390 research outputs found

    Application of Evolutionary Computation Techniques to the Optimal Short-Term Scheduling of the Electrical Energy Production

    Get PDF
    In this paper, an evolutionary technique applied to the optimal short-term scheduling (24 hours) of the electric energy production is presented. The equations that define the problem lead to a nonlinear mixed-integer programming problem with a high number of real and integer variables. Consequently, the resolution of the problem based on combinatorial methods is rather complex. The required heuristics, introduced to assure the feasibility of the constraints, are analyzed, along with a brief description of the proposed genetic algorithm. Finally, results from realistic cases based on the Spanish power system are reported, revealing the good performance of the proposed algorithm, taking into account the complexity and dimension of the problem

    Load forecasting on the user‐side by means of computational intelligence algorithms

    Get PDF
    Nowadays, it would be very difficult to deny the need to prioritize sustainable development through energy efficiency at all consumption levels. In this context, an energy management system (EMS) is a suitable option for continuously improving energy efficiency, particularly on the user side. An EMS is a set of technological tools that manages energy consumption information and allows its analysis. EMS, in combination with information technologies, has given rise to intelligent EMS (iEMS), which, aside from lending support to monitoring and reporting functions as an EMS does, it has the ability to model, forecast, control and diagnose energy consumption in a predictive way. The main objective of an iEMS is to continuously improve energy efficiency (on-line) as automatically as possible. The core of an iEMS is its load modeling forecasting system (LMFS). It takes advantage of historical information on energy consumption and energy-related variables in order to model and forecast load profiles and, if available, generator profiles. These models and forecasts are the main information used for iEMS applications for control and diagnosis. That is why in this thesis we have focused on the study, analysis and development of LMFS on the user side. The fact that the LMFS is applied on the user side to support an iEMS means that specific characteristics are required that in other areas of load forecasting they are not. First of all, the user-side load profiles (LPs) have a higher random behavior than others, as for example, in power system distribution or generation. This makes the modeling and forecasting process more difficult. Second, on the user side --for example an industrial user-- there is a high number and variety of places that can be monitored, modeled and forecasted, as well as their precedence or nature. Thus, on the one hand, an LMFS requires a high degree of autonomy to automatically or autonomously generate the demanded models. And on the other hand, it needs a high level of adaptability in order to be able to model and forecast different types of loads and different types of energies. Therefore, the addressed LMFS are those that do not look only for accuracy, but also adaptability and autonomy. Seeking to achieve these objectives, in this thesis work we have proposed three novel LMFS schemes based on hybrid algorithms from computational intelligence, signal processing and statistical theory. The first of them looked to improve adaptability, keeping in mind the importance of accuracy and autonomy. It was called an evolutionary training algorithm (ETA) and is based on adaptivenetwork-based-fuzzy-inference system (ANFIS) that is trained by a multi-objective genetic algorithm instead of its traditional training algorithm. As a result of this hybrid, the generalization capacity was improved (avoiding overfitting) and an easily adaptable training algorithm for new adaptive networks based on traditional ANFIS was obtained. The second scheme deals with LMF autonomy in order to build models from multiple loads automatically. Similar to the previous proposal, an ANFIS and a MOGA were used. In this case, the MOGA was used to find a near-optimal configuration for the ANFIS instead of training it. The LMFS relies on this configuration to work properly, as well as to maintain accuracy and generalization capabilities. Real data from an industrial scenario were used to test the proposed scheme and the multi-site modeling and self-configuration results were satisfactory. Furthermore, other algorithms were satisfactorily designed and tested for processing raw data in outlier detection and gap padding. The last of the proposed approaches sought to improve accuracy while keeping autonomy and adaptability. It took advantage of dominant patterns (DPs) that have lower time resolution than the target LP, so they are easier to model and forecast. The Hilbert-Huang transform and Hilbert-spectral analysis were used for detecting and selecting the DPs. Those selected were used in a proposed scheme of partial models (PM) based on parallel ANFIS or artificial neural