
Resource Management in Multi-Access 

Edge Computing (MEC) 
 

 

 
 
 

A THESIS SUBMITTED TO  
LONDON SOUTH BANK UNIVERSITY  

FOR THE PARTIAL FULFILMENT  
FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY  
IN THE FACULTY OF ENGINEERING  

 
 

 
 

 

 

 

2020 
 

 

 
 

 

 

By 
Emeka Emmanuel Ugwuanyi 

3331605 
Department of Computer Science 

 



 

 

 

RESEARCH TITLE  

Resource Management  

in  

Multi-Access Edge Computing  

(MEC) 
  



ABSTRACT 

This PhD thesis investigates the effective ways of managing the resources of a Multi-Access 

Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. 

The main characteristics of MEC include distributed nature, proximity to users, and high 

availability. Based on these key features, solutions have been proposed for effective resource 

management. In this research, two aspects of resource management in MEC have been 

addressed. They are the computational resource and the caching resource which corresponds 

to the services provided by the MEC. 

MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud 

computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC 

would support latency-critical user applications such as driverless cars and e-health. These 

applications will depend on resources and services provided by the MEC. However, MEC has 

limited computational and storage resources compared to the cloud. Therefore, it is important 

to ensure a reliable MEC network communication during resource provisioning by 

eradicating the chances of deadlock.  Deadlock may occur due to a huge number of devices 

contending for a limited amount of resources if adequate measures are not put in place. It is 

crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve 

a highly reliable and readily available system to support latency-critical applications. In this 

research, a deadlock avoidance resource provisioning algorithm has been proposed for 

industrial IoT devices using MEC platforms to ensure higher reliability of network 

interactions. The proposed scheme incorporates Banker’s resource-request algorithm using 

Software Defined Networking (SDN) to reduce communication overhead. Simulation and 

experimental results have shown that system deadlock can be prevented by applying the 

proposed algorithm which ultimately leads to a more reliable network interaction between 

mobile stations and MEC platforms. 



Additionally, this research explores the use of MEC as a caching platform as it is proclaimed 

as a key technology for reducing service processing delays in 5G networks. Caching on MEC 

decreases service latency and improve data content access by allowing direct content delivery 

through the edge without fetching data from the remote server. Caching on MEC is also 

deemed as an effective approach that guarantees more reachability due to proximity to end-

users. In this regard, a novel hybrid content caching algorithm has been proposed for MEC 

platforms to increase their caching efficiency. The proposed algorithm is a unification of a 

modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data 

access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is 

employed to predict future request references for Belady’s algorithm. Experimental results 

show that the proposed algorithm obtains 4% more cache hits due to its selective caching 

approach when compared with case study algorithms.   Results also show that the use of a 

cooperative algorithm can improve the total cache hits up to 80%. 

Furthermore, this thesis has also explored another predictive caching scheme to further 

improve caching efficiency. The motivation was to investigate another predictive caching 

approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) 

caching framework has been proposed as a result which consists of three schemes. Each of the 

schemes addresses a particular problem. The proactive predictive scheme has been proposed 

to address the problem of continuous change in cache popularity trends. The collaborative 

scheme addresses the problem of cache redundancy in the collaborative space. Finally, the 

replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation 

experiment has shown that the replacement scheme achieves 3% more cache hits than existing 

replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based 

replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and 



compared with an existing contemporary predictive algorithm. Results show that PCR 

performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead. 
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CHAPTER 1 INTRODUCTION  

1.1 MOTIVATION AND OVERVIEW 

The Fourth Generation Network (4G) infrastructure is almost adequate for meeting the 

network needs of 2020. However, these needs are continuously increasing and 4G is not 

adequately equipped with features that can cope with this increase and hence would not be 

sufficient for future needs. This is due to the continuous increase of connected devices and the 

need for the network to support emerging latency-critical applications like Vehicle to 

Everything (V2X), Machine to Machine (M2M) communications, Augmented Reality, Virtual 

Reality, etc. Cisco predicts that there will be 12.3 billion mobile-connected devices by 2022 [1] 

and the overall mobile data traffic is expected to grow to 77 exabytes per month by 2022. The 

4G network would not be able to accommodate this large-scale traffic without compromising 

the Quality of Service (QoS) which would directly impact the Quality of Experience (QoE) of 

the user. Therefore, the Fifth Generation Network (5G) has been designed to overcome the 

limitations of its predecessor 4G. 

 

5G has been deployed in most cities and still in its early commercialization stage at the time 

of this writing. 5G [2] has been aimed to provide a wireless communication network that can 

support reliable ubiquitous connectivity of billions of devices and satisfy the increasing 

demand for higher data rates while ensuring low latency communications. This would be 

realized with the help of enabling technologies [3] like Millimeter Waves, small cells, massive 

Multiple Input Multiple Output (MIMO) and beamforming [4]. 5G also has an objective of 

reducing CapEX and OpEX through Softwarization using technologies like Software Defined 

Networking (SDN), Virtual Network Function (VNF), and Network Function Virtualization 

(NFV) [5]. The 5G uses case is categorized into 3 main parts which include Enhanced Mobile 
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Broadband (eMBB) [6], Ultra-Reliable Low Latency Communication (URLLC) [7], and 

Massive Machine Type Communication (mMTC) [6].  URLLC is likely the most talked-about 

5G use case mainly because of the huge services it can support, the benefits, and also the 

challenges. Achieving URLLC is challenging due to the distant travel between the core 

network and the user equipment. URLLC would play a key role in the realization of the sixth 

generation mobile network (6G) [8] as the initial requirement of latency is set for less than 1 

millisecond [9]. Multi-access Edge Computing (MEC) [10] would aid the realization of URLLC 

as it aims to bring network resources closer to the user.  

MEC has changed the landscape of mobile computing from a centralized Mobile Cloud 

Computing to a decentralized Edge Computing platform. The key characteristic of MEC is to 

provide mobile computing, network control, and storage at the edge of the network. The sole 

benefit of this is to equip resource-limited mobile devices with the support for latency-critical 

and computation-intensive applications. This yield benefits for both the end-users and the 

network operators as it will drastically improve the QoS. This will also have an indirect effect 

on improving QoE. With research on 6G initialized, the edge is set to serve as an enabling 

technology by providing a readily available computational platform [9]. The envisioned 

benefits of MEC have motivated extensive efforts in industry and academia including the 

research on this thesis on contributing to solving the key challenges that it faces and develop 

the technology. The purpose of the work in this thesis is to improve the QoS of 5G by making 

contributions to the resource management of MECs with algorithms and techniques that 

improve the management of network resources. The resource management challenges 

investigated in this research include caching and resource provisioning. 

Content caching on the edge is one of the ideas that have been explored extensively due to the 

benefits it offers. IP and mobile traffic have continued to grow in recent years, it is of no 

surprise that Cisco predicts that global mobile data traffic will increase seven-fold between 

2017 and 2022. This massive growth could be linked to the rise in demand for mobile devices 
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and the IoT. This excessive traffic causes back-haul congestion in the cellular network and put 

pressure on mobile network operators to provide measures to tackle network congestion. One 

of the unique characteristics of such traffic is that the content requests are highly concentrated 

and popular content will be repeatedly requested. Caching on the edge is one of the 

protuberant solutions for delivering popular content from the network edge to User 

Equipment (UE). The network congestion in the backhaul would be avoided if contents are 

delivered from the edge platform. The ultimate solution is to identify popular contents and 

cache them on the edge to relieve the heavy overhead burden of the network backhaul and 

reduce latency. However, the key problem is identifying which contents are popular at the 

right time as popularity changes with time. This has been one of the motivations of this 

research. 

There have been increased popularity with the use of IoT and mobile devices that have limited 

computation capabilities compared to desktops and are not quite proficient in handling 

computation-intensive applications like smart video analytics, interactive augmented/virtual 

reality games, real-time navigation using wearables, etc. Therefore, computation offload to 

cloud servers has been widely adopted. Such applications are then offloaded to the central 

cloud server for execution which might be distant from the UE. However, for latency-critical 

applications offloading to the edge servers is a better option. Edge computing is designed to 

reduce the latency during offload due to the proximity placement of the edge node and the 

UE. The edge computing platform makes it possible for IoT applications to process data and 

access computational resources located closer to the endpoints. Thereby providing low 

response time to latency-sensitive applications that may operate on these platforms. There 

have been quite a few research works done in this area that explores different methods which 

include binary offloading, partial offloading, and stochastic task model offloading. One of the 

major focus of researchers in this area is on minimizing latency and energy consumption 

during offloading and resource provisioning.  However, little attention is paid to deadlock 
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handling during resource provisioning. Due to the finite number of resources available on the 

MEC nodes, there is a need to effectively manage resources to prevent over-provisioning of 

resources and deadlock. Deadlock may arise as a process may request resources that are held 

by another waiting resource thereby leading to a circular wait. Furthermore, deadlock may 

occur due to a huge number of devices contending for a limited number of resources if 

adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling 

and provisioning resources on MEC to achieve a highly reliable and readily available system 

to support latency-critical applications. Addressing this problem has been one of the 

motivations of this research and therefore investigated in this thesis. 

MEC has been an emerging ecosystem in the 5G paradigm, which focuses on the convergence 

of telecommunication and IT services and providing cloud computing at the edge of the radio 

access network. Adequate research is required in the domain to serve as reference points for 

vendors, service providers, and network operators to improve and develop network services. 

To the best of our knowledge, this research is one of the few in this area domain that proposes 

solutions in the form of algorithms to solve the highlighted problems and to help vendors, 

service providers, and network operators through this applied research. Most of the work 

carried out in this area of study is facilitated with comprehensive simulation platforms for 

researchers to test proposed algorithms promptly as the field is ever-growing. An applied 

approach using an emulator-based testbed has been adopted in this thesis as basic simulations 

may not be able to simulate the many factors of real-world scenarios. This helps to provide 

improvements to existing methods. 

 

1.2 THESIS AIM 

The aim of this research is to design and develop a co-operative deadlock-aware resource 

provisioning scheduling scheme and a predictive co-operative caching scheme to contribute 
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to more effective resource management in MEC. The architectural representation of the aim 

has been presented in Figure 1. As depicted in the figure, the realization of the aims marked 

1 and 2, will lead to reduced traffic at the core which will ultimately lead to improved QoE 

and QoS.  

 

1.3  RESEARCH CONTRIBUTIONS 

The following contributions have been made in the context of resource management of MEC 

and the improvement of the QoS of 5G during this research. The contribution has been divided 

into two main components as stated in the aim. 

1. MEC resource provisioning and deadlock prevention 

a. A novel deadlock aware Resource Provisioning Algorithm (RPA) for MECs has 

been designed and developed. In this context, a distributed task model has 

been formulated for MECs that ensures reliability by avoiding deadlock. This 

model uses an adaptation of the Banker’s algorithm [11] while testing and 

evaluating it in MEC and obtaining an optimized solution for distributed MEC 

systems. Extensive simulations conducted on the algorithm shows a reduced 

probability of deadlock occurrence. 

b. An algorithm for deadlock aware cooperative decision-making during 

resource provisioning has been proposed. The algorithm selects the optimum 

MEC candidate to offload a task, based on constraints such as bandwidth, 

Round Trip Time (RTT), CPU, memory, and deadlock constraint of possible 

candidates. 

c. A comparative analysis for MEC real-time systems has been carried out, to 

compare how deadlock avoidance and prevention mechanisms will perform in 

real-time scenarios using Rate Monotonic Scheduling (RMS) [12] or Earliest 

Deadline First (EDF) [12] in prioritizing workloads. In this analysis, different 
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metrics have been considered including RTT, queue waiting time, CPU 

utilization, and the ratio of local execution to cooperative MEC to cloud. 

2. MEC predictive caching scheme 

a. A novel cooperative and predictive caching algorithm for MECs has been 

presented. The predictive algorithm is based on the Optimal Page Replacement 

Strategy (OPR) and uses polynomial regression to extrapolate incoming cache 

objects using historical data obtained from the relative frequency of the cached 

data. This also utilizes a modified Least Frequently Used (LFU) replacement 

algorithm which not only compares the frequency of the data in the cache but 

also compares the frequency of a newly obtained request as a backup algorithm 

when there is inadequate data for extrapolation. The cooperative caching 

strategy is used for sharing cache information among MECs. 

b. A novel content replacement caching algorithm for MECs has been developed. 

The algorithm aims at identifying cold cache blocks quickly and address the 

problem of temporal cache frequency associated with the LFU algorithm. The 

algorithm can find a victim based on frequency, recency, and network cost in 

constant time. It also uses a selective caching approach to reduce the overall 

miss ratio. 

c. A novel proactive caching algorithm for MECs based on association mining has 

been designed. The algorithm learns the association patterns of content 

requests in a MEC environment where the content popularity is time-varying 

and unknown. It leverages association sequential pattern mining to identify 

content requests with close relations and prefetch them when a user request is 

anticipated.  
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d. Finally, a greedy cooperative caching algorithm for MEC to efficiently manage 

the collaborative cache storage by reducing data redundancy and increasing 

the sharing of cache data between MECs has been presented. 

 

 

1.4 THESIS ORGANISATION 

The thesis investigates the challenges associated with resource management in MEC and 

proposes solutions that have been tested comprehensibly by simulations and emulations. The 

structure of the thesis is as follows: 

Figure 1 Architectural Depiction of The Thesis Aim 
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Chapter 2: Literature Review 

Overview of 5G and enabling technologies. The enabling technologies reviewed include 

Multi-Access Mobile Edge Computing, Network Function Virtualization, Software Defined 

Network and Information-Centric Networks. The evolution of MEC is also discussed. 

 

Chapter 3: Deadlock Avoidance and Resource Provisioning in MEC 

The chapter is divided into two parts. In the first part, a deadlock aware algorithm is presented 

and discussed for scheduling resources for Industrial IoT (IIoT) devices onto a MEC platform 

which incorporates Banker’s resource-request algorithm. The formulation of a distributed task 

model in a MEC has been presented that ensures reliability by avoiding deadlock. This has 

been preceded by an adaptation of the Banker’s algorithm in the proposed solution and 

pushing its boundary by testing it in a new field (MEC) and obtaining an optimized solution 

for distributed systems. Finally, extensive simulations have been conducted on the algorithm 

to determine the effectiveness of the proposed solution.  

In the second part, an evaluation and comparison of six algorithms that could be used to 

maintain a reliable and stable network have been carried out. Each of the six algorithms is a 

pair of a deadlock algorithm and a real-time algorithm. This research has been carried out 

using 3 deadlock strategies (Bankers algorithm, Wound Wait and Wait-die) and 2 real-time 

schemes (Earliest Deadline First and Rate Monotonic Scheduling). An experiment has been 

conducted to compare the CPU utilization, waiting time, round trip time, and offload 

handling performance. Each algorithm has been evaluated based on its key performance 

indicators and the algorithms that performed better based on the experimental constraints 

have been discussed. 

Chapter 4: Caching Resource Management in MEC 
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This section is divided into two parts. In the first part, a hybrid cache replacement policy that 

supports cooperative caching for MEC platforms has been proposed. The hybrid algorithm 

merges a modified Belady’s algorithm with a distributed cooperative caching algorithm. The 

prediction techniques used and a modified LFU algorithm has been presented. 

The second part builds upon the contributions and findings of the previous section. Here, 

three novel schemes (proactive predictive scheme, a collaborative scheme, and a replacement 

scheme (PCR)) has been proposed to effectively manage the cache storage of MECs. The 

proposed algorithms have been tested using a real dataset (MovieLens20M dataset) and 

results have shown that the proposed algorithm performs better in terms of hit ratio and 

minimization of network access delay. 

 

Chapter 5: Conclusion and Future work 

This aims to draw the final remarks and conclusions of the presented work. Proposed 

optimizations and future research directions are also presented which includes a discussion 

of ideas for taking forward the research work presented in this thesis. Finally, the conclusion 

and the novel contributions of the work done in the framework of this thesis are summarized. 

 

1.5 PUBLICATIONS 

The list of publications below arose from the work conducted during the course of the research 

described in this thesis. 

 

1.5.1 JOURNALS 

Ugwuanyi, E., Ghosh, S., Iqbal, M. and Dagiuklas, T., 2018. Reliable Resource Provisioning Using 

Bankers’ Deadlock Avoidance Algorithm in MEC for Industrial IoT. IEEE Access, 6, pp.43327-43335. 
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Ugwuanyi, E., Ghosh, S., Iqbal, M. and Dagiuklas, T., 2021. PCR: A Novel Predictive-Collaborative-

Replacement Intelligent Caching Scheme for Multi-Access Edge Computing (MECs).  IEEE Access 

 

Ghosh, S., Ugwuanyi, E., Dagiuklas, T. and Iqbal, M., 2019. BlueArch–An Implementation of 5G 

Testbed. JCM, Journal of Communications, pp.1110-1118. 

 

1.5.2 CONFERENCE 

Ugwuanyi, E., Ghosh, S., Iqbal, M., Dagiuklas, T., Mumtaz, S. and Al-Dulaimi, A., 2019. Co-Operative and 

Hybrid Replacement Caching for Multi-Access Mobile Edge Computing. 2019 European Conference 

on Networks and Communications (EuCNC),. 
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[Manuscript] 
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CHAPTER 2 BACKGROUND 

2.1 INTRODUCTION 

Mobile network communications systems have revolutionized the way people communicate 

by integrating communications with mobility. Since its creation, the mobile networks have 

been gradually morphing to deliver the ever-changing expectations of the users and to adapt 

to new mobile devices and the various ways users can access them. The change in usage of 

mobile networks and change in user expectations have led mobile network operators to sort 

for better ways for improving the existing infrastructure which has brought about the growth 

in the mobile networks from the first generation (1G) [13] to the fifth-generation (5G) [14]. 1G 

offered basic voice communication using analog data while 2G provided voice and limited 

data services. 3G offered the first mobile broadband-capable wireless network while 4G 

thrived to improve this by providing the first Internet broadband data transmission rates. 5G 

aims to deliver greater bandwidth and faster download speeds of up to 10 gigabits per second 

(Gbps) and the ability to deliver services such as driverless cars, virtual reality, augmented 

reality, etc. To achieve this, 5G will utilize technologies such as millimetre waves (mm waves) 

[13], Massive Multiple Input Multiple Output (MIMO) [15], beamforming [15], and small cells 

[13]. Other technologies that are among the driving forces behind 5G realization include, SDN 

[16] and NFV [17], ICN [18], C-RAN [19], network slicing[20], and edge computing [21]. 

In this chapter, the background of this thesis has been outlined and reviewed. This chapter 

discusses the overview of the current state of the art of mobile telecommunication networks. 

Here, the 5G concepts are introduced and the benefits are discussed. Thereafter, the evolution 

of mobile networks to 5G is discussed. Additionally, the changes that have been made to the 

network from the early beginnings of 1G to now the fifth increment have been discussed. The 

enabling technologies of 5G are also discussed in this section. There have been a lot of 



BACKGROUND 

12 | P a g e  

 

promises made about 5G and its benefits which include the improvement of spectral efficiency 

and delivery of mobile communication with massive connections, high reliability, and low 

latency. Therefore, the core technologies and innovations that would aid in delivering the 

promises made are outlined and discussed. The challenges in 5G and drawbacks along with 

proposed solutions are identified and why edge computing is crucial to achieving low latency 

in 5G. Thereafter discussion is made on the evolution of moving resources closer to the user 

(edge) from its early beginnings inform of CDN down to fog computing. Finally, the 

conclusion of the review is presented, highlight the key rationale of embarking on this 

research. 

2.2 INTRODUCTION TO 5G 

5G has been in the limelight for the past 5 years as the next generation of mobile wireless 

communication networks with visions of providing remarkably high data rates, extremely 

low latency, increase in manifold base station capacity, and improved QoS. The continuous 

growth and increase in the number of connected devices with the introduction of IoT have 

created an intricate network demand which has made it evident that the current 4G LTE/LTA 

networks do not have enough capacity to handle the incoming traffic of industry 4.0 emerging 

technologies. This is one of the problems that 5G is expected to resolve with the introduction 

of an edge platform by easing traffic in the core network. Other challenges that need to be 

addressed in the current network infrastructure include increased capacity, improved data 

rate, decreased latency, and better quality of service. The core enabling technologies for 5G 

include Millimeter Wave (mmWave), full-duplex, Software Defined Networks, Device 2 

Device (D2D), edge computing and beamforming [13]. 

The fifth generation of radio networks i.e New-Radio (NR) is already deemed to be a true 

worldwide wireless web. This reputation comes as a result of its ability to seamlessly and 

ubiquitously connect everything up to 100 billion estimated connected wireless devices) and 
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offer diversified use cases while meeting the quality-of-service requirements such as 

reliability, latency, data rates, security, coverage, and privacy. 

Mobile wireless communications have come a long way from analog voice calls to current 

modern voice and video IP with end-to-end encryption, adept at providing high-quality 

mobile broadband services with end-user data rates of several megabits per second over wide 

areas and tens or even hundreds of megabits per second locally. However, there is still a lot 

to accomplish and a lot of improvements to be made due to the changing user behaviour and 

user demand in response to disruptive innovations and technologies. The future of networks 

will be to achieve an interconnected community with unbounded access to information and 

sharing of data, which will be accessible by everyone and everything, anywhere and anytime. 

This can be accomplished by evolving existing wireless-based technologies. Contemporary 

technological trends like IoT, Machine-Type-Communications, SDN, network automation 

and programmability, network slicing, and edge computing are already changing the 

landscape of traditional networks as we know it. Most of the changes that are being made in 

the existing infrastructure are to support trending mobile services such as video streaming, 

music streaming, social networking, online gaming, VR, and other interactive mobile 

applications. This thriving range of new and diverse services are becoming an integral part of 

Figure 2 Evolution of Mobile Wireless Networks 
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mobile user’s entertainment and social life, therefore there is a need to adapt the existing 

infrastructure to societal trends. 

2.3 EVOLUTION OF WIRELESS TECHNOLOGY TO 5G 

The mobile wireless communication system has gone through 4 major evolutional changes in 

the past few decades since its introduction in the late 1970s. These changes have been 

summarized in Figure 2. It is currently undergoing its 5th major evolutional change at the 

time of this writing. The huge demand for network connectivity worldwide and the 

introduction of mobile communication standards can be attributed to most of the changes 

seen in the networks today. The birth of wireless communication was in 1844 when Marconi 

successfully transmitted Morse code signals using radio waves wirelessly over a distance of 

3.2 KMs with the help of electromagnetic waves [13]. This inception of wireless 

communication technology has now grown to be a very crucial technology in the modern-day 

community. In this section, the evolution of wireless communication networks is discussed, 

starting from the first generation of networks to the upcoming fifth wireless network 

generation. Following the trend, it can be predicted that the 6th Generation would be available 

by 2050. 

2.3.1 1G 

1G [13] was announced initially in the 1980s and was based on the analog transmission system 

for speech services. It was first introduced in 1979 by Nippon Telephone and Telegraph (NTT) 

in Tokyo with a data rate of up to 2.4kbps. The epoch reached Europe 2 years later and in 1982 

the Advanced Mobile Phone System (AMPS) [22] was launched in the United States. Other 

major subscribers include Nordic Mobile Telephone (NMT)[23] and Total Access 

Communication System (TACS)[24]. AMPS was allocated a 40MHz bandwidth within the 

800-900MHz frequency range by the Federal Communication Commission (FCC). AMPS 

offered 832 channels with a data rate of 10kps. AMPS initially used omnidirectional antennas 
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and later changed to directional antennas for better frequency reuse. 1G has a lot of 

disadvantages including limited capacity and reckless handoff; inferior voice quality as 

analog signals are easily affected by interference; poor battery life and no data security as 

analog signals did not allow advanced encryption methods. As a result of this, there could be 

unwanted eavesdropping by third parties. Resource management in 1G was mainly focused 

on managing the channel unitization due to the availability of a handful of channels that had 

to be shared by all subscribers. 

As of 2021, a limited NMT service in Russia remains the only 1G cellular network still in 

operation1. 

2.3.2 2G 

At the end of the 1980s, the second generation of wireless technology [14] was announced but 

later released in the late 1990s. 2G was launched on the global system for mobile 

communications (GSM)[25] standard which used audio quality digital modulation to provide 

voice and limited data services. 2G was mainly used for voice communication and has a data 

rate of up to 64kbps. Compared to 1G systems, 2G mobile handset battery last longer because 

of low power in the radio signals. 2G systems also use digital multiple access technologies 

such as Code Division Multiple Access (CDMA)[26] and Time Division Multiple Access 

(TDMA) [26]. 2G provides services such as email and Short Message Services (SMS). Three 

primary advancements of the 2G technology over the prior were: 

• Digitally encrypted voice conversations 

• Spectrum efficiency  

• Inclusion of mobile services like fax and paging. 

 
1 https://en.wikipedia.org/wiki/1G 
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Resource management on 2G was primarily focused on Radio Resource Management (RRM) 

which involves strategies and algorithms for controlling parameters such as transmit power, 

user allocation, data rates, handover criteria, modulation scheme, error coding scheme, etc. 

2G is still in use at the time of this writing in 2021 in some parts of Europe, Africa, central and 

south America as a fallback, especially in rural areas. However, most carriers have made 

announcements of shutting down the 2G technology in countries like Japan, Australia, and 

the United States. 

2.3.3 2.5G 

2.5G [14] was released in the late 1990s. 2.5G generally uses a 2G framework but introduces 

packet switch along with circuit switching with improved data rates between 64kbps to 

144kbps. 2.5G was developed between its predecessor and its successor. The main 

technologies that 2.5G introduced were GPRS (General Packet Radio Services)[27] and EDGE 

(Enhanced Data Rate for GSM Evolution)[27]. The launch of 2.75 also known as EDGE created 

a platform that allows improved data rates as a backwards-compatible extension of GSM [13]. 

2.3.4 3G 

In the late 2000s, the 3rd generation of mobile wireless telecommunications networks [28] was 

introduced. 3G supports a data transmission transfer rate of at most 2Mbps. 3G systems merge 

high-speed mobile access to services based on the IP. 3G has an improved clarity characteristic 

from the 2.5G because it uses a wideband wireless network and therefore satisfies the 

International Mobile Telecommunications 2000 (IMT-2000) specifications. In 3G systems, an 

unconventional improvement was made to maintain the Quality of Service of the network. 

The additional feature of global roaming and the provision of mobile broadband access of 

several Mbps to smartphones and mobile modems in laptops and computers made 3G a staple 

at the time of its release. One of the major disadvantages of 3G over its predecessor is that 3G 

mobile phones consume more power. 3G was also more expensive to deploy than 2G. Since 



BACKGROUND 

17 | P a g e  

 

3G involves the introduction and utilization of Wideband Code Division Multiple Access 

(WCDMA)[29], Universal Mobile Telecommunications Systems (UMTS)[30] and Code 

Division Multiple Access (CDMA) [26] 2000 technologies, the evolving technologies like High-

Speed Uplink/Downlink Packet Access (HSUPA/HSDPA)[31] and Evolution-Data 

Optimized (EVDO)[32] has made an intermediate wireless generation between 3G and 4G 

named as 3.5G with an improved data rate of 5-30 Mbps [13]. 3G introduces a new type of 

radio architectures and concepts such as UMTS WCDMA Handovers [33]. 

3G phase-out started in 2020 as Vodafone1 announced that it will switch off 3G across Europe2. 

Shortly after, T-Mobile3 announced to be shutting down its 3G services in January 2021. In the 

US, Verizon4 and AT&T5 have made plans to switch off the 3G services by 2022. 

2.3.5 3.75G 

3.75G [15] system is an improved version of the 3G network with High-Speed Packet Access 

Plus (HSPA+) [28]. This evolved to be known as LTE (Long Term Evolution)[28]. LTE and 

Worldwide Interoperability for Microwave Access (WiMAX) [14] is the future of mobile data 

services as they can potentially provide a substantial number of users the facility to access a 

broad range of high-speed services like peer file sharing, on-demand video, and composite 

web services.  

 
1 https://www.vodafone.co.uk/ 
2 https://en.wikipedia.org/wiki/3G 
3 https://www.t-mobile.com/ 
4 https://www.verizon.com/ 
5 https://www.att.com/ 
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2.3.6 4G 

4G [34] was released in 2010 and referred to as the descendant of 2G and 3G standards which 

aims at providing mobile broadband internet access. 4G introduced 4G LTE Evolved Packet 

Core (EPC)[35] network which is a new architecture for the core network as seen in Figure 3. 

The EPC can handle both voice and data traffic compared to the 2G/3G architecture which 

has the packet switch network and the circuit switch network to handle data and voice traffic 

respectively. The 4G system improves the prevailing communication networks by imparting 

a complete and reliable solution, based on IP. The services that 4G aims to deliver are IP 

technology gaming, amended mobile web access, Multimedia Messaging Service, high 

definition mobile television, video conferencing, 3D TV, and cloud computing. 4G utilizes 

LTE, LTE advanced network systems, and WiMAX [14]. LTE uses Orthogonal Frequency 

Division Multiplexing (OFDM)[36] and OFDM Access, which divides a channel usually 5, 10, 

or 20MHz wide into smaller sub-channels or subcarriers each 15 kHz wide. The modulation 

schemes applied on each sub-channel are either Quadrature Amplitude Modulation 

(QAM)[37], 16QAM, or 64QAM. MIMO[15] is defined in 4G LTE, which is the ability to receive 

Figure 3 4G EPC Architecture [22] 



BACKGROUND 

19 | P a g e  

 

multiple inputs through the antennas and transmit multiple outputs through the transmitter. 

4G LTE achieves a downstream data rate of up to 100Mpbs and an upstream data rate of up 

to 50Mbps under the best conditions due to the use of technologies such as OFDM and MIMO 

[38].   

2.3.7 5G 

The fifth generation of wireless networks [13], has been a long time coming since research 

began in 2016. The 5G overall architecture published by 5GPPP in June 2019 can be seen in 

Figure 4. 5G is the follow up major phase of wireless telecommunication standards since the 

4G/IMT (International Mobile Telecommunications-Advanced) Advanced standards [35]. 5G 

systems aim to improve the 4G infrastructure with the inclusion of new advanced access 

technology like the Beam Division Multiple Access (BDMA) [39] and quasi-orthogonal or 

Filter Bank Multi-Carrier (FBMC) multiple access [13]. BDMA scheme would be used to 

increase the wireless communication system capacity and to handle the traffic surge from a 

large number of users in 5G systems. This technology is important in 5G systems as the 

number of connected devices continues to grow [1]. In using BDMA in the communication of 

base station and the mobile station, an orthogonal beam is allocated to each mobile station 

and BDMA technique will divide that antenna beam according to locations of the mobile 

Figure 4 5G Overall Architecture [2] 
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stations for giving multiple accesses to the mobile stations, which correspondingly increase 

the capacity of the system [13]. 5G targets at improving the exiting 4G system by introducing 

higher capacity, higher data rate, lower end to end latency, massive device connectivity, 

reduced cost, and consistent quality of Experience provisioning [14]. The ability to handle 

higher device connectivity and higher channel capacity would be improved by MU-MIMO 

(Multi-User MIMO) [37].  In comparison to single-user MIMO, MU-MIMO allows multiple 

wireless devices to simultaneously send or receive multiple data streams. 

2.3.7.1 Challenges Addressed by 5G 

5G was set out to address 6 challenges moving forward from the fourth network generation. 

These challenges according to 5G-PPP include the following [40]: 

1. Higher System Capacity: 5G aims at providing 1000 times higher wireless area 

capacity and more varied service capabilities compared to 2010. It also targets at 

achieving a 1000-fold system capacity per 𝑘𝑚2. 

2. Higher Energy Efficiency: 5G aims at saving up to 90% of energy per service provided. 

The focus will be on mobile communication networks where the dominating energy 

consumption comes from the radio access network. It also targets a 10 years battery 

life for low power machine-type devices. 

3. Lower service creation time: 5G targets at reducing the average service creation time 

cycle from 90 hours to 90 minutes. 

4. Security and reliability: The fifth network generation looks to increase the security 

and reliability of the existing 4G infrastructure by creating a more secure, reliable, and 

dependable Internet with a “zero perceived” downtime for service provision. 

5. Support Massive connectivity: 5G would support more devices than the 4G 

infrastructure. Therefore, it will help to facilitate very dense deployments of wireless 
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communication links to connect over 7 trillion wireless devices serving over 7 billion 

people. 

6. Lower service cost: Ensuring for everyone and everywhere the access to a wider panel 

of services and applications at a lower cost. 

2.3.7.2 5G Use Cases 

Figure 5 shows an overview of the various applications of 5G use cases with different 

scenarios in different fields. The 3 main use cases are discussed in this section. 

• Enhanced Mobile Broadband (eMBB):  eMBB [6] is proposed to provide wide-area 

connectivity in both rural and urban areas that support stable data connections with 

very high peak data rates, as well as moderate rates for mobile devices. The key point 

is that users have access to a stable mobile broadband service anywhere and anytime 

and no two eMBB devices access the same resource simultaneously. This would be 

difficult to achieve due to the cost of deployment especially in rural areas with low 

population density distribution and low average revenue per user. eMBB will aim at 

maximizing data rate with a very low packet rate while guaranteeing moderate 

reliability. Application services that would benefit from eMBB require enhanced 

connectivity, higher user mobility, and higher connectivity. These applications include 

Augmented Reality /Virtual Reality (AR/VR) applications, 360 video streaming, etc. 
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Figure 5 5G Use Cases Bird's Eye View [30] 



BACKGROUND 

23 | P a g e  

 

• Ultra-Reliable Low-Latency Communications (URLLC): URLLC [7] is likely the most 

talked-about 5G use case mainly because of the huge services it can support. URLLC 

aims to deliver a very reliable mobile wireless network with very low latency 

requirements. URLLC supports low-latency transmissions of small payloads with very 

high reliability from a limited set of terminals, which are active according to patterns 

typically specified by outside events, such as alarms. The URLLC requirements for the 

user plane as stated by [7] includes: 

o A reliability requirement of 99.999% with a user-plane radio latency of 1 ms for 

a single transmission of a 32-byte long packet. 

o An average user-plane radio latency of 0.5 ms for both uplink and downlink, 

without an associated reliability value. 

