run in the same physical 

machine alone. Here, RUBiS is initialized with 700 simultaneous clients with the 

browsing workload. For the baseline comparison, we run RUBiS for 30 minutes 

and collect usage statistics.

We setup the following server consolidation environment (two physical machines): 

on Machine #1, the virtualized App server and DB server are consolidated together; 

the web server VM is placed on Machine #2. We collect each virtual and physical 

machine run-time information using the techniques described in Section 4.1.3. The 

calibrated usage information is calculated with the DFG based model described in 

Section 4.4.

Figure 4.8 illustrates the relative errors1 of both in-VM monitoring and DFG 

based model. The figure shows results for all three component servers. We ob

serve that RUBiS is mainly a compute and network IO intensive application with 

very low disk activities. In the figure, we only show metrics with significant values 

and ignore those close to zero. One can easily see that the DFG based model 

significantly reduces the relative error, e.g., the error in web server CPU utilization 

drops from 44.8% down to 3.9%.

1 Relative error is defined as the ratio of absolute error to its corresponding baseline value.
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The substantial improvements in CPU utilization estimation is due to the fact 

that DFG based model takes the intensive network activity overhead into consid

eration. In the web server example, on the average, the server transmits about 

12,500 packets per second to the clients and application server. Meanwhile, it also 

receives about 13,400 packets per second. According to the DFG based model, 

this amount of network traffic leads to 13% privileged domain CPU overhead that 

is not reported by in-VM monitoring.
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Figure 4.8: Relative error of in-VM monitoring method and DFG based model in RUBiS app

4.6.2.2 Scenario 2: Co-hosting Network- and IO-intensive Apps

For this experiment we consolidate two virtualized servers on one physical ma

chine. Both VMs are configured with loopback based virtual block devices. The 

first VM runs Netperf that sends out UDP packets at the rate of 25Mbps and the 

second VM runs SysBench. SysBench is set to run in the "oltp" test mode, to em

ulate a real database. For our test-bed, we choose the MySQL implementation and 

set the number of rows in the testing table to 5,000,000. To make the testing more
I

real, we select the execution mode to be "advanced transactional" in which each 

thread performs transactions.

In the experiment, we set a sliding window length to 15 minutes. At the beginning 

of the first window, the parameters of DFG are initialized according to Tables 4.1 

and 4.3. The system is set to take monitoring samples every 10 seconds and re

port to the center database. According to the run time calibration mechanism in
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section 4.5, at the end of each window, the program calculates the estimation error 

between the current DFG model and physical server measurement as shown in 

step 4 of Algorithm 4.1.

Table 4.4 shows the in-VM monitoring information, the DFG model result, and 

the resource usage of the physical server which is hosting the two VMs. We only 

report the metrics with significant values.

Table 4.4: Example of DFG error that triggers remodeling mechanism

CPU txbyt/s txpkt/s wtps bwrtn/s
in-VM 1-mon 27.45 0 0 2052.77 30859.36
in-VM2-mon 0.83 3.08e+06 3000 0 0

DFG 5.14 3.15e+06 3021 214.81 30773.46
Server resource 5.74 3.14e+06 3009 176.96 7927.70

The large estimation error highlighted in bold triggers the remodeling mecha

nism. Note that remodeling is only applied for the IO write metrics. The model of 

other resources is kept unchanged. The new model is based on the data points 

collected in the previous time window. The new disk IO write model replaces the 

original one. Close examination indicates that the large estimation error (see the 

bold value in the table) happens because that loopback based storage uses the 

Domain-0 kernel page cache. When a file write occurs, the page backing the par

ticular block is looked up. If it is already found in cache, the write is done to that 

page in memory.

Figure 4.9 illustrates the relative error for in-VM monitoring method and run 

time calibration mechanism. Note the log-scale on the Y-axis. One can easily 

see the significant improvement in the estimation accuracy. The relative error of 

the "bwrtn/s" is reduced from 276% down to 3.5%. The "txpkt/s" metric in Fig

ure 4.9(a) is still better than the calibration result after remodeling but the run time 

calibration has already given a good estimation which only has a relative error of

0.5% only.
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Figure 4.9: Relative error for in-VM monitoring method and run time calibration mechanism

4.6.2.3 Scenario 3: Co-hosting IO-intensive Apps

In scenario 3, we show the case study of how the DFG based model is useful in 

decomposing disk 10. We setup two virtualized servers on one physical machine. 

The first VM server executes the lOzone benchmark to perform only writes and 

re-writes. The second VM server runs the SysBench benchmark and writes to disk 

at the rate of 8MBps. The block size is set to 16K bytes and the total size of testing 

files is 8GB. We choose "default" for other options. In both cases, we use blktap 

based virtual block devices.

The effectiveness of DFG based model in decomposing mixed 10 and CPU is 

shown in Figure 4.10. The DFG based model successfully decomposes the mixed 

CPU utilization and reduces the relative error in write request rate from 391.5% down 

to 10.6% in Figure 4.10(a) and from 304.4% to 31% in Figure 4.10(b). Meanwhile, 

the figure shows that relative error in CPU is also reduced significantly.

4.7 Summary

In this chapter, we present the design and evaluation of a VM monitoring infor

mation calibration mechanism. We formulate the problem as a source separation
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Figure 4.10: Relative error for in-VM monitoring and DFG model in mixed signal decom
posing

problem and base our solution on a directed factor graph. We show how to build a 

base DFG model through benchmarking and design a run-time remodeling solution 

which is adaptive and guided by the base DFG model. Our evaluation shows that 

the proposed methodology is robust as it successfully calibrates the VM monitoring 

information and compares well to baseline measures.

86



5 Auto-Scaling of VMs in Resource 

Pools

Most modern hypervisors such as VMware ESX [20], Xen [34], and Microsoft Hyper- 

V [26] offer a rich set of resource control primitives at the individual virtual machine 

(VM) level to guide the sharing of physical resources among co-hosted VMs. For 

example, ESX offers the concepts of reservations, limits, and shares for both CPU 

and memory. Hyper-V provides reserves, limits, and relative weights for CPU, and 

Startup RAM, Maximum RAM, buffer, and weight for memory.

Additionally, VMware's Distributed Resource Scheduler (DRS) [69] offers the 

abstraction of a resource pool (RP), a logical container representing an aggregate 

resource allocation for a collection of virtual machines (VMs). One type of resource 

pool, referred to as a virtual datacenter (VDC), encapsulates an aggregation of 

resources allocated to an individual organization, either in a public or a private 

cloud. The configured capacity of the VDC can be tied to how much the organization 

is being charged. A VDC can contain multiple resource pools, each supporting a 

specific department of the organization; each resource pool can contain multiple 

applications, each supporting a specific business process.

Resource control settings can be specified at both a VM and an RP level. DRS [69] 

periodically divides the total capacity of a parent resource pool and distributes it to 

child VMs or RPs, according to the resource control settings and estimated re-
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Figure 5.1: An example VDC containing two resource pools hosting two multi-tier vApps 
and two single-tier VMs.

source demands of individual VMs and RPs. This allows resources to flow across 

VMs or RPs in order to achieve better resource utilization.

Fig. 5.1 shows an example of a VDC containing two resource pools, RP1 and 

RP2. We refer to a virtual application running on one or more VMs as a vApp. 

RP1 contains two multi-tier vApps, each containing web, application, and database 

tier VMs, and running business critical production workloads. RP2 has two VMs 

running batch jobs that have less stringent performance requirements.

To protect the high priority applications from their neighbors, a VDC administra

tor can use the resource controls to achieve the following goals:

• Resource guarantees: Provide a guaranteed amount of a certain resource to 

a specific application or department within an organization, even when this 

resource is over-committed. For example, a resource reservation can be set 

on RP1 or on the individual VMs running important vApps.

• Performance isolation: Prevent demand spikes within one application or re

source pool from affecting others. For example, a resource limit can be set 

on RP2 or its child VMs.
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• Proportional sharing: Allow multiple applications or resource pools within the 

same organization to share resources in proportion to their relative priorities. 

For example, the administrator can set relatively higher shares on VMs run

ning vAppI than on those running vApp2 to provide performance differentia

tion between the two under resource contention.

Translating an application-level SLO to VM-level resource requirements is a 

well-known, difficult problem, due to the distributed nature of most modern appli

cations, their dependency on multiple resource types, as well as the typically time- 

varying demands faced by the applications. There has been much research tack

ling this problem in the past several years [40,102,129], using statistical machine 

learning, fuzzy logic, as well as control theory. However, no prior work has studied 

automatic adjustment of resource control settings at the resource pool level. The 

industry has largely relied on heuristics [119], which is laborious and error-prone.

Therefore, even though resource pools offer additional powerful knobs to con

trol resource allocation, converting application-level SLOs to these knob settings 

remains a challenging open problem. In this chapter, we propose a holistic so

lution that aims at providing SLO guarantees to individual applications within a 

resource pool hierarchy. The developed tool called AppRM is deployed on the 

VMware vSphere platform and is able to automatically translate application-level 

SLOs into individual VM or RP settings. To this end, AppRM employs a hierarchi

cal architecture consisting of a set of vApp Managers and RP Managers. A vApp 

Manager determines the resource controls for a specific vApp and a RP Manager 

determines the resource controls for a specific resource pool.

Each vApp Manager contains a model builder, an application controller, and a 

resource controller. We use control theory and the online optimization approach 

in [102] as a building block for designing the model builder and the application 

controller within the vApp Manager. At the same time, we make the following key
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contributions in the overall design of AppRM:

1. We design a resource controller in each vApp Manager that computes the 

desired resource control settings for the individual VMs. Although most prior 

work utilizes only limits or shares, AppRM specifically incorporates dynamic 

adjustment of resource reservations as an effective knob to ensure guaran

teed access to specified amounts of resources.

2. We design an RP Manager that takes desired VM-level settings as inputs and 

computes the actual knob settings at both the VM and the RP levels, taking 

into account whether there is resource contention within the resource pool 

and whether the RP-level resource settings are expandable or modifiable. 

Furthermore, the RP Manager interacts with its associated vApp Managers 

asynchronously to relax timing constraints on the vApp Managers.

To the best of our knowledge, this is the first development of a holistic method

ology that manages resource settings at both VM and resource pool levels. Our 

experimental results indicate that AppRM can achieve different targets for an ap

plication SLO in both under-provisioned and over-provisioned scenarios, in spite 

of dynamically-changing workloads. When the capacity of a VDC cannot satisfy 

the demands of all its applications, AppRM can ensure performance for the more 

important vApps by automatically adjusting the reservation and limit for the RP con

taining these vApps (e.g., RP1 in Fig. 5.1). If, however, the resource settings of this 

RP are unmodifiable, the RP Manager gracefully degrades the performance of all 

the child vApps in proportion to their respective demands.

5.1 Architecture

In Fig. 5.2, we show the overall architecture of the AppRM system that operates in 

the context of a single virtual application (vApp) to ensure that the vApp achieves
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Figure 5.2: AppRM at work across VMs in a single vApp.

its user-defined, application-level SLO.

The App Sensor module collects various application-level performance metrics 

such as throughput and response times for each vApp. Note that an application 

may require more than one VM, e.g., a multi-tiered application. We use the Sys

tem Sensor module to measure and keep track of current resource allocations for 

all the VMs associated with the target vApp. These two sets of statistics are input to 

the Model Builder module that first constructs and then iteratively refines a model 

for the observed application performance as a function of the VM-level resource 

allocations. The Application Controller module inverts this function to compute a 

new set of "desired" resource allocations in order to meet the user-defined appli

cation SLO. The Resource Controller module then determines a set of individual 

VM-level resource settings that would cause the VMs in the RP to acquire the de

sired resource allocations in the next control interval. Together, the Model Builder, 

Application Controller and Resource Controller modules constitute an instance of 

the vApp Manager for a single vApp.

