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Abstract

To demonstrate the feasibility of robotic middle ear access in a clinical setting, nine adult

patients with severe-to-profound hearing loss indicated for cochlear implantation were

included in this clinical trial. A keyhole access tunnel to the tympanic cavity and targeting the

round window was planned based on preoperatively acquired computed tomography image

data and robotically drilled to the level of the facial recess. Intraoperative imaging was per-

formed to confirm sufficient distance of the drilling trajectory to relevant anatomy. Robotic

drilling continued toward the round window. The cochlear access was manually created by

the surgeon. Electrode arrays were inserted through the keyhole tunnel under microscopic

supervision via a tympanomeatal flap. All patients were successfully implanted with a

cochlear implant. In 9 of 9 patients the robotic drilling was planned and performed to the

level of the facial recess. In 3 patients, the procedure was reverted to a conventional

approach for safety reasons. No change in facial nerve function compared to baseline mea-

surements was observed. Robotic keyhole access for cochlear implantation is feasible. Fur-

ther improvements to workflow complexity, duration of surgery, and usability including

safety assessments are required to enable wider adoption of the procedure.

Introduction

Advances in image guidance, robotic technology and minimally-invasive techniques offer an

opportunity to transform inner ear surgery from open procedures to keyhole approaches.

Over four decades after the description by House [1], conventional cochlear implant (CI) sur-

gery remains essentially unchanged. The success story of CIs with about 600.000 implant users

worldwide, shows the procedure is widely considered safe and effective [2–4]. Nevertheless,

alternative implantation techniques to further improve patient outcomes such as reduced
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mastoidectomy under endoscopic supervision [5] and endaural implantation techniques have

been proposed (e.g., the pericanal, suprameatal, or Veria approaches) [6–8]. However, mas-

toidectomy followed by a posterior tympanotomy remains the standard surgical approach to

the inner ear for cochlear implantation.

Keyhole access CI surgery has become an active area of change for the procedure, with a

view that image-guided, minimally-invasive and robotic equipment could be the starting point

for a dedicated robotic CI procedure that could facilitate standardization of CI surgery and

potentially impact hearing outcomes. Labadie et. al investigated a stereotactic frame-based key-

hole intervention in eight CI patients [9]. Our group has developed the concept of robotic

cochlear implantation (RCI) including elements of image-based procedural planning, robotic

middle and inner ear access and finally robotic CI insertion, which aims to enable optimiza-

tion and standardization of care. Following on from the first-in-man procedure [10], a clinical

trial was carried out to test the hypothesis that a robotic and task-autonomous drill protocol

can be applied to return the required geometric accuracy to enable a keyhole approach for

cochlea implantation on varying anatomy. More specifically, elements such as the i) pre-opera-

tive planning process, the ii) multi-layer safety architecture and iii) tunnel based electrode

insertion were clinically evaluated. Here we present the concluding report on the robotic mid-

dle ear access procedure carried out on a clinical pilot population of nine patients.

Methods

Study design

We performed a non-randomized single-center first-in-man trial to evaluate the clinical feasi-

bility of RCI (Fig 1). The study protocol (S1 and S2 Files) was approved by the local institu-

tional review board (Ethics Commission of Bern, KEK-BE PB_2017–00312) and regulatory

body (Swissmedic, Nr. 2013-MD-0042, EUDAMED CIV-13-12-011779) and registered (clini-

caltrials.gov identifier: NCT02641795, trial registration on December 29th, 2015). Recruitment

took place between 01.07.2016 and 22.08.2018 and surgeries took place between 14.07.2016

and 15.02.2018. All study procedures were performed at a tertiary referral hospital (Inselspital,

Bern) in accordance with relevant guidelines and regulations. CI candidacy was evaluated

according to a routine patient work-up, including medical, neuroradiological, and audiological

assessment. Study-specific procedures consisted of screening, facial nerve function baseline

testing at one day before surgery, the robotic intervention, computed tomography (CT) imag-

ing one day after surgery, and follow-up testing 10 to 14 days after surgery. Clinical outcomes

were assessed at 1 day, 2 weeks and 1 month after surgery. Safety of the trial was monitored by

a board of three independent external reviewers.