Application services in different fields would benefit from URLLC development: examples 

are listed below. 

o Multimedia: URLLC can help improve use cases such as online gaming and 

video streaming where low latency is crucial.  

o Medical: URLLC can help deliver and support use cases with mission-critical 

communication links such as remote surgery with tactile internet. Other 

medical services that can be supported by URLLC include surgical robots, 

biosensors, and remote imaging. 

o Transport: URLLC would help support services like Autonomous driving and 

drone applications. 

• Massive Machine-Type Communications (mMTC) [6]: With the rise of IoT and 

Machine to Machine (M2M) communication, mMTC was born. mMTC is a type of 

communication between machines using wired or wireless medium for actuation, 

information exchange, and data generation with little or no human intervention. In the 
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context of 5G, mMTC would be particularly involved with wireless connectivity and 

communication of billions of devices and a key progression from IoT to the Internet of 

Everything (IoE). mMTC is dependent on eMBB to provide wide-area connectivity that 

can support the vast number of machine to machine interactions and also on URLLC 

to provide a reliable network with low latency for M2M communication. mMTC has a 

vast number of opportunity and use cases to offer and thus, has a lot of potentials to 

drastically change the day to day living of a substantial number of the population. This 

would be achieved in the part mMTC would play in the development of Smart cities 

with its contribution to IoE. Application services that would benefit from mMTC 

include drone applications, remote monitoring devices for health care, surveillance 

cameras, remote robotics, smart buildings, smart wearables, etc. 

2.3.7.3 Enabling 5G technologies 

In this section, 5G enabling technologies are discussed. There are quite a few technologies that 

are contributing to the realization of 5G. Some of these technologies form the foundation on 

which 5G is built on and the others help contribute by solving challenges that the 5G system 

faces. In this section, some of the contributing technologies are discussed. Emphasis is made 

on the technologies that are related to this research. 

2.3.7.3.1 SDN 

According to RFC 7426 [16], Software Defined Networking (SDN) refers to the ability of 

software applications to program individual network devices dynamically and therefore 

control the behaviour of the network as a whole. SDN can also be defined as a set of methods 

used to facilitate the delivery, design and operation of network services in a deterministic, 

dynamic and scalable manner. SDN introduces an abstraction and separates the forwarding 

and the control plane. This provides means for network control and manageability through 

network programmable applications. In Figure 6, the SDN architecture adapted from [16] is 
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presented. The architecture summaries SDN abstractions in a detailed high-level diagram. The 

main components include the application plane, the control plane and the management plane. 

The application plane hosts applications and services that define the behaviour of the 

network. Applications can be implemented in small units and distributed across multiple 

planes as seen in Figure 6. The management plane provides a platform for configuring, 

monitoring and maintaining the network devices. Decisions regarding the state of the network 

are made in the management network. The management network focuses more on the 

operational plane than the forwarding plane. The control plane makes decisions on how 

packets are forwarded by one or more network devices and send the decisions down to the 

network device to follow. The control plane focuses more on the forwarding plane than on 

the operational plane. Communication between the control plane and the network device is 

done through the southbound interface with APIs like OpenFlow while communication with 

the control plane and the application plane is done with the northbound interface with APIs 

like the Representational State Transfer (REST).  As computer networks become increasingly 

complex to manage, SDN would be increasingly important in reducing this complexity 

through its centralized interface. Thereby providing a platform to effectively manage network 

resources and improve network communications [41]. 

There are various research papers on SDN since its introduction. Liang and Qiu [42] have 

investigated suitable security architecture for SDN-based 5G network. They have argued that 

there is not a lot of work done on SDN security issues for mobile networks. Considering the 

mentioned problem, they proposed a software-defined security architecture for SDN based 

5G network. The authors added a centralized security controller in their architecture which 

communicates with the SDN controller.  
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Ma et al [17] have studied SDN/NFV based frameworks for 5G service networks. The authors 

highlighted the issue with the management and deployment of network functions to provide 

customized services. To address this issue, the authors have proposed a management 

architecture for 5G service-based core network, based on SDN and NFV. The authors stated 

that combining their framework with SDN, NFV and edge computing could provide a 

distributed and on-demand deployment of network functions, network slicing, flexible 

orchestration, and resource provisioning. The authors concluded that simulation results 

depict that their framework is effective in operating costs. 

2.3.7.3.2 Network Function Virtualization (NFV) 

Herrera et al [43] have defined NFV as a new network architecture framework where network 

functions that traditionally used dedicated hardware (middleboxes or network appliances) 

are now implemented in software that runs on top of general-purpose hardware such as high 

volume server. During physical network infrastructure updates in carrier networks, CapEX 

and OpEX often increase due to the need for specialized network hardware, referred to as 

hardware appliances or the middlebox. These hardware appliances are used by the carrier 

Figure 6 SDN Architecture 
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and network operators to meet their SLA’s and they include QoS monitors, video transcoders, 

gateways, and proxies. The use of this hardware appliance introduces challenges associated 

with energy costs and CapEX [43]. NFV promises to resolve these issues by using virtualized 

technology to offer a new way of network design and eliminate the constant proliferation of 

hardware appliances. NFV helps realize hybrid scenarios of virtualized and physical 

networks thus leading to network cost reduction and network optimization.  NFV is 

sometimes confused with VNF which has a different meaning. VNF [44] refers to the 

implementation of a network function using software that is decoupled from the underlying 

hardware. NFV would help in the full utilization of resources by having multiple network 

functions running on a single device. However, the challenge is effectively determining the 

optimal allocation of resources for a virtual network function [43]. 

Gero et al [45] have investigated orchestration in 5G  using NFV. The authors propose a 5G 

orchestration tool for the multi-provider NFV framework. To validate the framework, the 

authors ran an industry control 5G use-case where a VNF offers a 3rd party solution as a 

VNFaaS.  

Baldoni et al [46] have studied the use of the NFV framework for 5G neutral hosts. The authors 

have utilized NFV systems to address the pressing requirements regarding infrastructure 

management and multi-layer orchestration. They also address the challenging issue of 

merging the orchestration life-cycles of NFV and MEC. The authors propose a solution that 

combines extensions in the orchestration and Virtual Infrastructure Management Layers, 

along with solutions to the open issues for NFV MEC integration, to pave the way towards 

edge-aware NFV solutions for 5G neutral hosts. 

Gharbaoui et al [47] have researched the latency impact on 5G SDN NFV infrastructures due 

to the self-adaptive service chaining. The authors demonstrated an orchestration system for 

5G infrastructure supporting latency-minimized and self-adaptive service chaining over 

geographically distributed edge clouds interconnected through SDN. 
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2.3.7.3.3 Information-Centric Networking (ICN) 

There has been a rapid growth in IP traffic from 2014 to 2020 due to an increase in mobile 

traffic from social media and the popularity of IoT [1]. With its growth expected to increase in 

the upcoming years, there is a need to change the way data is accessed on the internet as the 

traditional infrastructure lacks adequate support for content distribution. Although there are 

application-specific solutions like CDN [48] and P2P [49], these come with issues such as a 

lack of incentives for peers to share their resources and security problems [18]. This is mainly 

because it is designed as a host-centric networking framework. Therefore, to obtain data from 

the internet, the IP address of the data must be specified. However, obtaining the data from 

the specified location might not be the best option as it might be distant, and the data could 

be obtained from a closer node. This issue has a significant impact on network performance 

as the end user’s QoE, bandwidth, delay, and energy consumption could be compromised 

[50]. Data consumption on the Internet has slowly moved from location-dependent to 

information-dependent. Information-Centric Communication (ICN) is advocated to shift the 

communication focus from data location to the data itself by making the named data the 

priority in the network.  Therefore, data can be sourced from the internet using the named 

data and not the data location or the IP address. ICN enables in-network caching and name-

based packet forwarding, thus ICN nodes temporarily store cache contents. Therefore, one of 

the challenges associated with ICN is cache resource management. 

There is a reasonable amount of research work done in the field of ICN which includes 

architectural design proposal, data naming and addressing, caching, data flow control, and 

mobility. Ueda et al [51] investigated the use of ICN for global content distribution. The 

authors presented a potential challenge of performance degradation in the global content 

distribution over ICN. To address this issue, the authors propose an ICN performance 

enhancing proxy (PEP) to mitigate degradation. According to the authors, this method can 

accelerate the growth of the end user’s congestion window by prefetching future data packets. 
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The authors have conducted experimental simulations to validate their claim and concluded 

that their proposed method (ICN-PEP) can reduce startup time in global video streaming.  

Jung et al [52] have studied the utilization of on-path and off-path caching in ICN in-network 

storages. They argued that on-path caching had limitations because it bounds the caching to 

ICN nodes on the request path. To resolve this issue, they proposed a multiple hash routing 

mechanism that utilizes an off-path caching scheme for fast data retrieval. This works by 

hashing data-name into a geographical value which in turn helps in locating the nearest data 

storage.  

Hasan et al [18] have investigated the problem of multimedia caching in ICN. The authors 

have presented a solution for an efficient content retrieval mechanism based on cluster-based 

caching in ICN. The proposed solution has utilized a cluster-based mechanism to solve the 

problem of on-path caching in ICN and increase the probability of content access and decrease 

the packet loss ratio. The simulation results obtained during the research shows reduced 

content transfer time compared to other methods.  

2.3.7.3.4 IoT 

The Internet of Things (IoT) has been the buzzword when discussing the application of 5G. 

IoT encompasses everything connected to the internet. The term is recently being used to refer 

to sensors, smartphones, wearables, and devices which usually do not have network 

connectivity but now do and now can communicate with other devices on the internet. The 

combination of the data generated by these IoT devices and automation systems would aid in 

collecting information that can be analyzed to extract knowledge. IoT [53] can be defined as a 

system of interrelated computing devices, mechanical and digital machines or objects that are 

provided with Unique Identifiers (UIDs) and the ability to transfer data over a network 

without requiring human-to-human or human-to-computer interaction. Due to the limited 

amount of resources available on IoT devices, resource management in IoT is crucial to fully 
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utilize its benefits. There are several types of research on the application of IoT in 5G and the 

role of IoT in tactile internet.  Hannaidh et al [54] have studied the thermoelectric energy 

harvesting devices to enable self-powered systems for IoT applications bringing sensors to 

places previously thought impractical or inaccessible. Kapassa et al [55] have investigated the 

use of IoT applications in 5G environments. The authors have studied the problem of high 

traffic demand in networks due to an increase in IoT applications and how network slicing 

would help solve this problem. They proposed an IoT-oriented architecture that supports 

network slicing for 5G enabled IoT services over the 5G core to meet requirements for 

establishing a network with high capacity while ensuring the maximum QoS to end-users. 

The proposed architecture has been developed using the MANO [56] framework and it aims 

at supporting the ultra-reliable 5G network infrastructure.  

Redondi et al have examined the use of IoT in 5G networks using MECs [57]. The authors 

have investigated the benefits of using publish-subscribe IoT protocols with advanced caching 

and aggregation functionalities in a distributed system of MECs. The authors identify the 

underlying challenges in scaling up the pub-sub architecture due to the increase in IoT 

applications in 5G networks. Their proposed ideal solutions include automatic broker 

discovery, static broker bridging, and selective event routing. They concluded that 

information-centric networking could play a role in the efficient dissemination of information 

among brokers and many-to-many communication scenarios.    

Wang et al [58] have investigated the role intelligent IoT will play in wireless communication 

systems and 5G technologies. The authors have studied the enormous data that would be 

generated by IoT sensors and the challenges that could be faced in data processing and data 

mining. To address the issue, the authors propose an IoT based intelligent algorithm for 5G 

technologies to process big data intelligently and optimize communication channels. To 

validate the efficiency of the proposed algorithm, the authors have provided an experiment 

for channel utilization and analyzed the changes in the key evaluation indicators. 



BACKGROUND 

31 | P a g e  

 

2.3.7.3.5 Edge Computing  

Cloud computing has been widely adopted in the last decade. This surge in popularity is due 

to the benefits it provides to users. These benefits include a vast centralized resource for 

computing, storage, and network management. These resources are elastic so they can be 

scaled or minimized depending on the user’s requirements. This model has seen the rise of 

businesses that offer central platforms (e.g. Amazon web service, Google Cloud and Dropbox 

etc.). However, in recent years, the traditional centralized cloud is no longer enough to keep 

up with new technological trends like IoT and latency-critical applications. This is mainly due 

to the centralized architecture of the cloud which cannot support latency-critical applications. 

To address this issue and decentralize the cloud platform, edge computing was born. Taleb et 

al [10] have described edge computing as an emerging ecosystem that aims at converging 

telecommunication and IT services, providing a cloud computing platform at the edge of the 

radio access network. Edge computing offers cloud services at the edge of the network thereby 

reducing end-to-end latency for UE, easing traffic in the core network, enabling 

computational-intensive applications and the use of resource-constrained devices.  

 

Figure 8 [59] depicts the high-level architecture for edge computing. As shown in the diagram, 

the edge sits between the cloud and the end devices. The research community has been 

working on several types of Edge Computing (Fog, MEC, Cloudlet) while addressing several 

issues and challenges. These research challenges include edge orchestration, resource 

provisioning, offloading and computation, energy optimization, network slicing in the edge, 

mobility management, security and caching [60].  

Wei et al [61] have investigated computation offloading in mobile edge computing. The 

authors stated that there is an increase in complexity in the development of mobile 

applications due to the limited resources of mobile devices and the demand for computation-

intensive applications. To address this issue the authors suggested that computation 
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offloading using mobile edge computing would be the most suitable fit. The authors proposed 

a computation offloading system model and architecture for mobile edge computing.  

Li et al [62] have studied energy-aware server placement on edge computing. The authors 

looked to solve the problem of an energy-aware edge server placement by sorting after a 

placement scheme with low energy consumption. The authors formulated the problem as a 

multi-objective optimization problem and devised a particle swarm optimization-based 

energy-aware edge server placement algorithm for an optimal solution. The proposed 

algorithm was evaluated using a dataset from Shanghai Telecom and they concluded that the 

algorithm can reduce more than 10% of energy consumption and achieved a 15% 

improvement in computing resource utilization compared to other algorithms.  

Xu et al [63] have conducted a study on resource allocation for edge computing. The authors 

stated that there are challenges in management and resource sharing to achieve a globally 

efficient resource allocation. To address this issue, they proposed a model which they named 

Zenith. The proposed model is responsible for the allocation of computational resources and 

allows service providers to establish resource sharing contracts with edge infrastructure 

providers. The contract helps to establish latency-aware scheduling and resource 

provisioning. 

2.3.8 6G 

The sixth generation of mobile networks (6G) research is still at the infancy stage and there is 

a lot of discussion on the vision, technologies, and standards. 6G would be required to address 

new requirements and support new technologies and applications that would be raised within 

the next decade. Some of the applications that require support from 6G have been discussed 

by [8]. This includes Holographic Telepresence (HTC), Extended Reality (ER), space and deep-

sea tourism, and smart grid 2.0. These applications will require higher ultra-data rates and 

extreme ultra-low latency, paramount high availability and reliability that supersedes the 
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capabilities of 5G. The feature difference between 5G and 6G has been outlined by [9]. The 

key summary of the comparison is detailed in TABLE 1.  

TABLE 1 COMPARISON OF FEATURES OF 5G AND 6G NETWORK 

Features 5G 6G 

Peak data rates 20Gbps ~1 Tbps 
Latency 1ms < 1ms 
Area traffic capacity 10Mb/s/m2 1Gb/s/m2 

Frequency bands Sub 6GHz mmWave (24- 52.6 
GHz) 

Sub 6GHz mmWave band 
Terahertz band (Visible light 
band) 

Connection density 1M devices/Km2  10M devices/Km2 

Device services Reliable connectivity of devices.  Physical interaction in real-time 
scenarios. 

Network Type SDN, NFV, Slicing SDN, NFV, Intelligent cloud, AI-
based Slicing. Machine 
Learning, Deep Learning. 

Computing 
Technique 

Fog, Edge, cloud computing Quantum and Edge computing 

Mobility 500 Km/h > 700 Km/h 

Technology D2D communication, Ultra-
dense Network, Relaying, Small 
Cell Access, NOMA 

Visible Light Communication, 
Quantum Communication, 
Hybrid Access, Haptic 
technology, Adaptive Resource 
Allocation. 

 

5G usage scenarios include URLLC, eMBB and mMTC. However, the authors of [64] have 

proposed 3 more usage scenarios for 6G including Ultra-reliable Low-latency Broadband 

Communication (ULBC), ubiquitous MBB (uMBB) and massive Ultra-reliable Low-latency 

Communication (mULC). The authors have proposed ULBC to support use cases that require 

both eMBB and URLLC. This includes tactile internet, multi-sense experience, pervasive 

intelligence, ER and HTC. mULC would support use cases that require both URLLC and 

mMTC such as intelligent transport and logistics and global ubiquitous connectivity. Finally, 

uMBB would support use cases that require both eMBB and mMTC such as digital twin and 

enhanced on-board communications. The crossroad of the usage scenarios of 5G and 6G has 

been depicted in Figure 7. 
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2.4 JOURNEY TO THE EDGE 

In the last decade, there has been a significant evolution of computing paradigms. However, 

in the last few years, Edge computing has gained a lot of popularity in both industry and 

academia due to the need for low latency support, the introduction of the Internet of things, 

Figure 8 High Level Edge Computing Diagram 

Figure 7. 5G usage scenarios (eMBB, ULRRC, and mMTC) and the three enhanced scenarios (ULBC, UMBB and 

mULC) proposed by [64] 
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and the need to decentralize the cloud architecture. Cisco [65] defines Edge computing as a 

platform that brings processing close to the data source, and it does not need to be sent to a 

remote cloud or other centralized systems for processing. By eliminating the distance and time 

it takes to send data to centralized sources, the speed and performance of data transport are 

improved, as well as devices and applications on the edge.  In this section, the evolution of 

edge computing is discussed and reviewed. Starting from the first pioneer of moving 

resources closer to the user, Content Delivery Networks (CDN) to Multi-Access Mobile Edge 

Computing.  

2.4.1 CDN 

The rise of the Internet, in turn, gave rise to the use and development of internet applications 

both on desktops and mobile phones. These applications need constant internet access for full 

functionality. However, given the limited bandwidth and sometimes unreliable networks, 

content delivery through the internet to these applications usually suffer from long delays. 

This long delay is usually attributed to the fact that there may be only one application content 

server delivering content to end-users. Therefore, the network latency varies depending on 

how geographically close the end-user is to the application server. To address this problem, 

the CDN [66] has been introduced. CDN is a system of distributed proxy servers and data 

centres that delivers content over the internet to provide low latency, high availability, and 

performance to end-users. The huge success of CDN started the evolution of moving resources 

closer to the user hence edge computing [66]. The biggest benefit of CDN is low latency which 

is achieved by providing a platform closer to the user where content can be cached.  

Since the introduction of CDN, there have been many pieces of research done to improve the 

technology to offer better performance and lower latency. The first generation of CDN 

introduced in the 1990s has been designed to bring content geographically closer to users 

across different countries. The second wave of CDN has been designed to address the higher 
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demand for audio, video, and streaming services to accelerate websites and support growing 

volume content. The third wave of CDN has been focused on cloud computing, energy 

awareness, and peer-to-peer production. It is expected that the fourth wave would be focused 

on autonomation and self-management. A review of some of the research work done in the 

CDN is discussed in the following paragraph. 

There has been a lot of research done to improve the CDN by utilizing its platform for content 

caching thereby reducing users' content access time. Sung et al [48] proposed a cache 

placement strategy for wireless content delivery networks. The researchers investigated the 

problem of cache server placement to obtain an optimal placement strategy to reduce caching 

overhead cost and access time. The researchers proposed to use a star network topology for 

the origin server and the cache servers. This limits the hop metric from the cache server to the 

origin server to one, thereby reducing the access time. The researchers formulated the problem 

into an integer linear programming problem and designed an optimal cache placement 

strategy for a two-tier wireless CDN with an interference metric, which obtains better results 

as compared to an existing framework. 

Roh et al [67] have researched an efficient content replacement strategy for CDN. Their 

research focus was to increase the total hit ratio of cache servers in CDN. The researchers have 

proposed a 𝑝-based LRFU-𝑘 cache replacement framework which they claim solves the 

problems of exiting cache replacement algorithms like LRU, LRU-𝑘, LFU, and LRFU. The 𝑝 in 

the name stands for the period span while 𝑘 stands for the number of time span. Using 30 

minutes based LRFU-12, the proposed replacement framework is able to obtain a 6.5% 

increase in hit ratio during simulations compared to existing algorithms.  

2.4.2 Cloud 

Although the idea of cloud computing was invented in the 1960s by Joseph Carl Robnett 

Licklider on his project named ARPANET to connect people and data from anywhere at any 
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time. It wasn’t until 2006 when Google CEO Eric Schmidt first used the term in an industry 

conference and the introduction of AWS S3 by amazon web services the same year that the 

adoption started to grow rapidly. Following subsequent efforts by CompuServe in 1983 which 

offered consumers disk space for file storage and AT&T in 1994 launched the first online 

storage platform for personal and business use. Cloud computing gained more adoption in 

personal use with the introduction of Dropbox in 2007 using AWS. It was not too long before 

other Tech Giants started to release their version of cloud environments.  Google released its 

first version of cloud in 2008, Microsoft released Azure in 2010, also Rackspace was formed in 

2010 and IBM released its cloud platform in 2011. Within a few years, cloud computing has 

slowly shifted from just online storage to also a platform that offers computation. This was 

popularized with the introduction of various cloud services like Software as a Service (SaaS), 

Platform as a Service (PaaS) and Infrastructure as a Service (IaaS), etc. SaaS is a software 

licensing and delivery model where software is hosted centrally and paid for on a subscription 

basis. PaaS model provides customers with a platform to develop, run, and manage 

applications without the added complexity of building and maintaining the infrastructure of 

the platform. While IaaS offers computing architecture and infrastructure resources in a 

virtual environment to multiple users. From 2011 – 2015 businesses were being educated on 

the benefits of the cloud and how it could potentially help their businesses. From 2016 

onwards cloud morphed from an option to an absolute necessity to businesses. Especially 

small and medium business with inadequate capital to maintain their own in-house IT 

infrastructure.  In parallel to this cloud computing was also making an impact on computer 

networks and the internet. Most of the web content on the internet is stored in the cloud. There 

are only a handful of cloud providers to choose from, thereby creating a centralized 

architecture. Cloud computing provides a centralized platform for storage which is then 

supported by CDN. Cloud computing introduced a lot of benefits to its users including cost 

reduction, multitenancy, improved security, and performance.   
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There has been a wide range of research publications on cloud computing ranging from 

research on cloud adoption [68], cloud provisioning [69] and orchestration [70], cloud security 

[71], cloud architectures [72], and cloud applications [73]. In 2010, following the increased 

popularity of cloud computing, Khajeh-Hosseini et al wrote a case study [74] on how to 

migrate an enterprise IT system to IaaS. In 2012, Rodríguez-Silva et al [75] proposed the use 

of the cloud for video surveillance to improve smart surveillance. The researchers reported 

that the use of the cloud instead of the traditional system will help reduce costs and improve 

real-time video processing.  In 2014, following the increased access to multimedia online, due 

to increased traffic from social media, Aazam et al [72] discuss the challenges faced by cloud 

computing and calls for a standardization of Cloud Media and Inter-Cloud computing for 

better provisioning services.  

2.4.3 Mobile Cloud Computing 

The rise in the use of mobile devices created a surge in mobile traffic. This trend also increased 

the demand for mobile applications. However, due to the limited resource specification of 

mobile devices, some heavy resource applications cannot run smoothly on mobile devices. 

This application includes natural language translators, image processing, virtual reality, etc. 

To address this problem, Mobile Cloud Computing (MCC) has been proposed. The Idea of 

MCC is to provide software level solutions for mitigating resource constraints in mobile 

devices [76]. MCC leverages the computational capabilities of the cloud and offloads tasks 

from mobile devices to be executed in the cloud. Offloading decisions are made mainly 

because of battery and resource constraints. Additionally, decisions are made in selecting the 

appropriate server for offloading. The offloading framework used is either partial or full 

offload.  The need for mobile devices to share computational resources prompted a new type 

of MCC called Mobile Ad Hoc Cloud (MAC) [77]. The goal of MAC is to offload 



BACKGROUND 

39 | P a g e  

 

computational-intensive tasks from a mobile device to another available mobile device in the 

local vicinity. MAC leverages the heterogenous resource nature of mobile devices.  

There were loads of research conducted on mobile cloud computing to be able to reap its 

benefits and reach its full potential. Farrugia S [78] has conducted research to determine the 

benefits of MCC and its feasibility. The research has highlighted the key limited resources 

from mobile devices to be the memory, battery, CPU time, and data usage. They explored 

MCC solutions and concluded that MCC is useful for extending the computational and 

storage resource of mobile devices. 

AlShahwan F and Faisal M [79] have researched how MCC can help to provide support in 

delivering complex mobile web services. The research investigated the use of MCC in 

migrating, offloading, fragmenting, orchestrating, and federating mechanisms. In conclusion, 

they recommended the use of MCC to overcome mobile resource constraints. They also 

highlighted issues such as authentication and security of the distributed services and 

collaborative hosts as concerns to be explored. 

2.4.4 Edge-Based Technologies 

With the introduction of IoT and as the use of mobile devices continues to grow, there has 

been a demand for latency-critical applications for tactile internet [80]. The International 

Telecommunication Union (ITU) [81] has defined the Tactile Internet as a network that 

combines ultra-low latency with extremely high availability, reliability, and security. It is 

becoming apparent that the existing cloud infrastructure coupled with cloud and CDN could 

not support these latency-critical applications due to the centralized architecture. Therefore, 

there is a need to decentralize the cloud and bring its computation and storage services closer 

to the user. To achieve this, technologies like cloudlet, MEC, and fog have been proposed. 

They all share similar ideas of decentralizing the cloud infrastructure and bring resources 

closer to the user.   
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2.4.4.1 Open Edge Computing/Cloudlet 

Satyanarayanan et al [82] have proposed the cloudlet in the US to address the latency 

constraint of mobile cloud computing by extending the mobile device-cloud architecture. In 

their research paper, cloudlet has been defined as a trusted, resource-rich computer or cluster 

of computers that is well-connected to the Internet and available for use by nearby mobile 

devices. Cloudlets was later renamed Open Edge Computing (OEC). Cloudlets have been 

proposed to be deployed in places close to mobile devices such as the cellular base station or 

Wi-Fi access point. Figure 9  illustrates a high-level diagram for cloudlets [83]. The diagram 

consists of the cloud layer where most of the data and services are hosted. Then, the cloudlets 

are considered as the intermediary layer between the cloud and the end device. The term 

cloudlet has become the dominant terminology used to describe this kind of technology in the 

US. There has been numerous research done on cloudlets on both computational offloading 

and also data offloading on cloudlets [84]. One of the popular frameworks for computational 

Figure 9 High Level Open Edge Computing/Cloudlet Diagram 
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offload with cloudlets has been the MAUI framework [85]. The framework has been proposed 

by researchers at UCL in collaboration with Microsoft and have used a face recognition 

application as a case study and obtained a significant increase in speed and energy 

performance during computational offload. Balasubramanian et al. have presented their 

research on data offloading by using cloudlets to cache data for delayed transfer. They have 

proposed a system to augment mobile 3G capacity by delay tolerance and fast switching. It 

utilizes predictions of Wi-Fi offload capacity to offload data as much as possible by delayed 

transfer [86].  

 

2.4.4.2 Fog Computing 

The term Fog computing created by Cisco is defined as a standard that defines how edge 

computing should work. Fog facilitates the operation of computing, storage, and networking 

services between end devices and cloud computing data centres [65]. Figure 10 [87] depicts a 

Figure 10 Fog Software Architecture 
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high-level software stack for fog computing which consists of sensors, actuators, and other 

things. The fog infrastructure area consists of a versatile execution environment that supports 

a wide range of operating systems and virtual network functions. The fog orchestration 

service sits in the fog management layer which supports rich APIs to permit the development 

of applications, well defined interfaces between the components. The stack also includes the 

policy/security and analytics and data models present at all levels of the stack. The goal of 

fog computing is similar to cloudlets in bringing cloud resources closer to mobile devices to 

reduce latency by decentralizing the cloud. The term fog has been used because fog is a cloud 

close to the ground. The OpenFog Consortium has been formed by Cisco and other companies 

to help push the research boundaries of fog computing. OpenFog Consortium defines fog 

computing [88] as “a system-level horizontal architecture that distributes resources and services of 

computing, storage, control, and networking anywhere along the continuum from Cloud to Things”. 

With the introduction of the OpenFog Consortium, there have been many research pieces on 

fog computing to help achieve its goal. Cech et al [89] have researched fog computing and 

proposed a fog computing architecture to share sensor data with blockchain. The blockchain 

functionality helped in securely collecting and sharing sensor data. The researchers utilized 

fog computing for the processing of data collected by the IoT sensors. Pfandzelter et al [90] 

have researched fog computing. They have highlighted the issues faced on data processing in 

the cloud which is mainly high latency. They have argued that fog computing is necessary to 
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achieve low latency during data processing by moving cloud computational resources closer 

to the user.  

2.4.4.3 Multi-access Edge Computing (MEC) 

MEC formally known as Mobile Edge computing is a term defined by European 

Telecommunication Standards Institute (ETSI). MEC can also be referred to as a small scale 

data centre with low to medium computational power and storage resources [91]. The idea is 

to design mini servers known as edge nodes that would handle storage and computation for 

mobile devices. These edge nodes are near the end-users providing a platform for caching and 

offloading to reduce the bandwidth consumption and latency of the network. The edge nodes 

complement the traditional cloud infrastructure by providing additional resources like 

cloudlet and fog computing. Figure 11 depicts the MEC framework [92] as defined by ETSI. 

Figure 11 MEC Framework 
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The diagram shows the general entities involved in the MEC framework which are grouped 

into Network level, host level and system level. The framework defines the implementation 

of MEC applications as software-only entities that run on top of the virtualization 

infrastructure. 

Although there are many similarities between Cloudlet, Fog, and MEC, there are also some 

differences. These differences can be seen in the applications they support, the virtualization 

environment, and also Operational mode [88].  The table shows the differences between 

cloudlets, fog, and MEC as outlined by [88] and [93]. The frameworks proposed in this 

research are primarily based on the MEC architecture which includes a three-tier architecture 

of the cloud, the edge, and the end-user. Therefore, it could be adapted to work on the fog 

network as it also supports the 3-tier architecture but not cloudlets. 

 

 

 

FEATURES CLOUDLETS MEC FOG 

APPLICATIONS Mobile Offloading Supports applications for both 

mobile and non-mobile 

network edge 

Supports a wider range 

of latency-sensitive 

applications for resource-

constraint end devices 

VIRTUALIZATION  Only depends on 

VMs 

Can use other technologies 

apart from VMs 

Other virtualization 

technologies can be used 

OPERATIONAL MODE  Can work in 

standalone mode 

Can work in standalone and 

can connect to the cloud 

Cannot work in 

standalone, need support 

from cloud 

DEPLOYMENT COST Low High Low 

Table 2 Comparison of Edge Technologies 
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2.5 CHARACTERISTICS OF MEC 

According to ETSI white paper [92], the key characteristics of MEC are listed below. 

1. On-Premises: Using virtualization infrastructure, MEC would have access to local 

resources but can be isolated from the rest of the network. This is crucial for M2M and 

migration scenarios.  This network separation also reduces security risks when dealing 

with safety systems that need high levels of resilience. 

2. Proximity: Close proximity to the end-user and source of data is one of the key 

characteristics of MEC. This presents lots of opportunities including data gathering for 

information analytics. This is also beneficial for computationally intensive 

applications. The edge can also be leveraged for business-specific applications if it has 

direct access to the end devices.  

3. Lower latency: The close proximity of MEC to end devices considerably reduces the 

network latency. This can be used to minimize the congestion in the core network and 

improve the QoE of the services delivered to the end-user. 

4. Location-awareness: MEC can leverage low-level signalling in either WiFi or cellular 

network to determine the location of the devices connected to the edge network. This 

can be achieved through information sharing and it would create opportunities for 

location-based business-oriented use cases.  

5. Network context information: Applications that provide network information and 

services of real-time network data can benefit businesses and events by leveraging 

MEC in their business model [94]. This can be achieved as real-time network data can 

be utilized to offer context-related services that can differentiate the mobile broadband 

experience. 
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2.6 NEED FOR EDGE COMPUTING 

The trend of moving resources closer to the user is becoming inevitable due to a lot of factors. 

These factors have huge benefits for both the end-users and the network operators. In this 

section, the factors that lead to the realization of edge computing as outlined by [95] have been 

discussed. 

6. Real-Time QoS and Delay Sensitiveness: The computational resources of mobile 

devices have gradually increased over the years. However, the computational 

resources are still not adequate for accomplishing most real-time use cases that have 

pre-defined QoS requirements. Cloud computing has been the key support for these 

devices by providing a pool of computation and storage infrastructure for devices with 

limited capacity. However, some of the emerging applications that run on these 

devices are very sensitive to delay. Therefore, the cloud environment alone would not 

be suitable for these latency-critical applications due to distant travel and real-time 

requirements. These case study applications include IoT sensors and robotics in the 

healthcare domain and V2X communication in autonomous vehicles. These 

applications are real-time sensitive and thus require high QoS. Therefore, by 

deploying servers closer to the devices that require real-time interaction, the overall 

latency can be decreased through high LAN bandwidth and a decreased number of 

hops [95]. 

7. Battery Lifetime: Energy consumption is a crucial element when discussing mobile 

devices. Due to its mobility feature, it cannot always be connected to an energy source 

like servers or desktops.  Unlike the computation resources, the battery life of mobile 

devices has made very little improvement over the years. Task offloading has proved 

beneficial in the energy consumption reduction of mobile devices [76]. Task offloading 

is achieved either by utilizing the cloud server or by leveraging the edge servers. 
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However, it has been proved that offloading to the edge server achieves lower energy 

consumption than offloading to cloud servers [85] [96]. The execution of tasks locally 

in the device generates the highest energy consumption, unsurprisingly. Energy 

consumption is even more vital for IoT devices and wearables which have lower 

battery life than mobile phones. Offloading the workload from such devices to the 

edge would be more efficient in reducing the energy consumption and increasing the 

battery lifetime [97]. 