In Fig. 5.3, we show how multiple vApps in a Resource Pool (RP) are managed 

by AppRM when they contend for resources in the RP. The App Manager from 

each vApp talks to the RP Manager where an Arbiter module addresses resource 

contention and computes the ideal values of VM-level and RP-level resource set-
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tings. These values are then set by the Actuator module, which uses the VMware 

vSphere WebServices API [24] to communicate with the inventory management 

layer.

5.2 Design

In this section, we describe the detailed design of each component module in Ap

pRM. One set of sensor, model builder, application controller, and resource con

troller is instantiated for each application. There is one resource pool manager per 

resource pool.

5.2.1 Sensors

The sensor modules periodically collect two types of measurable statistics: real

time resource utilizations of individual VMs and application performance. Resource 

utilization statistics are collected by the system sensor through the vSphere Web 

Services API [24]. This API allows collection of an extensive set of ESX run time 

performance counters. We collect the average per-VM CPU utilization over a time 

interval using the usage performance counter, and the per-VM memory utilization 

using the consumed counter.
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For application performance, we measure the request throughput, client side 

response time, and percentile response time. Although the application sensor is 

currently implemented in the client workload generator, it can potentially be im

plemented as a Hyperic [5] agent, which can provide performance statistics for a 

variety of applications without requiring any application modifications.

5.2.2 Model Builder

To determine the amount of resources needed for a vApp to meet its performance 

target, we first build a model of the relationship between the application resource 

allocation and its performance. As with most real-world systems, this relationship 

is often nonlinear and workload-dependent. Nevertheless, many nonlinear models 

can be approximated by a linear model in small-enough regions around an operat

ing point. This linear model can then be updated periodically to adapt to changes 

in the workload and/or system conditions.

This is the fundamental assumption behind the online adaptive modeling ap

proach in [102]. In this section, we explain how the same approach can be applied 

to our specific modeling problem. We first define, in Table 5.1, the key variables 

used in our model and the corresponding application controller.

For application a e A, we define the resource allocation variable ua to be a vec

tor that contains all measured resource allocations for application a. For example, 

for an application running in two VMs (M0 =  {vmi, vm2}), if two resources are con

sidered (R =  {cpu, memory}), then ua is a vector ua =  (ua>vmltCpu, ua<vmhmem, 

Uayvm2,cpu,ua,vm2,mem)- ua(/) represents the measured resource allocation values for 

application a during a control interval t.

In every control interval, the model builder recomputes the following auto-regressive- 

moving-average (ARMA) model that approximates the relationship between an ap-
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Table 5.1: Notation

A set of applications ^a,m,r measured allocation of resource type
M a set of VMs in application a e A r  in VM m of application a,

e.g., M a = 0 £> uajm<r < 1
t index for control interval Pa measured performance of application a
R set of resource types controlled P le f target performance of application a

e.g., R =  {cpu, memory} Pa normalized performance of application
^o,m,r desired allocation of resource type a, where pa =  p j p raef

r  in VM m of application a, P T d predicted performance of application a
0 < u l m,r < 1 b coefficient vector, b =  [6i • • • 6„]T

plication's normalized performance and its resource allocations:

Pa(t) =  a(t)pa(t -  1) +  br (t)ua(t). (5.1)

Experiments here indeed confirm that this first-order ARMA model can predict ap

plication performance with satisfactory accuracy. The model is self-adaptive as its 

parameters a(t) and b(t) are re-estimated in every control interval.

5.2.3 Application Controller

The application controller determines the resource requirements for all the VMs 

running the application such that the application can meet its performance SLO. 

Although we apply the same online optimization approach in [102] to the design 

of the application controller, we offer further discussions of the optimal controller 

solution and intuitive interpretation of the key parameters. More specifically, the 

controller seeks the VM-level resource allocation vector, ua(f + 1), for the next con

trol interval t + 1  that minimizes the following cost function:

J(Ua(t +  1)) =  (p£"*(t +  1) -  l ) 2 +  A ||Ua(* +  1) -  Ua(* ) | |2 . (5.2)

Here, p^ed(t + 1 ) is the predicted value for the normalized application performance 

in internal t +  1, using the model estimated in interval t (as shown in Eq. (5.1)), for
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a certain resource allocation vector ua{t + 1). More specifically,

P^ed{t +  1) =  a(t)pa(t) +  bT(t)ua(t +  1). (5.3)

The scaling factor, A, captures the trade-off between the performance cost that 

penalizes the application's performance for deviating from its target (denoted by the 

normalized value equal to 1), and the stability cost that penalizes large oscillations 

in resource allocation values. Solving this quadratic optimization problem leads to 

the following optimal resource allocations:

ul( t  + 1 ) =  (bbT +  Al)"1 ((1 -  a(t)pa(t))b +  A u ,(t)), (5.4)

where I is an identity matrix. Alternatively, let ua,i be the i -  th resource allocation 

variable, then the above equation can be re-written as

K.,(t + 1) =  +  1 <5-5>

We make the following key observations:

(1) When bi =  0, indicating no impact from the i -  th resource allocation variable 

on the application performance, then the % -  th resource allocation variable will see 

no change in the next control interval;

(2) When >  0, indicating a positive correlation between the i -  th resource 

allocation variable and the performance value, if the model-predicted performance 

is below the target, i.e., p^ed(t + 1 ) < 1, then the i -  th resource allocation variable 

will be increased such that the performance value can be increased in the next 

interval; and the opposite is true if 6* < 0 or if p^ed(t +  1) > 1.

(3) The scaling factor A affects the amount of resource allocation changes. As 

A increases, the oscillation in each resource allocation variable is reduced.
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5.2.4 Resource Controller

The goal of the resource controller is to translate the optimal resource allocation 

values computed by the application controller to desired VM-level resource control 

settings. The translation is needed for two reasons:

• The output of the application controller is in percentage units, whereas the 

reservation and limit values for both CPU and memory are in absolute units,

i.e., megahertz (MHz) or megabytes (MB).

• We explicitly allocate more resources than the computed values as a "safety 

buffer", to deal with inaccuracies in the computed optimal allocations.

The pseudo-code in Algorithm 5.1 summarizes the algorithm applied to every VM 

within the same vApp, for both CPU and memory resources. The algorithm cal

culates the resource capacity based on the specific resource type (line 4-7). The 

desired resource reservation is computed by multiplying the optimal value and the 

capacity (line 8). The "safety buffer" size is determined by the reservation, the 

normalized performance, and a precomputed constant value delta (line 12). In this 

algorithm, we set delta to a low or high value depending on whether the measured 

application performance is below or above the target (line 10). When the perfor

mance is better than the SLO (perf <  1), a relatively small buffer size can reduce 

the performance fluctuation around its target. When the performance is worse than 

the SLO (perf > 1), a relatively large buffer size is needed to improve the perfor

mance convergence rate. We set low =  0.1 and high =  0.3 after experimenting with 

different values. The resource limit value is set to the sum of the reservation and 

buffer size (line 12). We also explored additional ways of setting the limit value in

cluding: 1) l im it «—  resv, 2) l im it « -  resv +const, and 3) limit  4- resv+perf *resv. 

The one presented in the algorithm has the best performance. The nonzero, adap

tive buffer between limit and reservation allows the resource scheduler to adjust
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run time allocations if needed. The limit is then compared against the available 

capacity and the minimum capacity a VM needs in order to ensure that the final 

value is feasible (line 13-17).

Algorithm 5.1: Calculate desired Reservation and Limit settings 
input : optimal allocation u*, resource type type, and normalized 

performance perf  (i.e., pa) 
output: Reservation and Limit value pair

1 if u* < 0 then u* «- 0;
2 If u* >  1  then u* t -  1 ;
3 capacity 4- 0 ;
4 if type =  CPU then
5 | capacity 4- getNumVirtualCPUs() * getCPUMHz(); 
e else if type = MEM  then
7 [_ capacity 4- getMemoryMB();

8 resv 4—  u* * capacity', delta 4— 0 ;
9 if perf <  1 then delta 4- low',

10 else delta 4— high;
11 buffer  4- delta *  perf  *  resv',
12 limit 4— resv +  buffer  ;
13 if limit > capacity then limit 4— capacity',
14 if type =  CPU then
15 | limit 4— max(MINCPU, limit)',
16 else if type =  MEM  then
17 [_ limit 4- max(MINMEM, limit)',
18 return <  resv, limit > ;

5.2.5 Resource Pool (RP) Manager

For each resource pool, an RP Manager determines the allocation of resources 

to the applications running under this RP, based on the resources requested by 

the associated vApp Managers, the available resource pool capacity, and resource 

pool settings. This is required because the vApp Managers act independently of 

one another and may, in aggregate, request more resources than the resource pool 

has available.

A resource pool is defined as modifiable if the RP-level resource settings can be
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modified by an administrator or through an API. This allows the resources to flow 

from low priority RPs to high priority RPs (e.g., from RP2 to RP1 in Fig. 5.1) within 

the same VDC. In addition, a resource pool is expandable if it can automatically 

increase its own reservation, when it is exceeded by the sum of its children's reser

vations. Suppose that a resource pool has a reservation R, and VM* represents a 

virtual machines under this RP with a reservation r t. Then we have the following 

constraints:

Constraints 

Expandable Vr* < R 

Non-expandable ][T n <  R 

For a resource where the total reservation requested is less than the RP-level reser

vation, the RP Manager honors each vApp Manager's requests. For a contested 

resource where the sum of VM-level reservations is greater than the RP-level reser

vation, the following attribute information about the resource pool has to be consid

ered:

1. Expandable: The RP Manager sets the VM-level resource knobs directly as 

requested by the vApp Managers, and the RP expands its reservation auto

matically to accommodate the total demand.

2. Non-expandable but modifiable: The RP Manager modifies the RP-level reser

vation to the sum of the requested VM-level reservations.

3. Non-expandable and unmodifiable: The RP Manager throttles the VM-level 

reservations in proportion to the requested reservation for each VM.

Each vApp Manager sends the resource setting requests to the RP Manager pe

riodically. Each request is a 4-tuple of VM name, resource type, requested reser

vation and requested limit: (vmname, type, resv, lim it). For each resource, the RP 

Manager maintains a global vector (e.g., cpu_alloc_table). Each element in the
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vector is a 3-tuple of VM name, requested reservation, and allocated reservation: 

{vmname, reqjresv, allocjresv). This table is updated to keep track of each VM's 

resource requests over time.

The RP Manager processes the requests from vApp Managers asynchronously. 

Instead of waiting for all managed vApps to send their requests and processing 

them all, the RP manager is designed to start processing the vApp request and 

then setting the values when a request arrives. Once receiving a request from 

a vApp Manager, the RP Manager runs Algorithm 5.2 to calculate the actual VM- 

level and RP-level resource values. Based on the attribute of the resource pool, the 

values are set by the Actuator differently. This design allows the vApp Managers 

under the same RP Manager to have different control intervals based on different 

application needs.

Algorithm 5.2 first checks the expandability and modifiability of the resource 

defined by type (line 1-2). It reads the currently used and available RP reservation 

settings and computes the total RP capacity (line 3-5). Then it gets the requesting 

VM's current reservation value (line 6). If the RP is expandable or modifiable, it 

sets the VM reservation value directly (line 8). If the RP is non-expandable and 

unmodifiable, the RP Manager scans the global vector to get the total value of 

the requested reservations from all VMs in the resource pool and computes the 

proportionally-allocated value prop_resv for the requesting VM (line 10-12). The 

RP-level reservation and limit are set and the global vector is updated with the new 

tuple (vname,resv,vmjresv) in the end (line 15-17).

