
UNIVERSITY OF THE WEST OF ENGLAND

On the development of slime mould

morphological, intracellular and

heterotic computing devices.

by

Richard Mayne

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of the Environment and Technology

Department of Computer Science and Creative Technologies

June 2016

http://uwe.ac.uk
richard.mayne@uwe.ac.uk
http://www1.uwe.ac.uk/et/
http://www1.uwe.ac.uk/et/csct.aspx


Declaration of Authorship

I, RICHARD MAYNE, declare that this thesis titled, ‘On the development of slime

mould morphological, intracellular and heterotic computing devices’ and the work pre-

sented in it are my own. I confirm that:

� This work was done wholly in candidature for a research degree at this University.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



UNIVERSITY OF THE WEST OF ENGLAND

Abstract

Faculty of the Environment and Technology

Department of Computer Science and Creative Technologies

Doctor of Philosophy

by Richard Mayne

The use of live biological substrates in the fabrication of unconventional computing (UC)

devices is steadily transcending the barriers between science fiction and reality, but ef-

forts in this direction are impeded by ethical considerations, the field’s restrictively broad

multidisciplinarity and our incomplete knowledge of fundamental biological processes.

As such, very few functional prototypes of biological UC devices have been produced to

date. This thesis aims to demonstrate the computational polymorphism and polyfunc-

tionality of a chosen biological substrate — slime mould Physarum polycephalum, an

arguably ‘simple’ single-celled organism — and how these properties can be harnessed

to create laboratory experimental prototypes of functionally-useful biological UC proto-

types. Computing devices utilising live slime mould as their key constituent element can

be developed into a) heterotic, or hybrid devices, which are based on electrical recogni-

tion of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale

morphological processors, whose output is the organism’s morphological adaptation to

environmental stimuli (input) and c) intracellular processors wherein data are repre-

sented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein

network. It is demonstrated that each category of device is capable of implementing

logic and furthermore, specific applications for each class may be engineered, such as

image processing applications for morphological processors and biosensors in the case of

heterotic devices. The results presented are supported by a range of computer modelling

experiments using cellular automata and multi-agent modelling. We conclude that P.

polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory

input and polyfunctional in its demonstrable ability to undertake a variety of computing

problems. Furthermore, our results are highly applicable to the study of other living

UC substrates and will inform future work in UC, biosensing, and biomedicine.
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Chapter 1

Introduction

1.1 Opening Statements

Is a living organism — or a component of an organism — a computing device? Such

questions are divisive and are an unhelpful way of comparing the seemingly incalculable

complexity of life to an easily quantifiable man-made system. But, it is nevertheless

clear that certain living systems are able to solve a wide array of problems in a manner

that can be characterised as computation.

Through this use of the term ‘computation’, we here do not make explicit reference to the

process by which numerical solutions to arithmetical problems are produced, or indeed

simply the use of conventional electronic computers, but rather a generalised notion of

the transformation of data in a programmable, predictable manner. ‘Data’ in this sense

is any transient state of a system which can be unambiguously interpreted, such as the

distribution of charge across a silicon chip, concentration profiles of various compounds

in a chemical reactor or even the space-time configuration of balls on a billiards table.

This open-mindedness towards the computational process is the basis of ‘unconventional

computing’ (UC), the field of study which seeks to creatively interpret aspects of the

universe as computation or media suitable for the implementation of computing.

When we apply a ‘UC filter’ to our appreciation of biology, consider that the components

of the human brain, neurons (nerve cells) and, to some extent, their supporting glial

cells, are able to cooperatively calculate the solution to various problem classes as the

product of a remarkably complex series of electrochemical reactions: this process is

far-removed from the interactions between charges held in the silicon components of a

pocket calculator, yet both are capable of ‘computing’ the correct solution to arithmetical

problems. Thus, there is a common functionality between biological entity and machine.

1
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We are currently ill-equipped to address the nature of the computing processes within

media such as the brain as our understanding of the neurobiological basis of thought,

problem solving, consciousness etc. have not yet been elucidated with certainty [298].

As Penrose noted in his discourse on the crossovers between brain function, computing

and physics [231], gaps in our knowledge of neurobiology and the physical laws which

underlie it pose fundamental obstacles towards both full understanding of the mind (the

combined functions of the brain; the phenomenological study of which is achieved via

the field of psychology) and the creation of artificial minds through endeavours in the

field of artificial intelligence. As such, although research which seeks to address these

questions is of great importance to so many fields of human inquiry, all such endeavours

will be mired in unhelpful mixes of fact and opinion, lengthy debate, controversy, maybe

even derision and certainly extensive conflicts of philosophical points of view — indeed,

the reader is likely to have an entirely different opinion to the author as well as Penrose

on the precise nature of the ‘unknown factors’ which underlie these concepts (quan-

tum physics, complexity theory, biochemistry, or perhaps even the assertion that there

exists no deeper level to reality!) and how best to elucidate them. Coupled with the

restrictively broad skill set required of UC researchers due to the field’s inherent multi-

disciplinarity, progress in the production of physical UC prototypes is slow; indeed, the

ratio of theoretical to practical publications in the field is an estimated 100 to 1, as of

2015 [25].

The human brain is by no means the only biological substrate capable of computation.

The author’s original contribution to knowledge contained within this document is one

small step towards the monolithic undertaking of linking computer science to biology,

but crucially does not constitute a piece on neurobiology, theoretical physics, psychol-

ogy, artificial intelligence or philosophy. Presented here is an exploration into how the

behaviour patterns of a far simpler biological substrate than the brain, a single-celled

organism called a slime mould, may be characterised as computation and put to prac-

tical use. Such an organism cannot be considered to possess a ‘mind’ insofar as we

understand the term because it does not possess a brain, nervous system or any other

apparatus usually associated with concepts of intelligence or indeed computing, yet it is

able to exhibit apparently ‘intelligent’1 behaviour. Through research upon such an or-

ganism, we seek to avoid the aforementioned pitfalls — complexity of substrate, ethical

restrictions etc. — that usually plague research on biological UC substrates and instead

focus on the production of laboratory prototypes of slime mould UC devices.

1This term is henceforth avoided because of its notorious subjectivity; the matter of finding an
objective definition with regards to behaviour classification is discussed in Chapter 2.
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1.2 Unconventional Computing: An Introduction

Unconventional — or, non-classical/non-standard — computing is emphatically not the

process of fabricating conventional computing architectures utilising novel materials; we

do not suggest that a single-celled organism or indeed the brain are suitable substrates

for implementing a stored program architecture in a general purpose computer. Indeed,

UC is not even necessarily always oriented towards fabricating novel architectures to

compete with extant ones. Rather, the primary goals of UC research are, to paraphrase

the criteria presented by Stepney et al. [285];

1. To recognise that the physical characteristics of various aspects of the

universe autonomously and automatically carry out ‘computation’ as a

by-product of their adherence to the laws of physics. To pose an example,

the beating of the microscopic finger-like projections (cilia) that coat the surface

of various species of protozoa passively sort particles according to size as a by-

product of the process by which they propel surrounding fluids: larger objects

‘float’ along the surface directed by synchronised (metachronal) ciliary beating,

whereas objects that can fit through the gaps between cilia travel in a different

direction [134].

Applying a ‘computationalist’ interpretation to an action such as sorting — a

problem of situationally variable difficulty on conventional computing architectures

— by cilia reveals the stunning efficiency of the mechanism. Specifically, we find

that an array of cilia demonstrates decentralised control of a massively parallel

array of organelles capable of:

• Data reception (environmental, inter-ciliary and cellular) and actuation [54,

256].

• Self-organisation and emergence through the spontaneous generation of metachronal

rhythms purely as a function of hydrodynamic forces and tactile stimulation,

whose complexity cannot be adequately defined through the interaction of

single contributing processes [107, 135, 256].

• Self-assembly and self-powering through rigorously optimised (via evolution)

cytopoietic and foraging mechanisms.

• Spatial propagation of data which may be represented by the objects being

sorted, energy dynamics, concentration profiles in signal transduction media

etc. which allows for continuous assessment of the state of the computation.

These qualities, which exemplify several core UC concepts, are incident of the in-

trinsic properties of the materials the cell is formed of and the manner of their
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assembly (encompassing their linkage and morphology) which, crucially, are at-

tained automatically and at no extra energy cost where such implementations

in conventional hardware would be extremely difficult to achieve; for example,

clocking mechanisms and sensor sampling are not required in such a decentralised

system, self-assembly requires no external guiding influence (e.g. from nanorobots

in artificial systems) and motor control of compliant cell components is outsourced

to, or embodied within, the materials which form the components (contractile pro-

teins, membrane elasticity etc.) [141, 207].

2. To exploit natural processes such that we are able to use them for

performing ostensibly ‘useful’ work. Consider Fredkin and Toffoli’s Billiard

Ball Model (BBM) of computation [122], wherein hypothetical billiard balls of

uniform physical dimensions representing ‘data’ are propelled along the gridlines

of a Cartesian lattice. The output of the ‘machine’ is interpreted by the presence

or absence of data in specific locations after the machine has run for a certain

period of time, hence computation may be performed through conditional routing

of the balls via their interactions, i.e. collisions followed by elastic ricochets. Thus,

such a system may be used to realise logical operations through exploitation of the

physical properties of its constituent materials (the BBM is re-visited in more

detail in Chapter 5).

3. To take inspiration from natural systems in order to inform the design of

computing paradigms in other media. This encompasses the augmentation

of conventional architectures — for example, bio-inspired computing paradigms

such as automated selection-based algorithm optimisation as per the precepts of

Darwin’s theory of evolution by natural selection (evolutionary computing) [62,

113] — as well as the development of hybrid conventional-unconventional systems,

such as human-computer interfaces which, when adequately developed, will be

utilised in the generation of neurally-integrated prostheses and other therapeutic,

biomedical and biosensing applications [295].

Examples of UC substrates under investigation within recent years include:

• Biological: DNA (deoxyribonucleic acid) computers [37, 188], whole-organism (e.g.

soldier crab) ballistic logical gates, [136], genetically-programmed bacterial swarm

computers [56], breather (mobile waves of molecule displacement) interactions in

biological polymers [119], immunocomputing [292], neuronal computing [64].

• Bio-inspired: Neural networks [42, 143], evolutionary computing [62, 113].
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• Chemical: Reaction-diffusion chemical processors based on computation via inter-

action between growing patterns, such as the Belousov-Zhabotinsky (BZ) reaction

[10, 81, 347] and lipid droplet-encapsulated mixed excitable media [63], soap film

computing [105].

• Physical: Photonic/optical soliton-based interactions [58], single-electron interac-

tions [142].

• Quantum: Including quantum tunneling [112], ion trapping [283], nuclear magnetic

resonance [57] and quantum dot/spin state transition [151] based architectures.

It should be noted that UC does not exclude the use of conventional computers; most

subfields make extensive use of computer simulations — cellular automata (CA) (see

Appendix B.1 for a description), multi-agent models etc. — in order to specify and

record data pertaining to a substrate under investigation in a fully-defined, controlled

environment, whilst other subfields such as evolutionary computing seek to implement

unconventional paradigms through software run on conventional hardware. Further-

more, UC devices may incorporate conventional computers (as control elements, output

interpretation etc.): such a hybrid is referred to as a heterotic computer, although this

term can be used to apply to any device comprising more than one variety of physical

computing medium interacting synergistically [174].

It must be noted that there are currently a number of active application-based research

fields which do not identify themselves as UC, but whose scope and remit encompass

aspects of it; examples include the rapidly-expanding topic of molecular communications

and the various forms of biomedical engineering/medical physics [71]. This is discussed

further in Chapter 2.

As we have seen, the advantageous properties of a particular UC medium are dic-

tated by the physical properties of the constituent materials, be they parallelism, self-

organisation, energy efficiency etc., but little has been said pertaining to the applications

of such technologies. Unsurprisingly, a substrate’s physical properties dictate its appli-

cation: to list two extremely limited examples, massively parallel processing substrates,

such as the BZ reaction or in vitro DNA-based processors, are suited to multi-input

stream applications such as sensing, whereas quantum computers show great promise

for being capable of efficiently implementing algorithms that may only be solved ineffi-

ciently (if at all) by conventional architectures, such as factorisation [60, 315].

The rationale behind research into specifically biological UC substrates is explored in

Chapter 2. By way of a brief conclusion to this section which has introduced the key



Chapter 1. Introduction 6

concepts of and justifications for UC research, the following quotation from Margolus

[197] summarises the running theme of this investigation.2

“The laws of nature are the ultimate computing resource — the most

efficient computation imaginable would make the most direct possible use of

the physical interactions and degrees of freedom available.”

1.3 Thesis and Research Questions

In acknowledgement of the proposed computational nature of biological processes and

the justifications for research on UC substrates, the thesis presented in this document

is as follows:

Slime mould Physarum polycephalum is a polymorphic, polyfunc-

tional unconventional computing substrate.

To deconstruct this phrase, this thesis can only be substantiated through the construc-

tion of physical prototypes of slime mould UC devices that demonstrate:

1. Polymorphism: Borrowing the concept from conventional programming lan-

guages3, polymorphism applied to slime mould implies the use of multiple forms

of input data — different formats of environmental stimuli — to which the organ-

ism responds by instantiating a range of common, well-formalised processes which

lead to a repeatable output. The analogy is imperfect as, primarily, it is unclear

at this stage in the investigation how data are represented and processed within

the organism (or indeed, whether it is the data that processes the components of

the organism), but the key concept is that this property implies that irregular,

unstructured input must lead to a coherent, statistically-repeatable output via a

range of cellular processes which are essentially algorithmic.

2. Polyfunctionality: Again drawing from classical computing concepts, this cri-

terion requires that it be practically demonstrated that slime mould UC devices

2Although the reader should keep in mind that specifically biological UC substrates are unique in
that they have evolved in such a way that the chaos of a vast number of degrees of freedom are reduced
and ordered automatically.

3In object-oriented programming languages, polymorphism refers to different classes of object which
can be programmed in the same manner, using the same operations, from the same interface. Consider
that in Java, both int and float are polymorphic object classes as they may both be manipulated with
the same operations (addition, multiplication etc.).
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are capable of carrying out a range of functions, e.g. Boolean logical or arithmeti-

cal operations, on input data such that they can be considered to have multiple

demonstrable practical uses. This encompasses the need to investigate to what ex-

tent slime mould as a UC substrate can be said to be polyfunctional in comparison

to, for example, conventional computers.

In plainer terms, the purpose of evaluating this thesis is to construct physical prototype

devices using slime mould which are able to solve various classes of computing problem

so as to demonstrate to what extent the organism can be used for computing as well as

uncover design principles for biological UC in general.

This was evaluated through laboratory-based experimental studies into the mapping of

biological phenomena exhibited by slime mould P. polycephalum in response to various

forms of stimuli as either intracellular physiological (measured microscopically) or/and

morphological (macroscopic) parameters; these were consequently utilised as the basis

of input and output in a range of prototype computing devices fabricated from slime

mould, or utilising slime mould as their key constituent element. In doing so, the

following research questions were addressed:

1. Which slime mould morphological and physiological parameters may be utilised as

measurable, statistically-repeatable output in a slime mould computing device?

2. How are data and computing tasks represented in a slime mould computing device,

how can it be programmed and how is an output perceived and interpreted by the

user?

3. To what extent can slime mould computing be used practically and how can the

knowledge acquired be applied to the wider field of UC?

These are deconstructed in section 2.4.

1.4 Thesis Structure

This document is structured as follows:

Chapter 2 begins with an introduction to the use of biological substrates in UC, followed

by a thorough review of the use of slime mould as a UC substrate and comprises the

biological preliminaries describing the cytological, physiological and biochemical aspects

underlying slime mould behaviour patterns and a summary of all work completed to date

in the field of ‘slime mould computing’. Finally, the project’s methodology is formalised.
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This is followed by Chapters 3–5 which comprise the experimental aspects of this pro-

gram of research and loosely correspond to the order of the research questions in section

1.3, although each has significant crossover. They examine:

3. Fabrication of functional slime mould computing devices hybridised

with conventional hardware. Initially, computationally-universal optically-

coupled slime mould electrical logic gates are presented, followed by a description

of the development of a functional slime mould-conventional hardware interface

based on an analogue to digital converter (ADC) and a field-programmable gate

array (FPGA). A functional slime mould tactile sensor developed on the platform

of this interface is presented.

4. Morphological processing by slime mould. Morphological adaptation of the

whole organism in response to environmental stimuli is investigated through the

use of repellent (optical) and attractant (chemical) stimuli as inputs. It is demon-

strated that the organism is capable of interpreting these environmental gradients

as spatial ‘images’ and can consequently perform morphological operations on the

shapes represented, including computation of the convex and concave hulls, skele-

tonization and approximation of shape. Following, it is demonstrated that the or-

ganism can be programmed to ‘remember’ the period of an insulting stimulus and

exhibit this as output through modulation of its endogenous systems for achieving

motility in a manner consistent with integration in an analogue computer.

5. Slime mould intracellular computing through the interpretation of en-

dogenous physiological phenomena as output. An investigation into the

processes underlying the behaviour patterns we interpret as computation is pre-

sented in which the role of the organism’s cytoskeleton in facilitating emergent life

processes is expounded. This is substantiated by extensive CA modelling which

suggests that this intracellular network of proteins is a suitable medium for in-

formation processing. Proceeding is the first practical in vivo realisation of a

BBM-like computing paradigm which employs intracellular calcium-filled vesicles

as data, which travel along and collide whilst attached to cytoskeletal networks.

The document closes with Chapter 6, which contains a summary of the contribution of

this research, its limitations and scope for further work.

1.5 Content Disclaimers

Aspects of this document draw on published works by the author. All such material

is fully referenced and reproduced data is included with express permissions of the
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copyright holders (which is explicitly noted in the text where data are replicated). Any

material reproduced from such a publication that was not produced exclusively by the

author (i.e. co-authored work) is expressly labelled as such in Appendix A.



Chapter 2

Biological Computation and Slime

Mould Computing: A Review

The structure of the following Chapter is as follows: initially, the benefits, detriments

and history of using biological substrates for UC are discussed, after which the relevant

biology of slime moulds is touched upon in order to provide a suitable grounding to

describe later experimental aspects of this document. Following this is a thorough

review of the novel field of slime mould computing.

10
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2.1 On the Viability of Using Biological Matter for Un-

conventional Computing

As soon as biological and artificial computing concepts are compared, a stock of factually-

dubious statements usually ensue. For example, Fischetti, writing in Scientific American

[116], reported in 2011 that the the Fujitsu K supercomputer is more powerful (faster

processing speed and greater informational capacity) than the human brain, but less

energy efficient per FLOPS1. Such statements are clearly invalid (the author does not

mention how thought was quantified in terms of an entirely unrelated metric), but they

do serve to demonstrate that the concept of using biological substrates as UC devices

has permeated the public consciousness to some degree2.

The following review of the characteristics of biological substrates pertinent to their use

for UC purposes will ideally remove any preconceptions the reader may have following

exposure to jargon such as the above example. Although UC is an active research area,

there have been so few functional biological UC devices developed to date that we cannot

actually say much about their practical characteristics with regards to what has been

explicitly demonstrated. Indeed, there is still much that we do not know of biology in

general, as is discussed in section 2.1.5. Hence, the following information is presented

to demonstrate principles of data processing in biological systems with the intent of

informing the design of practical implementations of said systems.

2.1.1 Biological Information

Broadly speaking, the term biological ‘information’ pertains to the state, quantity and/or

localisation of biological macromolecules in a contained system, such as DNA/RNA

(ribonucleic acid), allosteric proteins (e.g. protein kinases, enzymes) or cytosketetal

proteins3, although this is by no means an exhaustive description as any transient state

of a biological system may be interpreted as data.

Input data into a biological system (live or in vitro) is not necessarily macromolecular,

but will typically be transduced (perceived, converted into another form and conse-

quently transmitted) into some variety of energetic phenomenon by the system’s recep-

tive components, which in turn precipitates a change in the state of the system. The

1“Floating-point operations per second”, a quantitative measurement unit for processing power.
2Possibly via the route of science fiction on the topic, which began to emerge shortly after the dawn

of cybernetics in the 1950’s [74].
3The cytoskeleton is an intracellular ‘scaffold’ of proteins that provide a cell with structural rigidity

and a network for substance transport. This is covered in more detail in Chapter 5.
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manner in which transduction occurs is pre-determined by the way in which the sys-

tem is assembled and coupled, this being a product of the cell’s genetic make-up. This

concept is complimentary to ‘data structuring’ in artificial intelligence, which refers to

the conversion of abundant but sporadic, multimodal environmental sensory data into a

statistically repeatable single format that the system is able to interpret unambiguously.

Possession of such a system allows the cell to coordinate appropriate, proportional, re-

liable responses in accordance with its genetic ‘programming’ [123, 141].

For example, photostimulation is an attractant in certain halobacteria species [288], a

mechanism which presumably evolved due to the class being facultatively photosyn-

thetic: hence, the bacterium ‘computes’ its ideal location based on the degree of en-

vironmental illumination. At the molecular level, this behaviour is achieved through

the interaction of photons with the membrane-bound photoreceptor protein bacteri-

orhodopsin, which causes it to enter a high energy state that catalyses an intracellu-

lar signalling cascade, eventually leading to chemical energy production in the form of

adenosine triphosphate (ATP)4. This, in turn, precipitates directional movement via

innervation of local motility mechanisms [246, 288]5.

In such an example, the optical stimulus may be considered as input which is trans-

duced into the format of biological molecules that may be regarded as a form of ‘en-

coded’ data; indeed, the bacterium could be said to have carried out computation in the

bacteriorhodopsin molecule in this process of transduction which we characterise as an

encoding operation. The instruction “move towards the light source”, which is encoded

by the structure and function of each molecule in the system that responds to such

input (and hence also the genes that determine the assembly of this system), is enacted

through the interaction of ATP with various components of the cell’s motile machinery6.

2.1.1.1 Spatial Propagation of Information

The example of biological information processing given in section 2.1.1 is conducive to

the UC paradigm of spatial propagation of information, i.e. the net movements of ATP

and associated signalling molecules through the cell towards areas where it will lead to

the production of a repeatable, measurable output. This is a particularly advantageous

concept (and indeed it is not unique to biological UC) for the primary reason that it

4The ATP molecule can be considered as the chemical energy ‘currency’ of life. All metabolic pro-
cesses in eukaryotes are concerned with converting external sources of energy into this molecule, e.g.
photosynthesis and oxidative phosphorylation of sugars. Dephosphorylation of ATP (usually enzymati-
cally) releases this energy for use in cellular processes.

5It should be noted here that different isoforms of bacteriorhodopsin are responsible for slightly
different functions, which have been generalised here for ease of illustration.

6In the case of this somewhat simplified example, the process is both non-linear and non-deterministic.



Chapter 2. Biological Computation and Slime Mould Computing: A Review 13

allows the computing process to be continuously examined. This facilitates, with respect

to biological UC:

1. Continuous updates as to the state of the computation. Various methods of

visualisation (microscopy, flow cytometry, radiometry etc.) may be used to assess

the state of the system at any point mid-computation, allowing for assessment of

how the computation is performed, its efficiency, whether errors have emerged and

the overall system dynamics. This latter point refers to the fact that the process of

interest forms only one small aspect of a larger system which, crucially, will likely

adapt mid-computation.

2. More efficient utilisation of a substrate’s resources through observation

of interrelated processes. As the processes which will determine a biological

system’s momentary state are usually highly complex, multi-step pathways which

involve a great many initial, intermediate and final products as well as a host

of enzymes which catalyse each step7, this implies huge potential for exploiting

the computing potential of other related pathways. It must be emphasised again,

however, that this necessitates that the system is understood and characterised to

a sufficient degree.

The experimentalist must keep in mind the major detriment to this concept, which is

that directly observing the system carries the risk of altering it in some way.

The reader should note that this interpretation is very far removed from the Turing model

of computation [304]: the individual processes we choose to interpret as computation

are to all intents and purposes not halting and involve the propagation of essentially

random movements of parallel data streams in a constantly evolving system. Crucially,

however, we nevertheless find that the computation is completed successfully to, what

we can assume on an evolutionary level, a high degree of efficiency (although by taking

an organism or its component out of its natural habitat such that the system enters a

stressed state, we risk compromising this inherent attribute).

2.1.1.2 Information Density

Biological molecules possess the potential for extremely high information density, even

in comparison to artificial media. For example, the human genome contains some 1.5 gi-

gabytes (×109) of data [186], meaning that a human composed of 100 trillion (×1012)

7Consider that glycolysis, the pathway by which glucose is converted to pyruvate, which forms only
a small portion of the mammalian energy production pathway (oxidative phosphorylation) involves 8
transformations of the original glucose molecule and involves 5 related compounds and 10 different
enzymes [91].
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cells contains approximately 150 zettabytes (×1021) of (admittedly repeated) genetic

information. It is not appropriate to compare this value directly to that of a personal

computer’s hard or solid state drive as estimations of information density introduce sig-

nificant error8, and indeed this estimate does not account for the redundancy within

codons9 or between chromosomes, but initial projections indicate that engineered DNA

computing may achieve information densities exceeding 700 terabytes (×1012) per gram

[69]. Retrieval of this information (genetic transcription) is slow but is highly energy

efficient as it does not present the surface-to-volume heat dissipation problems exhibited

by conventional hardware (see section 2.1.2).

2.1.2 Architecture

Conventional computing architectures were historically considered to carry out serial

computation, i.e. each task is broken down into a set of instructions which are carried

out sequentially; when given multiple tasks, a serial architecture will split its time evenly

between them by placing a process on hold and storing its state before moving to the

next, and so on. A major focus of computer development has been upon increasing the

speed at which it is able to carry out sequential instructions, such as maximising the

efficiency of algorithms and increasing the clock speed of a computer’s central processing

unit (CPU). The universe is of course an inherently parallel place, however, as every

process occurring in any one instant happens alongside every other process [30, 285].

Whilst there has been a trend in recent years towards implementing parallelism in both

personal computers (PCs) — for which, at the time of writing, high-end CPU chips

may have up to 8 cores and graphics processing units may possess several thousand,

each of which functions as a discrete processing element such that it can carry out

many processes simultaneously in properly-optimised workloads — and supercomputers,

which may possess thousands of separate CPUs [80], this pales in comparison to the

inherent parallelism of natural systems. For example, if each neuron in a human brain

is considered as a discrete processing unit, it can be said that the brain possesses 100

8All of a cell’s genetic data (one of many forms of biological ‘information’) is held in its nucleus, an
approximately 10 µm3 structure, which typically accounts for 10% of its volume but will only contain
0.5% DNA per unit mass [49].

9A codon here refers to a triplet of messenger ribonucleic acid (mRNA; the nucleic acid format
transcribed from a cell’s genome which then travels out of the nucleus to participate in protein synthesis
(translation)) bases, to which complementary codons of transfer-RNA carrying amino acids bind within
cytoplasmic organelles called ribosomes, therein precipitating the formation of a protein chain. This
process generates some redundancy in the system as well as error resistance, as mis-transcribed genetic
sequences may terminate if certain ‘nonsense’ codons enter the ribosome as no complementary tRNA
codons will bind to it; this prevents the formation of incorrectly-assembled proteins.
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billion processor cores, between which there are some 100 trillion connections (synapses)

[97]10.

This concept is not unique to biology as indeed many chemical and physical systems

also exemplify the concept: in chemical reactors it can be said that each molecule

of reactant represents a discrete processing element (a concept of the UC subfield of

reaction-diffusion computing [30]), hence the number of processors per unit volume is

equal to Avogadro’s number; in the order of 6×1023 per Mole of solute.

An architecture possessing more than a few processing cores is commonly referred to

as being massively parallel [30, 79], but this can be a somewhat misleading term as it

is commonly applied to both processing methods which can be implemented on single

discrete PC graphics cards [109] as well as the comparatively exorbitantly parallel ca-

pabilities of natural systems. The term ‘amorphous computing’ is perhaps more apt

as it is used to imply massive parallelism in a system with no fixed architecture, but

as efforts are already underway to implement amorphous man-made systems it perhaps

equally as unhelpful [4, 5, 79]. Further mentions of massive parallelism are made with

reference to systems which are significantly more parallel than current GPU/supercom-

puter capabilities, i.e. capable of processing in excess of several thousand data streams

simultaneously.

It must be emphasised that neither massively parallel nor amorphous architectures are

necessarily well-suited to every computing application — indeed, the 4-core CPU belong-

ing to the PC on which this document was composed is able to execute about 24.5×109

instructions per second [153], and is likely to be a far more efficient tool for writing a

thesis on than a thousand-core supercomputer — as indeed, novel and emerging UC

devices need not necessarily be aimed at succeeding conventional architectures in every

aspect. There are major benefits to amorphous computing, however, including:

1. Enabling a higher number of instructions to be computed per unit time in com-

parison to serial computation [4].

2. Better adaptation to ‘real world’ applications, such as sensing of multiple parallel

input streams [285] and modelling of natural systems composed of extremely large

numbers of individual agents (which has been achieved on a small scale with logical

parallel arrays implemented on graphics processors [109, 187, 299]).

10Again this is a simplistic comparison as conventional and unconventional computing concepts are
not directly comparable, and furthermore it is debatable whether a cell can be considered as a processor:
the key concept imparted here is the magnitude of the parallelism in a biological substance.
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3. Fault tolerance and reliability, as the failure of multiple processors does not dra-

matically impair the functionality of the system [75, 285]11.

4. Energy efficiency, in both resource and running costs (see section 2.1.3).

2.1.3 Energy Efficiency

Having undergone some 4 billion years of evolution, biological substrates capitalise

upon highly efficient processes in order to harness environmental energy into the ATP

molecule. To discuss the energy efficiency of this and related processes with regards to

their use for computation is another topic over which extreme care must be exercised:

the power consumption of the human brain, for example, has been quoted as circa 12–

20 W [73, 243], a superficially low value in comparison to that of a desktop computer

such as the one this document was produced on, which requires a 650 W supply (not

including the monitor). Conversely, IBM’s Watson supercomputer is a 750,000 W (not

including cooling apparatus) leviathan designed to interpret aspects of natural language

and can structure input equivalent to a million books of text per second, yet it still lacks

basic comprehension of discourse that is not structured as a question [80]. Again, this

highlights the discrepancies between the manner in which different computing substrates

function and hence the unhelpfulness of such simplistic comparisons.

Thankfully, more scientific measurements have been elucidated. In their review of power

consumption in real and artificial neural computing systems, Sengupta and Stemm-

ler [265] comprehensively examined the energy efficiency of neural communication and

concluded that the brain is supremely energy-efficient (as would be expected, from an

evolutionary perspective) through examining its ability to:

1. Utilise both digital and analogue signals (the energy efficiency of each differs de-

pending on the signal-to-noise ratio of the neural relay).

2. Minimise energy dissipation as heat through balanced signal amplification and

reuse of the products of spent chemical energy.

3. Optimise the scale and content of cells.

4. Develop variable excitability coefficients between neurons of different sizes, shapes

and their frequency of use (synaptic plasticity).

These characteristics were compared to the energy efficiency per bit of information

(represented as ion currents normalised against metabolic efficiency in the biological

11Although, in Ref. [75], the authors warn that, on thermodynamical grounds, parallelism is only a
desirable characteristic insofar as the system’s architecture facilitates full use of its resources.
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equivalent, i.e. bits per molecule of ATP expended) processed in conventional hardware

and found that the brain is indeed more energy efficient than conventional and super

computers by many orders of magnitude.

The importance of reducing energy dissipation in novel architectures — be they artifi-

cial or organic — should not be understated as the thermalisation of waste energy in

conventional computers poses significant environmental and engineering problems. In

their treatise on a new, unconventional logic — conservative logic [122], which exploits

input-output bijectivity (one-to-one mapping) and time-invertibility (logical reversibil-

ity) — Fredkin and Toffoli predicted in 1982 that the progressive miniaturisation and

consequent denser packaging of circuit components in silicon chips would lead to the

generation of heat sufficient to damage them long before the physical size limitations of

silicon components were reached. They named this impediment the ‘kT barrier’, refer-

ring to the thermodynamical law that for every bit of information erased by a system12,

a certain amount of energy would be thermalised and dissipated. This is indeed a signif-

icant problem nowadays which has only been curtailed through ingenious engineering;

PC CPU chips began to be supplied with heatsinks in 1993 [152] and it is not uncommon

for powerful modern PCs to have water cooling systems installed. Whilst the issue of

heat-induced damage may yet be addressed by engineers13 , the search for cooler com-

puting methods is a feasible route towards making architectures that are better suited

for miniaturisation. A reduction in waste energy dissipation is concomitant with in-

creased energy efficiency, which is justification enough for favouring this approach until

we are able to mass-produce entirely carbon-neutral, renewable power.