8. Regulating Core Network Traffic: With the continuous increase in the number of 

connected devices, there is a need to reduce network congestion at the core of the 

network. The congestion is caused by the limited bandwidth available at the core 

network. The traditional approach allows data generated by end devices to flow 

through the core network to access cloud servers for processing. However, processing 

this data at the edge would reduce the burden at the core network and optimize 

bandwidth. Additionally, data processing at the edge would also lead to reduced 

demand for computational resources from cloud servers. 

9. Scalability:  The number of end-user devices is expected to reach trillions in a few 

years and this evolution creates a significant scalability problem [98]. The cloud servers 

support dynamic scalability to meet user demands. However, congestion in the data 

centres may occur due to tremendous data volume being sent to cloud servers for 

processing. This problem occurs due to the centralised structure of the cloud 

environment. However, using a distributed architecture like the edge network, these 

services and applications can be replicated in the form of microservices and deployed 

over the edge servers. Therefore, if any of the edge servers becomes congested or fails, 

the corresponding microservice can be replicated and deployed in another edge server 

in the vicinity. Additionally, data pre-processing on the edge would reduce the burden 

in the cloud. 
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2.7 RESOURCE MANAGEMENT OF MEC 

MEC has been explored in this thesis rather than fog or OEC because MEC has been defined 

by the European Telecommunication Standards Institute. MEC facilitates enhancements to the 

existing applications and network infrastructure by providing two main services at the edge 

of the RAN. These include computational and caching services. These services contribute to 

the achievement of the factors highlighted in section 2.6. Therefore, to realize the full potential 

of MEC, it is important to effectively manage the computational resource and the caching 

resource.  

2.7.1 COMPUTING IN MEC 

Computation is one of the key services offered by MEC. This would be available as a large-

scale distributed computing paradigm in which a pool of computing resources is available to 

users. This provides a platform for offloading and execution of tasks from devices with limited 

computational capacity. Computation offload in MEC would help to achieve some of the 

factors highlighted in section 2.6 including latency reduction, lower energy consumption, and 

reduced traffic in the core network.   To guarantee ubiquitous services for all devices 

connected to the MEC, the computational resources should be evenly distributed across the 

network. Therefore, there is a need to design an optimal placement algorithm for MEC servers 

for effective resource management. With the deployment of edge servers, a huge load of the 

computational workload would be moved from the cloud servers to the MEC. The MEC 

servers have smaller computational resources compared to the cloud servers. Additionally, 

there would be a huge demand for these computational services due to the increasing amount 

of connected devices [99]. This excessive demand might cause overprovisioning of resources 

in MEC and may even lead to deadlock in the system if adequate measures are not in place 

[100]. Computational offloading and resource provisioning has been explored in the context 

of MEC [61] [101] [76]. However, the issue of deadlock in MEC during resource provisioning 
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has not been addressed. Therefore, it is important to design an appropriate scheduling 

algorithm for optimal computing resource management to prevent the problem of over-

provisioning of resources or deadlock to improve the QoE. This is one of the major problems 

explored in this thesis. This is discussed further in chapter 3. 

2.7.2 CACHING IN MEC 

Caching is another key service MEC offers. This will aid mobile end devices to achieve low 

latency for delay-sensitive applications. This would additionally ease the traffic in the core 

network and improve the user QoE. Caching in the MEC would help in improving the factors 

highlighted in section 2.6 by reducing the communication distance, reduction in access 

latency, reduction in energy consumption, and improvement of user QoE. There has been a 

continuous increase in the amount of traffic in wireless networks due to the increasing 

demand for mobile video streaming and the increasing popularity of social networking [102]. 

The MEC has a limited cache storage capacity so it is impossible to cache all contents on the 

edge. Therefore, the continuous growth of this data-intensive traffic will likely overwhelm the 

MEC. Hence, it is crucial to design efficient caching policies to maximize the benefits of local 

caching and sharing for future mobile networks. To address this problem, optimized cache 

resource management has been explored in recent years to enhance the caching efficiency, 

performance, resource management, and overall QoE of MEC [102] [18] [103]. 

Additionally, user request patterns are ever-changing and so is the popular content. Thus, the 

request pattern would often not follow the Zipf distribution [104]. Therefore, it is crucial to 

develop intelligent content caching at mobile network edges to dynamically adapt to the 

caching request pattern and improve content delivery efficiency. This is another problem 

explored in this thesis. This is discussed further in chapter 4. 
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2.8 CONCLUSION  

The future is only appreciated if the past is known. In this chapter, the background and the 

current state of the art of networks have been reviewed. This chapter has set the scene for the 

thesis by going through the decades of research effort made on mobile wireless networks. 

Section 1.3 has discussed the evolution of mobile networks from 1G to 5G. It also discussed 

the challenges, use cases, and enabling technologies of 5G. Additionally, it discussed the 

necessity of MEC in 5G to achieve the URLLC case study.  

Section 1.4 has outlined the journey to the edge and reviewed the importance of technologies 

such as CDN, cloud, and MCC. The different edge platforms are then reviewed which 

includes fog, cloudlets, and MEC. The characteristics of MEC and the need for MEC have been 

discussed in sections 1.5 and 1.6 respectively. 

Finally, in section 1.7, the core services that the MEC provide and why resource management 

in MEC is crucial to fully achieve the benefits of MEC has been discussed. Here, the problems 

explored in this thesis are stated and discussed. It is important to optimize the caching and 

computing service in MEC as they are equally dependent on each other on achieving the 5G 

URLLC case study and the improvement of the end-users’ QoE. 

 

In the next two chapters (chapter 3 and chapter 4), the highlighted problems have been 

explored and addressed with significant contributions to knowledge made in the process. 
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CHAPTER 3 MEC COMPUTATIONAL RESOURCE 

MANAGEMENT 

3.1 INTRODUCTION 

The previous chapter has discussed the recent advancements in computational-intensive and 

latency-critical applications and the need for edge cloud computing in meeting the latency 

requirement of these applications through computational offload. In this chapter, this 

problem has been further investigated. Here, the related literature has been extensively 

reviewed in section 3.2 where a research gap has been identified. This is due to the lack of 

research addressing the issue of deadlock during resource provisioning in MEC. Deadlock 

during resource provisioning in MEC can be described as a state where a process in a MEC 

node with partially provisioned resources is waiting for another process, including itself to 

release resources or release a lock to resources causing a circular wait. This problem can also 

be distributed if the waiting process and the process with the resource are in different MEC 

nodes which could occur during re-offloading. This chapter addresses the problem of 

deadlock in real-time MEC services. Therefore, in section 3.2.1 the current research on 

resource provisioning in MEC has been reviewed. This validates the assumption that very 

little research on deadlock aware provisioning frameworks exists. Hence, various deadlock 

and real-time scheduling algorithms have been reviewed in sections  3.2.2 and 3.2.3 

respectively. Section 3.3 focuses on the design of a deadlock-aware framework for resource 

provisioning in MEC environments. Thereafter, section 3.4 presents a comparative analysis 

with the experimental results of deadlock-aware algorithms based on the proposed 

framework. Finally, the chapter is concluded in section 3.5. 
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3.2 LITERATURE REVIEW 

Considering the decentralized architecture of MEC as opposed to the traditional centralized 

cloud infrastructure, it is important to investigate an efficient mechanism to offload and 

execute mobile and IoT applications on the edge of a network.  

There have been several proposals for resource provisioning techniques to offload mobile 

application workloads on MEC [105] [106] [101]. Nevertheless, none of the previous works on 

MEC considers deadlock during offloading and resource provisioning which is a concern for 

distributed systems. There are four major strategies for handling deadlock in distributed 

systems. These include (i) ignore, (ii) detect and recover, (iii) prevention, and (iv) avoidance. 

The first two are commonly used because the last two are difficult to implement [107]. Few 

researchers have opted for detection and recovery strategies as shown in TABLE 3. This is not 

always ideal because, in a scenario where the system needs to be readily available, any amount 

of downtime can be very costly. Deadlock avoidance strategy is said to be the most effective, 

but it is difficult to implement in distributed systems because of communication overheads 

and therefore labelled impractical [108].   

 Researchers have previously used load balancing algorithms to level out the workload 

between servers in MEC and avoid resource over-provisioning [109] [110]. Tham and 

Chattopadhyay [109] have proposed a load-balancing scheme for distributed computing on 

the edge of a network based on heuristics. They have used an edge model of a group of nodes 

connected over a wireless ad-hoc network formulating a convex optimization problem. The 

simulation results have shown near-optimal performance in most cases. Load balancing 

schemes reduce the chances of deadlock but do not eliminate it from the system. Deadlock 

prevention and/or avoidance scheme is a more suitable approach as it eliminates the chances 

of deadlock in the system [111]. 
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With the advancement of 5G and SDN, the communication overheads can now be reduced 

thereby making it practical to implement the deadlock avoidance algorithms in a distributed 

system. The idea of separating the control plane from the data plane means there would be 

less communication between the routers and switches because they share a centralized control 

plane [112]. 

 

TABLE 3 DEADLOCK STRATEGIES 

Detection algorithms Lamport’s algorithm [113] 

Chandy-Misra-Haas algorithm [114] 

Parallel Deadlock Detection Algorithm [115] 

Detection in heterogeneous systems [116] 

Unstructured deadlock detection [117] 

Aida et al [118] 

Farajzadeh et al [119] 

Akikazu et al [120] 

Prevention algorithms Load balancing methods [121] [122] 

Deadlock Prevention Algorithm in Grid Environment [123] 

Wound-wait [124] 

Wait-die deadlock [124] 

Lin Lou et al [125] 

Kamta [126] 

Ding et al [127] 

Chuanfu et al [128] 

Avoidance algorithms Banker’s algorithm [11] 

Resource allocation graph [129] 
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 The current state of the art shows that researchers have previously used load balancing to 

avoid overprovisioning and deadlock in MEC. However, to the best of our knowledge 

deadlock avoidance has not been addressed in a MEC context. Therefore, in this study, a novel 

resource provisioning algorithm for deadlock avoidance on multi-access edge computing has 

been proposed. The proposed algorithm is different from load balancing because in load 

balancing there is a load balancer that first accepts the request and uses a mechanism to 

distribute it to servers. As opposed to this, deadlock avoidance is the focus of the proposed 

method. Here, the task goes directly to the MEC servers for execution and only gets redirected 

if the time and resource constraints of the task cannot be satisfied while ensuring the system 

is in a safe state. 

The widely used deadlock avoidance algorithm due to its efficiency is the Banker’s algorithm 

proposed by Dijkstra [11]. Banker’s algorithm is a resource allocation algorithm that simulates 

a system using predefined variables and predetermines the safeness of a system before 

granting a task allocation request  [11]. It is mainly used in operating systems where it runs 

on a single machine. In this study, it has been used in a distributed environment where 

resource information is shared by systems within the environment. 

 

3.2.1 REVIEW ON RESOURCE PROVISIONING IN MEC 

Resource provisioning in MEC is a challenging problem for Internet Service Providers due to 

the impact it has on the efficiency of the system and the QoS. Researchers have previously 

addressed this resource provisioning problem in cloud computing. However, resource 

provisioning in MEC is more challenging mainly because the edge servers have more resource 

constraints than the cloud servers and the edge servers would be deployed as a distributed 

environment compared to the centralized cloud. Enabling distributed computing and storage 

capabilities at the edge of the network will benefit delay-sensitive and computation-intensive 

mobile applications. 



MEC COMPUTATIONAL RESOURCE MANAGEMENT 

55 | P a g e  

 

There has been a considerable amount of work done in the area of resource provisioning in 

MEC. Badri et al [130] have proposed a risk-based optimization for resource provisioning in 

MEC. In their work, they have considered that the resource requirements of mobile 

applications are stochastic. Therefore, they have formulated a chance-constrained stochastic 

program problem. They have resolved this using the Sample Average Approximation 

method. 

Kherraf et al [131] have studied resource provisioning and workload assignment in MEC and 

formulated the problem as a mixed-integer program to jointly decide on the number of nodes, 

the location of MECs, and applications to deploy. They have solved this by decomposing it 

into two problems, a delay aware load assignment sub-problem and dimensioning edge 

servers sub-problem. They have proposed optimized provisioning of edge computing 

resources with a heterogeneous workload in IoT networks. They concluded that the proposed 

tool could be used by network operators to develop cost-effective strategies for edge network 

planning and design. 

Chang et al [132] have studied resource provisioning in MEC in the area of minimizing energy 

consumption of cellular networks. In their research, they have investigated both the 

communication and computation aspects of resource provisioning to improve energy 

efficiency. They have modelled the system as tandem queues and studied the trade-off 

between the subsystems on energy consumption and service latency. Based on this, they have 

proposed an algorithm to determine the optimal provision of both communication and 

computation resources to minimize the overall energy consumption without sacrificing the 

performance on service latency.  

Yu et al [133] have proposed a collaborative computation offloading framework for MEC. The 

authors have considered an offloading scenario where multiple mobile users offload 

duplicated computation tasks to the edge servers. Hence, creating an opportunity for edge 

servers to share computational results. The aim is to develop an optimal collaborative 
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offloading strategy with data caching enhancements to reduce end-user latency. The problem 

has been formulated as a multi-label classification in which a Deep Supervised Learning 

approach has been employed to address the issue. Numerical results have shown that the 

proposed scheme achieves reduced delay and energy consumption compared to other 

schemes. 

Zhou et al [134] have proposed a resource provisioning scheme for heterogeneous IoT 

applications on cloud-edge platforms. The scheme has been aimed at minimizing long-term 

operational costs while guaranteeing both hard and soft deadlines for heterogeneous IoT 

applications. The proposed framework employs a Lyapunov optimization technique to make 

online resource provisioning greedy decisions without prior knowledge of the statistics of the 

edge system. The authors have evaluated the efficiency of the proposed approach using 

realistic traffic and cost traces.  

Ma et al [135] have proposed a mobility-aware and delay-sensitive service provisioning 

scheme for mobile edge cloud networks. The authors have formulated two novel optimization 

problems of user service request admissions with the focus of maximizing the accumulative 

network utility and throughput. The authors have utilized a constant approximation 

algorithm and an online algorithm to address the formulated problems. The authors have 

demonstrated the efficiency of the proposed scheme using experimental simulations.  

There have been other proposals for resource provisioning techniques to offload mobile 

application workloads on MEC [136] and [137]. Nevertheless, none of the previous works on 

MEC considers deadlock during offloading and resource provisioning which is a concern for 

distributed systems such as MEC. It is quite unexplanatory why this research area in MEC is 

not a priority given the consequences. This has created motivation for this research to fill this 

void. 
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3.2.2 DEADLOCK HANDLING STRATEGIES 

The previous section has reviewed resource provisioning frameworks on MEC, and it has 

been concluded that there is little research on deadlock aware resource provisioning 

frameworks in MEC. Therefore, this section reviews the various strategies for handling 

deadlock.  

In a trusted computing scenario using edge nodes and IoT devices, where high availability 

and reliability are crucial factors for a good user experience, deadlock-free operations are 

important in achieving this goal. The absence of deadlock strategies to detect, recover or 

eradicate deadlock on such a system might cause deterioration of the system's performance 

and ineffective use of energy as deadlock might occur but the system has no way of 

recognizing what has happened. The standard toolset for deadlock detection is the Wait for 

Graph (WFG). This model’s relationship between the processes and the resources involved. 

Here, each node represents a process (𝑝𝑖) and an arc is originated from a process waiting for 

a resource to a process (𝑝𝑗) holding the resource as represented in Figure 12. In this section, 

deadlock handling strategies have been reviewed. There are four conditions necessary for a 

deadlock to occur and each of the strategies tries to eliminate one of them. 

• Conditions necessary for a deadlock to occur include the following: 

o Mutual exclusion 

o Hold and wait 

o No preemption 

o Circular wait 

Figure 12 Wait For Graph (WFG) 
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3.2.2.1 Deadlock detection  

In the design and development of a multi-threaded system, deadlock detection could be 

chosen as a way of handling deadlock in that system. If the algorithm employed detects a 

deadlock, the next step would be to recover the system from the deadlock it suffered. 

Therefore, deadlock detection and recovery go hand in hand. Here, an algorithm is employed 

to examine the state of the system to determine if a deadlock has occurred. If this is the case, 

another algorithm is used to recover the system from deadlock. To detect the presence of 

deadlock, a resource allocation graph, and a corresponding WFG is used for a single instance 

for each resource type. Note that in this strategy, deadlock may occur, after which the system 

then detects the occurred event and then tries to recover itself. This causes an overhead of the 

run-time costs of maintaining the necessary information and executing the detection 

algorithm. Additionally, there might be potential losses inherent in recovering from a 

deadlock [138]. 

To detect deadlock for a single instance of each resource type using the wait-for graph, an 

edge from 𝐸𝑖  𝑡𝑜 𝐸𝑗 in a wait-for graph implies that process 𝐸𝑖 is waiting for the process 𝐸𝑗 to 

release a resource that 𝐸𝑖 needs. The edge 𝐸𝑖 → 𝐸𝑗 only exists in a WFG if the corresponding 

resource allocation graph contains two edges 𝐸𝑖 → 𝑅𝑞 𝑎𝑛𝑑 𝑅𝑞 → 𝑃𝑗 for some resource 𝑅𝑞. A 

deadlock exists in the system if there is a cycle in the WFG. Using this, the detection algorithm 

requires a runtime order of 𝑛2 operations where 𝑛 is the number of vertices in the graph. For 

several instances of a resource type, the runtime order to detect a deadlock would be 𝑚 ∗ 𝑛2 

where m is a vector that indicates the number of available resources of each type [138]. 

 

There is extensive research on deadlock detection schemes. Aida et al [118] have proposed a 

novel scheduling strategy for efficient deadlock detection. They have championed the 

deadlock detection strategy as a more optimistic and feasible solution to resolve a deadlock.  



MEC COMPUTATIONAL RESOURCE MANAGEMENT 

59 | P a g e  

 

They have tested the efficiency of their algorithm based on its scalability in the number of 

resources and processes. They concluded that the performance of a deadlock handling 

algorithm depends fundamentally upon deadlock detection scheduling and the rate of 

deadlock formation. Farajzadeh et al [119], have proposed a distributed deadlock detection 

algorithm based on history-based edge chasing which resolves the deadlock as soon as it 

detects it. According to their research, this action reduces the average persistence time of the 

deadlock compared to other detection algorithms. Akikazu et al [120] have proposed a 

deadlock detection algorithm for distributed processes. In their research, they have 

formulated a deadlock detection scheduling problem with the presence of system failures and 

derived a deadlock detection time that minimizes long-run average cost per unit time. They 

have concluded that the number of distributed processes and the system failure probability 

give a great effect to the long-run average message-complexity per unit time, but not the 

deadlock scheduling time. Other research on deadlock detection includes Lamport's 

algorithm [113] and Chandy-Misra-Hass algorithm [114]. 

3.2.2.2 Deadlock Prevention  

Deadlock prevention algorithms handle deadlock in a system by trying to prevent one of the 

necessary four conditions required for a deadlock to occur from happening. In a typical 

distributed system, there is at least one non-sharable resource. Therefore, the mutual 

exclusion condition must hold. Due to this, deadlock cannot be prevented by denying the 

mutual exclusion principle. To prevent deadlock by eliminating hold and wait, two possible 

protocols could be used. 

• The first one requires that all resources a process needs are allocated to the process 

before the start of execution. This will eradicate hold and wait but might lead to the 

underutilization of the system.  
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• Another method could be to allow a process to request new resources only after 

releasing the current set of resources. This may lead to starvation.  

Deadlock can also be prevented by preempting resources from a process if the resources are 

required by a higher priority process. This strategy of process termination during execution 

is inappropriate for real-time systems in which the elapsed execution time of the process must 

be predictable [139]. The final method of preventing deadlock is done by eliminating the 

circular wait condition. To ensure that this condition never holds, a protocol can be used to 

impose a total ordering of all resource types and require that each process requests resources 

in increasing order of enumeration. As an example, if 𝑅 = {𝑅1, 𝑅2. . 𝑅𝑧} is a set of resource types 

that have been assigned unique integer numbers from 1 𝑡𝑜 𝑧. A process can only request 

resources in increasing order of enumeration. Therefore, if a process request 𝑅𝑖 then it can 

only request for another resource 𝑅𝑗 ⟺ 𝐹(𝑅𝑗) > 𝐹(𝑅𝑖) [138]. 

There have been many deadlock prevention strategies proposed by different researchers in 

different computer science fields to eradicate deadlock by preventing one of the necessary 

four conditions required for a deadlock to occur. In the field of Service-Oriented Architecture 

infrastructure, Lin Lou et al [125] have proposed a deadlock prevention strategy to eradicate 

the possibility of a deadlock that may be caused by resource locking based two-phase commit 

protocol. This requires that each transaction obtains all needed locks before the second commit 

phase. To solve this, they have utilized a timestamp-based restart policy for global resource 

allocation. Kamta [126] have also investigated the use of deadlock prevention algorithms in 

distributed systems. In the research, a voting and priority mutual exclusion-based approach 

has been utilized. To eradicate possible ties that may be caused by this approach, constraints 

such as Shortest Job Scheduling First and non-mask-able interrupts have been employed. The 

research has concluded that the proposed approach prevents processors from entering an idle 
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state and reduces problems like resource starvation and unfairness. As a result of this, 

throughput may be increased in the system. 

In the context of web Service-Oriented systems where the competition of resources by web 

services could lead to deadlock. Ding et al [127] have proposed a method to analyze and verify 

the deadlock prevention solutions using trace semantics of Communication Sequential 

Processes. The proposed formal modelling approach proved useful in the verification of 

deadlock solutions analyzed in the paper. Furthermore, in the context of Grid systems with 

resource sharing capabilities, simultaneous requests of co-allocation of resources by multiple 

applications could lead to deadlock. To address this problem, Chuanfu et al [128] have 

proposed a deadlock prevention method for the fast allocation of grid resources based on an 

atomic transaction. Utilizing this method, all resources required by a process at the time of the 

request are specified. The request succeeds if all the resources required are available. 

Otherwise, the request fails and none of the resources requested is granted. The proposed 

algorithm achieves a lesser average waiting time when compared to an existing algorithm 

(Order-based deadlock prevention protocol). 

In this research, the two preventive algorithms that have been explored are wound-wait and 

wait-die. Both algorithms use timestamp-based techniques and they favour the older 

processes with an older timestamp. These algorithms have been reviewed because they are fit 

for purpose with appropriate time complexity. They have also been used in a practical 

environment like database systems compared to other algorithms which are mostly 

theoretical. This is important as this research is mostly experimental. 

3.2.2.2.1 Wound-wait algorithm 

The wound-wait deadlock [124] prevention algorithm is a non-preemptive technique. Here, 

when an older process requests a resource that is currently held by a younger process, the 

younger process is rolled back. However, when a younger process requests a resource that is 
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held by an older process, the younger process waits. If 𝑃𝑖 and 𝑃𝑗 are both processes and 𝑃𝑖 

requests for a resource held by 𝑃𝑗. Then 𝑃𝑖 is rolled back if 𝑡(𝑃𝑖) > 𝑡(𝑃𝑗) . 𝑖. 𝑒 𝑃𝑖  𝑖𝑠 𝑦𝑜𝑢𝑛𝑔𝑒𝑟 else 

𝑃𝑖 can wait. Here, 𝑡(𝑃𝑖) and 𝑡(𝑃𝑗) are timestamps.  

3.2.2.2.2 Wait-die algorithm  

Wait-die deadlock [124] prevention algorithm is a preemptive technique. Here, when an older 

process requests a resource that is held by a younger process, the older process waits. 

However, when a younger process requests a process that is held by an older process, it dies. 

If 𝑃𝑖 and 𝑃𝑗 are both processes and 𝑃𝑖 requests for a resource held by 𝑃𝑗. Then 𝑃𝑗 is rolled back 

if 𝑡(𝑃𝑖) < 𝑡(𝑃𝑗) 𝑖. 𝑒 𝑃𝑖 is older. Where 𝑡(𝑃𝑖) and 𝑡(𝑃𝑗) are timestamps, else 𝑃𝑖 can wait.  

3.2.2.3 Deadlock Avoidance  

Deadlock prevention has been discussed in the last section. The drawbacks of using a 

prevention method are low device utilization and reduced system throughput. Alternatively, 

a deadlock avoidance mechanism could be used. In contrast to the prevention method, this 

works by requiring additional information on the complete sequence about how resources are 

to be requested.  With this prior information of the requests and resources, the system can 

decide if a process must either run or wait with the motive of avoiding a possible deadlock. 

For each request made, the system decides by considering the available resources, the 

resources currently allocated to each process, and future requests and release of resources by 

processes. For the avoidance method to work, the simplest model requires that the maximum 

amount of resources for each resource type is declared. With these data, the model ensures 

that a circular-wait condition never exists during the dynamic resource allocation. Any 

potentially unsafe resource request is denied. The system is said to be in a safe state if the 

maximum number of resources requested for each process can be allocated and there exists 

no possible sequence of future requests in deadlock. If a safe sequence exists, then the system 

is said to be in a safe state. There is a safe sequence of process [𝑃1, 𝑃2, 𝑃3 … 𝑃𝑛],  if the resource 
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request that would be made by each process 𝑃𝑖 can be satisfied by the currently available 

resources including resources held by all 𝑃𝑗 𝑤𝑖𝑡ℎ 𝑗 < 𝑖 [138]. A system is said to be in an unsafe 

state if it is not guaranteed that all possible sequences of future requests will not produce a 

deadlock. Not all unsafe states is a definite deadlock. However, it may lead to a potential 

deadlock in a system. There are two well-known deadlock avoidance algorithms which are 

the resource allocation graph algorithm and Banker’s algorithm.  

3.2.2.3.1 Resource Allocation Graph 

The resource allocation graph [129] is only used if the resource allocation system has only one 

instance of each resource type. It is one of the deadlock avoidance algorithms. While applying 

the resource allocation graph for deadlock avoidance, if a process 𝑃𝑖  requests for a resource 

𝑅𝑗, (𝑃𝑖 → 𝑅𝑗), the request is only granted if 𝑅𝑗 → 𝑃𝑖 does not lead to a cycle in the resource-

allocation graph. The safeness of the system is checked by using a cycle-detection algorithm 

which requires an order of 𝑛2 operations where 𝑛 is the number of processes in the system. 

3.2.2.3.2 Banker’s Algorithm 

For a resource allocation system with multiple instances of each resource type, the Banker’s 

algorithm [129] could be used because a resource-allocation graph is not appropriate to such 

a system. Banker’s algorithm is another algorithm for deadlock avoidance. If the Banker’s 

algorithm is used, then each process must declare the maximum amount of resources for each 

resource type that it will require to complete execution. This declared number must not exceed 

the total amount for each resource type in the system. If a process requests a resource, the 

system determines if allocating the resource will leave the system in a safe state. If true, the 

resources are allocated, otherwise, the process waits until some other process releases enough 

resources. Four data structures must be maintained while using the Banker’s algorithm. 

• Available: This is a vector of the number of available resources for each resource type. 

The length of the vector is 𝑚, where 𝑚 refers to the number of available resources. 
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• Max: This is a matrix of the maximum resource demand for each process. The matrix 

size is 𝑚𝑛 where 𝑚 is the number of available resources and 𝑛 is the number of 

processes. 

• Allocation: This is a matrix of the number of resources currently allocated for each 

process. The matrix size is 𝑚𝑛 where 𝑚 is the number of available resources and 𝑛 is 

the number of processes. 

• Need: This is a matrix of the remaining amount of resources that each process needs. 

The matrix size is 𝑚𝑛 where 𝑚 is the number of available resources and 𝑛 is the number 

of processes. 𝑁𝑒𝑒𝑑 = 𝑀𝑎𝑥 + 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

The time complexity to determine if a state is safe or not is 𝑚𝑛2. There has been a lot of research 

carried out in the improvement of Banker’s algorithm over the years. In each case, the 

algorithm is extended, improved, or applied in a different area in computer science. The most 

notable adjustments were made in 1999 [140], 2000 [141] and 2006 [142]. Sheau-Dong Lang 

[140] has assumed that the control flow of the resource-related calls of processes forms rooted 

trees. Based on this, he has proposed a quadratic-time algorithm that decomposes these trees 

into regions and computes the associated maximum resource claims before process execution. 

The information collected is used at runtime to verify the safeness of the algorithm using the 

original Banker’s algorithm.  

Tricas et al in 2000 [141] have applied Banker’s algorithm in the field of flexible manufacturing 

systems. They have modelled the problem using Petri nets and proposed two improvements 

based on the knowledge of process structure. Their research has proven that the improved 

algorithm has much more concurrency than the original Banker’s algorithm.   

Lee et al in 2006 [142] have also applied Banker’s algorithm in the design of system-on-a-chip. 

In the research, they have proposed a parallelized version of the Banker’s algorithm they 

termed PBA (Parallel Banker’s Algorithm). The proposed approach is fully hardware-oriented 
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and exploits the maximum parallelism available in hardware. According to their research, this 

has introduced complexity at the expense of reducing the runtime complexity of the algorithm 

to 𝑂(𝑛) in a worst-case scenario. 

Other deadlock avoidance algorithms have been developed. This includes the graphical 

deadlock avoidance algorithm [143] proposed by El-Kafrawy. To solve the deadlock 

avoidance problem for sequential resource allocation systems, a polynomial graphical 

solution has been employed. The graph updates dynamically each time a new resource is 

requested. Another example is the deadlock avoidance algorithm for streaming applications 

proposed by Li et al [144] using both a propagating algorithm and a non-propagating 

algorithm. 

3.2.3 Real-Time Scheduling  

In the previous section, different ways of handling deadlock have been reviewed with regards 

to resource management. Another important aspect of computational resource management, 

especially during computation resource provisioning is scheduling. Scheduling is important 

to ensure that each offloaded task is allocated enough time to complete execution. Therefore, 

minimizing resource starvation and ensuring fairness amongst the processes utilizing the 

resources. Therefore, various scheduling schemes have been reviewed in this section. 

In a trusted computing environment where high availability and reliability are important 

factors, often there is a specific response deadline time constraint the system must meet. If this 

is the case, the system is said to be a real-time system. The system may or may not meet this 

time constraint. This depends mainly on the capacity of the system to perform computations 

at a given time. In a real-time environment, there are multiple tasks with different criticality 

levels. The tasks could be either soft real-time, hard-real-time, or firm real-time.  

Assume a given set of tasks 𝑇 = {𝑡1, 𝑡2, 𝑡3 … 𝑡𝑛}. Task 𝑡𝑖 is said to be a hard real-time task if the 

execution of 𝑡𝑖 must be completed by a given deadline 𝐷𝑖 and 𝑊𝑖 ≤ 𝐷𝑖 where 𝑊𝑖 is the worst-
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case execution time of 𝑡𝑖. Task 𝑡𝑖 is said to be a soft real-time task if the penalty it pays increases 

as the 𝑟𝑖 increases. In this scenario, 𝑟𝑖 is the time elapsed between the deadline of 𝑡𝑖 and the 

actual completion time. The penalty function 𝑃(𝑡𝑖) = 0 if  𝑊𝑖 ≤ 𝐷𝑖 else 𝑃(𝑡𝑖) > 0. Task 𝑡𝑖 is said 

to be a firm real-time task if an increase in reward depends on how early 𝑡𝑖 finishes its 

computation before the given deadline 𝐷𝑖. The Reward function 𝑅(𝑡𝑖) = 0 if  𝑊𝑖 ≥ 𝐷𝑖 else 

𝑅(𝑡𝑖) > 0. In this research, two optimal Real-time scheduling algorithms which are Rate 

Monotonic Scheduling Algorithm (RMS) and the Earliest Deadline First algorithm (EDF) have 

been explored. These algorithms were selected because they are well-known baseline 

scheduling algorithms for real-time systems [145] and they also have a competitive time 

complexity. 

3.2.3.1 Rate Monotonic Scheduling Algorithm (RMS) 

The RMS Algorithm is a priority-driven algorithm with priorities well known before the 

arrival of the task. These priorities are determined by the period of each task and are the same 

for all instances of the same task. RMS is the most widely used real-time algorithm [145]. Some 

assumptions have been considered including the following: (i) The tasks have no precedence 

constraints and all tasks are independent. (ii) It is assumed that only processing requirements 

are significant. (iii) It is assumed that the tasks have no non-preemptable section and the cost 

of preemption is negligible. (iv) It is also assumed that the tasks are periodic and that 𝑡𝑖 has a 

higher priority than 𝑡𝑗  ⟺ 𝑖 > 𝑗. The shorter the period, the higher the priority. If a lower 

priority task 𝑡𝑗 is running and a higher priority task 𝑡𝑖 is waiting to run, 𝑡𝑖 will preempt 𝑡𝑗. 

RMS assigns higher priority to tasks that uses the CPU more often. RMS is referred to as 

optimal real time algorithm because if a  given set of processes cannot be scheduled by RMS, 

then it cannot be scheduled by any other algorithm that uses static priorities [138]. 
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3.2.3.2 Earliest Deadline First Algorithm (EDF) 

The EDF algorithm is also a priority-driven algorithm that assigns priorities according to tasks 

deadline. EDF gives a higher priority to a task 𝑡𝑖 that has an earlier deadline 𝑑𝑖. Time 𝑡𝑖 will 

always preempt a task with a lower priority 𝑡𝑗 which have a higher deadline 𝑑𝑗. EDF uses a 

dynamic priority assignment. The priority of the tasks is assigned as the tasks arrive based on 

the tasks’ deadline requirements. The priorities of other tasks may have to be adjusted to 

reflect the deadline of the newly runnable process. The following assumptions are made when 

using the EDF scheduling algorithm: (i) The tasks have no precedence constraints and all tasks 

are independent. (ii) It is assumed that only processing requirements are significant. (iii) It is 

assumed that the tasks have no non-preemptable section and the cost of preemption is 

negligible. The EDF algorithm has a worst-case runtime of 𝑂((𝑁+ ∝)2) where ∝ is the number 

of aperiodic tasks and 𝑁 is the total number of requests in each hyper-period of 𝑛 periodic 

tasks in the system [145]. EDF is referred to as an optimal uniprocessor real-time scheduling 

algorithm because it schedules tasks so that they meet their deadline requirement with 100% 

CPU utilization and if EDF cannot feasibly schedule a set of tasks on a uniprocessor then no 

other algorithm can. This is proved by using the time slice swapping technique [145]. 