Depending on the expandable and modifiable attribute of the resource pool, the 

RP Manager sets the calculated values as follows:

1. Expandable: only VM-level setting (vm_resv,vm_limit) changes are applied 

while RP-level settings are handled automatically by VMware resource man

agement system.
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Algorithm 5.2: Calculate VM and RP settings
Input :  vApp Manager request tuple ( vmname, type, resv, limit)]
Output: VM and RP level setting tuple

( vmjresv, vmjlimit, rpjresv, rpjlimit)
1 isExpandable 4- isExpandable (type)]
2 isModifiable 4— isModifiable (type)]
3 curRpResv 4- getRpReservationUsed (type)]
4 rpAvail 4- getRpAvailReservation(t?/pe);
5 rpCapacity 4— curRpResv +  rpAvail]
6 curVmResv 4— getVmReservation(wnnarae, type)]
7 if isExpandable or isModifiable then /* Expandable or modifiable */
8 

9

if resv > rpCapacity then vmjresv rpCapacity] 
else vmjresv 4—  r e s u ;  

else /* Non-expandable and unmodifiable */
10 othersjresvjreq  4— totalResvReqExceptVM (vmname)]
11 to ta ljrp jresv jreq  4- others jresv jreq  +  resv]
12 propjresv 4 -  rpCapacity * resv/total j r p  jresvjreq]
13 vmjresv  4— min(propjresv, rpAvail +  curVmResv, resv);

14 if iirm t <  vmjresv  then v m jlim it  4— vmjresv]
15 else v m jlim it  4—
16 rpjresv  4— vmjresv  +  curRpResv — curVmResv]
17 rpjlimit 4— rpjresv]
18 updateTable (vmname, type, resv, vmjresv)]
19 return <  vmjresv, v m jim it,  rpjresv, r p j im it  >
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2. Non-expandable but modifiable: Case 1: apply both VM-level and RP-level 

changes; Case 2: only RP-level reservation and limit (rpjresv, rp jim it)  are 

set. For case 2, VM level settings are not applied explicitly, but rely on VM 

shares to adjust resource allocations among resource-competing VMs.

3. Non-expandable and unmodifiable: only proportionally-throttled VM-level val

ues (vmjresv, vmjlimit) are set.

The actuator module sets the resource reservation and limit values of virtual ma

chines through the vSphere Web Service API [24]. The resource (CPU or memory) 

reconfiguration of a virtual machine is done by one explicit call of the reconf igVM_task 

method.

5.3 Testbed Setup

For testing the effectiveness of AppRM, we chose MongoDB [11] as the benchmark 

application because it is fairly representative of a modern distributed data process

ing application. As shown in Fig. 5.4a, we set up a MongoDB (version 1.8.1 Linux 

64-bit) cluster consisting of 3 VMs. VM-1 and VM-2 are MongoDB shards running 

mongod instances. VM3 runs a mongos instance, which load balances and routes 

queries to the shards. A configuration mongod server that stores the metadata 

for the MongoDB cluster also runs on VM-3. The MongoDB application defines 

two types of transactions, each of which can be generally classified as a "read" or 

"write" operation.

For generating dynamically changing workloads, we chose Rain [37] as our 

workload generation toolkit. Rain provides the ability to generate variable amounts 

of load in multiple patterns along with different mix of operations. Here we assume 

that the workload is defined by two characteristics: the number of clients and the 

percentage of read/write operations.
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Each of the VMs in the MongoDB cluster have 2 vCPUs while the Rain VM has 

2 vCPUs. All of these VMs have been configured with memory size of 4GB. We run 

the Rain VM and the MongoDB cluster VMs on two separate ESXi 5.0 virtualized 

hosts. We also run some co-hosted VMs on ESX2 along with the MongoDB cluster 

VMs to induce some resource contention. The full host configuration is shown in 

Table 5.2. All VMs run Linux Ubuntu 2.6.35 as their guest operating system. AppRM 

runs on a separate VM on ESX1 along with Rain.

Table 5.2: Configuration of hosts

Host ESX1 ESX2
Model HP ProLiant BL460c G7 HP ProLiant BL465 G7
CPU Intel Xeon CPU X5650 

24 cores @ 2.10GHz
AMD Opteron 6172 
12 cores @ 2.67 GHz

Memory 128 GB 96 GB
Storage DGC Fibre Channel Disk DGC Fibre Channel Disk

5.4 Performance Evaluation

In this section, we present our experimental results for AppRM. These experiments 

are designed to test the following capabilities:

1. Enforce performance targets for metrics including mean response time, through

put, and 95th response time percentile.

2. Automatically detect and mitigate dynamically-changing workload demands

3. Apply control on multiple applications

4. Enforce performance targets under competing workloads
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5.4.1 Achieving Performance Targets for Multiple Metrics

This scenario is designed to evaluate the effectiveness of AppRM with different 

performance targets. For this set of experiments, we use the setup shown in Fig

ure 5.4(a), where two physical nodes host the three MongoDB application VMs, 

workload generator VM, and AppRM VM. This set of experiments allow us to gain 

insight into the system behavior and validate the internal working of the model 

builder and controller.

ESX 1 ESX 2

Shard 1

Mongos

AppRM Shard 2

(a)

ESX 1 ESX 2

Rain 1

AppRM

31
Rain 2 $ Z Z

Mongos * * Shard 1

4
V

Shard 1 Shard 2

3
Mongos Shard 2

(b)

Figure 5.4: Experimental setup with a Mongodb cluster and Rain benchmark

In this experiment, we set the MongoDB application with 300 threads emulat

ing 300 concurrent clients connecting to the MongoDB server. The workload is 

composed of 50% read and 50% write requests. For each emulated client, there 

is no thinking time between receiving the last reply and sending the next request. 

We set the target for mean response time as 300 milliseconds. Figure 5.5 shows 

how performance changes across time under two initial resource settings: under

provisioning 1 and over-provisioning2. The under-provisioning describes a scenario 

where the initial settings of the application VM resources are not sufficient to meet 

application needs leading to high response time. In the Over-provisioning case, ini

tial VM resource settings are more than the application needs leading to resource 

over-allocation and wastage. Figure 5.5 illustrates the performance for both cases

1all VMs are set to Rcpu =  Rmem =  0, Lcpu =  Lmem =  512 (MHz/MB)
2all VMs are set to Rcpu =  /?mem =  0, Lcjm = Lmem =  unlimit
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as a function of the control intervals. Note that, "white" area represents the pe

riod of model learning, where only the sensor module is active. The "gray" area 

represents the period in which all modules are activated, during which the system 

model is updated and the control actions are performed. We can see that AppRM 

can adjust the resource allocations to achieve the target in both under-provisioned 

and over-provisioned cases.

Figure 5.5: Mean response time target (300 ms)

Figure 5.6 shows the resource utilization changes for all the MongoDB VMs with 

under-provisioning initial settings. It is apparent that for both CPU and memory 

resources, the initial allocation is not sufficient for the application to achieve its 

target. When AppRM is turned on, the resource allocation automatically increases 

to meet the target.

Mongos —b— Shard 1 Shard2
( a )  ( b )

Figure 5.6: Resource utilization for under-provisioning

Naturally, if the amount of allocated resources is more than the target, then
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it maybe preferable to reduce its allocation. This effect is shown in Figure 5.7, 

especially for CPU. The utilization of CPU is reduced and stabilized in Figure 5.7(a) 

after AppRM is turned on. Figure 5.7(b) shows that memory is hardly affected in 

this case. This is because of the design of the Application controller which aims to 

meet the target with minimal resource changes.
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Figure 5.7: Resource utilization for over-provisioning

2

*S 1-5a

I 1
£  0.5

0

95th-resp ttihe -o -
* "* V, l* & „ \ *'t
• >* e t  * -

0 10 20 30 40 50 60 70 80 90

Figure 5.8: 95th percentile response time target (2000 ms) 
12

-B 10
8. 8
U
>
13
OS

6
4

2
0

<x>
9 o  o  

<?<& <£

l i t " 0*"

0 10 20 30 40 50 60 70 80 90

Figure 5.9: Throughput target (50,000 reqs/s)

Can AppRM work correctly with other performance targets, especially percentile
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Table 5.3: Definition of three changing workloads

Target Period 1 Period 2 Control interval
mean RT clients read/write mix clients read/write mix
500ms 300 50r/50w -> 500 50r/50w 1 min.
600ms 300 50r/50w 500 80r/20w 1 min.
800ms 300 50r/50w -¥ 500 20r/80w 5 min.

response time, which is intrinsically difficult to control? Figures 5.8 and 5.9 answer 

this question. They show the experiment results with the same experiment setup 

but different performance targets, i.e., 95tft-percentile response time and through

put. AppRM successfully adjusts the resources settings to meet these targets as 

seen in the figures. In summary, results in scenario 1 show that for different per

formance targets, AppRM can allocate the right amount of resources for each ap

plication VM to meet end-to-end SLOs.

5.4.2 Detecting and Mitigating Dynamically-Changing Workload 

Demands

In this scenario, we evaluate the effectiveness of AppRM in meeting the target SLO 

under dynamically-changing workloads. Table 5.3 defines the three experiments 

with changing workload conditions. In all three experiments, a mean response 

time target is used. Here, we intentionally show different target values across ex

periments to demonstrate AppRM's robustness within a dynamic environment. Ad

ditionally, in the third experiment, we change the control interval from 1 minute to 5 

minutes to demonstrate that AppRM also works correctly for different intervals.

In the first experiment, we use a target mean response time of 500 milliseconds. 

The experiment starts in an over-provisioned condition (R ^  =  J?mem =  0, L ^  =  

Lmem =  unlimited) before AppRM is turned on. Fig. 5.10 shows that during Period 

1 (interval 0-90), the normalized mean response time gradually converges to the 

performance target in 15 minutes. During Period 2 (91-150), the workload increases
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to 500 clients as indicated in Table 5.3. The normalized performance deteriorates 

to 1.41 but quickly converges back to its target.

Figure 5.10: Measured performance under dynamic workloads with target 500 ms

In the second experiment, the target mean response time is set to 600 mil

liseconds. Fig. 5.11 shows that the application is over-provisioned initially (Rcpu — 

Rmem =  0, =  Lmem =  Unlimited) resulting in very low response times. AppRM

gradually reduces its resources allocations (see Fig. 5.12) while maintaining the 

mean response time near its target. At interval 61, the workload increases to 500 

clients and becomes read-intensive (with 80%  of read operations). This change 

does not cause a significant increase of response times and thus all VMs' resource 

utilizations are relatively stable, as shown in Fig. 5.12.

In the third experiment, the target mean response time is set to 800 ms. Fig. 5.13 

shows that in Period 1 (0-90), the application performance is initially up to 10 times 

worse than its target, due to the initial under-provisioned resource settings (R ^  =  

Rmem =  0, =  Lmem =  512 (MHz/MB)). At interval 23, AppRM is activated

and it increases both CPU and memory allocations (see Fig. 5.13), bringing the 

measured performance down to its target. In Period 2 (91-150), 200 more threads 

are added to the workload client and the workload is dominated by write operations 

(80%  of operations are writes). This sudden workload increase initially degrades the 

application performance, up to 50%  worse than the target (see Fig. 5.13). AppRM 

rapidly responds to this change and correctly re-adjusts the resource allocations.
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Figure 5.11: Measured performance under dynamic workloads with target 600 ms

Mongos —b— Shard 1 Shard2 ~ o —
(a) (b)

Figure 5.12: Resource utilization for dynamic workloads

Note that both CPU and memory utilizations of the MongoDB VMs are increased 

(see Fig. 5.14), to mitigate the increased workload while maintaining the target 

response time.

5.4.3 Applying Control on Multiple Applications

In this scenario, we evaluate the case of multiple AppRM instances to control mul

tiple applications. This experiment has the setup shown in Figure 5.4(b), where 

two physical nodes host two sets of MongoDB applications, workload generators, 

and AppRMs. When there is no resource contention, the two AppRMs work inde

pendently in monitoring and adjusting application resources. The benefit of having 

two instances of AppRMs simplify the design of AppRM and allow users setting 

different performance metrics and target at will.

Figure 5.15 shows the achieved mean response time with different targets: app1
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Figure 5.13: Measured performance under dynamic workloads with target 800 ms
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Figure 5.14: Resource utilization for dynamic workloads

has mean response time of 1000 millisecond as target and app2 has mean response 

time of 600 millisecond. It is clear that AppRM helps for performance to converge 

to the target line after it is activated at interval 23. Note that in this scenario, two 

AppRM instances do not have resources contention, which means that the aggre

gate resource demands is less than the configured resource pool size or host size. 

