228 research outputs found

    Robotic middle ear access for cochlear implantation: first in man

    Get PDF
    To demonstrate the feasibility of robotic middle ear access in a clinical setting, nine adult patients with severe-to-profound hearing loss indicated for cochlear implantation were included in this clinical trial. A keyhole access tunnel to the tympanic cavity and targeting the round window was planned based on preoperatively acquired computed tomography image data and robotically drilled to the level of the facial recess. Intraoperative imaging was performed to confirm sufficient distance of the drilling trajectory to relevant anatomy. Robotic drilling continued toward the round window. The cochlear access was manually created by the surgeon. Electrode arrays were inserted through the keyhole tunnel under microscopic supervision via a tympanomeatal flap. All patients were successfully implanted with a cochlear implant. In 9 of 9 patients the robotic drilling was planned and performed to the level of the facial recess. In 3 patients, the procedure was reverted to a conventional approach for safety reasons. No change in facial nerve function compared to baseline measurements was observed. Robotic keyhole access for cochlear implantation is feasible. Further improvements to workflow complexity, duration of surgery, and usability including safety assessments are required to enable wider adoption of the procedure

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery

    Doctor of Philosophy

    Get PDF
    dissertationFor many with severe-to-profound hearing loss, a condition in which the cochlea is unable to convert sound vibration into neural information to the brain, the cochlear implant has become the standard treatment. The goal of a cochlear-implant system is to bypass the malfunctioned cochlea and directly stimulate the nerves responsible for hearing through an array of electrodes on a silicone-elastomer carrier. However, the insertion of the electrode arrays can often cause intracochlear damage and eliminate residual hearing. With increased focus on hearing preservation in cochlear implantation, methods to minimize intracochlear damage have become a priority in electrode-array insertions. This dissertation explores the application of magnetic manipulation toward improved cochlear-implant electrode-array insertions. We start with initial 3-to-1 proof-of-concept experiments to demonstrate the feasibility of this approach. Then, to achieve relevancy at clinical scale, lateral-wall-type electrode-array models, used in the clinic, are slightly modified at the tip to include a tiny magnet. Next, a scala-tympani phantom is designed with both simulated cochleostomy and round-window openings to mimic both classes of insertions typically conducted. In particular, this is the first phantom to model a round-window opening and can be used reliably to simulate insertion forces in cadaver cochleae. Electrode arrays are then magnetically guided through these phantoms with a statistically significant (p < 0.05) reduction in insertion forces, and by as much as 50% for some electrode-array models. In particular, guiding the electrode-array tip through the cochlear hook and the basal turn, in the same insertion, was demonstrated for the first time using this technology. All existing methods to guide the electrode array can only be accomplished for the basal turn. Analysis is conducted to determine the optimal size and placement of a magnetic dipole-field source for use in the clinic. Its placement is determined to be consistently lateral to and anterior to the patient’s cochlea. Its size depends on numerous factors including the patient, torque requirements, and registration error. Sensitivity curves summarizing these factors are provided. The volume of the magnetic dipole-field source can be reduced by a factor of 5, on average, by moving it from the modiolar configuration originally proposed to this optimal configuration. We verify that magnetic forces do not pose any appreciable risk to the basilar membrane at the optimal configuration. Although patient-specific optimal configurations are characterized, a one-size-fits-all version is described that may be more practical and carries the benefit of substantial robustness to registration error

    Endoscopy

    Get PDF
    Endoscopy is a fast moving field, and new techniques are continuously emerging. In recent decades, endoscopy has evolved and branched out from a diagnostic modality to enhanced video and computer assisting imaging with impressive interventional capabilities. The modern endoscopy has seen advances not only in types of endoscopes available, but also in types of interventions amenable to the endoscopic approach. To date, there are a lot more developments that are being trialed. Modern endoscopic equipment provides physicians with the benefit of many technical advances. Endoscopy is an effective and safe procedure even in special populations including pediatric patients and renal transplant patients. It serves as the tool for diagnosis and therapeutic interventions of many organs including gastrointestinal tract, head and neck, urinary tract and others