2.1.4 Self-assembly and Emergence

There is currently a growing consensus in the nanotechnology community that self-

assembling circuitry is a viable route towards generating artificial hardware, as a body

of experimental evidence indicates that such methods may produce architectures with

smaller node sizes than can currently be achieved with conventional methods (i.e. pho-

tolithography) [55, 255, 341]; it should be noted, however, that this technology is very

much in its infancy and fully-guided assembly has not yet been achieved.

12This prediction was given with reference to the inherent inefficiency of conventional logic: for ex-
ample, in an and gate, the input configuration 〈AB〉 leads to a single signal being output. This implies
that one signal, therefore, has been destroyed, the majority of whose energy is dissipated as heat. Con-
servative logic was presented as a new computing paradigm as it enables circuits to be designed with no
signal loss, hence the namesake.

13E.g. through the use of super-strong nanomaterials such as carbon nanotubes, which are at the time
of writing being touted by the scientific media as the most likely material for producing next-generation
nanoscale transistors and hence provide new impetus to recent plateauing in Moore’s observation [216,
228, 272].
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The self-assembly of biological matter on a sub-nanometre scale (i.e. protein synthesis

via genetic transcription and translation) is a well-characterised phenomenon. As such,

biological materials could be regarded as being well-suited to generating extremely small

circuitry (for want of a better term to describe paths of information flow) — although,

this does pose the necessity of exerting some level of control over the substrate if one is

to harness said processes for any practical benefit.

Self-assembly is one of the many emergent properties that biological substrates exhibit

(see Appendix B.4 for a definition of emergence). Whilst the phenomenon of emer-

gence is not examined further in this section as each system will possess its own unique

emergent properties, this concept is re-visited in section 2.2; suffice it to say here that

we regard emergence as a beneficial characteristic for any hypothetical biological UC

substrate as it adds the potential for generating extra layers of complexity and hence

more computing resources at no additional ‘cost’ (in energy), due to it arising from a

fundamental characteristic of constituent materials.

2.1.5 Detriments

Aside from this positive appraisal of the beneficial characteristics of biological matter

as a UC substrate, it is in reality not without its detriments. It was briefly mentioned

in Chapter 1 that we still have an incomplete understanding of many aspects of biology

and indeed the underlying mechanisms that drive it14, but this is far from being the

only impediment towards fabricating functional, useful biological UC devices.

Biological substrates are unpredictable; both live organisms and their components have

highly specific physiological requirements, which makes working with them time con-

suming, costly and requires the researcher to possess specialist knowledge and prac-

tical skills. For example, mammalian cell cultures must be incubated in a precisely

pH-balanced buffer with the correct nutrient content, at a specific temperature in an

entirely sterile environment; and even then they are temperamental and may attenuate,

mutate or just spontaneously perish at the slightest deviation in these parameters [108].

Coupled with the high costs of running cell culture experiments and the ethical issues

surrounding the use of mammalian cells [127] (which are less stringent than those re-

quired for working with live organisms or human subjects), it is perhaps reasonable to

14Note that whilst an impediment, we do not consider our lack of understanding to be a ‘detriment’ of
biological UC substrates in the context of finding practical uses for them as indeed, such research may
be considered as a viable route towards investigating their biological properties, as well as computing
characteristics; this is discussed further in section 2.1.6.
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assume that computer scientists with non-biological backgrounds may be deterred from

working with the majority of biological substrates15.

The speed at which biological processes occur is fairly variable but tends to be slow

in comparison to the speed at which conventional architectures will function. For ex-

ample, the propagation delay16 of a myelinated (central) nerve cell’s action potential

is typically about 5 ms [240] whereas waiting for a gene to be expressed — e.g. in a

transgenic cell line expressing proteins in a manner analogous to a logical gate [290]

— typically takes several hours and may not even be expressed in the current gener-

ation of cells. Conversely, the propagation delay in a modern CPU is in the order of

picoseconds [338]. Although some as-of-yet unelucidated biological phenomena may oc-

cur much more rapidly than the examples listed (e.g. propagation of quantum events

down protein chains such as breathers (coherent waves of vibrational energy induced by

thermodynamic disturbances) in DNA molecules [9, 119]), no known biological phenom-

ena propagate at a speed approaching that of electricity-based serial communication in

conventional architectures. This further emphasises the need to exploit the massively

parallel capabilities of biological UC substrates.

Perhaps the most significant obstacle standing in the way of biological UC research,

however, is the inherent variability of the substrate class. Conventional computers have

been rigorously developed to the point that they are nowadays extremely proficient at

carrying out their role, i.e. executing algorithmic procedures; this necessitates their

being regularly structured, highly repeatable systems that will carry out a calculation

exactly as programmed to give the same result each time the calculation is performed.

Whilst some biological variables are tightly controlled by closed-loop systems (e.g. cy-

toplasm pH [320]), variation is a fundamental characteristic of biological matter. This

variation results from myriad inconsistencies in an organism’s nature and nurture such

as genetic transcription errors and transient metabolic disturbances. But, far from being

detrimental to the organisms health, their inherent variability in fact forms the basis of

their ability to adapt to extreme environmental variation, enhances the reliability of life

processes — i.e. fault tolerance through multi-system redundancy (consider that mam-

mals have 2 eyes, 2 lungs etc.) — and forms the basis of evolution by natural selection

of desirable characteristics whose incidence is essentially random [77].

Consider, for example, that several Gram-negative17 bacteria such as Pseudomonas

15Conversely, it has been demonstrated that a significant proportion of biologists are averse to heavily
mathematical subjects such as computer science [111].

16This computer science term is used here with respect to biological systems to refer to the time a
unit of information will take to travel through a functional unit, regardless of whether computation can
be said to have occurred or not.

17This terminology refers to a classification for bacteria based on the presence of a cell wall by dif-
ferentially staining heat-killed organisms for peptidoglycan, an obligate component of the bacterial celll
wall.



Chapter 2. Biological Computation and Slime Mould Computing: A Review 20

aeruginosa may vary greatly in size, growth rate, cellular content (macromolecular and

organelle) and even behaviour in genetically identical colonies due to a highly error-prone

cell division process [68]. A hypothetical bacterial UC device which focussed upon, for

example, bacterial migratory patterns (upon which several bio-inspired algorithms have

been proposed [215]) would therefore have to be based on statistical measures or oth-

erwise conventional paradigms with very wide error tolerances, as the possibility of a

significant number of dysfunctional bacteria not following predicted patterns — e.g. due

to different movement rates, failures of chemotactic mechanisms — cannot be ruled out.

This problem is compounded by the aforementioned temperamental nature of biological

organisms as behavioural adaptation resulting from variation in environmental condi-

tions is unavoidable due to the literal impossibility of keeping all such variables constant

in an experiment. Such a computing system would be far-cry from the well-regulated

environment of a conventional computer; this highlights that biological UC substrates

should either capitalise upon the few highly conserved, tightly regulated, robust pro-

cesses (e.g. DNA transcription) or utilise paradigms that do not require (or perhaps

even exploit) chaos in a system [285]. Indeed, as was explored in a recent review by

Privman [239], some research groups have already begun to suggest specific methods

for curtailing sources of noise and error in biological and biochemical systems towards

creating scalable, stable information processing networks.

Note here the apparent contradiction between the previous point and the purported

benefits of biological UC substrates, i.e. attempting to constrain the multiple degrees of

freedom in a biological system towards making a computer more akin to a conventional

architecture, surely negates the benefits associated with the material. We emphasise

here that although it would be ideal to use every available degree of freedom in a sub-

strate as a computing resource (cf. Margolus quote in Chapter 1), practically speaking

the UC researcher must strive towards finding an ideal balance between utilising and

constraining a substrate’s degrees of freedom, variability and hence controllability, all of

which are unique to the substrate of choice.

2.1.6 Applicability to Wider Fields of Inquiry

In Ref. [88], Dawkins imparts the concept that our modified Linnean taxonomy system

creates the misconception that species groups are rigidly-defined, set-in-stone categories:

the distinction between species groups is in fact a continuum describing comparative

differences between gene pools which, crucially, are constantly changing. We borrow

this analogy to impress that similarly, the natural sciences are not rigidly delineated as

there is significant cross-over between each field of inquiry. Consider that the task of

developing a drug requires input from biologists, chemists and those who work in the
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middle-ground; pharmacologists, clinicians etc. We advance the notion that the same

can be said for unconventional computing18, as we conceive that advances in the field

will lead to advances in other fields of scientific inquiry.

Indeed, it is apparent that several extant biological fields already draw on computer

science: such developments are manifold and diverse, but include the implementation

of DNA storage of user-encoded information [69], solving NP-complete problems with

DNA19 [37, 188, 190], in vitro synthesis of various nucleic acids, enzymes and other

proteins [275] and implementation of in vitro and in vivo logical circuits using enzymes

[52, 149]. The eventual applications of these technologies range from biomedicine (e.g.

detection and reversal of malignant transformations in tumour cells via genetic engineer-

ing [321]) to modelling (gene regulatory networks [154], collective behaviour patterns

[109]) to sensing [230, 313].

Although these achievements may all be reasonably called advances in unconventional

computation, their authors refer to their fields as synthetic biology, systems biology, bi-

ological nanocommunication networks or developmental biology, the definitions of which

are notoriously fluid [229]. It is clear that these ‘species’ of inquiry constitute a contin-

uum drawing from many fields. We propose, therefore, that advances in unconventional

computation may be highly applicable to any or all of these interrelated fields and hence

advances in biological computing may lead to developments in biosensing, biomedicine,

etc. and vice versa: thus, this constitutes a supplementary justification for UC research.

2.2 Biological Preliminaries for Slime Mould Computing

2.2.1 Why Slime Mould Rather than Another Organism?

We are now aware of the justifications for biological UC research, but how is one to

choose an appropriate substrate? As was alluded to in Chapter 1, it is sensible from the

perspective of the experimentalist to choose an organism/components of an organism

that are as simple as possible in order to avoid the pitfalls of overwhelming substrate

complexity and philosophical arguments resulting from careless use of anthropomorphis-

ing terms such as ‘consciousness’. This was a simplification, however, as complexity is

a notoriously subjective term; hence it is unwise to base such a decision purely on an

abstract concept.

18Parenthetically, the UC theme of studying computational aspects of the universe could even be
considered to be a natural science.

19Both the Hamiltonian Path and Travelling Salesman problems; ‘NP-complete’ here refers to a
complexity-sorted category of problems that have a “yes” or “no” answer, the solution to which can
only be verified in polynomial time by a conventional Turing machine [184].
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Here we present partial justification for selecting our substrate for this investigation,

slime mould Physarum polycephalum, by demonstrating that it exemplifies certain desider-

ata for a biological UC substrate; briefly, these include possession of analogous cellular

machinery to human cells, simplicity, frugality and safety of cultivation, tolerance to

harsh environments and multimodal stimulation, independent lifestyle and exhibition

of novel and emergent behaviours characterisable as computation. Simultaneously, this

section provides a brief introduction to the biology of slime moulds pertinent to achiev-

ing a necessary grasp of the topic to support the following investigation. In the section

2.3, we complete our justification by demonstrating its proven value specifically as a UC

substrate. A glossary of the biological terms used in this section is included in appendix

B.5.

2.2.2 Taxonomy, Life Cycle, Habitat and Cultivation

The plasmodial, or ‘true’20 slime moulds which inhabit the class Myxogastria (class

Amoebozoa, kingdom Protozoa [284]) are a group of organisms which exist as a macro-

scopic single cell when in their diploid vegetative life cycle phase, the ‘plasmodium’ (pl.

plasmodia) (Fig. 2.1) [115, 226, 284]. Despite the implication from their name, slime

moulds are not fungi but rather protists, although they were originally classified as the

former due to the organism’s reproductive cycle necessitating irreversible transformation

of the plasmodium into spore-producing fruiting bodies (sporangia) when environmental

conditions become unfavourable [226, 284]. Sporangia-constituent spores germinate into

either flagellated ‘swarm’ cells when in liquid media or crawling myxamoebae21 on solid

media, both of which are haploid but may reproduce sexually or asexually, depending

on the favourability of environmental conditions [284]; both germinate into immature

plasmodia. The plasmodium has another, reversible cell stage known as the sclerotium,

a desiccated, highly resistant form which the organism transforms into when deprived

of moisture. Sclerotia remain viable for many years and may be revived in a matter of

hours through rehydration, hence this allows the slime mould researcher to build stocks

of the organism for long-term storage and transit. Images of the organism’s major life

cycle forms are shown in Fig. 2.2.

Although present to some degree in every continent (except for Antarctica) in a variety

of habitats, the genus Physarum is found most frequently in European, North American

and Japanese woodland [223]; the plasmodium typically crawls between moist, dark

20This is contrasted with the ‘cellular’ slime moulds of class Dictyosteliida which are macroscopically
similar, but in fact exist as many loosely-connected individual cells living in unison, and the microscopic
slime moulds of class Protosteliales.

21Both the plasmodium and myxamoeba are frequently referred to as ‘amoebae’. Although amoeba-
like in some aspects, this is categorically false.
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Figure 2.1: Photographs of the P. polycephalum plasmodium. (a) Cultivated on non-
nutrient media in the presence of spatially distributed nutrient sources (oat flakes); the
organism’s morphology is somewhat diminutive with caudal regions (arrow) and as-
sumes a tubular morphology whilst the advancing anterior margin is noticeably ‘fan-like’
(arrowhead). (b) On a nutrient-rich substrate (oatmeal agar), the organism becomes

essentially amorphous. Figure adapted from author’s own work in Ref. [201].

areas of forest detritus or bark, feeding on decaying matter, fungal spores, bacteria

and amoebae in a manner not dissimilar to leukocytic phagocytosis, i.e. engulfing and

internalising the substrate in phospholipid membrane-bound sacs (vesicles) [104, 284].

In the laboratory, P. polycephalum plasmodia are remarkably easy to cultivate. Various

sources state a preference for using 2% non-nutrient agarose (NNA) as a medium, but any

hydrated surface is sufficient as indeed, even dampened tissue paper has been utilised to

great effect in scientific studies [14, 284]. Similarly, fully-defined (axenic) solid and liquid

culture media do exist [210], but the plasmodium will grow rapidly and healthily when

fed on ordinary rolled porridge oats [284]. We estimate the minimal power consumption

of a 20 mm2 plasmodium weighing about 0.1 g to be approximately 0.16 W (see Appendix

B.2 for calculation); this value is extremely low per unit of mass in comparison to other

substrates (biological and artificial) we have examined.

The combination of utilising a non-nutrient medium and complex dried foodstuffs rad-

ically reduces the issue of microbial contamination, although P. polycephalum is also

known to feed on certain microbe species and is likely to possess anti-microbial mecha-

nisms [83, 104].

Cultivation temperature need not be controlled tightly as P. polycephalum appears to be

tolerant to a wide range of ‘room temperatures’, although it will proliferate more rapidly

within an idealised range of 22–24oC [332]. Temperature is a variable which should be

controlled to some degree in experimental conditions due to it having an effect on the
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Figure 2.2: Images to illustrate the various life cycle forms of P. polycephalum. (a-b)
Photographs. (c-d) Micrographs, scale bar = 10 µm. (a) Desiccated sclerotium. (b)
Sporangia (sporing bodies). (c) Spores. (d) Flagellated ‘swarm’ cell (arrowed). Figure

adapted from author’s own work in Ref. [201].

organism’s behaviour patterns [334] (see section 2.2.5). Being photophobic, it is best

cultivated in the absence of light.

As an entirely harmless (non-pathogenic, non-toxic and non-allergenic) single-celled or-

ganism, there are no ethical issues surrounding the experimental use of slime mould

[173] and indeed, communities of hobbyists and artists exist who grow the organism at

home [296].

In comparison to the requirements for mammalian cell culture presented in 2.1.5 (and

also microbiological culture techniques, which are arguably of lesser complexity but carry

greater risks to the researcher), it is clear to see that slime mould cultivation is compar-

atively frugal, safe and simple. These are all prime justifications for the experimental

use of slime mould as a biological UC substrate; indeed, it has been noted by several
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authors that slime mould is an ideal ‘entry-level’ biological substrate for use in both

multidisciplinary research and education [25, 173].

2.2.3 Morphology and Motility

As shown in Fig. 2.1, the P. polycephalum plasmodium’s morphology (see appendix B.5

for definitions of the anatomical notation used hereafter) is complex and situational. In

the wild, the organism’s conformation is similar to that which is shown in Fig. 2.1A; the

caudal regions of the organism take the form of tubular structures (henceforth known

as ‘plasmodial tubes’) which link larger engulfed nutrient sources together to form a

complex, reticulated network. The topologies of nutrient harvesting networks have been

demonstrated to be highly efficient [11, 220], providing an exemplar case of computation

by slime mould (see section 2.3).

The advancing anterior margin of the organism, which may move at speeds exceeding

10 mm h−1 [43], is often called amorphous or otherwise ‘fan-shaped’, but is in actuality

the confluence of myriad microscopic tube-like structures which are constantly re-forming

(Fig. 2.3). Favourable stimulation (see section 2.2.5) of the advancing margin membrane

results in local cytoskeleton assembly which causes the extension of ‘finger-like’ protru-

sions known as pseudopodia [44, 70, 131]. If an individual pseudopodium continues to

encounter favourable stimuli (e.g. a nutient gradient in its substrate), it will gradually

fortify until it forms a macroscopic tube in the direction of the stimulus [44].

When the organism is cultivated on a nutrient-rich substrate, it assumes the form of

an amorphous mass which expands radially; the ability to possess multiple advancing

portions is thought to be the origin of the organism’s name ‘polycephalum’, i.e. many-

headed.

Although cytoskeletal assembly (see chapter 5) drives the direction of migration, motile

force is generated by the organism rhythmically propelling its constituent fluid (cyto-

plasm) with muscle-like protein complexes (actomyosin) that sit circumferentially about

the perimeter of plasmodial tubes; longditudinal, radial and spirally-oriented fibres of ac-

tomyosin contract to exert force on the cytoplasm [225, 248, 330], which can be observed

with a light microscope as gradual oscillation in the diameter of the plasmodial tubes

(Fig. 2.4) [44]. Net movement is maintained through disassembly of protein networks in

the trailing portions of the organism and either complete withdrawal of the plasmodial

tube from the area or, if the organism deigns to keep an area occupied (e.g. if it contains

partially undigested nutrient sources), the cytoplasm in the region is converted into gel

phase (gelation).
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Figure 2.3: Photomicrograph of the P. polycephalum plasmodium advancing anterior
margin. Multiple tubular channels are evident which anastamose to form pseudopodia.

Scale bar = 500 µm. Figure adapted from the author’s own work in Ref. [203].

The direction of cytoplasm propulsion oscillates anteroposteriorly, reversing direction

approximately every 1–2 minutes. Opinion is split on exactly how net forward migra-

tion is achieved by these alternating patterns of contraction and relaxation; substantial

historical literature states that tube contraction is simultaneous and monorhythmic (at

least in larger tubes), whereas newer evidence indicates it being more akin to peristalsis

(i.e. sequentially propagating) [44, 46, 131, 308].

The rhythmic back-and-forth propulsion of cytoplasm is known as ‘shuttle streaming’

(similar in most aspects to ‘cytoplasmic streaming’ (cyclosis) in amoebae); aside from

the generation of motive force, it also serves to distribute the contents of the cytoplasm

throughout the organism. It is from this phenomenon that the organism’s genus name

‘Physarum’ arises, which translates approximately from Greek as ‘bellows’ [93].

A great many of P. polycephalum’s intracellular processes oscillate in some degree of

phase with shuttle streaming, although shuttle streaming is not the root cause of these

related processes: this topic is thoroughly investigated in Chapter 4, but it is necessary

to note here that plasmodial bioelectrical potential, when measured non-invasively at

the membrane, oscillates approximately in synchrony with shuttle streaming (Fig. 2.4c).

2.2.4 Cytology

Although technically a single-celled organism, plasmodium’s comparatively enormous

scale necessitates a markedly different set of cytological features from other unicellular
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(a)

(b)

(c)

Figure 2.4: Contractions in a plasmodial tubule. (a–b) Photomicrographs of a plas-
modial tube taken approximately 1000 s apart with scale bars to illustrate changes
in its diameter of nearly 25% (404→494 pixels). (c) Correlative electrophysiological
measurement showing oscillation in membrane potential corresponding to vessel diam-
eter. Circled and labelled areas correspond to images [a–b]. Figure adapted from the

author’s own work in Ref. [201].
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Figure 2.5: Confocal micrograph of a small plasmodial tubule. Many nuclei (blue;
Hoescht 33342 staining) are visible within the confines of the tube (green; autofluores-

cence). Figure adapted from the author’s own work in Ref. [204].

organisms. For example, in order to facilitate sufficient protein synthesis to sustain

the whole organism, each plasmodium may possess in excess of 108 nuclei distributed

throughout the entire cell (Fig. 2.5), whereas the majority of other more ‘conventional’

cell types (i.e. animal, plant and fungal) will only possess one [237]. As such, some have

suggested that a plasmodium should be regarded as multiple cells living in unison within

a single membrane and indeed, they were historically referred to as ‘acellular’ in order

to emphasise this distinction [43]; the modern term to describe this is syncytium, but

we refrain from using it here as it may also be used to refer to the cooperative actions

of muscle systems within an organ such as the mammalian bladder.

The intracellular architecture of a plasmodium has distinct physiological layers which are

conceptually similar to tissue systems in multicellular organisms. In transverse section,

a plasmodial tube is composed of three distinct layers (Fig. 2.6):

1. Slime layer. Also known as the glycocalyx, this sugar (mucopolysaccharide)-rich

exuded fluid sheath from which the slime moulds derive their name serves several

purposes, including protecting the organism from desiccation and the effects of

ultraviolet (UV) light irradiation22, solubilising environmental nutrient sources to

facilitate their uptake [43, 284] and acting as an extracellular spatial ‘memory’.

This latter characteristic arises from the organism’s tendency to eject its excreta

22UV light can be extremely damaging for single cells due to the incidence of direct DNA damage
from interaction with photons at this energy level [39].
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Figure 2.6: Schematic diagram of cross-sectional anatomy of a plasmodial tubule. SL
= slime layer; V = vacuole, Ec = ectoplasm; En = endoplasm. Darker lines indicate
the cell’s membrane. Areas shaded in grey represent the interior of the cell. Figure

adapted from the author’s own work in Ref. [204].

(particles of indigestible nutrients, ions, metabolites etc.) into its slime layer which

persists after the organism has migrated away. This mechanism was exploited in

one of the first examples of a slime mould computing device; see section 2.3, Ref.

[247].

2. Ectoplasm. This is a gel-like region that sits about the periphery of the plas-

modial tube which is demarcated by the cell’s membrane at the border of the

slime layer. Cytoplasmic flows are very slow or non-existent in this region, which

contains abundant vesicles — phospholipid membrane-bound vessels which carry

newly-internalised substances into the cell (endocytosis, or pinocytosis when inter-

nalising fluids only), waste substances out of the cell (exocytosis) or storage and

transport (transcytosis) of stored compounds — and the presence of the majority

of the organism’s cytoskeleton.

3. Endoplasm. This region constitutes the hydrodynamic (sol) core of the tube

which is propelled anteroposteriorly by the force generated by contraction of ec-

toplasmic actomyosin fibres. Vesicles are significantly less abundant and generally

smaller in this region as the majority of endocytotic vesicles merge with the en-

doplasm contents at the boundary between the two layers, which tends to be

indistinct; indeed, ecto- and endoplasm are interchangeable (hypothesised to be

dependent on fluid pressure (thixotropy) [232]) and the ratio between the two

changes constantly during contraction and relaxation.

As a eukaryote, the P. polycephalum plasmodium contains the building blocks that are

common to most other forms of life and indeed some have noted that it is a suitable

model organism for biomedical research (including toxicity and motility studies) due to
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its many similarities to mammalian cells [173]; it possesses, for example, organelles such

as ribosomes, golgi bodies and cytoskeleton components which are functionally identical

to those found in mammalian, protistic and, to a point, fungi, plant and bacterial cells.

With regards to our justifications for using slime mould as a UC substrate, this is

encouraging as it implies that the development of a slime mould computer may uncover

knowledge relevant to the use of other biological substrates.

Can a slime mould be said to be a ‘simpler’ organism than any other which we may choose

to work with? Are we to say, for example, that unicellularity is equatable with simplicity,

perhaps due to the lack of requirement for cooperative cell–cell signalling? Surely not,

as various unicellular life forms such as a great many bacterial species communicate

with the millions of other such organisms in a colony via a highly complex, non-linear

chemical messaging system (quorum sensing) [214]. Communication between different

microorganism species (e.g. in biofilms) is furthermore a rich and highly complex topic.

We argue that, in essence, there is no such thing as a simple organism, but that P.

polycephalum’s lack of architectural differentiation coupled with its independence from

other discrete cells implies that it will be simpler to adapt into a UC device: whilst

the organism clearly possesses mechanisms for extracellular sensing and intracellular

transduction of environmental stimuli into coherent behaviour patterns, it lacks any

real differentiation between other parts of its self as its intracellular environment is

homogeneous; it is an amorphous sac of protein and salty fluid, yet it is nevertheless

able to function as an independent, discrete unit.

With reference to current knowledge and technological limitations, we conceive that

these characteristics make slime mould far better suited to the task of UC than, for

example, mammalian cell culture as the organism is not dependent on extensive artificial

support in the absence of external structural components (consider that neuron cell

culture lacks mechanisms for feeding, detoxification and structural support in the absence

of blood vessels, glial cells and connective/supportive tissues) because it is ‘simple’ in

the sense of not being dependent on other cells. This does not imply an advantage

over other free-living single-celled organisms such as the infusoria, but these lack slime

mould’s robustness or ease of cultivation, as was previously discussed.

2.2.5 Basis of Environmental Sensing

As previously intimated, the P. polycephalum plasmodium is capable of perceiving at-

tractant chemical sources and coordinating the response to move towards them (positive

chemotaxis). At the molecular level, this is achieved through the interactions of envi-

ronmental chemical molecules with cell membrane-bound receptors or otherwise through
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electrostatic interactions with the naked membrane [310, 311]. Both events initiate

highly amplifying intracellular signalling cascades (second messengers) which precipi-

tate the behavioural change of instigating directional movement through activation of

local motile machinery.

If the reception of a chemical signal leading to its intracellular transduction is regarded

as a form of computation as discussed in section 2.1, we begin to realise just how ‘mas-

sively parallel’ an amorphous substrate is. The plasmodial membrane is studded with

chemoreceptors and between them, areas of naked membrane are also receptive surfaces:

this can be demonstrated by the characteristic radial growth patterns of the organism

on a nutrient-rich substrate (Fig. 2.1B), indicating that every aspect of the organism

is concurrently sensing a favourable chemical gradient. This equates to an absolutely

vast number of individual sensing operations occurring simultaneously; note that, whilst

activation of cell surface receptors and consequent activation of second messengers is a

process which consumes a certain amount of energy through ATP hydrolysis, there is

no centralised control; receptors are not regularly sampled and input data is not ferried

to a central control centre for processing. Whilst it would be very difficult to make

a quantitative estimate of exactly how efficient this process is, it is clearly an elegant

alternative to how sensing is achieved with conventional architectures.

P. polycephalum’s responses to unfavourable chemical stimuli are similar except that

they result in the organism migrating away from the source (negative chemotaxis). It is

unlikely to possess specific receptors for unfavourable compounds [311], hence the repel-

lent effect is believed to originate from membrane interactions precipitating inhibitory

or repellent effects on local motive components. In their comprehensive review of P.

polycephalum’s responses to various volatile organic chemicals, De Lacy Costello and

Adamatzky [90] found that the organism’s migratory responses to environmental chem-

ical sources are proportional to their degree of favourability or harmfulness; oxygenated

terpene compounds such as farnesene were strongly attractive and appeared to sustain

the organism23, whereas toxins such as alcohols and aldehydes were amongst the most

strongly repellent. Control theory states that the existence of proportional responses to

input data implies the existence of a control system which is able to distinguish between

stimulus magnitude [3]; although drawing analogies between biological and artificial con-

trol systems is a topic too involved to cover here, this does imply the existence of a novel

category of ‘decentralised and distributed control system’ within the organism.

23Note, however, that the observance of tactic interactions between an organism and a compound
may be coincidental (e.g. many freshwater protozoa such as Paramecium caudatum and Didinium
spp. are attracted to weak acids due to their membrane depolarising effect, rather than because acids
are conducive to supporting life; quite the opposite may be true), unless the response is immediately
injurious.
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P. polycephalum is able to perceive and react to stimulants other than chemical sources,

including:

1. Light. Possessing at least two varieties of cytoplasmic proteins which enter a high-

energy state upon interaction with a photon (photoreceptors) which then catalyse

second messenger pathways, P. polycephalum is able to perceive and respond to

light in a variety of different ways, depending on the wavelength, intensity and

duration of exposure [257, 339]. It is photophobic (negative phototaxis) and will

generally avoid/migrate away from sources of illumination, although red light (c.

680 nm) has been cited as being an attractant [139, 257]. UV-A (320–400 nm)

light may initiate sporulation after prolonged exposure, whereas 540–620 nm light

may inhibit sporulation [53].

2. Physical pressure. P. polycephalum responds to sporadic tactile stimulation

with temporary local cessation of shuttle streaming and a concomitant bioelectrical

response [22, 35]. This is likely to result from stimulation of membranous stretch

receptors which transduce and transmit the stimulus throughout the organism

via its actin cytoskeleton in order to spread the pressure and hence minimise local

damage [155]. Repeated and continuous tactile stimulation results in the organism

migrating away (negative thigmotaxis).

3. Electrical potential. The P. polycephalum plasmodium will tend to migrate

towards the cathode in the presence of a DC field (galvanotaxis) [140]. The organ-

ism does not exhibit a specific response to direct electrical innervation. Indeed,

the organism seems to be remarkably tolerant to having comparatively large DC

currents passed through it [325].

4. Other forms of electromagnetic radiation. The plasmodium will migrate

along the lines of a magnetic field (magnetotaxis) [95]. Extremely low frequency

electromagnetic fields have also been described as retarding streaming frequency,

although the mechanisms underlying both of these phenomena are unclear [129,

268].

5. Temperature. The plasmodium will preferentially migrate towards tempera-

tures within a preferred range and avoid those outside of it (thermotaxis); the

mechanisms underlying this are not understood [334]. Low but non-freezing tem-

peratures will drastically slow cytoplasmic streaming but do not cause deleterious

health effects if exposure time is sub-48 hours. Rapid heating will cause cytoplas-

mic gelation which is reversible if the temperature increase is sub-critical.
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This inexhaustive list of stimuli that P. polycephalum is able to perceive and react to

serves to demonstrate that not only is the organism capable of processing enormous

amounts of simultaneous multimodal input, but it is also extremely tolerant to such

abuse with regards to its abilities to withstand UV irradiation, electrical stimulation

etc. without spontaneously perishing. This further confirms that the organism is an

exemplary research organism which should be particularly well suited to adaptation

into hybrid artificial-biological UC devices.

2.3 Slime Mould Computing: A Review

We have now seen biological justifications for the use of slime mould as a research organ-

ism. We are by no means the first to realise this, however, as ‘slime mould computing’ is

an active research area at the time of writing. This section comprises a literature review

of the topic.