Several cases of contention are discussed in the next section.

2.5 r

Figure 5.15: Application 1 mean target 1000 ms and Application 2 target 600 ms
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5.4.4 Enforcing Performance Targets under Competing Work

loads

The testbed setup for the experiments in this scenario is shown in Figure 5.16. Two 

instances of MongoDB application are configured within a resource pool in order 

to have a better isolation of all resources in a cluster. We run 10 VMs outside the 

resource pool in the same cluster/host to mimic intensive competing workloads. 

Each competing VM is running a CPU intensive job to consume all possible CPU 

resources once allocated. We show that AppRM is able to help the applications to 

achieve performance targets under different resource pool settings.

Node 1 Node 2

Rain workload 
generator 1

I

AppRM 1! AppRM 2

Resource Pool

Rain workload j/J, 
generator 2 | n

M ongos  

Shard 1

- 4 ^  Shard 1

Shard 2

J-JLfo  Mongos Shard 2

Competing 
VM 1

C om peting  

VM 2

Competing j 
VM 3

Competing j  
VM 10 i

Figure 5.16: Testbed setup for resource pool experiments

5.4.4.1 Non-expandable and Unmodifiable Resource Pool

In this scenario, CPU of the resource pool is configured to be non-expandable and 

the resource pool settings are unmodifiable at run time. If the resource pool is large 

enough and can always satisfy the non-expandable constraints, then every VM 

requested resource is always satisfied and the result is the same as is Section 5.4.3. 

If the resource pool is insufficient for satisfying reservation of all virtual machines 

combined, then AppRM has to throttle reservation values back proportionally to
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the requested reservation value. Otherwise, the resource setting operation of each 

VM could fail due to invalid value. We show a case result with initial settings as 

following:

Reservation Limit 

Each VM 0 unlimit

Resource Pool 2000 MHz 2000 MHz 

This setting makes a clear partition of CPU resources between resource pool and 

the rest 10 CPU intensive competing VM. Both application have a mean response 

time equal to 600ms as targets. Figure 5.17 shows that AppRM can not help to 

improve the performance because resource pool itself does not have sufficient re

source and not allowed to increase its size. AppRM throttles back each VM re

quested reservation settings proportionally and balances the performance degra

dation of the two applications.

Figure 5.17: Measured application relative performance in non-expandable and unmodifi
able RP (targets: 600ms)

5.4.4.2 Non-expandable but Modifiable Resource Pool

In this scenario, CPU of resource pool is non-expandable but resource pool reser

vation value is allowed to change at run time. There are three cases based on the 

methodologies for setting VM and RP values:

Case 1: AppRM change both RP and VM resource settings according to Algo

rithm 5.2. The benefit of this method is to allow AppRM take fine-grained control
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on the per-VM resource setting and needs to be set accurately. The experiment for 

this case has the initial setting:

Reservation Limit Share

Each VM 0 unlimit Normal

Resource Pool 0 unlimit Normal

Figure 5.18 illustrates the measured performance as a function of control intervals. 

The initial setting does not provide any guaranteed CPU resource for both applica

tions but let applications compete CPU resources with the 10 CPU intensive VMs. 

The allocated CPU resource based on shares is insufficient for both applications 

to meet their performance targets as shown in the first 23 intervals. When their Ap

pRM controllers are activated, they change both RP and VM reservation values and 

help both applications meet their targets. Figure 5.19 shows how the application 

level and RP reservation change over time.

Figure 5.18: Measured application relative performance in non-expandable and modifiable 
RP (targets 600ms)

3.5

0
0 10 20 30 40 50 60 70 80 90

£  2 
S  2
W  1
£  i

°  0 10 20 30 40 50 60 70 80 90
appl app2 e = j  rp reservation - o —

Figure 5.19: Application and RP level reservations
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Case 2: In this case, AppRM only changes the RP reservation setting. For individ

ual VMs within the resource pool, they are always set to R =  0, and L  =  unlimit. 

The benefit of this method is its easy setting. When resources in the RP are con

tested, it relies on shares to regulate resource allocation. The initial setting is shown 

in the table:

Reservation Limit Share 

Each VM 0 unlimit Normal

Resource Pool 0 unlimit Normal

It is apparent that during the initial (interval 0-23), the inferior performance in Fig

ure 5.20 is improved by the increased resource pool reservation value (see Fig

ure 5.21 )as set by AppRM. Although individual VMs are not set with specific reser

vations, the RP level reservation setting guarantees the right amount of CPU re

source which can be shared with application VMs.

0 10 20 30 40 50 60 70 80 90

Figure 5.20: Measured application relative performance in non-expandable and modifiable 
RP (targets 600ms)
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Figure 5.21: RP level reservation

Case 3: This case differs from case 2 in only one point, i.e. the RP limit value is to
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set the same as the reservation value. This method makes a clear CPU resource 

isolation between RP and the 10 CPU intensive VMs. Still, for individual VMs in the 

resource pool, these values are always set to R =  0, and L =  unlim it. AppRM 

never sets the reservation and limit values on individual VMs. The initial settings 

are as follows:

Reservation Limit Shares 

Each VM 0 Unlimit Normal

Resource Pool 2000 MHz 2000 MHz Normal 

Figure 5.22 demonstrates that the performance of both applications improves 

after their AppRM controllers are activated. The reservation and limit value of RP 

increase to a proper value which can guarantee the needed CPU resource of two 

applications, see Figure 5.23.

2 r

Figure 5.22: Measured application relative performance in non-expandable and modifiable 
RP (targets 600ms)
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Figure 5.23: RP level reservation setting

114



Figure 5.24: Measured application relative performance in expandable RP (targets 600ms) 
3000 r

appl ■ ■ ■  app2 RP reservation --o--

Figure 5.25: Application and RP level reservations

5.4.4.3 Expandable Resource Pool

Expandable reservation allows the resource pool to expand automatically when the 

combined reservation of all virtual machines is larger than the resource pool reser

vation. Under this situation, AppRM only needs to check the Expandable Con

straints and set the VM level settings. We use the following initial settings for their 

experiment:

Reservation Limit Shares 

Each VM 0 Unlimit Normal

Resource Pool 0 Unlimit Normal

Figure 5.24 shows that the allocated CPU resource based on share is not enough 

to allow the applications to meet their targets. When the AppRM controllers are ac

tivated, the guaranteed reservation of CPU to each application VM is set, thus it 

allows the applications to meet their targets. Figure 5.25 shows the increase of the
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two application level reservations.

5.5 Summary

This chapter gave an overview on AppRM, a performance management tool that 

automatically adjusts resource control settings at individual virtual machine level 

or at resource pool level such that the virtualized applications running in a virtual 

datacenter can meet their respective performance goals. The experimental results 

demonstrate the effectiveness of AppRM in a number of different scenarios, with 

one or more virtualized applications either under dynamically changing workloads, 

or under resource contention among neighboring applications within the same re

source pool or within the same virtual data center.

116



6 Predictive VM Consolidation

To shield application performance from infrastructure management and performance 

interference due to VM co-location, resource management in virtualized data cen

ters requires careful VM placement that avoids (or minimizes) resource contention 

on diverse physical resources in order to control queueing delays. From the man

agement perspective, assuming that all applications have the same priority, re

sources should be allocated to the application VMs in an egalitarian manner unless 

specific, per application QoS targets need to be met. With multiple VMs exhibit

ing diverse resource demands, it is natural to assume that these VMs should be 

placed on servers in a way that server resources are best utilized, such that single 

bottlenecks are minimized.

Originally introduced in network management, fair load balancing ensures fair 

resource allocation among users through balancing of the server workload. This 

can lead to desirable system properties (e.g., Pareto efficiency [64]) in data center 

resource management. While previous work on fair load balancing focuses on a 

single resource (e.g., network), in this chapter, we consider a more complicated and 

challenging problem: how to best match multiple resources with specific VMs. The 

new methodology presented here is called predictive virtual machine consolidation 

(PREMATCH) and focuses on how to best co-locate different VMs within different 

servers such that performance interference between co-located VMs is minimized. 

PREMATCH targets max-min fairness in VM resource allocation and min-max load
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balancing in server workload assignment.

Load normalization and total ordering are two entwined research challenges in 

multi-resource load balancing. In single-resource load balancing, candidate solu

tions can always have a total order, while in multi-resource load balancing, there 

may not be a single solution that is best across each resource dimension. For ex

ample, consider a two-machine system, two resource dimensions (CPU and disk), 

and two candidate consolidations: one consolidation defines the load vectors as 

A i =  (0.9{cpu),0.7(disk)), A2 =  {0.5(cpu),0.7(disk))-, another proposes the load 

vectors as Ai =  (0.7(cpu),0.6(disk)), A2 =  (0.7{cpu),0.8(disk)). From these two 

consolidations, the maximum load on the first one is on the CPU, while the maxi

mum on the second one is on the disk. It is completely unclear to determine without 

a priori experimentation which of the two consolidations reduces the execution time 

of both applications and why. The problem is further exacerbated by introducing 

more resource dimensions and more servers as performance interference between 

applications and different co-location schemes may vary dramatically. Exhaustive 

experimentation to select the best of all possible combinations is non-feasible, es

pecially within a dynamic environment.

The focus of this chapter is on the development of a robust prediction framework 

that suggests how to best match multiple resources on multiple servers with VMs. 

We focus on developing a flexible egalitarian scheme where all applications have 

the same priority, i.e., the target is to minimize their collective execution. While 

the problem of non-egalitarian allocation of resources to meet different application 

priorities is also very important, it is not the subject of this dissertation but part of 

our future work. The main contributions of this chapter are:

• A polynomial time algorithm is developed for the multi-dimensional VM re

source placement problem, such that the maximum load over all resource 

dimensions and all servers is minimized. The algorithm removes the assump
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tion of cross-resource demand normalization required by previous work and 

outputs all valid VM consolidation strategies that achieve min-max load bal

ancing on at least one resource.

• A consolidation performance prediction methodology that is based on a multi

class, closed queueing network, is proposed. This methodology moves be

yond finding an assignment configuration where loads on the various physi

cal components are equalized by encapsulating the effect of queueing (i.e., 

of overheads due to competition for resources) on performance, something 

that the mix-max algorithm for VM placement is oblivious of.

We evaluate the robustness of the proposed scheme using the RUBiS multi-tiered 

application in a virtualization environment that uses Xen and show that indeed 

the proposed solution is robust, i.e., it can automate the difficult process of multi

resource provisioning across multiple servers very effectively. We stress that the 

selection of RUBiS as a workload makes the problem more challenging as it re

quires good responsiveness for the three different tiers that are located on three 

different physical servers in order to minimize the application end-to-end response 

times.

6.1 Background: Fair Load Balancing on a Single 

Resource

We first present the fairness and load balancing in a general job scheduling problem 

where each of m users has to be assigned to a subset of n machines (i.e., each 

machine is considered as a single resource).
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6.1.1 Max-Min Fairness

Given m users with resource demands {Du D2,--- > Dm), let ax =  (A ^ l), Ax(2),

••• ,Ax(m)) be the allocated resource ranked in increasing order by scheme x. 

Ax(i) is the i-th smallest component. For two allocation outputs ax and ay, ax is 

said to have higher lexicographical value than ay if there is an index j  such that 

Ax(j) > Ay(j)  and Ax(i) =  Ay(i) for every index i  < j .  In all feasible allocations 

of a resource allocation problem, an allocation a* is called max-min fair if it has the 

same or higher lexicographical value than any other feasible allocation.

6.1.2 Min-Max Load Balancing

Let n machines with load (Lu L2, - - - , Ln). Let lx =  (Lx( 1), Lx( 2), • • • , Lx(m)) be the 

allocated load by scheme x, ranked in decreasing order. Lx(i) is the i-th largest 

component. For two allocation outputs lx and ly, lx has lower lexicographical value 

than ly if there is an index j  such that Lx(j) < Ly(j)  and Lx{i) =  Ly(i) for every 

index i  < j .  In all feasible allocations of a load allocation problem, an allocation I* 

is called min-max load balanced if it has the same or lower lexicographical value 

than any other allocation.