Study participants

Forty-three subjects were screened in our department as part of the CI candidacy assessment

routine (S3 File). Besides general accordance with conventional eligibility for CI surgery, sub-

jects had to be 18 years or older, fluent in German or French, have a sufficient facial recess size

(i.e., at least 2.5 mm, allowing for 0.4 mm safety margin to the facial nerve and 0.3 mm to the

chorda tympani using a 1.8 mm drill bit). Exclusion criteria were: pregnancy, anatomical mal-

formations of the middle or inner ear or abnormal course of the facial nerve. Existing preoper-

ative CT datasets of the temporal bone were used to assess anatomical conditions and facial

recess size [10]. In total, nine subjects gave written informed consented and were subsequently

enrolled in the study (Table 1).
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Baseline testing

The motor portion of the facial nerve was evaluated using the standard Sunnybrook composite

score [11]; and facial nerve conduction studies. The facial nerve was stimulated supramaximal

at the mandibular angle, and amplitude and latency of the compound muscle action potentials

were recorded using surface electrodes from the frontal, nasal, and mental muscles [12].

Patient preparation and intervention planning

The complete intervention was performed under general anesthesia. A 5 cm long retroauricu-

lar incision was created. A physical template was used to mark and insert four bone fiducial

Fig 1. Flowchart for non-randomized trial design.

https://doi.org/10.1371/journal.pone.0220543.g001

Table 1. Study participant details; PTA = pure tone average over 0.5/1/2/4 kHz; CMD = custom made device with shorter electrode lead.

ID Age, years Gender Side Unaided PTA, dB HL Etiology Hearing loss duration, years Electrode array

01 51 female right 120 Cogan syndrome 26 Flex24

02 49 male right 94 Menière’s disease 22 Flex28

03� 39 female left 106 Progressive hearing loss 10 Flex28

04 68 female right 71 Progressive hearing loss 12 Flex28,CMD

05 71 female right 88 Sudden deafness 5 Flex28

06� 59 female left 89 Progressive hearing loss 7 Flex28,CMD

07 60 male right 90 Progressive hearing loss 13 Flex24

08 73 female left 86 Menière’s disease 26 Flex28

09 61 male right 108 Congenital 20 Flex28

�existing cochlear implant in contralateral ear.

https://doi.org/10.1371/journal.pone.0220543.t001
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screws serving as artificial landmarks for patient-to-plan registration [13]. Patients were then

transferred for preoperative CT imaging (Somatom CT, Siemens, Germany; voxel size:

0.156 × 0.156 × 0.2 mm3; 120 kVp) in the neuroradiological department to confirm correct

insertion of the four implanted screws. Using a specific planning software [14], the team of the

responsible surgeon, neuroradiologist and a trained computer engineer conducted next the

procedural planning. First, the bony part of the external auditory canal, the facial nerve, the

chorda tympani and the ossicles were annotated in the image data. Next, the access trajectory

through the facial recess (diameter 1.8 mm distal and 2.5 mm proximal) from the mastoid sur-

face to the center of the round window membrane, providing for an optimal insertion angle

[15], was identified and defined in the image data. Meanwhile, the patient was transferred

back to the operating room and prepared for the procedure [10]. The patient head was non-

invasively constrained using a task specific headrest. Two sets of paired needle electrodes were

inserted into the periorbital and perioral muscles to provide for facial nerve monitoring. To

compensate for respiratory motion, the patients head was tracked via a skull attached dynamic

reference base, aligned with the systems tracking camera [16].

Robotic middle ear access

Upon patient-to-image registration, a task specific robotic system [17,16] was used to drill the

access tunnel (Fig 2) in 3 phases: (i) drilling from the surface of the mastoid bone until 3 mm

before the facial nerve, (ii) passing through the facial recess, and (iii) completing the access to

the middle ear cavity. Robotic drilling was performed in steps (with complete extraction of the

drill bit between steps to allow for cooling and cleaning) with a feed forward rate of 0.5 mm

per second and with 1000 revolutions per minute. Drilling increments of 0.5 mm and 2 mm

were used for the passage of the facial recess and during the less critical phases drill phases i)

and iii) respectively.

