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Abstract. In this paper, an evolutionary technique applied to the op-
timal short-term scheduling (24 hours) of the electric energy production
is presented. The equations that define the problem lead to a nonlin-
ear mixed-integer programming problem with a high number of real and
integer variables. Consequently, the resolution of the problem based on
combinatorial methods is rather complex. The required heuristics, in-
troduced to assure the feasibility of the constraints, are analyzed, along
with a brief description of the proposed genetic algorithm. Finally, re-
sults from realistic cases based on the Spanish power system are reported,
revealing the good performance of the proposed algorithm, taking into
account the complexity and dimension of the problem.
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1 Introduction

The optimal short-term scheduling of the electrical energy production [1] aims at
determining which generating units should be online and the corresponding op-
timal generation of thermal and hydro units along the scheduling period, usually
24 hours, in order to minimize the expected total cost satisfying the forecasted
system load. The scheduling task leads to a nonlinear mixed-integer program-
ming problem. Moreover, this problem is coupled in time by the maximum speed
that generating units, specially thermal units, are able to change the produced
energy (known as up and down ramps), and also by the topology of the hydro-
electric power plants, with a delay in hours between the water of a reservoir
being used and the availability of that water in the reservoirs downstream. A
really large number of variables, both real and binary variables, is needed to
properly model this problem. Many approaches have been proposed for the res-
olution of this optimization problem, ranging from Dynamic Programming to
Linear Mixed-Integer Programming or Lagrangian Relaxation [2], the latter be-
ing the most widely used optimization method in commercial programs. Genetic
Algorithms (GA) [3, 4], a general-purpose stochastic search method based on the
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mechanics of natural selection, have also been successfully applied to the Elec-
trical Energy Scheduling problem since the adaptation is quite straightforward
due to the combinatorial nature of this problem. In this paper, a GA applied to
the optimal short-term (24 hours) electrical energy production scheduling is pre-
sented. The paper is organized as follows: Section 2 presents the equations used
to model the scheduling problem, leading to a nonlinear mixed-integer program-
ming problem with a large number of both real and integer variables. Section 3
briefly introduces the proposed GA, and several implementation issues that are
crucial to obtain feasible solutions are discussed. Finally, Section 4 reports some
results obtained from realistic cases based on the Spanish power system, and the
main conclusions of the paper are outlined.

2 Formulation of the Problem

The objective of the scheduling problem is to determine the on/off state and the
energy production of thermal and hydro units on each hour of the scheduling
period, in order to minimize the total cost of the system satisfying the forecasted
hourly demand and the technical constraints of thermal and hydro power plants.

2.1 Objective Function

The total energy production cost of the scheduling period is defined by

CT =
nt∑

t=1

ng∑

i=1

[Ci(Pi,t) + SUi · Ui,t · (1 − Ui,t−1) + SDi · (1 − Ui,t) · Ui,t−1] (1)

where nt is the number of hours of the scheduling period, ng is the number
of thermal units, each having a quadratic cost function, Ci(Pi,t), of the energy
production, Pi,t; SUi and SDi are respectively the start-up and shut-down cost
of thermal generator i, and Ui,t is a binary variable representing the on/off state
of the thermal generator i at hour t. It can be observed that the total production
cost is a sum of quadratic functions of the energy of each thermal generator if the
state of each generator was previously stated by the GA. This is the case of the
proposed technique because the on/off states are managed by the GA. Notice
that the production cost is only due to the production of thermal generators Pi,t,
i.e., generators that produce energy by burning a fuel or by atomic means. Hydro
units provide free-of-charge energy PHh,t that is only subject to the availability
of water in the corresponding reservoirs.

2.2 Constraints

The minimization of the objective function is subject to technical constraints,
water balance in hydroelectric power plants and the associated reservoirs, and
to the system energy demand and reserve balances:
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– Maximum and minimum limits on the hourly energy production of the ther-
mal and hydro generators,

Pm
i ≤ Pi,t ≤ PM

i i = 1, . . . , ng t = 1, . . . , nt (2)
PHm

h ≤ PHh,t ≤ PHM
h h = 1, . . . , nh t = 1, . . . , nt (3)

where nh is the number of hydro plants, PHh,t is the energy production of
hydro plant h at hour t, and Pm

i , PM
i , PHm

h and PHM
h are respectively

the limits on the hourly energy production of the thermal unit i and hydro
plant h.
The equation (2) cannot be fulfilled when thermal generators are either start-
ing or stopping, starting and stopping periods begin respectively when the
corresponding state changes to ON or OFF. In order to avoid this problem,
this equation is modified for thermal units that are either being started-up
or shut-down,