6.1.3 Fair Load Balancing

Fair load balancing ensures fair resource allocation among users through "balanc

ing" of the machine load. With careful association between users and machines, 

fair load balancing targets max-min fairness in resource allocation among users and 

targets min-max load balancing on machine load. This can lead to provable system 

properties, e.g., Pareto efficiency [64], in data center resource management. Fair 

load balancing maximizes total user satisfaction when individual user satisfaction 

can be modeled by a concave function [116]. In VM consolidation where individ
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ual user satisfaction can be described by the virtualized application performance 

in a VM, fair load balancing can lead to optimal total system performance if the 

application performance is a concave function of allocated resources.

When a user can use resources from multiple machines simultaneously, it is 

called multiple-association. In this case, there is a strong correlation between min- 

max fairness and max-min load balancing. Bejerano et al. [38] proved the following 

property:

Lemma 1. In the multiple-association case, a min-max load balanced assignment 

defines a max-min fair resource allocation and vice-versa.

When a user can use resources from no more than one machine at any time 

(called single-association), Bejerano et al. [38] showed that a min-max load bal

anced assignment may still define a 2-approximation max-min fairness. Therefore, 

in the rest of the chapter, we aim at min-max load balancing, which can lead to 

optimal max-min fair resource allocation (approximation in single-association).

6.2 Fair Load Balancing on Multiple Resources: Chal 

lenges

Ghodsi et al. [64] propose the concept of dominant resource fairness, a generaliza

tion of max-min fairness to multiple resource scenario. For each user, the maximum 

among all resource shares allocated to that user is called his/her dominant share, 

and the resource corresponding to the dominant share is called the dominant re

source. Dominant resource fairness allocation seeks for max-min fairness across 

users' dominant shares.

One problem with dominant resource fairness is on the multi-resource load bal

ancing side. Since it considers only one resource for each user, there is no defi

nition on how to handle the rest of the resources when load unbalancing on those
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resources could still affect user performance. For example, in a simple VM con

solidation scenario shown in Figure 6.1(a), there are four VMs (each is configured 

with 1 VCPU and 1GB-memory), each hosting one SPEC CPU2006 benchmark 

application [15], to be assigned onto two 2GB-memory 2-core servers. Two VMs 

host instances of gobmk and two host instances of lbm. The resource usage of the 

two SPEC applications is : gobmk (CPU: 100%, Mem: 15.8% (of 1GB)), lbm (CPU: 

100%, Mem: 80.1% (of 1GB)).

All 4 VMs are CPU-intensive, and the two hosting lbm have also higher mem

ory intensity than those hosting gobmk. In dominant resource fairness, CPU is the 

dominant resource for all VMs since each one has the maximal 100% share for 

it. However, consider two consolidation plans: P1, where the two gobmk VMs are 

consolidated onto one machine and the two lbm VMs onto another, and P2, where 

each machine hosts one gobmk VM and one lbm VM. Figure 6.1(b) shows that P2, 

a balanced placement on both CPU and memory usage, can significantly improve 

the performance: the job completion time of lbm is 34% less than in P1, while per

formance of gobmk is merely impacted. In the following section, we present a for

malization of the problem and its proposed solution.

(a) A  load  balanc ing  problem  on  tw o resources (CPU, M em ory)

VMs gobmk) ^ g o b m ^  ^ b m ^ j  ^ I b n ^

(b) SPEC 2006 performance in two plans 

2500

t ? 'v  t ? 'v * ' ? t ? t

Machines

gobm

•S 1000

Figure 6.1: A simple load balancing problem on two resources (CPU, memory).
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6.3 Fair VM Allocation Algorithm

We define a vector scheduling problem for fair load balancing in virtualized data 

centers. This problem has a set of n VMs with d-dimensional resource demand 

vectors A  =  {D\,D?-,. . . ,Dd), 1 <  i  < n, and m homogeneous machines with 

resource capacity C  =  ( C \  C2 , . . . ,  Cd). The objective of the vector scheduling 

is to assign n VMs onto m machines and minimize maxi<j<m H^Hoo, where =  

Y^jeAi Dj  *s sum of the VM demand vectors placed on machine i. That is, we 

seek min-max load balancing such that the maximum load over all dimensions and 

all machines is minimized. The multi-dimensional vector scheduling problem is 

NP-complete [48].

Our algorithm is an extension of the vector scheduling algorithm in [48]. The 

basic idea is a primary-dual approach where the scheduling problem is solved in

directly through a bin packing problem. By guessing the optimal solution for the 

vector scheduling problem as h, the scheduling algorithm aims to place all VMs 

(balls) into the machines (bins) of resource capacity h. The bin packing either is 

infeasible or can be done successfully. The scheduling algorithm takes this bin 

packing as a decision procedure to do a binary search for the optimal value h* and 

the companion VM consolidation (bin packing) decision.

While [48] defined h as a scalar value, we define h as a vector (h1, h2 , . . . ,  hd), 

where d is the number of resources. We do not assume uniform normalization 

across different resources, and address the multi-dimensionality by integrating a 

performance prediction model with a polynomial time approximation scheme (PTAS).

6.3.1 Vector Bin Packing

The vector bin packing algorithm takes an error-tolerance parameter e >  0 and, in 

polynomial time, produces a solution that is within a factor 1 +  e of being optimal.
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Before presenting the algorithm, we first define a few terms:

• A capacity configuration is a d -  tuple of integers A =  (au a2, . . . ,a d) such that 

0 <a>i<  There are at most t  =  +  I7 I )  caPacity configurations.

• Given a capacity configuration A, its corresponding empty capacity configu

ration is the d -  tuple obtained by subtracting each from (1 +  f^ ]).

• Bin configuration is a t  -  tuple of integers M  =  such that

0 <  mi < m and m* =  m.

• Given a bin configuration M,  its corresponding M  is the one obtained by tak

ing the empty capacity configurations for each i in M .

• A packing of VMs in a machine is said to fit a capacity configuration (ai, a2, . . . ,  ad) 

if the sum of VM load in each resource dimension i is less than e • ai.

A capacity configuration describes approximately how a machine is filled in terms 

of aggregated load size and a bin configuration describes the number of machines 

of each capacity configuration. They together describe a load volume allocation 

scheme on the m machines. The algorithm consists of the following steps:

1. Reduce to zero all coordinates of the load vectors that are too small. Specif

ically, let 5 = 3: for each VM i, D( =  0 if D{ <  <5||A||oo- This step bounds 

the ratio of the largest coordinate to the smallest non-zero coordinate in VM 

load vectors, and helps the next step to discretize the large VMs into a small 

number of distinct-sized classes.

2. Classify each VM into either small or large based on their load vectors. Specif

ically, for each VM i, assign it into the large group if HAIU > <5; otherwise, it 

is assigned into the small group.

3. Pack all large VMs onto the machines as follows:
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(a) For each resource dimension i, notice the smallest non-zero coordi

nate of a large VM is at least 82; Discretize the load interval [82, h'] into 

q =  \ lo g ( l  -I- e)«*] intervals of the form (x0, (1 +  e)x0l ,  ( x i ,  (1 +  e ) x i ] , .. 

(xg-uhf], where x0 =  82 and xi+i =  (1 +  efa. Next, round each none- 

zero coordinate of a large VM's load vector down to the left end point of 

the interval in which it falls, and have the discretized load vectors for all 

large V M s .

(b) For each defined bin configuration M,  use a simple dynamic program

ming algorithm to decide if there is a packing of large VMs that fits M  

as follows: Order all m  machines in some arbitrary way, and assigns a 

capacity configuration from M  to each machine; for 1 < j < m ,  compute 

recursively computes all possible subsets of the discretized load vectors 

from the large VMs that can fit into the first i machines; the dynamic 

programming algorithm ends at j  =  m , and either reports "no" on the 

proposed bin configuration M , or reports one valid solution on placing 

the large VMs according to M.

This step takes the fact of a logarithmic number of distinct-sized classes in 

large VMs and places them on the machines through dynamic programming.

4. Pack all small VMs in the small group on top of large VMs. Given a valid bin 

configuration M  and each of its valid solution placing the large VMs onto the 

m machines, find an approximate feasible solution to pack the small VMs onto 

the valid solution in M  as follows:

(a) Assume the small group size is K,  and number the VMs in the small 

group from 1 to K\

(b) Formulate the small VM packing as a linear programming problem with
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the min-max load balancing optimization objective:

Y2 Vij = h l < i < K  

^ 2  DiV*i ^ m , l < d < D
i : l<i<K

Vij >  0

where bj is the height bound for each machine j  and the resource di

mension d defined in the bin configuration M .

(c) After solving the above linear program, let S' be the set of small VMs 

that are assigned to more than one machine. Partition the set S' into 

m subsets of at most d VMs each in a uniform random way and assign 

each subset to each machine accordingly.

This step places the small VMs on top of the large VMs using a linear pro

gramming relaxation and a careful rounding to avoid multiple associations.

6.3.2 Discussion

Step 3 dominates the time in the whole process. There are approximation algo

rithms that can speed up this step, such as the linear programming relaxation and 

rounding approach used in Step 4, but the approximation factor is usually large [38].

Practical constraints in VM placement problems such as affinity rules, VM-based 

machine subset specification, can be introduced in the dynamic programming of 

Step 3 and the linear programming of Step 4.

While we assume all VMs have the same priority, there are consolidation sce

narios where some VMs are considered more important than others when there is a 

resource contention. Then, a possible approach is to assign weights to VMs based
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on their priorities. A VM's weight can be multiplied by its resource demand so that 

higher-priority VMs have inflated resource demand. While this inflation might lead 

to non-feasible solution in server physical resource capacities, min-max load bal

ancing is not affected when server virtual capacities are introduced, as the guessed 

optimal solution h itself is also a server virtual capacity.

6.3.3 Vector Scheduling with Predictive Model

Our vector scheduling algorithm consists of three steps:

1. Given an e > 0 and a guess for the optimal maximum load vector h, call the 

vector bin packing algorithm with e and h, which either returns a VM consoli

dation of maximum load (1 +  e)h, or proves that the guess h is infeasible.

2. Repeat step 1 through a multi-dimensional binary search for the optimal value 

h*. The multi-dimensional binary search is done as follows:

(a) for each dimension i, the maximum load vector guess starts with

(b) use binary search to find the minimal ti*  which can lead to at least one 

valid solution with the vector bin packing algorithm and the maximum 

load constraint vector < C \ . . . ,  t i * , . . . ,  Cd >;

(c) use binary search to find the minimal t i*  (0 < t i*  <  1) which can lead to 

at least one valid solution with the vector bin packing algorithm and the 

maximum load constraint vector <  t i*C l , . . . ,  t i* , . . . ,  t i*C d >;

(d) record (t i* ,t i* )  and the companion solutions as successful VM consoli

dations for dimension i.

3. Predict the consolidation performance of the successful solutions from Step 

2 and output the VM consolidation scheme with the best performance.
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For the guess of optimal maximum load vector t i  on each dimension i, there 

is a naive lower bound of 0. We can use tighter low bounds such as the maximal 

value of the VM load vectors along dimension i, or the average VM load on that 

dimension.

Theorem 2. Given any fixed e >  0, our algorithm is a (1+e) approximation algorithm 

for the vector scheduling problem that runs in 0{dm ln \ {^ ) 0 W) time, where s =

q ^ W ^ Y).

Proof. Step 1 of the vector bin packing algorithm will increase the load of the 

machines by only a (1 +  e) factor after restoring those reduced-to-zero load co

ordinates back to their original values; Step 2 of the vector bin packing algorithm 

also brings only a (1 +  e) factor since each discretized coordinate value is at least 

(1 +  e)-1 times the original values; in Step 3 of the vector bin packing algorithm, 

each small VM has every coordinate value <   ̂ and any machine is assigned at 

most d small VMs, therefore Step 3 does not violate the machine load by more 

than e inn any dimension. Overall, the vector bin packing algorithm yields a result 

with (1 +  e)-approximation.