Intraoperative imaging

Upon reaching the level of the facial nerve, the robot was moved away from the operating table

and a titanium rod was inserted into the drilled tunnel. At that point the temporal bone region

was repeated imaged with a low-dose radiation, cone-based CT scanner for use in operating

rooms (xCAT, Xoran, Ann Arbor, USA; voxel resolution: 0.3 × 0.3 × 0.3 mm3, 120 kVp, 6 mA;

Fig 2. (left) The robotic system with patient. (right) Comparison between conventional and robotic procedure in postoperative computed-tomography

slices (subject 06).

https://doi.org/10.1371/journal.pone.0220543.g002
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Fig 3 left). The acquired image data were used to measure the distances of the drill tunnel to

surrounding anatomical structures by using an automatic detection algorithm [18]. A safe tra-

jectory was also confirmed manually on the image data by a present neuroradiologist. The dis-

tance of the drill tunnel to relevant anatomy was also assessed by the systems integrated force-

density pose estimation calculation [16,19]. Subsequently, the responsible surgeon decided

whether the robotic procedure would continue (i.e., phase ii) or be reverted to a conventional

approach.

Electromyography for facial nerve monitoring

Integrity of the facial nerve was monitored continuously through i) measuring potential elec-

tromyography (EMG) discharges elicited by mechanical irritation of the facial nerve during

the complete drilling and ii) analyzing compound muscle action potentials from multipolar

stimulation specifically when passing the facial nerve [12,20].

Implantation

After completion of the access tunnel, the landmark screws and the dynamic reference base

were removed. The tunnel was cleaned using irrigation and suction. Tunnel alignment with

the round window was inspected with a sialendoscope (Karl Storz, Tuttlingen, Germany). The

retroauricular incision was extended inferiorly and a tympanomeatal flap was created as an

auxiliary access to the tympanic cavity [21]. The round window niche was microscopically

visualized through the external auditory canal. Through the tympanomeatal flap, the bony

overhang of the round window was removed using a skeeter drill (Bien-Air, Biel, Switzerland).

Next, the implant bed was prepared. As opposed to conventional CI surgery, the excess lead of

the implant cannot be accommodated within the mastoidectomy with the minimally invasive

approach. Therefore, a superficial well (2 mm in depth) was milled into the cortex of the bone

to enable safe embedding. This step was not required to the same extent with the custom-

made device implants featuring shortened leads (subjects 04 and 06). The middle ear cavity

and the implant bed were cleaned to avoid intrusion of bone dust and blood into the cochlea

during electrode array insertion. The round window membrane was opened with a micro-nee-

dle. If required, a custom-made insertion guide tube, was placed inside the tunnel to assist

Fig 3. (left) Patient prepared for intraoperative CBCT imaging. (right) Microscopic inspection of the robotically drilled tunnel (arrow) after reversion

to conventional procedure including a mastoidectomy (subject 02).

https://doi.org/10.1371/journal.pone.0220543.g003
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insertion [22] and provide against unwanted contamination of the electrode with blood.

Sodium hyaluronate was applied as lubricant (ProVisc, Alcon, Rotkreuz, Switzerland). The

electrode array was slowly inserted until the first point of resistance. After insertion, the guide

tube was removed and the round window niche was sealed with fatty tissue. The excess lead

was fixed at the top of the tunnel using bone wax (Ethicon, Somerville, US). Following implant

telemetry, the wound was closed. Implant body management was adapted from the conven-

tional CI procedure.

Outcome measures

Drilling accuracy (primary outcome) was measured in available intraoperative CB-CT scans at

the level of the facial recess as the absolute centerline displacement of the planned versus the

drilled tunnel. The number of fully completed robotic accesses to the tympanic cavity, the total

procedural durations and durations of all sub-procedures were recorded. Postoperative high-

resolution CT scans of the temporal bone were used to measure the angular insertion depth

(in degrees) and the implanted scala (secondary outcomes). The surgical follow up included

assessment of pain (visual analog scale) and any potential clinical complications. Functional

preservation of the facial nerve was postoperatively assessed relative to the preoperative base-

line measurements. Structural preservation of the chorda tympani was confirmed by a neuro-

radiologist in the standard postoperative high-resolution CT scan of the temporal bone with

similar scanning parameters to the preoperative CT. Audiological fitting was performed

according to our standard routine, i.e., activation and initial fitting at 1 month and consecutive

fitting sessions at up to 12 months after the surgery. Audiological evaluation included the

number of activated channels, aided sound field thresholds (pure tone average over 0.5/1/2/4

kHz, in dB HL), aided word recognition scores (in %) for monosyllables (at 65 dB SPL) and

numbers (at 70 dB SPL). If applicable, the degree of hearing preservation (in %) was quantified

[23].

