236 research outputs found

    An overview of VANET vehicular networks

    Full text link
    Today, with the development of intercity and metropolitan roadways and with various cars moving in various directions, there is a greater need than ever for a network to coordinate commutes. Nowadays, people spend a lot of time in their vehicles. Smart automobiles have developed to make that time safer, more effective, more fun, pollution-free, and affordable. However, maintaining the optimum use of resources and addressing rising needs continues to be a challenge given the popularity of vehicle users and the growing diversity of requests for various services. As a result, VANET will require modernized working practices in the future. Modern intelligent transportation management and driver assistance systems are created using cutting-edge communication technology. Vehicular Ad-hoc networks promise to increase transportation effectiveness, accident prevention, and pedestrian comfort by allowing automobiles and road infrastructure to communicate entertainment and traffic information. By constructing thorough frameworks, workflow patterns, and update procedures, including block-chain, artificial intelligence, and SDN (Software Defined Networking), this paper addresses VANET-related technologies, future advances, and related challenges. An overview of the VANET upgrade solution is given in this document in order to handle potential future problems

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead

    Toward Software-Defined Networking-Based IoT Frameworks: A Systematic Literature Review, Taxonomy, Open Challenges and Prospects

    Get PDF
    Internet of Things (IoT) is characterized as one of the leading actors for the next evolutionary stage in the computing world. IoT-based applications have already produced a plethora of novel services and are improving the living standard by enabling innovative and smart solutions. However, along with its rapid adoption, IoT technology also creates complex challenges regarding the management of IoT networks due to its resource limitations (computational power, energy, and security). Hence, it is urgently needed to refine the IoT-based application’s architectures to robustly manage the overall IoT infrastructure. Software-defined networking (SDN) has emerged as a paradigm that offers software-based controllers to manage hardware infrastructure and traffic flow on a network effectively. SDN architecture has the potential to provide efficient and reliable IoT network management. This research provides a comprehensive survey investigating the published studies on SDN-based frameworks to address IoT management issues in the dimensions of fault tolerance, energy management, scalability, load balancing, and security service provisioning within the IoT networks. We conducted a Systematic Literature Review (SLR) on the research studies (published from 2010 to 2022) focusing on SDN-based IoT management frameworks. We provide an extensive discussion on various aspects of SDN-based IoT solutions and architectures. We elaborate a taxonomy of the existing SDN-based IoT frameworks and solutions by classifying them into categories such as network function virtualization, middleware, OpenFlow adaptation, and blockchain-based management. We present the research gaps by identifying and analyzing the key architectural requirements and management issues in IoT infrastructures. Finally, we highlight various challenges and a range of promising opportunities for future research to provide a roadmap for addressing the weaknesses and identifying the benefits from the potentials offered by SDN-based IoT solutions

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    An Overview of Vehicular Communications

    Get PDF
    The transport sector is commonly subordinate to several issues, such as traffic congestion and accidents. Despite this, in recent years, it is also evolving with regard to cooperation between vehicles. The fundamental objective of this trend is to increase road safety, attempting to anticipate the circumstances of potential danger. Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies strive to give communication models that can be employed by vehicles in different application contexts. The resulting infrastructure is an ad-hoc mesh network whose nodes are not only vehicles but also all mobile devices equipped with wireless modules. The interaction between the multiple connected entities consists of information exchange through the adoption of suitable communication protocols. The main aim of the review carried out in this paper is to examine and assess the most relevant systems, applications, and communication protocols that will distinguish the future road infrastructures used by vehicles. The results of the investigation reveal the real benefits that technological cooperation can involve in road safety. Document type: Articl

    Defending Against IoT-Enabled DDoS Attacks at Critical Vantage Points on the Internet

    Get PDF
    The number of Internet of Things (IoT) devices continues to grow every year. Unfortunately, with the rise of IoT devices, the Internet is also witnessing a rise in the number and scale of IoT-enabled distributed denial-of-service (DDoS) attacks. However, there is a lack of network-based solutions targeted directly for IoT networks to address the problem of IoT-enabled DDoS. Unlike most security approaches for IoT which focus on hardening device security through hardware and/or software modification, which in many cases is infeasible, we introduce network-based approaches for addressing IoT-enabled DDoS attacks. We argue that in order to effectively defend the Internet against IoT-enabled DDoS attacks, it is necessary to consider network-wide defense at critical vantage points on the Internet. This dissertation is focused on three inherently connected and complimentary components: (1) preventing IoT devices from being turned into DDoS bots by inspecting traffic towards IoT networks at an upstream ISP/IXP, (2) detecting DDoS traffic leaving an IoT network by inspecting traffic at its gateway, and (3) mitigating attacks as close to the devices in an IoT network originating DDoS traffic. To this end, we present three security solutions to address the three aforementioned components to defend against IoT-enabled DDoS attacks