 

3.3 Deadlock Aware Resource Provisioning in MEC using Bankers’ Algorithm. 

The previous section has reviewed the current resource provisioning frameworks proposed 

for MEC platforms, none of which are deadlock aware. Furthermore, the various ways of 

handling deadlock have been reviewed in a step to address the problem and bridge the gap. 

This research focuses on real-time systems. Hence, real-time scheduling algorithms have also 

been reviewed. Therefore, in this section, a deadlock aware resource provisioning framework 

has been proposed. The proposed algorithm utilizes Banker’s resource request deadlock 

avoidance algorithm. 
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Resource provisioning in MEC depicts a multiprogramming environment where several 

resources may compete for reusable resources. In the context of resource provision in MEC, 

several devices compete for limited reusable resources provided by the MEC platform. The 

idea is to schedule application tasks from mobile devices to MEC nodes for execution. Since 

there is a finite amount of resources in MEC, these must be managed effectively to prevent 

scheduling a task to an edge node that does not have adequate available resources to execute 

the offloaded task. This environment is usually prone to deadlock because a process may 

request resources that are held by another waiting process thereby leading to a circular wait 

[138].  Deadlock is an undesirable problem that has been studied extensively in operating 

systems [138], resource allocation systems [146], and manufacturing systems [147] [148]. MEC 

is a distributed system [21] and such systems are susceptible to deadlock. Therefore, it is 

crucial to employ adequate deadlock measures to ensure the reliability of the system [149].  

 

Deadlock-free operation is a key characteristic for industrial sites that require high reliability 

and availability from their infrastructure to achieve the daily goal of the industry. The 

standard toolset for deadlock detection is WFG [138]. In the absence of algorithms to detect 

and recover systems from deadlocks, a situation may occur where the system is in a deadlock 

state, and yet there is no way of recognizing what has happened. In this section, a deadlock 

aware algorithm for scheduling resources for IoT devices onto a MEC platform which 

incorporates Banker’s resource-request algorithm is presented. Bankers have been used as it 

guarantees deadlock-free operations as reviewed earlier. 
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Banker’s algorithm works by simulating and using specified resources to predetermine 

deadlock conditions for all pending activities and deciding if allocation should be allowed to 

continue. Banker’s algorithm requires three important inputs for execution which are the 

NEED matrix, MAX matrix, and available vector (AVAIL vector) [11]. Communication 

overhead is usually incurred while maintaining these required inputs. The proposed 

algorithm is more effective if implemented using Software Defined Networking (SDN) to 

reduce the impact of the communication overhead that would be generated by the resource-

request algorithm. The idea of separating the control plane from the data plane in SDN [16] 

means there would be less communication between the routers and switches because they 

share a centralized control plane. 

 

3.3.1 System Architecture  

Figure 13 shows a high-level view of the MEC topology adopted in this study. In this scenario, 

due to the resource and computation limitation of the IoT devices, they heavily depend on 

MEC nodes to execute their workload. Therefore, tasks are offloaded from the IoT devices to 

be executed on a MEC platform. The distributed edge nodes communicate with each other 

through SDN. Requests that cannot be processed on the edge node would be forwarded to the 

Figure 13 MEC Case Study Architecture for Industrial IoT 
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cloud through the API. To reduce latency, traffic to the cloud is generally avoided. The SDN 

controller uses its North Bound Interface (NBI) to communicate with the cloud and 

communication with the edge nodes is done using the South Bound Interface (SBI). Each edge 

node comprises of a monitoring tool that calculates the resource utilization of the MEC node 

(CPU, RAM, and Storage). This information is shared between the edge nodes as metadata. 

Therefore, each MEC node that forms a part of the network is assumed to keep the resource 

utilization information of its neighbouring nodes. This helps the edge nodes decide the most 

suitable edge if re-offloading is required. This process has been explained further, later in this 

chapter. 

Each edge node in the network sends updated metadata after each event. This metadata 

describes the resource utilization of the edge node after the event. The term network is used 

here loosely to describe the Multi-access edge architecture. 

3.3.2 Deadlock in Distributed MEC  

To describe the deadlock condition in distributed MEC, let’s assume a set of processes 𝑃 =

{𝑝1, 𝑝2. . 𝑝𝑛} and a set of resources 𝑅 = {𝑟1, 𝑟2. . , 𝑟𝑚}, where 𝑛 and 𝑚 are the number of processes 

and resources respectively. These resources and processes are present in the collaborative 

MEC space. However, they might not reside in the same MEC. Deadlock occurs if a process 

𝑝𝑖  is waiting for a resource 𝑟𝒂 that is currently held by another process 𝑝𝒋. Additionally, 𝑝𝒋 is 

waiting for a resource 𝑟𝒃  that is currently held by 𝑝𝑖. If either 𝑝𝑖  nor 𝑝𝑗  can be preempted 

while in a waiting state, the system would be in a deadlock. 

 

3.3.3 System Model 

Let us consider a distributed architecture that consists of a pool of MEC nodes that is used as 

a platform for resource provisioning. The tasks seeking to be offloaded will utilize the MEC 

resources through a request-response mechanism. Hence the problem can be modelled as a  
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System Model Parameters Section 3.4.3 

Notation Meaning 

𝑃 Set of processes 
𝑝𝑖  Process with index 𝑖 
𝑅 Set of resources 
𝑟𝑖 Resource with index 𝑖 

𝐶𝐿 Set of edge nodes 
𝐶𝑙𝑖  Edge node 
𝑀 Set of IoT devices 

𝑚𝑠 IoT device 
𝑐ℎ Channels 
𝑘 CSMA/CA back-off time out order 

𝜏𝑑𝑙 Real-time deadline 

𝑊 Set of tasks 
𝑇𝑖  Task to execute 

[𝑐𝑖, 𝑚𝑖, 𝑛𝑖, 𝑑𝑖] CPU, memory, network, and data size respectively 

𝛼𝑖  Fraction of 𝑑𝑖 to be executed 

𝑙𝑖  Offloadable data size 
𝑡𝑖  Transmission time 
𝑟𝑖  Transmission rate 
𝑃𝑖  Power 
𝑔𝑖  Gain 
𝐵 Bandwidth  
𝑁0 Noise density 

𝐸𝑖,𝑜𝑓𝑓 Offload Energy 

 𝜏𝑙𝑜𝑐𝑎𝑙 time spent to calculate if the task is offloaded 

𝜏𝑟𝑜𝑢𝑡𝑒 Routing time  

𝜏𝑤𝑎𝑖𝑡   Task waiting time on the edge 

𝑆𝑖𝑧𝑒𝑟 Size of the ready queue 
𝑀𝐴𝑋 Max amount of resource 

𝐴𝑉𝐴𝐼𝐿 Amount of available resources  
𝑁𝑇𝑜𝑡𝑎𝑙  Total task submitted to the edge node 
𝑡𝑟𝑚𝑠 Time to schedule task by RMS 
𝑁𝑜𝑐  Number of tasks offloaded 
𝑡𝑏𝑎 Time for bankers to find safe seq. 
𝑇𝑇 Expected turnaround time 

𝑁𝑟𝑒𝑜𝑓𝑓  number of tasks to be re-offloaded 

 

Directed Regular Graph. Due to the high volume of offloading traffic from the underlying 

scalable network, the target scenario stands out to be a soft real-time system. Let’s consider a 

mesh network of a finite non-empty set of edge nodes CL ={𝐶𝑙1, 𝐶𝑙2 … 𝐶𝑙𝑛} and a finite non-

empty set of IoT devices M ={𝑚𝑠1, 𝑚𝑠2 … 𝑚𝑠𝑛} connected to the edge network such that 𝑚𝑠𝑖 ∈

𝑀 and 𝐶𝑙𝑗 ∈ 𝐶𝐿 maintains a disjoint many-to-one cardinality. Here an edge node is connected 

to many IoT devices, but no IoT device is connected to multiple edge nodes. Communication 

between CL and M happens over a wireless band with a fixed number of channels 
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{𝑐ℎ𝑖|1 ≤ 𝑖 ≤ 𝑘} and collision is managed by the CSMA/CA protocol [150, p. 12]. As the 

number of channels is fixed, the optimal multi-access mechanism would be CSMA/CA [151]. 

The CSMA/CA maintains a back-off time, less than the real-time deadline 𝜏𝑑𝑙 making the 

system scalable and dynamic. The system model comprises the communication model and 

the computation model. The communication model deals with the optimization of 

communication parameters for better energy savings while the computation model deals with 

the optimization of the execution time with deadlock immunity. 

3.3.3.1 Communication Model  

Let’s consider a workload W = {𝑇1, 𝑇2 … 𝑇𝑛} which contain a set of tasks to be offloaded by a 

mobile station. Each task 𝑇𝑖 is characterized by [𝑐𝑖, 𝑚𝑖, 𝑑𝑙𝑖, 𝑑𝑖] which denotes CPU, memory, 

deadline, and data size respectively. During the IoT application development, the developer 

specifies which part of the total workload can be offloaded (Remotable Object) and which part 

must be executed locally. 𝑊 is the partition marked to be offloaded. A similar method is used 

by Microsoft’s MAUI [85] to partition .Net applications to be partially offloaded based on the 

device condition. The transmission time 𝑡𝑖  = (
𝑑𝑖

𝑟𝑖
) where 𝑟𝑖 is the transmission rate. Let’s 

assume that the channel is Additive White Gaussian Noise [152] (AWGN) in nature. In an 

AWGN channel 𝐶𝑖 between 2 antennas with 𝑅 distance apart and transmission power 

𝑃𝑅 𝑎𝑛𝑑 𝑃𝑇 with gains 𝐺𝑅 and 𝐺𝑇 respectively. According to Friis transmission equation, 

𝑃𝑅 =
𝑃𝑇𝐺𝑇𝐺𝑅𝑐2

(4𝜋𝑅𝑓)2
∝ 𝑃𝑇𝐺2  (∵ 𝐺𝑡 = 𝐺𝑟 = 𝑔) 

 (1) 

 

where 𝑓 is the frequency and 𝑐 is the speed of light. Therefore, 𝑟𝑖 can also be expressed as the 

following using Shannon theorem for the same channel 𝐶𝑖 as 

 

𝑟𝑖 = 𝐵 log2 (1 +
𝑃𝑖𝑔𝑖

2

𝑁0𝐵
) 

 (2) 
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Here, 𝑃𝑖 is the received power (𝑃𝑅) measured in 𝑚𝐽, B is the bandwidth, g is the channel gain 

and P is the transmission power. The equation can be rewritten for 𝑃𝑖 as equation (3) 

𝑃𝑖 =
𝑁0𝐵 (2

𝑟𝑖
𝐵 − 1)

𝑔𝑖
2 =  

1

𝑔𝑖
2 ℎ (

𝑑𝑖

𝑡𝑖
) 

 (3) 

where 

ℎ(𝑥) = 𝑁0𝐵 (2
𝑥
𝐵 − 1) 

 (4) 

 

which is monotonically increasing with x. Hence the energy consumption for the offloading 

task is equation (5) 

𝐸𝑖,𝑜𝑓𝑓 =
𝑑𝑖𝑃𝑖

𝑟𝑖
=  𝑡𝑖𝑃𝑖 =  

𝑡𝑖

𝑔𝑖
2 ℎ (

𝑑𝑖

𝑡𝑖
) 

 (5) 

                      

Therefore, 𝐸𝑖,𝑜𝑓𝑓 = 𝑂(𝑡𝑖) . Energy optimization can be obtained by the following model. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝐸𝑠𝑎𝑣𝑒𝑑 = ∑ (𝐸𝑖,𝑙𝑜𝑐𝑎𝑙 − 𝐸𝑖,𝑜𝑓𝑓𝑙𝑜𝑎𝑑)

𝑖 ∈ 𝑊

 
 (6) 

subject to, 

𝜏𝑖,𝑙𝑜𝑐𝑎𝑙 + ∑ 𝜏𝑖,𝑟𝑜𝑢𝑡𝑒 

𝑖∈𝑊

+ ∑ 𝜏𝑖,𝑤𝑎𝑖𝑡

𝑖∈𝑊

 ≤ 𝜏𝑖,𝑑𝑙𝑖
 

 (7) 

 

where 𝜏𝑖,𝑙𝑜𝑐𝑎𝑙 is the time spent to calculate if the task is offloaded, 𝜏𝑖,𝑟𝑜𝑢𝑡𝑒 is the time spent in 

routing the task from the local device to the edge for execution while 𝜏𝑖,𝑤𝑎𝑖𝑡  includes all other 

time delays the task waits before being executed. 𝜏𝑖,𝑑𝑙𝑖
 is the task deadline. The edge nodes are 

assumed to be in a mesh topology therefore, the maximum hop distance is 1. Hence, 𝜏𝑖,𝑟𝑜𝑢𝑡𝑒 

can be assumed as 𝑂(1). The 𝜏𝑖,𝑤𝑎𝑖𝑡 includes CSMA/CA binary exponential back-off, encoding 

delay, multiplexing delay, propagation delay, service etc. However, the binary backoff time 

is exponential while the rest is polynomial. Therefore, we assume the overall wait 

time 𝜏𝑖,𝑤𝑎𝑖𝑡 = 𝑂(𝑛𝑘) . As deadlock freezes the system, the waiting time keeps increasing by 2𝑘 
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until it reaches the maximum k value and times out due to CSMA/CA binary exponential back-

off characteristics [150].  

3.3.3.2 Computation Model  

Computation starts after the offloaded data stream is received by a MEC node. Here a decision 

is made whether the requested task either gets executed on the subjected edge node or re-

offloaded to another one. The decision is made based on the resource request WFG of each 

edge node and the availability of the other nodes in the mesh. Hence the system is a mesh of 

interconnected priority queues. Note that the WFG is made for each MEC node and not 

distributed across all nodes. The priority is based on a safe sequence from the Banker’s 

algorithm which guarantees no deadlock using a preventive and avoidance measure. The 

precomputing delay contributes to 𝜏𝑖,𝑤𝑎𝑖𝑡 and ensures it is below the deadline.  

The edge node maintains two queues. First, a prioritized job queue whose priority is 

maintained by the real-time scheduler (Rate Monotonic Scheduler (RMS)). To achieve real-

time criteria, RMS suggests that frequently occurring tasks should be given higher priority 

[153]. Tasks get popped out in the job queue in FIFO order and then checked if the requested 

resource can be accommodated by the subjected edge node 𝐶𝑙𝑠. If not, it finds another edge 

node 𝐶𝑙𝑑 that is most eligible and offloads. If 𝐶𝑙𝑑 executes the task on time, then 𝐶𝑙𝑠 increases 

the 𝑑𝑡ℎ index on its 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦𝑠 vector that it maintains, otherwise it decreases. This affinity 

vector is initialized with 0 and used to maintain reliability record and tie-breaker purpose. A 

Request ≤ Available is said to be valid and put into the Ready Queue which is finite with size 

𝑆𝑖𝑧𝑒𝑟 and prioritized with Banker’s generated safe sequence. 

𝑆𝑖𝑧𝑒𝑟 = [
𝐵𝐷𝑃

𝑚𝑒𝑎𝑛(𝑙)
] = [

𝑛𝐵 𝑅𝑇𝑇

2 ∑ 𝑑𝑖
𝑛
𝑖=1

] 
 (8) 

 

BDP shows the number of bits the channel can accommodate, hence the ratio of BDP and the 

average task is the number of tasks that can be queued ensuring mutual exclusion property. 
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When a task is inserted into a ready queue, it gets an index based on its resource requirement. 

Starvation is handled with ageing. If a task 𝑇𝑖 gets placed into a ready queue with index v, 

then the expected turnaround time 𝑇𝑇(𝑇𝑖) = 𝑣 ∗ 𝑎𝑤𝑡𝑠 where 𝑎𝑤𝑡𝑠 is the average waiting time 

of the edge node 𝐶𝑙𝑠. 

In the worst-case scenario, for n processes and m resources Banker’s algorithm takes 𝑂(𝑛2𝑚) 

time. Since the number of resources is fixed (K), which are the CPU, memory, and data size. 

Hence the time complexity is  𝑂(𝑛2𝐾) = 𝑂(𝑛2). Since the algorithm is applied to the ready 

queue, the maximum task it can retain is 𝑠𝑖𝑧𝑒𝑟. Hence, the Banker’s algorithm takes 𝑂(𝑠𝑖𝑧𝑒𝑟
2) 

to generate a safe sequence. 

Lemma 1: The consumed energy for offloading and the transmission time, shares a linear relationship. 

Proof.   From equation 3 & 4 it can be inferred that, the partial relationship between 𝐸𝑖,𝑜𝑓𝑓 & 𝑡𝑖 

for a given gain (𝑔𝑖) and offload size (𝑑𝑖) is,  

𝐸𝑖,𝑜𝑓𝑓 =  
𝑡𝑖

𝑔𝑖
2 ℎ (

𝑑𝑖

𝑡𝑖
) = 𝑡𝑖2

1
𝑡𝑖 

 (9) 

Using asymptotic analysis of the given function, 

𝑂(𝐸𝑖,𝑜𝑓𝑓) = 𝑂(𝑡𝑖) × 𝑂 (2
1
𝑡𝑖) 

 (10) 

Figure 14 Energy Characteristics Obtained from equ.8 using the following 𝑡𝑖 range [1,10,20,30,40,50,60,70,80,90,100] 
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Now the second element is a monotonically decreasing sequence with a lower bound 𝑂. 

Hence, it has a constant asymptotic upper bound 𝑐 ∈ 𝑅, therefore 𝑂(1). 

Hence,    

𝑂(𝐸𝑖,𝑜𝑓𝑓) = 𝑂(𝑡𝑖) × 𝑂(1) = 𝑂(𝑇𝑖)  (11) 

This can be verified by plotting equation 8. (Figure 14) 

3.3.4 Proposed Resource Provisioning Algorithm (RPA) 

In this section, the design and analysis of the proposed resource provisioning algorithm (RPA) 

have been discussed. The algorithm fetches tasks from the task queue, which is RMS 

scheduled, therefore most frequently used tasks get higher priority. Tasks from the Job queue 

then migrates to the ready queue. The proposed algorithm alters the order in which the tasks 

leave the job queue and stays in the ready queue. The following are the criteria used for the 

ordering.  

Algorithm 1: Resource Provisioning Algorithm (RPA) 

𝑰𝒏𝒑𝒖𝒕: 𝑊 [𝑐𝑖 , 𝑚𝑖 , 𝑑𝑙𝑖 , 𝑑𝑖] 
𝑶𝒖𝒕𝒑𝒖𝒕: 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 𝑃𝑙𝑎𝑛 𝑓𝑜𝑟 𝑡𝑖 
𝑺𝒕𝒆𝒑𝒔 

1. 𝑫𝒐 
2. 𝐽𝑜𝑏. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑡𝑖) 
3. 𝑘 ← 0 ; 𝑚𝑎𝑥𝑘 = 𝑖𝑛𝑝𝑢𝑡("𝑀𝑎𝑥 𝑟𝑒𝑡𝑟𝑦 𝑎𝑡𝑡𝑒𝑚𝑝𝑡") 
4. 𝑾𝒉𝒊𝒍𝒆 (𝑅𝑒𝑎𝑑𝑦. 𝑖𝑠𝑓𝑟𝑒𝑒( ) = 𝑡𝑟𝑢𝑒) 𝒅𝒐 
5.      𝑅𝑒𝑎𝑑𝑦. 𝑖𝑛𝑠𝑒𝑟𝑡(𝐽𝑜𝑏. 𝑑𝑒𝑙𝑒𝑡𝑒(𝑡𝑖)) 
6.      𝐽𝑐𝑢𝑟 ← 𝑅𝑒𝑎𝑑𝑦. 𝑑𝑒𝑙𝑒𝑡𝑒(𝑡𝑖) 
7.      𝐽𝑐𝑢𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 
8.      𝒊𝒇 𝐽𝑐𝑢𝑟. 𝑀𝐴𝑋 < 𝑛𝑜𝑑𝑒. 𝐴𝑉𝐴𝐼𝐿: 
9.           𝑖𝑛𝑑 = 𝑏𝑎𝑛𝑘𝑒𝑟𝑠(𝐽𝑐𝑢𝑟) 
10.           𝑇𝑖𝑚𝑒 = (𝐴𝑊𝑇) ∗ (𝑖𝑛𝑑) 
11.           𝒊𝒇 𝑇𝑖𝑚𝑒 < 𝑑𝑙𝑖: 
12.                𝐴𝑠𝑠𝑖𝑔𝑛 
13.           𝑬𝒍𝒔𝒆  
14.                𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 17 
15.           𝑬𝒏𝒅 𝒊𝒇 
16.      𝑬𝒍𝒔𝒆 
17.           𝐹𝑖𝑛𝑑 𝐶𝑙𝑑  𝑓𝑟𝑜𝑚 𝐶𝐿[𝑛𝑜𝑑𝑒𝑠]: 
18.           𝑀𝑎𝑥(𝐶𝑙𝑑 . 𝐴𝑉𝐴𝐼𝐿 − 𝐽𝑐𝑢𝑟. 𝑀𝐴𝑋) 
19.           𝑠𝑒𝑛𝑑(𝐽𝑐𝑢𝑟) 
20.           𝑊𝑎𝑖𝑡 𝑢𝑛𝑡𝑖𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 
21.           𝒊𝒇 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠: 
22.                𝑹𝒆𝒕𝒖𝒓𝒏 𝑟𝑒𝑠𝑢𝑙𝑡 
23.           𝑬𝒍𝒔𝒆 𝑤𝑎𝑖𝑡(2𝑘++)  𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 
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• Case 1 – Over Provisioning: Each task comes with its maximum resource need, 

recorded in the MAX vector. If the maximum need exceeds the total available 

resources, then it searches for a MEC node that satisfies the constraint. If no such MEC 

node is found the task waits for a certain amount of time which increases in a binary 

exponential order with each iteration of the request before it times out. 

• Case 2 - Safe Request: if the MAX is less than the current node’s AVAIL then the task 

enters Banker’s safe state algorithm and be given a safe sequence index at which the 

task gets executed. Banker’s algorithm guarantees a safe sequence that never causes 

deadlock. 

• Case 3 - Time feasibility: A resource-intensive task in a resource constraint MEC may 

suffer from starvation by waiting. Ageing is used here to improve waiting time, 

although it requires the process to stay waiting to age. Hence the algorithm calculates 

waiting time by the product of the average waiting time of the current node and the 

index of the task. If the waiting time exceeds the soft deadline of the task, it finds an 

alternative node to meet the criteria.   

A task is said to be feasible if it doesn’t overdemand and the generated waiting time is less 

than its latency constraint. The waiting time of a task is the product of the average waiting 

time of the executing node 𝐶𝑙𝑖 and the safe index Bankers’ algorithm produces. The algorithm 

allows a feasible task to execute locally else it gets executed remotely. A task that demands 

resources that are not available on the local MEC or a task with unsuccessful execution by a 

remote MEC must be kept on waiting until timeout. The waiting period increases with a 

24.                𝒊𝒇 (𝑇𝑖𝑚𝑒𝑜𝑢𝑡 𝑜𝑟 𝑘 = 𝑚𝑎𝑥𝑘): 
25.                     𝑹𝒆𝒕𝒖𝒓𝒏 𝐹𝑎𝑖𝑙 
26.                𝑬𝒏𝒅 𝒊𝒇 
27.           𝑬𝒏𝒅 𝒊𝒇 
28.      𝑬𝒏𝒅 𝒊𝒇 
29. 𝑬𝒏𝒅 𝑳𝒐𝒐𝒑 
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binary exponential order with each attempt. A registry is also maintained to keep track of the 

tasks submitted for remote execution and their status.  Figure 15 depicts the complete 

workflow of RPA. 

Lemma 2: RPA is not suitable for hard real-time but soft real-time tasks. 

The response time of the algorithm depends on various timing factors such as  

i. Queuing Delay: Takes place due to processing overhead, context switching, etc. of other 

processes rather than the subjected one. It also depends on the system state and load.  

ii. Transmission Delay: The total time taken for an offloaded task to return to the UE includes 

the transmission delay which varies with the size of the offloaded task and the available 

bandwidth.  

 The given uncertainty conditions make a hard deadline infeasible as opposed to a soft 

deadline (lemma 3), hence the statement. 

Lemma 3: If there exists a feasible MEC node for a task, RPA handles the task within a finite time. 

Figure 15 RPA Workflow: Algorithm Workflow Structure that has been adapted for modelling the task 

flow from the end device to the MEC node for processing 
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To prove the lemma, each of the three feasibility cases discussed earlier as a task waits a finite 

amount of time under RPA are studied.  

• Case 1: If the task over demands-resources to its original MEC node and a remote node 

failed to execute, it must wait twice the time for resubmission hence the timeout occurs 

in log2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 iteration.  

• Case 2: if the task makes an unsafe request, it looks for a remote node to get offloaded. 

Since all the AVAIL information is reactively shared and the decision is made based 

on the global map of AVAILs. Therefore, the task gets offloaded only once and onto 

the optimal remote MEC node. This prevents node hopping and total execution time 

can be 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑙 + 𝑇𝑟 + 2𝐶𝑙𝑟 where 𝑇𝑙 , 𝑇𝑟  & 𝐶𝑖𝑗 are local execution, remote execution, 

and transmission time respectively. 

• Case 3: If a task makes a safe request but has a large NEED, it must wait for the 

resources to be available. If a remote node can execute it in less time, it is offloaded 

(𝑇𝑙 < 𝑇𝑟).  Therefore, this guarantees the optimal remote node selection.       

 

3.3.5 Simulation  

Simulations have been carried out to demonstrate the validity of the proposed technique. The 

simulations are based on the complexity analysis of the algorithm and energy optimization as 

discussed in the previous section. The energy, 𝐸𝑖,𝑜𝑓𝑓 is required by an edge node 𝐶𝑙𝑠 to offload 

a task of 𝑑𝑖 𝑠𝑖𝑧𝑒 for 𝑡𝑖 unit time through a channel link of 𝐵𝑖 bandwidth using an antenna of 

𝑔𝑖 and noise density 𝑁0 is equation (12). 
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𝐸𝑖,𝑜𝑓𝑓 =
𝑡𝑖

𝑔𝑖
2 𝑁0𝐵 (2

𝑑𝑖
𝐵𝑡𝑖 − 1) 

 (12) 

Since gain, bandwidth, data size, and noise density are predetermined by the communication 

system, hence the relation can be reformulated into an asymptotic upper bound form as 

equation (13). 

𝐸𝑖,0𝑓𝑓 = 𝑂 (𝑡𝑖
𝑙 . 2

𝑑𝑖

𝑡𝑖
𝑙
) 

 (13) 

The graph in Figure 16 shows a critical value of transmission time and payload length as the 

energy consumption of the antenna rises exponentially. The context suggests that if there’s a 

deadlock then the waiting time component will increase indefinitely resulting in significantly 

large energy consumption. Since the transmission time is a function of the data length and a 

constant data rate, therefore the transmission time is a random variable distributed over a 

Bernoulli’s PDF. To find the expectation (E) this can be shown that the surface integral in 

equation (14) cannot be expressed in a closed-form. 

Figure 16 Offload Energy Characteristics using equ.13 with varying range of transmission time and offload size [0-50] 
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𝐸 = ∫ ∫ 𝑡𝑖2
𝑑𝑖
𝑡𝑖 𝑑𝑡𝑖𝑑𝑥𝑖.

𝜏𝑖,𝑑𝑙𝑖

0

𝐵𝐷𝑃
𝑛

0

 
 (14) 

Equation (14) states the growth rate of 𝐸𝑖,𝑜𝑓𝑓 where 𝑥𝑖 = 𝑑𝑖. Plotting this growth characteristic 

within a close range of [0, 50], the response characteristic surface in Figure 16 is obtained. Each 

spike on the graph depicts the exponential growth of energy discussed earlier. With an 

increase in transmission time and length, the peak energy consumption grows at a constant 

rate of ln 2. The growth characteristics of the 𝐸𝑖,𝑜𝑓𝑓 in equation (13) can also be shown by the 

partial derivatives with respect to transmission time  (𝑡𝑖) and offload length(𝑙𝑖) 

 

𝜕2𝐸𝑖,𝑜𝑓𝑓

𝜕𝑙𝑖𝜕𝑡𝑖

= − (ln 2
2

𝑑𝑖
𝑡𝑖

𝑡𝑖

  ). 

 (15) 

 

The surface plot of the equation (15) is depicted in Figure 18. 

Analytically, equation (15) signifies the rate of change of energy consumption with respect to 

varying offload length and latency. The value of (𝑡𝑖, 𝑑𝑖) is taken in a close range. It can be 

shown in Table 4 that the growth gets steeper as the range increases. It can be observed that 

the plot saturates after the range [1,40].  

Table 4 Energy Growth in discrete-time and size from equ 14 

(𝑡𝑖, 𝑑𝑖) range Rate of change of 𝐸𝑖,𝑜𝑓𝑓 

[1,10) 𝟑. 𝟓 × 𝟏𝟎𝟐 

[1,20) 𝟑. 𝟓 × 𝟏𝟎𝟓  

[1,30) 𝟑. 𝟓 × 𝟏𝟎𝟖 

[1,40] 𝟑. 𝟓 × 𝟏𝟎𝟗 

[1,100] 𝟑. 𝟓 × 𝟏𝟎𝟗 
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3.3.5.1 Simulation Results 

Since there exist no related experiments with MEC context in the literature, experiments have 

been performed by comparing the results of a system with and without using RPA.    

Figure 17 shows time comparison graphs between a system with no deadlock prevention 

measures and a system running the proposed algorithm. The graphs have been plotted with 

their corresponding time complexities for n number of tasks subject to a constant k (timeout 

order: this value is application dependent). It can be seen in Figure 17 that as k increases, the 

time consumption of the system with no deadlock measures surpasses the system running the 

proposed algorithm. Since time is directly proportional to energy, it can be deduced that the 

algorithm optimizes the energy of a system by eliminating deadlock. 

3.3.6 Complexity Analysis 

If 𝑁𝑇𝑜𝑡𝑎𝑙 tasks are submitted to an edge node, the job queue will hold them in priority as 

generated by the RMS algorithm which takes 𝑡𝑟𝑚𝑠 time. Based on tasks’ request and the 

Figure 17 Comparison of Time Consumption of System With & Without Using RPA 
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subjected edge node’s availability or resources, 𝑁𝑜𝑐  tasks are offloaded to an eligible edge 

node 𝐶𝑙𝑗 as an overcommitted task. An efficient binary search implementation can find such 

𝐶𝑙𝑗 in log2 𝑐 − 1 time. The remaining 𝑁𝑇𝑜𝑡𝑎𝑙 −  𝑁𝑜𝑐 tasks will be put into Banker’s algorithm 

that takes 𝑡𝑏𝑎 time to find the safe sequence in a worst-case scenario. If a task 𝑇𝑖 gets a safe 

index v, and the 𝑇𝑇(𝑇𝑖) > 𝑄(𝑑𝑙𝑖) then, the task will be offloaded to another MEC node that 

can perform the execution within the deadline. The function queue calculates the probability 

of executing the task and maintaining the deadline after all the communication and queuing. 

This is done by maintaining the affinity matrix. Hence, the time complexity of 𝑄 is 

𝑁𝑟𝑒𝑜𝑓𝑓 log2 𝑁𝑟𝑒𝑜𝑓𝑓, where 𝑁𝑟𝑒𝑜𝑓𝑓 is the number of tasks to be re-offloaded. Therefore, the 

maximum time a task can take to be executed if it got offloaded twice and being the lengthiest 

task can be expressed as 

𝑇𝑚𝑎𝑥 = 2[𝑙𝑛2 + log2(𝑐 − 1) + 3(𝑁𝑇𝑜𝑡𝑎𝑙 − 𝑁𝑜𝑐)2 

                                  + 𝑁𝑟𝑒𝑜𝑓𝑓 log2 𝑁𝑟𝑒𝑜𝑓𝑓 + 𝑟𝑡𝑡] + 𝑡𝑒𝑥𝑒𝑐 

 

 (16) 

The worst-case complexity of RMS and Bankers algorithm can be deduced to 𝑙𝑛2 and 3𝑛2 

respectively. 

FIGURE 18 Growth Characteristics of The Rate Of Change In Offload Energy With Varying Latency And Offload Length In 

A Close Range using equ14. Slope Gets Steeper With Increasing Range, Saturates At [1,40] 
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TABLE 5 ALGORITHMS USED DURING EXPERIMENT 

Deadlock Prevention Schemes 

Wait-die Algorithm  

Wound Wait algorithm  

Deadlock Avoidance Scheme Bankers resource request algorithm  

Realtime scheduling Schemes 

Rate monotonic scheduling algorithm  

Earliest Deadline First Algorithm 

 

3.4 Comparative Analysis for Deadlock Avoidance and Prevention for MEC 

In this section, a comparative study is done on deadlock avoidance and deadlock prevention 

algorithms for MEC environments. Here 6 case study algorithms have been considered based 

on the framework proposed in Figure 15 [100]. Each compared algorithm is composed of a 

deadlock algorithm and a real-time scheduling algorithm. The algorithms used for this design 

can be seen in Table 5. 

Six compared algorithms have been considered as shown in Table 6. The algorithm workflow 

for each of the six algorithms is the same structure as is in Figure 15. Tasks are sent from the 

end device to the local edge node for resource provisioning. In the MEC node, tasks are put 

into a job queue and the queue is prioritized using a real-time scheduling algorithm. Then a 

deadlock algorithm is employed to reduce or eradicate the chances of deadlock. Thereafter, 

waiting time is calculated for each task received and an assumed finishing time 𝑃𝑡𝑖 for each 

task 𝑡𝑖 is estimated. If 𝑃𝑡𝑖 < 𝐷𝑡𝑖 where 𝐷𝑡𝑖 is the deadline for task  𝑡𝑖, then a MEC 𝑀𝑖 is identified 

that meets the deadline requirement using a cooperative decision algorithm. This algorithm 

is detailed in section 3.4.5.7. If such MEC is not found, then the tasks are sent to the central 

cloud to be executed and the MEC node acts as a proxy. For each of the compared algorithm, 

this structure remains the same but appropriate real-time algorithm and deadlock algorithm 
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is utilized. Further details about the algorithm structure are detailed in the previous section 

[100].  

