34 research outputs found

    Slime mould: The fundamental mechanisms of biological cognition

    Get PDF
    © 2018 Elsevier B.V. The slime mould Physarum polycephalum has been used in developing unconventional computing devices for in which the slime mould played a role of a sensing, actuating, and computing device. These devices treated the slime mould as an active living substrate, yet it is a self-consistent living creature which evolved over millions of years and occupied most parts of the world, but in any case, that living entity did not own true cognition, just automated biochemical mechanisms. To “rehabilitate” slime mould from the rank of a purely living electronics element to a “creature of thoughts” we are analyzing the cognitive potential of P. polycephalum. We base our theory of minimal cognition of the slime mould on a bottom-up approach, from the biological and biophysical nature of the slime mould and its regulatory systems using frameworks such as Lyon's biogenic cognition, Muller, di Primio-Lengelerƛ modifiable pathways, Bateson's “patterns that connect” framework, Maturana's autopoietic network, or proto-consciousness and Morgan's Canon

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the field’s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate — slime mould Physarum polycephalum, an arguably ‘simple’ single-celled organism — and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organism’s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine

    Brainless but smart: Investigating cognitive-like behaviors in the acellular slime mold physarum polycephalum

    Get PDF
    Evolutionary pressures to improve fitness, have enabled living systems to make adaptive decisions when faced with heterogeneous and changing environmental and physiological conditions. This dissertation investigated the mechanisms of how environmental and physiological factors affect the behaviors of non-neuronal organisms. The acellular slime mold Physarum polycephalum was used as the model organism, which is a macroscopic, unicellular organism, that self-organizes into a network of intersecting tubules. Without using neurons, P. polycephalum can solve labyrinth mazes, build efficient tubule networks, and make adaptive decisions when faced with complicated trade-offs, such as between food quality and risk, speed and accuracy, and exploration and exploitation. However, the understanding of the mechanisms used by P. polycephalum in exhibiting such behaviors is very limited. Therefore, the objective of this dissertation is to understand the mechanisms adopted by non-neuronal organisms to explore and exploit resources in the physical environment, using environmental and physiological information. To this end, the dissertation characterizes the direction and amount of influence between different regions of tubule-shaped P. polycephalum cells in binary food choice experiments. The results show that when the two food sources are identical in quality, the regions near the food source act as the drivers of P. polycephalum tubule behavior. Conversely, when one of the food sources is more enriched with nutrients, the regions near the rejected food source were found to drive the tubule behavior. Secondly, a generalized choice-making criterion was formulated to determine the choice-making behaviors of P. polycephalum, examine whether sufficient experimental time was given to make a choice, and determine the time point at which a choice was made. The criterion was tested on binary food choice experiments using P. polycephalum tubules. The results show that P. polycephalum made a choice for the option for the better food option, except when the differences in food quality were low. Moreover, the criterion was found to not determine the choice-making behaviors when the food sources presented were identical in quality. Thirdly, the dissertation investigated whether P. polycephalum cells modify their future exploratory behavior using their past foraging experience. The results did not find a strong influence of the past foraging experience on the exploratory networks formed by P. polycephalum cells. Finally, P. polycephalum exploratory behaviors were examined and compared when the cells were in high-energy versus low-energy physiological conditions. Interestingly, the study found the P. polycephalum cells in low-energy conditions show an increased tendency to split themselves into multiple autonomous cells. Additionally, the behavior is shown to increase the fitness of the cell by increasing its foraging efficiency

    Flight-schedule using Dijkstra's algorithm with comparison of routes findings

    Get PDF
    The Dijkstra algorithm, also termed the shortest-route algorithm, is a model that is categorized within the search algorithms. Its purpose is to discover the shortest-route, from the beginning node (origin node) to any node on the tracks, and is applied to both directional and undirected graphs. However, all edges must have non-negative values. The problem of organizing inter-city flights is one of the most important challenges facing airplanes and how to transport passengers and commercial goods between large cities in less time and at a lower cost. In this paper, the authors implement the Dijkstra algorithm to solve this complex problem and also to update it to see the shortest-route from the origin node (city) to the destination node (other cities) in less time and cost for flights using simulation environment. Such as, when graph nodes describe cities and edge route costs represent driving distances between cities that are linked with the direct road. The experimental results show the ability of the simulation to locate the most cost-effective route in the shortest possible time (seconds), as the test achieved 95% to find the suitable route for flights in the shortest possible time and whatever the number of cities on the tracks application

    Drawing Out the Superorganism: Artistic Intervention and the Amplification of Processes of Life

    Full text link
    The true slime mould, Physarum polycephalum, is a single-celled organism which spends much of its life creeping around the forest floor feeding on rotting vegetation. Comprised of many cells, all operating within a single cell membrane, this many-headed amoeba possesses a form of proto-intelligence which enables it to operate far beyond its physiological means. Despite having no sensory organs or a brain, the slime mould has demonstrated that it can recognize pattern by anticipating events and is entirely self-organizing, with no centralized control system – purely a mass of cellular cytoplasm pulsing in a synchronous flow. This chapter examines the behaviours of this intriguing organism as mediated through a series of time-lapse studies designed to draw out inherent processes of life. Responding to given interventions – a series of invitations and interruptions utilizing known attractants and repellents – a performative stimulus/response emerges. The imaging technologies employed amplify the biological world of the slime mould to human spatio-temporal scale. The intention of the studies is to reveal the underlying processes at play within this fascinating and beautiful organism and, through the aesthetic and technological devices employed, to entice other humans to observe and take note. The edited collection Drawing Processes of Life is the product of artists, biologists and philosophers working together to formulate new ways of representing a new approach to life. It shows how better to represent biological process through drawing and to demonstrate the scientific value of drawing as a method. 78 b/w and 36 colour illustrations. A PDF version of this book is available for free in Open Access. It has been made available under a Creative Commons Attribution 4.0 International Public License
    corecore