0 ≤ Pi,t ≤ PM
i i = 1, . . . , ng t = 1, . . . , nt (4)

Moreover, in order to penalize the power generated by thermal units during
periods of shutting-down, energy that is out of the optimal commitment,
penalty terms are added to the objective function as follows

C′
T = CT +

nt∑

t=1

ng∑

i=1

Cp · Pi,t · (1 − Ui,t) (5)

– Maximum up and down ramps of thermal units. The thermal units can not
increase or decrease the production of energy at consecutive hours by more
than a given maximum rate,

−RBi ≤ Pi,t − Pi,t−1 ≤ RSi i = 1, . . . , ng t = 1, . . . , nt (6)

where RSi y RBi are respectively the maximum up and down rates of the
thermal generator i, usually known as ramp limits.

– Limits on the available water. The hydro units use water to generate elec-
trical energy and water is a limited resource. Thus, the energy produced by
a hydro unit is limited by the volumen of available water in the associated
reservoir. In consequence, reservoir levels are subject to capacity limits,

V Hm
h ≤ V Hh,t ≤ V HM

h h = 1, . . . , nh t = 1, . . . , nt (7)

where V Hh,t is the stored energy of reservoir h at hour t, corresponding to the
hydro unit h; V Hm

h and V HM
h are respectively the minimum and maximum

limits on the stored energy imposed by the maximum and minimum possible
water level of reservoir h.

– Hydraulic coupling between reservoirs. Time coupling exits due to cascaded
reservoirs, since the water used to produce energy in a hydro unit will be



Application of Evolutionary Computation Techniques 659

available later to the next hydraulic unit downstream with a certain delay,
obviously when the water has arrived to the corresponding reservoir.

V Hh,t = V Hh,t−1 − PHh,t +
∑

n(k)=h

PHk,t−d(k) + Wh (8)

where d(k) is the water delay time in hours between reservoir k and the next
reservoir downstream, n(k), that is supposed to be reservoir h, and Wh is
the natural inflow of reservoir h.

– The total hourly energy production must be equal the total energy demand
at that hour, Dt, which has been previously forecasted.

ng∑

i=1

Pi,t · Ui,t +
nh∑

h=1

PHh,t = Dt t = 1, ..., nt (9)

– The total energy that can be produced on each hour must exceed the fore-
casted demand by a specified amount, Rt, i.e., the generating capacity in
reserve to be used if an unexpected event such as the failure of a plant or a
large error on the forecasted demand happened.

ng∑

i=1

PM
i · Ui,t +

nh∑

h=1

PHM
h ≥ Dt + Rt t = 1, ..., nt (10)

– Minimum up and down times of thermal units. The minimum up time, UTi,
is the minimum number of hours that the unit i must be functioning after
starting. Besides, the minimum down time, DTi, is the minimum number of
hours that the unit i must be shut-down after stopping.

DTi−1∑

k=0

(1 − Ui,t+k) ≥ DTi if unit i is shut-down at hour t (11)

UTi−1∑

k=0

Ui,t+k ≥ UTi if unit i is started at hour t (12)

Start-up and shut-down costs of realistic cases tend to reduce the number
of shut-downs and start-ups to a minimum, making the minimum-time con-
straints useless in most cases. Moreover, the inclusion of hydraulic generation
facilitates the fulfillment of the thermal unit constraints because the hydro
units are faster in response and produce energy at no cost, i.e., the hydraulic
energy will be strategically distributed among the hours of the scheduling
horizon in order to avoid the starting of more thermal units than the strictly
required.

As an example, Table 1 shows the number of constraints, binary and con-
tinuous variables of the above problem for a test system comprising 49 thermal
units, 2 hydro units and the scheduling horizon embracing 24 hours.
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Table 1. Dimension of the problem for a test system comprising 49 thermal units, 2
hydro units and 24 hours.