 

 

3.4.1 System Model for Comparative Analysis 

In this section, a distributed architecture has been considered that consists of a pool of MEC 

nodes. A finite non-empty set of MEC servers in the same cluster is denoted as ℳ =

{𝑀1, 𝑀2. . , 𝑀𝑛}. Let’s assume that a finite non-empty set of end devices  𝒰 = {𝑢1, 𝑢2. . , 𝑢𝑛} are 

connected to the edge network such that 𝑢𝑖 ∈ 𝒰 𝑎𝑛𝑑 𝑀𝑗 ∈ ℳ maintains a disjoint many-to-one 

cardinality. Hence, an edge server is connected to many end devices, but no end device is 

connected to multiple edge servers.  Each 𝑢𝑖 has a workload 𝑊𝑢𝑖
= [𝑇1

𝑢𝑖 , 𝑇2
𝑢𝑖 , . . 𝑇𝑛

𝑢𝑖] which 

contains an array of tasks to be executed. For each 𝑇𝑗
𝑢𝑖 in 𝑊𝑢𝑖

 the 𝑢𝑖 computes an offloading 

decision 𝑎𝑗  ∈ {0,1}, where 𝑎𝑗 = 0, 𝑎𝑗 = 1 represents “execute locally” and “offload”, 

respectively. It is assumed that the end device makes an offloading decision based on its 

battery life and computational resources. Let’s assume that each 𝑢𝑖 is connected to the closest 

𝑀𝑗 and hence offloads all 𝑇𝑗
𝑢𝑖  ∈ 𝑊𝑢𝑖

 𝑠. 𝑡 𝑎𝑗 = 1. For each 𝑇𝑗
𝑢𝑖  that is offloaded the 𝑢𝑖 also sends 

a requirement vector 𝑅𝐸𝑄 = {𝑐𝑖𝑚𝑖 , 𝑙𝑖, 𝑠𝑖} that is characterized by CPU cycles, memory, 

maximum latency, and data size respectively. 

TABLE 6 COMPARED ALGORITHMS 

Alias Compared Algorithms 

𝐴𝐿𝐺1 RMS and Banker algorithm  

𝐴𝐿𝐺2 EDF and Banker algorithm 

𝐴𝐿𝐺3 RMS and Wound Wait 

𝐴𝐿𝐺4 RMS and Wait die 

𝐴𝐿𝐺5 EDF and Wound Wait 

𝐴𝐿𝐺6 EDF and Wait Die 
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3.4.2 Computational Model for Comparative Analysis 

Let’s denote the computation capacity of each MEC 𝑀𝑗 in ℳ as 𝒮𝑀𝑗
. This is the CPU frequency. 

Let’s assume that each 𝑀𝑗 maintains a queue 𝑄𝑀𝑗
= [𝑇1

𝑢, 𝑇2
𝑢 … 𝑇𝑛

𝑢] of tasks offloaded to 𝑀𝑗. The 

execution time of a task 𝑇𝑖
𝑢 offloaded to 𝑀𝑗 𝑖𝑠 

The waiting time for a newly added task 𝑇𝑛+1
𝑢  𝑖𝑠 

𝑊𝑇𝑛 =  ∑ 𝑓𝑖

𝑛

𝑖=1

 
 (18) 

Therefore, the total processing delay 𝒦𝑖 for 𝑇𝑖
𝑢 is 

𝒦𝑖 = 𝑊𝑇𝑛 + 𝑓𝑖  (19) 

 

 

TABLE 7 MEANING OF PARAMETERS FOR COMPARATIVE ANALYSIS SYSTEM MODEL 

Notation Meaning 

ℳ Denotes a cluster of MEC nodes 
𝑀𝑗 Denotes a MEC node 

𝒰 Set of end devices 
𝑢𝑖 Denotes end device 

𝑊𝑢𝑖
 The total workload for an end device 𝑢𝑖 

𝑇𝑗
𝑢𝑖  The task for an end device 𝑢𝑖 

𝑅𝐸𝑄 Requirement vector  
𝒮𝑀𝑗

 CPU frequency  

𝑓𝑖 The execution time of the task 𝑇𝑖
𝑢 

𝑊𝑇 Waiting time 
𝒦𝑖  Processing delay 
ℋ𝑖 Communication cost 

𝑡𝑟𝑀𝑗
 Transmission rate of 𝑀𝑗 

𝑅𝐸𝑆 Required resource type 
|𝑅𝑇| 

𝑃 

number of resource-type 
set of processes 

𝑀𝐴𝑋 max resource for each 𝑅𝐸𝑆 
𝜏𝑖 The time period for EDF 
𝐷𝑖  Deadline 
𝐸 Constraints for EDF 

𝑊𝑤 Constraints for wound-wait 
𝑊𝑑 Constraints for wait-die 

𝐵𝐴(𝑥) Bankers algorithm function 
𝑇𝐶 Total Time cost (𝒦𝑖 + ℋ𝑖) 
𝑀𝑗

𝑠 Edge status vector 

𝐶𝑙𝑀𝑗

𝑠𝑡𝑎𝑡𝑢𝑠 Set of all 𝑀𝑗
𝑠 in the edge cluster 

  
  

𝑓𝑖 =  
𝑐𝑖

𝒮𝑀𝑗

  
 (17) 
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3.4.3 Communication Model for Comparative Analysis 

For a task 𝑇𝑖
𝑢 offloaded to an edge node 𝑀𝑗, the communication cost ℋ𝑖 of offloading the task 

can be expressed as the following, 

ℋ𝑖 = τ𝑖,𝑙𝑜𝑐𝑎𝑙 + 𝜏𝑖,𝑟𝑜𝑢𝑡𝑒 + 𝜏𝑖,𝑤𝑎𝑖𝑡  (20) 

where 𝜏𝑖,𝑙𝑜𝑐𝑎𝑙 is the time spent to calculate if the task is offloaded, 𝜏𝑖,𝑟𝑜𝑢𝑡𝑒 is the time spent in 

routing the task from the local device to the edge for execution while 𝜏𝑖,𝑤𝑎𝑖𝑡 includes 

CSMA/CA binary exponential back-off, encoding delay, multiplexing delay, transmission 

delay, propagation delay, service delay etc. This has been explained in more detail in section 

3.3.3.1. 

3.4.4 Modelling of Algorithms in Table 5 

While using any of the algorithms in Table 6, an identification 𝑖𝑑 is required to uniquely 

identify each process. To define the requirements for a set of processes 𝑃, for the compared 

algorithms, the variable constraints for the algorithm components are first defined.  

 

3.4.4.1 Bankers Algorithm  

In using the Banker’s algorithm, for each process sent to the MEC for resource provisioning, 

two vectors are required. The resource type required 𝑅𝐸𝑆 by the process and the maximum 

resource for each resource type 𝑀𝐴𝑋. Therefore, for each process, the resource type constraint 

can be expressed as  

  

 𝑅𝐸𝑆 = { 𝑟𝑒𝑠𝑖 ∈ {0,1}| 𝑖 ∈ {0 … (|𝑅𝑇| − 1) } }  (21) 

where, |𝑅𝑇| is the number of resource-type. When 𝑟𝑖 = 0, the resource type at the 𝑖𝑡ℎ position 

is not required otherwise 𝑟𝑖 = 1 specifies the resource type is required. It is assumed there are 
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three resource types (CPU, Memory, and Storage) that can be claimed by each process. 

Likewise, the maximum resource for each resource type is defined as 

 𝑀𝐴𝑋 = {𝑚𝑎𝑥𝑖  | ∀ 𝑖 ∈ 𝑅𝐸𝑆𝑟}   (22) 

 Where, 

𝑅𝐸𝑆𝑟 = {𝑟𝑒𝑠𝑖 ∈ 𝑅𝐸𝑆 | 𝑟𝑒𝑠𝑖 = 1} ⊆ 𝑅𝐸𝑆  (23) 

3.4.4.2 RMS 

While using the RMS algorithm, for each process that is sent to the MEC, the computation 

time or capacity 𝐶𝑖 and the time period 𝜏𝑖  will be required.  

𝜏𝑖 = { 
1
𝑓𝑖

 | ∀ 𝑖 ∈ {1 … |𝑃|}} 
 (24) 

Therefore, variable constraints needed for RMS  

𝑅𝐸𝑄𝑖 = { [𝐶𝑖 , 𝜏𝑖] | ∀ 𝑖 ∈ {1 … |𝑃|} }    (25) 

3.4.4.3 EDF 

While using the EDF algorithm, for each process sent to the MEC for resource provisioning 

the computation time or capacity 𝐶𝑖, time period 𝜏𝑖  and the deadline 𝐷𝑖 will be required. 

Therefore, the variable constraints needed for EDF are considered 

𝐸 = { [𝐶𝑖 , 𝜏𝑖 , 𝐷𝑖] | ∀ 𝑖 ∈ {1 … |𝑃| } }  (26) 

3.4.4.4 Wound-wait /Wait die 

For each process sent to the MEC, while using the wound-wait or wait-die, the resource type 

required  𝑅𝐸𝑆 and the time stamps 𝑇𝑠 for each process are required. Here, 𝑅𝐸𝑆 is obtained the 

same way as in (21) and 𝑇𝑠 = {𝑡𝑖 | 𝑖 ∀ {1 … |𝑃|} } 

Therefore, the variable constraints for Wound wait 𝑊𝑤 and Wait-die 𝑊𝑑  

𝑊𝑤 = 𝑊𝑑 =  {𝑅𝐸𝑆𝑖 , 𝑇𝑠𝑖  |  𝑖 ∀ {1 … |𝑃|} }  (27) 
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3.4.5 Deadlock Constraint of Algorithms 

3.4.5.1 Rate Monotonic Scheduling and Banker algorithm 

In this algorithm for a set of processes 𝑃, combining (21) and (23) 

𝑃 = {𝑃𝑖 | ∀ 𝑃𝑖  ∈ (𝑖𝑑, 𝑅𝐸𝑆, 𝑀𝐴𝑋, 𝑅𝐸𝑄) } 

 

 (28) 

Let 𝑅𝑀𝑆(𝑥) and 𝐵𝐴(𝑥) be functions of RMS and Banker’s algorithm respectively. Then,  

𝑅𝑀𝑆(𝑃) → 𝑃𝑟𝑡 ⊆ 𝑃  (29) 

Where, 𝑃𝑟𝑡 is a set of tasks that can be executed in real-time. Then putting 𝑃𝑟𝑡 in the Banker’s 

function, 

𝐵𝐴(𝑃𝑟𝑡) → 𝑃𝑠𝑎𝑓𝑒     (30) 

Where,  𝑃𝑠𝑎𝑓𝑒 is the deadlock-free safe sequence. 

3.4.5.2 Earliest Deadline First and Banker algorithm 

In this algorithm for a set of processes 𝑃, combining (21), (23) and (26) 

𝑃 = {𝑃𝑖  | ∀ 𝑃𝑖  ∈ (𝑖𝑑, 𝑅𝐸𝑆, 𝑀𝐴𝑋, 𝐸)}   (31) 

Let 𝐸𝐷𝐹(𝑥) and 𝐵𝐴(𝑥) be a function of the EDF algorithm and Banker’s algorithm 

respectively. Then,  

𝐸𝐷𝐹(𝑃) → 𝑃𝑟𝑡 ⊆ 𝑃  (32) 

Where, 𝑃𝑟𝑡 is a set of tasks that can be executed in real-time. 

𝐵𝐴(𝑃𝑟𝑡) → 𝑃𝑠𝑎𝑓𝑒 

 

 (33) 

Where,  𝑃𝑠𝑎𝑓𝑒 is the deadlock-free safe sequence. 

 

3.4.5.3 Rate Monotonic Scheduling and Wound Wait 

In this algorithm for a set of processes 𝑃, combining equations (27) and (30) 
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𝑃 = {𝑃𝑖  | ∀ 𝑃𝑖  ∈ (𝑖𝑑, 𝑊𝑤 , 𝑅𝐸𝑄)} 

 

 (34) 

Let 𝑅𝑀𝑆(𝑥) and 𝑊𝑊(𝑥) be a function of the RMS algorithm and Wound wait algorithm 

respectively. Then,  

𝑅𝑀𝑆(𝑃) → 𝑃𝑟𝑡 ⊆ 𝑃  (35) 

Where, 𝑃𝑟𝑡 is a set of tasks that can be executed in real-time. 

𝑊𝑤(𝑃𝑟𝑡) → 𝑃𝑠𝑎𝑓𝑒    (36) 

Where,  𝑃𝑠𝑎𝑓𝑒 is the deadlock-free safe sequence. 

3.4.5.4 Rate Monotonic Scheduling and Wait-die 

In this algorithm for a set of processes 𝑃, combining equations (27) and (30) 

𝑃 = {𝑃𝑖  | ∀ 𝑃𝑖  ∈ (𝑖𝑑, 𝑊𝑑, 𝑅𝐸𝑄)}  

 

 (37) 

Let 𝑅𝑀𝑆(𝑥) and 𝑊𝑑(𝑥) be a function of the RMS algorithm and Wound die algorithm 

respectively. Then,  

𝑅𝑀𝑆(𝑃) → 𝑃𝑟𝑡 ⊆ 𝑃  (38) 

Where, 𝑃𝑟𝑡 is a set of tasks that can be executed in real-time. 

𝑊𝑑(𝑃𝑟𝑡) → 𝑃𝑠𝑎𝑓𝑒   (39) 

Where,  𝑃𝑠𝑎𝑓𝑒 is the deadlock-free safe sequence. 

 

3.4.5.5 Earliest Deadline First and Wound Wait 

In this algorithm for a set of processes P, combining equations (27) and (33) 

𝑃 = {𝑃𝑖  | ∀ 𝑃𝑖  ∈ (𝑖𝑑, 𝑊𝑤 , 𝐸)}  (40) 

Let 𝑓: 𝐸𝐷𝐹(𝑥) and 𝑓: 𝑊𝑤(𝑥) be a function of the EDF algorithm and Wound wait algorithm 

respectively. Then,  
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𝐸𝐷𝐹(𝑃) → 𝑃𝑟𝑡 ⊆ 𝑃  (41) 

Where, 𝑃𝑟𝑡 is a set of tasks that can be executed in real-time. 

𝑊𝑤(𝑃𝑟𝑡) → 𝑃𝑠𝑎𝑓𝑒    

 

 (42) 

Where,  𝑃𝑠𝑎𝑓𝑒 is the deadlock-free safe sequence. 

3.4.5.6 Earliest deadline First and Wait Die 

In this algorithm for a set of processes P, combining equations (27) and (33) 

Let 𝑓: 𝐸𝐷𝐹(𝑥) and 𝑓: 𝑊𝑑(𝑥) be a function of the EDF algorithm and Wait-die algorithm 

respectively. Then,  

𝐸𝐷𝐹(𝑃) → 𝑃𝑟𝑡 ⊆ 𝑃  (44) 

Where, 𝑃𝑟𝑡 is a set of tasks that can be executed in real-time. 

𝑊𝑑(𝑃𝑟𝑡) → 𝑃𝑠𝑎𝑓𝑒   (45) 

    

Where,  𝑃𝑠𝑎𝑓𝑒 is the deadlock-free safe sequence. 

3.4.5.7 Cooperative offloading decision 

In this sub-section, the cooperative offloading decision making for the proposed algorithm 

has been presented. In the proposed algorithm, the offloading decision is made by considering 

the time constraint of a task 𝑇𝑖
𝑢 and the deadlock constraint of the MEC resource. For the time 

constraint, the following must be satisfied for execution, 

𝑇𝐶 < 𝑙𝑖 (46) 

Where 𝑇𝐶 is the time cost and is a summation of the computational cost and communication 

cost. 

𝑃 = {𝑃𝑖  | ∀ 𝑃𝑖  ∈ (𝑖𝑑, 𝑊𝑑 , 𝐸)}   (43) 
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𝒦𝑖 + ℋ𝑖 < 𝑙𝑖 (47) 

Substituting (19) and (20) in (47) 

𝑊𝑇𝑛 + 𝑓𝑖 +  τ𝑖,𝑙𝑜𝑐𝑎𝑙 + 𝜏𝑖,𝑟𝑜𝑢𝑡𝑒 + 𝜏𝑖,𝑤𝑎𝑖𝑡 < 𝑙𝑖  (48) 

The deadlock constraint is determined using one of the algorithm models in the previous 

section. For simplicity let’s assume that the constraint is determined by the 𝐵𝐴(𝑥) in (30). 

𝐵𝐴(𝑥)  returns a safe sequence or false if the system is not in a safe state. 𝑀𝑗 makes an 

offloading decision 𝒶𝑖 for each newly added task 𝑇𝑖
𝑢.   The range of decision 𝒶𝑖 ∈ {0,1, 2}, 

where 𝒶𝑖 = 0, means execute locally, 𝒶𝑖 = 1, means send to another edge node and 𝒶𝑖 = 2 

means offload to the central cloud.  

If (49) is 𝑇𝑟𝑢𝑒, then  𝒶𝑖 = 0. Otherwise, an MEC that fits the description is sort after. If such 

MEC exists, then 𝑇𝑖
𝑢 is offloaded to it else it is offloaded to the cloud. 

To ensure that an edge node 𝑀𝑗 can calculate (49) for another edge node 𝑀𝑘,  each 𝑀𝑗 

multicasts its status 𝑀𝑗
𝑠 to the MEC cluster after each update to 𝑊𝑇𝑛. To reduce the 

communication overhead, the number of MECs in a cluster is minimized. 

𝑀𝑗
𝑠 = {𝒮𝑀𝑗

, 𝑊𝑇𝑛, 𝑀𝑒𝑚𝑀𝑗
, }  (50) 

 

𝑇𝐶 < 𝑙𝑖  𝑎𝑛𝑑 𝐵𝐴(𝑥) → 𝑆𝑎𝑓𝑒  (49) 
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where 𝑀𝑒𝑚𝑀𝑗
 is the memory utilization of 𝑀𝑗. Therefore, each 𝑀𝑗 maintains the following 

𝐶𝑙𝑀𝑗

𝑠𝑡𝑎𝑡𝑢𝑠 = {𝑀1
𝑠, 𝑀2

𝑠, . . 𝑀𝑛
𝑠}  (51) 

The cooperative algorithm is presented in algorithm 2.  

Algorithm 2: Cooperative Offloading Decision Algorithm 

𝑰𝒏𝒑𝒖𝒕: 𝑻𝒊
𝒖{𝑐𝑖𝑚𝑖, 𝑙𝑖, 𝑠𝑖},  𝑀𝑗

𝑠
{𝒮𝑀𝑗

, 𝑊𝑇𝑛, 𝑀𝑒𝑚𝑀𝑗
, }    

𝑶𝒖𝒕𝒑𝒖𝒕: 𝒶𝑖   
𝑺𝒕𝒆𝒑𝒔  

1. 𝒅𝒐 

2. 𝑡𝑘 =  𝑒𝑞𝑢(35) 

3. 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡𝑘 

4. 𝒊𝒇 𝑡𝑘 = 𝑇𝑟𝑢𝑒 𝒅𝒐 

5.      𝒶𝑖 ← 0 

6.      𝒓𝒆𝒕𝒖𝒓𝒏 𝒶𝑖  

7. 𝒆𝒍𝒔𝒆 𝒅𝒐 

8.      𝒇𝒐𝒓 𝑀𝑗  𝑖𝑛 𝐶𝑙𝑀𝑗

𝑠𝑡𝑎𝑡𝑢𝑠 𝒅𝒐 

9.           𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑀𝑗
𝑠
 𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡𝑘 

10.           𝒊𝒇 𝑡𝑘 = 𝑇𝑟𝑢𝑒 𝒅𝒐 

11.                𝒶𝑖 ← 1  

12.                𝒓𝒆𝒕𝒖𝒓𝒏 𝒶𝑖  

13.                [𝑬𝒏𝒅 𝑳𝒐𝒐𝒑] 

14.      𝒶𝑖 ← 2 

15.      𝒓𝒆𝒕𝒖𝒓𝒏 𝒶𝑖  

16.      [𝑬𝒏𝒅 𝒆𝒍𝒔𝒆] 
17. 𝒆𝒏𝒅 

Figure 19 Time Complexity Analysis for each Algorithm assuming that the number of resources is constant. 
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3.4.5.8 Time Complexity 

The differences in the time complexity of the algorithms used in this research to design each 

algorithm can be seen in Table 8. Comparing the deadlock algorithms, the Banker’s algorithm 

has the highest order of time complexity. However, comparing the scheduling algorithms, the 

EDF algorithm has the highest order of complexity. The time complexity graph in Figure 19 

compares the time complexity of each of the compared algorithms. The graphs show the 

scalability of each of the compared algorithms with an increase in the number of processes 

and resources. The graph illustrates that 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2 are the most scalable case study 

Table 8 Time Complexity Comparison of Each Component Algorithm 

Algorithms Complexity 

Deadlock Banker’s algorithm 𝑂(𝑚𝑛2) 
Wound wait 𝑂(𝑚𝑛) 

Wait-die 𝑂(𝑚𝑛) 

Scheduling RMS 
𝑛 (2

1
𝑛 − 1) 

EDF 𝑛 log2 𝑛 

Figure 20 High Level Deployment Architecture that has been adapted for experimentation. The figure 

consists of the edge layer, the SDN control plane and the cloud abstraction. 
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algorithms with increase in the number of processes and no of resource types. On the other 

hand, 𝐴𝐿𝐺3 and 𝐴𝐿𝐺4 is the least scalable algorithm out of the six algorithms. 

3.4.6  Experimental Setup 

In this section, the experimental setup is presented and how the compared algorithms are 

tested is outlined. The components that make up the system and the associated tools are 

discussed. This section is broken down into two subsections as two different experimental 

setups were used to evaluate and compare the case study algorithms. Both experiments have 

been carried out using Graphical Network Simulator-3 (GNS3) platform [154]. GNS3 is a 

network software emulator first released in 2008 that can be used to emulate complex 

networks with a combination of virtual and real devices. More detail of the experimental setup 

is available in appendix 1. 

3.4.6.1 Deployment Architecture 

Figure 20 illustrates the high-level diagram of the experimental deployment. The Edge layer 

consists of the access plane and the infrastructure plane. The Edge layer extends the 

conventional infrastructure by providing compute and storage capacities to the IoT 

devices/UE for resource provisioning. Compute and storage decisions are made in the Edge 

layer through the edge application. The edge servers in the MEC layer collaborate among 

themselves using the network plane to support the demand from the IoT devices/UE. Routing 

and forwarding decisions are made by the SDN controller in the control plane. The broker 

plane provides a publish-subscribe network infrastructure that supports IoT protocols like 

MQTT for transport messages between the edge and IoT devices. While using the MQTT 

protocol, two QoS modes have been used for communication, at-least-once, and exactly-once 

[155]. The at-least-once (best-effort delivery) is used if the process sent cannot be scheduled in 

real-time while the exactly-once (highest level of service) is used in the process that can be 

scheduled in real-time. The end devices reach the edge layer through a cellular 
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communication link. Processes are sent to the cloud if they cannot be scheduled in the edge 

layer.  

In the experimental setup in the GNS3 platform [156], the MEC is deployed as Linux hosts 

with SDN capabilities running docker engine as the virtualization infrastructure. Each of the 

algorithms is implemented using python [156] and is deployed as an MEC service on each 

MEC node. During the experiment, each MEC node in the MEC layer runs one of the 

algorithms listed in Table 6. The end devices are emulated using Ubuntu Linux containers. 

The device in the user layer generates tasks based on predefined experimental task profiles 

and sent to the MEC for processing. The MEC then applies the scheduling and deadlock 

algorithm for processing. The task profile includes the CPU, memory, data size, and latency 

constraints of each task. The task is either executed locally, re-offloaded to another MEC, or 

Figure 21 Task Distribution Adapted for Exp1 And Exp 2 
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sent to the cloud. The cloud is simulated as a group of Linux hosts running the task processing 

services application. 

Two experimental setups have been used to evaluate the algorithms. For each of the setup, 

the experiment has been conducted using 4 MECs, 7 MECs, and 10 MECs.  For each of the 

experiments conducted, each MEC receives 2600 requests. Each request contains |𝑇𝑖| number 

of tasks where, |𝑇𝑖|  ∈ {1,2, . . 𝑛}.  The higher the value of 𝑛, the more load on the MEC and the 

more difficult it is to meet the deadline. 𝑛 is set to 3 in the following experiments. The task 

arrival at each MEC node is assumed to follow the Poisson arrival process with a varying 

Figure 22 The waiting time obtained for each of the algorithm during the experiments in milliseconds and the average 

waiting time for Exp1 is displayed. 
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arrival rate 𝜆𝑡(𝑡 ∈ {1,2. . 𝑛}). The difference between the two experimental setups is the client 

request distribution.  

Figure 24 The CPU utilization for each of the algorithm during the experiments in percentage and the average CPU 

utilization for Exp1 is displayed 

Figure 23 RTT Comparison for Experimental Setup 1 The RTT obtained for each of the algorithm during the experiments in 

milliseconds and the average RTT for Exp1 is displayed 
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3.4.6.2 Experimental Setup 1 (Exp1) 

In this experiment, every MEC node receives the same number of total requests in each run. 

Figure 21 𝐸𝑥𝑝1 depicts the request distribution used for experiment setup 1. This setup 

simulates a scenario during co-operative offload where MECs are equally busy. 

 

3.4.6.3 Experimental Setup 2 (Exp2) 

In this experiment, every MEC node receives is the same number of total requests in each 

run.  Figure 21 𝐸𝑥𝑝2 depicts the request distribution used for experiment setup 2. This setup 

simulates a scenario during co-operative offload where MECs are unequally busy. 

 

3.4.7 PERFORMANCE COMPARISON RESULTS  

In this section, the performance of the compared algorithms obtained during the experiment 

has been evaluated. The metrics used for these comparisons are listed below. 

• CPU Utilization of the MEC node 

• Round Trip time  

• The waiting time  

• The ratio of tasks re-offloaded or executed locally on the MEC 

 

3.4.7.1  Experimental Setup 1 Results  

This section contains experimental results obtained during experimentation using the 

experiment setup 1.  
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3.4.7.1.1 CPU Comparison for 𝑬𝒙𝒑𝟏 

The diagram in Figure 24 shows the experimental results obtained when the CPU utilization 

for each of the algorithm is compared. From the results obtained it can be deduced that the 

CPU utilization of the MEC platform decreases gradually with an increase in MEC nodes. This 

occurs because of a reduction in the number of tasks processed per MEC node.  The 𝐴𝐿𝐺4 

provides the best CPU utilization convergence as depicted in Figure 24.  The least convergence 

CPU utilization is the 𝐴𝐿𝐺1. 

3.4.7.1.2 RTT Comparison for 𝑬𝒙𝒑𝟏 

The RTT depicted in Figure 23 is obtained from the perspective of a MEC 𝑀𝑖. 𝑀𝑖 monitors 

periodically the RTT to reach each of its neighbouring MECs. Therefore, each MEC would 

Figure 25 The figure shows a comparison of the amount of tasks that have been executed in the local MEC, re-offloaded 

to another MEC or cloud in Exp1 
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monitor 𝑁 − 1 MEC nodes during the experimentation, where N is the total number of MECs 

in the cluster. The RTT is used to approximate the communication delay between the MECs. 

The RTT is ranged from an average of 0.89 to 2.13 milliseconds.  

3.4.7.1.3 Waiting Time Comparison for 𝑬𝒙𝒑𝟏 

The waiting time is crucial during the algorithm run time because it is one of the factors used 

by each MEC to determine which of the neighbouring MEC is suitable for task re-offload if 

need be. The waiting time here is obtained for each of the MEC periodically, similar to how 

the RTT is obtained. The waiting time 𝑊𝑇𝑚𝑖→𝑚𝑗
= 𝑟𝑡𝑡𝑚𝑖→𝑚𝑗

 + 𝑄𝑚𝑗, where 𝑟𝑡𝑡𝑚𝑖→𝑚𝑗
 is the RTT  

from 𝑀𝑖 𝑡𝑜 𝑀𝑗 and 𝑄𝑚𝑗
 is the queue waiting time for 𝑀𝑗. During re-offloading, a MEC with the 

lowest waiting time is always selected to evenly balance the load across the MEC platform. 

The waiting time for all six algorithms is shown in Figure 22. 𝐴𝐿𝐺3 maintain a lower average 

in most of the experimental runs. It can be seen that the waiting time decreases initially and 

then reaches a stable state. This is because of the load balancing effect of the tasks on the MEC 

cluster. 

 

Figure 26 Comparison of The Ratio Of Processes That Missed Their Deadline To The Processes That Failed To Meet 

Deadline. TP (Timely Process) Is Used To Denote Processes That Meet Execution Deadline While UP (Untimely Process) Is 

Used To Denote Tasks Processes that missed deadline for Exp1 
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3.4.7.1.4 Offload vs Local Comparison for 𝑬𝒙𝒑𝟏 

In this section, a comparison is made between the ratio of tasks re-offloaded, tasks that are 

executed locally on the MEC, and tasks executed on the cloud. This is shown in Figure 25. 

According to the figure, the maximum percentage of tasks executed locally on the MEC is 

78%. The outcome displayed on the graph depends on the scheduling algorithm employed. 

There are some noticeable similarities and differences among the six algorithms. An increase 

Figure 28 The waiting time obtained for each of the algorithm during the experiments in milliseconds and the average 

waiting time for Exp2 is displayed. 

Figure 27 The CPU utilization for each of the algorithm during the experiments in percentage and the average CPU 

utilization for Exp2 is displayed 
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in the number of nodes has very little effect on 𝐴𝐿𝐺1 and 𝐴𝐿𝐺6. However, for 𝐴𝐿𝐺2 and 𝐴𝐿𝐺5 

(both uses EDF), an increase in the number of nodes increases the number of tasks re-offloaded 

to MEC and cloud. This has an opposite effect on 𝐴𝐿𝐺3 and 𝐴𝐿𝐺4 which both uses RMS for 

scheduling. 

3.4.7.1.5 Comparison of the ratio of processes that meet Execution Deadline (𝑬𝒙𝒑𝟏) 

In this section, the ratio of tasks that meet their execution deadline during the experiment for 

𝐸𝑥𝑝1 is compared for all six compared algorithms. These results are obtained from the client's 

perspective. Each task that is sent out by the client to the MEC node has a deadline constraint 

and is monitored to make sure that the deadline constraint is met as the task travels through 

the MEC platform and back to the client node. The percentage of tasks that meet the deadline 

constraint is labelled here as TP (Timely Process) while the percentage of tasks that did not 

meet the deadline constraint is labelled here as UP (Untimely Process). It can be seen in Figure 

26 that more tasks meet the deadline as the number of MECs increases. It can also be seen that 

more tasks meet their deadline while using 𝐴𝐿𝐺4 for 𝐸𝑥𝑝1 compared to the other algorithms 

because it maintains a considerably lower RTT than others. 

Figure 29 The RTT obtained for each of the algorithm during the experiments in milliseconds and the average RTT for 

Exp2 is displayed. 
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3.4.7.2 Experimental Results for setup2 (𝑬𝒙𝒑𝟐) 

This section contains experimental results obtained during experimentation using the 

Experimental setup 2. 

Figure 31 Comparison Of The Ratio Of Processes That Missed Their Deadline To The Processes That Failed 

To Meet Deadline. TP (Timely Process) Is Used To Denote Processes That Meet Execution Deadline While 

UP (Untimely Process) Is Used To Denote Tasks Processes that missed deadline for Exp2 

Figure 30 Comparison Between The Ratio of Processes That Was Executed Locally in The MEC To Processes That Were Re-

Offloaded for Exp2 
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3.4.7.2.1 CPU Comparison for 𝑬𝒙𝒑𝟐 

Figure 27 shows the CPU utilization results obtained for the algorithms during the 𝐸𝑥𝑝2. 

As depicted in the figure, the CPU utilization for each of the compared algorithms decreases 

with an increase in the MEC node. This can be attributed to the sharing of the total workload 

sent by clients among the MEC nodes. It can also be seen that the CPU utilization of the case 

study algorithms for 𝐸𝑥𝑝2 is lower than the 𝐸𝑥𝑝1. This observation is expected as in 𝐸𝑥𝑝1, the 

MECs were equally busy throughout the experiment.  Averaging the results of the 3 sub 

experiments with 4, 7, and 10 MECs, 𝐴𝐿𝐺2 obtains the highest CPU utilization while 𝐴𝐿𝐺6 

achieves the slowest CPU utilization during the experiments. 𝐴𝐿𝐺2 uses a deadlock avoidance 

algorithm while 𝐴𝐿𝐺6  uses a deadlock prevention algorithm. 

3.4.7.2.2  RTT for 𝑬𝒙𝒑𝟐 

The RTT obtained for 𝐸𝑥𝑝2 can be seen in Figure 29. Each participating MEC records the RTT 

for each of the MEC in the platform to be used for offloading decisions. The RTT is obtained 

here in the heterogeneous setup similar to how it is obtained in the homogeneous setup. The 

round-trip time for the 𝐸𝑥𝑝2 ranged between 0.89 to 1.93 milliseconds . Averaging the results 

of the 3 sub experiments with 4, 7, and 10 MECs, ALG4 obtains the lowest overall RTT while 

𝐴𝐿𝐺6  achieves the highest RTT. 𝐴𝐿𝐺4 and  𝐴𝐿𝐺6  are both deadlock prevention algorithms. 

However, 𝐴𝐿𝐺4 uses RMS for task scheduling while 𝐴𝐿𝐺6  uses EDF. 