On the polynomial time complexity, we assume that the resource capacity C 

and dimensions d are constants. The run time is dominated by Step 2 for packing 

large VMs. There are at most rti  =  0 ( n ° ( € _ d ) )  bin configurations; for each bin con

figuration, the running time of the dynamic programming algorithm is )s),

where s =  (1 +  \*ln8~1])d is the distinct discretized load vectors in Step 2. There

fore, the time for completing one run of the vector bin packing algorithm is ( ^ ) ° ( s\  

while the multi-dimensional binary search takes 0(dln\)  guesses to finish. □

Next, we present a queueing-network based methodology for application perfor

mance prediction that is required in Step 3 of the vector scheduling algorithm. The 

queuing network prediction is necessary to incorporate the queueing effect (due to
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co-location and competition for common resources) of the multiple VMs, This ef

fect is not captured by the min-max allocation which is the core of the fair allocation 

algorithm and it is necessary to select from the multiple allocation options the most 

fitting one.

6.4 A Predictive Queueing Model

Closed queuing network models have been successfully used in modeling multi

tier applications on shared physical resources (e.g., network, disk) [98,130]. In this 

section, we propose a consolidation performance prediction methodology based 

on a closed queuing network model.

The vector bin packing algorithm significantly reduces the number of candidate 

schemes for the queueing model prediction step. Theoretically, the number of 

ways to place n  distinct VMs into m identical hosts with r 0  empty hosts, rx hosts 

containing 1 VM, r2'hosts containing 2 VMs, r „  hosts containing n  VMs [108] is: 

(i!riri!.(2!)>2r2!.:-(r»!)mrn!- For example, if one is to place n  =  6  VMs among m =  3  

hosts and r 2  =  3  hosts contain 2 VMs (all other r{s are zero), the number of place

ment is p frj, =  1 5 .  If n  =  9  VMs is placed into m =  3  hosts and r 3  =  3  hosts 

contain 3  VMs, the number is 2 8 0 .

6.4.1 RUBiS Multi-tiered Benchmark

RUBiS [45] is an auction site prototype modeled after eBay.com and is widely used 

in performance studies of system and multi-tiered applications. In the RUBiS im

plementation, there are three tiers of servers: the Apache Web server, the EJB 

server, and the MySQL relational database. They usually reside in three different 

virtual machines.

In Figure 6.2, we show the closed queueing network model to represent the
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Figure 6.2: Closed queueing network model for multi-tier server and multi-class workload

RUBiS three-tier application. Three dashed boxes are used to abstract the web 

server, the application server, and the database server, respectively. The think 

server represents the average client think time Z  between receiving a web page 

and submitting a new page request.

6.4.2 Application Profiling: Service Demand Estimation

To utilize the queuing model, it is critical to accurately measure the application av

erage total service demands per resource, i.e., the total time an application spends 

on each resource excluding the time spent waiting to gain access to a resource 

due to contention. This metric is called average service demand [97]. Since the 

demand is the total service time at a device, it can be thought of as a product of 

the average number of "visits" to the device and the average amount of time re

quired at the device per visit. We define the following average service demands for 

applications as follows:

• Sc: average CPU service demand, i.e., average CPU time during one execu

tion of a workload class.

• Sn: average network service time, i.e., average networking time during one 

execution of a workload class. For modeling accuracy, we subdivide this met

ric into two metrics — the average sending service time Sn,a and the average 

receiving service time Sn,r.
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• Sd'. average disk service demand, i.e., aggregate disk I/O service time during 

one execution of a workload class.

There are related studies focusing on obtaining resource demands of a single 

application using fine-grained and detailed information [49]. To this end, the stan

dard approach is to explore a large number of hardware counters or even modify 

the application source code, a process that is cumbersome, intrusive, and neither 

portable nor scalable. Using hardware performance counters is clearly the prefer

able approach but it is challenging to collapse such diverse information into a single 

value parameter like the resource demand. In the following four sections, we illus

trate how we achieve the above targets via a light-weight profiling methodology that 

can capture the average resource demands. A similar approach has been used to 

model Java workloads [31,50].

6.4.2.1 Assumptions

We now describe two assumptions of our proposed queuing network model. For 

simplicity, we assume that each VM hosting an application is assigned to one core 

on a multi-core server consistent with the literature where each VM runs on a sep

arate core [67,77], but the proposed approach is not restrained by this assump

tion [50]. Second, we assume that the performance degradation due to memory 

and cache contention during consolidation is captured via the average CPU service 

demand Sc. Prior works have shown that it is not necessary to explicitly model mem

ory and cache, this can be implicitly modeled via the distribution of the service pro

cess (i.e., the service demand) [98] or using load dependent service times [50,97].

6.4.2.2 Per-tier Service Time

To measure the per-tier service time, we utilize packet level capturing and filtering 

tools to extract the service time of each tier of RUBiS servers. The response time

131



of each tier is the time from the moment the last packet of the request arrives to 

the moment the last packet of the response is sent, tcprstat [17] is an open 

source tool to capture and analyze packets to extract the delay between requests 

and responses, during a measurement interval. The tool can be set to monitor 

network traffic on a specified port, which makes it suitable for timing requests and 

responses to a single daemon process such as mysql, httpd, or any of other server 

processes. We modified the original code to store the response-time statistics in a 

central database for every measurement interval. This change allows PREMATCH 

to query the response information in real time. Figure 6.3 shows the an example of 

query result of response-time information collected.

t ia o s tn a p 1 hootnano 1 count t M X n i n avg nod •tddov 1 m x _96 1 *vg_9& 1 s td_961 m x _99 lnvg_99lotd_99l

2013-07-29 18:53:31 1 v«b 1 97 1 96806 1196 4176 1281 11802 1 26748 1 1936 3786 1 39981 1 3221 7238 1
2013-07-29 16:63:30 1 opp 1 102 1 96005 606 4003 669 12622 1 26973 1 1340 3690 1 39149 1 2566 7062 I
2013-07-29 16:63:37 1 db 1 29 i 39169 98 7734 366

sIDO 1 20130 1 5693 7619 1 31397 1 6611 8873 i
2013-07-29 16:63:61 1 vob 1 122 I 67543 1166 3693 1256 9054 1 26879 I 1642 2674 1 41399 1 2917 6762 i
2013-07-29 15:53:50 1 *pp 1 169 1 42194 496 2696 634 7456 1 25060 1 982 2731 1 36659 1 2181 6314 !
2013-07-29 15:63:67 1 db 1 35 1 8860265 96 261222 366 1478183 1 21040 1 6983 8607 1 32088 1 7721 9482 1

Figure 6.3: An example of tcprstat query result

6.4.2.3 Average Network Demand

Measuring the demands of the network is done by monitoring the collected net

work traffic issued from guest VMs in two metrics: rxbyt/s (bytes received per 

second) and txbyt/s (bytes transmitted per second). These two metrics can be 

obtained by running the sar utility [18] in the guest domain or the proc filesystem 

at /proc/net/dev in Xen driver domain.

To obtain the average network service demand, the following measurements 

are required to collect during the execution of the application:

• t -- total execution time.

• As, Ar -  average sending/receiving network traffic rate of the guest VM.
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• n -- the number of requests issued by the clients during time t.

• R ~  transmission rate of the Ethernet link.

The average service demand for network is computed as follows:

<6-1)

6.4.2.4 Average Disk Demand

Measuring the performance of the disk is particularly difficult due to the multiple 

buffers present at all storage levels, the high number of run time optimizations, 

e.g., out-of-order writes, and parallel writing across different disk platters. Profiling 

of disk demand must incorporate the inherent disk parallelism due to consolidation.

Here, we rely on disk operation statistics, instead of disk utilization, for the fol

lowing reasons. First, to measure/compute disk utilization, one has to know its 

capacity. However, for disk operations, this value differs under workloads, e.g., for 

sequential read/write and random read/write. Second, the utilization is a biased 

metric due to possible I/O buffering. To compute the disk demand Sd, we need to 

figure out the disk parallelism and total disk execution time. We apply a method 

similar to the one in [31] that uses the average service queue size, denoted by q, 

as an indicator of the disk parallelism. For the total disk execution time, we use 

the product of the average disk operations per second (i.e., the disk throughput), 

denoted by Xd, and the average service time, denoted by s, which is obtained by 

the iostat utility [7]. Sd is estimated as the total disk time divided by the disk par

allelism:

5 , =  ^  (6.2)
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6.4.2.5 Average CPU Demand

To compute the CPU demand per tier, we follow the steps:

1. Measure the per-tier service time T  via the tshark utility.

2. Compute the average network demand SUiS and Sn<r using Eq. (6.1).

3. Compute the average disk demand Sd using Eq. (6.2).

4. Deduce the average CPU demand as

Sc = T -  Sn,s - Sn,r - Sd. (6.3)

By this method, Sc implicitly includes the service demands of memory and cache. 

This simplification is accurate for our purposes.

6.5 Evaluation

We evaluate the effectiveness and accuracy of our algorithm and model with the 

RUBiS application. The testbed runs the Fedora release 8 operating system with 

Linux kernel 2.6.18-8. The evaluation is based on the Xen [34] virtualization plat

form version 3.3.1. Our testbed platform uses Supermicro 1U Superservers with In

tel Core 2Duo E 43001.86GHz, 2MB L2 cache. All servers have a RAM of 2GB and 

250GB 5400RPM disk. The servers are connected through D-LINK DES-3226L 

10/100Mbps switches. PREMATCH is implemented on Usher, a virtual machine 

management framework developed by McNett et al [96]. Figure 6.4 shows the 

overview of the PREMATCH architecture. It makes the fair load balancing consol

idation decision through the two-step mechanism and handles it to Usher for the 

VM placement execution.
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Figure 6.4: PREMATCH architecture graph. 

Table 6.1: Profiling of browsing and bidding workload

Demand Browsing Bidding
web app db web app db

5C 5.2ms 4.8ms 10.3ms 3.7ms 4.8ms 25.5 ms
5n,s 5.8ms 5.2ms 0.2ms 4.6ms 4.4ms 0.2ms
5n,r 5.7ms 0.6ms 0 4.7ms 0.6ms 0
5d 0 0 0 0 0 2.2ms

Typically, RUBiS has two different workload mixes: the browsing mix and the 

bidding mix. The browsing mix includes browsing items, consulting the bid history 

and obtaining seller information. The browsing mix is made up of only read-only 

interactions. The bidding mix includes 1 5 %  write interactions and is considered 

the most representative of an auction site workload according to an early study 

of the eBay [44]. We summarize the estimated average CPU, network, and disk 

demands in Table 6.1. Note that the bidding mix has an average of 2.2 ms demand 

on disk writing operation because of saving bidding, buying, or selling items, leaving 

comments on other users. Disk usage for the browsing mix is initially observable 

in order to load records into memory, but then drops off to a very low value and is 

therefore neglected. One can see that the two workloads have different properties: 

for the bidding mix the database, CPU is the bottleneck ( 2 5 . 5  ms), while for the 

browsing mix the network is the bottleneck ( 5 . 7  +  5 . 8  =  1 1 . 5  ms).
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6.5.1 RUBiS with Different Number of Clients

To demonstrate the accuracy of the profiling technique in Section 6.4.2, Figure 6.5 

reports both measured and modeled average response times and throughput for 

RUBiS as a function of the number of clients for the two workloads. The number of 

emulator client changes from 200 to 1200 for the browsing mix and from 100 to 400 

for the bidding mix. Each run takes 30 minutes and we average three runs of RUBiS 

for each data point. The think times of the browsing and the bidding mix are set to 

7 and 4.5 seconds respectively, which are the default values. Both figures illustrate 

that the profiling technique and queuing network model have a good accuracy in 

predicting the RUBiS performance for different client numbers. The difference of 

the two workloads are shown in Figure 6.5(b) where the bidding mix reaches the 

throughput bound at 41 interactions per second while the browsing mix reaches the 

maximum throughput at 102.
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Figure 6.5: Measured vs. predicted average response time and throughput.