2.3.1 Historical Research and First Forays

P. polycephalum research has tended to be a sporadic phenomenon. Although it has gen-

erated some significant interest in a great many scientific fields since its first description

by Persoon in 1794 [233], the organism has undergone two distinct phases of increased

scrutiny during the 20th century in both the 1950s (driven by the works of Kamiya and

Abe [166, 168] on the shuttle streaming oscillator and bioelectrical potential which were

complementary to Hodgkin and Huxley’s ground-breaking advances with giant squid

neurons [146]) and 1970s, during which time an extraordinary rise in P. polycephalum

research occurred (Fig. 2.7) corresponding to the advent of molecular biology and ul-

trastructural research. Much of the knowledge that current research is based upon was

uncovered during these periods; we refer the reader to reviews [44, 333] for historical

perspectives on the topic of slime mould research.

The first foray into slime mould computing was, arguably, made by Nakagaki et al.

in 2000 [219], who reported that the P. polycephalum plasmodium could, when placed

in a labyrinth, migrate its way towards the exit when guided by a chemoattractant

gradient. Furthermore, they found (and elaborated upon in futher publications [218,

220]) that the organism is capable of finding the shortest path out of said labyrinth

consistently on its first pass. They characterised this behaviour as an expression of

natural computation (implementation of maze-solving algorithms has long-since been

an acid test of both computational efficiency — with regards to both graph theory and

search algorithms implementing shortest path solutions [266] — and of the viability of
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Figure 2.7: Graph to show trends in the search term ‘Physarum’ in the Medline
database. Derived from data in Ref. [211].

unconventional computing substrates [26]) as well as a form of what they described as

‘primative intelligence’.

2.3.2 The First Decade

The concept of P. polycephalum performing well-defined ‘computation’ — as opposed to

the novelty of pseudo-intelligent behaviour — was formalised in 2004 when Tsuda et al.

[302] demonstrated that the organism’s migratory patterns can be engineered to repre-

sent Boolean logical operations. Inoculation of one or two plasmodia into geometrically-

constrained networks of channels partially-filled with a thin layer of NNA was used to

represent input configurations of 〈0, 1/1, 0〉 and 〈1, 1〉 — i.e. each plasmodium repre-

sented an input ‘bit’ of data. and, or and not gates were demonstrated by exploiting

the organism’s preference for migrating towards a nutrient source at the termini of the

channel network but repelling down different pathways at points where it met another

plasmodium. These gates were slow to operate with propagation delays being essentially

limited to the speed of plasmodial migration, but they were found to be moderately ro-

bust and also self-repairing when the organism was subjected to harmful stimuli.

In the same year, Aono and Gunji [48] presented their initial thoughts on the devel-

opment of a novel cellular automata (CA) class (elementary conflictable CA) which

they argued was a Turing-computable model of dynamical hyperincursive24 systems and

proposed that slime mould was a material implementation of such a model. Their con-

clusions were debated by some in future publications, but this nevertheless started the

24Hyperincursion is a term coined by Dubois [100] to refer to a hypothetical computing system which
is able to display certain emergent features such as anticipation by making reference to an internal
mathematical model of reality in order to construct a likely ‘future’ state. This topic is revisited in
Chapter 4.
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ball rolling for researchers to begin conceiving of abstract UC schemes involving slime

mould.

The latter part of the decade witnessed a gradual increase in the diversity of P. poly-

cephalum UC research, which split into the following four topic areas.

2.3.2.1 Graph Theoretical Applications

Inspired by news of P. polycephalum’s ability to solve maze puzzles, several researchers

began to investigate the topological features of the networks generated by the moving

plasmodium. In 2008, Adamatzky [12] demonstrated that networks of plasmodial tubes

approximate the edges of proximity graphs (defined in Appendix B.3) in experiments

where vertices were represented by chemoattractant sources, and evolve their degree of

connectivity over time, beginning with minimally-connected graphs (minimal spanning

tree) and cycling up to Gabriel graph-levels of connectivity, depending on the favoura-

bility of environmental conditions and nutrient availability.

This precipitated the discoveries that the organism is also able to ‘compute’ the Voronoi

diagram and Delaunay Triangulation (defined in Appendix B.3) of any matrix of spatially-

distributed attractants and repellents [269, 270]. This was later formalised and built

upon by Schumann and Adamatzky [261] who presented a spatio-logical interpretation

of plasmodial foraging and tube network formation.

Plasmodial graph theory applications were put to extensive use in demonstrating that

the organism could ‘design’ transport networks in Ref. [32], where the organism was inoc-

ulated onto an NNA island cut into the shape of England in the approximate location of

London: nutrient sources were distributed at the locations of major cities and the organ-

ism was left propagate and link each ‘city’ with a plasmodial tube. The authors proposed

that the organism planned an exceedingly efficient network (using measurements of total

node length) and advanced that slime mould could be used by governmental planning

departments for real-world transport network planning. This hypothesis would later be

rigorously tested through the analysis of current and historical transport networks and

various computer models of slime mould propagation (summarised in Ref. [16]).

2.3.2.2 Memory

Perhaps one of the most intriguing conclusions of early P. polycephalum UC research

was the (perhaps, tongue-in-cheek) reference of Nakagaki et al. to the organism pos-

sessing some kind of ‘intelligence’. This was built upon by Saigusa et al. [254] who

discovered that when a plasmodium was periodically stimulated with a rapid concurrent
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deleterious alteration in temperature and humidity — to which it responded by rapidly

slowing its crawling speed — it will exhibit an apparently anticipatory response when

stimulation has ceased. Their conclusions were tentative with regards to using the term

‘intelligence’ and indeed, their supporting dynamical systems model was too non-specific

to adequately explain the behaviour they observed, although it was estimated that plas-

modial anticipatory responses are, in fact, a by-product of biophysical oscillator (i.e.

shuttle streaming and its related processes) coupling. It should be noted here that an-

ticipation in mammals has also been attributed to a function of physiological oscillator

coupling [273, 286].

This was expanded upon by Pershin et al. [232] who likened the anticipatory response

to the phenomenon of memristance (see Appendix B.7) and advanced the theory that

the thixotropic nature of the plasmodium’s intracellular components provides it with a

dynamic ‘memory’ which modulates the oscillating pressure of cytoplasm in the same

way that a memristor alters its resistance based on the load that was last placed across

it. With supporting mathematical models, they argued that the intraplasmodial pres-

sure incident upon changing the environmental conditions was sufficient to induce an

anticipatory response, i.e. that it is a purely physical phenomenon. When P. poly-

cephalum was discovered in 2013 to be electrically memristive [126], the earlier work by

Pershin et al. was brought under the spotlight once more as it seems unlikely that slime

mould intracellular biomolecular and bioelectrical phenomena are entirely independent

processes.

2.3.2.3 Decision Making

Much was said in early papers about the organism’s ability to ‘make decisions’. Whether

or not such an organism can be said to ‘choose’ a course of action is a topic for long and

probably unproductive debate — if the organism can be said to be acting automatically

or actually calculating which behaviour will be more beneficial based on some inter-

nal experiential system is a moot point as the latter implies volition which is, under the

Cartesian premise, not possible to demonstrate — but its abilities to react to light stimuli

were nevertheless exploited to control a robot [303]. The organism was optically inter-

faced with a robot whose camera detected changes in plasmodium segment thickness,

which was found to decrease in response to local photostimulation provided by either

light emitting diodes or environmental sources, and consequently triggered a retreat by

the robot. This example demonstrates both the organism’s tolerance to utilisation in

hybrid circuitry as well as a novel use for its ‘decision making’ skills (autonomous or

otherwise).
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2.3.2.4 Theory of Slime Mould Computation

During this period, the computing abilities of the P. polycephalum were characterised

through both theoretical and experimental works as functioning in a manner consistent

with both reaction-diffusion chemical processors [11] and Kolmogorov-Uspensky ma-

chines25 [31]. These works by Adamatzky served to demonstrate the potential for the

organism to be adapted into a wide range of abstract devices that, crucially, are suited

to general purpose computation: such a device was dubbed a ‘Physarum machine’. This

view of slime mould as a malleable, multi-functional UC platform formed the basis of

the ‘review’ of slime mould computing, Ref. [14], and very much influenced the future

direction of the field.

2.3.3 Pre-2013

Major discoveries during this period included:

1. The plasmodium is able to manipulate exogenous substances [13]. When

fed with foodstuffs soaked in food-grade dyes, P. polycephalum absorbs the dye

and distributes it around the entire cell via shuttle streaming. By inoculating a

plasmodium onto a substrate with several different-coloured nutrient sources, the

organism was demonstrated to uptake and mix the coloured substances in an en-

tirely programmable manner, concurrently demonstrating its abilities of adaptive

transport and expression of migration behaviours characterisable as computation.

2. Spatial activity is correlated with electrical potential waveforms [33].

Through multi-electrode measurements of plasmodial membrane potential, the

organism’s electrophysiological phenomena were demonstrated to reflect its various

macroscopic behaviours (propagation, sclerotinization etc.) with characteristic

waveforms and frequency modulation. This indicated a direct linkage between

the processes observed as computation and bioelectrical activity, thus presenting

opportunities for exerting control over the organism through manipulation of these

endogenous feedback mechanisms and for electrical interpretation of slime mould

behaviour patterns — possibly via a machine–organism interface.

25Briefly, this is a class of Turing-complete (runs functions compatible with a conventional Turing
machine) computer storage modification machine wherein all data are stored in discrete units that
are connected by an undirected graph whose topology may dynamically restructure over time. Data are
uniquely labelled and accessible by the read-write head equivalent within a certain neighbourhood about
each vertex.
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3. Slime moulds possess an external spatial ‘memory’ [247]. Reid et al. found

that P. polycephalum utilises the effluvia trails left behind in the wake of its mi-

gration to navigate its environment: by detection of the chemical trace of its spent

slime layer, it ‘remembers’ where it has been and will avoid these areas if it can.

This phenomenon was put to practical use in aiding the organism to complete the

‘U-shaped barrier test’, a navigational task used in the study of both biological

and machine behaviour which requires the entity to draw on the topology of its

environment to reach an attractant source, as opposed to simple positive taxis.

4. P. polycephalum can compute planar shapes [20]. After further experimen-

tation into chemical attraction and repulsion [15, 19], Adamatzky found that P.

polycephalum can compute (assume the form of) various polygonal networks about

spatially-distributed matrices of various chemical attractant and repellent sources,

including their convex and concave hulls. This further emphasises the ability of

the organism for morphological processing of its environment as, coupled with its

maze-solving and shortest route-finding abilities, its graph theoretical applications

by this point boasted an impressive set of image processing operations.

5. Slime mould can drive a car [305]. Following on from earlier experimentation

into slime mould robot control, Tsuda et al. found that the force generated by plas-

modial oscillations in response to optical stimulation can be utilised as a coupling

medium for controlling the direction of movement of an autonomous vehicle (a

Braitenberg car, which is a conceptual vehicle guided by optical feedback directly

coupled to its actuators). This demonstrates that the organism’s transport mech-

anisms are suitable for various control applications in hybrid artificial-biological

machinery.

6. Original slime mould logic gate designs are suitable for cascading [160].

Jones and Adamatzky simplified designs for slime mould logical gates based on

controlled migration in geometrically-constrained environments and advanced de-

signs for combinatorial circuitry, culminating in a binary adder, thus illustrating

the viability of slime mould behaviour patterns for carrying out complex logical

operations.

2.3.4 Phychip

In early 2013, an international slime mould computing research project was funded by the

European Union’s 7th Framework Program — ‘Physarum Chip (Phychip): Computers

from Slime Mould’. The aims of this project, which was conducted by researchers at

five European institutions, was to [236]:
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Build functional biomorphic computing devices operated by the slime

mould Physarum polycephalum. [...] Centred on novel computing substrates,

self-assembled and fault-tolerant [slime mould] networks will lead to a rev-

olution in the bio-electronics and computer industry. Combined with con-

ventional electronic components in a hybrid chip, Physarum networks will

radically improve the performance of digital and analog circuits.

During a three year period, over 100 publications on the topic of slime mould computing

were produced and a great many functional slime mould UC prototype devices were

fabricated. These advances are summarised in the following sections; the reader should

note that the research presented in this document (which principally contributed to the

project’s deliverables concerning slime mould intracellular computation, morphological

computation and the fabrication of hybrid artificial-slime mould devices) was produced

during the course of this project by one of its researchers, hence their contributions are

not summarised here.

2.3.4.1 Sensing

Development of biological sensing devices is a desirable outcome of UC research as

it opens the potential to make ‘useful’ devices which capitalise upon the favourable

characteristics of biological substrates, such as massively parallel sensing. Furthermore,

examination of how environmental stimuli are sensed, ‘processed’ and responded to

demonstrates how the intracellular processes which constitute the computation occur.

P. polycephalum’s reactions to chemical and, to a lesser extent, optical stimuli were

well characterised by this point, but the extent to which its ability to sense various

environmental stimuli could be used towards purposing the organism as a discrete sensing

element for use in a multifunctional slime mould computing device was unclear.

After extensive investigations into characterising the organism’s response (which was

usually via interpretation of migratory patterns and/or membrane potential) to various

forms of stimuli — lights of different colours [23], application of physical pressure [22] etc.

— a range of discrete computing devices were fabricated on the principles uncovered.

For example, a novel type of slime mould tactile sensor was produced by growing the

organism over small 3D-printed plastic ‘bristles’ inserted into NNA hemispheres, whose

conformation was designed to mimic the whiskers of animals such as cats and chinchillas,

which are purposed for tactile sensing of the animals’ immediate environment. The slime

mould-colonised bristles were prodded and their electrical response was recorded via

underlying electrodes. It was found that these devices were able to accurately interpret

stimulation of various durations and intensities.
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Multisensorial slime mould devices able to interpret chemical, optical and thermal input

and produce a relatively-repeatable, coherent electrical output were later developed [322,

324]. This technique was also used as the basis input/output for a series of logic gates

implemented in individual plasmodial tubes (see section 2.3.4.2).

2.3.4.2 Slime Mould Electronics

In 2013, Adamatzky demonstrated [21] that the P. polycephalum plasmodium is elec-

trically conductive; though possessing a high electrical resistance in the order of a few

mega-Ohms, a single plasmodial tube of 10 mm length was demonstrated to conduct

sufficient electricity from an external power supply to illuminate an array of 6 light-

emitting diodes (LEDs) for over 24 hours. This was the first instance of a ‘Physarum

wire’26 being used, the design of which was recycled in many consequent publications

as a means of standardising slime mould electrophysiological measurements. This de-

sign involved growing single plasmodial tubes of relatively constant length (10 mm) by

cultivating a plasmodium on a 0.2 ml NNA hemisphere overlying an aluminium tape

electrode and siting another hemisphere/electrode loaded with a chemoattractant at a

distance of 10mm away. This encouraged the organism to migrate across the gap be-

tween the hemispheres to form a single large (approx. 0.3 mm diameter) plasmodial

tube between the two (Fig. 2.8). Plasmodial wires are self-routing, regenerate following

damage, may grow over a range of substrates if suitable moisture is present (e.g. naked

circuit boards) and are tolerant to being insulated with silicon oil; they were accord-

ingly hailed as being one of the first instances of live biomorphic circuitry being used

experimentally.

Various attempts were made to enhance the viability of the interface between plas-

modial wires and their power supply in order to curtail the organism’s high resistance

and the inherent resistivity of the NNA hemispheres. Amongst the most successful of

these involved growing the organism over layers of conductive polymers such as polyani-

line (PANI) and polyethylenedioxythiophene (PEDT); the electrical properties of the

interface in these instances produced interesting effects that were demonstrated to have

transistive and memristive properties [96, 291].

Another use for plasmodial wires was uncovered following the characterisation of their

electrical resistance in resting conditions, which was found to oscillate in antiphase with

electrical potential. The mechanisms for this were unclear (although it was suggested

26These are henceforth referred to as ‘plasmodial wires’; although not the name originally given to
them, the author prefers to adhere to biological conventions and not use species names in this manner.
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Figure 2.8: Schematic diagram for experimental setup to produce a standard
‘Physarum wire’. A = aluminium tape electrode; B = NNA hemisphere; C = plas-

modium. Adapted from original design in Ref. [21].

this resulted from alterations in plasmodial tube diameter during contraction) but nev-

ertheless it was demonstrated that plasmodial tubes can be utilised as discrete electrical

oscillators [24].

Due to its ability to maintain a dynamic membrane potential, attempts were made

to harness P. polycephalum’s powers of generating an electrical potential in retrofitted

microbial fuel cells [294]. Using state-of-the-art fuel cell technology which capitalised

on the energy expended by organisms in the oxidation of supplied foodstuffs across

a semi-permeable carbon membrane, P. polycephalum was found to generate c. 0.5–

1.0 V. Although this value was not particularly impressive in comparison to the results

obtained from the use of mixed-population colonies harvested from activated sludge and

was not supported by any statistics, it was demonstrated that slime mould may act as

an adjutant organism in fuel cells already colonised with various species of protozoa.

2.3.4.3 Logic Gates

The logic gate is the fundamental unit of a conventional computer. Although biological

substrates are not necessarily well-suited to implementing Boolean logic, a range of

devices designed to carry out traditional logical operations were designed during the

course of the project in order to demonstrate the viability of slime mould for carrying

out general purpose computation in unconventional, heterotic devices. These included:

1. Microfluidic gates [35]. Complex networks of plasmodial tubes were allowed

to form over a NNA substrate. Specific conformations of tubes with a certain

number of interconnections were isolated under a low-power light microscope and

were gently prodded with a glass capillary tube. This tactile stimulation caused

the local flow of cytoplasm to cease for a short amount of time. The output of

these logical gates was interpreted via observing the direction of cytoplasm flow

(anterior and posterior flow equating to 0, 1 respectively) in certain pre-designated
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‘output’ tubes at the periphery of the isolated network. Whilst their operation

required significant manual intervention, propagation delays for these devices were

comparatively fast (in the order of seconds).

2. Frequency-based gates [323]. Based on the principles of multisensorial fusion in

a plasmodium, 10 mm plasmodial wires were subjected to various forms of stimuli,

including light via LEDs and moderate increases in temperature with underly-

ing Peltier elements. The resulting alterations in the frequency of bioelectrical

oscillation were interpreted as output, with increases or decreases over a certain

threshold representing logical values. Designs for larger-scale logical circuitry such

as full adders utilising this technique were advanced but not implemented due to

the difficulties inherent in cascading gates of this type, such as long propagation

delays (in the order of minutes) and high (>25%) error rates [165].

3. Combinatorial logic based on plasmodial thermistance [319]. Walter et

al. found that plasmodial wires under a load of approximately 0.8 A increase in

electrical resistance when heated to approx. 45oC, in essence acting like a thermis-

tor. By connecting three separate plasmodial wire thermistors together in various

conformations (along with suitable conventional circuitry to amplify the signal be-

tween plasmodia due to the significant voltage drop across them), experimental

prototypes of both combinatorial and sequential logical circuits were produced.

These devices were very rapid in operation and much more reliable than previous

slime mould logic gate designs, with each plasmodial wire being able to withstand

tens of duty cycles with apparently no deleterious health effects. Intriguingly, the

plasmodial wires were required to be pre-conditioned to the heating stimulus —

which was provided by producing the plasmodial wire in a glass tube which had

a heating element wrapped around the outside and would rapidly raise the glass

tempearture to nearly 70oC — as it would only display such a rapid increase in

electrical resistance if it had been previously exposed to such an insulting stim-

ulus at least once. This work therefore lent credence to previous claims of the

organism’s ability to remember and even anticipate unfavourable events.

2.3.4.4 Logic

A plethora of theoretical works were produced on the logical foundations of slime mould

computing. Whilst it is not appropriate to elaborate to any great extent on such a topic

in this primarily experimentally-focussed work, achievements of note in the field include

development of p-adic valued logic [262], reversible logic (à la Fredkin and Toffoli) [260],

slime mould game theory [264] and a slime mould object-oriented programming language

[263].
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2.3.4.5 Virtual slime mould simulations

Computer modelling is a vital tool in enhancing our understanding of incompletely

characterised systems and helps to guide research directions. Jones demonstrated [157–

159, 161–163] the ability of a bespoke multi-agent particle model for approximating P.

polycephalum behaviour patterns, which it does with impressive accuracy. This model

employs a diffusive 2D lattice occupied by multiple mobile particles (represented as

shaded cells) which react to nutrient sources represented by a generic attractant within:

in discrete time, each particle senses local attractant gradients using three offset sensors

which are front-facing. The agents rotate to face the sensor with the highest concentra-

tion of attractant and migrate towards it at a constant speed. As each cell is vacated in

this manner, the agent deposits attractant at the new site; each cell may only hold one

particle, so if a particle is unable to move due to its intended location being full, the

particle abandons its current move and selects a new random orientation. Because the

agents sense and deposit the same attractant an auto-catalytic feedback loop is estab-

lished, resulting in a complex space of reaction-diffusion patterning. With regard to P.

polycephalum, the collective position of the agent population represents the structure of

the plasmodial network and the movement of agents reflects flux within the plasmodial

network. The cooperative dynamics of individual particles modelled with this method

have been demonstrated to be extremely effective in modelling emergent phenomena

in slime mould such as the self-organised formation and adaptation of the plasmodial

network, network coarsening dynamics, pseudopodium extension and withdrawal, estab-

lishment and maintenance of shuttle streaming, collective amoeboid movement, and the

response to exposure to repellents and light irradiation. Furthermore, virtual plasmodia

constructed with this method are able to perform computations more advanced than

what has been achieved in laboratory experiments, such as novel forms of plane tessella-

tion, spatial approximation of the Travelling Salesman Problem, data smoothing, path

planning, spatially represented approximations of spline curve relaxation, statistical es-

timation and density classification.

Conversely, slime mould computing has also been used to inspire model design, as demon-

strated by Tsompanas et al. [301], who developed a 2D cellular automaton impersonation

of slime mould migration patterns to aid in the design of wireless sensor networks.
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2.4 Summary, Criticisms and Project Methodology

We are now aware of the justifications for UC research and the potential benefits of

using biological substrates in UC; slime mould is arguably one of the most promising

organisms for this use, at least as a preliminary step towards the use of more ‘complex’

biological substrates. It is now pertinent to criticise the advances detailed here, as one

is prompted to ask how and why they should be built upon: has the thesis presented

in section 1.3 not already been demonstrated to some degree and found to be deficient

in some areas? We argue that the advances to date in the field suffer from a number of

failings, which are summarised here.

1. The majority of laboratory prototypes of slime mould devices with definite prac-

tical applications employ the organism as a discrete, passive electrical circuit ele-

ment. This is unintuitive given what we know of the characteristics of biological

substrates, hence future work should focus on exploring the use of slime mould as

a carrier of other formats of ‘information’ (i.e. towards demonstrating polymor-

phism).

2. Only simple computing tasks have been physically implemented to date despite

modelling data indicating that the organism is capable of far more complex — and

potentially useful — tasks, such as various forms of image processing.

3. All slime mould device prototypes produced to date capable of logical operations

use only traditional Boolean logical schemes (although admittedly they are far from

conventional due to their heterotic nature and the dysjunction between input and

output data types). This implies that attempts to implement non-Boolean logic

should be made; achieving this would indicate polyfunctionality of the substrate

beyond the normal operation of a conventional computer.

4. As the P. polycephalum plasmodium is an incompletely-defined system, slime

mould computer design approaches tend to be top-down, i.e. the organism is

viewed as a black box wherein input formats are mixed and macroscopic behaviours

are recorded phenomenologically as output. The phenomenological approach es-

sentially ignores the processes that link cause and effect. As these unknown pro-

cesses are being labelled as computation, future work should focus on manipulation

of the intracellular systems that are fully defined, ideally via the organism’s inher-

ent feedback mechanisms, to further utilise the resources of the substrate.

5. All prototype devices mentioned here require significant amounts of user time and

attention in their operation and output interpretation, thus greatly limiting their

practical usefulness. It is currently unknown whether it is feasible to automate
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slime mould device operation; whilst this has many potential benefits, it remains

to be seen whether this would merely compound errors arising from the variability

inherent in the substrate.

Thus, we propose that the range of ‘useful’ computing tasks currently implemented by P.

polycephalum-utilising prototype devices is severely restricted to either discrete morpho-

logical processors with a limited range of applications or otherwise being a component

of a larger device to which a certain amount of the computing is outsourced: hence,

they are not polyfunctional. Furthermore, as very little is known about the intracellular

processes underlying plasmodial responses to mixed sources of input, we have only a

phenomenological understanding of the extent to which they can be called polymorphic.

We aim to address these criticisms, in addition to the points raised with regards to the

previously-debated justifications for UC research and the research questions outlined

in section 1.3 in the forthcoming chapters in order to advance the field of slime mould

computing and hence also biological UC. Crucially, we approach these criticisms by

conceptually classifying Physarum machines as one of the following three categories:

1. Slime mould heterotic devices (SMHDs), which comprise live slime mould as a key

constituent element of a computing device hybridised with conventional electrical

hardware.

2. Slime mould morphological processors (SMMPs), wherein the organism’s output

is interpreted optically as a morphological adaptation of its body in response to

input stimuli.

3. Slime mould intracellular processors (SMIPs), wherein output is interpreted on a

microscopic scale.

The reasons for this approach are twofold. Firstly, it is apparent that the recent prolifer-

ation in slime mould research has led to a lack of well-accepted systematic classification

for Physarum machines, making it difficult to assess the state of the field directly as

various devices exist (theoretical or experimentally-implemented) which have not nec-

essarily been attributed specific purposes. Secondly, it is apparent that the majority

of devices produced to date fall within the category of SMHDs, followed by SMMPs;

no SMIPs have been demonstrated. Yet, from our analysis of the viability of biological

computing substrates, it is clear that some of the most promising attributes of using bi-

ological matter for computing purposes lie within the use of these micro-scale processes,

as opposed to whole-organism behaviours: it should be noted that, although working

at the intracellular level necessarily increases the complexity of any device we create,
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the benefits of using slime mould for UC research (ease of cultivation, non-toxicity etc.)

counteract this to some degree. Thus, if we are to investigate whether or not slime mould

is a polyfunctional computing substrate, as defined in the thesis under assessment, we

must demonstrate its viability for creating all three of these device types. One could

argue that SMIPs beget SMMPs, and SMHDs may capitalise on mechanisms common

to either of these, but nevertheless we find that this classification is at least conceptually

helpful.

The structure of the remainder of this document is as follows: Chapters 3–5 examine

our investigations into the design, fabrication and evaluation of SMHDs, SMMPs and

SMIPs, respectively, and seek to address the research questions previously detailed.

Finally, Chapter 6 details the resultant summary of findings and conclusions, in which

we discuss the extent to which Physarum machines can be used practically and how this

knowledge can be applied to the wider field of UC.



Chapter 3

Slime Mould Heterotic

Computing Devices

The slime mould heterotic device (SMHD) represents a fundamental link between con-

ventional and unconventional computing technologies. In this chapter, we present the

development of an electronics platform for creating reconfigurable SMHDs: in doing so,

we demonstrate the organism’s polymorphism in its ability to process multimodal input

and output stable, repeatable behaviours in a single format — bioelectricity — such

that it can be unambiguously interpreted by a semi-automated interface. By extension,

we illustrate that this technology may be used to implement a range of devices with

practical uses, thereby demonstrating some degree of polyfunctionality in this category

of Physarum machine.

Initially we demonstrate reprogrammable optically-coupled universal logical gates util-

ising slime mould as a proof of concept that slime mould behaviour patterns may be

recognised as conventional logical operations by an electronic interface. We proceed

to present a highly reconfigurable, low-cost digital logic platform with which the P.

polycephalum plasmodium may be interfaced towards the generation of a wide range of

SMHD sensing devices.

47
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3.1 Slime Mould Optically-Coupled Electrical Logic Gates

3.1.1 Introduction

This section details the creation of a new variety of slime mould logic gate which il-

lustrates the relative suitabilities of using light, electricity and plasmodial migration as

information-carrying media in a slime mould heterotic device (SMHD). Although using

slime mould to implement a single Boolean logical gate is somewhat counter-intuitive

given the purported benefits of biological UC substrates, the gates presented here were

produced as the first stages of our endeavours to develop a reconfigurable electronics

platform for creating SMHDs capable of completing a range of functions incident from

multimodal input.

Output interpretation is one of the key limiting features of all slime mould logical gate

prototypes produced to date as they have typically relied on the user to optically inter-

pret the organism’s behaviour patterns [35, 302] or, in more recently-produced frequency-

based gates, manually interpret their electrical output on an oscilloscope [323]. The

organism’s bioelectrical potential was chosen as the most suitable output format for the

devices presented here due to the relative ease and speed of its measurement by con-

ventional hardware (consider that, for example, an optical interface must necessarily be

far more complex than a single slime mould logical gate). Furthermore, it was demon-

strated by Adamatzky and Jones [33] that the P. polycephalum plasmodium responds

to various forms of stimuli with characteristic temporary alterations in membrane po-

tential; this equates to a structured output from non-structured sensory input and is

therefore a suitable format for interpretation by a conventional electronics interface, as

was discussed in Chapter 2.

The gates presented here function on the principle of guiding the growth of a plasmod-

ium with attractive and repellent stimuli between various live electrodes in order to close

an output circuit, a live current through which (as the plasmodium is known to con-

duct electricity in the milliamp range with few or no obvious deleterious health effects

(e.g. death, rapid migration away, sporulation/sclerotinization) [21]) corresponded to

the device outputting a logical truth. As such, these devices capitalised upon using

the organism as both a morphological processor and a physical circuit component.

Light was used as the coupling medium for directing plasmodial migration in these

devices as the majority of other slime mould logical circuits to date have illustrated that

using other sources of attraction or/and repulsion (usually chemical) suffer from the

detriment that inputs cannot be reprogrammed following device initialisation; light, on

the other hand, can be dynamically reconfigured. This approach was informed by Ref.
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[33], which demonstrated that a migrating plasmodium can be steered with repellent

optical stimuli.

3.1.2 Methods

3.1.2.1 Phototaxis experiments

Stock cultures of P. polycephalum plasmodia (strain HU554 × HU560) were cultivated on

2% non-nutrient agar (NNA) (Sigma-Aldrich, Germany) in the absence of light at room

temperature (22±3oC) and were provided with porridge oats as a nutrient substrate.

Subculturing was performed every 3–4 days, as required.

A brief scoping study was performed in order to ascertain which of the following four

varieties of low-cost, readily-available LED produced the strongest repellent effects and

was hence most appropriate for use in the logic gates under discussion:

1. Blue, λ 466 nm, 50 mCd.

2. Green, λ 568 nm, 40 mCd.

3. Yellow, λ 585 nm, 36 mCd.

4. Red, λ 626 nm, 25 mCd.

These experiments were conducted by mounting 2 arrays of 2 identical LEDS through

the lid of a plastic Petri dish, as in Fig. 3.1: plasmodial homogenate was transferred to

a small square of 2% NNA in the centre of the dish. Two larger pieces of NNA were

situated to the sides of the central square, directly underneath the LED arrays. Both

of the peripheral NNA segments were loaded with chemoattractants (3 oat flakes) in

order to provide a uniform attractant gradient between them. Thus, the plasmodium

was given the choice to migrate towards either of the illuminated areas or stay in its

initial position, which was protected from light interference by two opaque cardboard

dividers stuck to the lid of the Petri dish leaving a gap of 1 mm for the slime mould to

migrate under. All experiments were conducted in the absence of external light sources.

Each experiment typically took 3–4 days to complete. Each combination of colours was

used and each experiment was run in triplicate. The experimental data for this scoping

study are included in appendix C.1.

P. polycephalum’s preference for LED illumination by colour is, arranged in order of

most → least avoided:
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(a) (b)

Figure 3.1: Phototaxis experiments to determine the most repellent colour of LED-
generated light. (a) Schematic diagram of experimental set-up. Grey squares = NNA;
pentagon = slime mould inoculation site; circles = LEDs; black rectangles = cardboard
dividers. (b) A completed phototaxis experiment. The plasmodium (arrowed) has
migrated to the side illuminated by blue LEDs. Adapted from the author’s own work

in Ref. [206].

Green → Red → Yellow → Blue

Green LEDs were therefore used in logical gate prototypes detailed in the following

sections.