3.4.7.2.3 Waiting Time for 𝑬𝒙𝒑𝟐 

The waiting time convergence for the 𝐸𝑥𝑝2 can be seen in Figure 28. 𝐸𝑥𝑝2 setup seems to have 

a more predictable convergence than the 𝐸𝑥𝑝1 as the waiting time converges between 0.89 to 

1.63 milliseconds for each of the experimental runs from 4 to 10 MECs. The load balancing 

effect is also witnessed here as the nodes reaches a stable state. On average, 𝐴𝐿𝐺4 attains lower 

waiting time while 𝐴𝐿𝐺1 acquires higher waiting time during the 3 sub-experiments from 4 to 
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10 MECs. 𝐴𝐿𝐺4 utilises a deadlock prevention algorithm while 𝐴𝐿𝐺1 employs a deadlock 

avoidance algorithm.  

3.4.7.2.4 Offload vs Local Comparison for 𝑬𝒙𝒑𝟐 

In this section, comparisons are made between the ratio of tasks executed locally, re-offloaded 

to the cloud, or re-offloaded to another MEC. It can be seen in Figure 30 that an increase in the 

number of MECs leads to an increase in the percentage of tasks re-offloaded to a neighbouring 

MEC for all compared algorithms. The overall behaviour here is similar to what is shown in 

𝐸𝑥𝑝1. 𝐴𝐿𝐺6 and 𝐴𝐿𝐺1 algorithm had the best performance result with the number of tasks 

executed locally for each run above 78%. 𝐴𝐿𝐺2 achieves the highest increase rate in tasks re-

offloaded to be executed in a neighbouring MEC as the number of MECs increases. 

3.4.7.2.5 Comparison of the ratio of processes that meet Execution Deadline 

In this section, the ratio of tasks that meet their execution deadline during the experiment for 

𝐸𝑥𝑝2 is compared for all six compared algorithms. These results are obtained from the client's 

perspective. Each task that is sent out by the client to the MEC node has a deadline constraint 

and is monitored to make sure that the deadline constraint is met as the task travels through 

the MEC platform and back to the client node. The percentage of tasks that meet the deadline 

constraint is labelled here as TP (Timely Process) while the percentage of tasks that did not 

meet the deadline constraint is labelled here as UP (Untimely Process). It can be seen in Figure 

31 that more tasks meet the deadline as the number of MECs increases. It can also be seen that 

more tasks meet their deadline while using the 𝐴𝐿𝐺2 for each experimental run from 4 MECs 

to 10 MECs compared to the other algorithms. 𝐴𝐿𝐺1  obtains the lowest 𝑇𝑃 for 10 MECS while 

𝐴𝐿𝐺4  achieve the highest 𝑇𝑃. 𝐴𝐿𝐺4  utilises a deadlock prevention algorithm while 𝐴𝐿𝐺1  

employs a deadlock avoidance algorithm. 
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Figure 32 Summary Comparison of the results obtained in Exp1 and Exp2 (Graph is not drawn to scale) (Graph is Not Drawn To Scale) 



MEC COMPUTATIONAL RESOURCE MANAGEMENT 

108 | P a g e  

 

3.4.7.3 𝑬𝒙𝒑𝟏 𝒂𝒏𝒅 𝑬𝒙𝒑𝟐 Comparison 

Figure 32 summarizes the difference in the experimental outcomes of 𝐸𝑥𝑝1 and 𝐸𝑥𝑝2. The 

figure shows the average outputs of each of the experimental runs (4, 7, and 10). The figure 

shows that 𝐴𝐿𝐺3 obtains better CPU utilization compared to other algorithms. 𝐴𝐿𝐺6 𝑎𝑛𝑑 𝐴𝐿𝐺1 

obtains better percentage of tasks executed locally compared to other algorithms in 

𝐸𝑥𝑝1 𝑎𝑛𝑑 𝐸𝑥𝑝2. Comparing algorithms that obtains better overall percentage of tasks 

executed on time, 𝐴𝐿𝐺4 provides the best performance among all the algorithms under study. 

𝐴𝐿𝐺1 and 𝐴𝐿𝐺2 uses a deadlock avoidance algorithm while 𝐴𝐿𝐺3 uses a deadlock prevention 

algorithm. It is difficult to generalize these results as it can be seen that none of the algorithms 

is superior over the other in all comparing metrics. Each algorithm performs well in a 

particular metric but not all. The optimum difference between these algorithms is the ability 

to keep the system in a safe state. However, it is difficult to emulate this in a test environment. 

3.5 Conclusion  

In this chapter, MEC computing has been explored. Through an extensive state-of-the-art 

literature review, deadlock during resource provisioning in MEC has been defined as a 

research gap that needs addressing. This has formed the basis of the problem addressed in 

this chapter. It is crucial to investigate this problem as reliable communication is very vital in 

achieving 5G uses cases such as URLLC. This chapter has contributed to the design and 

development of a reliable MEC environment by eliminating the chances of deadlock during 

resource provisioning. Additionally, sub-problems such as task load balancing among MECs, 

task re-offloading and MEC co-operation during resource provisioning has been addressed. 

 

The deadlock problem has been explored using a case study for IoT devices. This case study 

has been used because it supports two of the 5G use cases which include URLLC and mMTC. 

Additionally, IoT devices have inadequate computation and storage resources therefore they 
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offload a majority of their workload. Assuming these IoT devices offload their workload to 

the edge platform and considering that the edge nodes have a finite amount of resources. A 

continuous increase in the workload and IoT devices dependent on the edge resources might 

lead to over-provisioning which may result in a system deadlock because of many devices 

contending for limited and shared resources. The simulation results confirm this behaviour. 

This issue has been fully modelled in this chapter considering both the communication and 

computational model. To address the problem, a resource provisioning framework for 

deadlock avoidance for MEC has been proposed to maintain a more reliable network system 

for IoT devices. The proposed framework has incorporated Bankers’ resource request 

deadlock avoidance algorithm. An avoidance algorithm has been chosen to ensure the 

eradication of deadlock in the system. The framework also includes a cooperative mechanism 

for selecting an appropriate MEC node if task re-offloading is required. This ensures that the 

latency constraints are satisfied during offloading and the MEC with adequate resources is 

selected for re-offloading. Extensive simulation tests confirm deadlock if the system is in an 

unsafe state and there is a continuous increase of IoT applications dependent on the edge 

node. Results have also confirmed the hypothesis that the proposed algorithm can eradicate 

deadlock in the system and thus ensuring system reliability and availability. 

 

Additionally, comparisons have been made between different deadlock algorithms for MEC 

using the proposed framework. The study has been aimed to investigate the difference if a 

deadlock prevention algorithm has been used in the proposed framework rather than a 

deadlock avoidance algorithm. The study has been carried out in a step on building a reliable 

and readily available MEC platform that can be used to deliver low latency requirements for 

5G case study scenarios. Using a case study for real-time systems, comparisons have been 

made on how each deadlock mechanism will perform in real-time scenarios employing 

popular baseline real-time algorithms such as RMS or EDF for prioritizing workloads. Two 
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experimental setups have been designed on the GNS3 platform for evaluating the compared 

algorithms. The metrics used in the comparison include RTT, waiting time, CPU utilization, 

the ratio of tasks that meet the deadline, and the ratio of local execution to cooperative MEC 

to cloud. Results have shown that the avoidance algorithm does better in the percentage of 

tasks executed locally and the overall percentage of tasks executed on time while prevention 

algorithms obtain better CPU utilization. It has been concluded that the optimum difference 

between these two algorithms with regards to the framework is the ability to keep the system 

in a safe state and thus, eradicate deadlock. Thereby, improving the overall QoS of the system  
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CHAPTER 4 MEC CACHE RESOURCE MANAGEMENT 

4.1 INTRODUCTION 

The previous chapter has explored the improvement of QoS in 5G networks by optimization 

of computational resources in MEC with a deadlock-aware scheduling algorithm. This 

chapter also contributes to the improvement of the QoS in 5G by exploring an efficient caching 

scheme to optimize the cache resource and reduce latency. 

  Content caching has evolved over the years considering technology trends and policies 

enforced for efficient caching. There are limited locations for caching unit deployment at 

mobile networks. Before the advancement of MEC, the main places caching units are deployed 

are in Radio Access Network (RAN), core network, and the user devices [107]. The core 

happens to be mostly used for cache deployment [157] because the traffic can be reduced by 

two-thirds. However, deploying cache units in MEC is bound to yield greater benefits because 

the nodes are close to the users [107].  

One of the promising functionalities of MEC is the ability to provide caching capabilities to 

mobile devices in 5G, enabling fast popular content delivery for delay-sensitive applications. 

MEC is still in its infant stage, therefore there are few studies on MEC about content caching. 

In this chapter, efficient caching schemes for MEC has been explored. Firstly, an extensive 

literature review has been carried out on caching in MEC. The need to develop a caching 

scheme that can adapt to dynamic cache popularity changes due to the ever-changing user 

request pattern has been identified. Therefore, a predictive caching scheme that can adapt to 

the caching user request pattern has been presented. The prediction of user request has been 

obtained using Lagrange extrapolation. Additionally, a different cache prediction approach 

has been explored to increase the user request prediction accuracy, increase the hit ratio, and 

improve the QoE. The two proposed approach supports co-operative caching for MEC to 

improve the collective MEC cache-store.  
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4.2 LITERATURE REVIEW 

Caching algorithms have been studied widely by the research community in different 

research fields including MEC. This ranges from operating systems to network caching and 

in-between. In this section, a review is carried out on the caching algorithms that are relevant 

to this study. 

4.2.1 Conventional Replacement Algorithms 

In this section, the conventional algorithms that are still commonly used have been reviewed. 

Conventional here refers to standard, and well-accepted popular algorithms. The main 

priority of algorithms reviewed in this section is to increase the hit ratio. 

• First In First Out (FIFO): This is one of the simplest replacement policies in terms of 

time complexity and implementation. In a FIFO queue, cache objects are placed in the 

tail of the queue. If there is a need for replacement, cache objects are removed from the 

head until there is enough space for the incoming request. The time complexity of the 

algorithm is 𝑂(1). 

• Least Recently Used (LRU): LFU [129] is still one of the commonly used algorithms. 

When the cache is full, the policy replaces the cache object which has not been 

referenced for the longest of time. The strategy is based on the observation that blocks 

that have been recently referenced are likely to be used again in the future. LRU works 

well with workloads that exhibit strong temporal locality. However, according to 

[158], LRU does not work well with file server caches. The time complexity of the 

algorithm is 𝑂(1). 

• Least Frequently Used (LFU): LFU is another classic cache replacement algorithm. 

LFU maintains a reference count for all cached objects. Therefore, when the cache is 

full it replaces the cache object with the lowest reference count. The rationale of the 

algorithm is that some cached blocks are more frequently accessed than others. 
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Therefore, the frequency count could be a good estimate of the probability of a cached 

object being requested. LFU has two main drawbacks. Firstly, there may be a tie if two 

cached objects have the same frequency. Secondly, a cache object may accumulate a 

large reference count and never replaced even if the cache object is no longer active. 

There have been many improvements proposed to address the drawback of LFU. One 

of these improved versions is the aged LFU. This policy gives different weight to recent 

and old references. Aged LFU performs better than the original LFU [159]. The time 

complexity of LFU is 𝑂(log(𝑛)) 

• Least Recently Used K(LRU-K): This algorithm combines both LFU and LRU 

schemes. It was first introduced in database disk buffering. The basic idea of LRU-k 

[160] is to keep track of the times of the last K references to popular cache objects. This 

information is then used to estimate statistically the interarrival times of references on 

a request-by-request basis. The replacement decision is based on the reference density 

observed during the past K references. When K is small, cold cache objects are 

identified quicker as such cache objects have a wider span between the current time 

and the 𝑘𝑡ℎ-to-last reference time. The time complexity of LRU-K is 𝑂(log(𝑛)). 

• Least Recently Frequently Used (LRFU): LFRU [161] is another algorithm that 

combines LFU and LRU. The strategy of this algorithm is to replace cache objects that 

are least frequently used and not recently used. Each cached object is associated with 

a Combined Recency and Frequency value (CRF). The cache object with the lowest 

CRF value is replaced. Each request of a cache object contributes to its CRF. LRFU has 

a time complexity of between 𝑂(1) and 𝑂(log(𝑛)). 

• Frequency Based Replacement (FBR): FBR [162] algorithm is a hybrid replacement 

scheme that combines both LRU and LFU to capture the benefits of both algorithms. 

FBR has been initially proposed for managing caches for file systems, management 
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systems, or disk control units  [162]. FBR maintains LRU queues of cache objects with 

the same frequency count. To address the problem of cache objects, accumulating large 

reference counts, the algorithm maintains 3 sections. These include 𝐹𝑛𝑒𝑤, 𝐹𝑚𝑖𝑑𝑑𝑙𝑒 and 

𝐹𝑜𝑙𝑑. These sections are used to bound the frequency count of certain cache objects and 

they are required algorithm parameters. FBR also requires 2 additional parameters, 

𝐴𝑚𝑎𝑥 and 𝐶𝑚𝑎𝑥. 𝐴𝑚𝑎𝑥 refers to the maximum average of frequency counts to be 

maintained while 𝐶𝑚𝑎𝑥 is the maximum chain count. More details can be found in 

[162].  The replacement decision is primarily based on the frequency count. According 

to [158], FBR is the best algorithm compared to LRU and LFU. The time complexity of 

FBR ranges from 𝑂(1) to 𝑂(log(𝑛)). 

• Two Queue (2Q): 2Q algorithm[163] has been proposed as an improvement to LRU-

k. The motivation is to reduce the access overhead and remove cold cache objects 

quickly. The 2Q uses two LRU queues 𝐴1𝑜𝑢𝑡 and 𝐴𝑚 and an additional FIFO queue 

𝐴1𝑖𝑛. The cache objects are initially stored in the 𝐴1𝑖𝑛 when first accessed. When the 

cache is evicted from 𝐴1𝑖𝑛 it is then added to 𝐴1𝑜𝑢𝑡. If a cache object in 𝐴1𝑜𝑢𝑡 is 

accessed, it is moved to 𝐴𝑚. The authors have proposed a scheme to select the efficient 

sizes of 𝐴1𝑖𝑛 and 𝐴1𝑜𝑢𝑡. The 2Q performs better than FBR, LRU and LFU for second 

level buffer caches [159]. The time complexity of 2Q is 𝑂(1). 

• Multi-Queue (MQ): MQ[159] has a comparable technique to 2Q. The motivation is to 

create an algorithm that supports minimal lifetime for cache objects, has a frequency-

based priority, and supports the temporal frequency. MQ uses 𝑚 number of LRU 

queues, where 𝑚 is a parameter. Cache objects in certain queues have a longer lifetime 

than others depending on the queue the object lies. MQ also uses a history FIFO queue 

𝑄𝑜𝑢𝑡 of limited size to store recently evicted cache objects. MQ evicts the cache object 
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in the tail of the LRU queue with the least frequency. MQ [159] performs better than 

FBR, Q2, LRU, and LFU. The time complexity is 𝑂(1). 

4.2.2 Network-Aware Replacement Algorithms  

Many factors affect the performance of the replacement algorithm used in network caching. 

These include the requested object size, latency, bandwidth, miss penalty, temporal locality, 

and long-term access frequency. Successful application of these algorithms can reduce 

network traffic, response time, and server load. The algorithms reviewed in this section take 

at least one of these parameters into consideration during cache replacement. 

• GreedyDual (GD) Algorithms: GD Algorithm has several variations, but the key 

objective is to replace the cache object with the lowest cost value based on a specified 

cost function. These variations have different cost functions. The original GreedyDual 

has been proposed by Young [164]. The motivation of the algorithm has been to deal 

with cache objects that have the same size but incur a different cost in bringing them 

to the cache-store. When a cache object is retrieved, a value 𝐻 is assigned to it. This is 

the cost of bringing the cache object to the cache-store. The algorithm replaces the 

cache object with the 𝑚𝑖𝑛 𝐻 and then all cache objects reduce their 𝐻 𝑣𝑎𝑙𝑢𝑒 by 𝑚𝑖𝑛 𝐻. 

The time complexity for this is 𝑂((𝑛 − 1) ∗ log (𝑛)). Two other variations of GD are 

listed below: 

o GD-Size: GD-size [165] extends the original GD by adding the size of the case 

to the cost function. Therefore, 𝐻 = 𝑐𝑜𝑠𝑡/𝑠𝑖𝑧𝑒 where 𝑠𝑖𝑧𝑒 is the cache size and 

𝑐𝑜𝑠𝑡 could vary depending on the cache priority. The cost could be set to 1 if 

the goal is to maximize the hit ratio. It could be set to the downloading latency 

if the goal is to minimize average latency. Finally, it could be set to the network 

cost if the goal is to minimize the total cost. The time complexity of GD-Size 

𝑂(log(𝑛)) 
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o GreedyDual-Size with Frequency (GDSF): GDSF [166] has been proposed as 

an extension of GD-Size. The limitation of GD-Size is that it does not consider 

the popularity of the cache objects during cache replacement. GDSF has a 𝐻 =

𝐹 ∗ (𝑐𝑜𝑠𝑡/𝑠𝑖𝑧𝑒) + 𝐿, where F is the frequency count and L is a running age 

factor. 𝐿 starts at 0 and is updated for each replaced object if the priority key of 

this object is in the priority queue. 

• Least Unified-Value (LUV): LUV [167] allocates a calculated value to each cached 

object. When the cache is full, the cache object with the lowest value is replaced. The 

value is calculated by 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝐻, where weight is the retrieval cost (𝑐𝑜𝑠𝑡/𝑠𝑖𝑧𝑒) and 𝐻 

is the probability that the object is going to be re-referenced in the future. The time 

complexity of LUV is 𝑂(log(𝑛)). 

• Lowest-Latency-First (LLF): LLF ranks the cache objects based on their download 

latency. When the cache is full it replaces the cache object with the lowest latency. The 

motivation of this scheme is to minimize the total latency in the system. The time 

complexity of the algorithm is 𝑂(log(𝑛)).  

4.2.3 Size Aware Algorithms 

In this section, algorithms that predominately make cache replacement decisions based on the 

requested object size are reviewed. 

Size: The Size algorithm [166] replaces the largest cache object when the cache is full. The 

strategy is to increase the cache hits by increasing the number of cache objects in the queue. 

Therefore, to minimize the miss ratio one large object is replaced rather than many smaller 

ones. The limitation of this approach is that the smallest cache objects which are rarely 

accessed are never replaced. 
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• Size-Adjusted LRU: The size-adjusted LRU [166] associates a cost-to-size ratio to each 

of the cached objects. The cost value is a function of the size and access time of the 

cache object. The cost-to-size ratio is 1/(𝑆𝑖𝑧𝑒 ∗ ∆𝑇). ∆𝑇 is the elapsed time from last 

access time to current time. The time complexity of the algorithm is 𝑂(log(𝑛)). 

• Least Recently Used – Size adjusted and Popularity aware (LRU-SP): LRU-SP [168] 

uses two extensions of the LRU algorithm, namely Size-adjusted LRU and segmented 

LRU. The cost to size function of LRU-SP is (
𝑛𝑟𝑒𝑓

𝑠𝑖𝑧𝑒∗∆𝑇
). Cache objects are put into a 

limited number of groups according to [log (𝑠𝑖𝑧𝑒/𝑛𝑟𝑒𝑓)]. When the cache is full only 

the last 20 cache objects are considered for replacement. Therefore, the cache object 

with the lowest cache-to-ratio value is replaced. The time complexity of the algorithm 

is 𝑂(1). 

• Log(Size)+LRU: Log(Size)+LRU [166] evicts the document that has the largest 

log(size) and is the least recently used among all documents with the same log(size) 

• Pitkow/Recker: Pitkow/Recker [166] removes the least recently used document, 

except if all documents are accessed within a given time interval, in which case the 

largest one is removed. 

4.2.4 Edge Caching Algorithms  

There has been a considerable amount of research carried out on MEC to enhance its cache 

performance. To accomplish this, the caching algorithm must be designed to support cache 

sharing among MEC nodes, reduce latency and bandwidth, and increase network robustness 

and reliability. In this section, such relevant algorithms have been reviewed. 

Wu et al [169] have proposed a collaborative edge caching mechanism for ICN. The scheme 

advocates cache redundancy by replicating cache object to the next hop whenever a cache hit 

occurs. Ndikumana et al [170] have proposed a collaborative scheme for edge computing with 
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a collaborative space defined by the network administrator based on hop count distance 

between edge nodes. In the proposed scheme, the edge nodes periodically exchange resource 

and cache updates. In [171], an inter and intra tier collaborative hierarchical caching 

mechanism over 5G edge computing has been proposed. The scheme makes caching decisions 

to minimize the number of wireless hops in obtaining a cache object while maximizing the hit 

ratio. Liu et al [172] have proposed a collaborative online edge caching algorithm. The scheme 

uses a Bayesian clustering technique to group users based on their request preferences. 

Popular preferences are then cached to improve the global cache hits. Saputra et al [173] have 

proposed two proactive and cooperative caching frameworks for mobile edge networks. In 

the first approach, the edge nodes send data to a central server which creates a deep learning 

model based on the data popularity and sends it to the edge servers. The second approach 

allows each edge node to create a local model and then send it to the central server for model 

aggregation. The aggregated global model is then sent back to the edge nodes. 

 

Few researchers have proposed edge caching strategies for 5G that combines both 

computation and data caching. Markakis et al [174] have proposed a proactive extreme edge 

caching strategy that predicts and prefetch popular contents based on big data analysis. On 

the other hand, Sungwook K. [175] has leveraged a holistic caching structure for caching in 

small base stations using game theory. The developed hybrid algorithm uses split caching 

where one part caches popular content for communication and the other part caches 

computation offloading services.  

Caching cooperation among MEC servers can increase overall caching efficiency. Many 

researchers have used cooperative caching in MEC. In [176] a Mix-Cooperative (MixCo) 

caching strategy has been developed for MEC servers in a Fiber-Wireless (FiWi) access 

network to reduces latency and increase cache performance. Huang et al in [177] have 
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proposed a CMAC(Cooperative Multicast-Aware Caching) strategy to reduce the average 

latency of delivering content and Yang et al in [178] have explored ways of avoiding pollution 

attacks on cooperative MEC caching. Cooperative caching can be divided into two categories, 

centralized cooperative caching and distributed cooperative caching. In this chapter, 

distributed cooperative caching has been explored. 

Chen et al [179], have proposed a neural collaborative filtering caching strategy for edge 

computing. The proposed method incorporates a greedy algorithm, a popularity prediction 

algorithm, and a content cache replacement algorithm. Simulation results show that the 

proposed algorithm can outperform baseline algorithms with regards to hit rate, transmission 

delay, and content cache space utilization. 

Xu et al [180] have proposed a hybrid edge caching scheme for tactile internet in 5G. The 

proposed scheme has been aimed at energy efficiency improvement in proactive in-network 

caching. The cache replacement policy proposed assumes that the cache files follow Zipf 

distribution. Simulation results have shown that the proposed method achieves better latency 

compared to conventional caching algorithms. 

 

4.2.5 Predictive Caching Algorithms  

The optimal caching algorithm is an algorithm that can accurately predict the cache request 

pattern for 𝑡 + 1, where 𝑡 is the current time, and use this to make appropriate caching 

decisions. For such algorithms, the prediction cost is usually expensive, and many at-times 

fail to be consistently accurate. Therefore, there are only a handful of such caching algorithms. 

These algorithms are reviewed in the following paragraphs. 

Qi et al [181] have proposed a proactive caching scheme for the wireless edge. The proposed 

scheme applies federated learning for cache popularity prediction. The authors highlighted a 

security vulnerability with centralised learning as it needs to collect information from users 
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during the learning process which can be personal. Utilizing the proposed approach, each 

user uploads a weighted sum of preference and file popularity to the base station where 

models are aggregated. Simulation results show that the proposed scheme achieves a close 

cache-hit ratio to a centralised learning approach. 

Tan et al [182] have proposed a reinforcement learning-based optimal computing and caching 

scheme for edge networks. The problem has been formulated as an infinite-horizon average-

cost Markov Decision Process (MDP). The authors have aimed at maximizing bandwidth 

utilization and decreasing the quantity of data transmitted. The scheme considers long-term 

file popularity and short-term temporal correlations of user requests to fully utilize 

bandwidth. Simulation results show that the proposed policy scheme can predict content 

popularity and user future demands. 

Sajeev et al [183] have proposed a machine learning algorithm for web caching. The algorithm 

utilizes the Multinomial Logistic Regression (MLR) to classify web cache “object’s 

worthiness”. The variable, “object worthiness” is a polytomous (discrete) variable that 

depends on 6 parameters. These 6 parameters include popularity, recency, size, popularity 

consistency, delay, and object type. If the cache is full, the least worthy cache object is replaced. 

The algorithm requires parameter tuning and the simulation result shows that the algorithm 

performs better than LRU, LFU, and GDSF in hit rate and byte rate.  

Dutta et al [184] have proposed a caching framework for mobile wireless networks. The 

proposed technique uses a predictive scheme for both replacement and prefetch. The problem 

has been formulated as a QoE optimization problem and solved using Markov Predictive 

Control and Markov Decision Process. Prediction is done using the FP-Growth association 

rule-based algorithm. Empirical results have shown that the proposed algorithm performs 

better than LFU, LRU, and FIFO in terms of hit ratio. 
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Chan et al [185] have proposed a big data-driven predictive caching at the wireless edge. The 

framework utilises a machine learning-based approach to anticipate user behaviours and 

content patterns and then prefetch content with expected high popularity. The framework 

uses a generic Markov prediction model for prediction. The authors state that the machine 

learning-based approach is useful in improving the cache performance when the popularity 

distribution fails to follow the Zipf distribution. The proposed algorithm performs better than 

the LRU algorithm.  

Rahman et al [186] have proposed a deep learning predictive caching framework for edge 

networks. The proposed framework uses a Long Short-Term Memory (LSTM) Recurrent 

Neural Network (RNN) model for predicting the popularity of cache objects. The authors have 

used MovieLens 20M dataset for training the model. The authors assume there will be few 

changes in the dataset and therefore they have not considered model updates during runtime. 

The model error rate has been evaluated. However, the proposed algorithm hit rate ratio has 

not been analysed. 

To address the problem of predictive model inaccuracy due to the changing popularity 

distribution of cache objects, Song et al [187] have proposed a dynamic content placement 

caching framework. The novel learning framework predicts the temporal cache distribution 

of future cache contents. The content placement is periodically updated based on future 

requests. Empirical results show that the algorithm performs better than conventional online 

caching algorithms. 

Finally, for more works on predictive caching in the edge, Wang and Friderikos [188] have 

provided a comprehensive survey of using deep learning frameworks to predict caching data 

in edge networks. They have evaluated the different techniques and summarized the research 

challenges, the benefits and the cost of using deep learning in edge networks. 
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4.3 Co-operative and Hybrid Replacement Caching Algorithm (CHRCA) for MEC 

This research section aims to increase the cache performance of the MEC. To accomplish this, 

a caching algorithm has been designed and developed that can load balance cache data among 

MEC nodes, reduce latency and bandwidth and increase network robustness and reliability 

so that content to be constantly available even if the server of the data source is down. This 

would be achieved by caching the contents from the data source to the MEC layer so that users 

can fetch data directly from the MEC layer without going to the data source. 

The proposed algorithm is a unification of a modified Belady’s algorithm [189] and a co-

operative caching algorithm. First, to improve cache hits at a MEC node, Optimal Page 

Replacement Strategy (OPR) also known as Belady’s algorithm is leveraged. The downside of 

Belady’s algorithm is the need for a future reference string. To obtain this in this research, 

historical data are kept for the requests received by a MEC and its relative frequency. These 

historical data are then used to predict the future occurrences for received requests.   

To further maximize the benefits of this solution, a cooperative caching strategy is used to 

share the cache data of each MEC node with other MEC nodes within the same cluster. 

Successfully increasing the cache hit rate performance would reduce the cache access time of 

the MEC platform and overall power consumption [190].  

The proposed algorithm depends on the successful prediction of future requests based on past 

references. Therefore, a polynomial regression algorithm is employed to enable the forecast 

of the reference string.  
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4.3.1 System Architecture  

In this section, the steps to be taken to accomplish the objectives are explained. 

Figure 33 shows a request-response architecture adopted in this study. The request-response 

flow for a worst-case scenario is shown to depict when a user request is not in the MEC cluster 

nor the central cloud servers. In this figure, mobile devices are connected to the edge node 

through a wireless Access Point (e.g. IEEE 802.11) and the edge node is connected to the cloud 

servers which are in turn connected to the internet.  

The focus of this research is on the MEC layer and how to leverage its distributed architecture 

to increase its cache efficiency by generating more cache hits while reducing network latency. 

Here, the aim is to reduce the mobile application’s response time by storing popular data at 

the cache servers of the edge node. This will reduce access to the data repositories since most 

of the data are stored locally.  

 

4.3.2 CHRCA Framework Components 

In this section, the different components of the CHRCA framework have been discussed. 

These components or mechanisms are listed as follows: 

FIGURE 33 REFERENCE ARCHITECTURE FOR CO-OPERATIVE CACHING 
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4.3.2.1 Co-operative caching 

Co-operative caching is a method of caching in a distributed architecture that supports the 

sharing of cache information. One of the most popular co-operative caching methods is to 

create a central storage for the distributed servers and allow all connected servers to access 

cache data from the central storage [103]. This reduces the burden of managing data only on 

one device, but also creates other challenges such as increased latency due to additional access 

time in fetching cached data from a remote location. Another problem is finding the optimal 

location of the central storage device to minimize the access time of all the servers involved. 

To address this problem, here an algorithm is proposed which utilizes distributed cooperative 

caching to reduce the impacts of one centralized cache server. The servers in the distributed 

architecture are allowed to keep their cache data but they also keep a synchronized database 

of the data available in the MEC cluster cache 𝑀𝑐𝑎𝑐ℎ𝑒. 𝑀𝑐𝑎𝑐ℎ𝑒 can be implemented as a 

HashMap with each MEC (𝑀𝐸𝐶𝑗) as the key and the value is the set of cache saved for each 

MEC. 

𝑀𝑐𝑎𝑐ℎ𝑒 ← {𝑀𝐸𝐶𝑗 → {𝑟𝑖  ∀ 𝑟𝑖 ∈ 𝑀𝐸𝐶𝑗} ∀ 𝑀𝐸𝐶𝑗  | 𝑗 ∈ {1,2, , 𝑐𝑧}}  (52) 

Where 𝑐𝑧 is the cluster size and 𝑟𝑖 cache saved in the MEC. The cluster size is adjusted based 

on the traffic load and network status to balance the content diversity and spectrum efficiency. 

Therefore, if a MEC receives a request from an end-user device, it would first search if the 

request exists in its cache. If the request does not exist, it will search 𝑀𝑐𝑎𝑐ℎ𝑒. If the requested 

Figure 34 MLFU Problem Depiction 
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data is still not obtained, then the MEC initiates a request to obtain the requested data from 

the data source. 

4.3.2.2 Modified Least Frequently Used (MLFU) Cache replacement 

LFU requires that the reference with the least count be replaced. To keep a cohesive and 

reliable frequency record in this proposed modification, a window-size is maintained so that 

the average frequency of each reference is obtained. LFU only compares the frequency of the 

references in the cache and not the newly requested data. Therefore, a problem arises when a 

new request with little or no historic frequency record 𝑟𝑛 is used to replace an existing cache 

data which has the least frequency the cache 𝑟𝑙. However, 𝑟𝑙
5 has a higher historic frequency 

record compared to the newly requested data 𝑟𝑛
3 as depicted in Figure 34. To address this 

problem, a modification has been proposed to not only compare the frequencies of the data in 

the cache but also compare the frequency of the newly obtained request. A decision is made 

not to cache the newly obtained request if the frequency of the data are less than the frequency 

of the least frequency in the cache. This method is ideal for caching in MEC in a scenario where 

the newly requested data are obtained from the MEC cluster. Therefore, if a decision is made 

not to cache and the data is requested again, it can be obtained from the MEC cluster as the 

retrieval cost is assumed to be less than the data source.  

4.3.2.3 Modified Optimal Page Replacement (MOPR) Algorithm 

The Optimal Page Replacement Algorithm (Belady’s Algorithm) [189] as its name implies, is 

selected by researchers as the optimal algorithm for cache replacement since it produces fewer 

page faults than any other algorithm. However, it is labelled infeasible because it requires data 

on the occurrence of future requests. This data is not available in the real world. The 

modification made here is in the process of predicting this future request occurrence. This is 

achieved by keeping a record of the historic occurrences of the requests and leveraging this 
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data for prediction.  Prediction is done using Lagrange extrapolation.  Eviction is 

accomplished by replacing the cache object with the farthest predicted occurrence. 

System Modelling for CHRCA 4.3.3 

Notation Meaning 

𝐶1 Cloud 
𝐶2 Precache 
𝐶3 MEC local cache  

𝑀𝑐𝑎𝑐ℎ𝑒  MEC cooperative cache  
𝑅 Received Reference string i.e a list of requests 
𝑛 Window size of the reference string 

𝑟𝑓 Relative Frequency 

𝜏𝑖 Set of timestamps 

𝑟𝑖 Request/reference at index 𝑖 
𝑃(𝑥) Lagrange Interpolating polynomial 

𝑑 Degree of polynomial 
𝑝 Time period 

𝑅𝐹  Forecasted reference string 

𝜏𝑖
𝑛𝑒𝑥𝑡 the next predicted occurrence of 𝑟𝑖 

𝑣 Cache victim  

𝐹𝑅 Relative frequency function  
𝑐𝑧 MEC cluster size 

 

4.3.3 System Modelling 

In this section, the hierarchical content caching placement design has been modelled. This 

consists of the cloud, the precache, and the MEC. 

𝐶3 ⊆ 𝐶2 ⊆ 𝐶1   (53) 

where 𝐶1 represents the cloud, 𝐶2 represents the precache and 𝐶3 MEC cache. The pre-cache 

is a HashMap of the previously requested data and its relative frequency 𝑟𝑓. Each data is 

uniquely identified by a hash which is obtained from an MD5 hash function of the request. 