Results

Feasibility

Of 43 initially assessed subjects planned for cochlear implantation, 29 patients were screened

for facial recess size, the other 14 patients were excluded because one or more of the other

inclusion criteria were unmet. Eighteen of the 29 patients had a sufficient facial recess size and

were eligible for the study. Of those, nine patients consented to participation in the trial. In all

nine patients, a safe access tunnel to the level of the facial recess was planned and drilled. The

complete robotic procedure including drilling through the facial recess was performed in 6 of

9 patients. Insufficient distances to the facial nerve (< 0.3 mm) and the tympanic membrane

(< 0.1 mm) were detected in the available intraoperative image data in patients 8 and 9 respec-

tively. Hence, procedures were reverted to a conventional transmastoid posterior tympanot-

omy. In subject 2, the patient’s mastoid region could not be imaged due to workspace

limitations and a compressed cervical spine region. Hence, as intraoperative image data was

required for confirmation of sufficient tool clearance by study design, this case was also

reverted to the standard procedure. In all 3 reverted cases clearance of the drill trajectory to

the facial nerve was confirmed microscopically during mastoidectomy (Fig 3 right). Drilling

accuracy, measured as the deviation between the planned and the drilled tunnel at the level of

the facial recess, was 0.21 mm ± 0.09 mm (Table 2) which is in-line with preclinical validation

[17]. All nine patients were implanted with a CI (SYNCHRONY, MED-EL, Innsbruck, Aus-

tria) under full preservation of facial nerve function. No abnormal EMG activity or low stimu-

lation thresholds were identified during the entire robotic drilling phases. Implanted subjects

First in man robotic cochlear implantation
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neither showed a change in Sunnybrook composite score nor in facial nerve conduction study

parameters compared to baseline measurements. In all cases, preservation of the chorda tym-

pani was confirmed in the postoperative image evaluation. Overall, procedural blood loss was

less than 50 ml loss in eight of nine cases, and 170 ml in one case. One day after surgery, eight

of nine patients reported pain levels below or equal 2 using a visual analog scale and were pain-

less in the follow-up examinations. In the six patients with a complete robotic middle ear

access, the electrode array was inserted through the drilled tunnel with an angular insertion

depth of 501˚ ± 94˚ (Table 2). In subject 1, plaque formation in the cochlear basal turn (Cogan

syndrome) prevented insertion into the scala tympani and resulted in scala vestibuli placement

as predicted in the preoperative planning [10]. Scala tympani insertion was reported in all

other subjects. All patients were discharged from hospital one day after surgery.

Duration

The total average procedure duration (skin to skin) was 4:05 hours (min/max. 3:15/5:00

hours). The averaged sub-procedural times were: screw insertion (13 min), patient transfer

and preoperative CT imaging (29 min), surgical planning (37 min), patient preparation (60

min, performed simultaneously with surgical planning), patient registration (8 min), robotic

drilling to the level of the facial recess (phase (i), 6 min), intraoperative imaging and analysis

(54 min), robotic drilling through the facial recess with intermittent facial nerve stimulation

and monitoring (phase (ii), 16 min), drilling to the middle ear cavity (phase (iii) (5 min), tym-

panomeatal flap (17 min), implant bed preparation (9 min), cochlear access (14 min), CI elec-

trode array insertion (6 min), and implant fixation and wound closure (8 min). For the 3 cases

reverted to conventional CI surgery, only the durations of the sub-procedures associated with

the robotic access (i.e., from screw insertion until intraoperative imaging and analysis) were

included in the calculation.