3.1.2.2 nand gate design and function

nand gates were designed as follows: 3 aluminium tape electrodes measuring 100× 8×
0.5 mm, X,Y, Z, were stuck to the base of a plastic Petri dish with a gap of 10 mm

separating each of them (Fig. 3.2a). 0.5 ml NNA hemispheres were placed overlying the

tip of each electrode: the hemisphere overlying electrode X was inoculated with plas-

modial homogenate whereas Y,Z were loaded with an oat flake to encourage plasmodial

migration. Electrodes Y,Z both had their own overlying 2-LED array, A,B overlying

them, the illumination of which corresponded to the device’s input, i.e. if electrode Y

was illuminated by array A, the device’s input configuration was equal to A = 1. A

cardboard divider was present between electrodes Y and Z to prevent light contamina-

tion between the two. All experiments were conducted in the absence of external light

sources.
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A B Out

0 0 1

0 1 1

1 0 1

1 1 0

Table 3.1: Truth table to show the input/output configurations of a nand gate.

The aluminium tape electrodes were connected to a single output circuit which was

connected to a power supply set to a constant 9 V, 0.1 A, values indicated as being

appropriate to induce a measurable current in the output circuit without causing dele-

terious effects to the health of the organism. Thus, when the slime mould at electrode

X migrated to either Y or Z, it would complete the output circuit.

As the purpose of the LED arrays was to repel plasmodial migration, the output of the

device was equal to that of a nand gate (Tab. 3.1): if neither or only one of the two LED

arrays were illuminated (input 〈0, 0〉, 〈1, 0〉, 〈0, 1〉), the plasmodium was free to migrate

to an unilluminated electrode, completing the output circuit and leading to the device

outputting a logical truth. If both electrodes were illuminated (input 〈1, 1〉), however,

the organism would be forced to stay at its starting location or otherwise migrate to

other regions of the Petri dish, leaving the output circuit open.

3.1.3 Results

Slime mould nand gates were found to function as expected with every variety of input

configuration with a 90% success rate (n = 10, where n is number of repeats). An

operation for the input configuration 〈1, 0〉 is shown in Fig. 3.2b–d. Propagation delays

were generally within the order of 12–18 h but had a range of 10–22 h. The organism

appeared to be very tolerant to having a continuous current passed through it and

was even found to tolerate voltages of up to 24 V for many hours at a time in initial

experiments, although the intrinsic resistance of the agar hemispheres (x̄ = 18.4 kΩ,

n = 10) would have protected the organism somewhat; indeed, the current across the

organism was measured as being quite variable but always within the milliamp range.

Gate resetting and reprogramming was attempted through changing the input configu-

ration after an initial operation had been performed. This was achieved at a moderately

reproducible rate (median 67% , n = 3) for each of the following operations:

1. 〈0, 0〉 → 〈0, 1〉

2. 〈0, 1〉 → 〈0, 0〉
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(a) (b)

(c) (d)

Figure 3.2: Design and operation of slime mould nand gates. (a) Schematic diagram
of gate. Grey squares = NNA; pentagon = slime mould inoculation site; circles = LED
array A,B; black rectangles = electrode X,Y, Z; ±© = power supply. (b–d) Device in
operation with input configuration 〈1, 0〉. (b) T = 1 h. (c) T = 6 h. The plasmodium
has shifted to the furthest pole of its starting location away from the light source. (d)
T = 12 h. The plasmodium has migrated to the unilluminated electrode, completing

the output circuit. Adapted from the author’s own work in Ref. [206].
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3. 〈0, 1〉 → 〈1, 1〉

4. 〈1, 1〉 → 〈0, 0〉

5. 〈1, 1〉 → 〈0, 1〉

Regarding the fifth operation listed above, the device was reprogrammed soon after

the organism had migrated to one random electrode. This is because the organism was

highly reluctant to migrate back to an electrode it had previously occupied. Hence, when

the device was reset the electrode that hadn’t been colonised was unilluminated. This

phenomenon of the organism not re-visiting areas it had already explored and vacated

prevented resetting of the device. A gate being successfully reprogrammed from input

configuration 〈1, 0〉 to 〈0, 1〉 is shown in Fig. 3.3.

3.1.4 Discussion

The principle findings of this brief study were that slime mould migratory patterns can

be ‘programmed’ using optical inputs to complete a logical function in hybrid devices

containing conventional electronics hardware. Note that whilst we chose to implement

a nand function by virtue of its being a universal logic gate, our methodology could be

altered with relative ease to fulfil a range of other logical operations. Although we did

not opt to interface these devices directly with a computer, their output was in a form

that could readily be interpreted by a wide range of architectures, i.e. binaric electrical

current.

P. polycephalum’s order of preference to the colours of light used in the phototaxis exper-

iments was somewhat surprising, both from a physical perspective (in that there was no

obvious correlation between wavelength or luminous intensity and strength of repulsion)

and because historical literature indicates that P. polycephalum is most strongly repelled

by blue light [257]. This indicates that the organism is likely to possess photoreceptor

proteins that are excited by light of circa 568 nm wavelength, the activation of which

initiates a withdrawal response.

The gates presented were not without severe detriments which limited their usefulness,

with their propagation time of up to one day per operation and unreliability (in compari-

son to conventional electrical components) being the most significant. As such, although

technically functional, these prototypes highlight that any slime mould device built on

the principle of plasmodial migration will suffer from a protracted operation time. The

prototypes presented here are therefore essentially of no practical use but rather repre-

sent a proof of concept that multiple input formats may be used to program repeatable
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(a) (b)

(c)

Figure 3.3: Resetting and reprogramming a slime mould nand gate. (a) T = 20 h,
following a completed 〈1, 0〉 operation immediately prior to inverting the inputs. (b) T
= 36 h. The slime mould has begun to withdraw from the left-hand electrode. (c) T
= 42 h. The plasmodium has begun to migrate towards the right-hand electrode and
withdraw its tubule linking the left and centre electrodes. Adapated from the author’s

own work in Ref. [206].
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behavioural outputs in the P. polycephalum plasmodium; of these, optical and chemical

stimuli are viable input formats. Coupled with the demonstration that these multimodal

inputs may be used to instigate repeatable output in another format (migration/bioelec-

trical phenomena), this goes some way to demonstrating polymorphism in the substrate.

In comparison with the slime mould logic gates that preceded those presented here (which

were discussed in section 2.3), optically-coupled gates here have a similar accuracy (i.e.

frequency of correct completion of the operation) to the forerunner devices presented by

Tsuda et al. in 2004 [302], which were quoted of having a success rate of ”about 85%”.

Whilst the predecessor gates had a less-variable and somewhat smaller propagation delay

than the author’s optically-coupled ‘second-generation’ devices, however, they based on

the principle of approximately synchronised growth of two separate plasmodia and hence

required significantly more user input to initialise than the gates presented here; their

output was also not conducive to being easily interfaced with a conventional computer.

Both of these beneficial characteristics possessed by the author’s optically-coupled gates

represent clear advantages towards creating SMHDs.

The gates presented here also demonstrate that slime mould logical gates are highly

tolerant to environmental instability, as evidenced by their relative reliability (from a

biological perspective) in spite of an extremely crude environment, and robustness (even

in comparison to conventional electronics) to factors such as enormous over-voltage.

This is an enthusing finding in context with the aims of creating SMHDs with practical

use as well as demonstrating the polyfunctionality of Physarum machines. Indeed, a

‘third-generation’ slime mould logic gate design advanced in 2016 has capitalised upon

the organism’s noteworthy resistance to various forms of insulting stimuli (electrical

stimulation, rapid changes in temperature) whilst concurrently exploiting mechanisms

far more rapid than plasmodial migration to achieve combinatorial logic operations,

namely the thermistance-based gates presented by Walter et al. [319].

3.2 Development of a Slime Mould-Computer Interface

3.2.1 Introduction

To briefly recapitulate the intended role of the SMHD in context with our findings in

section 3.1, whilst the SMHD is perhaps the most researched upon variety of slime mould

computing device to date, all previous works have focussed on creating single-purpose

(monofunctional) devices which are capable of generating input to the organism in only

one format. Furthermore, the vast majority of these extant prototypes rely on arduous
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manual input instantiation and output interpretation, which severely limits their prac-

tical usefulness. This section presents the development of a multi-use platform which

enables input/output automation towards addressing these failings, thereby contribut-

ing to the overarching investigation into the degree to which the SMHD may exhibit

polyfunctionality and/or polymorphism.

The following investigation was carried out in order to develop a slime mould–computer

interface according to the following specificiations:

1. Output recognition via a rapid, non-invasive electrical interface.

2. Platform adaptability, such that multiple input formats may be used and different

operations can be completed through minor changes to the experimental environ-

ment and interface programming.

The interface produced was based on a Cyclone II (Altera, USA) field-programmable

gate array (FPGA) board: FPGAs are favoured amongst the research community due to

their being dynamically-reconfigurable logic platforms (i.e. they can be programmed to

fulfil an extremely wide variety of logical functions at any point), energy efficient and low

price in comparison to application-specific integrated circuits [181]. The use of an FPGA

does however present the obstacle that such architectures are only capable of receiving

digital electrical input, whereas the P. polycephalum plasmodium’s membrane potential

is an analogue system. This was overcome by digitising the measured electrophysiological

data with an analogue-to-digital converter (ADC) circuit.

In order to demonstrate the efficacy of the interface, we present a basic but fully-

functional SMHD sensing device. The use of light or chemical input was decided against

in these first-generation devices in favour of an input format that causes an immediate re-

sponse from the organism, namely tactile stimulation, in order to reduce the complexity

of the task of testing the interface. As was mentioned in section 2.2.5, the plasmodium

responds to the application of physical pressure by temporarily ceasing local shuttle

streaming and produces a characteristic spike in membrane potential; this was used as

the basis for the slime mould bristle sensor [22].

3.2.2 Methods

Stock plasmodia were cultivated as per the methods in section 3.1.2.1. Plasmodial

wires were then produced as per the protocol outlined in section 2.3.4.2 and Ref. [21]

(Fig. 3.4); single plasmodial tubes were used rather than complex tube networks in

order to ensure that only a single oscillatory waveform was being output by the slime
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Figure 3.4: Photograph of a plasmodial wire spanning two agar hemispheres overlying
aluminium tape electrodes. Adapted from the author’s own work in Ref. [209].

mould element of the device, even in the event that significant morphological adaptation

occurred mid-operation.

Each slime mould–FPGA interface consisted of a plasmodial wire connected to the

FPGA via a separate bespoke ADC circuit which was fed with an external power sup-

ply, as per the box diagram in Fig. 3.5a. The ADC circuit consisted of two operational

amplifiers (op-amps): the first was used as a unity gain amplifier (voltage follower)

whose purpose was to isolate the input analogue voltage from the plasmodial wire from

interference generated within the rest of the circuit by virtue of its extremely high in-

put impedence. The second op-amp was used as a voltage comparator, the function of

which was to compare the input voltage from the follower to a reference voltage. The

reference voltage value was set with a sensitive 25-turn rotary potentiometer in order

that the comparator output a high signal, 6 V (i.e. a digital ‘1’ output), if the measured

input value exceeded that of the reference voltage and vice versa. As the output of the

comparator is the inverse of the high signal, −6 V, when in a low state resulting from

the input voltage being smaller than the reference value, a diode was inserted between

the comparator’s output and the FPGA pin which renders the final output of the ADC

circuit as 0 V in such an instance. Thus, the ADC outputs 6 V (1) or 0 V (0), essentially

performing a 1-bit quantization on the input signal, which is then forwarded to an input

pin on the FPGA. The wiring diagram of the ADC is shown in Fig. 3.5b.

The FPGA was programmed to perform three basic arithmetical operations: counting,

addition and multiplication. FPGA modes were programmed and initiated via a software

link (Nios II, Altera, USA) with a personal computer. After being programmed, the

FPGA may then function without a software link if fed with a 9 V supply or a battery.

The counting function initiates a tally whose value increases by 1 for every millisecond
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Figure 3.5: Schematic diagrams to represent the structure of the slime mould–FPGA
interface. (a) Block diagram of the system. (b) Wiring diagram of the external ADC

circuit. Adapted from the author’s own work in Ref. [209].

that an enable signal (‘1’) from the ADC is present. The count is visible via the FPGA’s

software interface and also on a 4-digit display on the board (Fig. 3.6). For the addition

and multiplication functions, the FPGA either adds or multiplies an operand derived

from the plasmodial wire and one from the user via the FPGA’s on-board switches;

the plasmodium-derived operand was acquired through sampling the input from the

organism over three sampling windows, 〈a, b, c〉, the period between which was set at

50 s (this duration was selected as an appropriate time for the organism to recover

between stimuli following scoping experiments), i.e. sample a at t = 0 s to derive the

first operand, b at t = 50 s for the second operand and c at t = 100 s for the final

operand. The FPGA therefore collects 3 bits of information from the plasmodium over

100 s which it converts into a binary number, the minimum and maximum numbers of

which are defined in Eq. 3.1.

min[(a× 20) + (b× 21) + (c× 22)] = 0

max[(a× 20) + (b× 21) + (c× 22)] = 7
(3.1)
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Figure 3.6: Photograph of the slime mould–FPGA interface. Note the FPGA’s 4-digit
display reading ‘0000’. Adapted from the author’s own work in Ref. [209].

For example, the input configuration 〈a, b〉 would produce ‘011’, i.e. 3. This value is

then added to or multiplied by the user-defined operand and the output is displayed via

the FPGA’s 4-digit display as well as its software link.

The experiments performed in order to assess the device’s functionality were as fol-

lows: plasmodial wires were connected to an oscilloscope for 300 s; those that were not

electrically oscillating were assumed to be in a non-resting state and were not used in

consequent experiments. Of the plasmodial wires that were in a resting state, their peak

amplitude A and period P of oscillation were measured before being connected to the

ADC circuit. The counting function was assessed by setting the reference voltage to the

mean membrane potential of the oscillating plasmodial wire such that the counter would,
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Figure 3.7: Graph to show a typical bioelectrical response to a plasmodial wire having
a 0.1 g mass placed across it. The plasmodium was stimulated at 105 s, causing a 28 mV
spike which persists for a short period but drops to below the threshold value before the
next sampling window 50 s after the initial stimulation. The ADC output is overlaid

in red. Adapted from the author’s own work in Ref. [209].

if functioning correctly, only count for half the duration of P , i.e. for the half-wave when

the oscillating membrane potential exceeded the reference voltage. The counter value

was collected over five successive periods of counting and its mean value (i.e. counter

value ÷ 5) was compared to the calculated value of the organism’s streaming period.

The addition and multiplication functions were investigated by implementing a basic

tactile sensor. This was achieved by setting the reference voltage to a value higher than

A such that the ADC would only generate an enable signal when plasmodial membrane

potential exhibited spiking behaviour incident of tactile stimulation. Initial experimen-

tation revealed that the organism’s response to tactile stimulation by laying a 0.1 g glass

capillary tube perpendicularly across the centre of the plasmodial wire was to invoke a

spike in membrane potential significantly higher than A (mean 27.4 mV, range 19.2–

31.5 mV, n = 5), which typically receded back into normal oscillation patterns in about

40 s. The glass capillary was left in situ until the end of the experiment. Hence, the

reference voltage was set to 5 mV higher than A and the sampling window was set to

50 s. A typical electrical response from a plasmodial wire to tactile stimulation is shown

in Fig. 3.7.

All experiments were repeated 10 times.

3.2.3 Results

All functions were demonstrated to work as intended. The counter function was observed

to start and stop rhythmically with time periods approximately equal to 0.5P , although
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these values were not significant with results typically lying within a ±10 s range of the

measured value. The counter was observed to start and stop spasmodically in phases

of transition between periods of solid counting or cessation which typically lasted for

several seconds.

Addition and multiplication functions were run at 90% and 80% success rates, respec-

tively, using randomly-generated operands for both user and slime mould-derived values.

3.2.4 Discussion

The devices presented demonstrate only one-way communication between computer and

organism; indeed, the plasmodial wire could be regarded as carrying out very little, if

any, computation in its role as a dynamic sensing element. What we have presented,

however, is a functional SMHD built upon a basic but nevertheless highly adaptable,

low-cost development platform for SMHDs. Adaptation of automated input, such as

optical stimulation via LEDs or thermal stimulation via Peltier elements controlled by

the FPGA, is a clear and relatively simple direction for further development of the

interface.

The low cost, ease of operation/programming and feasibility of implementing automatic

control of multimodal input/interpretation of output this interface offers are its key

advantages in comparison to the first slime mould-computer interface (mentioned in

section 2.3) fabricated by Tsuda et al., which was an optical interface for enabling

slime mould control of a robot’s movement [303, 305]: whilst the latter is no doubt

ingenious, the complexity of an interface capable of machine vision necessitates much

higher monetary and operator time costs to fabricate and operate than the FPGA-based

solution presented here.

Indeed, it is worth noting that the FPGA-based slime mould interface may also be

suitable for use with other varieties of excitable cell (following minor alterations to its

experimental environment, components and programming), as current technologies for

cell-computer interfaces such as multi-electrode arrays (MEAs) are typically extremely

expensive1, complex devices tied to only a few specific functions by proprietary software.

The build quality and measurement accuracy of such proprietary are, of course, likely

far superior to open FPGAs fed by signals routed through open breadboards, hence

we propose that comparing the two types of system across a range of cell types and

applications is a profitable route for further study.

1As of 2016, a basic MEA system for use with neural cell culture costs in the region of £20,000 [217];
compare this to the total system cost of the FPGA board and components listed here which totalled
less than £300.



Chapter 3. Slime Mould Heterotic Computing Devices 62

With regards to the feasibility of using the platform for further experimentation, it must

be emphasised that there were inaccuracies in some of the results obtained such as the

intermittent enable signal observed in the counter function and the sub-100% success

rate of counting and multiplication functions. The experiments designed to test the

counter function, for example, do not factor in the natural minute-by-minute variations

in shuttle streaming period. Whilst these issues further highlight the variability of

living systems in comparison to the electronic systems we wish to hybridise them with,

they are not insurmountable through minor adaptations to experimental techniques and

the hardware used, such as migrating from an open electrode/breadboard system to a

bespoke solid-soldered interface in efforts to reduce measurement inaccuracy.

To address the most pertinent criticisms of the devices presented, using single plasmodial

wire devices limits the capability of any derivative device to 1-bit operations. Future

work should therefore focus on multi-electrode interfaces which measure responses from

multiple points in multi-tubule/wire networks. Additional areas for further study in-

clude:

1. Experimentation into using further forms of plasmodial stimulation, as well as

multi-sensorial fusion.

2. Longer duration experiments in order to assess the stability of devices over time,

as maintaining signal integrity when morphological adaptation eventually occurs

will likely require a multi-electrode environment and signal multiplexing.

3. Development of computer recognition of plasmodial signals, as well as automated

stimulation as discussed.

Crucially, we propose that the prototype system presented here illustrates the viability

of SMHDs as devices with demonstrable practical use, as with only moderate refine-

ment as per the aforementioned recommendations a wide range of functions could be

implemented. For example, a light-based slime mould–FPGA interface may find use

in applications such as — to pick entirely arbitrary examples — power-supply switch-

ing between solar and alternative sources in buildings/cars. This prototype therefore

demonstrates how SMHDs may be adapted for sensing purposes, thereby illustrating

some degree of polyfunctionality.

Finally, although the SMHD promises a far wider and more useful range of uses than the

individual logical gates that had been previously produced, they are still not without

their detriments and the practical applications of fully-developed SMHDs are admittedly

niche. This is discussed further in context with the overarching aims of this document

in Chapter 6.



Chapter 4

Morphological Processing With

Slime Mould

In this chapter, we contribute to the development of slime mould morphological proces-

sors (SMMPs) through optical characterisation of the organism’s macroscopic responses

to both attractive and repellent stimuli. In doing so, we demonstrate that the organism

is capable of what can arguably be called a range of more complex computational tasks

than has been previously achieved within the realm of SMMPs, hence increasing the po-

tential functionality of the Physarum machine. The results obtained further demonstrate

that unstructured sensory input is coordinated into repeatable output by the organism

in a manner characterisable as computation. As secondary findings, our results verify

certain slime mould simulation techniques whilst providing evidence against an accepted

model of plasmodial biophysics.

Initially, we present an investigation into the organism’s ability to process images repre-

sented by environmental attractant and repellent gradients, after which we investigate

applications for the organism’s ability to ‘memorise’ the period of regular adverse stim-

ulation.

63
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4.1 Environment as Image: SMMP Image Processing and

Model Verification

4.1.1 Introduction

As was discussed in section 2.3, the slime mould morphological processor (SMMP) is a

device wherein the constituent slime mould adapts the morphology of its body shape to

sub-divide its environment with an optimised planar graph of plasmodial tubes which

link spatially-distributed sources; output is interpreted optically by the user, usually as

some variety of proximity graph, the interconnectedness of which is dependent on vari-

ous environmental and physiological factors. This class of device has demonstrated its

usefulness within a particular niche, namely transport network planning, and computer

simulations have indicated that they may be capable solving a wider range of graph

theoretical problems (e.g. solving the Travelling Salesman Problem [162]).

These successes in the development of the SMMP are significant as space partitioning

is an important technique in fields such as computer graphics and machine vision [38],

but as these operations only represent a small facet of mathematical image processing,

it is pertinent to question whether further uses may be found for this class of Physarum

machine. This seems likely, as simulations based on the multi-agent particle model of

slime mould migratory dynamics developed by Jones (see section 2.3.4.5) have suggested

that the organism may be able to represent the shape of a dataset and may therefore be

capable of a form of morphological image processing if incited to undergo morphological

adaptation in response to environmental stressors [158, 163]. To formalise this concept

as a research question: can a SMMP represent the shape (or a function of, therein) of

its environment rather than just subdivide it, and by extension can we vastly increase

the range and scope of functionality of SMMPs?

To address the basis of this behaviour, although it is unlikely we will ever fully appreciate

how the P. polycephalum plasmodium ‘sees’ the world, it is known to concurrently sense

both attractants and repellents in its environments as gradients, so will by extension

interpret its immediate environment as overlapping analogue fields of net attraction and

repulsion [27]. Manipulation of these gradients (or the organism’s ability to perceive

them) therefore forms the basis of the tools available for programming a SMMP. Note

how this is markedly different from the way that conventional architectures interpret a

problem such as space subdivision, which is usually based on the principle of dividing

space into non-overlapping portions [2]; this is an interesting perspective as the world is

of course an analogue space. This implies that the way in which slime mould interprets
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an ‘image’1 (as mediated by environmental stimuli) is somewhat more ‘realistic’ than

the methods employed by a conventional computer, which involve discretising the area.

In this section, we describe a series of laboratory experiments demonstrating that the

SMMP is indeed capable of computing the approximate solutions to various image pro-

cessing operations, most notably the skeleton, convex hull and overall shape of datasets

represented by attractive chemical and repulsive optical inputs. These operations are

defined in the following paragraphs.

A conventional computer will calculate the morphological skeleton of an image as a

planar graph derived from morphological thinning (reduction in the size of objects in a

binary image through subtraction of shaded cells if they have a certain number, normally

> 2, of shaded neighbouring cells2) of a particular shape. The resulting object maintains

the general shape and connectivity of the original in a manner reminiscent of the way

in which an animal’s skeleton approximates its body shape, hence the name [89]3. In

plainer terms, the skeleton approximates the shape of an object about a calculated

centreline, as is demonstrated in Fig. 4.1a–b. There are many ways of computing the

skeleton and each will typically give slightly different results, depending on the size of

sampling areas (structuring elements) and algorithms used.

A hull is a shape which encompasses all of the vertices of a graph. The convex hull of a

set of points A in a 2D Euclidean plane is defined as the intersection of half-planes to

contain A [89]. As we will not be exploring their formalisation by computers in any great

depth (although the reader should refer to Refs. [50, 89, 178] for their mathematical

characterisation and descriptions of efficient algorithms for their construction), it is

pertinent instead to define their construction with a stock analogy: the convex hull

of, for example, a series of nails (representing vertices) hammered into a board can be

found by stretching an elastic band around the entire set and allowing it to recoil. The

concave hull similarly contains a set of points but does so such that it has the minimum

possible internal area [102]. The differences between these two types of hull described

are illustrated in Fig. 4.1a,c–d.

These morphological operations have extensive uses in computer vision, pattern recog-

nition and various forms of image extraction (e.g. from geographical datasets) [89, 267].

Thus, we may hypothesise that the implementation of such functions with slime mould

1This term is included in inverted commas here to denote that we may ascribe the shape of an
attractant/repellent gradient as forming a particular picture, but the slime mould cannot be said to
interpret it as such.

2Note that this method preserves the topology but not geometry of the original shape; methods exist
for preserving both [267], although it is beyond the scope of this investigation to elaborate here.

3Historically, computation of the morphological skeleton was used as means for inspiring methods of
computation based on the properties of natural systems, such as in Blum’s grassfire transform [61].
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(a) (b) (c) (d)

Figure 4.1: Diagrams to illustrate various morphological operations (red) about an
array of points (black) in 2D space. (a) Vertices in an approximated ‘C’ shape. (b)
Skeleton of the solid geometric object delineated by vertices in [a], calculated using the
GIMP morphological operators plugin [120]. (c) Convex hull, manually constructed.

(d) Concave hull, manually constructed.

will lead to a range of further practical uses for SMMPs extending far beyond the realm

of subdivision of 2D planes.

4.1.2 Methods

4.1.2.1 Laboratory Experiments

Stock P. polycpehalum plasmodia were cultivated as per section 3.1.2.1. Experimental

plasmodia were inoculated into 9 cm Petri dishes also containing 2% NNA on which

spatial data was represented with the following two sources of input:

1. Chemoattractants. Oat flakes were arranged into either specific shapes or reg-

ular 10× 10 mm grids overlying a NNA layer.

2. Photorepellents. All Petri dishes (except for controls) were stored in an envi-

ronment illuminated by a 7 W array of 24×48 5500 K (‘daylight white’) LEDs

which collectively output approximately 156 Cd. Opaque masks were placed on

the lids of all Petri dishes such that the shape of the mask was projected as an

area of shade onto the underlying NNA, thus creating non-repellent zones.

The opaque masks stuck to Petri dish lids were cut into the shapes of either the letter ‘C’

or ‘H’; these choices of shape were essentially arbitrary but distinguishing between convex

and concave hulls is simple for both. For completeness, the skeleton and hulls of the

letter ‘H’ are shown in Fig. 4.2. In the experiments where oat flakes were arranged into

specific shapes, these corresponded to the conformation and size of the mask such that

all oat flakes were kept in the shaded region (henceforth referred to as double image

experiments). The same masks were also used in experiments where the oats were
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Figure 4.2: Diagrams to illustrate various morphological operations (red) about an
array of points (black) in 2D space. (a) Vertices arranged in an approximated ‘H’ shape.
(b) Skeleton of the solid geometric object delineated by vertices in [a], calculated using
the GIMP morphological operators plugin [120]. (c) Convex hull, manually constructed.

(d) Concave hull, manually constructed.

arranged as a grid (single image experiments). Control experiments were identical

to single/double image experiments, except that no light source was present.

Thus, in control experiments, one would expect the organism to colonise the entire plate

and connect all chemoattractant sources with a dense network of plasmodial tubes. The

single image experiments were designed to assess the organism’s ability to represent

shapes mediated by repellent stimuli only; use of a grid of oat flakes sub-divides the

space such that it is visually more reminiscent of an array of pixels whilst providing

a (relatively) uniformly habitable substrate. The double image experiments existed to

discover how the organism is able to represent shapes represented by both attractive

and repellent gradients. All experiments were performed in triplicate.

All assessments of image processing by the SMMP under investigation were performed

qualitatively: whilst we concede that true image processing is a quantifiable process

and that it would not be outside the realms of possibility to perform such analyses

here (e.g. subtract pixel values of successive images from one taken at t=0 in order

to quantify the amount of growth area under/outside the mask), practical considera-

tions arising from reducing the variability between successive images (camera position,

ambient lighting, photograph compression artefacts, variability in NNA layer opacity/-

consistency etc.) would render this approach extremely error prone. In light of this and

making concessions for the purpose of the investigation, which is to assess the SMMP’s

ability to approximate image transformations in comparison to both conventional ar-

chitectures and a virtual slime mould simulation, the authors opted for the qualitative

method based on the accepted methods of previous publications on the topic, see Refs.

[12, 16, 32, 269, 270].

Images were processed to highlight the structure of plasmodial tube networks using a

Processing sketch which isolated and highlighted user-defined colours. These are in-

cluded for illustrative purposes only.
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4.1.2.2 Modelling Experiments

After the laboratory experiments had been completed, attempts were made to replicate

the behaviour patterns observed with the multi-agent particle model described in sec-

tion 2.3.4.5. Briefly, the interaction environment was initialised to mimic those of the

laboratory experiments; attractant gradients were represented by a square array of dis-

crete attractant gradients (corresponding to the oat flake array). Repellent fields were

represented by grey shaded areas and implemented by damping particle sensing trails

by a factor of 0.1 in irradiated areas.

4.1.3 Laboratory Experimental Results and Discussion

4.1.3.1 Single image experiments

Plasmodia were found to propagate principally within shaded areas (Fig. 4.3; a full

exemplar dataset is included in appendix C.2), demonstrating photoavoidance behaviour

as expected, although they were observed to extend pseudopodia into illuminated regions

in almost every image. Plasmodial morphology in these experiments was diminutive

and the colonised oat flakes were typically only linked by a single plasmodial tube.

After several days, the plasmodium was similar in appearance to the mask shape’s

morphological skeleton. This similarity may only be labelled as an approximation, as

the tube networks typically had multiple unwanted (parasitic) branches.

When considering the imperfection of this approximation, it must be noted that there is

some variation in conventional computer-generated skeletons arising from the differences

between the various algorithms available for the task; consider that each of the results

shown in Fig. 4.1B contain parasitic elements which do not accurately represent the ‘C’

shape. Accordingly, the majority of real-world applications of skeletonization algorithms

(such as edge detection in machine vision applications) require additional processing

(pruning) to remove these artefacts.

We may speculate that P. polycephalum assumes this morphology i.e. a minimal total

edge length to represent the shape of a dataset, in such instances in order to maximise

the efficiency of its nutrient harvesting networks when in the presence of copious but

spatially-distributed nutrient sources; repellent optical stimuli may be used to confine

the shape of the organism to the ‘image’ as represented by the opaque mask.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Photographs to show results from single image experiments with a ‘C’-
shaped mask. (a,c,e) Propagation of 3 separate plasmodia after approximately 70 h.
The organism tends to avoid areas outside of the mask but does occasionally stray
outside of it. (b,d,f) Enhanced images highlighting areas of plasmodial growth; each
image corresponds to its neighbour to the left. Elements of figure adapted from author’s

own work in Ref. [164].
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4.1.3.2 Double image experiments

The key finding of the double image experiments was that this treatment causes the

P. polycephalum plasmodium to become almost entirely confined to the shapes repre-

sented by both chemoattractant distributions and optical fields, which also caused it to

construct markedly different plasmodial tube network morphologies than those observed

in single image experiments. As is demonstrated in Figs. 4.4 and 4.5 (a full exemplar

dataset for each shape are included in section C.2), the organism attempts to traverse

the layer of naked, light-irradiated agar in all experiments, presumably to link its tube

network in a closed ring once it had initially colonised the shaded areas. In the ‘C’

shape example, the organism opts to migrate directly across the shape’s concavity and

constructs relatively faithful simulacra of the convex hull in doing so. In the ‘H’ shaped

examples, the organism only migrates across one of the two concavities and so does not

construct a true convex hull.

4.1.3.3 Enhanced light intensity experiments

These results pose the question as to why the organism was willing to approximate the

convex hull of the ‘C’ shape but not the ‘H’. The fact that the convex hull was essentially

‘half’ constructed in the latter would seem to imply that the plasmodium is tolerant

to extending only a certain percentage of its body through such regions, presumably

dependent on the comparative intensity of the light (i.e. strength of repulsion) and the

organism’s size and health status, such that the detrimental effects of light irradiation

(dehydration, UV light-induced DNA damage) are offset by the benefits to the organism

of having a more efficient nutrient harvesting/distribution network. The results gathered

were insufficient to make an informed estimation of these quantities, however.