 𝐶2 = {ℎ𝑎𝑠ℎ → 𝑟𝑓 ∀ ℎ𝑎𝑠ℎ ∈ 𝑅}  (54) 

𝑅 = {𝑟𝑡 | 𝑡 ∈ [0, 𝑛 − 1]} is a finite, non-empty reference string of received reference instances 𝑟𝑡 

at time stamp 𝑡, with window size 𝑛. 𝐶2 ⊆ 𝑅 is a HashMap. Hence, a set of distinct elements 

from the list 𝑅, with cardinality |𝐶2 | = 𝑚. The function 𝐹𝑅: 𝑟𝑖 ∈ 𝐶2 → [0,1] calculates the 

relative frequency 𝑟𝑓 of occurrence of each reference 𝑟𝑖 of pre-cache 𝐶2. It measures the share 

of occurrences of a reference instance over the total window. The function 𝐹𝑅 is defined below. 
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𝐹𝑅(𝑟𝑖) = {

0  𝑖𝑓 𝑟𝑖 ∉ 𝑅 

𝑓(𝑟𝑖)

|𝑅|
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (55) 

Where 𝑓(𝑟𝑖) is the frequency of 𝑟𝑖. Hence the sum of the relative frequency of all elements in 

the pre-cache is unity, 

∑ 𝐹𝑅(𝑟𝑖) = 1

|𝐶2|−1

𝑖=0

 

 (56) 

 

The proposed co-operative cache mechanism blends two different cache replacement 

techniques. First, MOPR, using forecasting, and second, selective caching using relative 

frequency. The mathematical foundations and modelling of these techniques are as follows. 

A subset of pre-cache is cache (𝐶1 ⊆ 𝐶2) with a finite size. It comprises of |𝐶1| most frequently 

used references from 𝐶2. 

MOPR with forecasting – The traditional OPR algorithm makes use of the future occurrences 

of the pages to select a victim page during page replacement. To achieve this, future samples 

must be available. However, in the real scenario, this criterion can be met by forecasting them 

using their past occurrences. An efficient way of forecasting real-time data is to use a 

polynomial fit algorithm with Lagrange interpolation [191].     

Let 𝜏𝑖 be a set of timestamps where the reference 𝑟𝑖 ∈ 𝐶2 occurs in the reference string 𝑅. By 

nature, it is a monotonically increasing sequence that is bounded below.   

 ⋃ 𝜏𝑖

|𝐶2|−1

𝑖=0

 ⟺  ∑ |𝜏𝑖| = 𝑛

|𝑐2|−1

𝑖=0

 

 (57) 

 

In the above equation, 𝑛 refers to the window size maintained to prevent memory overflow. 

Let 𝑃(𝑥) be the Lagrange Interpolating polynomial of degree ≤ (𝑑 − 1) which passes through 

𝑑 points (𝑥1, 𝜏𝑖1), (𝑥2, 𝜏𝑖2), … , (𝑥𝑛, 𝜏𝑖𝑑) and is given by 
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𝑃(𝑥) =  ∑ 𝑃𝑗(𝑥)

𝑑

𝑗=1

 

 (58) 

Where  

𝑃𝑗(𝑥) = 𝜏𝑖𝑗 ∏
𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘

𝑑

𝑘=1
𝑘≠𝑗

 

 (59) 

 

Equations (58) and (59) are adapted from [192]. Refer there for the full expansion of the 

polynomial function.  

𝑃(𝑥) returns a polynomial of order 𝑑 that fits into the given samples of times-stamps with a 

minimum mean squared error (MSE). The 𝑥𝑖   series are the corresponding indices of the 𝜏𝑖 

series. For fitting a curve of order 𝑑, according to the convergence criteria of Newton’s divided 

difference technique [193], it needs at least 𝑑 + 1 data samples.  If enough samples are not 

available, LFU replacement is used instead. 

Hence the forecasting of 𝜏𝑖 with a period 𝑝 can be written as,  

𝜏𝑖
′ = {𝑃(|𝜏𝑖| + 1), 𝑃(|𝜏𝑖| + 2) … 𝑃(|𝜏𝑖| + 𝑝)}  (60) 

Hence, the forecasted reference string 𝑅𝐹 would be, 

𝑅𝐹 = ⋃ 𝜏𝑖

|𝐶2|−1

𝑖=0

′ 

 (61) 

 

However, the next time occurrence 𝜏𝑖
𝑛𝑒𝑥𝑡 of a reference 𝑟𝑖 ∈ 𝐶2 using 𝜏𝑖 for forecasting is 

𝜏𝑖
𝑛𝑒𝑥𝑡 =  𝑃(|𝜏𝑖| + 1)  (62) 

 

Let at time instance 𝑡, a page replacement is invoked. Therefore, MOPR will calculate the  𝜏𝑖
𝑛𝑒𝑥𝑡 

for all the cache in 𝐶1 and select a victim (𝑣) for page replacement. The victim is the 𝑟𝑖 with 

the max  𝜏𝑖
𝑛𝑒𝑥𝑡 

𝑣 = max( 𝜏𝑖
𝑛𝑒𝑥𝑡 ∀ 𝑟𝑖 ∈ 𝐶1)  (63) 
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Selective caching: In a classical caching system, a miss in an overflowing cache yields a 

replacement. It may so happen, that the cached data have less frequency of occurrence than 

the victim. Consequently, the victim is more likely to appear before the cached data hence it 

causes a miss. In a MEC environment, fetching data from a remote MEC node is costly, hence 

it raises the overall access cost significantly. This problem can be tackled with the proposed 

selective caching where it keeps track of the relative frequency of each reference in pre-cache 

(𝐶2). The cache (𝐶1) only holds the most relative frequently used references from 𝐶2. 

Therefore, a miss event with a reference 𝑟𝑗 will only be served as a replacement if the 𝐹𝑅(𝑟𝑗) 

is greater than the minimum 𝐹𝑅(𝑟𝑖) in the cache. 

𝐹𝑅(𝑟𝑗) > min({𝐹𝑅(𝑟𝑖) ∀ 𝑟𝑖 ∈ 𝐶1})  (64) 

The replacement algorithm used here varies, depending on the origin of the fetched data. The 

following are the two possible cases of origins.      

4.3.3.1 Data from Source:  

Data obtained from the source are treated with the highest priority because the link between 

the MEC node and the data source is very costly in terms of latency.  MOPR algorithm is used 

if there is a need for a replacement and the data obtained are cached. The aim is to maintain 

any data obtained from the point of presence in the local MEC cache units. 

4.3.3.2 Data from MEC cluster: 

 Data obtained from the same MEC cluster are given less priority because the link between the 

MEC nodes costs less.  Therefore, the selective caching approach is used where the data is 

only cached if equation (64) holds. Otherwise, the data is sent to the user but not cached in the 

MEC node. By employing such an approach, the key replacement algorithms policies which 

imply that the existing data are always replaced by the newly requested data upon request 

when the cache is full is modified. Accessing data from the MEC cluster, would not incur 
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much delay on the system since the access time to get the data from the MEC cluster is less 

than the time to get the data from the point of presence. This also reduces redundant caching 

in the MEC cluster. 

4.3.4 Time Analysis  

In this subsection, the time analysis of the data structures maintained, and the time analysis 

of the replacement algorithm proposed is analyzed.  

4.3.4.1 Data structures time analysis 

Three data structures are maintained using the proposed algorithm. This includes the set of 

cache 𝐶1, the HashMap of 𝑀𝑐𝑎𝑐ℎ𝑒 , the HashMap of 𝐶2 and the list of time stamps 𝜏𝑖  .  𝑀𝑐𝑎𝑐ℎ𝑒 

requires insertion, deletion, and search operations. Insertion operation of a known key would 

be an 𝑂(1). Deletion operation will require 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) lookup time, and an additional 𝑂(1) 

removal time. Therefore, in worst-case scenario deletion operation will be 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒). The 

search operation on 𝑀𝑐𝑎𝑐ℎ𝑒 on worst-case scenario will require 𝑂(𝑐𝑧 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒). 

The precache 𝐶2 requires an update of relative frequency, insertion, and window size 

maintenance. Update of relative frequency will require 𝑂(𝑛). Insertion and the maintenance 

of the window size will incur 𝑂(1) cost if a linked-list based queue is used as it requires 

insertion at the tail insertion and head removal.  

The list of time stamps 𝜏𝑖 requires insertion and window size maintenance operations. Similar 

to the precache, insertion and the maintenance of the window size will incur 𝑂(1) cost if a 

linked-list based queue is used.  

The cache 𝐶1 requires insertion and a deletion operation. The insertion is an 𝑂(1) while 

deletion will require 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) lookup time, and an additional 𝑂(1) removal time. 
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4.3.4.2 Replacement algorithm time analysis 

Let us analyse 3 scenarios of using the proposed algorithm. These scenarios represent the 

possible places where a request could be fetched from. 

1. Local MEC: If the requested reference is cached locally, 3 operations would be 

performed. These are, update the relative frequencies, add a new timestamp to 𝜏𝑖 and 

search for 𝑟𝑖 in 𝐶1. The frequency update takes 𝑂(𝑛) and the time stamp insertion takes 

𝑂(1) while the search operation takes 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒).  Therefore, the total cost incurred 

is 𝑂(𝑛) + 𝑂(1) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒).  

𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑎𝑙 = 𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒)  (65) 
2. Remote MEC: If the data is to be fetched from the remote MEC, there are two possible 

scenarios. These are the data is cached or the data is not cached. More steps are 

required if the data is cached. If the data is not cached, the operations required are the 

same as fetch from local MEC including check if 𝑟𝑖 is in 𝑀𝑐𝑎𝑐ℎ𝑒, check if the cache is full 

and if equation (64) is True. Checking if 𝑟𝑖 is in 𝑀𝑐𝑎𝑐ℎ𝑒 incurs 𝑂(𝑐𝑧 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) and 

checking if cache if full requires 𝑂(1). However, for equation (64), if a min-heap is 

maintained the minimum 𝑟𝑓 in 𝐶1 can be found in 𝑂(1). Therefore, the total time if 

data is not cached (𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑢𝑛𝑐𝑎𝑐ℎ𝑒
) is as follows assuming cost of obtaining data from 

remote MEC is 𝑡𝑚𝑒𝑐 . 

𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑢𝑛𝑐𝑎𝑐ℎ𝑒
=  𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) +  𝑂(𝑐𝑧 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) + 𝑡𝑚𝑒𝑐  (66) 

𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑢𝑛𝑐𝑎𝑐ℎ𝑒
=  𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑐𝑧 + 1)) + 𝑡𝑚𝑒𝑐  (67) 

However, if the data is cached, additional operations such as find victim with MOPR, 

delete victim, add to cache and update 𝑀𝑐𝑎𝑐ℎ𝑒 will be performed. To find a victim, 

MOPR needs to extrapolate the next sample for each 𝑟𝑖 in cache and return the max. 

Using Lagrange Interpolating polynomial, the time complexity is 𝑂(𝑛2) for each 𝑟𝑖. 

Finding the max using equation (63) requires sorting, thus 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 log 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒). 
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Therefore, total time complexity to find victim using MOPR is 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑛2)) +

 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 log 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒). Deleting victim will require find and removal operations. 

Thus, 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) +  𝑂(1). Adding to cache and updating 𝑀𝑐𝑎𝑐ℎ𝑒 will incur 𝑂(1) cost.  

Therefore, the total cost if data is cached (𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑐𝑎𝑐ℎ𝑒
) is as follows assuming the cost 

of obtaining data from remote MEC is 𝑡𝑚𝑒𝑐 . 

𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑐𝑎𝑐ℎ𝑒
=  𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑐𝑧 + 1)) +  𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑛2)) +

 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 log 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) +  𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒) + 𝑡𝑚𝑒𝑐 

 (68) 

𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑐𝑎𝑐ℎ𝑒
=  𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑐𝑧 + 1 + 𝑛2 + log 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 + 1)) + 𝑡𝑚𝑒𝑐  (69) 

𝑡𝑖𝑚𝑒𝑚𝑒𝑐𝑐𝑎𝑐ℎ𝑒
=  𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑐𝑧 + 𝑛2 + log 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 + 2)) + 𝑡𝑚𝑒𝑐  (70) 

 

3. Source/cloud: If data is obtained from the source, the operations required are the same 

as fetching from local MEC including check if 𝑟𝑖 is in 𝑀𝑐𝑎𝑐ℎ𝑒, check if the cache is full, 

find the victim with MOPR, delete victim, add to cache and update 𝑀𝑐𝑎𝑐ℎ𝑒. These 

operations have been previously analysed. Therefore, the total time taken for this is as 

follows assuming the cost of obtaining data from the source is 𝑡𝑠𝑜𝑢𝑟𝑐𝑒 . 

𝑡𝑖𝑚𝑒𝑐𝑙𝑜𝑢𝑑 =  𝑂(𝑛) + 𝑂(𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒(𝑐𝑧 + 𝑛2 + log 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 + 2)) + 𝑡𝑠𝑜𝑢𝑟𝑐𝑒  (71) 
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ALGORITHM I CO-OPERATIVE AND HYBRID REPLACEMENT CACHING (CHRCA) 

Input: 𝑛 ∈ 𝒩     : window size 
            d ∈ 𝒩 : Degree of the fitted polynomial 
            𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 ∈  𝒩  
Output: None 
Data Structure: Multiple Priority Queue 
Steps 1: Initialization 
𝐶1 ← 𝜙    //Cache Memory   
𝐶2 ← 𝜙                      //Pre-Cache  
𝑀𝑐𝑎𝑐ℎ𝑒  ← 𝜙             //MEC cooperative Cache  
Step 2: Get a Request 
𝑟𝑖 : Incoming reference  
Step 3: Calculate Relative Frequency  

𝑟𝑓𝑖 ←
𝑓(𝑟𝑖)

|𝑅|
   

𝐶2 ← 𝐶2 ∪ {ℎ𝑎𝑠ℎ → 𝑟𝑓𝑖}   
Set 4: Update Timestamps 

𝜏𝑖. 𝑎𝑑𝑑(𝑡𝑖)      // add new timestamp to list 
Step 5: Fetch Request 
𝑖𝑓 𝑟𝑖 ∈ 𝐶𝑖  𝑑𝑜 
     𝑓𝑒𝑡𝑐ℎ 𝑙𝑜𝑐𝑎𝑙𝑙𝑦  // cache hit 
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑟𝑖 ∈ 𝑀𝑐𝑎𝑐ℎ𝑒 𝑑𝑜  
     𝑓𝑒𝑡𝑐ℎ 𝑓𝑟𝑜𝑚 𝑀𝐸𝐶 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛 𝑑𝑒𝑙𝑎𝑦  // cooperative hit 
𝑒𝑙𝑠𝑒 𝑑𝑜 
     𝑓𝑒𝑡𝑐ℎ 𝑓𝑟𝑜𝑚 𝑐𝑙𝑜𝑢𝑑     // cache miss 
End  
Step 6: Replacement 
𝑖𝑓 |𝐶1| ≥ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 𝑑𝑜       // cache full 
     𝑖𝑓 𝑟𝑖 ∈ 𝑀𝑐𝑎𝑐ℎ𝑒 𝑑𝑜 
          𝑖𝑓 𝐹𝑅(𝑟𝑖) > 𝑚𝑖𝑛({𝐹𝑅(𝑟𝑗) ∀ 𝑟𝑗 ∈ 𝐶1}) do 

               𝑣𝑖𝑐𝑡𝑖𝑚 ←  𝑚𝑎𝑥( 𝜏𝑗
𝑛𝑒𝑥𝑡 ∀ 𝑟𝑗 ∈ 𝐶1)  // find victim using MOPR. If not enough samples use LFU. If 𝑟𝑓 tie use LRU 

                𝑅𝑒𝑚𝑜𝑣𝑒(𝐶1, 𝑣𝑖𝑐𝑡𝑖𝑚)       // remove victim from cache 
               𝐶1 ← 𝐶1 ∪ {𝑟𝑖}              // add new data 
               𝑢𝑝𝑑𝑎𝑡𝑒 𝑀𝑐𝑎𝑐ℎ𝑒 
          𝑒𝑙𝑠𝑒 𝑑𝑜 
               // do not cache 
          End  
     End  
     𝑖𝑓 𝑟𝑖 ∈ 𝑐𝑙𝑜𝑢𝑑 𝑑𝑜 
          𝑣𝑖𝑐𝑡𝑖𝑚 ←  𝑚𝑎𝑥( 𝜏𝑗

𝑛𝑒𝑥𝑡 ∀ 𝑟𝑗 ∈ 𝐶1)  // find victim using MOPR. If not enough samples use LFU. If 𝑟𝑓 tie use LRU           

           𝑅𝑒𝑚𝑜𝑣𝑒(𝐶1, 𝑣𝑖𝑐𝑡𝑖𝑚)       // remove victim from cache 
          𝐶1 ← 𝐶1 ∪ {𝑟𝑖}              // add new data 
         𝑢𝑝𝑑𝑎𝑡𝑒 𝑀𝑐𝑎𝑐ℎ𝑒 
     End  
𝑒𝑙𝑠𝑒 𝑑𝑜 
     𝐶1 ← 𝐶1 ∪ {𝑟𝑖}              // add new data 
     𝑢𝑝𝑑𝑎𝑡𝑒 𝑀𝑐𝑎𝑐ℎ𝑒 
End  
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4.3.5 Algorithm and System Design 

In this section, the algorithm system design and development has been discussed. The steps 

that have been taken for the creation of the algorithm, and how it has been deployed in the 

testbed are also listed in this section.  

4.3.5.1 Algorithm Workflow  

In this subsection, the algorithm workflow is explained. This is a series of steps, processes, 

and decisions that the algorithm is made up of and how they are linked together to achieve 

the goal of the algorithm. 

Figure 35 Algorithm Workflow 
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Here, a web browsing case study has been explored. On entering a URL, a Get Hash process is 

called. The Get Hash process computes a unique id ℎ𝑖 (using an MD5 hash) that identifies the 

request. The algorithm now checks if ℎ𝑖 is in the cache. If not in the cache, the requested data 

are fetched from the source. Next, a process is called to determine if the cache is full or not. If 

the cache is not full, ℎ𝑖 is cached and then recorded both on the local database and in the 

databases of other MEC’s in the cluster. 

If the hash ℎ𝑖 is in the cache, another process is then called to determine if the hash is located 

either locally on the MEC node or in another MEC node. If the cache is located locally on the 

MEC node, the data are then fetched locally and served to the user. Whereas if the data are 

not on the local MEC but another MEC, a process is then called to determine if the data is 

located only on one MEC or more than one MEC. If ℎ𝑖 is located only on one MEC, then the 

data is obtained from that MEC node and forwarded to the user. However, if the data are 

located on more than one MEC node, then a process is called to determine which of the MEC 

nodes have the maximum bandwidth connection on the link. The data are then fetched from 

that MEC. The next step is to check if the frequency of the fetched data is greater than the least 

frequency in the cache. If this is true, then the least frequently used data in the cache is 

replaced. Otherwise, the fetched data are forwarded to the user but not cached. After caching 

the data, the local database and the MEC database are then updated. 
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4.3.5.2 System design  

In this subsection, the system design layout is presented and explained. The interactions 

between the elements of the system are also detailed and explained. 

 

In Figure 36, the system design layout for the proposed algorithm. In the above diagram, the 

user is connected to the MEC node via the MEC access network. The MEC cluster is connected 

via an SDN network. The SDN layer is made up of an Open Vswitch which connects all the 

MECs and an SDN controller that controls the SDN network. In this scenario, an Open 

Daylight SDN controller is used in the architecture. The SDN layer is then connected to the 

cloud and the cloud is connected to the Internet. 

From the diagram, the end-user first sends a request (1) from the end device to its closest MEC 

node. Each MEC node consists of the proposed algorithm, a SQL database and a file system. 

Figure 36 System Design 
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Details about the cache data are stored in the SQL database. The actual cache data are stored 

in the file system while the relative frequency over a specified window size is stored in the 

RAM. On step (2), the algorithm generates a unique hash ℎ𝑖 for the request using the Hash 

method. In step (3), the algorithm checks if the hash is in the database. This will return false 

because it is the first request (4). In step (5), the MEC node forwards the request to the source. 

The response is obtained in step (6). In step (7), details about the obtained data are recorded 

in the database. The data are saved in the file system in step (8), and the relative frequency is 

updated in step (9). In step (10), the response is forwarded to the user. In step (11), the MEC 

sends an update query to other MECs in the cluster to update their database and the said 

databases are updated in step (12). This completes one cycle. 

Another cycle is started in step (13) when a user that is connected to another MEC node 

requests the same data. In step (14), a hash ℎ𝑖 that uniquely identifies the data is generated. In 

step (15) the MEC node checks if it is in the database. In step (16) it returns true and the 

algorithm then forwards the request to the relevant MEC node that has the requested data. In 

step (17) the algorithm searches and obtains the data from the file system. In steps (18) and 

FIGURE 37 Deployment Set-Up 
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(19) the obtained data are then forwarded back to the relevant MEC and the MEC sends the 

response data to the user. Next, the data are saved in the file system and the database is 

updated in steps (21) and step (22) and, the relative frequency is updated. This completes 

another cycle. Notice that in this cycle no interaction has been made to the data source which 

is the cloud infrastructure. 

4.3.6 Experimentation Testing 

In this section, details are provided of how the proposed algorithm has been tested, which 

algorithm it has been compared to, and how the algorithm has been deployed. More detail of 

the experiment setup is available in appendix 2. 

 

4.3.6.1 Experimental setup  

In this subsection, the deployment set-up is presented. The components that make up the 

system and what tools and platform that was used are discussed. 

The diagram in Figure 37, is made up of three layers, this consists of the Cloud layer, MEC 

layer, and End-user layer. 

 

4.3.6.1.1 Cloud Layer:  

In this research, the OpenStack1 cloud environment has been used as the cloud platform. 

OpenStack is an open-source software platform for cloud computing [194]. It provides an 

infrastructure as a service for users to deploy virtual entities over scalable resources. From 

FIGURE 37, the main OpenStack components for our test are Neutron, Compute, Horizon, and 

Keystone. The Neutron manages the virtual networking layout in an OpenStack environment 

providing a network as a service for vNICs (Virtual Network Interface Card) to Nova 

 
1 https://www.openstack.org/ 
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instances located at the compute node. In the diagram, neutron provides a private network 

for the Nova instance to communicate with each other. It also connects the virtual domain to 

the external world via a public network. The OpenStack Compute provides a platform for 

virtual machines (Nova instances) to be created. The software applications are deployed 

inside the Nova instance and assigned the necessary computational resources that support 

required functionalities. Here, a web application for the proposed test model has been 

deployed. The horizon provides a GUI dashboard that enables users to monitor and control 

the virtual machines as well as many other configurations and KPI indicators. OpenStack 

Keystone provides OpenStack with the identity service for authentication and high-level 

authorization.  

 

 

4.3.6.1.2 MEC Layer 

GNS3(Graphical Network Simulator- 3)1 has been used to emulate the MEC cluster. GNS3 is 

a free software used to emulate complex networks [195]. In GNS3, a cluster of the MEC 

network has been created. The MEC cluster nodes are interconnected using overlaid 

networking provided by Open Daylight2 [196] that also acts as software-defined networking 

(SDN) controller for the testing platform. Each MEC node is a lightweight docker3 container. 

 
1 https://www.gns3.com/ 
2 https://www.opendaylight.org/ 
3 https://www.docker.com/ 

TABLE 9 SPECIFICATION OF CONTAINERIZED MEC USING DOCKER 

Operating System Ubuntu 16.04 Xenial  

Architecture x86_64 

CPU(s) 8 

Thread(s) per core 1 

Model name Intel(R) Xeon(R) 

CPU (GHz) 2.6 

Total memory (GB) 2 
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A docker container is a lightweight, standalone, executable package of software that has 

operating system-level virtualization and includes everything needed to run an application.  

 The system specification of the docker container is listed in TABLE 9. The MEC layer is 

connected to the internet via the public network. A private network is also created within the 

GNS3 with which the MECs are connected. Quagga [197] is installed on the MEC docker 

containers and configured to serve as an access point for end-user devices. The proposed 

algorithm is written in python and deployed as a Docker application in the MEC Docker 

container. 

 

 

 

 

 

4.3.6.1.3 End-user layer 

This layer is the final layer and it is made up of the end-user devices. To simulate the users, it 

is assumed that the sample space of the generated requests uses Gaussian distribution. 

TABLE 10  CACHING TEST SPECIFICATION 

Specification  Amount  

Number of MECs in the cluster 3 

Number of requests received per MEC 500 

Cache size of each MEC 4 

Number of content items 20 

Figure 38 Lower RTT Implies Reduced Access Time Due To High Local Hits. Less CPU Consumption Implies 

Computational Efficiency. CHRCA Meets Both Criteria Hence Its Fast And Efficient 
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4.3.6.2 Experiment Procedure 

In this section, performance comparisons are made between the proposed algorithm and two 

case study algorithms. The first case study algorithm is a combination of Co-operative caching 

and Least Recently Used (CLRU). LRU algorithm chooses its replacement victim based on 

which cache reference has been unused for the longest time [138]. While the second case study 

algorithm is a combination of Co-operative caching and Least Frequently Used (CLFU). The 

caching test specifications are summarized in Table 10. 

4.3.6.3 Experimental Results 

In this section, the results obtained after experimentation and testing have been discussed. 

Here a comparison of the resource utilization which includes the CPU and RTT (this is the 

RTT between the MEC and the webserver) utilization is made for the Case study algorithm 

and the proposed algorithm. A comparison is also made for the cache performance which 

includes local cache hits, cache misses, and total cache hits. 

  

Figure 39 Number Of Nodes Is Proportional To The Cache Performance. However, CHRCA Shows A 

Better Convergence (Higher Hits And Lower Misses) Compared To CLFU And CLRU 
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4.3.6.4 Resource utilization comparison 

Figure 38 shows the CPU and RTT utilization of each algorithm over a period during the 

algorithm run time. From Figure 38, it can be deduced that the RTT utilization for all 

algorithms approximately lies between the same range which is 30ms to 60ms. It is also shown 

that the CPU Utilization of the proposed algorithm and CLFU stays below 40% for most of 

the time apart from certain peaks while in CLRU algorithm the CPU utilization stays above 

40% most of the time apart from certain falls. It can also be seen that the peak for CPU 

utilization of all three algorithms is approximately the same. The CPU utilization drops 

mainly when there are cache hits and the data is fetched locally from the device or the MEC 

and not from the source. TABLE 11 shows the average resource utilization of each algorithm. 

 

 

 

 

 

 

 

 

 

4.3.6.5 Cache performance comparison 

Figure 39 shows the local cache hits, cache misses, total cache hit (sum of the local cache hits 

and cache hit from MEC cluster) respectively of each algorithm over a period during the 

algorithm process. The delay incurred in using the replacement algorithm is high, therefore 

less use of the replacement algorithm means less delay in the system. Comparing the two 

graphs, it can be deduced that the proposed algorithm has a better overall performance as it 

generates more cache hits, fewer cache misses, more total cache hits, and less replacement.  

TABLE 11 AVERAGE RESOURCE (CPU AND RTT) UTILIZATION 

Average CLRU CLFU Proposed  

Average CPU (%) 47.49667 37.57 37.17 

Average RTT (ms) 45.4963 46.32049 41.56043 
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4.3.7 REPLACEMENT ALGORITHM VALIDATION EXPERIMENT 

In the previous section, experiments have been conducted to compare the cache performance 

of the proposed algorithm with varying number of MECs.  This section aims a validating the 

replacement algorithm performance using a higher amount of request, varying cache size and 

request distribution. The hit ratio of the proposed algorithm is compared to existing 

algorithms. These algorithms are evaluated with varying Zipf-popularity distribution 

parameter (𝛼).  Samples are drawn from a Zipf distribution [198]  with specified parameter 𝛼 

> 1. The probability density for zipf distribution is expressed as below. 

𝑝(𝑥) =
𝑥−𝛼

𝜁(𝛼)′
 

where 𝜁 is the Riemann Zeta function [198]. In this experiment, samples from the Zipf 

distribution have been generated using the Numpy library [199]. Seven algorithms have been 

evaluated including LFU, LRU, FIFO, MQ, FBR, and OPR. These algorithms have been 

implemented using python.  

 

 

TABLE 12 EXPERIMENTAL PARAMETERS 

Parameters Values 

𝛼 {1.1, 1.3, 1.5} 

𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 {30,40,50} 

No of requests 5000 

No of Experiments 3 

No of content 300 

 

 

 



MEC CACHE RESOURCE MANAGEMENT [CHRCA] 

144 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental parameters used are displayed in TABLE 12 and the corresponding 

algorithm parameters are outlined in TABLE 13 

4.3.7.1 Experiment Results 

 

Figure 40 depicts the result obtained from the experiment conducted. It displays a comparison 

of the resulting hit ratio percentage achieved using varying cache sizes and Zipf parameter. 

TABLE 13 ALGORITHM PARAMETERS 

Algo. Parameter Value 

FBR[162] 𝐹𝑛𝑒𝑤 30% 

𝐹𝑜𝑙𝑑 30% 

𝐴𝑚𝑎𝑥 100 

𝐶𝑚𝑎𝑥 11 

MQ[159] 𝑄𝑜𝑢𝑡  𝑠𝑖𝑧𝑒 4 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 

No of LRU Q 8 

CHRCA d 3 

n 800 

Figure 40 CHRCA Validation Experimental Results with Varying Cache size and Zipf parameter 
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The proposed algorithm CHRCA attains a 4% lead in hit ratio when compared to other 

algorithms.  However, it does not quite perform as well as OPR. This is because the prediction 

obtained is an estimation and not 100% accurate. The average prediction accuracy achieved 

during the experiments is 95% using a polynomial degree of 3 and 800 sample size.   The least 

performing algorithm is the FIFO.  Zipf 𝛼 of 1.1, 1.2 and 1.3, have been used to get a suitable 

variation of requests to gauge the performance of each algorithm. An increase in 𝛼 leads to an 

increase in the hit ratio due to lesser variation in the request distribution.  A continuous 

increase in the 𝛼 will get to a point where each algorithm almost achieves 100% hit ratio.  

Hence, not suitable to effectively gauge the performance of the algorithm.
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4.4 A Novel Predictive-Collaborative-Replacement (PCR) Algorithm for MECs 

In the previous section, a predictive caching scheme has been explored that utilizes Lagrange 

extrapolation for prediction. To improve the prediction accuracy a new predictive caching 

scheme has been presented in this chapter. 

Employing an appropriate caching algorithm is crucial to increase the overall QoE in content 

distribution systems as a 1% increase in hit ratio can have a very positive impact. The 

conventional caching algorithms such as FIFO [104], LRU [129], LFU [159], LFRU [161] and 

their variants [160] [162] [163] [159] follow very specific rules.  Therefore, these algorithms 

alone cannot adapt to the ever-caching user request patterns. Following the increasing 

popularity of machine learning and data analytics, progress has been made on prediction 

based caching algorithms [183] [184] [185] [200]. Most of these algorithms use machine-

learning schemes that involve data preparation and feature extraction, model training, and 

finally cache replacement using trained model. The model training is usually very time 

consuming and therefore mostly done offline. However, once the model is trained with 

appropriate hyperparameters and adequate feature engineering, it can achieve very high hit 

ratio. The downside is that the model created is very dependent on the data used in training 

and hence not very adaptive.  

In this chapter, utilizing the capabilities of the MEC, the aforementioned concerns of the 

caching algorithms have been addressed by proposing a three-fold algorithm solution to 

improve the cache hit ratio, and access delay. This includes a novel delay-aware replacement 

caching algorithm that can find a victim in 𝑂(1), a proactive online association-based caching 

strategy that prefetches cache objects based on anticipated user behaviour, and finally a MEC 

collaborative caching algorithm. Simulation results show that the proposed algorithm 
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outperforms conventional algorithms with regards to hit ratio and experimental results show 

that it outperforms an offline caching algorithm with a pre-trained model. 

 

4.4.1 System Model 

Let’s consider a typical system architecture as shown in Figure 41. Here, there is a set of MECs 

in a cluster that defines a collaborative space to support the core network. Let ℂ =

{𝐶1, 𝐶2, 𝐶3. . 𝐶𝑛} denote a set of collaborative spaces. Each collaborative space contains a set of 

MEC server 𝐶𝑖 = {𝑀1, 𝑀2, … 𝑀𝑛}. The MEC is co-located with the base station to provide 

computational and caching resources. It is assumed that the collaborative space is defined by 

the network administrator based on the hop count distance between the MEC nodes [170]. 

This is to reduce the communication delay within the collaborative space and reduce the 

communication overhead. The users are connected to the MEC in the collaborative space 

closest to them. The MEC maintains a disjoint one-to-many cardinality with the UE. Here an 

edge node is connected to many UE, but no UE is connected to multiple MECs.  𝑈𝑖 =

{𝑢1, 𝑢2, . . 𝑢𝑛} is denoted as a finite non-empty set of UEs connected to a MEC 𝑀𝑖. Each 𝑢𝑖 

request data 𝑟𝑖 to be retrieved through the MEC where 𝑟𝑖 ∈ 𝑅.  𝑅 = {𝑟1, 𝑟2. . , 𝑟𝑛} is a finite non-

empty set of data that can be retrieved from ℂ 𝑜𝑟 ℋ, where ℋ denotes the cloud platform. 

Requests that cannot be retrieved from ℂ is sent to ℋ through the core network. 
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4.4.2 Proposed Algorithms (PCR) 

Podlipnig et al [201] has stated that a good caching algorithm must consider 4 factors. The 

frequency of the cache object, the recency, the size of the cache object, and finally the cost of 

retrieving the cache object. This is of no surprise as prior to this, Zhou et al [159] have also 

listed 3 factors a good cache algorithm must-have. Two of them (frequency and recency) have 

already been mentioned. The third factor is the temporal frequency. This is to solve the 

problem of cache objects that have been frequently accessed in the past, obtains a very high 

frequency, and never replaced even if it is no longer popular. An algorithm that addresses 

these problems is proposed in the content caching subsection. Additionally, a proactive 

predictive caching scheme is proposed that learns the user’s request pattern, anticipates 

requests, and prefetches the objects. Finally, a collaborative algorithm is proposed for the 

Figure 41 System Architecture for MEC Collaborative Content Caching 
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effective utilization of the global MEC cache storage. In the following sections, the details of 

the proposed schemes are outlined.  