Number of Variables

Number of Constraints Binary Continuous

(2 · ng + 3 · nh + 2) · nt + 2 · ng ng · nt (ng + 2 · nh) · nt

2642 1176 1272

3 The Proposed Genetic Algorithm

As presented in the previous section, the optimal scheduling of the electric energy
production is a nonlinear, non-convex, combinatorial, mixed-integer and very
large problem. Hence, there is no technique that would always lead to the opti-
mal solution of the problem for realistic cases. In the last years, techniques based
on heuristics, dynamic programming, linear mixed-integer programming and la-
grangian relaxation have been applied to this particular problem. Techniques
based on heuristics rely on simple rules that depends on the knowledge of power
plant operators. Constraints of realistic problems are not properly modeled by
dynamic programming approaches, and the number of required states increases
exponentially, thus dealing to excessive computation times. Linear programming
approaches cannot properly model neither the nonlinear objective function nor
the nonlinear constraints, and crude approximations are required. Finally, the
use of heuristic techniques is required by lagrangian relaxation approaches to
calculate feasible solutions, deteriorating the quality of the obtained solutions.
Consequently, new methods are still needed to obtain more optimal solutions to
realistic problems. In this paper, a GA [5, 6] has been used to solve the scheduling
problem due to its ability to deal with nonlinear functions and integer variables.

The proposed GA algorithm is used to compute the optimal on/off states
of thermal units, i.e., the binary variables, while the optimal continuous vari-
ables, i.e., the hourly energy production of hydro and committed thermal units,
are calculated solving a typical quadratic programming problem by a classical
optimization algorithm in which the on/off states of thermal units are known.

Convergence characteristics of GA depend on several key implementation
issues that are discussed in the rest of this section.

3.1 Codification of the Individuals
Each individual is represented by the on/off states of thermal generators during
the scheduling period. Thus, individuals are represented by 0/1 matrices, with
columns corresponding to time scheduling intervals and rows associated with
thermal units. If element (i, j) is equal to one, the state of thermal unit i during
time interval j is on. Similarly, if element (i, j) is equal to zero, the state of
thermal unit i during time interval j is off.

3.2 Initial Population
Up and down ramp constraints of thermal units, equation (6), are a key factor in
the convergence of the GA: if the initial population is strictly randomly selected,
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ramp constraints lead to many infeasible individuals in the initial generation,
which makes successive generations suffer from poor diversity, and the GA may
converge prematurely. To assure that the initial population contains an adequate
percentage of feasible individuals, initial on/off schedulings are randomly selected
but modified to account for the minimum start-up and shut-down times imposed
by ramp constraints. For example, if generator g, with a maximum down ramp
equal to 100 MWh, is on at hour 3 producing an energy of 400 MWh, this
generator would require 4 hours to shut-down and, consequently, the generator
at hours 4, 5 and 6 should be on. The state Ug,3 is strictly randomly generated
but the states for the following hours, Ug,4, Ug,5 and Ug,6, are given by

Ug,3 = 1 ⇒ Ug,4 = Ug,5 = Ug,6 = 1 (13)

3.3 Fitness Function

The fitness function evaluates the quality of an individual of the population. In
this case, the function is the inverse of the total production cost of the individual.
The total production cost is obtained solving a quadratic programming problem
by using a nonlinear Interior Point method [7–9]. An extra-high-cost fictitious
generator is included to satisfy the system demand, equation (9). This fictitious
generator generates the necessary energy that the rest of generators cannot pro-
duce to satisfy the demand of the customers. A penalty term proportional to the
deficit in reserve requirements is added in the cost function aiming at satisfying
the reserve constraint. Penalty terms only apply to infeasible individuals, which
are consequently eliminated throughout the evolutionary process.

3.4 Selection Operator

To produce a new generation, parents are randomly selected using a tourna-
ment selection technique that selects the best individuals for reproduction. The
probability of a particular individual being selected is in proportion to its fitness
function, taking into account that the total generation cost, including possi-
ble penalizations, is being minimized. The individuals chosen to be parents are
included in the following generation.

3.5 Crossover Operator

Children are obtained by adding the binary strings that results from random
partitions of each row, as shown in Figure 1a. A column-partitioning procedure
may also be applied (Figure 1b). This crossover operator is a particular case of
the multipoint crossover operator. As rows are associated with the thermal units,
the first approach yields the infeasibility of new individuals in terms of minimum
up and down times, equations (11) and (12), while the second approach affects to
the constraint of the demand (9) and the reserve (10). The crossover probability
has been set to one, i.e., two individuals that have been selected to be parents
are always combined to obtain a new individual.
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Fig. 1. Crossover Operator: a) random partitions of rows; b) random partitions of
columns.