In order to evaluate this hypothesis, the ‘C’ shaped single and double image experiments

were repeated using an additional source of illumination, a 20 W 180 cd UV strip light,

which was utilised under the rationale that the organism is intensely phobic towards

UV light [53]. The double image experiment detailed in Fig. 4.6 (data for single image

not included), illustrates how the growth of the plasmodium in such scenarios is almost

entirely confined to the area within the mask: initial growth patterns appear similar

to the double image experiments but once the entire mask area had been colonised,

the organism proceeded to traverse back along routes it has already colonised, rather

than leaving a diminutive tube network. This morphology is not usually observed as P.

polycephalum will tend to migrate away from areas it has previously colonised in order to

distance its self from the metabolic by-products it excretes in its slime layer [43], hence

this higher surface area morphology would appear to represent the organism’s attempts
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Photographs to show results from double image experiments with a ‘C’-
shaped mask. (a,c,e) Propagation of 3 separate plasmodia after approximately 69 h.
(b,d,f) Enhanced images highlighting areas of plasmodial growth; each image corre-
sponds to its neighbour to the left. Elements of figure adapted from author’s own work

in Ref. [164].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Photographs to show results from double image experiments with a ‘H’-
shaped mask. (a,c,e) Propagation of 3 separate plasmodia after approximately 65 h.
(b,d,f) Enhanced images highlighting areas of plasmodial growth; each image corre-
sponds to its neighbour to the left. Elements of figure adapted from author’s own work

in Ref. [164].
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to utilise all available space excluding its own trails. In these experiments — which were

also highly repeatable — the organism’s morphology was an accurate representation of

the mask image.

This demonstrates how modulation of the relative strengths of attractive and repulsive

forces may be used to dictate the way in which the organism will represent the ‘images’

which are presented to it as sensory input. These results suggest that further experimen-

tation into varying the intensity and colour of light used may prove fruitful in enhancing

control over the SMMP.

4.1.4 Modelling Results and Discussion

The multi-agent model was able to accurately replicate the organism’s colonisation of

unilluminated, nutrient-rich areas in simulacra of the double image experiments, in which

the virtual plasmodium grew into an approximation of an interconnected concave hull

(Fig. 4.7). Conversely, the entire environment was colonised in control simulations. The

model was not able to reproduce the eventual formation of the convex hull of either

shape, however. This highlights the discontinuity between real and virtual plasmodia,

as the former exhibit a certain tolerance to spanning light-irradiated areas. Results

for single image experiment simulations were very similar to those for double image

experiments (data not included).

Illuminated areas were represented in the model by reducing the ability of constituent

particles to sense attractant gradients; whilst this is not a faithful reproduction of the

mechanisms involved (as was discussed in section 2.2.5, the activation of cytoplasmic

photoreceptors generates a repulsive signal rather than damping attractive ones) and

hence a feasible explanation for the source of discrepancy between real and simulated

results, it should be noted that observations such as in Fig. 4.7 were more akin to the

enhanced light intensity experiments, despite the model not replicating the eventual

dilation of the real plasmodial networks.

4.1.5 Further Discussion

The principal findings of this investigation are twofold:

1. The P. polycephalum plasmodium is capable of perceiving ‘images’ represented

by spatially-distributed sources of attractive and repellent stimuli — although of

course the organism cannot be said to conceptualise this spatial information as

an image in the sense that we would understand it — and will adapt its somatic
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(a) 3h (b) 10h

(c) 24h (d) 51h

Figure 4.6: Double image ‘C’ shape experiment where an additional UV light source
was used to augment the strength of optical repulsion. Although growth patterns
are initially similar to original double image experiments, the organism is unable to
traverse illuminated regions and hence proceeds to fully occupy the space under the

mask, creating an accurate representation of its image in doing so.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Multi-agent model of double image ‘H’ experiment. (a–d) Growth of
virtual plasmodium in a simulacrum of the laboratory experiment in Fig. 4.5. The
resulting network approximates the shape of the mask and attractants but is too in-
terconnected to be labelled as a hull. (e–h) Control experiment where no repellent was
applied. The entire area becomes colonised. Adapted with permission from Ref. [164].

morphology into a representation of its surroundings. The organism can approx-

imate the morphological skeleton and convex hull of a shape, as dictated by the

comparative strengths of the attractive and repulsive forces employed; whilst the

data presented does not provide strong evidence to indicate whether or not the

plasmodium can approximate the concave hull of a shape, it is clear that it is able

to represent the complete shape of a dataset when mediated by overwhelmingly

repellent stimuli.

2. The laboratory experimental results presented are substantiated by and in-turn

somewhat verify the applicability of Jones’ multi-agent particle model of slime

mould migratory dynamics. Several discrepancies between the real world and

simulation exist, most notably the absence of convex hull approximations which

are likely to result from a lack of fine-tuning of the parameters which represent

repulsive fields.

This ability to represent shapes mediated by environmental stimuli expands the scope

of the SMMP beyond simple subdivision of space applications to encompass the realm

of image processing. Beyond this, however, (as we concede that the uses of the spe-

cific SMMP devices presented here are somewhat trivial), we have observed through

these exceedingly simple, crude experiments how an unadulterated plasmodium is able
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to continuously and dynamically translate environmental sensory data into a coherent

behaviour pattern that represents the sum of a complex network optimization prob-

lem. This is achieved through cooperative coordination of every part of its body in

the absence of a centralised control system: in effect therefore, the organism’s many

appendages should be thought of as computational resources, as its momentary network

morphology will determine how it reacts to consequent sources of input.

As with the heterotic devices presented in Chapter 3, however, the practical uses of the

SMMP are somewhat confined; we have, however, demonstrated here that the SMMP

has more functions than previously described and that the use of multiple formats of

simultaneous input is a viable method towards this i.e. polyfunctionality is a product

of polymorphism.

This behaviour is perhaps easily dismissed as optimised foraging behaviour from a bio-

logical perspective, but it is complementary to recent advances in artificial intelligence

which suggest that an entity with a compliant body that exhibits complex non-linear

dynamics possesses significantly more computational resources with which to achieve

greater heights of apparently ‘intelligent’ behaviour [141, 235]. This concept, known as

morphological computation, relies on exploiting the properties of the materials of which

an entity is composed (typically in the context of robotics) in order to ‘outsource’ a

certain percentage of computing work to its morphology4. But robots — and even other

biological entities — cannot usually completely re-structure themselves to suit a specific

task, implying that slime mould is a far more adaptable platform for instances where

morphological adaptation is desirable. Thus, we conceive that morphological processing

of environmental sources of input represent a huge area of potential applications for the

SMMP, as the results presented here demonstrate a unique linkage between entity and

environment; that we have identified the extent to which this behaviour is reconfigurable

but essentially programmable is merely the first step towards this goal.

To conclude this section, we present the following areas for further study.

1. Further experimentation with different shapes and stimulant intensities in order

to achieve fine-tuning of the organism’s abilities to implement morphological op-

erations.

2. Implementation of minor adaptations to the multi-agent model.

3. Deeper investigation into how SMMP morphology reciprocally reflects details about

the organism’s environment.

4This concept is explored further in Chapter 5.
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4.2 On Coupled Oscillator Dynamics and Incident Behaviour

Patterns: Emergence of Wave Packets, Global Stream-

ing Clock Frequencies and Anticipation of Periodic

Stimuli

4.2.1 Introduction

Optical interpretation — whether by eye or machine vision — of slime mould migration

patterns has formed the sole basis of output interpretation in SMMP prototypes pro-

duced to date. Whilst this computationalist view of slime mould foraging behaviour has

found practical applications mainly in the field of image processing, this is nevertheless

a narrow scope for such a substrate. Furthermore, in purely practical terms their op-

eration is very slow and requires significant amounts of user input in their setup and

interpretation of results. The purpose of the investigation described here was to extend

the range of uses for the SMMP beyond image processing by exploiting a desirable emer-

gent property of the organism — its ability to display apparently anticipatory responses

to periodic stimuli — as a computational resource.

4.2.1.1 Anticipatory behaviour: definitions

The foundations of modern thought on the study of anticipation were laid by Rosen in

1985 [250], who argued5 that biological organisms capable of this behaviour must have

the means to:

1. Perceive sensory input pertaining to the state of the immediate environment.

2. Encode sensory information into a format the organism can unambiguously inter-

pret, such that it has momentary awareness of its environment.

3. Store information pertaining to previous environmental states in some form of

memory.

4. Construct an internal simulation of likely future events based on current sensory

information and memorised past states, such that the organism can change its

momentary behaviour, i.e. in anticipation.

5Rosen’s work concerned a rigorous discourse pertaining to the philosophical, mathematical and
biomolecular bases of anticipatory behaviour, that he compiled in his efforts to develop his field (systems
biology) as a means of describing complex biological phenomena which contemporary physics had, in
his view, failed to account for. He concluded that anticipation in a biological system is essential for
adaptation and learning.
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These statements all make reference to concepts that are readily transferable to UC

and indeed, Rosen’s work has been subsequently built upon by Dubois [99, 101] who

abstracted the concept to apply to any entity, including artificial intelligences, by laying

down the mathematical foundations for how algorithms should be designed in order to

replicate Rosen’s anticipatory systems. Dubois draws distinction between two types

of anticipatory system, those which construct the future simulation internally (‘strong’

anticipation) and those which construct (or have the simulation constructed for them)

externally (‘weak’ anticipation), that conceptually distinguishes between autonomous

and non-autonomous systems, respectively. This is the basis of ‘Dubois’ conjecture’,

which states that autonomy implies that supplementary information is generated by

and consequently added to a system in the process of processing external information.

Harnessing this ability for UC purposes is highly desirable as it forms the basis of

creating complex, adaptable systems that share emergent features usually assigned to

higher forms of life.

Translating these terms into a more biological context, Collier [76] (in his works on the

epistemological foundations of classifying anticipatory behaviour) argues that all living

systems can be said to exhibit the ‘strong’ variety of anticipation because their actions

are autonomous. Collier’s hypothesis is dependent on defining organisms as having

a teleological purpose: survival, regulated by autonomous (genetic) self-preservation

responses. This is of course a contentious issue as the Darwinist interpretation of survival

is that any ‘purpose’ an organism may display is only apparent, i.e. teleonomical. It

is beyond the remit of this investigation to explore this concept further, but suffice it

to say that we regard it as irrelevant whether an organism exhibits true or apparent

purpose in its ability to project internal simulations of past, present and future events

as well as make decisions pertaining to momentary behaviour based on these: this is

autonomous (i.e. self-regulating) in origin and will presumably confer some form of

survival advantage whether it can be said to be ‘purposeful’ or not. Thus, as slime

mould has been described as exhibiting anticipatory behaviour, we may hypothesise

that the processes which underlie it are algorithmic in nature and therefore a computing

resource that can be exploited for the generation of UC devices with a wide range of

novel applications.

The anticipatory behaviour of slime mould has only been reported in one experimental

study by Saigusa et al. [254] — which demonstrated that the organism will slow its

crawling speed in apparent anticipation of a rapid, prolonged (60 min) combined tem-

perature and humidity drop that had been previously applied periodically at least three

times — and though several hypotheses have been made pertaining to how the organism

is capable of such behaviour, the phenomenon is still poorly understood.
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In this investigation, we initially present a literature review on the bases of anticipa-

tory behaviour in slime mould followed by laboratory experimental studies in which

we successfully induce anticipatory behaviour in the P. polycephalum plasmodium via

a well-characterised mechanism — photoavoidance. We proceed to extrapolate the

biomolecular basis for slime mould anticipation and conclude by discussing the com-

puting applications of anticipatory SMMPs.

4.2.1.2 Anticipatory behaviour as a function of coupled oscillator dynamics

The current scientific consensus is that anticipatory behaviour arises in biological, chem-

ical and physical systems as a result of non-linear interactions between coupled chaotic

oscillators which bring them into or out of synchrony. It is now a well-observed phe-

nomenon that coupled dissipative chaotic systems may bring themselves into some de-

gree of synchrony, either spontaneously or gradually, as a function of the method of

linkage between them. This is especially true of biological systems: to consider the

topical example of P. polycephalum’s shuttle streaming oscillator, although the rhyth-

mic contraction and dilation of the organism is harmonic, the biomolecular processes

which drive it — biochemical signal transduction pathways, enzymatic reactions etc. —

are distinctly chaotic (see section 4.2.1.3), thus highlighting the extraordinary power of

biological material for ‘taming’ chaos [227].

Several varieties of oscillator synchronisation have been identified including the emer-

gence of complete synchrony (usually in identical oscillators) [289], phase-only synchro-

nisation [252] and lag and anticipatory synchronisation [251, 318]. This latter category

refers to a phenomenon observed when one or more oscillators slaved to a master oscil-

lator will adjust their motion in a manner that appears to pre-empt perturbations in

the master when the system has been sufficiently entrained through external input so as

to attain some stability. The concept of entraining a master oscillator through external

input is a proposed mechanism underlying the emergent behaviours we label as antic-

ipation in autonomous systems, and whilst differences in opinion exist as to the exact

nature of the phenomenon, several biological systems have been experimentally demon-

strated to exhibit anticipatory synchronisation of underlying oscillators when exposed

to some form of periodic exogenous stimuli. Some examples of such systems include:

Simulation Coupled Rössler oscillators [59], Lorenz systems [242] various CA rules that gen-

erate periodic fractal patterns [100], simulated neuron cultures [72, 242, 318],

Lyapunov-Krasovskii functional (linear time delay) systems [224].

Physical Coupled bistable circuits, Rössler oscillators [238], Hindmarsh-Rose neuron circuits

[242].
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Chemical Reactant profiles in the Belousov-Zhabotinsky reaction [221].

Biological Neural cell culture bioelectrical activity [241], competing nerve relay oscillation

controlling circadian rhythms in Drosophila flies [286] and food anticipation in

mammals [273].

Accordingly, the hypotheses advanced to date concerning the phenomena which underlie

slime mould anticipatory behaviour patterns make reference to the concept of anticipa-

tory synchronisation in oscillating intracellular systems. In the seminal article on the

topic [254], the authors presented a non-specific dynamical systems model which mathe-

matically demonstrated that variables in a generalised oscillator equation will eventually

synchronise with periodic external input. This was later built upon by Pershin et al.

[232] who suggested that the dynamical history of the organism’s external input was

‘stored’ as the momentary pressure differential exerted on its thixotropic intracellular

environment with the changes in environmental temperature and humidity used as input:

this in turn, they claimed, altered the flow rate of shuttle streaming and hence changed

its crawling speed. They concluded by likening this phenomenon to the alterations in

electrical resistance a memristor exhibits in response to various magnitudes of electrical

input. Although this theory was well accepted and received press attention over a period

of years — likely due to the novelty of memristors since their first experimental demon-

stration in 2008 and the discovery by Gale et al. in 2013 [126] that slime moulds are

electrically memristive — it does not consider any of the biomolecular processes which

drive the maintenance of intraplasmodial pressure or indeed the ramifications of this on

any other specific processes.

Aside from the incompleteness of the ‘memristor analogy’, it also implies that the hy-

pothetical behaviour of slime mould is not autonomous and is mediated entirely by

exogenous forces and hence, only weakly anticipatory as per Dubois’ classification. Fur-

thermore, it poses several unanswered questions, such as whether the organism can

display this behaviour in response to input which does not alter its intracellular pres-

sure and how non-immediate memory is maintained when the intracellular pressure is

constantly fluctuating in response to ectoplasmic actomyosin contraction. This presents

the necessity of approaching the characterisation of slime mould anticipatory behaviour

from a biological perspective as it is only through the identification of underlying pro-

cesses that such phenomena can be manipulated effectively. In acknowledgement of this,

the following section contains a brief literature review of the nature of the organism’s

oscillating cellular processes which indicates the likely biological basis of slime mould

anticipation.
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4.2.1.3 A review of slime mould oscillators

As was mentioned in section 2.2, the P. polycephalum plasmodium physically oscillates

via the contraction of radially, longitudinally and spirally-orientated ectoplasmic muscle

proteins (actomyosin complexes) [44]: as a result of these contractions its cytoplasm

is propelled rhythmically back and forth along its anteroposterior axis which provides

motive force and distributes the contents of the cytoplasm throughout the organism.

The period of this process is 60–120 s and can be influenced by altering the favoura-

bility of its environment. Net forward migration is achieved thanks to the thixotropic

nature of the intracellular environment: asynchronous contraction generates a pressure

differential which precipitates anterior solation and posterior gelation. This process may

be considered as being a biomechanical phenomenon driven by the physical contraction

of actomyosin proteins, hence intraplasmodial pressure peaks in phase with the tension

generated by protein contraction as well as cytoplasm propulsion velocity.

An interesting phenomenon related to the biomechanical oscillator is the emergence of

a global (organism-wide) streaming ‘clock’ frequency. A scant few pieces of historical

literature report that the streaming frequency of individual plasmodial tubes will, when

disturbed by some form of stimulus, revert to the global frequency after a short period of

time has elapsed. Furthermore, a plasmodial tube transplanted onto a different organism

will rapidly (in under an hour) synchronise its streaming frequency with that of the

new plasmodium [332, 343]. Although little reference to this phenomenon is made in

literature other than these two articles, Dietrich notes in his retrospect on slime mould

biology research that its underlying mechanisms were sought after in the 1970’s [94].

For our purposes, the issue as to whether or not P. polycephalum has a master oscillator

to which other oscillating intracellular systems are slaved is a key research question.

Plasmodial membrane potential oscillates in synchrony with the biomechanical oscillator,

although the two systems may occasionally be observed to be slightly out of phase [168].

These two systems are not directly coupled to each other, however, as experimental

studies have demonstrated that bioelectrical phenomena do not precipitate muscular

contraction [331] and equally membrane potential continues to oscillate when protein

contraction has been chemically restrained [177, 308]. The key and likely sole endogenous

determinant of plasmodial membrane potential6 is the intracelluar concentration of free

hydrogen ions ([H+], where brackets denote ‘intracelluar concentration of’) [114, 156],

6Note that plasmodia not at rest, i.e. stimulated, will display membrane potential modulation in
response to various sources of input [225].
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rather than calcium ions ([Ca2+]) as several studies have stated [33, 213, 274]7. [H+]

levels oscillate in resting plasmodia due to their being produced as a by-product of the

biochemical reactions that produce energy in the form of ATP, which are collectively

known as oxidative phosphorylation: this adequately explains how membrane potential

continues to oscillate in the absence of actomyosin contraction as energy production

must necessarily continue unabated within the organism at all times. Accordingly, [ATP]

oscillates in synchrony with tension production [345]. Thus, the organism’s metabolic

oscillator is the master oscillator to which the biomechanial and bioelectrical systems

are slaved.

Despite [Ca2+] not being a determinant of membrane potential, a great many stud-

ies have demonstrated — through the use of chelating agents to sequester intracellular

calcium [199], remove the endoplasm and replace it with artificial media [309] and re-

moving calcium sources in the organism’s foodstock [332] — that the organism requires

calcium in order to undergo muscular contraction and that the cytoplasmic concentra-

tion of free calcium oscillates over time in approximate antiphase of the biomechanical

oscillator [346]. This suggests that, contrary to its expected functions, calcium has a

pro-relaxation effect on actomyosin contraction: a significant number of both in vitro

and in vivo studies have elucidated the mechanisms underlying this behaviour, which

seem to stem from calcium-based activation of factors that suppress contraction such

as myosin II and fragmin [167, 170, 172, 179, 182, 344, 346]. This is further supported

by a mathematical model of the slime mould calcium and energy supply oscillators by

Smith and Saldana [278], which accurately replicates the behaviour of coupled calcium,

biomechanical and bioelectrical oscillating systems. Rhythmic changes in free calcium

concentration are coordinated by its sequestration in intracellular vesicles which is pre-

cipitated by increases in [ATP], although the relative concentrations of vesicle-bound to

free calcium over time are poorly characterised [44]. Hence, a supplementary system of

biochemical oscillators are also slaved to the organism’s energy supply system.

The oscillators detailed in this section comprise the major oscillating systems within the

organism: a limited number of other slime mould life processes are known to oscillate

— e.g. cyclic adenosine monophosphate (cAMP) concentration (a signal transduction

protein), the phase of which precedes calcium oscillations by about 60o [312] and the

kinase phosphorylation fraction (percentage of proteins ‘activated’ by kinase enzymes in

certain biochemical pathways) protein load, which is in phase with tension production

7This misconception originated from a combination of the known effects of calcium on precipitating
muscle contraction in human striated muscle and a 1979 study by Meyer and Stockem [213], who studied
changes in fluorescence intensity over time in plasmodia treated with a fluorescent calcium dye and, on
observing direct correlation between fluorescence and biomechanical oscillation, claimed that the two
were linked. Their results were not calibrated to compensate for changes in plasmodial thickness (i.e.
fluorimetric imaging rather than ratiometric), however, despite previous literature on the topic warning
against this eventuality [253], and consequently their results were called into question [44, 333].
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— but these are considered to be by-products of the other reactions occurring. Fur-

thermore, genetic factors such as the cell cycle also oscillate but as these are very slow

(hours to days in duration), open-loop systems, they cannot be considered to underlie

the rapid, reflexive anticipatory responses under investigation. Crucially and somewhat

surprisingly, the concentrations of several compounds essential to the functioning of the

various major oscillating systems described above do not oscillate, such as the adenine

nucleotides which are used in the synthesis of ATP and various allosteric enzymes in-

volved in the biosynthesis of other precursors to the energy supply system [312].

In summary, we have characterised various oscillating slime mould life processes as

biomechanical, bioelectrical and biochemical systems, all of which are slaved to an os-

cillating master energy (ATP)-generating pathway. The relative phases of various con-

situent oscillators are shown in Fig. 4.8.

4.2.1.4 Hypothesis

We have seen that coupled chaotic oscillators display the following behaviours:

1. Phase synchronisation of multiple slave oscillators to that of a master oscillator

when the system is in an equilibrium state.

2. Phase shifts in slave oscillators sympathetic to entrainment by perturbations of

the rhythm established by the master oscillator, whose motions alter in such a

way that they appear to anticipate similar future perturbations.

We have identified that of all of the intracellular oscillating systems within P. poly-

cephalum, several subsystems which control key cell functions are slaved to the master

energy supply oscillator: hence, we can speculate that this clock frequency may be the

origin of the underlying streaming clock frequency (i.e. when the system is at rest) as

well as anticipatory behaviour exhibited by slaved subsystems. This poses the vital

question as to how the master oscillator becomes perturbed such that its dynamics are

sufficiently altered as to elicit the knock-on effects on its slaves.

The following investigation was based on the hypothesis that adverse stimulation of

the organism causes modulation of its intracellular biochemical environment through

altering the availability of compounds which influence the energy supply system, such

as allosteric molecules (this in effect provides a basis for explaining the conversion of

polymorphic input streams into a coherent output). This may feasibly bias the master

oscillator. To this end, the P. polycephalum plasmodium was periodically subjected to

adverse stimulation using a method whose biological effects are better-characterised.
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Figure 4.8: Graph to show relative phases of P. polycephalum’s intracellular oscil-
lators, derived from experimental studies. Membrane potential, vessel diameter and
phosphorylation fraction are in phase, as are total cytoplasmic ATP and muscular ten-
sion; the former leads the latter by approximately 10o. Free calcium concentrations are
180o out of phase with ATP/tension and cAMP lags 60o behind calcium. X-axis val-
ues and wave characteristics are arbitrary as graph shows only relative phases. Figure

adapted from author’s own work in Ref. [208].
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Optical stimulation through irradiation with UV light was chosen as the adverse stimulus

as the organism is known to possess several UV light-sensitive cytoplasmic photoreceptor

proteins; it readily exhibits photoavoidance (implying up-regulation of the biomechanical

oscillator in order to achieve net migration) to low-intensity UV light but will undergo

spontaneous sporulation if subjected to higher doses [282]. Hence, the effects of such

treatment are visible as an alteration in the organism’s streaming patterns: this was

observed through low-magnification examination of plasmodial tube contraction and di-

lation as well as higher-magnification observation of the organism’s actin network, which

was performed in order to concretely ascertain whether the treatments administered were

having direct effects on normal patterns of muscular contraction.

4.2.2 Methods

4.2.2.1 Slime mould cultivation

Stock cultures of P. polycephalum were cultivated as described in section 3.1.2.1.

4.2.2.2 Visualisation of actin

Plasmodial homogenate were inoculated onto 0.5 ml hemispheres of NNA overlying

large glass microscope coverslips. Another NNA hemisphere was situated approximately

10 mm away and was loaded with a chemoattractant (oat flake) to encourage the organ-

ism to migrate between the two, leaving a small plasmodial network over the naked glass.

This apparatus will henceforth be referred to as the standard slime mould microscopy

environment (SSMME). The SSMME was then placed in a sealed plastic Petri dish and

was left to propagate in the absence of light for 2–3 days.

Actin was stained by microinjecting a large plasmodial tube linking the agar hemi-

spheres with a solution containing 100 nM of a fluorescent G-actin analogue (SiR-actin,

Spirochrome, Switzerland) in deionised water, via a CellTarm microinjection system

(Eppendorf, Germany) with a hollow glass needle, tip size < 30 µm. Approximately

750–1000 nl of staining solution was delivered. After 1 hour had elapsed, the organism

was transferred to a Ultraview ERS FRET-H confocal microscope (Perkin Elmer, USA)

for visualisation. The fluorophore was excited with a 568 nm laser. Imaging data was

post-processed (colour assignment, contrast enhancement) with the Volocity software

package (Improvision, USA).
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4.2.2.3 Entrainment experiments

Plasmodial homogenate was transferred to plastic Petri dishes containing a layer of

0.5 mm NNA. The NNA layer was prepared with ultra-pure water and care was taken

not to introduce bubbles whilst pouring in order to maximise its light transmittance.

Several oat flakes were scattered about the periphery of each dish before they were left

in the dark for several days to encourage the development of complex, robust networks

of plasmodial tubes. Dishes were then transferred to an inverted light microscope, the

stage of which was covered by an opaque box which prevented light contamination from

external sources.

Large plasmodial tubes of diameters exceeding 300 µm were isolated and visualised under

a 10× objective lens using a constant low-level 100 W halogen power supply supplying

approximately 125 lx (1.8 × 103 erg/mm2). The plasmodia under investigation were

allowed 15 minutes to equilibrate to the alteration in light level and any heat generated by

the illumination, which was found to be an adequate timeframe in scoping experiments

to allow heat changes to stabilise.

The organism was periodically stimulated by exposing the area being observed to the

microscope’s 100 W mercury arc fluorescence lamp, which was outputting 165 lx (2.4×
103 erg/mm2) through a 340 nm (UV-A) filter. The halogen lamp remained on during

all these periods. Patterns of stimulation were as follows:

R1 → S1 → R2 → S2 → R3 → S3 → R4 → A (4.1)

where:

• Rx phases correspond to ‘rest’ periods where the organism was not stimulated with

UV light. These phases were of 900 s duration.

• Sx phases were 120 s periods where the organism was exposed to UV light.

• The final A phase which corresponds to the periodicity and duration of S phases

but where no stimulation with UV light was provided and the streaming patterns

of the organism were assessed for the incidence of anticipatory behaviour.

Control experiments were performed by exposing a tube to continuous illumination with

the same halogen light source with no stimulus periods. The decision to perform three

stimulation periods was made based on scoping experiments which indicated that two

were insufficient to provoke a response in the third S window when no stimulation was
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provided. These scoping experiments also informed the decision of phase durations as

it was discovered that 900 s was sufficient to allow the organism to return to normal

streaming patterns and 120 s of UV exposure did not cause rapid retraction of the

plasmodial tube under investigation.

All experiments were filmed with a SC30 digital microscope camera (Olympus, USA).

The diameter of the plasmodial tube was measured manually every 500 frames (ap-

proximately 14.5 s, totalling some 280 measurements per experiment) using CellSens

software (Olympus, USA). Measurements were made perpendicularly to the vessel orig-

inating from the same X,Y coordinate. Measurement data were analysed with Matlab

2015a (Mathworks, USA) using Fast Fourier Transform, periodogram and basic statis-

tical functions. All experiments were performed in triplicate.

Stimulation effects were investigated by splitting resulting power spectra into separate

phases and comparing the frequency of oscillation in each to control values. Values were

compared to and normalised against the ‘baseline’ (clock) streaming frequency, which

was calculated as the R1 phase; results were presented as the difference in streaming

frequency between R4 and A phase with and without adjustment (deviation from the

baseline frequency, ‘drift’): the rationale behind this was to reduce the effects of drift

from the clock frequency which may have occurred for reasons other than the treatments

administered. Only dominant streaming frequencies were measured as the organism is

known to exhibit wave packet behaviour.

4.2.3 Results

4.2.3.1 Imaging

Actin was found to exist in dense, highly interconnected networks about the cell’s ec-

toplasm. Irradiation of a plasmodial tube with the 568 nm laser used to excite the

actin probe was found to cause rapid (within several seconds as opposed to the standard

1–2 min cycle) contraction of the vessel, as is demonstrated in Fig. 4.9. Contraction

magnitude was in a similar order to normal contraction patterns.

4.2.3.2 Entrainment experiments

Full datasets for the following experiments are included in appendix C.3.

Control

Control plasmodia (Fig. 4.10A) exhibited periodic oscillations in vessel diameter as

anticipated. The frequency of oscillation in these plasmodia ranged from 0.008–0.013 Hz
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Figure 4.9: Sequential confocal micrographs showing the actin network (red) about
a small plasmodial tube reducing in diameter over time (1833→1731→1678 µm) in
response to irradiation with an intense 568 nm source. Time steps approx. 1 s. (a–c)

Scale bar 250 µm.

Figure 4.10: Graphs to show time series and power spectra for exemplar control and
experimental datasets. (a–b) Control. Wave packets are visible. (c–d) Experimental.

Phases are indicated in time series with arrows.

(mean 0.009 Hz). Wave packets of approximately 0.001 Hz were observed in all controls

which were usually demarcated by characterstic ‘jumps’ in time series graphs. A general

upward trend in tubule diameter was also observed in all experiments.

Experimental

Conversely, experimental plasmodia displayed a general downward trend in vessel di-

ameter and tended to exhibit progressively chaotic patterns in amplitude and period of

oscillation (Fig. 4.10B). Wave packets were not observed. Time series and power spectra
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Figure 4.11: Graphs showing time series and power spectra for each phase of an
exemplar dataset. Time series show both R and corresponding S/A phase. Dominant
streaming frequencies gradually increase in both R and S phases, but reduce in power.
A substantial, apparently anticipatory, frequency increase is evident during the A phase.

R1 (BLF) S1 R2 S2 R3 S3 R4 A ∆AR4 (%)

0.013 0.012 0.012 0.009 0.013 0.013 0.012 0.017 141.67

Table 4.1: Table to show streaming frequencies from exemplar dataset in Fig. 4.11.
All values in Hertz except for ∆AR4, which shows the percentage increase in streaming

frequency between A and R4 phases. BLF: baseline frequency.

∆fA (%) ∆fA− BFD (%)

Control x̄c 106.11 7.87

σ 5.36 6.85

Treatment x̄t 132.14 33.93

σ 10.17 4.26

Difference x̄t − x̄c 26.03 26.06

Table 4.2: Collated data to show the mean (x̄) and standard deviation (σ) of A vs
R4 phase frequency changes (∆fA), with and without baseline frequency drift (BFD)

adjustment.

from an exemplar dataset split into separate phases are shown in Fig. 4.11B and the cor-

responding numerical data is shown in Table 4.1. Generally, streaming frequency would

increase during initial S phases but would always tend towards being equal to the R3

phase frequency by the S3 phase. R phase dominant frequency tended to be relatively

constant. A phase dominant frequency substantially increased in all such experiments

by a mean value of 26%, both with and without adjusting for baseline frequency drift.
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4.2.4 Discussion

4.2.4.1 Imaging study

The P. polycephalum actin network was demonstrated to contract rapidly upon exposure

to the laser used to excite the fluorescent actin probe. Although the light source used

was not of an UV wavelength, these experiments confirm the direct coupling between

light irradiation and plasmodial tube contraction via innervation of the mechanisms it

uses for shuttle streaming, i.e the biomechanical oscillator. Note that sample heating was

assumed to be minimal in these experiments as laser exposure was typically intermittent

over a period of not more than 4 s.