6.5.2 Browsing and Bidding Mix Consolidation

With the assumptions in Section 6.4.2, consolidating two RUBiS applications (one 

browsing and one bidding workload) on three machines leads to 15 consolidation 

schemes (see Table 6.2). To understand the "settings" column, consider W i A2--
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Ai D2--D i W2 as an example. The subscripts denote which RUBiS application the 

virtualized server belongs to, e.g., Wi means virtualized Webserver of RUBiS appli

cation 1 (browsing mix). The dashes separate each physical server and group 

the VMs on the same machine, e.g., ” W i A2--" means a configuration that has the 

virtualized Webserver of RUBiS application 1 and the virtualized appserver of RU

BiS application 2 on the same machine. It has three groups of consolidated VMs 

since three physical machines are used in the experiments.

Table 6.2: Configuration table

Cfg# Settings Cfg# Settings Cfg# Settings
Cfg 1 W1W 2--A1A2- D 1D2 Cfg 6 W 1D2--A1A2 --D1W2 Cfg 11 W i D1-A i A2-W2D2
Cfg 2 W 1A2--A1W2- D 1D2 Cfg 7 W iA i-D jD a—W2A2 Cfg 12 A1D1-W 1W2--A2D2

Cfg 3 WiA2—A1D2--D1W2 Cfg 8 W1Ai ~D i A2~W2D2 Cfg 13 W i D1-A i D2-W 2A2
Cfg 4 W 1W2-A 1D2--D1A2 Cfg 9 W1A1~D1W2-A2D2 Cfg 14 WaAa-WiDa-AiDj
Cfg 5 WjDa-AiWa-DjAa Cfg 10 W 1D1-A 1W2--A2 D2 Cfg 15 W iD i"A 1W2“ A2D2

For the first scenario, we run two classes of workloads on client emulators: the 

first one uses the browsing mix with 600 clients and a thinking time of 7 seconds 

(default value) and is denoted as application 1. The second uses the bidding 

mix with 200 clients and 4.5 seconds (default value) thinking time and is denoted as 

application 2. PREMATCH takes the following steps:

Step 1: Measure multi-dimensional resource demands. We collect the re

source baseline usage for each tier of RUBiS when it is virtualized and runs in one 

physical machine alone. It serves as the input to the bin packing algorithm de

scribed in section 6.3.1. We show the multi-dimensional demands of workloads in 

Table 6.3.

Step 2: Run the vector bin packing algorithm for each dimension. The vec

tor bin packing algorithm takes two sets of vector loads Lweb, Lapp, and (in total 

of 6 demands vectors) as inputs. It outputs the min-max load balancing configura

tion and association for each resource as shown in Table 6.4. Take the first row in 

Table 6.4 as an example: it shows that when considering the CPU resource, the al-
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Table 6.3: Service loads for three workloads

Bidding mix 200 Browsing mix 600 Browsing mix 800
t-tue6 Lapp Ldt Luieb L0pp Ldt Lmefc L app L db

CPU 6.2% 7.3% 44.7% 18.5% 17.0% 44.3% 21.6% 19.9% 55.1%
Net Send 13.7% 1.6% 0.1% 39.9% 37.2% 1.4% 45.6% 42.6% 1.6%
Net Recv 13.8% 13.0% 0.7% 40.8% 4.35% 0.2% 46.5% 5% 0.3%

Disk 0.03% 0.06% 0.3% 0.39% 0.06% 0.04% 0.44% 0.07% 0.04%
Memory 5.8% 23.6% 31.9% 36.9% 23.%6 15.9% 31.4% 23.5% 15.5%

Table 6.4: Min-max load balancing for the bidding and browsing mix consolidation

Min-max config Machinel
CPU Net Disk Mem

Cfg3 on CPU 2 5 . 9 % 4 7 . 6 % 0 . 4 5 % 6 0 . 6 %
Cfg14 on NET 1 4 . 2 % 2 1 . 1 % 0 . 0 9 % 2 9 . 4 %

Cfg1 on DISK/MEM 2 5 . 3 % 5 4 . 2 % 0 . 4 2 % 4 2 . 7 %
Mac iine2

CPU Net Disk Mem
60.9% 2 1 . 1 % 0 . 3 6 % 5 5 . 6 %
6 2 . 4 % 40.7% 0 . 3 6 % 6 9 . 8 %
2 4 . 4 % 2 8 . 0 % 0 . 1 2 % 4 7 . 3 %

Machine3
CPU Net Disk Mem

5 1 . 1 % 1 4 . 6 % 0 . 0 7 % 2 1 . 7 %
6 1 . 3 % 2 1 . 6 % 0 . 4 3 % 3 9 . 6 %
8 8 . 2 % 1 . 1 % 0.43% 47.9%

gorithm outputs configuration 3 (see Table 6.2). The following readings in the same 

row denote the estimated resource consumption. We highlight the computed min- 

max value of the corresponding resource (the boldfaced, underlined value). The 

results show that three different configurations achieve min-max load balancing. In 

the next step, we use the predictive queuing model to compare the performance of 

each configuration and choose the best one as final decision.

Step 3: Queuing model prediction. We plug both bidding and browsing pro

filing parameters from Table 6.1 into the queuing model shown in Figure 6.2. We 

apply mean value analysis (MVA) [97] to solve the model and get the predicted 

response time and system throughput for each application in Table 6.5.
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Table 6.5: Predicted performance for min-max configs

App1 (Browsing) App2 (Bidding)
Min-max config Response Time Throughput Response Time Throughput

Predicted (Measured) Predicted (Measured)
Cfg3 on CPU 162(169) ms 83.7(83.2) req/s 689(704) ms 38.5(38.2) req/s
Cfg14 on NET 122(150) ms 84.2(83.9) req/s 775(745) ms 37.9(38.2) req/s

Cfg1 on DISK/MEM 184(190) ms 83.5(83.1) req/s 896(1099) ms 37.0(35.5) req/s

Figure 6.6 illustrates that the predicted configuration indeed gives the best per

formance among all possible configurations in real measurements. Table 6.2 shows 

the details of each configuration. Figure 6.6 also shows the comparison of mea

sured and predicted values for all configurations. With few exceptions, the model 

prediction is in excellent agreement with experimental data.

1200 — i------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1-------1-------1-------1------ r
irow se mea 
jrow se prei

C onfigura tions

Figure 6.6: Measured vs. predicted average response time for browsing and bidding mix.

For each resource, Figure 6.7(a) compares the maximum load of the three ma

chines for the PREMATCH configuration and the worst measured configuration. 

One can see that, for the network resource, the worst configuration consumes twice 

as much as the PREMATCH. The maximum memory usage of worst configuration 

is 13% more than PREMATCH's.

Figure 6.7(b) illustrates a side-by-side comparison of the measured performance 

of the PREMATCH, random, and worst configuration schemes. By random config

uration, we run a naive randomized algorithm 100 times, which randomly picks one 

of the 15 configurations. Hence, the data we show is averaged across all outputs. 

The PREMATCH configuration reduces the worst configuration response time by
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46% for bidding and 17.9% for browsing. It also reduces the random configuration 

response time by 24.5% for bidding and 11.7% for browsing.

(a) PREMATCH vs. worst conflg utilization (b) PREMATCH, random and worst conflg compari
100

1

9
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7> 1000

a  400
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b id -R T ' ■browse-RT'

Figure 6.7: PREMATCH, random, and worst consolidation comparison.

6.5.3 Browsing Mix Consolidation

In this scenario, we give another example of consolidation of two browsing mixes. 

We have the same testbed setup as the one described in Section 6.5.2, but we run 

two client emulators with the same workload: two instances of the browsing mix 

with 800 clients and 7 seconds thinking time.

Table 6.6 contains the vector bin packing algorithm's configurations for each 

resource. Notice that, for this scenario, we have two candidate configurations 

achieving min-max load balancing for each resource because of the two identi

cal workloads (two browsing mix with 800 clients). Calculated min-max value over 

all resources are highlighted (boldfaced and underlined).

The MVA results of estimated response time and system throughput for each 

application are in Table 6.7. The model selects "Cfg 6" and "Cfg 11" as the ones 

with best performance. In Figure 6.8, we present a side by side comparison of mea

sured and predicted response time of 15 possible configurations. "app1" denotes 

the first RUBiS application and "app2" the second. The figure shows the accuracy 

of the model and corroborates the fact that the queueing model always selects the
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Table 6.6: Min-max load balancing for browsing mixes consolidation

Min-max config
Machinal

CPU Net Disk Mem
Cfg4 on CPU 43.2% 92.1% 0.88% 62.7%
Cfg12 on CPU 75% 24.75% 0.88% 39%

Cfg6 on NET/DISK/MEM 76.7% 47% 0.48% 46.9%
Cfg11 on NET/DISK/MEM 76.7% 47% 0.48% 46.9%

Machine2
CPU Net Disk Mem
75% 24.75% 0.11% 39%

43.2% 92.1% 0.11% 62.7%
39.8% 47.6% 0.14% ...47%...
39.8% 47.6% 0.14% 47%

Machine3
CPU Net Disk Mem
75% 24.75% 0.11% 39%
75% 24.75% 0.11% 39%

76.7% 47% 0.48% 46.9%
76.7% 47% 0.48% 46.9%

Table 6.7: Predicted performance for min-max configs

Min-max config App1 App2
Response Time Throughput Response Time Throughput

Cfg4 on CPU 
Cfg12 on CPU

2568 ms 
2568 ms

86.2 req/s
86.2 req/s

2568 ms 
2568 ms

86.2 req/s
86.2 req/s

Cfg6 on NET/DISK/MEM 
Cfg11 on NET/DISK/MEM

1616 ms 
1616 ms

96.1 req/s
96.1 req/s

1616
1616

96.1 req/s
96.1 req/s
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Figure 6.8: Measured vs. predicted average response time for the browsing mixes.

Figure 6.9(a) compares the maximum allocated load of three machines for our 

PREMATCH configuration and the worst measured configuration. For maximum 

network resource, the worst configuration consumes twice as much as PREMATCH. 

The maximum memory usage of worst configuration is 12% more than PREMATCH. 

Figure 6.9(b) illustrates a side-by-side comparison of the measured performance 

of PREMATCH, random, and worst configuration schemes. On average, the PRE

MATCH configuration reduces the worst configuration response time by 25.6% and 

reduces the random configuration response time by 13.7%. Meanwhile, for the 

worst configuration, the performance imbalance of the two applications results in 

poor performance.

(a) PREMATCH vs. worst config utilization (b) PREMATCH, random and worst config RT 
, 100 |-----------1---------------- .----------  3500 |-------.----------- 1----------- .------

80 - B • i  3000 ■ I  ■
H ra I  §■ 2500 ' I

6 0 ' $ s: 9, ‘ S 2000 - I

PREMATCH Worst PREMATCH Random Worst 
ap p l-R T  ^ ™ a p p 2 -R T  t = j

Figure 6.9: PREMATCH, random, and worst consolidation comparison.
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6.6 Summary

In this chapter, we propose a method to assign VMs whose per-resource demands 

for multiple resource types (CPU, disk, etc.) are known to underlying hardware in a 

min-max fair way. Conflicts between min-max fairness of different resource types 

are resolved by using a queuing network model of each application to determine 

which resource should be prioritized. The experiment results with RUBiS applica

tions demonstrate that the approach achieves good performance in consolidation 

decision making.
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7 Summary of Contributions and Fu 

ture Work

The main contribution of this dissertation is on the design of automatic system man

agement with virtualized data centers. To this end, a set of new techniques and 

tools are developed and are summarized as follows.

• For application workload management, this dissertation describes and ana

lyzes a session and request admission algorithm for session-based web ser

vices. The algorithm accepts requests until a threshold of active requests 

is reached. When this threshold is reached, incoming requests from newly 

starting sessions are dropped, while requests from already active sessions 

are queued. Only when this queue is empty and the number of active ses

sions is below the threshold, requests from new sessions are accepted for 

service again (in a more aggressive version, the system has to become idle 

before starting to accept new sessions again).