    Security Management Framework for the Internet of Things

    Get PDF
    The increase in the design and development of wireless communication technologies offers multiple opportunities for the management and control of cyber-physical systems with connections between smart and autonomous devices, which provide the delivery of simplified data through the use of cloud computing. Given this relationship with the Internet of Things (IoT), it established the concept of pervasive computing that allows any object to communicate with services, sensors, people, and objects without human intervention. However, the rapid growth of connectivity with smart applications through autonomous systems connected to the internet has allowed the exposure of numerous vulnerabilities in IoT systems by malicious users. This dissertation developed a novel ontology-based cybersecurity framework to improve security in IoT systems using an ontological analysis to adapt appropriate security services addressed to threats. The composition of this proposal explores two approaches: (1) design time, which offers a dynamic method to build security services through the application of a methodology directed to models considering existing business processes; and (2) execution time, which involves monitoring the IoT environment, classifying vulnerabilities and threats, and acting in the environment, ensuring the correct adaptation of existing services. The validation approach was used to demonstrate the feasibility of implementing the proposed cybersecurity framework. It implies the evaluation of the ontology to offer a qualitative evaluation based on the analysis of several criteria and also a proof of concept implemented and tested using specific industrial scenarios. This dissertation has been verified by adopting a methodology that follows the acceptance in the research community through technical validation in the application of the concept in an industrial setting.O aumento no projeto e desenvolvimento de tecnologias de comunicação sem fio oferece múltiplas oportunidades para a gestão e controle de sistemas ciber-físicos com conexões entre dispositivos inteligentes e autônomos, os quais proporcionam a entrega de dados simplificados através do uso da computação em nuvem. Diante dessa relação com a Internet das Coisas (IoT) estabeleceu-se o conceito de computação pervasiva que permite que qualquer objeto possa comunicar com os serviços, sensores, pessoas e objetos sem intervenção humana. Entretanto, o rápido crescimento da conectividade com as aplicações inteligentes através de sistemas autônomos conectados com a internet permitiu a exposição de inúmeras vulnerabilidades dos sistemas IoT para usuários maliciosos. Esta dissertação desenvolveu um novo framework de cibersegurança baseada em ontologia para melhorar a segurança em sistemas IoT usando uma análise ontológica para a adaptação de serviços de segurança apropriados endereçados para as ameaças. A composição dessa proposta explora duas abordagens: (1) tempo de projeto, o qual oferece um método dinâmico para construir serviços de segurança através da aplicação de uma metodologia dirigida a modelos, considerando processos empresariais existentes; e (2) tempo de execução, o qual envolve o monitoramento do ambiente IoT, a classificação de vulnerabilidades e ameaças, e a atuação no ambiente garantindo a correta adaptação dos serviços existentes. Duas abordagens de validação foram utilizadas para demonstrar a viabilidade da implementação do framework de cibersegurança proposto. Isto implica na avaliação da ontologia para oferecer uma avaliação qualitativa baseada na análise de diversos critérios e também uma prova de conceito implementada e testada usando cenários específicos. Esta dissertação foi validada adotando uma metodologia que segue a validação na comunidade científica através da validação técnica na aplicação do nosso conceito em um cenário industrial

    Real time collision warning system in the context of vehicle-to-vehicle data exchange based on drivings behaviours analysis

    Get PDF
    Worldwide injuries in vehicle accidents have been on the rise in recent years, mainly due to driver error regardless of technological innovations and advancements for vehicle safety. Consequently, there is a need for a reliable-real time warning system that can alert drivers of a potential collision. Vehicle-to-Vehicle (V2V) is an extensive area of ongoing research and development which has started to revolutionize the driving experience. Driving behaviour is a subject of extensive research which gains special attention due to the relationship between speeding behaviour and crashes as drivers who engage in frequent and extreme speeding behaviour are overinvolved in crashes. National Highway Traffic Safety Administration (NHTSA) set guidelines on how different vehicle automation levels may reduce vehicle crashes and how the use of on-board short-range sensors coupled with V2V technologies can help facilitate communication among vehicles. Based on the previous works, it can be seen that the assessment of drivers’ behaviours using their trajectory data is a fresh and open research field. Most studies related to driving behaviours in terms of acceleration�deceleration are evaluated at the laboratory scale using experimental results from actual vehicles. Towards this end, a five-stage methodology for a new collision warning system in the context of V2V based on driving behaviours has been designed. Real-time V2V hardware for data collection purposes was developed. Driving behaviour was analyzed in different timeframes prior obtained from actual driving behaviour in an urban environment collected from OBD-II adapter and GPS data logger of an instrumented vehicle. By measuring the in-vehicle accelerations, it is possible to categorize the driving behaviour into four main classes based on real-time experiments: safe drivers, normal, aggressive, and dangerous drivers. When the vehicle is in a risk situation, the system based on NRF24L01+PA/LNA, GPS, and OBD-II will pass a signal to the driver using a dedicated LCD and LED light signal. The driver can instantly decide to make the vehicle in a safe mood, effectively avoid the happening of vehicle accidents. The proposed solution provides two main functions: (1) the detection of the dangerous vehicles involved in the road, and (2) the display of a message informing the driver if it is safe or unsafe to pass. System performance was evaluated to ensure that it achieved the primary objective of improving road safety in the extreme behaviour of the driver in question either the safest (or the least aggressive) and the most unsafe (or the most aggressive). The proposed methodology has retained some advantages for other literature studies because of the simultaneous use of speed, acceleration, and vehicle location. The V2V based on driving behaviour experiments shows the effectiveness of the selected approach predicts behaviour with an accuracy of over 87% in sixty-four real-time scenarios presented its capability to detect behaviour and provide a warning to nearby drivers. The system failed detection only in few times when the receiving vehicle missed data due to high speed during the test as well as the distances between the moving vehicles, the data was not received correctly since the power transmitted, the frequency range of the signals, the antenna relative positions, and the number of in-range vehicles are of interest for the V2V test scenarios. The latter result supports the conclusion that warnings that efficiently and quickly transmit their information may be better when driver are under stress or time pressure
    • …
    corecore