4.2.4.2 Entrainment of anticipatory responses

The key finding of this study was that the P. polycephalum plasmodium exhibits in-

creases in streaming frequency consistent with the concept of anticipation following

entrainment with adverse periodic stimuli.

Although control plasmodia were observed to undergo small streaming frequency in-

creases, likely as a result of constant low-intensity white light illumination, these were

significantly smaller than the increases observed in experimental plasmodia. This demon-

strates that the organism may effect proportional responses to optical stimuli intensity,

which implies that its control system is closed-loop: this is of particular relevance as

it reduces the possibility of the behaviours observed resulting from UV-induced DNA

damage (the consequences of which may include altered gene expression, mitotic stage

reversal and total DNA content reduction [92, 130]), as genetic control mechanisms are

open-loop. The organism’s tendency to increase streaming speed but attempt to match

R phase streaming speed during S phases implies that both are compensatory mea-

sures designed to minimise the deleterious effects of harmful stimulation, likely through

promoting gradual retreat from the area.

We may extrapolate from this data that plasmodial photoreceptors are coupled to the

biomechanical oscillator. This allows us to hypothesise that upon entering a high-energy

state following a receptor-photon interaction, the resulting intracellular signalling cas-

cade’s8 end products influence the plasmodial energy supply system, presumably by up

or down-regulating it. This, in effect, equates to biasing the oscillator’s phase portrait

which therefore has knock-on effects on each of its slaved systems.

8All photoreceptor proteins — including those present in plants, bacteria, protists and mammalian
cells such as those in the eye — function by catalysing a highly amplifying signal cascade which typically
involves either the cAMP-dependent (via activation with protein kinase A) or the diacyl glycerol/inositol
triphosphate-dependent (via phosphatidylinositol biphosphate and protein kinase C) pathways [1, 279].
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This explanation would appear to agree with the fact that the responses observed were

relatively rapid in biological terms (minutes), as second messenger signalling cascades

are known to initiate the recruitment of rapid-reaction biomolecules such as protein

kinases and other allosteric molecules whose functions are to activate or suppress various

intracellular systems [1].

This theory implies that the organism uses one or more rapid-reaction biomolecule vari-

eties as a transient chemical ‘memory’ which either oscillates with its own exogenously-

generated period or exists in non-oscillating quantities for a certain period of time; their

presence continues to bias the organism’s energy supply oscillator in either case. As

mentioned before, some such compounds (e.g. protein kinase C) have been observed to

oscillate within the P. polycephalum plasmodium whereas others have not [43, 171], but

our hypothesis does not necessitate that these factors oscillate or otherwise. This de-

scription is consistent with Dubois’ and Collier’s definition of ‘strong anticipation’, i.e. a

self-generated model of future events derived from past experience, is present within the

organism. Such a definition is partially in agreement with the aforementioned models

of slime mould anticipation in that it involves coupled oscillating systems, but disagrees

with them in that the basis of slime mould memory is chemical, rather than physical.

Furthermore, we have suggested a specific, well-characterised system by which this is

achieved and have advanced empirical evidence to this effect.

Adjustment of streaming frequency results for baseline frequency drift increased the

magnitude of treatment effects between R4 and A phases, which indicates that the or-

ganism’s underlying streaming clock frequency (representing the energy supply system)

may alter over time in order to compensate for the effects of local adverse stimulation.

4.2.4.3 Computing with live systems via manipulation of constituent cou-

pled oscillators

To adapt such a complex system into a functional unconventional computing system

would be an arduous problem worthy of a separate program of study in itself to complete.

Hence, in this subsection we discuss how these phenomena may be characterised in the

language of computation and how this implies that the range of uses for the SMMP are

far more diverse than originally thought, in efforts to guide future study on the topic.

When viewed as a discrete device, a plasmodial tube being entrained in this manner

may be considered as a three-input and gate, allowing for the discrepancy between data

type input (light) and output (optical recognition of streaming speed), as the state of

the device will only change such that the output is true (by way of an example, this

could equate to a 25–30% increase in streaming frequency) during the A phase if three
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‘1’s (denoting the presence of an input during S phases) are provided. A UC device built

on the exact techniques used in this study would be impractical and slow in comparison

to conventional hardware, although its speed of operation (approximately an hour per

logical operation) is acceptable in comparison to other biological logical gates previously

proposed, such as those operating on principles of gene expression. These proposed

devices, which will henceforth be referred to as anticipatory logical gates (ALGs), nev-

ertheless demonstrate the organism’s ability to encode information — transduction of

light stimuli into a structured format which is then transmitted to the relevant effectors

and temporarily stored — and to demonstrate an entirely programmable computation

within the organism. We conceive that the ALG could be developed in the following

two ways:

1. Up-scaling: If multiple precisely-aimed, low-intensity UV lasers were employed,

several plasmodial tubes may be stimulated at once. If its underlying mechanisms

were suitably elucidated, this might used as a method of influencing the plasmodial

streaming clock frequency, which is likely to reflect the sum of inputs from the

frequency of each tube.

2. Automated output interpretation: Changes in vessel diameter may be optically-

recorded via a computer with various techniques such as colour recognition or light

transmittance (spectrophotometry). This would allow for faster, more dynamic

gate operation and would also facilitate up-scaling. As such a device would qualify

as a SMHP rather than SMMP, the FPGA-based interface presented in section 3.2

is a feasible development platform for slime mould anticipatory systems.

We concede, however, that such devices would have a very limited range of practical

uses. This further highlights that the SMMP is an analogue machine which is ill-suited

to implementing digital logic.

The way in which we have described the P. polycephalum plasmodium’s store of certain

oscillator-biasing biomolecules is directly analogous to the concept of an integrator in an

analogue computer, as they directly influence the ‘signal generators’ of the organism’s

various oscillators to a degree proportional to the sum of the ‘calculations’ performed

during previous exposure to UV light. This perspective significantly increases the com-

puting potential of hypothetical devices: for example, as our results indicate that slime

mould responses to illumination are proportional, this presents the possibility for com-

puting of arithmetical operations. To delineate, in 2013, Blakey [60] hypothesised that if

a plasmodium could be entrained to ‘remember’ the period of stimulation then analysis

of streaming patterns allows us to derive the period of oscillation when it is unknown: if
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this work were expanded so that either a periodic function could be derived from analy-

sis of streaming patterns, or if the organism could be entrained with a periodic function

such that the period could be derived, slime mould could feasibly be used towards imple-

menting a small-scale (i.e. allowing for only small numbers) non-quantum realisation of

Shor’s factorisation algorithm. This is an enthusing prospect as there exists no efficient

general-purpose algorithm for integer factorisation for conventional architectures; Shor’s

algorithm, which has still not been successfully implemented for many numbers on the

quantum architectures it was designed for, may theoretically complete its function in

polynomial time [271, 315]. Such an application, whose implementation is certainly fea-

sible according to our results, is a true embodiment of UC as it presents a novel use for

computing devices. Furthermore, our results raise interesting questions as to the nature

of memory and the computing process in other biological substrates such as the human

brain, but such a debate is beyond the scope of this investigation.

We are by no means the first to suggest that live cells may function as analogue com-

puters as, despite the fact that many of the more widely-known extant biological UC

prototypes attempt to implement digital computation (e.g. the forerunner DNA com-

puters as per the initial designs by Adleman [37, 69]). Encouraging progress has recently

been made towards implementing analogue arithmetical circuits in the genetic transcrip-

tion mechanisms of live cultured cells [85]. Although these analogue genetic circuits have

been developed significantly further than the ALGs presented here and are as such far

superior in terms of speed and accuracy, they have not been described as being able to

exhibit anticipatory behaviour; this demonstrates the novelty of the devices presented

here.

4.2.5 Conclusions

We have verified the effects of light irradiation on the P. polycephalum plasmodium and

demonstrated its ability to effect a highly repeatable anticipatory response proportional

to the dose of UV light administered. This mechanism presents huge potential for

expanding the uses of the SMMP into regions where the full resources of the organism

are utilised towards out-performing conventional hardware in certain aspects of their

operation.

Our suggestions for further study include:

1. Simultaneous measurement of streaming phenomena in multiple tubes in order to

assess whether the light/UV irradiation influences global streaming frequency.
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2. Further work on determining the range and extent to which the organism’s re-

sponses are proportional to stimulus intensity and duration would be a profitable

route towards greater control over devices relying on the phenomenon of slime

mould anticipation.

3. Investigation into how long the plasmodial ‘memory’ response is conserved after

stimulation has ceased.

4. Work on entraining the organism with a periodic function assessing the feasibility

of implementing Shor’s factorisation algorithm with slime mould.



Chapter 5

Slime Mould Intracellular

Computation

No extant Physarum machine prototypes have capitalised upon directly manipulating

microscopic intracellular systems or interpreting output at the sub-meso-scale. This

severely limits the range of ways we may interact with a Physarum machine in both input

format and output detection, their range of applications and the applicability of findings

therein to other biological substrates. As such, a great many of the substrate’s desirable

characteristics which are touted as justifications for the use of biological substrates in UC

— parallelism, spatial propagation of information etc. — have not been fully exploited.

This chapter details investigations which comprise the initial work in the development

of slime mould intracellular processors (SMIPs). Initially, we present our theoretical

work expounding the plasmodial cytoskeleton as an intracellular network for information

structuring, transmission and processing, which is substantiated by cellular automaton

(CA) modelling. Following, we demonstrate through laboratory experiments how the

organism’s actin network may be practically utilised as a medium for implementing

collision-based computing.

95
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5.1 Computing with Intracellular Protein Networks: The-

oretical Underpinnings

Let us briefly re-visit the justifications for research into slime mould intracellular com-

putation from Chapter 2. An incredibly large number of ordered, highly-regulated micro

and nanoscopic processes occur simultaneously within a cell in order to maintain life.

This implies that although a live cell possesses a great many degrees of freedom, con-

trol systems exist such that chaos is avoided (this concept will be explored in detail in

section 5.4); evolutionary biology indicates that these self-assembling biochemical sys-

tems balance order with variability, thus live systems appear to have a clear advantage

over non-biological UC substrates such as chemical reactors. We envisage that intracel-

lular reactions and other energetic events are viable computing resources in their own

right due to their comparative small scale, the existence of endogenous control mecha-

nisms, amorphism, energy efficiency and production of stable, measurable output (both

micro-scale and on a cell behavioural level). But where in the milieu of the intracellular

environment is one to start when designing biological UC devices, especially when they

are not all fully-defined? This section justifies the selection of a specific intracellular

system — the plasmodial cytoskeleton — upon which the experiments comprising the

remainder of the Chapter are focussed.

As we have seen in the previous chapter, the macroscopic optical outputs of a SMMP

require the operator to appreciate the microscopic processes occurring within the organ-

ism in order to properly exploit its computational resources. Such approaches employ a

‘top-down’ methodology in which the underlying processes that occur within the slime

mould are treated as a black box. Conversely, intracellular computation necessitates a

bottom-up perspective. The potential benefits of this approach are clear: aside from

miniaturisation (implying higher information density, scalability etc.), micro-scale pro-

cesses tend to occur much more quickly and allow for continuous tracking of the com-

puting process. Conversely, the detriments of this approach include a more technically

complex procedure to observe and manipulate the processes involved and a requirement

for the systems being manipulated to be well-characterised.

Our investigations outlined in Chapter 4 highlighted the importance of information struc-

turing to facilitate data transmission, storage and processing and provide programmable

behaviour; furthermore, we recall from Chapter 2 that this concept is extremely im-

portant in contemporary artificial intelligence sub-fields such as robot design, as the

structure of data streams within an entity and the coupling between them essentially

dictates how it can interact with its environment [123, 141]. This concept is known as

‘morphological computation’, which we will briefly describe here.
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Several authors have emphasised the opinion that the requirement for data structuring

is necessary to enable logical ability, memory and learning in artificial intelligence con-

structs [123, 191, 192, 235]. This is because concepts such as these can only become a

reality if they are embodied in a way that permits information flows into and out of the

organism’s physical body as it interacts with its environment: the means of interaction

employed by both natural and artificial entities are typically mediated via sensorimotor

information flows (‘data streams’). Consider, for example, the complex interplay be-

tween sensory input and motor feedback required when a human lifts a glass of water to

take drink from it: the person’s arm and hand muscles work in synchrony with tension

and touch receptors to manipulate the glass, which forms the basis of the ‘environment’

under scrutiny. The person’s brain must make constant re-adjustments based on sen-

sory data pertaining to the vessel’s weight, orientation and relative position in order to

accurately guide it to their mouth.

The essence of morphological computation lies within the acknowledgement that artifi-

cial constructs should be designed in such a way that a portion of the computing work

required by it is ‘outsourced’ automatically and at no extra energy expense to the mor-

phology (informational or physical) of the entity [234]. This is a bio-inspired design

concept. Consider, for example, that the trans-membrane receptor proteins coating the

P. polycephalum plasmodium are not sensors in the way that a robot might use them

as they are entirely autonomous, activating independently when they interact with the

appropriate stimulus: a conventional electronic sensor, on the other hand, needs to be

sampled at a certain frequency by a central control unit as it cannot function indepen-

dently. The former is clearly far more efficient than the latter: indeed, given that the

systems which inspired this concept evolved naturally is proof of this. The concept of

morphological computation has already led to great advances in the field of bio-inspired

robotics and artificial intelligence [141, 234] and some authors have suggested that the

theory may be reverse-engineered in attempts to describe the characteristics of emergent

natural systems whose dynamics cannot be defined in terms of classical mathematics,

such as brain function [84].

Thus we are free to speculate that there exists within the P. polycephalum plasmodium a

physical medium through which sensorimotor data streams are free to flow and interact.

Whilst we have previously spoken of incoming data streams being structured in a chem-

ical format, we discount the possibility of the data stream being entirely amorphous as

simple chemical diffusion would lead to entirely unguided transmission due to the shuttle

streaming oscillator regularly distributing the contents of the cytoplasm throughout the

organism. This implies the existence of a medium through which structured data may

travel and presumably interact.
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Figure 5.1: Schematic diagram of an actin microfilament. Scale bar = 5 nm, helix
twist not to scale. Adapted from the author’s own work in Ref. [202].

There does indeed exist a structure within the P. polycephalum plasmodium — and

every other cell type, for that matter — which spans through the entirety of the cell and

may transmit a variety of energetic events. This structure is known as the cytoskeleton,

which is an extensive intracellular protein network formed from:

1. Actin. The most predominant protein in the eukaryotic cell, actin is a globular

protein (g-actin) which assembles into long filamentous 5 nm wide double helices

called microfilaments (f-actin) (Fig. 5.1) [78]. The functions of actin are known to

include participation in cell signalling, transduction of mechanical force and par-

ticipation in muscular contraction — and hence, cell motility — when complexed

with myosin (actomyosin).

2. Tubulin. Also a ubiquitous cytoskeletal protein, tubulin exists in two isomers

which dimerise to form rigid tubular structures approximately 25 nm (×10−9)

in diameter and may be several micrometers in length; their functions include

facilitating substance transport, maintaining structural rigidity and participating

in both nucleus and cell division [110].

3. Intermediate filaments. These constitute a very wide range of proteins whose

distribution is not continuous between different cell types and will typically con-

tribute to the specific functions of the cell. P. polycephalum and various other

lower eukaryotes possess lamins, for example, which form a scaffold about the in-

terior of the cell’s nucleus to provide it with the mechanical stability it needs to

replicate in the absence of a static cytoskeleton in a non-motile cell [133].

All three varieties of protein are bound together in one interconnected network via a

range of actin and tubulin-binding proteins, the type of which determines the angle

and conformation of the link made. For example, Arp2/3 complex forms branches

on microfilament networks at approximately 60o, whereas spectrin forms ‘X’-shaped

junctions between microfilaments [155].
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Crucially, the cytoskeleton is both articulated onto a great many of the cell’s internal

components, including cell-surface receptors, nuclei and endoplasmic reticula1, and is

able to transmit a range of energetic and signalling events down its network.

Of these signalling events, the best-characterised is likely to be the ability of actin to

transmit mechanical force from cell surface receptors to other regions of the cell; this

increases the cell’s robustness by reducing the force exerted on single areas, but has

also been found to initiate a range of cell behaviours such as thigmotaxis (migration in

response to tactile stimulation), thus indicating its role in signalling [155]. Furthermore,

various cytoskeletal proteins have been demonstrated to transmit chemical signals via

catalysis of second messenger pathways and vesicle transport, electrical potential in

the form of ionic waves and quantum events such as minute thermodynamic vibrations

(breathers), solitons and propagating waves of protein conformational changes [67, 82,

87, 118, 189, 193, 258, 307].

Thus, cytoskelton-mediated signalling is a prime target for UC research as it represents

a network for spatial propagation and interaction of a wide range of data types. Fur-

thermore, it also represents a tangible medium for structuring incoming data streams

from receptors (sensors) and output chemical, electrical and mechanical data. It is for

these reasons that the cytoskeleton was chosen as the medium upon which to base the

functioning of the SMIPs developed during this period of research.

We are by no means the first to suggest that the role of cytoskeleton-mediated signalling

is characterisable in the language of computation, but the vast majority of work to

date on the topic focuses on the role of single microtubules as putative dual purpose

data buses/individual logic gates. The first to comment on the computational nature

of energetic events mediated by microtubules was Hameroff, who hypothesised in 1987

[137] that binaric processes involved in the cell cycle (e.g. alterations in the quantum

characteristics of neural microtubules in response to the cell’s depolarisation) may be

the basis of consciousness when scaled-up in the billions of neurons within a brain.

Although highly controversial in the early 1990’s, Hameroff’s work was complimentary

to Penrose’s influential theoretical work on the quantum nature of consciousness [231];

the two reserachers proceeded (and continue) to refine their theories in conjunction [138].

With regards to more computing-oriented research on the topic, Craddock et al. [82],

continuing the earlier partly theoretical works of Lahoz-Beltra et al. [185], have sug-

gested that conformational changes induced in the tips of microtubules resulting from

1The functions of this structure are, in cooperation with the Golgi apparatus, to package various
macromolecules and ions in vesicles which are then tagged with surface proteins that dictate how they
will be carried to their destination [41].
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alterations in the electrochemical environment are equatable to Boolean logical oper-

ations. This phenomenon that has been linked to the formation and maintenance of

memory in human neurons and has hence contributed to the hypothesis that a great

many emergent phenomena exhibited by cells (including consciousness à la Hameroff

and Penrose) are the product of non-linear interactions between intracellular signals

mediated by the cytoskeleton [45, 86].

This ‘cytoskeleton basis of emergent behaviour’ is an attractive theory to court when

debating the nature of apparently ‘intelligent’ behaviour patterns in brainless organisms

such as P. polycephalum.

Our approach differs in two ways: firstly, we choose to focus upon actin as there are a

wider range of signalling events that may pass through microfilaments and furthermore,

actin network topology is highly dynamic and reforms constantly as the cell changes

shape under mechanical stress or migration. Secondly, we recognise that any attempt

to make conventional Boolean logical circuitry with cell components is fundamentally

limited: to make an unconventional computing device, emphatically unconventional

computing paradigms should be observed.

The P. polycephalum cytoskeleton has not been intensively researched, with the ma-

jority of studies focusing on its characterisation stemming from transmission electron

microscopy projects in the 1970’s [44, 332], but as our investigation in section 4.2 has

demonstrated, the plasmodial actin network is sufficiently conserved between species

such that a reagent marketed as being compatible with mammalian cells is adequately

homologous to the slime mould equivalent that it was able to be incorporated into the

P. polycephalum microfilament network.

This chapter is structured as follows: initially, the structure of the P. polycephalum

actin network in various anatomical locations was sampled after which CA simulations

were run in order to assess its viability for supporting information propagation and

interactions. Following, we present laboratory experimental data characterising actin

transmission of signal events as collision-based logical operations.
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5.2 Excitable Cellular Automata Modelling of Slime Mould

Actin Network Signalling

5.2.1 Introduction

The morphology of a data stream will determine the manner in which it functions.

This investigation was performed in order to evaluate through the use of simple sim-

ulations whether plasmodial actin network topology is conducive to the transmission

of and interactions between generalised energetic events. More specifically, as actin is

considered to be a model excitable system [148] (see Appendix B.6), a basic excitable

cellular automaton (CA) model was employed in order to simulate the transmission of

generalised energetic events through experimentally-derived actin network graphs in or-

der to indicate its properties as a data network and hence inform further steps into our

investigations on cytoskeleton-mediated intracellular computation.

Network extraction was conducted using the Watershed transform, which has been pre-

viously demonstrated as accurately regenerating actin networks from microscopy data

[117] (see Appendix B.8). Measurements made were integral excitation dynamics, speed

of trans-network signal transmission and qualitative observations of signal transmission

and interaction characteristics. As a secondary goal, these characteristics were compared

in two different anatomical locations of the plasmodium — the advancing anterior mar-

gin and trailing caudal regions — in order to comment on how the organism’s topological

dimorphism may influence data network properties.

5.2.2 Methods

5.2.2.1 Slime mould cultivation and microscopy

Plasmodia of P. polycephalum were cultivated in the SSMME as described in section

4.2.2.2. Once the organism had propagated between the two agar hemispheres, the

Petri dish was flooded with a fixative solution containing 2% paraformaldehyde and 0.1%

glutaraldehyde in pH 7.2 potassium phosphate buffer for 1 h. They were then drained

and rinsed in the same buffer three times for 10 m each. The organisms were then

permeabalised with a 5 m treatment of 0.1% Triton X-100, after which they were rinsed

again and stained with phalloidin conjugated to Alexa Fluor-488 (Molecular Probes,

USA) for 1 h. After a final rinse, the SSMMEs were transferred to a confocal microscope

and visualised as per the protocol described in section 4.2.2.2. All images were captured

at the same magnification.
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5.2.2.2 Network extraction and CA model

In order to represent the topology of actin networks in a 2D cellular automaton state

space, actin network conformations were extracted from greyscale confocal micrographs

using the Watershed Transform function in Matlab 2015a (Mathworks, USA). In the

resulting binary images, in which the reconstructed actin network was black and ev-

erything else was white, only black cells were assigned as ‘conductive’, i.e. allowed to

update their state. The concave hull of networks was also calculated for images where

the cell’s outer membrane was present in order to properly demarcate its boundaries.

In a generalised excitable medium, the state-space is discretised as a regular lattice of

cells which may take one of the following three states:

Resting A stable state representing non-excited equilibrium.

Excited A cell becoming excited corresponds to its hypothetical energy level rising; in

context, this equates to the section of excited actin network carrying an energetic

signal.

Refractory Over time, an excited cell decays into a refractory state where it cannot be re-

excited until a further amount of time has passed and it decays again into a resting

cell. This corresponds to local depletion of energy.

The array was initialised by importing binarised 500×500 px bitmap images of actin

network reconstructions: each pixel represented a cell, thus the CA interaction envi-

ronment was a regular 500×500 lattice. Only the cells (pixels) corresponding to actin

(black) were conductive, however, hence signals could only propagate through the actin

network reconstruction. A resting cell becomes excited at time t+1, denoted by turning

pink (see Electronic Supplementary Information in Appendix B.10), if it has at least

one excited neighbour in its Von Neumann neighbourhood2 at time t, hence signals may

be observed to propagate in discrete time. Cells remain in an excited state for one time

iteration before decaying into refractory (pink) for another time iteration, after which

it re-assumes the resting state. When waves of excitation propagating along pathways

of conductive cells collide, being flanked by refractory cells prevents their ricocheting or

moving through each other and results in the annihilation of both signals.

2The Von Neumann neighbourhood refers to the number of cells in a regular two dimensional array
that can influence another cell: this neighbourhood states that each cell has four neighbours; those above
and below and those to the left and right. This is contrasted with a Moore neighbourhood in which the
diagonals are included to make an eight cell neighbourhood.
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Measurements made were integral excitation dynamics (the total number of cells excited

during a given time iteration) as well as the speed (in number of timesteps) of trans-

mission of a signal from the excitation point, a fixed, perpendicularly-oriented distance

away, which was arbitrarily set at 450±1.2 pixels away in each. All experiments were

performed 5 times for each sample.

5.2.3 Results

5.2.3.1 Imaging

In support of our observations in section 4.2.3, the P. polycephalum actin network was

found to be dense and complex in the cortical (ectoplasmic) regions of plasmodial tubes

and extended somewhat into the endoplasm (Fig. 5.2A). The cell’s membrane also

appeared to be intimately linked with its actin network. Networks were observed to be

denser and more complex in the amorphous advancing anterior regions of the organism

(Fig. 5.3A) than in caudal regions.

5.2.3.2 Network extraction and excitation dynamics

Watersheds from both a plasmodial tube and a section of advancing anterior margin are

shown alongside their original images in Figs. 5.2B, 5.3B, video footage showing the

time evolution of the CA model running through these networks is described in section

B.10 and their integral excitation dynamics are shown in Figs. 5.2C and 5.3C. Both

varieties of network were observed to support propagation of information from the ex-

citation point to every other point in the network in all simulations. Amplification was

frequently observed when signals interacted with network junctions (cells with three or

more adjacent black cells), which was reflected in the richness of their excitation dy-

namics. Excitation dynamics were richer in the dense anterior margins of the organism.

Signal back-propagation was only infrequently observed and when it was, errant signals

were rapidly destroyed by collisions with other signals.

Signal propagation across a fixed distance was found to be faster in anterior margin

actin networks in all experiments: in the examples given in Figs. 5.2 and 5.3, speed

values (in timesteps) for each experiment were found to be 829 (range 789–1021, n = 5)

and 659 (603–711, n = 5), respectively.
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(a) (b)

(c)

Figure 5.2: The actin network of a plasmodial tubule. (a) Confocal micrograph. Note
the higher fluorescence returns around the cortical regions of the tube fragment. (b)
Reconstructed network from [a]. Arrow indicates initial excited cell. The 50×50 px
area indicated by a box is magnified in the lower left corner in order to indicate the
relative sizes of the pixel lattice and the network reconstruction. (a–b) Scale bar =
50 µm. (c) Integral excitation dynamics with cubic spline. Adapted from the author’s

own work in Ref. [202].
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(a) (b)

(c)

Figure 5.3: The P. polycephalum advancing margin actin network. (a) Confocal
micrograph. The network is remarkably dense in comparison to Fig. 5.2A. White box
denotes area analysed in [b]. (b) Reconstructed network from [a]. Arrow indicates
initial excited cell. (a–b) Scale bar = 50 µm. (c) Integral excitation dynamics with

cubic spline. Adapted from the author’s own work in Ref. [202].



Chapter 5. Slime Mould Intracellular Computation 106

5.2.4 Discussion

Our results indicate that the plasmodial actin networks possess the following qualities

which make them well-suited to supporting intracellular computation:

1. Generalised energetic events may propagate throughout the network without back-

propagation, implying the ability for directional signal transmission.

2. Signals are amplified as they travel through branch points, indicating a high level

of redundancy which is presumably beneficial in networks whose topology may

spontaneously re-organise.

3. As actin network density is proportional to the speed and degree of amplification

of a signal, we may speculate that the actin network may dynamically restructure

to meet momentary physiological demands.

This latter point makes evolutionary sense, as the anterior margin of the organism must

necessarily be required to output proportionally more sensing and actuation than trailing

caudal regions, in which the network is reduced in order to save energy.

Excitable CA models are a popular method of simulating the behaviour of natural sys-

tems due to their comparative simplicity/ease of programming and capacity for gener-

ating complex behaviours from basic rules [128, 132]. As a generalised model, excitable

CA share the basic characteristics of cells possessing either resting, excitable or refrac-

tory states; the system dynamics of the simulations presented here are accordingly fairly

similar to those for other idealised excitable media such as reaction-diffusion chemi-

cal reactions or the propagation of action potentials in excitable cells [30, 175]. More

specifically, their integral excitation dynamics are generally bell-shaped curves to cor-

respond with the expenditure and depletion of reactants, which may oscillate to some

degree during a medial plateau phase. The novelty of the simulations presented here

is the introduction of an experimentally-derived interaction environment which allows

for assessment of the state of the spatial computation with respect to the media topol-

ogy in addition to gathering quantitative data pertaining to data propagation. To our

knowledge, this approach has not been applied to biological systems, although select-

ing idealised interaction environments for cellular automata simulating purely chemical

reactions (in reaction-diffusion media) has previously been performed [30].
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To speculate as to the nature of the computational process within the P. polycephalum

plasmodium, it has been demonstrated in silico that architectures based on large undi-

rected planar graph topologies linking mobile data storage nodes may be used to im-

plement general-purpose computation (Kolmogorov-Uspensky machines) [180]. Superfi-

cially, this would appear to be an attractive mechanism to describe how slime moulds

are able to exhibit coordinated behaviours. For example, it is known that innervation of

cell-surface chemoreceptors instantiates tip growth in the organism through momentary

actin network assembly but it is unknown how the coordinated response of directional

pseudopodium extension arises in the midst of every other chemical signal occurring on

the cell membrane. We may speculate that, as the degree of stimulation of the cell’s

receptors is proportional to proximity to the attractant source, tip growth occurs at the

correct site incident to the combined effects of greater degrees of signal amplification and

destructive interference with other signals in the region. In essence, this is similar to

a majority vote. This theory is an example of morphological computation as it implies

that the organism is able to process countless (i.e. massively parallel) input signals and

output a coherent behaviour without the need for synchronisation or centralised control:

it occurs as a by product of signal interactions on the actin cytoskeleton.

Without examining specific actin-mediated signalling processes it is of course impossible

to say how a practically useful actin-based intracellular computing device would function,

but we note that the signal interactions observed in the excitable CA model presented are

readily expressible in the language of computing. A signal splitting into two at a branch

point is effectively a fan-out function, whereas two signals destructively interacting at

a branch point is expressable as 〈A · B̄+ Ā ·B〉, i.e. the xor operation. This is, in effect,

computation implemented under the Collision-based Computing (CBC) paradigm (see

Appendix B.9 and following sections).

The model presented is not without its detriments: firstly, the images used were 2-

dimensional (2D) representations of 3D structures and secondly, the structure of the

organism’s actin network is in reality in slow but constant flux. The data presented here

are therefore used for illustrative purposes to suggest network characteristics and guide

further study, although the simulation techniques used could be applied to 3D image

stacks.

To conclude this section, we have identified that the P. polycephalum actin network is

a viable medium through which processes characterisable as computation most likely

occur and hence, it is a viable target computing resource to exploit in the generation of

SMIPs.
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5.3 Actin Automata

5.3.1 Introduction

Our excitable CA model indicated that the topology of the P. polycephalum actin net-

work can support the transmission of energetic events and data–data interactions therein,

but this model is unspecific and does little to tell us about the nature of physical signal

transmission between protein molecules.

Unfortunately, it is currently impossible to empirically observe energetic events travel-

ling through proteins on a molecular level in a live organism as the only techniques with

suitable resolution, such as atomic force microscopy3, require intensive sample prepara-

tion which requires that any cells used are killed, chemically fixed and cut into extremely

small sections.

In the absence of an empirical method to probe the nature of actin-based computing, we

instead present a comprehensive computational analysis of energetic event transmission

through actin microfilaments with a bespoke semi-totalistic one-dimensional CA model

configured to more accurately simulate actin dynamics than the generic excitable CA

presented in section 5.2.

In efforts to avoid any confusion between this and the previous section, it is necessary

to re-iterate that the CA presented here is emphatically different to the generalised

excitable CA previously used and, accordingly, has a different dimensionality, state

space and rule set.

5.3.2 Methods

When the g-actin monomers in a microfilament (Fig. 5.1) are considered as cells in

a CA cell space, we find that each has 4 neighbours (Fig. 5.4), hence for a 5-cell

neighbourhood (self plus neighbours) between there are 25 (32) separate rules4 for a

single chain and 25
2

(1024) rules for the x and y chain. The neighbourhood of an actin

automaton in the x chain xi is u(xi) = {xi−1, xi+1, yi, yi−1} and for yi in the y chain,

u(yi) = {yi−1, yi+1, xi, xi+1}. The state of an automaton, xi or yi are defined at each

time step t as xti or yti .