networks (ANN) to extract the information and give it to the main PM. Therefore, LMFS accuracy improved and the user-side LP noising problem was reduced. Additionally, in order to compensate for the added complexity, versions of self-configured sub-LMFS for each PM were used. This point was fundamental since, the better the configuration, the better the accuracy of the model; and subsequently the information provided to the main partial model was that much better. Finally, and to close this thesis, an outlook of trends regarding iEMS and an outline of several hybrid algorithms that are pending study and testing are presented.En el contexto energético actual y particularmente en el lado del usuario, el concepto de sistema de gestión energética (EMS) se presenta como una alternativa apropiada para mejorar continuamente la eficiencia energética. Los EMSs en combinación con las tecnologías informáticas dan origen al concepto de iEMS, que además de soportar las funciones de los EMS, tienen la capacidad de modelar, pronosticar, controlar y supervisar los consumos energéticos. Su principal objetivo es el de realizar una mejora continua, lo más autónoma posible y predictiva de la eficiencia energética. Este tipo de sistemas tienen como núcleo fundamental el sistema de modelado y pronóstico de consumos (Load Modeling and Forecasting System, LMFS). El LMFS está habilitado para pronosticar el comportamiento futuro de cargas y, si es necesario, de generadores. Es sobre estos pronósticos sobre los cuales el iEMS puede realizar sus tareas automáticas y predictivas de optimización y supervisión. Los LMFS en el lado del usuario son el foco de esta tesis. Un LMFS en el lado del usuario, diseñado para soportar un iEMS requiere o demanda ciertas características que en otros contextos no serían tan necesarias. En primera estancia, los perfiles de los usuarios tienen un alto grado de aleatoriedad que los hace más difíciles de pronosticar. Segundo, en el lado del usuario, por ejemplo en la industria, el gran número de puntos a modelar requiere que el LMFS tenga por un lado, un nivel elevado de autonomía para generar de la manera más desatendida posible los modelos. Por otro lado, necesita un nivel elevado de adaptabilidad para que, usando la misma estructura o metodología, pueda modelar diferentes tipos de cargas cuya procedencia pude variar significativamente. Por lo tanto, los sistemas de modelado abordados en esta tesis son aquellos que no solo buscan mejorar la precisión, sino también la adaptabilidad y autonomía. En busca de estos objetivos y soportados principalmente por algoritmos de inteligencia computacional, procesamiento de señales y estadística, hemos propuesto tres algoritmos novedosos para el desarrollo de un LMFS en el lado del usuario. El primero de ellos busca mejorar la adaptabilidad del LMFS manteniendo una buena precisión y capacidad de autonomía. Denominado ETA, consiste del uso de una estructura ANFIS que es entrenada por un algoritmo genético multi objetivo (MOGA). Como resultado de este híbrido, obtenemos un algoritmo con excelentes capacidades de generalización y fácil de adaptar para el entrenamiento y evaluación de nuevas estructuras adaptativas basadas en ANFIS. El segundo de los algoritmos desarrollados aborda la autonomía del LMFS para así poder generar modelos de múltiples cargas. Al igual que en la anterior propuesta usamos un ANFIS y un MOGA, pero esta vez el MOGA en vez de entrenar el ANFIS, se utiliza para encontrar la configuración cuasi-óptima del ANFIS. Encontrar la configuración apropiada de un ANFIS es muy importante para obtener un buen funcionamiento del LMFS en lo que a precisión y generalización respecta. El LMFS propuesto, además de configurar automáticamente el ANFIS, incluyó diversos algoritmos para procesar los datos puros que casi siempre estuvieron contaminados de datos espurios y gaps de información, operando satisfactoriamente en las condiciones de prueba en un escenario real. El tercero y último de los algoritmos buscó mejorar la precisión manteniendo la autonomía y adaptabilidad, aprovechando para ello la existencia de patrones dominantes de más baja resolución temporal que el consumo objetivo, y que son más fáciles de modelar y pronosticar. La metodología desarrollada se basa en la transformada de Hilbert-Huang para detectar y seleccionar tales patrones dominantes. Además, esta metodología define el uso de modelos parciales de los patrones dominantes seleccionados, para mejorar la precisión del LMFS y mitigar el problema de aleatoriedad que afecta a los consumos en el lado del usuario. Adicionalmente, se incorporó el algoritmo de auto configuración que se presentó en la propuesta anterior para hallar la configuración cuasi-óptima de los modelos parciales. Este punto fue crucial puesto que a mejor configuración de los modelos parciales mayor es la mejora en precisión del pronóstico final. Finalmente y para cerrar este trabajo de tesis, se realizó una prospección de las tendencias en cuanto al uso de iEMS y se esbozaron varias propuestas de algoritmos híbridos, cuyo estudio y comprobación se plantea en futuros estudios

    Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science

    Get PDF
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses

    Decision Support Application for Energy Consumption Forecasting

    Get PDF
    Energy consumption forecasting is crucial in current and future power and energy systems. With the increasing penetration of renewable energy sources, with high associated uncertainty due to the dependence on natural conditions (such as wind speed or solar intensity), the need to balance the fluctuation of generation with the flexibility from the consumer side increases considerably. In this way, significant work has been done on the development of energy consumption forecasting methods, able to deal with different forecasting circumstances, e.g., the prediction time horizon, the available data, the frequency of data, or even the quality of data measurements. The main conclusion is that different methods are more suitable for different prediction circumstances, and no method can outperform all others in all situations (no-free-lunch theorem). This paper proposes a novel application, developed in the scope of the SIMOCE project (ANI|P2020 17690), which brings together several of the most relevant forecasting methods in this domain, namely artificial neural networks, support vector machines, and several methods based on fuzzy rule-based systems, with the objective of providing decision support for energy consumption forecasting, regardless of the prediction conditions. For this, the application also includes several data management strategies that enable training of the forecasting methods depending on the available data. Results show that by this application, users are endowed with the means to automatically refine and train different forecasting methods for energy consumption prediction. These methods show different performance levels depending on the prediction conditions, hence, using the proposed approach, users always have access to the most adequate methods in each situationThe present work has been developed under Project SIMOCE (ANI|P2020 17690) co-funded by Portugal 2020 "Fundo Europeu de Desenvolvimento Regional" (FEDER) through COMPETE, the EUREKA - ITEA2 Project M2MGrids (ITEA-13011), and has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019info:eu-repo/semantics/publishedVersio

    Artificial Intelligence for Hospital Health Care:Application Cases and Answers to Challenges in European Hospitals

    Get PDF
    The development and implementation of artificial intelligence (AI) applications in health care contexts is a concurrent research and management question. Especially for hospitals, the expectations regarding improved efficiency and effectiveness by the introduction of novel AI applications are huge. However, experiences with real-life AI use cases are still scarce. As a first step towards structuring and comparing such experiences, this paper is presenting a comparative approach from nine European hospitals and eleven different use cases with possible application areas and benefits of hospital AI technologies. This is structured as a current review and opinion article from a diverse range of researchers and health care professionals. This contributes to important improvement options also for pandemic crises challenges, e.g., the current COVID-19 situation. The expected advantages as well as challenges regarding data protection, privacy, or human acceptance are reported. Altogether, the diversity of application cases is a core characteristic of AI applications in hospitals, and this requires a specific approach for successful implementation in the health care sector. This can include specialized solutions for hospitals regarding human-computer interaction, data management, and communication in AI implementation projects

    Evolutionary Design of Neural Architectures -- A Preliminary Taxonomy and Guide to Literature

    Get PDF
    This report briefly motivates current research on evolutionary design of neural architectures (EDNA) and presents a short overview of major research issues in this area. It also includes a preliminary taxonomy of research on EDNA and an extensive bibliography of publications on this topic. The taxonomy is an attempt to categorize current research on EDNA in terms of major research issues addressed and approaches pursued. It is our hope that this will help identify open research questions as well as promising directions for further research on EDNA. The report also includes an appendix that provides some suggestions for effective use of the electronic version of the bibliography