Simulation experiments with bursty session arrival patterns show that the 

above algorithm can reduce the number of dropped active sessions at the 

price of drops of newly starting sessions and increased response time. As 

the size of the request queue controls this trade-off, we propose an adaptive 

algorithm in which the request queue size is adapted in order to meet a cer

tain response time requirement. We also show illustrations of the behavior of



the adaptive algorithms in different scenarios using the TPC-W e-commerce 

benchmarks.

• For server measurement, this dissertation presents a signal processing-based 

technique to estimate the amount of physical resources utilized by consolidate 

VMs. The dissertation first argues that profiling resource utilization from in

side a VM does not always lead to accurate estimate. It then formulates the 

resource utilization profiling problem as a source separation problem studied 

in the area of digital signal processing. A directed factor graph model is de

fined to model the dependencies among multiple types of resources across 

physical and virtual layers. The results are presented from case studies that 

involve a diverse suite of applications, indicating improved accuracy of re

source utilization estimates.

• For resource management, the dissertation presents AppRM, a system that 

automatically sets various resource control knobs provided by VMware vSphere 

in order to meet service level objectives. AppRM consists of various parts. 

The vApp manager collects statistics of the VMs comprising an application 

and builds a performance model of the application. The Application Con

troller in the vApp manager then figures out what resources the application 

needs in order to meet its SLO, and the Resource Manager translates these 

needs into actually vSphere settings. The Resource Pool Manager deals with 

the desires of multiple applications, making tradeoffs if needed or allocating 

more resources if available. The system is evaluated on two machines. One 

machine runs one or more MongoDB instances in a collection of VMs, while 

the other runs one or more workload generators in VMs. Each machine also 

runs AppRM in a VM. A large variety of experiments shows that AppRM is 

effective in achieving the SLOs even as loads change over time and compet-
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ing VMs are using up resources as well. AppRm is implemented within the 

current release of VMware's vSphere. The current system deals only with 

CPU and memory resource as vSphere does not provide knobs for I/O and 

networking.

• For server consolidation, this dissertation addresses the multi-dimensional 

mapping problem for data centers, considering the CPU, disk, and network 

dimensions. It proposes a VM consolidation mechanism, first by extending 

the fair load balancing scheme for multi-dimensional vector scheduling and 

then by using a queueing network simulation to capture contentions for a par

ticular VM placement. Experiments demonstrates that this approach indeed 

achieves good performance. The evaluation shows that it is useful to take 

into account VM consolidation when mapping VMs, since there can be large 

differences between best and worst configurations if interference is not taken 

into account.

7.1 Future Work

There are several extensions to the results presented in this dissertation.

7.1.1 Autonomic Resource Allocation

• Scalability: We do not have experimental results that demonstrate the scal

ability of AppRM due to the limited hardware we had access to. However, 

we deal with scalability in the design of AppRM using the following mech

anisms: a) separation of concerns: AppRM utilizes a two-layered approach 

where vApp Managers translate per-vApp SLOs to desired VM-level resource 

settings and RP Managers determine actual resource settings based on avail

able capacity; b) decentralized design: AppRM does not use a centralized
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controller that determines resource allocations for everyone, which would not 

scale. Instead, each vApp Manager deals with only one vApp and each RP 

Manager handles only one resource pool; c) asynchronous communication: 

The RP Manager interacts with multiple vApp Managers asynchronously and 

determines value settings using Algorithm 2 thus markedly improve the scal

ability compared with previous work. On vSphere systems today, each DRS 

cluster can have up to 3000 VMs on 32 hosts and multiple RPs. Neverthe

less, the number of settings each vApp Manager controls is only proportional 

to the number of VMs in that vApp and is not affected by the overall inventory 

size. In the extreme case, each RP Manager can take inputs from thousands 

of vApp Managers. However, the current DRS algorithm already performs 

fairly sophisticated computation for up to thousands of VMs every five min

utes, hence, AppRM should not pose a scalability bottleneck given that it also 

runs on the order of minutes and does only simple calculation with the inputs. 

We plan to validate the scalability of AppRM empirically in future work.

• Handling storage and network resources: Network and storage control 

knobs are not fully implemented in VMware vSphere product at the time of 

this project. However, the modeling techniques used in our work can be ap

plied to other resources as well. For storage, research prototypes [70,71] can 

provide I/O operations per second (IOPS) reservations and resource pools. 

For network, though bandwidth reservations for outgoing bandwidth are avail

able, we do not know of any implementation of network resource pools. As 

these mechanisms mature, we hope to extend our work to other resources.

• AppRM across virtual data centers: Virtual data centers provide good ab

straction of aggregation of resource pools, but AppRM cannot perform the re

source control tuning, if not enough resources are allocated to a virtual data
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center. AppRM can be extended to make recommendations to administrator 

and can also be extended to flow resources from a lower priority virtual data 

center, similar to the approach described in Chapter 5 for resource pools.

7.1.2 VM Auto-scaling

In Chapter 5, we demonstrate that dynamically adjusting the effective "size" of 

individual servers can successfully meet application SLO target. Another approach 

to solve the same problem is to change the number of servers (physical or virtual) 

hosting an Internet service or a multi-tiered application. A natual extensioin is to 

develop a system mechanism to add or remove an VM instance for one tier of 

a multi-tiered system while maintaining the system functionality. A new model is 

needed to determine the number of VM instances of a specific tier in order to meet 

a target SLO for a multi-tiered application. We will extend the current feedback 

control model or explore other methods, e.g., a queueing model or reinforcement 

learning model. By online monitoring the arrival flow and its statistics, the model 

should appropriately compute the number of virtual machines required at each tier. 

For instance, if a burst of arrivals is observed, then the system may need to add 

more VMs at presentation tier or application tier. Meanwhile, the system may stop 

VMs to save energy when the arrival flow reduces. We expect the algorithm to 

provide a relative coarse-grained resource scaling and complements the work in 

Chapter 5.

7.1.3 Predictive Server Consolidation in Multi-cores

We will extend the methodology presented in Chapter 6 to be able to accurately 

predict virtual machine performance interference on multi-cores. Rather than con

sidering a single performance target for both applications, we will consider two het

erogeneous applications, a primary and a secondary one, and answer the following
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questions. Given a fixed number of VM instances and target response time for the 

primary application, what is the maximum consolidated instances of the secondary 

application so that the target response time of the primary application is not vio

lated. To profile the application online, we will develop fine-grained system utility 

tools that can correctly monitor and store various resource utilization at the both hy

pervisor and virtual machine levels. Moreover, we should first develop fine-grained 

application monitoring tools that watch the network traffic and compute response 

time at each tier of web-based application. We expect that the profiling results will 

require the development of a load dependent queuing model to capture the relation

ship. Models developed in [50] will be readily transferred to capture consolidation of 

multi-tiered applications on multi-cores. In addition, we will aim to build a prediction 

tool that provides performance prediction in real time.

7.1.4 Server Consolidation with Performance Target

In Chapter 6, we developed a methodology to optimize total performance when 

placing m virtual machines on n servers. However, in some cases, applications 

service level objectives (SLOs) are required to be considered. Given a set of appli

cations with their defined SLOs, it is not clear what is the number of servers needed 

and what is the application placement strategy so that all application targets can be 

mets. Different SLO requirements require different amount of system resources for 

each application. We need to profile running applications, build their performance 

models online and figure out how much resources are needed to achieve their tar

gets. Applications whose SLO violations are continuously detected are candidates 

to perform live migrations so that their performance can be improved. In contrast, 

applications whose measured performance is significantly better than the defined 

targets are candidates to consolidate in order to reduce the number of running 

servers. Models developed in Chapter 6 should guide the process of consolidation
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or migration to avoid further SLO violations. Such a system could help applications 

achieve their SLOs and at the same time reduce the number of running servers.
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A Markovian Arrival Processes

Markovian Arrival Processes (MAPs) can be seen as a generalization of continuous

time Markov chains (CTMC) used for fitting workload traces. A major difference be

tween CTMC and MAPs is that transactions between states are classified by either 

as background transitions or as completion transitions. The background transitions 

only change the active state in the CTMC while completion transitions change the 

active state and conventionally trigger an arrival event. An inter-arrival time sample 

ATfc of a MAP model is the time between successive activation of any two comple

tion transitions.

The commonly used MAP representation is the (D0, D x) description. If MAP has 

an infinitesimal generator Q of order N, the (D0, D x) representation is obtained by 

decomposing the transitions of Q according to whether or not it leads to a comple

tion transition. D0 has the same diagonal as Q but its off-diagonal elements are the 

rates of background transition; D x includes only the rates of completion transitions. 

It can be immediately computed that Q =  D0 +  D x.

For instance, a two-phase MAP may be specified as,

D0 =

1

l >■ V to
1

, A  =
^ 1 , 1

t..................
r-4

1

to

1
to to

•

P 2 ,2

where AM  =  A1)2 +  /ii,i +  /ii,2 and inverse of Ai.i is the mean time spent in phase 1 

before a jump to other states. The off-diagonal elements Ay, i ±  j ,  are the rates of
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background transition. Similarly, elements of i ^  j ,  are the rates of following a 

completion transition.

The pseudo-code for reading the MAP configuration file and leveraging the MAP 

to generate random variates is shown in Algorithms A.1 and A.2. We define a new 

data structure STATE to help to store the MAP information as follows:

s t r u c t  S T A T E {  d o u b l e  m e a n ;  d o u b l e  * p ;  } ;

Algorithm A.1 reads the D0 and D x matrices from the configuration file and 

stores each state information into STATE structure. Algorithm A.2 generates a 

exponential random variate interval based on a global variable which stores the 

current state in MAP. Then it determines whether it performs a background or a 

completion transition based on a uniformly generated variable. If it is a comple

tion transition, the algorithm outputs the interval as result; otherwise, recursively 

call g e t  i n t e r v a l  () until an completion transition happens. The parameters for the 

three MAPs that generate the three burst levels used in the paper are as follows:

-7.572 0.0715 7.500 0
Burst level 1: D0 = , A  =

0.0692 -0.1899 0 0.1206

-0.0661 0 0.0548 0.0113
Burst level 2: D0 = , A  =

0 -16.9363 0.0406 16.8958

-0.0661 0 0.0605 0.0057
Burst level 3: D0 =

0 -16.9363 00203 16.916
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Algorithm A.1: readMAP() -- Read the MAP configuration file: build the D0
and £>i._____________________________________________________________

Input : MAP config file -- input 
begin

numState 4-  0 ;  
read (input, &numState)] 
states 4— new struct STATE [numState}] 
for i  4- numState do 

states[i].mean 4 - 0; 
states[i].p 4— new double[2 *  numState]',

for ind  4 -  0 to 1 do
for i  4 -  0 to numState — 1 do 

for j  4 -  0 to numState — 1 do
read (input, &states[i].p[ind *  numState +  j])', 
if states[i].p[ind * numState +  j ]  <  0 then 
[_ states[i].p[ind * numState +  j ]  =  0;

states[i].mean 4 -  states[i].mean +states\i].p[ind* numState+j]',

for ind 4 -  0 to 1 do
for * 4-  0  to numState — 1 do 

for j  4 -  0 to numState — 1 do
states\i].p[ind *  numState +  j \  <— 
states[i].p[ind *  numState +  j]/states[i).mean] 
if ind * numState +  j  >  0 then

states[i\.p[ind * numState + 3} 4 -  states[i].p[ind * 
numState +  jf] +  states[i].p[ind *  numState + j  — 1];

Algorithm A.2: getlntervalQ -  Generate MAP random variates. 
Input : global variable state index - -  curjnd  
begin

mean 4 -  states[cur_ind].mean] 
interval 4—  E x p o n e n t i a l ( l / m e a n ) ;  
prob 4— U n i f  o r m ( 0 , 1 ) ;  
for i  4—  0  to 2  *  numState do 
[_ if prob < states[cur_ind\.p[i] then break;

complete Jdx  4 -  

cur_ind 4—  i mod numState; 
if complete_idx =  0  then 

[ _  interval 4-  interval +  g e t  I n t e r v a l  ( ) ;

return interval;
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