3This technique uses a sub-nanoscale electrical probe to concurrently observe and electrically char-
acterise a substrate

4‘Rules’ here referring to the conditions (number and position of excited neighbouring cells) which
will cause a cell to change its state, in the Wolfram notation. Rules are binaric as it distinguishes only
between excited and non-excited, hence there being only 25 rules per chain, as opposed to 35.
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Figure 5.4: Schematic diagram of an actin microfilament showing the neighbourhoods
for g-actin molecules in both chains. Adapted with permission from Ref. [34]

The model constructed was semi-totalistic in that the centre cell polls its neighbours and

assumes the state of the majority value: as such, let σtxi = xti−1+xti+1+yti+y
t
i−1 for the x

chain and σtyi = yti−1 +yti+1 +xti+xti+1 for the y chain be the sums of excited neighbours.

Cells update their states according to a transition function F = (fi,j , 0 ≤ i ≤ 1 and

0 ≤ j ≤ 4, fi,j ∈ {1, 0} in discrete time as xt+1 = fxti,σt
yi

/yt+1 = fyti ,σt
yi

.

Rules were represented as decimalisations of binary cell configurations in the Wolfram

notation [335], e.g. rule (8,12) would equate to F0 = (01000) and F1 = (01100). Exper-

iments were run for every rule combination with random starting configurations (prob-

ability of 0.5); for n automata evolving for τ timesteps, typical values for each exper-

iment were n = 300 and τ = 1000. Data were collected as a two-dimensional matrix

M = (mi,j), where mi,j is automaton i state at timestep j, 1 ≤ i ≤ n and 1 ≤ j ≤ τ . The

following integral measures were chosen to characterise the CA’s complete rule space due

to their previously having being demonstrated as suitable for complete characterisation

of CA systems [17, 18, 28]:

• Shannon entropy H. Also known as information theoretical entropy, this mea-

surement is used to estimate the minimum bit length it is possible to encode a

string into; this gives an estimation of the informational capacity of the system.

W is a set of all possible configurations of a 9-cell neighbourhood in the form (i, j)

of matrix M . The number of non-resting configurations (i.e. non-static patterns)

η =
∑

a∈M ε(a) was calculated, where ε(a) = 0 when all the neighbours of a pat-

tern a are resting, and ε(a) = 1 otherwise. The Shannon entropy is calculated as

−
∑

w∈W (ν(w)/η·ln(ν(w)/η)), where ν(w) is a number of times the neighbourhood

configuration w is found in matrix M .

• Space filling P . A ratio of non-resting nodes in space time configuration of n× τ
of entities in a given array, this measurement represents the proportion of the final

planar graph that is shaded. P =
∑

1≤i≤n,1≤j≤τ mij .

• Activity A. A quantitative measure of the degree to which the array becomes

filled with excited cells. A = (
∑

1≤i≤n,1≤t≤τ x
t
i) · (n · τ)−1.
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• Incoherence I. The difference in activity between x and y chains. A = |
∑

1≤i≤n,1≤t≤τ x
t
i−∑

1≤i≤n,1≤t≤τ y
t
i | · (n · τ)−1

The following methods were adopted to isolate rules supporting the generation of travel-

ling localisations. Resting x and y chains 5 molecules in length were excited with seeds

X = (x0, . . . , x4) and Y = (y0, . . . , y4) such that the evolution of an actin automaton

from seed s = 〈X,Y 〉 over τ timesteps was measured. If the activity of the resulting plot

was 10 ≤ A ≤ 6 · τ then seed s was reasoned to generate either travelling or stationary

localisations.

5.3.3 Results

5.3.3.1 General features

Superficially, no characteristic differences were observed between x and y chain patterns

(Fig. 5.5).

Rules generating lower H values (< 1.8) were found to generate solid patterns of either

resting or excited cells. Conversely, rules with H values between 1.8 and 4.3 consistently

generated ordered patterns of excitation and those with values exceeding 4.5 displayed

irregular, pseudo-chaotic behaviour (Fig. 5.6).

The excitability of simulated g-actin molecules, that is likelihood to transition from state

0 7→ 1 or 1 7→ 1 based on the number of excited neighbours, was found to be proportional

to H: this was calculated by splitting the H rankings of the configurations generated into

50 classes L = L1, . . . , L50, 0–5 in 0.1 increments. The frequency vectors Gz for states

0, 1 were then calculated according to Gzki = |Lz|−1 ·
∑
{F0i : F0 ∈ Lz}, k = 0, 1, where

|Lz| is the size of class Lz. In plainer terms, the frequency vector indicates how often the

excited state appears in vectors of Fk, k = 0, 1 for each class of entropy and normalised

against the size of each class. As Fig. 5.7 demonstrates, plotting these vectors allows us

to deduce the frequency vector (i.e. number of excited neighbours) most likely to result

in a cell’s excitation verses entropy values. Our results indicate that at lower entropy

values, the 0 7→ 1 transition is most likely when 4 neighbouring molecules are excited

and 1 7→ 1 when 3 neighbours are excited: as entropy values rise, the ideal number of

neighbouring cells required to generate or maintain an excited cell falls.

5.3.3.2 Generation of localisations

Approximately 30% of rules were found to support the generation of localisations; those

that did tended to have higher entropy. As such, the ability of a rule to generate high



Chapter 5. Slime Mould Intracellular Computation 111

Figure 5.5: Spacetime evolution of actin automaton, rule (4,25). Time goes down.
(a) x chain. (b) y chain. (c) x, y incoherence. Adapated from the author’s own work

in Ref. [34].

numbers of localisations is correlated with actin excitability. The top 10 rules, expressed

as richness of localisations arising from individual seeds T are shown in Table 5.1.

Rules supporting high numbers of localisations also typically had low activity and a

high degree of space filling. Both types of localisation, stationary (travelling straight

down) and travelling (travelling diagonally) were observed, but not all rules supporting

localisations exhibited both varieties. Collisions between localisations were observed

frequently and could result in either the destruction of both signals or the generation of

new travelling localisations (Fig. 5.8).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Exemplar spacetime configurations developed in the x chain from random
initial configurations in 100 nodes for the following rules and H values: (a) (10,10), 4.8.
(b) (11,6), 4.5. (c) (7,29), 4. (d) (11,14), 3.5. (e) (14,9), 3. (f) (20,13), 2.5. Adapted

from the author’s own work in Ref. [34].
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Figure 5.7: Graphs to show frequency vectors vs. Shannon Entropy H. (a) Vector
G0 representing the 0 7→ 1 state transition. (b) Vector G1 representing 1 7→ 1, i.e.
maintenance of excited state. Empty circle = no excited neighbours; solid circle = one
excited neighbour; upwards triangle = two excited neighbours; downwards triangle =
three excited neighbours; square = four excited neighbours. Adapted from author’s

own work in Ref. [34].
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Figure 5.8: Spacetime configuration for rule (5,25) that was found to generate both
travelling and stationary waves. Collisions between localisations are frequent. Adapted

from the author’s own work in Ref. [34].
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Rule T H P A I

(7, 20) 271 4.31 0.84 0.32 0.28
(5, 26) 240 4.70 0.92 0.39 0.39
(4, 26) 210 4.54 0.86 0.31 0.34
(5, 25) 197 3.83 0.73 0.14 0.19
(6, 20) 197 4.37 0.86 0.37 0.28
(8, 0) 191 3.50 0.83 0.23 0.26
(7, 21) 179 4.31 0.97 0.56 0.39
(8, 1) 170 3.50 0.84 0.23 0.26
(8, 24) 146 3.71 0.80 0.25 0.18
(7, 4) 145 2.75 0.54 0.06 0.07

Table 5.1: Table to show localisation richness T and time integral characteristics for
the actin automata rules supporting generating the most localisations. Adapted from

the author’s own work in Ref. [34].

5.3.4 Discussion

We observed that the entropy of actin automata is in general proportional to the sen-

sitivity of actin molecules to excitation by neighbouring units, but that over-excitation

(having too many excited neighbours) of an already excited molecule can reduce the

likelihood of signal propagation. This equates to a transition from the system sup-

porting excitations/amplifying weak contrasting signals (lateral excitation) to actively

inhibiting them at times of excessive excitation (lateral inhibition). This is of particular

interest to us as these are defining characteristic of neural networks and are thought to

give rise to emergent behaviours such as colour discrimination and fine control of tactile

manipulation [342]; although this is contextually only a casual link, this nevertheless

demonstrates that actin automata can give rise to complex computing characteristics

within all eukaryotic cell types.

Higher-entropy rules were found to support the generation of both travelling and sta-

tionary localisations to a proportional degree: coupled with the phenomenon of lateral

inhibition in over-excited molecules, we may therefore speculate that there is an ideal

excited neighbours ratio for a microfilament to support the generation of localisations,

the number of which may vary depending on the excitability of the medium.

Although some have previously advanced generalised CAs in order to describe actin

assembly dynamics [103], the variety of CA presented in this chapter is bespoke —

i.e. designed to specifications that mimic energetic transfer between actin molecules —

and as such, the novelty in our results lies within the insights into spatial computation

in actin we have gathered; excitability, XY incoherence etc. Our work has since been

enhanced by Alonso-Sanz and Adamatzky [47], who adapted the CA such that each

actin molecule/cell has the ability to remember its previous state; actin automata with

memory display slower propagation and generate less complex (lower entropy) patterns.
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The incidence of collisions between travelling:travelling and travelling:stationary locali-

sations indicates that the medium is suitable for implementing computation via Fredkin

and Toffoli’s collision-based computing (CBC) model (see Appendix B.9 and section

5.4), as collisions between spatially-propagating objects in CA models have repeatedly

been demonstrated to be viable computing media [7–9].

Let us attempt to apply some form of biomolecular interpretation to this abstract model.

Firstly, from morphological analysis of spacetime evolution plots of the various rules

of note presented here that generate localisations, we may observe that they are best

described as class 4 rules under Wolfram’s classification [336], i.e. that complex mixtures

of stable, oscillating and pseudo-chaotic patterns evolve over time. Whilst care must be

exercised in any such subjective, qualitative interpretations5, we may nevertheless state

that we have observed ‘emergence’ in our simulated system. Secondly, we may begin to

link specific signalling events to the model.

For example, actin is a strongly charged molecule which acts as a polyelectrolyte (absorbs

anions from its medium). F-actin microfilaments have been demonstraetd to conduct

ionic waves as nonlinear solitary waves (solitons) that travel through its constituent

molecules as a propagating cascade of alterations in molecule charge, accompanied by

a complimentary coherent wave of counterions passing through the neighbouring cyto-

plasm [189, 307]. This phenomenon has been suggested to be a means of data transmis-

sion and processing in the mammalian neural cytoskeleton [337]. Thus we may speculate

that the information transmission events modelled with our CA model equate to this

mechanism, where:

1. Lateral excitation equates to transmission of charge down the gradient between

two neighbouring actin molecules.

2. Lateral inhibition is represented by ionic depletion in the buffer of the local cyto-

plasm.

3. Processing occurs when two travelling localisations (solitons) collide.

To conclude, our suggestions for further study are summarised below.

1. x, y incoherence spacetime plots are morphologically interesting and represent an

unexplained dysjunction between the two chains, but it remains to be seen if they

hold any value in representing the behaviour of the automaton. Further work

5Although, note that certain fields of academic study such as those based on microscopical sciences
(comparative anatomy, histopathology etc.) are based on such observations under the protective banner
of ‘strength in number of observations’.
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could involve exploring any correlations that may exist between incoherence and

novel quantitative measures of automaton behaviour, such as compressibility or

diversity.

2. Although the model presented here is exhaustive with regards to characterising sig-

nals on single microfilaments, it does not represent microfilament networks with

branches or intermediate actin-binding proteins, the properties of which are likely

to be very different and may perhaps be better approximated with statistical meth-

ods: this could be a focus for further research, although model complexity would

doubtless prove restrictive.

5.4 Cytoskeleton-mediated Collision-based Computing with

Calcium-filled Vesicles

5.4.1 Introduction

Following the theoretical and simulational underpinnings detailed in previous sections of

this Chapter indicating that further study into cytoskeletal computing would be worth-

while, this final section in our investigation into the development of SMIPs concerns

an experimental study in which we characterise a slime mould actin network process as

computing operations.

Our previous results have indicated that a range of generalised cytoskeletal signal trans-

mission events should be based on the principle of spatial propagation of information

and also that the CBC paradigm is of great use in implementing computation with such

a representation of data. Inspired by Margolus’ Soft Sphere Modification (SSM) of the

BBM [196], in which the archetypal billiard balls are replaced by pliable spheres which

compress on impact and travel as a single object for a certain period before rebound-

ing (moving away from each other), we designed the following investigation into the

characterisation of a slime mould intracellular system as a CBC-derivative computing

device.

More specifically, we define intracellular quantities of calcium held in phospholipid

membrane-bound sacs (vesicles) as data, both for their properties as discrete locali-

sations within their cell as well as their physiological function, which is to sequester

calcium for its transport through the cell prior to its release as a component of the cell’s

biomechanical oscillator. As such, calcium is an ideal analogue of biological ‘informa-

tion’ as it is released in response to stimuli originating from the environment and has

measurable, repeatable effects on the cell when it reaches its target destination, i.e. the
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data is structured. Indeed, others have previously suggested that calcium is a suitable

signalling molecule for use in excitable chemical processors, although all work to date in

this area is theoretical and based on reaction-diffusion concepts [106, 145]. For the pur-

poses of this investigation, however, output is interpreted in the manner of the original

CBC and SSM models, i.e. an operation is interpreted as true if the vesicle follows a

specific, pre-determined path.

Crucially, calcium-filled vesicles (CFVs) are known to articulate onto and travel down

the actin network of mammalian, protist and plant cells and directional actin-mediated

transport of vesicles through the cell is a well-characterised phenomenon [259, 293]:

this long-range cellular transport mechanism is achieved via vesicle coupling to myosin

II in the endoplasmic reticulum, through which they gravitate towards and attach to

the microfilament network. Myosin physically ‘walks’ the attached vesicle along each

monomer of the microfilament in the direction of the cell’s periphery (as dictated by

the microfilament’s polarity), driven by ATP hydrolysis [51, 281, 293]. This provides

a completely-defined biomolecular explanation for the generation of travelling localisa-

tions.

5.4.2 Methods

Stock cultures of P. polycephalum plasmodia were cultivated as per the protocol in

section 3.1.2.1. Experimental plasmodia were then grown as per the SSMME. When the

organism had propagated between the two hemispheres of NNA, the plasmodial tubule

linking them was injected with approximately 1 µl of a solution containing a fluorescent

calcium indicator using a CellTram microinjection system (Eppendorf, Germany) with

a hollow glass needle, tip < 30 µm. One fluorimetric indicator, Calcium Green-5N (Life

Technologies, USA), 488nm excitation, at a concentration of 1 mM, and one ratiometric

indicator, Fura-2 (Life Technologies, USA), 405nm excitation, at 5 mM, were used,

which were both prepared in distilled water. Confocal imaging and post-processing

was performed as per section 4.2.2.2, with the addition that gain was adjusted through

software-based adjustment of the CCD camera’s electron multiplier in order to filter

out background calcium levels. The cytoskeleton was not labelled as staining methods

typically disrupt normal patterns of cytoskeletal activity.

5.4.3 Results

Calcium was observed to exist in microscopic spherical quantities, as expected, whose

sizes were inconsistent but usually between 3–7 µm in diameter. These objects were
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observed travelling through the cytoplasm at a velocity of approximately 5 µm s−1; di-

rectionality and vesicle speed were not consistent with shuttle streaming, but their paths

were observed to follow well-circumscribed routes through the organism, i.e. multiple

vesicles were observed to travel through exactly the same routes. Vesicles were observed

more frequently in the plasmodial ectoplasm and anterior margin. Collisions between

quantities of calcium were frequent but there were multiple varieties of collision outcome;

the types and frequency from a sample of 42 observed collisions are summarised here

(Fig. 5.9):

I Reflection: 57.1%. Two vesicles collide and reflect, after which their incident

paths diverge from their apparent initial direction.

IIa Fusion, adhesion: 9.5%. Both vesicles merge on collision but appear to be two

separate objects adherent to each other, which may or may not dissociate after

any length of time.

IIb Fusion, assimilation: 14.3%. As with type IIa, but both vesicles appear to

form a single structure which is larger than either of the two original objects.

Assimilated vesicles do not dissociate.

III Annihilation: 9.5%. Following a collision, both vesicles appear to rapidly disperse

their contents into the surrounding cytoplasm.

IV Unknown: 9.5%. No observed outcome despite the fluorescence returns for both

vesicles coming into contact with each other.

In instances where the outcome of a collision was unclear due to the objects moving out

of the microscope’s field of view, the event was discounted. Quantities of calcium larger

than 7 µm were also discounted as no measures were taken to distinguish between endo-

plasmic reticulum and vesicles. Exemplar microscopy footage is included as Electronic

Supplementary Information (Appendix B.10).

5.4.4 Discussion

5.4.4.1 Identification of vesicles and collision classification

The quantities of calcium observed were identified as CFVs by their size in comparison

with transmission electron microscopic studies into their identification [6, 183], elastic

interactions, patterns of distribution and tendency to travel down certain paths through

the organism; with regards to this latter point, these pathways were assumed to corre-

spond to networks circumscribed by the organism’s actin network.
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Figure 5.9: Freeze-frames from confocal microscopy video footage from plasmodia
microinjected with fluorescent calcium dyes to show types of vesicle collision. Arrows
and arrowheads indicate two colliding vesicles (a–d) TI, reflection. (E–H) TIIa, fusion
adhesion. (I–L) TIIb, fusion assimilation. (M–P) TIII, annihilation. Box indicates
region in which the annihilating vesicles dissipate. (Q–T) TIV, unknown. (A–H) Fura-
2. (I–T) Calcium Green-5N. (A–T) Scale bar = 10 µm, time steps approx. 250 ms.

Adapted from the author’s own work in Ref. [205].
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5.4.4.2 Computing with vesicle collisions

We propose that CFVs are viable computing media for a modification of the BBM that

we shall call the ‘Vesicle Collision Model’ (VCM). Consider a generalised microfilament

network: within the VCM, the plasmodial actin network is likened to the gridlines of a

Euclidean plane in the BBM such that our quantities of data may travel along them.

CFVs are loaded onto the network in a variety of locations but all travel in the same

direction, as dictated by the microfilament’s polarity. Collisions occur when two vesicles

meet following a branch point in the network, the outcome of which represents a logical

operation.

We were not able to isolate the factors which determine collision outcome, but these

could include the size/quantity of calcium within each vesicle relative to a critical ca-

pacity, membrane-bound proteins which influence vesicle behaviour or/and the angle

and net velocity of collision. The predominant collision type, reflection, holds the most

resemblance to the SSM as CFVs undergoing this variety of interaction appear to deform

for 50–100 ms prior to reflecting, the cause of which is presumably elastic recoil. It is

assumed that recoiling CFVs remain bound to the cell’s actin network but divert to a

different branch (as indeed the actin network’s redundancy would suggest that multiple

branches will still lead to the same general destination), although it is not outside the

realms of possibility that one or both detach. It is eminently possible to confine all VCM

paradigms to type I collisions due to their similarity to existing paradigms, especially if

vesicle collisions could be engineered to favour this variety of collision.

Type II and III collisions are somewhat more difficult to equate to previously-described

modes of CBC as they are not conservative (although technically neither are type I;

see following sections), but that is not to say that they are without function: type IIa

collisions could be regarded as a delay element, for example, whereas type III could

be regarded as a 2-to-1 fan-in/stop operation. Furthermore, type III collisions are

of particular note if one considers the possibility that the physiological purpose of the

collision mechanism may be to achieve local un-loading of CFV contents. In the language

of computing, this links the computation directly to a tangible output.

It would appear that type IV collisions are not actually true collisions but are instead

the result of two vesicles passing closely rather than colliding, possibly in the z-axis; this

highlights the difficulties of measuring or co-localising objects with fluorescence imaging

as object size is distorted by probe fluorescence intensity and relative concentration.



Chapter 5. Slime Mould Intracellular Computation 122

5.4.4.3 Logic, bijectivity, entropy and viability of biological substrates in

the VCM

Type I collisions can be characterised as a realisation of Fredkin and Toffoli’s BBM

interaction gate, which is a reconfigurable gate that is most commonly considered to

complete the and function such that 〈A∧B〉 = 1 (Fig. 5.10), but it may also be viewed

as a variety of other gates depending on how the output is interpreted. Crucially, despite

carrying out a binary logical operation, the interaction gate exemplifies the UC paradigm

of input-output bijectivity as the quantities of data are conserved.

Care must be exercised with the use of such terms, however, as any logical gates we may

propose based on these phenomena are emphatically not conservative: indeed, none of

the few experimental prototypes of CBC circuits fabricated to date are [9, 10, 136] as it

is exceptionally difficult to fabricate an isentropic device in practice. In plainer terms,

Fredkin and Toffoli’s original designs for BBM circuitry were fully reversible (a beneficial

property for a computing device; see Appxendix B.9), deterministic systems by virtue

of being non-dissipative; whilst this appears on face value to be a casual design for a

perpetual motion machine, the paradigm’s creators emphasised that CBC circuits have

no internal dissipation of energy [122]. In using this wording the authors were referring

to a physical system characterised by n degrees of freedom split into n = a, b, where a are

the ‘mechanical’, highly ordered modes which obey strict physical laws (and are hence

deterministic and reversible) and b are the ‘thermal’ modes to which waste energy is

dissipated from the mechanical modes: there are typically far more thermal modes than

mechanical in order to achieve efficient transfer, but this transfer from one to the other

gives rise to chaotic, nondeterministic behaviours. In an ideal CBC system, mechanical

modes interact with each other, hence they are isolated from the influence of thermal

modes and there is no ‘internal’ dissipation of energy. In real-world systems, however,

the number of degrees of freedom of a system and hence thermal modes is equivalent to

Avogadro’s number (the number of molecules, 6×1023, per mole of a substance). Our

slime mould system consumes energy in the form of ATP via its hydrolysis, and a certain

amount of the energy from this is dissipated as heat, which therefore leads to chaotic

behaviours under the physical definition of the term. But how are organisms able to

display any variety of coherent, repeatable behaviour if the physics of their underlying

biomolecular processes are inherently chaotic?

We present the hypothesis that biological substrates are a viable class of media for im-

plementing CBC-derivative paradigms, despite their inherently irreversible mechanisms

because of damping, a phenomenon alluded to in Fredkin and Toffoli’s original treatise

[122] (but not with regards to novel computing media) which refers to a system that

maintains an internal energy equilibrium that greatly favours the mechanical modes.
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Thus, its macroscopic behaviours are inherently repeatable and predictable as they are

governed almost exclusively by reversible processes. To return to our previous find-

ings pertaining to morphological computation concepts, behaviours are kept repeatable

as a result of information structuring via cytoskeleton-mediated processes; these are

self-evidently governed by strict physical laws and hence constitute mechanical modes.

Furthermore, we recognise that the ability of an organism to maintain a homeostatic

equilibrium is a biological realisation of the principle of damping, i.e. an energy gradient

to the mechanical modes is maintained through energy production (metabolism) and sig-

nal regeneration, and thermal transfer is kept to a minimum thanks to the evolution of

supremely energy efficient life processes [277]. Thus, under the tenets of our hypothesis,

the naturally-evolved systems for energy efficient manipulation of somatosensory data

streams possessed by biological substrates such as our model organism exhibit inherently

programmable behaviours.

Thus, adjusting our designs for logic gates to include non-conservative CBC designs,

we find that a huge variety of logic devices may be conceived of. To illustrate this

point, consider that a type III collision’s output may be considered as an xor gate,

〈A∧B̄〉∨〈Ā∧B〉, due to the annihilation of both signals when the input is configured as

〈A∧B〉. and and xor constitute a computationally universal6 set of Boolean operations,

albeit achieved through an emphatically unconventional construct.

5.4.4.4 Towards practical VCM computing

Whilst our results represent the first intracellular realisation of CBC and, debatably, the

first scheme for the operation of a SMIP, it is clear that a certain amount of control needs

to be exerted over these mechanisms if they are to be used for true practical benefit.

This section details our designs and suggestions for a practical implementation of VCM

computing.

One route towards implementing an in vivo VCM system would be some form of machine

wherein the outcome of a calculation (its collision type) is bounded by the probability

of that type of collision. This would require the minimum of engineering as such a

device would require only a means of stimulating vesicle transport and automatically

interpreting microscopy footage, after which the responses of the system would need

to be statistically characterised. That said, the field of computing with probabilistic

processes is not without its detriments: indeed, some have noted that the problem

of defining complex systems in terms of probability trees leads to extremely complex

6This term is used here simply to denote that these two gate varieties can be used to make a func-
tionally complete set of Boolean logical gates, rather than referring to the computation universality
principle.
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Figure 5.10: Confocal micrographs demonstrating how a type I collision may be
characterised as an interaction gate. (a–d) TI collision corresponding to the input
configuration 〈1, 1〉. (e) Enlarged frame from [D] showing vesicle start points (A,B),
original trajectories (dashed lines) had the input configuration been 〈0, 1〉 or 〈1, 0〉
and the paths of the vesicles following their collision such that an and operation was
completed. (a–d) Time steps approx 250 ms. Scale bars = 10 µm. Adapted from the

author’s own work in Ref. [205].

constructs whose monolithic scale makes performing the calculations designed for them

(Bayesian inference, for example) computationally intractable — at least when run on

conventional architectures [194].

The alternate approach would be to engineer collisions on networks with a desirable,

ideally pre-determined topology such that more conventional CBC collisions could be

implemented. This presents the necessity to:

1. Fabricate actin networks with a known topology, or at least utilise common con-

formations extracted from networks in live cells.

2. Load vesicles onto said network at specific points such that their motion can be

synchronised.

3. Define collision type (if this is not determined through point 1).

4. Enable some form of output detection.

These requirements are not as insurmountable as they may seem. Minute manipulation

of cytoskeletal proteins has been achieved in vitro [189] and actin network growth is es-

sentially programmable as its assembly is entirely determined by the presence or absence

of a few actin binding/nucleating proteins and a suitable physiological medium [155].
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Furthermore, actin networks may only grow in a few specific conformations as all forms

of network articulation are governed by actin binding proteins: Arp2/3, for example,

mediates the growth of branches of approximately 60o, whereas ‘x’-shaped crosslinks

are induced by spectrin or filamin links. This presents the potential to use a range of

techniques for guiding in vitro actin growth such as micropatterning of growth factors

on solid surfaces, although this represents a separate track from computing with live

substrates (but still technically represents biological UC).

We propose that the most viable route to computing with in vivo vesicle collision cir-

cuitry would be to design CFV collisions around common protein conformations: as

these are highly conserved and the topology of a cell’s actin network may be influ-

enced through guiding patterns of cell growth with environmental sources of stimulation

[65, 66], this may be considered as a programmable process.

Loading of vesicles onto microfilaments is a comparatively easy task as binding of myosin-

conjugated objects to actin via localised release from a micropipette is a well-observed

phenomenon [189]: this only presents the requirement to procure myosin-tagged CFVs,

which we propose could be harvested through differential centrifugation of cell lysate

[314] or via in vitro synthesis of giant unilamellar vesicles in the presence of lyphilised

myosin [198, 280].

Should these technical barriers be overcome, we conceive that VCM circuits will be

an extremely powerful computing resource, capable not only of amorphous computa-

tion but also high information storage density, the retrieval of which poses none of the

problems of heat generation that conventional architectures suffer from thanks to the

inherent damping of the slime mould system. For completeness, Fig. 5.11 demonstrates

a schematic diagram for a VCM half-adder circuit built from one xor and one and

gate, i.e. one type I and one type III collision: this represents a relatively small tech-

nological advance from our current position as there are multiple network topologies

based on Arp2/3 branches and spectrin crosslinks that could support its function, hence

only collision type and vesicle loading onto the network need be defined. We estimate

that a two-gate device such as this may be as small as 100 µm in length (two individ-

ual junctions with a realistic spacing of 50 nm [121, 316]) with an operation time of

500–1000 ms, based on an average value of known vesicle transport velocities across this

distance [176, 293]. Both of these values are significantly more desirable than any of

the previously mentioned biological logical devices, assuming that they could be made

reliable.
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Figure 5.11: Schematic diagram to demonstrate the construction and operation of a
VCM half-adder circuit. If only one vesicle 〈X〉 or 〈Y 〉 is input, it will pass down the
sum xor path, whereas if both 〈X,Y 〉 are input both vesicles will fuse upon collision,
leading to a single signal being present on the carry and path. Arrow indicates direction
of vesicle transport. Truth table is inset where sum represents the 〈XY 〉 path and carry
the 〈X

⊕
Y 〉 path. Path lengths not to scale. Adapted from the author’s own work in

Ref. [205].

5.4.4.5 Conclusions

Practical VCM circuitry represents the first realisation of in vivo collision-based comput-

ing and promises far greater speed of operation, informational density and parallelism

than any other Physarum machine fabricated to date. VCM computing will not emerge

without a significant research effort, however.

We have identified an energetic process within the P. polycephalum plasmodium which

can be characterised in the language of computation, identified the key characteristics of

the medium and presented as our recommendations for further study a realistic method-

ology by which practical VCM circuitry may be implemented. As such we have proposed

a framework by which a SMIP device may be fabricated; the designs for cytoskeletal cir-

cuitry presented may also support other types of energetic event transfer and processing,

such as those detailed in section 5.1.

With regards to commenting on the polymorphism of the SMIP as a UC substrate, VCM

circuitry would necessitate entirely novel forms of input and output arising from subtle

microscopic manipulation and observation/other means of recording. Possessing the

means to assemble universal logic gates theoretically opens the doors to general-purpose

computation so promises true polyfunctionality, although it is impossible to comment

on a range of uses for such devices at this stage. Finally, the homology between the
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cytoskeletons of all eukaryotic cells implies that this technology need not necessarily be

restricted to slime mould cells.



Chapter 6

Summary and Conclusions

6.1 Summary and Critical Evaluation of Findings

Let us consider how the thesis:

Slime mould Physarum polycephalum is a polymorphic, polyfunctional un-

conventional computing substrate1.

and research questions:

1. Which slime mould morphological and physiological parameters may be utilised as

measurable, statistically-repeatable output in a slime mould computing device?

2. How are data and computing tasks represented in a slime mould computing device,

how can it be programmed and how is an output perceived and interpreted by the

user?

3. To what extent can slime mould computing be used practically and how can the

knowledge acquired be applied to the wider field of UC?

that were originally presented in Chapter 2 were addressed by the research documented

in Chapters 3, 4 and 5.

1For completeness, the antithesis of this statement is that slime mould cannot process multiple input
types with its cellular hardware or be put to use in multiple computing applications.

128
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6.1.1 Heterotic Devices (SMHDs)

Initially, a novel class of optically-coupled electrical slime mould nand gate was pre-

sented. The logical gates developed hold little practical value, but demonstrate key

design principles for SMHDs, namely that electrical interfacing is suitable for auto-

mated recognition of morphological operations and that multisensorial stimulation of

the organism via chemical and light sources may be used to provoke behaviour patterns

consistent with functionally complete Boolean logic.

Secondly, a basic tactile sensor built upon an FPGA interface was presented. Again,

although this device’s practical usefulness is limited, it represents a low-cost, adaptable

platform upon which future iterations of slime mould devices with demonstrable prac-

tical functions could be developed. Consider, for example, a plasmodial tubule network

overlying a multi-electrode array, where each electrode is interfaced to an FPGA input

pin (the board used in section 3.2 may accept 40 separate inputs) via their own ADC

circuits. With suitable programming and hardware adaptations to allow the user to cap-

italise upon the organism’s capacity for polymorphic input, the FPGA can be used to

supply optical, thermal or electrical stimulation via LEDs, Peltier elements or impulses

directed to certain electrodes, towards instantiating multi-bit operations in plasmodial

tubule networks. Periodic stimulation of the organism via the FPGA is, furthermore, a

viable route towards entraining plasmodial tubules into producing anticipatory responses

interpreted by the interface through electrophysiological measurements. Combined with

suitable advances in SMMP operation, we envisage this to be a viable route towards

implementing fully-automated slime mould analogue computers with a wide range of

functions (as was discussed in Chapter 4).