    Eastern Mediterranean biogeochemical flux model: simulations of the pelagic ecosystem

    No full text
    International audienceDuring the second phase (2003?2006) of the Mediterranean ocean Forecasting System Project (MFS) named Toward Environmental Predictions (MFSTEP) one of the three major aims was the development of numerical forecasting systems. In this context a generic Biochemical Flux Model (BFM) was developed and coupled with hydrodynamic models already operating at basin scale as well as at regional areas. In the Eastern Mediterranean basin the BFM was coupled with the Aegean Levantine Eddy Resolving MOdel (ALERMO). The BFM is a generic highly complex model based on ERSEM and although a detailed description of the model and its sub models is beyond the scope of this work a short presentation of the main processes, paying emphasis on the parameter values used is presented. Additionally the performance of the model is evaluated with some preliminary results being qualitatively compared against field observations. The model at its present form is rather promising reproducing all major important features even though there are inefficiencies mostly related to primary and bacterial productivity rates

    Art, academia, and culture before the challenges posed by the new emerging events and technologies of the 21st century: evolution and adaptation

    Get PDF
    668 p.The advent of the many emerging crises of our time, and of the manyemerging technologies that are set to define the short-term future, pose aseries of challenges that could heavily disrupt social and economic structures worldwide if they are not addressed in a sensible and timely manner. This research project aims to analyze and expose how the artistic, academic, and cultural disciplines could adapt and evolve in the face of this situation, withthe goal of generating a knowledge base that could be utilized to progressively redefine said disciplines in a way that would allow them to help our species overcome the challenges posed by the future in a significant manner. The data for this project was collected through the qualitative study and cross-analysisof hundreds of relevant articles and studies.This study unveils that these emerging challenges are extraordinarily intricate and dangerous in nature, and uncovers that their root cause resides inthe continued inability of our species to reconcile its tribal legacy with theever-evolving nature of technology, concluding that contemporary societies arecritically underprepared to handle these challenges sensibly. Possible solutionsto this situation determined by this project include the proposal for aredefinition of the artistic, academic, and cultural disciplines conducted intune with our tribal nature and the nature of technology that makes use ofsocial networking structures based on the patterns that define naturallyoccurring evolutive emergent systems to reconcile said natures.Other themes analyzed by this study include the relevance of the artisticmindset as a vital aspect of the human being, the necessity of sensibly democratizing the new emerging technologies, and the potential occurrence of an evolutive emergent in the foreseeable future as a consequence of humaninteraction and organizational complexity reaching a sustained critical mass.These findings indicate the need for the realization of a progressiveredefinition of the artistic, academic, and cultural disciplines conducted intune with our tribal nature and the nature of technology, as well as the need for the immediate recognition and addressing of the many emerging challenges of ourtime by the international community

    A Novel Cooperative Algorithm for Clustering Large Databases With Sampling.

    Get PDF
    Agrupamento de dados é uma tarefa recorrente em mineração de dados. Com o passar do tempo, vem se tornando mais importante o agrupamento de bases cada vez maiores. Contudo, aplicar heurísticas de agrupamento tradicionais em grandes bases não é uma tarefa fácil. Essas técnicas geralmente possuem complexidades pelo menos quadráticas no número de pontos da base, tornando o seu uso inviável pelo alto tempo de resposta ou pela baixa qualidade da solução final. A solução mais comumente utilizada para resolver o problema de agrupamento em bases de dados grandes é usar algoritmos especiais, mais fracos no ponto de vista da qualidade. Este trabalho propõe uma abordagem diferente para resolver esse problema: o uso de algoritmos tradicionais, mais fortes, em um sub-conjunto dos dados originais. Esse sub-conjunto dos dados originais é obtido com uso de um algoritmo co-evolutivo que seleciona um sub-conjunto de pontos difícil de agrupar