Table 2. Summary of results. IM-dFN is the distance tunnel to facial nerve based on the intraoperative imaging; ACC = effective drilling accuracy at the level of the facial

recess; FD-dFN = estimated distance of the drill tunnel to the facial nerve using force-density correlation; DEC = Confirmation for sufficient geometric clearance; Dins =

angular insertion depth; SV = scala vestibuli; ST = scala tympani.

ID Plan Robotic drilling phases Implantation

dFN (mm) i ii iii Scala Dins (˚)

Drill Geometric safety assessment Drill EMG Drill

IM-dFN (mm) ACC (mm) FD-dFN (mm) DEC

01 0.73 ✔ 0.90 0.17 1.01 ✔ ✔ ✔ ✔ SV 360

02 0.63 ✔ DYS1 n.a. 0.12 Reverted to conventional1 ST 510

03 0.62 ✔ 0.39 0.23 0.35 ✔ ✔ ✔ ✔ ST 540

04 0.54 ✔ 0.38 0.16 0.38 ✔ ✔ ✔ ✔ ST 525

05 0.72 ✔ 0.67 0.05 0.78 ✔ ✔ ✔ ✔ ST 380

06 0.65 ✔ 0.36 0.29 1.18 ✔ ✔ ✔ ✔ ST 660

07 0.50 ✔ 0.84 0.34 0.80 ✔ ✔ ✔ ✔ ST 440

08 0.51 ✔ 0.22 0.29 0.16 Reverted to conventional2 ST 555

09 0.49 ✔ 0.65 0.16 1.45 Reverted to conventional3 ST 540

Mean (SD) 0.60

(0.09)

0.55

(0.25)

0.21

(0.09)

0.69

(0.47)

501

(94)

1 Scanner dysfunction and subsequent decision to revert due to non-available imaging
2 Decision to revert due to critical distance to facial nerve (value 0.22 mm)
3 Decision to revert due to critical distance to external auditory canal (value 0.19 mm)

https://doi.org/10.1371/journal.pone.0220543.t002
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Audiological outcome

Aided sound field hearing thresholds as well as aided word recognition for monosyllables and

numbers showed clear benefit after CI activation (Table 3). The average word recognition

scores for numbers were 54% (N = 9), 69% (N = 9), 66% (N = 5), and 72% (N = 5), at 1, 3, 6

and 12 months after surgery, respectively. The patients achieved monosyllabic word recogni-

tion scores of 23% (N = 9), 39% (N = 9), 50% (N = 5), and 56% (N = 5), respectively. In the

patients with low frequency residual hearing, minimal to partial hearing preservation after sur-

gery was achieved (Table 3).

Discussion

Based on the criterion of sufficient width of the facial recess, 62% of screened patients (18 of

29) were eligible. This compares favorably with a previous estimate of 47% [24]. The feasibility

of the surgeon driven, task-autonomous robotic drilling procedure was demonstrated in 6 of 9

patients. In 3 patients, the RCI workflow decision-making led the team to revert the procedure

to a conventional CI. The study shows that micro-surgical robotic technology can be deployed

in a clinically resilient manner and across varying patient anatomies to deliver geometrically-

accurate keyhole, access to the inner ear. In subject 02, the workspace limitation of the intrao-

perative CB-CT scanner caused reversion to a conventional procedure, which can be avoided

by employing pre-surgical anatomy assessments or alternative imaging technologies with

greater imaging volumes. In subjects 08 and 09, the deviated drill tunnel (Table 2) led to criti-

cal proximity to the facial nerve and auditory canal wall and thus the procedures were reverted.

Although these two subjects did not have a full, robotic drill path past the facial nerve, the pro-

cedures demonstrated the effectiveness of intraoperative imaging at the decision point 3 mm

before being level with the facial nerve, as a key safety feature. The previously identified and

validated drill geometry configuration and drill process parametrization [25] demonstrated

feasibility and safety in all 9 subjects. In the six cases with a complete robotic middle ear access,

the force density drill pose safety assessment corroborated the safe passage determined on

intraoperative images. EMG based distance measurements made intermittently and while

passing the facial recess were always conclusive with the imaging-based tool-to-nerve distance

assessments and resulted in safe continuation of the robotic drilling procedure [12]. In all

implanted patients, both the clinical and electrophysiological facial nerve function remained

Table 3. Audiological outcomes; PTA = pure tone average over 0.5/1/2/4 kHz.