Thus, the advances detailed in Chapter 3 have indicated suitable forms of input and

output in SMHDs as well as the feasibility of producing functional devices built on

the principles outlined in Chapters 4 and 5. It is also pertinent to note that the slime

mould–computer interface developed is eminently well-suited for use with other excitable

cell types: despite the slow progress of experimental biological UC due to the field’s

inherent multidisciplinarity excluding researchers not possessing skills in both biology

and computer science, as was discussed in the introduction, this low-cost, easy-to-use

interface represents a step towards greater accessibility in UC.

6.1.2 Morphological Processors (SMMPSs)

It was demonstrated in Chapter 4 that the SMMP is able to represent the shape of

a dataset in a manner approximating various image processing operations, when the
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user-supplied ‘image’ is mediated through attractant and repellent gradients. These

operations, computation of the convex hull, (to some extent) the concave hull, skele-

tonization and representation of shapes, demonstrate that the organism’s ‘toolbox’ of

image processing functions extends far beyond anything previously demonstrated al-

though they were indicated by Jones’s multi-agent model. The use of sensorial fusion in

these devices goes some way to demonstrate polymorphism in the substrate but no ad-

vances were made in elucidating exactly how each input variety was represented within

the organism.

Consequent experiments demonstrating that the organism is able to display anticipa-

tory responses to adverse periodic stimuli showed that the SMMP can be considered to

function as an analogue computer complete with integrators (biological feedback mech-

anisms) and basic memory capabilities (through oscillator coupling) when its output

is considered as the spatiotemporal dynamics of a single plasmodial tubule. Again,

these results demonstrate a marked increase in functionality over anything previously

demonstrated for SMMPs. Although only one variety of input was used in programming

these devices (light), significant evidence was advanced to elucidate how data is repre-

sented within the organism (as oscillating biomolecular processes) and the processes

which constitute computation (reactions which maintain and influence these oscillating

processes). Indeed, this latter point highlights an intriguing characteristic of the P.

polycephalum plasmodium which lends it value as an UC substrate, namely that obser-

vation of morphological adaptation also allows one to infer maps of spatial stimuli as

well as cytoplasmic flow (and hence related oscillator patterns). This is an embodiment

of the concept of spatial propagation of information towards continual monitoring of the

computing process, as well as related processes.

Relying on morphological adaptation as a form of output makes device operation ex-

tremely slow, with individual operations taking many hours to complete. Even so they

are not without practical use: there have been numerous publications [16, 32] demon-

strating how SMMP devices have been used for bio-inspired design through computation

of space subdivision, thereby indicating that the novel morphological operations may also

be oriented in a similar direction. With regards to SMMP analogue computers, the only

practical device described was an and gate implemented via the organism’s systems we

have characterised as a form of memory, hence it cannot be said with any certainty

how viable more complex devices built around this phenomenon may be. That said, the

corroboration between the results gathered and Blakey’s predictions [60] regarding the

arithmetical applications of living coupled oscillator systems indicate that with sufficient

development, SMMPs may be capable of computing problems such as factorisation in

a more efficient manner than conventional architectures. Although we do not intend

to suggest that a SMMP factorising a number over the course of an hour would be
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more efficient than a modern computer running a fundamentally inefficient factorising

algorithm, and there are furthermore several limitations to the SMMP that were not

explored (e.g. maximum number that can be represented through periodic stimuli), fur-

ther work on this topic would be likely to further our understanding of the computing

process in biological substrates in general.

6.1.3 Intracellular Processors (SMIPs)

Guided by a literature review of potential intracellular systems for implementing com-

putation, it was demonstrated through CA modelling that actin cytoskeleton-mediated

signalling processes could theoretically support the generation of travelling localisations

and interactions therein. These modelling experiments also contributed some evidence

towards extant theories concerning how emergent processes within cells are facilitated by

the cytoskeleton; of course it is beyond the remit of modelling to ever fully substantiate

these hypotheses, but such techniques may still be of use in cases such as this, where

the technology to directly measure the phenomena under observation does not exist, in

order to guide experimental work.

Further experimentation demonstrated that calcium-filled vesicle (CFV) dynamics on

intraplasmodial networks may be characterised as CBC-like computation. Although

no prototype SMIPs with demonstrable practical functions were presented, the inves-

tigations in Chapter 5 demonstrate a clear basis by which unstructured environmental

sensory data is transduced into a finite number of intracellular signal types, many being

mediated by the cytoskeleton. This process of information structuring creates unam-

biguous signals to which the organism will react in a specific, consistent manner. A

particularly enthusing characteristic of vesicle collision model (VCM) computation is

that it shares functional characteristics with Fredkin and Toffoli’s billiard ball model

(BBM), hence a functionally complete set of logical gates may be constructed using

basic 2-vesicle interaction gates.

As with the SMMPs developed in Chapter 4, we were only able to demonstrate in the

experimental portion of Chapter 5 how naturally-occurring processes may be utilised

as computing resources without elucidating a method for ‘hijacking’ them to maximise

their usefulness i.e. vesicle collisions on actin highways may be observed and somewhat

engineered through directing the macroscopic growth of the organism, but not tightly

controlled. Although achieving this level of control over such a system would require

a prolonged, concentrated research effort, our findings nevertheless suggest that this is

possible. Cytoskeletal information processors are well-suited to miniaturisation, offer

excellent data storage density, pose no problems with excess heat production and would
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be a practical means of influencing cell dynamics in vivo. Cytoskeletal computing archi-

tectures are not limited to slime mould models, but the phenomenon of CFV collisions

is due to their role being filled by other organelles in different cell types. We recom-

mend that cytoskeletal information processors based on other cell types focus upon the

interactions of ionic waves due to this being a phenomenon common to all cell types

[155].

6.2 Regarding the Future of Slime Mould Computing, Bi-

ological UC and Computer Science

Although slime mould computers are now amongst the most heavily-researched biological

UC substrates to date, it must be remembered that P. polycephalum was chosen because

it is an arguably ‘simple’ entry-level biological substrate. It is apparent that many of its

lauded properties adversely affect its potential for adaptation into demonstrably useful

devices: its enormous size, for example, makes slime mould devices ill-suited to minia-

turisation, and its obligate unicellularity precludes any form of synergistic interactions

with cooperative neighbouring cells.

If, however, slime mould computing research does not fully represent the capabilities

of biological substrates in general, this raises the question as to what contribution it

makes to the field of biological UC. Can the functions of a SMMP be compared to those

of any other cell type? Whilst human neurons possess a similar stellate morphology in

certain anatomical locations, their function is known to be heavily dependent on this

[212] and hence, it seems unlikely that their full potential could be utilised in a device

that was based on neural morphological adaptation (which is currently very difficult to

achieve in vitro [98]). If we broaden our horizons to the actions of cells outside what

has been achieved in vitro, however, mammalian embryonic cells can be considered

as being capable of extremely complex morphological computation and self-assembly

during embryogenesis (cell differentiation, routing of neurons and organs, etc.). Thus

we see that this incredible process — which is still only partially understood — may be

characterised as the computation of various morphological adaptations in response to

environmental stimuli (the actions of neighbouring cells and the uterine environment).

Once again we return to the notion that UC is a feasible route towards understanding

and possibly even hijacking biological processes; the biomedical applications of reverse-

engineered embryonic cell computing are diverse and world-altering.
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Anticipation and biological oscillation in general are also features of other biological

substrates, implying that the techniques used to implement the SMMP analogue com-

puting devices presented are transferable to other cell types, provided that the oscillating

processes in said substrates were suitably elucidated.

The SMIP designs based on transmission of and interactions between energetic signalling

events on actin networks are, conversely, applicable to any cell type or even in vitro actin

networks. It should be noted that most other cell types are unlikely to contain as many

CFVs as P. polycephalum plasmodia as their function is supplanted by other organelles,

but vesicles are a ubiquitous mechanism for carrying a wide range of biomolecules in an-

imals, plants, bacteria and fungi. Furthermore, as discussed in Chapter 5, actin is highly

likely to mediate other forms of energetic event that may be far better suited to ease of

input and output, such as transmission of ionic waves when in the presence of a suitable

buffer, which could be measured with relative ease using patch clamp electrophysiology

[189]. Similarly, whilst it would be very difficult to fabricate electrically-coupled logic

gates or tactile sensors with other cell varieties, the design principles demonstrated —

favouring of electrical interfacing via multi-electrode array, etc. — are highly transfer-

able between other forms of cell, provided they are electrically excitable, as was discussed

in Chapter 3. Again, the transfer of knowledge from biology to UC is not unidirectional:

many cytoskeletal processes are poorly understood but may be investigated further from

a computational perspective.

It would appear, therefore, that although slime mould is an ideal ‘entry level’ model

organism for UC research, the range of practical applications for Physarum machines

are limited. Primarily, though, we have demonstrated the viability of adapting entire

live cells as well as their components into functional UC devices and uncovered design

principles for the fabrication of future generations of biological UC devices. We recom-

mend that the choice of cell type in future experimentation in the field should depend on

the requirements of the application — e.g. bio-computers with biomedical applications

should focus on the use of human cells, biosensors designed to interpret optical input

should use photosensitive cells such as algae, etc. — as it is likely that the principles of

intracellular computation are similar between a great many cell types.

It is pertinent to briefly address the contributions made during this program of study

towards the parent field of computer science. Our results have made it abundantly clear

that, although a great many of the processes we have investigated may be characterised

in the language of computation, there is significant divergence between biological and

conventional computation. As such, we find that our contributions to conventional com-

puting are limited: we have demonstrated the inefficiency of using biological substrates

to implement conventional digital logic and accordingly, there is little in our findings
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that can inform future developments in silicon architectures. We find, however, that our

work on organism-computer interfaces, in which we enabled communication between the

two in formats readily recognisable by both, has uncovered engineering and program-

ming principles which could conceivably contribute to the study and development of

trans-architectural data operations.

6.3 Conclusions

In conclusion, to address the research questions recapitulated in section 6.1:

1. We have identified that P. polycephalum is polymorphic to the extent that it can

be given input in a variety of unstructured formats — chemical, optical, tactile

etc. — and responds by producing a number of proportional, ordered, statistically-

repeatable behaviours as a result of an intracellular computation-like process. We

have elucidated the nature of some of these intracellular processes to some degree.

These forms of output include membrane potential absolute values/waveforms and

macroscopic behaviour patterns. Where it was previously known that slime mould

responds to some forms of input such as light and attractive chemical stimuli, we

have elaborated further on how these may be employed through novel experimental

environments and methods of input application.

2. Unstructured environmental sensory data is transduced into a regular, repeatable

format (structuring) through interaction with membrane-bound or cytoplasmic

receptors which initiate signalling cascades; a significant number of these pro-

cesses are mediated by the cytoskeleton. The end-product of these cascades is

an alteration in the concentrations of allosteric effector biomolecules which have

measurable effects on the cell’s behaviour, such as biasing oscillating intracellu-

lar processes. Intracellular data are therefore represented by biomolecules, their

states and the bioelectrical, biochemical or biomechanical effects. Computation

therein represents the continuous process from signal transduction, transmission,

interaction with other quantities of data and their interactions with the systems

they effect. Output may be observed in a variety of ways, as discussed in the

previous point.

3. We have demonstrated that all three categories of device presented may be adapted

into computing devices, each of which can be said to fulfil a demonstrable comput-

ing function. Although general purpose computation has not been achieved with

slime mould devices (as one would expect given the comparative infancy of biolog-

ical computing technologies), we have demonstrated the fabrication and operation
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of both special purpose architectures as well as systems capable of computationally

universal logic.

Through these research questions, we have demonstrated the extent to which the P.

polycephalum plasmodium can be called polymorphic: the multiple formats of input

data used in experimental studies are structured via a series of common intracellular

chemical reactions; that these reactions are common between input types is evident in

the innervation of the same systems, e.g. light and chemical inputs interact with the

energy supply and biomechanical oscillators in order to provoke directional migration.

Furthermore, this demonstrates the extent to which the organism can be called a poly-

functional substrate: by illustrating how various cellular systems, whose operation can

be characterised in the language of computing, we have shown that the organism is capa-

ble of functionally-complete logic, memory and various morphological functions, which

can be practically expressed as bitwise operations, sensing, image processing, etc.

Thus our synthesis: the plasmodium of slime mould P. polycephalum is polymorphic to

the degree that it can accept and process multimodal input, and is only polyfunctional

insofar as being able to complete a narrow range of functions, although the substrate

is not intrinsically limited to just the functions that were demonstrated during this

program of research. Thus, we conclude that slime mould is not ideally suited to gen-

eral purpose computation and, without significant further development, suffers from

the detriments arising from the variability, fragility and time restrictions of biological

substrates. We find, however, that it possesses certain intracellular systems (oscillators,

cytoskeletal energy dynamics etc.) common to most forms of life, that are well-suited for

adaptation into biological UC devices with demonstrable practical purposes due to pos-

sessing some clear advantages over extant computing architectures, both conventional

and unconventional.
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Information

B.1 Cellular Automaton Definition

To paraphrase Ilachinski [150], cellular automata (CA) are the simplest mathemati-

cal representation of complex (non-linear and typically composed of a great many con-

stituent entities) systems. Originally conceived of by Von Neumann in efforts to replicate

biological phenomena [317], a CA comprises some form of an homogenous grid in which

individual cells may take one of a finite number of states. Each cell may interact with

others in its immediate neighbourhood according to a set of pre-defined rules in discrete

time; rules dictate how each cell’s state will change in proceeding timesteps based on

the states of its neighbours. There are therefore as many rules per CA are there are

configurations of cells within a neighbourhood.

There are a great many variations on these fundamental building blocks based on vari-

ations in grid topology, dimensionality, synchronicity etc., but all share these basic

characteristics. Despite these deceptively simple mechanics, CA may develop astonish-

ing complexity and have been extensively used over the past 70 years to great success

in modelling the dynamics of systems as diverse as particles in supercolliders [297],

molecules in ideal gases [144] and deoxyribosenucleic acid base pattern evolution [276].

B.2 Estimation of Plasmodial Energy Consumption

A single plasmodium of approximately 2 cm2 weighing 0.1 g was described in Ref. [14]

as subsisting for 5 days from the energy derived from a single oat flake.
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Energy value of 50g of oat flakes (Tesco, UK): 791 kJ

Energy value of 1g of oat flakes: 791÷ 50 = 15.82 kJ

Mass of 1 oat flake (approx.): 5 mg

Energy value of 1 oat flake: 15.82÷ 200 = 0.08 kJ

Energy from 1 oat flake over 5 days = 0.08÷ 120 = 0.0006 kJ h−1 = 600 J h−1

Energy consumption in Watts = 600÷ 3600 = 0.16 W

B.3 Proximity Graph Definition

A proximity graph is a planar graph in the Euclidean plane wherein two nodes are

connected if they are defined by a certain rule to be within a local neighbourhood

and hence proximate in some manner [124, 200, 300]. Consider the following canonical

examples of proximity graphs:

• Minimum (Steiner) Spanning Tree (MST): vertices are constructed in order

that all points are connected with the minimum possible total edge length.

• Relative Neighbourhood Graph (RNG): two points are connected by an edge

if no other point is closer to either.

• Gabriel Graph (GG): two points x, y are connected if a circular neighbourhood

of diameter (x, y) oriented centrally about each is empty.

• Delaunay Triangulation (DT): for a set of nodes, triangles are constructed

between sets of three nodes if its circumcircle (circumscribed circle about each

point) contains no other nodes.

These proximity graphs are related in the Toussaint hierarchy (named after proximity

graph pioneer Godfried Toussaint):

MST ⊆ RNG ⊆ GG ⊆ DT (B.1)

The Voronoi diagram is a form of plane tessellation constructed about the dual of their

DT, such that each individual point is separated into a separate neighbourhood (Voronoi

cells). Another form of proximity graph, the beta-skeleton, conceptually sits in the Tou-

ssaint hierarchy between the GG and DT: they are a variety of undirected graph wherein

two vertices are connected if their proximity falls within a neighbourood parameter which

is set manually. The relevance of the beta-skeleton in this context is that they have been

used to model actin network assembly in Ref. [203].
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B.4 Emergence Definition

A great many behaviours exhibited by natural systems cannot be explained through

description of the individual processes which underlie them: consider, for example, that

we cannot define consciousness in terms of the electrical activity of individual neurons;

that is to say, a single neuron cannot be said to possess a consciousness (or perhaps,

a one-hundred-billionth of a consciousness?). To pose a somewhat more quantitative

example, ion fluxes resulting from electrical stumulation of heart cells (cardiomyocyte)

which cause it to contract cannot be said to be ‘pumping blood’, but a great many cells

within the heart tissue system are said to pump blood. This is a phenomenon known as

‘emergence’, the definition of which is more of a philosophical problem than a scientific

one as the interpretation of something as emergent is subjective under certain definitions

of the term. The Stanford Encyclopaedia of Philosophy states that [222]:

Emergent entities (properties or substances) arise out of more fundamen-

tal entities and yet are novel or irreducible with respect to them.

Under this definition, we see that a great many of characteristics of biological matter with

regards to their use in UC may be classed as ‘emergent’; for example, self-assembly of

biomolecules followed by their intracellular organisation of and the spontaneous genera-

tion of (arguably) complex structures. Emergent phenomena are not restricted to biology

— indeed, a reductionist viewpoint would be that literally everything bar fundamental

quantum phenomena are emergent properties of interactions between elementary parti-

cles and the forces that act on them — but it has been argued that biological matter is

a substrate far more conducive to the generation of novel, emergent behaviours than, for

example, chemical or physical systems [195]. This would appear to make sense from an

evolutionary perspective, i.e. some of the most overtly emergent structures are formed

from the materials that are best suited for facilitating emergence1, i.e. self-assembling

molecules.

B.5 Glossary of Biological Terms

Anatomical Notation

The following anatomical terms are used with respect to slime mould:

1The reader will please note our efforts to curtail the tautology in this statement, whose purpose is
simply to use Occam’s Razor as a heuristic.
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Figure B.1: Schematic diagram of a phospholipid membrane in transverse section.
‘1’ denotes hydrophilic (polar) heads and ‘2’ indicates hydrophobic tail regions.

1. Anterior: The ‘front’; the portion of the organism that advances forwards and

usually assumes a fan-shaped morphology.

2. Posterior: The ‘back’; the parts of the organism which are furthest away from

the anterior portions. Usually assumes a tubular morphology.

3. Caudal: Meaning ‘tail-like’, caudal is here used synonymously with ‘posterior’.

4. Margin: The edge of a physiological layer. E.g. the anterior margin refers to the

apex of the organism’s anterior portions.

Phospholipid Membrane

A membrane (also known as a phospholipid bilayer, plasma membrane or plasmalemma)

(Fig. B.1) is a selectively-permeable boundary between a cell’s cytoplasm and extra-

cellular space (in the case of the cell’s external membrane) or an organelle (organellar

membranes, such as those surrounding the nucleus or mitochondria). Phospholipid

membranes are so named because they are formed from two components: a hydrophilic

(miscible with water) polarised phosphate-containing ‘head’ region and two hydropho-

bic ‘tails’ formed from fatty acids articulated onto a glycerol backbone. These units

form vast sheets which arrange themselves into bilayers tail-to-tail. This prevents the

movement of fluid and macromolecules across the membrane; small molecules and some

hormones may pass freely through a membrane; trans-membrane proteins may permit

the transport of certain larger molecules and ions.

Eukaryote [326]

A cell is said to be eukaryotic if its nucleus (intracellular organelle containing its DNA)

is enclosed within its own phospholipid membrane; this includes all animal, plant, fungal

and protistic cells. This is contrasted with prokaryotes, such as bacteria, who lack a well-

defined nucleus. Eukaryotic cells tend to be larger and be more mophologically complex.

Protist [327]
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The protists are a large category of organisms whose designation as such is based on

convenient grouping of common attributes, rather than sequential evolutionary her-

itage (that is to say, polyphyletic rather than monophyletic). Although no universally-

accepted formal definition exists to describe the protists, they are informally defined as

eukaryotic organisms that are not animals, plants or fungi, who are either unicellular or

otherwise multicellular forms of life that do not form tissue systems. Even this rather

vague grouping is open to debate, however: algae, for example, were once considered

to be plants due to being photosynthetic, but are now widely considered to be protists.

This highlights the malleability of our systems for taxonomical classification and hence

that we should keep in mind that such groupings only exist insofar as we have created

them to ease our understanding of different varieties of organism with common features.

Although newer, more systematic classifications have been proposed (most notably, the

International Society of Protistologists revised 2012 classification of eukaryotes [36]),

these have still note received wide acceptance and hence, the term ‘protist’ is univer-

sally used for these — commonly weird and wonderful — organisms which continue to

defy classification.

Ploidy [40]

A cell’s ‘ploidy’ refers to how many sets of chromosomes (structures composed of tightly-

compressed DNA) it possesses: it is said to be haploid if it possesses only one set, diploid

if it possesses two and polyploidal if it possesses more than two. The relevance of this

is that it refers to the stage of a cell’s development: vegetative eukaryotic organisms

typically have more than one set (most mammals have two, whereas plants may have

up to 12 or more), whereas reproductive cells in sexually-reproducing species (gametes)

will usually have half the number of chromosomes of the parent. All human cells, for

example, are diploid except for spermatozoa and ova, which are haploid: when two ga-

metes of opposite sexes meet and fuse, they form a diploid cell which develops into the

vegetative, mature form (i.e. a human foetus).

Spore [328]

Spores are highly resilient life cycle forms possessed by some, but not all, bacteria, fungi

and protists. Although not necessarily directly involved in reproduction they usually

form an essential part of the organism’s life cycle: the spores produced by protists are

typically haploid and unicellular as they may eventually transform into gametes when

environmental conditions become favourable.

Receptor [244]

In the context of cell biology, a receptor is a protein molecule that exists on the surface

of or within a cell whose function is to bind with another protein or small molecule (a
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‘ligand’) and instigate an appropriate response, which is usually to enter a high-energy

state and/or change its quaternary structure. This contributes to a change in cellular

behaviour: consider, for example, the category of receptor known as an ‘ionotropic’ re-

ceptor that sits on and permeates a cell’s membrane. In brain cells (neurons), several

varieties of ionotropic receptors exist which each bind to a different ligand, such as gam-

maaminobutyric acid (GABA) and acetylcholine. When the ligand — which has usually

been released from a neighbouring neuron — comes into contact with the receptor, it

undergoes a conformational change and begins to permit the passage of certain ions

for a limited period of time. The momentary flux of positively-charged ions from the

cell’s exterior to interior contributes to the generation of the electrical pulses (action

potentials) that characterise brain activity.

Second Messengers [245]

Following the activation of a several categories of receptor (e.g. transmembrane G-

protein coupled receptors), a cascade of secondary chemical reactions occur which even-

tually contribute to a change in cell-level behaviour: this is called a second messenger

system. Second messengers, such as the cyclic adenosine monophosphate or phospho-

inositol systems, are highly-amplifying, energy-consuming chemical processes.

B.6 Excitable System Definition

A generalised excitable system is a simulated two dimensional state space where compo-

nents may be ‘excited’, that is enter a functionally different, higher-energy state when

perturbed in some way. This state may propagate to neighbouring elements, which gives

rise to complex nonlinear system dynamics [147, 306]. These systems are designed to

mimic excitable natural systems which obey these rules such as spatially-propagating

cell contraction in muscular syncytia (e.g. the heart or bladder) or wave propagation in

the oscillating Belousov-Zhabotinsky reaction [30, 329].

B.7 Memristor Definition

Memristors, or ‘memory resistors’ are a novel circuit element and the last of the quartet

of passive circuit elements to be fabricated (as each component forms a link between

current, voltage, charge and flux; the memristor links the latter two) [287]. They have

been hailed as a potential non-volatile storage medium for their ability to change their

resistance to a degree dependent on the last voltage passed through it and maintain this

state when the voltage is removed [125].
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B.8 Watershed Transformation Definition

The Watershed Transformation is a morphological operation used to segment images

that is used in a wide range of application fields including biological imaging, traffic

monitoring and materials science [249]. The basic principle of this operation is to con-

sider a greyscale image as a surface with a 3D topography wherein lighter grey tones

represent higher surfaces. This 3D surface is then flooded with fluid from its minima

and characteristic catchment basins form around the peaks delineated by raised edges.

The contours are then marked and output as the ‘watershed’ of the original image. In

complex images, oversegmentation is a frequent problem (as in B.2); this may be reme-

died by performing an initial edge-finding algorithm to the image to define markers from

which the consequent flooding is initiated.

B.9 Collision-based Computing (CBC) Definition

Fredkin and Toffoli’s Billiard Ball Model (BBM) of computation [122], which as the

name implies is a hypothetical UC device fashioned from billiard balls, is an elegant

example of a UC paradigm which demonstrates this singular open-mindedness towards

computation. In the BBM, billiard balls of uniform physical attributes representing

input data are propelled at set speeds along the gridlines of a regular Cartesian lattice:

the machine’s output is determined by the presence or absence of balls in predetermined

locations after a certain amount of time has elapsed — ‘1’ or logical truth if a ball ends

up in location X (potentially sunk down a particular pocket of a billiards table) and

vice versa. Hence, computation is implemented via conditional routing of balls, which

is achieved via engineered ball-to-ball interactions, i.e. elastic ricochets. An example of

a billiard ball logical gate is shown in Figure B.3.

At first glance, we find that such a system has virtually no practical applications, would

be extremely difficult to implement practically and is a remarkably inefficient route

towards making a single logic gate. The BBM is, however, merely an example of a system

which implements conservative logic, a non-Boolean logic variety based around the ideas

of input-output bijectivity (one-to-one mapping) and reversibility (time-invertibility).

Consider, for example, that in the interaction gate of Fig. B.3 no signals are lost

or destroyed, as indicated by the incidence of two output balls when two are input;

compare this to the functionality of a conventional and gate, wherein the conjunction

of two input signals leads to only one being output, implying the erasure of the other.

Bijectivity implies zero internal energy dissipation (isentropy) in an idealised scenario.

In terms of practical circuit design, this confers a conservative logical circuit a superior
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(a)

(b)

Figure B.2: Demonstration of the watershed transformation. (a) Original image.
(b) Watershed transformation of the photograph in [a]. As the original image was
complex and no initial markers were defined, the image is oversegmented and hence the

morphology of the subject is poorly preserved.
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Figure B.3: Schematic diagram of a two-input BBM interaction logical gate. When
only one input is provided, the ball is free to roll unperturbed along its original tra-
jectory (dashed arrows). When the input configuration is 〈AB〉, the balls collide and
elastically ricochet (solid arrows), re-routing them to a different output configuration
representing the conjunction of 〈A ∧ B〉. The output of the gate may be reconfigured

depending on how ball routing is interpreted.

theoretical energy efficiency; aside from the clear advantages of low-energy computing

in modern times, this also makes such a system more appropriate for miniaturisation

due to the reduction in energy loss as heat (the ‘kT barrier’) . Another key benefit to

a fully-reversible logic is that, as it is a deterministic system, the user is able to make

more accurate predictions pertaining to its computing power and resistance to error.

Relatively few laboratory prototypes of BBM-derivative devices (a field of study now

known as collision-based computing (CBC)) have been fabricated to date — with perhaps

the most notable exception being the successful implementation of Boolean logic via

collisions of reactant wavefronts in the oscillating Belousov-Zhabotinsky (BZ) chemical

reaction [10, 29, 81] — but the BBM has been thoroughly characterised with various

modelling techniques such as cellular automata (CA) [169, 340], which has consequently

led to designs for BBM-like computing in quantum computing media such as photons

and electrons [58, 142].
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B.10 Electronic Supplementary Information

All electronic supplementary information is stored on the attached CD-ROM.

Video 1: Video of excitable CA model run on extracted actin network shown in Fig.

5.2. Excitation is initiated upon mouse click. Black pixels indicate reconstructed actin

network, pink are excited cells and blue are refractory cells.

Video 2: Video of excitable CA model run on extracted actin network shown in Fig.

5.3. Excitation is initiated upon mouse click. Black pixels indicate reconstructed actin

network, pink are excited cells and blue are refractory cells.

Video 3: Real-time ratiometric confocal microscopy video footage showing calcium-

filled vesicles (red) interacting with each other in a live plasmodium. Collisions between

vesicles are frequently observed.
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Appendix C: Additional

Experimental Datasets

C.1 LED Avoidance Observations, Section 3.1

Experiments were performed as per section 3.1.2.1. Experimental observations are pre-

sented in Table C.1. The frequency with which each was migrated to was counted; hence,

the most avoided colour was the LED variety with the lowest score. The final tally was:

• Green: 0

• Red: 2

• Yellow: 5

• Blue: 9

• No result: 2

The incidence of ‘no result’ (‘X’ in Tab. C.1) corresponded to the event where the

organism opted to migrate directly upwards onto the lid of the Petri dish, after which

it proceeded to colonise one or both of the cardboard dividers. These results were

discounted when determining the most-avoided colour.
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Blue Green Yellow Red

Blue · B,B,B B,B,B B,B,B

Green · · Y,Y,Y R,X,R

Yellow · · · Y,Y,X

Red · · · ·

Table C.1: Table to show which colour of LED P. polycephalum plasmodia migrated
to in phototaxis experiments. B = blue, Y = yellow, R = red, G = green, X = no

result, · = no experiment performed.

C.2 Morphological Processing Exemplar Datasets, Section

4.1

The following image sets show how slime mould completes the morphological operations

outlined in section 4.1. Figure C.1 shows the full single image experiment using a ‘C’-

shaped mask corresponding to the result shown in Fig. 4.3A. Figure C.2 shows the full

double image experiment using a ‘C’-shaped mask corresponding to the result shown in

Fig. 4.4A. Figure C.3 shows the full double image experiment using a ‘H’-shaped mask

corresponding to the result in Fig. 4.5A.

C.3 Plasmodial Entrainment by UV Light Exposure Datasets,

Section 4.2

This section contains the experimental datasets for the entrainment experiments detailed

in section 4.2. Raw time series data is shown in Fig. C.4 and FFTs derived from these

are shown in Table C.2.
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(a) 0h (b) 6h (c) 26h

(d) 0h, filter (e) 6h, filter (f) 26h, filter

(g) 42h (h) 52h (i) 72h, control

(j) 42h, filter (k) 52h, filter (l) 72h, control, filter

Figure C.1: Time-lapse photographs of a single image experiment using a ‘C’-shaped
mask. (a–c,g–i) Experimental photographs; captions indicate time. The organism mi-
grates mainly under the mask and links oats with a minimalistic network of plasmodial
tubes. (d–f,j–l) Enhanced images; each corresponds to the photograph immediately
above. (i) Control. Elements of figure adapted from author’s own work in Ref. [164].



List of Figures 151

(a) 0h (b) 34h (c) 45h

(d) 0h, filter (e) 34h, filter (f) 45h, filter

(g) 48h (h) 69h (i) 54h, control

(j) 48h, filter (k) 69h, filter (l) 54h, control, filter

Figure C.2: Time-lapse photographs of a double image experiment using a ‘C’-shaped
mask. (a–c,g–i) Experimental photographs; captions indicate time. Initially, the or-
ganism colonises the area under the mask. It then opts to link its network across bare

agar. (i) Control. Elements of figure adapted from author’s own work in Ref. [164].
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(a) 0h (b) 4h (c) 22h

(d) 0h, filter (e) 4h, filter (f) 22h, filter

(g) 36h (h) 55h (i) 60h, control

(j) 36h, filter (k) 55h, filter (l) 60h, control, filter

Figure C.3: Time-lapse photographs of a double image experiment using a ‘H’-shaped
mask. (a–c,g–i) Experimental photographs; captions indicate time. The organism
colonises the area under the mask first, forming a network redolent of the concave hull
of the image. Shortly after, it extends a branch across the gap separating the lower
protrusions of the ‘H’ shape, partially forming the shape’s convex hull. (f) Control.

Elements of figure adapted from author’s own work in Ref. [164].
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