    Facing online challenges using learning classifier systems

    Get PDF
    Els grans avenços en el camp de l’aprenentatge automàtic han resultat en el disseny de màquines competents que són capaces d’aprendre i d’extreure informació útil i original de l’experiència. Recentment, algunes d’aquestes tècniques d’aprenentatge s’han aplicat amb èxit per resoldre problemes del món real en àmbits tecnològics, mèdics, científics i industrials, els quals no es podien tractar amb tècniques convencionals d’anàlisi ja sigui per la seva complexitat o pel gran volum de dades a processar. Donat aquest èxit inicial, actualment els sistemes d’aprenentatge s’enfronten a problemes de complexitat més elevada, el que ha resultat en un augment de l’activitat investigadora entorn sistemes capaços d’afrontar nous problemes del món real eficientment i de manera escalable. Una de les famílies d’algorismes més prometedores en l’aprenentatge automàtic són els sistemes classificadors basats en algorismes genetics (LCSs), el funcionament dels quals s’inspira en la natura. Els LCSs intenten representar les polítiques d’actuació d’experts humans amb un conjunt de regles que s’empren per escollir les millors accions a realitzar en tot moment. Així doncs, aquests sistemes aprenen polítiques d’actuació de manera incremental a mida que van adquirint experiència a través de la informació nova que se’ls va presentant durant el temps. Els LCSs s’han aplicat, amb èxit, a camps tan diversos com la predicció de càncer de pròstata o el suport a la inversió en borsa, entre altres. A més en alguns casos s’ha demostrat que els LCSs realitzen tasques superant la precisió dels éssers humans. El propòsit d’aquesta tesi és explorar la naturalesa de l’aprenentatge online dels LCSs d’estil Michigan per a la mineria de grans quantitats de dades en forma de fluxos d’informació continus a alta velocitat i canviants en el temps. Molt sovint, l’extracció de coneixement a partir d’aquestes fonts de dades és clau per tal d’obtenir una millor comprensió dels processos que les dades estan descrivint. Així, aprendre d’aquestes dades planteja nous reptes a les tècniques tradicionals d’aprenentatge automàtic, les quals no estan dissenyades per tractar fluxos de dades continus i on els conceptes i els nivells de soroll poden variar amb el temps de forma arbitrària. La contribució de la present tesi pren l’eXtended Classifier System (XCS), el LCS d’estil Michigan més estudiat i un dels algoritmes d’aprenentatge automàtic més competents, com el punt de partida. D’aquesta manera els reptes abordats en aquesta tesi són dos: el primer desafiament és la construcció d’un sistema supervisat competent sobre el framework dels LCSs d’estil Michigan que aprèn dels fluxos de dades amb una capacitat de reacció ràpida als canvis de concepte i entrades amb soroll. Com moltes aplicacions científiques i industrials generen grans quantitats de dades sense etiquetar, el segon repte és aplicar les lliçons apreses per continuar amb el disseny de LCSs d’estil Michigan capaços de solucionar problemes online sense assumir una estructura a priori en els dades d’entrada.Los grandes avances en el campo del aprendizaje automático han resultado en el diseño de máquinas capaces de aprender y de extraer información útil y original de la experiencia. Recientemente alguna de estas técnicas de aprendizaje se han aplicado con éxito para resolver problemas del mundo real en ámbitos tecnológicos, médicos, científicos e industriales, los cuales no se podían tratar con técnicas convencionales de análisis ya sea por su complejidad o por el gran volumen de datos a procesar. Dado este éxito inicial, los sistemas de aprendizaje automático se enfrentan actualmente a problemas de complejidad cada vez m ́as elevada, lo que ha resultado en un aumento de la actividad investigadora en sistemas capaces de afrontar nuevos problemas del mundo real de manera eficiente y escalable. Una de las familias más prometedoras dentro del aprendizaje automático son los sistemas clasificadores basados en algoritmos genéticos (LCSs), el funcionamiento de los cuales se inspira en la naturaleza. Los LCSs intentan representar las políticas de actuación de expertos humanos usando conjuntos de reglas que se emplean para escoger las mejores acciones a realizar en todo momento. Así pues estos sistemas aprenden políticas de actuación de manera incremental mientras van adquiriendo experiencia a través de la nueva información que se les va presentando. Los LCSs se han aplicado con éxito en campos tan diversos como en la