Subject Word recognition (numbers)†, % Word recognition (monosyllables)†, % Aided sound field PTA†, dB HL Active channels Hearing preservation, %

01 20/60/60/70 0/40/50/60 34/26/22/23 10 not assessed

02� 60/90/90/100 30/50/60/60 29/29/28/28 12 not assessed

03 20/20/40/30 0/0/10/50 38/39/39/39 12 61 (partial preservation)

04 10/55/60/80 20/50/70/60 38/34/35/34 10 21 (minimal

preservation)

05 80/60/80/80 40/10/60/50 39/44/40/39 9 not assessed

06 100/100/-/- 30/80/-/- 38/35/-/- 12 57 (partial preservation)

07 100/100/-/- 60/60/-/- 34/35/-/- 11 47 (partial preservation)

08� 60/70/-/- 20/60/-/- 35/39/-/- 12 not assessed

09� 40/70/-/- 10/5/-/- 44/39/-/- 12 39 (partial preservation)

†measured 1/3/6/12 months postoperatively;

�partially completed procedure.

https://doi.org/10.1371/journal.pone.0220543.t003
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intact compared to baseline measurements. Time required for intraoperative imaging confir-

mation of sufficient instrument-to-nerve distance was 54 mins. Nonetheless, workflow optimi-

zation and complete intraoperative integration of imaging and image analysis technology

(both for planning and confirmation) into the workflow and routine OR work will lead to

significant time and cost reductions. During this trial an auxiliary access was required for

three reasons: (i) drilling of the cochlear access, in our case by removal of the bony overhang,

(ii) as backup access in case of bleeding or unanticipated problems during array insertion, and

(iii) sealing of the cochlear access after insertion completion. To facilitate the lifting of the tym-

panomeatal flap, an L-shaped retroauricular incision was replaced by a C-shaped incision after

the first case. In future, optimized electrode array designs and robotically performed inner ear

access and electrode array insertion may remove the need for this secondary access. Although,

not being an endpoint of this trial, we demonstrated that hearing preservation can be achieved

with the RCI procedure. Audiological outcomes compare favorably to conventional cochlear

implantation [26,27], however further study is required.

The presented work introduces task-autonomous surgical robotics to the field of otological

microsurgery (autonomy level 2) [28]. Robotic technology offers possibilities to overcome

human operator limitations to provide for reproducible, minimally invasive cochlear access

and ultimately a deliberate and accurate electrode insertion process, potentially widening CI

patient eligibility in the future. We consider the work presented as a first step towards this

goal and believe to have demonstrated feasibility of the overall approach in a sufficient variety

of patient anatomies and workflow iterations. Interestingly, a robotic keyhole access renders

direct visual supervision of the actual drilling process impossible. Hence, safety elements such

as EMG-based facial nerve monitoring and intraoperative imaging were utilized to confirm

correct drill alignment. To ensure safety of the robotic access and to demonstrate the efficacy

of the applied safety measures, independent clinical trials with larger patient numbers need to

be performed. Compared to conventional cochlear implantation, the presented approach is

more time-consuming and labor-intensive. As with all novel surgical techniques, an increased

average duration of the surgery owing to learning curve and the execution of safety proce-

dures is to be expected throughout the first cases. Most prominently and because of the under-

lying technological complexity, every step in the workflow was carefully co-checked,

monitored and confirmed by the multi-disciplinary team, resulting in a reduced overall work-

flow efficiency. In addition, preoperative high-resolution CT scans were conducted outside

the OR (resulting in patient preparation and transportation) prolonging the overall procedure

time. Additionally, time was required for intraoperative imaging together with the necessary

image data transfer, peer assessment and subsequent decision making. Further integration of

intraoperative imaging devices will drastically reduce the time needed for pre- and intraopera-

tive imaging and image processing. To introduce a complete robotic cochlear implantation

approach, we are currently developing and investigating solutions for robotic inner ear access,

robotic electrode insertion, multi-port scenarios [29], narrower drills (i.e. 1mm to 1.4 mm)

with integrated monitoring electrodes and ultimately robotics compliant CI implant

technology.
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