In the final version of the GA, the crossover by rows has been chosen because
start-up and shut-down costs of realistic cases, along with the inclusion of hy-
draulic generation, tend to reduce the number of shut-downs and start-ups to a
minimum, making the minimum-time constraints useless in most cases. All rows
are always combined to obtain a new individual, though probabilities could have
been used to determine which rows should be combined.

3.6 Mutation Operator

Following the crossover process, children are mutated to introduce some new
genetic material according to a pre-defined mutation probability. The gene to
be mutated is represented by a randomly selected generator and time interval,
element (i, j) of the matrix representing a particular individual. The mutation
implies changing the state on/off of the generator with some probability.

4 Test Results

The GA algorithm have been applied to several realistic cases based on the Span-
ish generation system, comprising 49 thermal units and one equivalent hydraulic
generator, the scheduling horizon embracing 24 hours. Hourly system demand
corresponds to a working day of 1998.

Table 2 shows the main parameters of the implemented GA.
Figure 2 shows the evolution of the fittest individual cost and the average cost

of the generation throughout the evolutive process, with and without reserve re-
quirements (figures 2a and 2b respectively). Obviously, reserve requirements lead
to higher operating costs, both in the best solution (3152.71 and 3109.51 thou-
sands of Euros, respectively) and in the average (3170.90 and 3132.02 thousands
of Euros, respectively).

Figure 3 presents the optimal thermal and hydraulic generation, along with
the evolution of the marginal cost during the scheduling period. The marginal



Application of Evolutionary Computation Techniques 663

Table 2. Parameters of the proposed GA.

Maximum number Size of the Probability
of generations population of crossover

5000 100 1

Number of children Number of mutations Probability
by reproduction of the best individual of mutation

2 2 0.1
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Fig. 2. Evolution of the best individual and average costs: a) reserve requirements
considered; b) no reserve requirements considered.

cost represents the increment of cost when the system demand increases in one
MWh, i.e., the hourly cost of the energy. Ramp constraints are only included in
the second case (Figure 3b). Note that, when ramps are considered, a higher cost,
fast-response generator is needed at hour 22 to satisfy a small peak of demand.
As expected, the total operating cost is higher when ramps are included (3119.1
and 3109.5 thousands of Euros, respectively).

Figure 4 shows the optimal scheduling of a thermal generator, ignoring its
ramp constraints (Figure 4a) and considering them (Figure 4b). Notice that
ramps modify the optimal scheduling when the generator is starting and stop-
ping. The penalty term imposed to the objective function when Ui,t = 0, forces
the generator to adjust its output to the least possible value compatible with
the ramp constraint (hours 15 and 16). Similar considerations apply when the
generation is starting (hours 20 and 21).

Finally, Figure 5 shows the solution provided by the proposed GA applied
to the optimal scheduling of 49 thermal units and two cascaded reservoirs with
a delay of 10 hours and all the energy initially stored in the upstream reservoir.
Note that the downstream reservoir 2 cannot start producing until water released
by generator 1 arrives. The total available hydraulic energy cannot be used due
to the hydraulic constraint and to the maximum power of generators.
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Fig. 3. Optimal thermal and hydraulic generation: a) no ramp constraints considered;
b) ramp constraints considered.
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Fig. 4. Optimal scheduling of a thermal generator: a) no ramp constraints considered;
b) ramp constraints considered.
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Fig. 5. Optimal thermal and hydraulic generation of a case with two cascaded reservoirs
and all energy initially stored in the upstream reservoir.

5 Conclusions

In this paper an evolutionary technique applied to the optimal short-term (24
hours) electric energy production scheduling has been proposed. The equations
defining the model of the problem have been presented leading to a nonlinear
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mixed-integer programming problem with a large number of real and integer
variables. Some heuristics have been introduced to assure the feasibility of the
solutions obtained by the GA, and key implementation issues have been dis-
cussed. Results from realistic cases based on the Spanish power system confirm
the good convergence characteristics on the proposed GA.

Further research will be oriented to improve the modeling of realistic cases
and to test other possible implementations of the selection, crossover and muta-
tion operators.
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