predicción de cáncer de próstata o en sistemas de soporte de bolsa, entre otros. Además en algunos casos se ha demostrado que los LCSs realizan tareas superando la precisión de expertos humanos. El propósito de la presente tesis es explorar la naturaleza online del aprendizaje empleado por los LCSs de estilo Michigan para la minería de grandes cantidades de datos en forma de flujos continuos de información a alta velocidad y cambiantes en el tiempo. La extracción del conocimiento a partir de estas fuentes de datos es clave para obtener una mejor comprensión de los procesos que se describen. Así, aprender de estos datos plantea nuevos retos a las técnicas tradicionales, las cuales no están diseñadas para tratar flujos de datos continuos y donde los conceptos y los niveles de ruido pueden variar en el tiempo de forma arbitraria. La contribución del la presente tesis toma el eXtended Classifier System (XCS), el LCS de tipo Michigan más estudiado y uno de los sistemas de aprendizaje automático más competentes, como punto de partida. De esta forma los retos abordados en esta tesis son dos: el primer desafío es la construcción de un sistema supervisado competente sobre el framework de los LCSs de estilo Michigan que aprende de flujos de datos con una capacidad de reacción rápida a los cambios de concepto y al ruido. Como muchas aplicaciones científicas e industriales generan grandes volúmenes de datos sin etiquetar, el segundo reto es aplicar las lecciones aprendidas para continuar con el diseño de nuevos LCSs de tipo Michigan capaces de solucionar problemas online sin asumir una estructura a priori en los datos de entrada.Last advances in machine learning have fostered the design of competent algorithms that are able to learn and extract novel and useful information from data. Recently, some of these techniques have been successfully applied to solve real-­‐world problems in distinct technological, scientific and industrial areas; problems that were not possible to handle by the traditional engineering methodology of analysis either for their inherent complexity or by the huge volumes of data involved. Due to the initial success of these pioneers, current machine learning systems are facing problems with higher difficulties that hamper the learning process of such algorithms, promoting the interest of practitioners for designing systems that are able to scalably and efficiently tackle real-­‐world problems. One of the most appealing machine learning paradigms are Learning Classifier Systems (LCSs), and more specifically Michigan-­‐style LCSs, an open framework that combines an apportionment of credit mechanism with a knowledge discovery technique inspired by biological processes to evolve their internal knowledge. In this regard, LCSs mimic human experts by making use of rule lists to choose the best action to a given problem situation, acquiring their knowledge through the experience. LCSs have been applied with relative success to a wide set of real-­‐ world problems such as cancer prediction or business support systems, among many others. Furthermore, on some of these areas LCSs have demonstrated learning capacities that exceed those of human experts for that particular task. The purpose of this thesis is to explore the online learning nature of Michigan-­‐style LCSs for mining large amounts of data in the form of continuous, high speed and time-­‐changing streams of information. Most often, extracting knowledge from these data is key, in order to gain a better understanding of the processes that the data are describing. Learning from these data poses new challenges to traditional machine learning techniques, which are not typically designed to deal with data in which concepts and noise levels may vary over time. The contribution of this thesis takes the extended classifier system (XCS), the most studied Michigan-­‐style LCS and one of the most competent machine learning algorithms, as the starting point. Thus, the challenges addressed in this thesis are twofold: the first challenge is building a competent supervised system based on the guidance of Michigan-­‐style LCSs that learns from data streams with a fast reaction capacity to changes in concept and noisy inputs. As many scientific and industrial applications generate vast amounts of unlabelled data, the second challenge is to apply the lessons learned in the previous issue to continue with the design of unsupervised Michigan-­‐style LCSs that handle online problems without assuming any a priori structure in input data
    corecore