    Navigation with Local Sensors in Surgical Robotics

    Get PDF

    Patientenspezifische Planung fĂĽr die Multi-Port Otobasischirurgie

    Get PDF
    Bisher werden Operationen im Bereich der seitlichen Schädelbasis (Otobasis) stark invasiv durchgeführt. Um die Traumatisierung für den Patienten zu reduzieren, wird seit kurzem ein Multi-Port Ansatz untersucht, bei dem bis zu drei dünne Bohrkanäle von der Schädeloberfläche bis zum Operationsziel angelegt werden. Aufgrund der Minimalinvasivität des neuen Eingriffs ist die visuelle Kontrolle durch den Chirurgen nicht mehr möglich. Somit ist eine präzise patientenspezifische Planung basierend auf Bilddaten zwingend erforderlich. Der Fokus dieser Arbeit liegt daher auf der Planung eines Multi-Port Eingriffs basierend auf patientenspezifischen Modellen. Zur Generierung dieser Modelle habe ich zunächst Methoden für die Segmentierung der Risikostrukturen der Otobasis in Computertomographiedaten entwickelt. Die Herausforderungen dabei sind die geringe Größe der Strukturen, der fehlende Kontrast zum umliegenden Gewebe sowie die zum Teil variierende Form und Bildintensität. Daher schlage ich die Verwendung eines modellbasierten Ansatzes – das Probabilistic Active Shape Model – vor. Dieses habe ich für die Risikostrukturen der Otobasis adaptiert und intensiv evaluiert. Dabei habe ich gezeigt, dass die Segmentierungsgenauigkeit im Bereich der manuellen Segmentierungsgenauigkeit liegt. Ferner habe ich Methoden für die automatische Planung der Bohrkanäle basierend auf den durch die Segmentierung gewonnenen patientenspezifischen Modellen entwickelt. Die Herausforderung hierbei ist, dass der Multi-Port Eingriff noch nicht im klinischen Einsatz ist und somit Erfahrung mit der neuen Strategie fehlt. Daher wurde zunächst ein Planungstool zur Berechnung einer Menge von zulässigen Bohrkanälen entwickelt und die manuelle Auswahl einer Bohrkanalkombination ermöglicht. Damit haben zwei Ärzte eine erste Machbarkeitsanalyse durchgeführt. Die so gewonnene Erfahrung und Datenbasis habe ich formalisiert und ein Modell für die automatische Planung einer Bohrkanalkombination abgeleitet. Die Evaluation zeigt, dass auf diese Weise Bohrkanalkombinationen vergleichbar mit der manuellen Wahl der Ärzte berechnet werden können. Damit ist erstmals die computergestützte Planung eines Multi-Port Eingriffs an der Otobasis möglich

    Technological challenges in the development of optogenetic closed-loop therapy approaches in epilepsy and related network disorders of the brain

    Get PDF
    Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant’s elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients

    Full Issue: Volume 14, Number 1, Fall 2020

    Get PDF
    Complete .pdf file of Volume 14, number 1 of The Science Journal of the Lander College of Arts and Sciences. Published Fall 2020

    Cochlear imaging in the era of cochlear implantation : from silence to sound

    Get PDF
    Cochlear implants (CIs) are a well accepted treatment for hearing impaired people. In pre- and postoperative assessment of CI-candidates imaging plays an important role to analyze anatomy, rule out pathology and determine intracochlear positioning and integrity of the implant. Developments in CI-design, differences in surgical approach and broadening of treatment indications have raised new questions to radiologists, which were the subject of several studies described in this thesis. For optimal, a-traumatic positioning of a CI precise information about the inner ear anatomy is mandatory. We describe the development, validation and application of a method for 3-dimensional medical image exploration of the inner ear. This renders a tool to obtain cochlear dimensions on clinical computer tomography (CT) images. This will be useful for patientspecific implantplanning. It also shows an anatomical substrate for cochlear trauma during insertion. For postoperative imaging we studied the value of multislice-CT for optimal visualization of the implant within the cochlea. Its role to evaluate operation technique and electrode design, to study frequency mapping and to assess cochlear trauma is discussed. Moreover an international consensus for an objective cochlear framework is presented, forming a common ground for clear and easy exchange of findings in scientific and clinical studies.AB, de Nationale Hoorstichting/Sponsor Bingo Loterij, Foundation Imago, Bontius Stichting inz. Doelfonds BeeldverwerkingUBL - phd migration 201
    • …
    corecore