The proposed caching framework is depicted in Figure 42. Following the numbered items in 

the diagram, the algorithm is initialized with a new user request. If the requested cache object 

is not in the local cache, then the MEC Collaborative Scheme is used to retrieve the object. If it is 

not in the collaborative cache, then it is retrieved from the content server. The Replacement 

Scheme handles the identification and eviction of the cache victim when the cache is full. 

Finally, the Cache Prediction Scheme generates cache sequential association rules based on the 

received request patterns.  Therefore, when there is a match based on the rules generated, the 

cache objects are prefetched and stored in the local cache. These three schemes are explained 

in detail in the following sections. 

4.4.2.1 Replacement Scheme: Selective Historic Least Frequently Used (SHLFRU) 

The rationale of the proposed content caching algorithm is to design and develop an efficient 

caching algorithm with competitive time complexity.  The basis of SHLFRU is in the 

combination of LRU and LFU algorithms, in which the least frequent and least recent cache 

object is replaced. However, two enhancements have been made to this algorithm.  

Figure 42 PCR Caching Framework 
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• Selective caching: The problem of cold cache objects, which are requested once and 

not requested again for a very long time and therefore not useful of being the 

cache-store is addressed. To solve this, a selective caching approach is used where 

the requested cache object 𝑟𝑖 is only cached on either of two conditions. The first 

condition is based on temporal locality thus cache objects 

with a higher temporal locality have more priority. This has 

been achieved using a history queue. The second condition 

prioritises cache objects with higher retrieval costs. This is to reduce the 

user access cost. The two conditions are represented as in equations (72) and 

equation (73)  below. 

𝑟𝑖
(𝑅−1)

≤ 𝑟𝑗
(𝑅−1)

 ∀ 𝑟𝑖 ∈  𝐻  (72) 

 

𝑟𝑖
𝑐 > 𝑟𝑗

𝑐   (73) 

 

Here, 𝐻 is the history queue, 𝑟𝑖
(𝑅−1)

 is the previous recency of the new cache object 

𝑟𝑖 and 𝑟𝑗
(𝑅−1)

 is the previous recency of the least frequently and recently used object. 

𝑟𝑖
𝑐 is the cost of retrieval of 𝑟𝑖 and 𝑟𝑗

𝑐 is the cost of retrieval of the 𝑟𝑗. 

𝑟𝑖
𝑐 =

𝑠𝑖𝑧𝑒

𝑡𝑟𝑎𝑡𝑒

  
 (74) 

Hence, 𝑠𝑖𝑧𝑒 is the size of 𝑟𝑖
𝑐 in bits and 𝑡𝑟𝑎𝑡𝑒 is the transmission rate. 𝑟𝑖

𝑐 is taken to 

be the miss penalty, which is the delay in retrieving the cache object if there is a 

cache miss. The history queue 𝐻 is a FIFO queue of a finite size ℎ𝑠𝑖𝑧𝑒 . It keeps the 

details of recently evicted blocks but not the cache data. 

The selective caching decision is only activated when the MEC cache store 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒  

is full.  
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|𝑀𝑖
𝑠𝑡𝑜𝑟𝑒| ≥ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒  (75) 

 

If either eq. (72) or eq. (73) is true, then 𝑟𝑖 is removed from 𝐻 and pushed into 

𝑀𝑖
𝑠𝑡𝑜𝑟𝑒. 

• Temporal Frequency: To address the problem of temporal frequency, a frequency 

count bounding strategy is used. In this approach, the maximum distance between 

two consecutive cache objects 𝑟𝑗 and 𝑟𝑖 in an LRU queue are grouped by their 

frequency count that is bounded by 𝑓𝑚𝑎𝑥. With this approach and 𝑟𝑖 being the lead 

cache object in 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒, the increment of the frequency count of a cache object 𝑟𝑖

𝑓
is 

governed by function 𝐹𝑟𝑒𝑞𝐶𝑜𝑢𝑛𝑡(𝑟𝑖
𝑓

) stated in the equation below. 

𝐹𝑟𝑒𝑞𝐶𝑜𝑢𝑛𝑡(𝑟𝑖
𝑓

) =  {
𝑟𝑖

𝑓
+ 1,   𝑟𝑖

𝑓
− 𝑟𝑗

𝑓
< 𝑓𝑚𝑎𝑥

𝑟𝑖
𝑓

,     𝑟𝑖
𝑓

− 𝑟𝑗
𝑓

≥ 𝑓𝑚𝑎𝑥

 
 (76) 

 Additionally, to avoid the problem of overflow associated with the practical 

implementation of frequency counts, a similar technique used in FBR [162] is 

applied. In this approach, the sum of all the frequency count 𝑓𝑠𝑢𝑚 is dynamically 

maintained. Therefore, every frequency count in 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒 is reduced whenever the 

following condition occurs. 

𝑓𝑠𝑢𝑚

|𝑀𝑖
𝑠𝑡𝑜𝑟𝑒|

≥ 𝐴𝑚𝑎𝑥  
 (77) 

𝐴𝑚𝑎𝑥 is a predefined maximum value which is a parameter of the algorithm. Here, 

small 𝐴𝑚𝑎𝑥 means high-frequency updates. The frequency count of the cache 

objects in 𝐻 and 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒 is reduced using the following equation. 

⌈
𝑟𝑖

𝑓

2
⌉ ∀ 𝑟𝑖 ∈ {𝑀𝑖

𝑠𝑡𝑜𝑟𝑒 , 𝐻} 
 (78) 
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Using this approach, in a steady state, 𝑓𝑠𝑢𝑚 would lie between |𝑀𝑖
𝑠𝑡𝑜𝑟𝑒| ∗ (

𝐴𝑚𝑎𝑥

2
) and 

|𝑀𝑖
𝑠𝑡𝑜𝑟𝑒| ∗ 𝐴𝑚𝑎𝑥. Note that in this reduction a count of one will remain at one, a 

count of two would be two, a count of three would be two, etc. 

 

The SHLFRU algorithm uses multiple LRU queues ℚ to achieve LRFU where each LRU queue 

𝑄𝑖 contains cache objects with the same frequency count. 

ℚ =  {𝑄1 , 𝑄2 . . , 𝑄𝑛} 𝑠. 𝑡 ∀ 𝑟𝑖 ∈ 𝑄𝑖 , 𝑟𝑖
𝑓

= 𝑖  (79) 

 

 

The reference to the LRU queue that contains the cache objects with the least frequency 𝑄𝐿 is 

dynamically maintained. Therefore, when a cache needs to be replaced the victim is the cache 

object in the tail of 𝑄𝐿. 

 

4.4.2.1.1 Time complexity 

Maintaining an LRU queue requires a tail insertion/head taking and incurs no overhead. 

Since 𝑄𝐿 is maintained, a heap data structure is not required to keep the LFU stored. Hence, 

the replacement victim can be found in constant time. If 𝑄𝐿 changes a maximum of 𝑓𝑚𝑎𝑥 

queries are required to find the next 𝑄𝐿. 𝑓𝑚𝑎𝑥 is a constant that does not depend on the scales. 

In all, the time complexity of SHLFRU is 𝑂(1). 

Taking these updates into consideration, the proposed algorithm SHLFRU in algorithm II.  

 



MEC CACHE RESOURCE MANAGEMENT [PCR] 

153 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.1.2 Simulation Experiments 

To evaluate the efficiency of the proposed content caching algorithm, SHLFRU has been 

compared with existing algorithms. These algorithms have been implemented using Python. 

The simulation implementation project is available on 𝐺𝑖𝑡𝐻𝑢𝑏 [202]. The simulation platform 

is also available online [203] for researchers to benchmark their algorithms with existing 

schemes. More detail of the simulation tool is available in appendix 3. The purpose of the 

simulation is to evaluate the hit ratio of SHLFRU compared to existing algorithms. These 

algorithms are evaluated with varying Zipf-popularity distribution parameter (𝛼) and 

ALGORITHM II SHLFRU 

Input: 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 , 𝐴𝑚𝑎𝑥 , 𝑓𝑚𝑎𝑥 , ℎ𝑠𝑖𝑧𝑒  
Output: None 
Initialization: 

𝑀𝑖
𝑠𝑡𝑜𝑟𝑒 ← 𝜙 

𝐻 ← 𝜙 
𝑐𝑎𝑐ℎ𝑒𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑇𝑟𝑢𝑒 
/* Procedure to be invoked upon reference to cache object 𝑟𝑖 */ 

1. 𝒊𝒇 𝑟𝑖 𝑖𝑛 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒  𝒕𝒉𝒆𝒏 

2.         𝑄𝑖. 𝑝𝑜𝑝(𝑟𝑖) 
3. 𝑬𝒍𝒔𝒆 𝒅𝒐 
4.         𝐷1 ← do eq. (72) 
5.         𝐷2 ← do eq. (73) 
6.         𝒊𝒇 𝐷1 𝑜𝑟 𝐷2 𝑖𝑠 𝑇𝑟𝑢𝑒 𝒕𝒉𝒆𝒏 
7.                 𝑉𝑖𝑐𝑡𝑖𝑚 ⟵ 𝑄𝐿 . 𝑝𝑜𝑝( ) 
8.                 𝐻. 𝑝𝑢𝑠ℎ(𝑉𝑖𝑐𝑡𝑖𝑚) 
9.         𝑬𝒍𝒔𝒆 𝒊𝒇 𝑟𝑖 not in 𝐻 
10.                 𝐻. 𝑝𝑢𝑠ℎ(𝑟𝑖) 
11.                𝑐𝑎𝑐ℎ𝑒𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐹𝑎𝑙𝑠𝑒 
12.        𝑬𝒍𝒔𝒆 𝒅𝒐 
13.                 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑖

𝑟𝑒𝑐𝑒𝑛𝑐𝑦
 

14.                 𝑐𝑎𝑐ℎ𝑒𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐹𝑎𝑙𝑠𝑒 
15.         𝒆𝒏𝒅 
16. 𝒆𝒏𝒅 

17. 𝑘 ← 𝐹𝑟𝑒𝑞𝐶𝑜𝑢𝑛𝑡(𝑟𝑖
𝑓

) 

18. 𝒊𝒇 𝑐𝑎𝑐ℎ𝑒𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝒕𝒉𝒆𝒏 
19.        𝒊𝒇 𝑄𝑘  𝑛𝑜𝑡 𝑖𝑛 𝑀𝑖

𝑠𝑡𝑜𝑟𝑒  𝒕𝒉𝒆𝒏 
20.               𝑄𝑘 ← 𝜙 
21.       𝑄𝑘 . 𝑝𝑢𝑠ℎ(𝑟𝑖) 
22. 𝒆𝒏𝒅 
23. 𝒊𝒇 𝑒𝑞. (6) 𝑖𝑠 𝑇𝑟𝑢𝑒 𝒕𝒉𝒆𝒏  
24.     𝒅𝒐 𝑒𝑞. (7)    
25. 𝒆𝒏𝒅 
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𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 .  Samples are drawn from a Zipf distribution [198]  with specified parameter 𝛼 > 1. 

The probability density for zipf distribution is expressed as below. where 𝜁 is the Riemann  

𝑝(𝑥) =
𝑥−𝛼

𝜁(𝛼)′
 

Zeta function [198]. In this experiment, samples from the Zipf distribution have been 

generated using the Numpy library [199]. The experimental parameters are summarized in 

TABLE 14. Seven algorithms have been evaluated including LFU, LRU, FIFO, MQ, FBR, and 

OPT. SHLFRU, FBR, and MQ require additional parameters. The algorithm parameters used 

during the experimentation for this algorithm are summarized in TABLE 15. 

TABLE 14 EXPERIMENTAL PARAMETERS 

Parameters Values 

𝛼 {1.01, 1.20, 1.35} 

𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 {10,20,30} 

No of requests 5000 

No of Experiments 3 

No of content 100 

 

 

 

 

TABLE 15 ALGORITHM PARAMETERS 

Algo. Parameter Value 

SHLFRU 𝐴𝑚𝑎𝑥 100 

𝑓𝑚𝑎𝑥 10 

ℎ𝑠𝑖𝑧𝑒  4 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 

FBR[162] 𝐹𝑛𝑒𝑤 30% 

𝐹𝑜𝑙𝑑 30% 

𝐴𝑚𝑎𝑥 100 

𝐶𝑚𝑎𝑥 11 

MQ[159] 𝑄𝑜𝑢𝑡  𝑠𝑖𝑧𝑒 4 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 

No of LRU Q 8 
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4.4.2.1.3 Results 

The results obtained from the simulation are displayed in Figure 43. It can be deduced that 

SHLFRU performs better than the compared algorithms. Its performance is robust for 

different workloads and cache sizes. It can also be seen that MQ performs better than other 

algorithms apart from SHLRFU. SHLRFU maintains at least a 3% (3% of 5000 requests is 1500) 

improvement in hit ratio compared to MQ across the experiment. This improved performance 

can be attributed to the selective caching of SHLRFU and its ability to quickly identify cold 

cache objects. FBR performs almost as well as MQ across the simulation results. LFU 

surprisingly performs better than LRU across the simulation results.   

4.4.2.2 Cache Prediction Scheme: Proactive Prefetch caching algorithm (PPCA) 

The cache store would be efficiently managed if the users' future request pattern is known. 

This is proved from the simulation results obtained in Figure 43, as OPT performs way better 

than other algorithms. The best way to predict the future is to study history. The motivation 

of this proactive caching algorithm is to use a predictive caching strategy based on learning 

Figure 43 Simulation Result of The Comparison Of Algorithms With Varying Zipf Parameter (𝜶) And Cache 

Size 
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the association patterns between content requests in a MEC environment where the content 

popularity is time-varying and unknown. Association rule mining techniques are leveraged 

to identify content requests with close relations.  

Here, for a given MEC 𝑀𝑖 and time 𝑡𝑛, request history 𝑅𝑒𝑞, from time 𝑡𝑛−𝑘 to 𝑡𝑛 is utilized to 

generate rules (𝑅𝑢𝑙𝑒𝑠) that maps antecedents 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 to consequents 𝑟𝑢𝑙𝑒𝑐𝑜𝑛𝑠. This approach 

is employed rather than making predictions for 𝑡𝑛+1. It is assumed that certain content 

requests 𝑐𝑜𝑛𝑖 and 𝑐𝑜𝑛𝑗 are often requested together or sequential by users, where 𝑐𝑜𝑛𝑖 and 

𝑐𝑜𝑛𝑗 are sets of variable lengths. Therefore, the aim is to classify 𝑐𝑜𝑛𝑖 and 𝑐𝑜𝑛𝑗 as either 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 

or 𝑟𝑢𝑙𝑒𝑐𝑜𝑛𝑠 such that 

𝑐𝑜𝑛𝑖 → 𝑐𝑜𝑛𝑗 ≠ 𝑐𝑜𝑛𝑗 → 𝑐𝑜𝑛𝑖  (80) 

Let 𝑆 be the FIFO request sequence with length 𝑚 which has been received by a MEC 𝑀𝑖.  

𝑆 = {𝑟1, 𝑟2. . 𝑟𝑚}  (81) 

This problem is classified as an association sequential pattern mining. Here the order is 

maintained but no duplicate items may appear in the sequence.  To reduce the processing 

time of the algorithm, two pruning techniques are employed. First, the dimension of the 

request sequence to be mined 𝑠𝑖  is bounded by 𝑘. 

𝑠𝑖 = {𝑟1, 𝑟2 … 𝑟𝑘} 𝑠. 𝑡  𝑠𝑖 ⊆ 𝑆   

(82) 

𝑘 is dynamically obtained from the number of unique elements 𝑢𝑛𝑜 for a given window size 

𝑤𝑠𝑖𝑧𝑒, such that the sequence bounded by the window size 𝑠𝑤𝑠 is a subset of 𝑆. Therefore, 𝑘 is 

deduced from the following equation. 

𝑘 =  (𝑢𝑛𝑜)2  (83) 

This is to have enough training data that can generate meaningful insights. A similar approach 

has been used by [185]. In this regard, the training dataset 𝐷 is a matrix obtained from 𝑆 with 
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a dimension of 𝑢𝑛𝑜 ∗ 𝑢𝑛𝑜. Therefore, for the association mining to be performed, the following 

condition must be met.  

𝑘 ≤ 𝑚  (84) 

Secondly, the minimum support threshold 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚𝑖𝑛 is used to reduce the number of 

itemsets to be evaluated as candidates during the association mining. The support of a given 

sequence set 𝑐𝑜𝑛𝑖 𝑠. 𝑡 𝑐𝑜𝑛𝑖 ⊂ 𝐷 is the number of rows 𝑛𝑟𝑜𝑤 in 𝐷 that contain 𝑐𝑜𝑛𝑖. 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑜𝑛𝑖) =
𝑛𝑟𝑜𝑤

|𝐷|
   (85) 

Therefore, given 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚𝑖𝑛 a set 𝑆𝑐𝑜𝑛 that contains all 𝑐𝑜𝑛𝑖 and satisfies 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑜𝑛𝑖) ≥

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚𝑖𝑛  is sort after. 

𝑆𝑐𝑜𝑛 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2. . 𝑐𝑜𝑛𝑛} ∀ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑜𝑛𝑖) ≥ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚𝑖𝑛  (86) 

Using 𝑆𝑐𝑜𝑛, 𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙 is generated that contains rules with antecedents which are a subset of 

𝑆𝑐𝑜𝑛. 

𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙 = {𝑟𝑢𝑙𝑒1, 𝑟𝑢𝑙𝑒2. . 𝑟𝑢𝑙𝑒𝑛} ∀ 𝑟𝑢𝑙𝑒𝑖  
𝑎𝑛𝑡 ⊆ 𝑆𝑐𝑜𝑛  (87) 

The generated rules 𝑅𝑢𝑙𝑒𝑎𝑙𝑙 are then ranked to evaluate the strongest rules using the rule 

support (𝑅𝑢𝑙𝑒𝑠𝑢𝑝𝑝𝑜𝑟𝑡) and rule confidence (𝑅𝑢𝑙𝑒𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒) [204]. 𝑅𝑢𝑙𝑒𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 of (𝑐𝑜𝑛𝑖 →

𝑐𝑜𝑛𝑗) is the proportion of transactions in 𝐷 including both 𝑐𝑜𝑛𝑖 and 𝑐𝑜𝑛𝑗. 

𝑅𝑢𝑙𝑒𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑐𝑜𝑛𝑖 → 𝑐𝑜𝑛𝑗) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑜𝑛𝑖 ∪ 𝑐𝑜𝑛𝑗)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑜𝑛𝑖)
  

 (88) 

 

Given the sorted ranked rules 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘𝑒𝑑, the top 𝑝 rules are selected to be used for prefetch 

caching. 

𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑟𝑢𝑙𝑒1, 𝑟𝑢𝑙𝑒2 … 𝑟𝑢𝑙𝑒𝑝} ∀ 𝑟𝑢𝑙𝑒𝑖 ∈ 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘𝑒𝑑  (89) 

𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 is updated every 𝑅𝑢𝑙𝑒𝑡𝑖𝑚𝑒𝑜𝑢𝑡to ensure that the most relevant rules are stored. After 

the completion of each user request, the 𝑟𝑢𝑙𝑒𝑐𝑜𝑛𝑠 of the 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 that matches 𝑅𝑒𝑞((𝑡 − 𝑙) → 𝑡) 
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is prefetched. If there is no match, no prefetch is done. Here, 𝑡 is the current position in 𝑅𝑒𝑞 

and 𝑙 is the number of elements in 𝑟𝑢𝑙𝑒𝑎𝑛𝑡. Example if 𝑅𝑒𝑞 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5], and 𝑙 = 2. 

Therefore, 𝑅𝑒𝑞((𝑡 − 𝑙) → 𝑡) = 𝑅𝑒𝑞((5 − 2) → 5) = 𝑅𝑒𝑞(3 → 5) = [𝑟4, 𝑟5].To ensure quick 

lookup, the rules in 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 is stored in a hash table with the key being the number of 

elements in 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 and the value is also a hash table with the key being the 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 and the 

value being the 𝑟𝑢𝑙𝑒𝑐𝑜𝑛𝑠. The number of rules in the 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 is bounded by 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡
𝑚𝑎𝑥 . This 

is the maximum number of elements in the 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 that can be stored in 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡. Thus, the 

maximum look-up done to find matches is 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡
𝑚𝑎𝑥 . 

Two major algorithms can be used for association rule mining which are Apriori [205] and FP-

Growth [206]. Apriori generates better association with sparse datasets but it is memory 

intensive due to its breadth-first approach. FP-Growth is quicker and uses a depth-first 

approach. However, FP-Growth does not do well with sparse datasets [207]. The best of both 

worlds has been combined by employing both algorithms and then choosing which one to use 

at runtime based on the sparse density and a given memory threshold 𝑚𝑒𝑚𝑚𝑎𝑥. In this 

approach, the default algorithm is FP-Growth. However, the average memory utilized 

𝑚𝑒𝑚𝑎𝑣𝑔when updating 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 are stored. Therefore, Apriori is used if the following 

equation is satisfied, where 𝑀𝑖
𝑚𝑒𝑚 is the current memory utilization of the MEC and 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

is the sparse density of the dataset 𝐷. 

𝐴𝑝𝑟𝑖𝑜𝑟𝑖 | 𝑀𝑖
𝑚𝑒𝑚 < 𝑚𝑒𝑚𝑚𝑎𝑥 ∀ 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 0.5  (90) 

 

4.4.2.2.1 Time complexity 

The worse time complexity of using Apriori association mining [208] is 𝑂(2𝑢𝑛𝑜), where 𝑢𝑛𝑜 is the 

number of unique elements in 𝐷. This upper bound can only be reached when your threshold support 

is zero or support of every set of unique items is greater than threshold. Using eq (82) and (83), the 

time complexity is bounded by 𝑘. However, FP-Growth’s time complexity is 
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𝑂(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 ℎ𝑒𝑎𝑑𝑒𝑟 𝑡𝑎𝑏𝑙𝑒 × 𝑡𝑟𝑒𝑒 𝑑𝑒𝑝𝑡ℎ) [208]. Since a matrix of dimension 𝑢𝑛𝑜 × 𝑢𝑛𝑜 is used, the length 

of header table is 𝑢𝑛𝑜 and the maximum tree depth is 𝑢𝑛𝑜. Therefore, the time complexity is 𝑂((𝑢𝑛𝑜)2). 

This is significantly less than Apriori. The time complexity of ranking the rules generated is 

𝑂(|𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙| log(|𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙|)). Therefore, the total time complexity if Apriori is used is 𝑂(2𝑘 +

 |𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙| log(|𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙|) ). However, total time complexity if FP-growth is used is 𝑂((𝑢𝑛𝑜)2 +

|𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙| log(|𝑅𝑢𝑙𝑒𝑠𝑎𝑙𝑙|)). 

 

 

ALGORITHM III PPCA 

Input:  𝑆, 𝑤𝑠𝑖𝑧𝑒 , 𝑚, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚𝑖𝑛 , 𝑚𝑒𝑚𝑚𝑎𝑥 , 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡
𝑚𝑎𝑥 , 𝑝 

Output: 𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 

Initialization: 

𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅ 

1.𝑭𝒓𝒐𝒎 𝑠𝑤𝑠 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑛𝑜 

2.𝑘 ← (𝑢𝑛𝑜)2 

3.𝒊𝒇 𝑘 ≤ 𝑚 𝒕𝒉𝒆𝒏 

4.     𝑠𝑖 = {𝑟1, 𝑟2 … 𝑟𝑘} 𝑠. 𝑡  𝑠𝑖 ⊆ 𝑆 

5.     𝑜𝑏𝑡𝑎𝑖𝑛 𝐷 𝑓𝑟𝑜𝑚 𝑠𝑖 𝑠. 𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑢𝑛𝑜 ∗ 𝑢𝑛𝑜 

6.     𝑢𝑠𝑖𝑛𝑔 𝑒𝑞. (15) 𝑜𝑏𝑡𝑎𝑖𝑛 𝑆𝑐𝑜𝑛 

7.     𝒊𝒇 𝑒𝑞. (19) 𝑖𝑠 𝑭𝒂𝒍𝒔𝒆 

8.           𝑅𝑢𝑙𝑒𝑎𝑙𝑙 ← 𝐹𝑃𝐺𝑟𝑜𝑤𝑡ℎ(𝐷) 

9.      𝑬𝒍𝒔𝒆 

10.          𝑅𝑢𝑙𝑒𝑎𝑙𝑙 ← 𝐴𝑝𝑟𝑖𝑜𝑟𝑖(𝐷) 

11.     𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘𝑒𝑑 ← 𝑠𝑜𝑟𝑡(𝑅𝑢𝑙𝑒𝑎𝑙𝑙) 

12.     𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑠𝑙𝑖𝑐𝑒(𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘𝑒𝑑 , 𝑝) 

13.     𝒆𝒏𝒅 

14.𝒆𝒏𝒅 

4.4.2.3 MEC Collaborative Scheme: Collaborative Greedy algorithm 

The motivation behind this scheme is to manage efficiently the cache in the collaborative space 

by reducing data redundancy and increasing the sharing of cache data between MECs.  
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The aim here is to increase the efficiency of the global collaborative cache by improving the 

efficiency of the individual edge node. Let’s assume content-centric networking for sharing 

cache data within the collaborative space. Therefore, contents are retrieved using a named 

identifier 𝑛𝑖. Additionally, let’s assume a name resolution server 𝑛𝑟𝑠 are located in each 

ALGORITHM IV COLLABORATIVE GREEDY ALGORITHM 

Input:  𝑤 

Output: 𝑁𝑜𝑛𝑒 

Initialization: 

𝑀𝑖
𝑛𝑎𝑚𝑒𝑠 ← 𝜙 

𝑀𝑖
𝑠𝑡𝑜𝑟𝑒 ← 𝜙 

𝐶𝑖
𝑠𝑡𝑜𝑟𝑒 ← ∅ 

𝑇𝑁𝑀 = 𝑤 ∗ |𝐶𝑖| 

/* Procedure to be invoked upon reference to cache object 𝑟𝑖 */ 

1. 𝒊𝒇 𝑟𝑖 ∈ 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒  𝒏𝒐𝒕 𝑻𝒓𝒖𝒆 

2.      𝑛𝑖 ← 𝑀𝑖
𝑛𝑎𝑚𝑒𝑠(𝑟𝑖) 

3.      𝑞 ←  𝐶𝑓(𝐶𝑖
𝑠𝑡𝑜𝑟𝑒 , 𝑛𝑖)  

4.      𝒊𝒇 𝑞 𝒆𝒒𝒖𝒂𝒍𝒔 1 𝒕𝒉𝒆𝒏 

5.             𝒊𝒇 |𝑀𝑖
𝑛𝑖  | > 1 𝒕𝒉𝒆𝒏  

6.                  𝑟𝑖  ← 𝑅𝑒𝑡𝑟𝑖𝑣𝑒(𝑛𝑖, 𝑀𝑑) 

7.             𝒆𝒍𝒔𝒆 

8.                   𝑟𝑖  ← 𝑅𝑒𝑡𝑟𝑖𝑣𝑒(𝑛𝑖, 𝑀𝑗) 

9.             𝒆𝒏𝒅 

10.           𝒊𝒇 |𝑀𝑖
𝑛𝑖  | < 𝑇𝑁𝑀 𝒕𝒉𝒆𝒏 

11.                  𝑀𝑖
𝑠𝑡𝑜𝑟𝑒 . 𝑝𝑢𝑠ℎ(𝑟𝑖)  

12.           𝒆𝒏𝒅 

13.      𝒆𝒏𝒅 

14. 𝒆𝒍𝒔𝒆 

15.       𝑢𝑠𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐼 𝑡𝑜 𝑓𝑒𝑡𝑐ℎ 𝑟𝑖 

16.       𝑆𝑒𝑛𝑑 𝑝𝑢𝑠ℎ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝑛𝑟𝑠 𝑤𝑖𝑡ℎ 𝑟𝑖 

17.       𝑠𝑒𝑛𝑑 𝑐𝑎𝑐ℎ𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡𝑜 𝐶𝑖 

18. 𝑈𝑠𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐼𝐼 𝑡𝑜 𝑝𝑟𝑒𝑓𝑒𝑡𝑐ℎ 𝑐𝑎𝑐ℎ𝑒 

19. 𝒆𝒏𝒅 
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collaborative space 𝐶𝑖. The contents in 𝑛𝑟𝑠 are populated by the MECs in 𝐶𝑖 after each content 

retrieval. To ensure security and integrity, the contents in the 𝑛𝑟𝑠 is stored in a distributed 

ledger similar to the blockchain. 𝑀𝑖 stores 𝑀𝑖
𝑛𝑎𝑚𝑒𝑠|𝑀𝑖

𝑛𝑎𝑚𝑒𝑠 ⊂ 𝑛𝑟𝑠 locally to improve efficiency. 

𝑀𝑖
𝑛𝑎𝑚𝑒𝑠 is a FIFO queue with a limited size. For simplicity, let’s assume each MEC 𝑀𝑖 has 

homogeneous storage capacity and belongs to a collaborative space 𝐶𝑖. The total content 

stored in the collaborative store is denoted by 𝐶𝑖
𝑠𝑡𝑜𝑟𝑒. Thus, 𝑀𝑖

𝑠𝑡𝑜𝑟𝑒 ⊂ 𝐶𝑖
𝑠𝑡𝑜𝑟𝑒. The 𝐶𝑖

𝑠𝑡𝑜𝑟𝑒 is 

populated by event-driven updates sent by MECs. Furthermore, a binary cache function 

𝐶𝑓(𝑐𝑎𝑐ℎ𝑒𝑠𝑡𝑜𝑟𝑒 , 𝑟𝑖) that indicates if a cache object is available in a cache store has been defined. 

𝐶𝑓(𝑐𝑎𝑐ℎ𝑒𝑠𝑡𝑜𝑟𝑒 , 𝑛𝑖) ∈ {0,1}  (91) 

From eq. (91),  1 implies that 𝑛𝑖 is cached in a given 𝑐𝑎𝑐ℎ𝑒𝑠𝑡𝑜𝑟𝑒 and 0 otherwise. If a named 

content is not stored in either 𝑀𝑖
𝑠𝑡𝑜𝑟𝑒 or 𝐶𝑖

𝑠𝑡𝑜𝑟𝑒, it is retrieved from the content provider in the 

cloud ℋ. However, if 𝑛𝑖 is in more than one MEC in 𝐶𝑖 then 𝑛𝑖 is retrieved from the MEC with  

the least network delay. Let’s denote the network delay between two MECs 𝑀𝑖 𝑎𝑛𝑑 𝑀𝑗 as 

𝑀𝑖→𝑗
𝑑𝑒𝑙𝑎𝑦

. If 𝑀𝑖
𝑛𝑖  denotes a set of MECs that have 𝑛𝑖 in the cache and 𝑀𝑑 is the MEC with the least 

network delay, the collaborative cache retrieve function 𝑅𝑒𝑡𝑟𝑖𝑣𝑒(𝑛𝑖, 𝑀𝑑) is defined in eq. (92). 

𝑅𝑒𝑡𝑟𝑖𝑣𝑒(𝑛𝑖 , 𝑀𝑑)  ←   ∀ 𝑛𝑖 ∈ 𝑀𝑖
𝑛𝑖  𝑠. 𝑡 |𝑀𝑖

𝑛𝑖| > 1  (92) 

To reduce cache redundancy, the number of MECs that can store 𝑛𝑖 is capped at 𝑤 percent. 

Therefore, the total number of MECs 𝑇𝑁𝑀 that can store 𝑛𝑖 is represented in eq. (93) 

𝑇𝑁𝑀 = 𝑤 ∗ |𝐶𝑖|  (93) 

4.4.3 Experimentation 

To evaluate the efficiency of the proposed algorithm PCR has been implemented in an 

emulation environment that consists of a varying number of MECs  {6, 8, 10} and a content 

server. The content server has been deployed on Netlify [209] and the MECs have been 
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deployed in the GNS3 platform. Each MEC is a Linux Server using docker as its Virtualization 

infrastructure. Communication between the MECs is achieved using a messaging broker. 

The proposed algorithm has been compared with a contemporary deep learning-based 

predictive edge caching algorithm [186]. The authors have used a RNN model, Long Short-

Term Memory (LSTM) to create a model that can make decisions on what to cache on the edge 

based on popularity. LSTM11 is an artificial recurrent neural network architecture used in the 

field of deep learning well suited for making decisions based on a time series dataset. 

Henceforth, this algorithm has been referred to as C-LSTM. C-LSTM has been trained using 

the MovieLens 20M dataset. Therefore, for fairness, the same dataset has been used for this 

experimental comparison. From the MovieLens 20M dataset, the focus was on the movie IDs 

that have been used in [186] and movie IDs in the range of 1 to 1070. After data preparation 

and filtering out movie Ids with little references, 444 models have been generated. The 

generated models have been then deployed on the MECs as per the author's specifications.  

The algorithms have been implemented using 𝑃𝑦𝑡ℎ𝑜𝑛 and the project is available on Github 

[202]. In the experimentation, it has been assumed that the arrival time of the user requests on 

the MEC server follows Poisson distribution 𝜆 = 1 | 𝜆 ∈ ℕ . The parameters used for the 

experiment have been summarized in the table below. For simplicity, it has been assumed that 

𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒  is a natural number ℕ. More detail of experiment setup is available in appendix 4. 

 

 

 

 

 

 

 
11 https://en.wikipedia.org/wiki/Long_short-term_memory 
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TABLE 16 EXPERIMENTAL SETUP PARAMETERS 

General Setup 

Parameters Value Meaning 

|𝐶𝑖| {6, 8, 10} No of MEC in the collaborative space 

|𝑅| 20,000 Total no of requests 

𝑁𝑜 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 1070 No of unique content 

𝜆 1 Poisson parameter 

Algo 1 parameter 

Parameters Value Meaning 

𝐴𝑚𝑎𝑥 100 Max average frequency 

𝑓𝑚𝑎𝑥 20 frequency count bounding parameter 

𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 50 Cache size 

ℎ𝑠𝑖𝑧𝑒  4 ∗ 𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 History size 

Algo II parameter 

Parameters Value Meaning 

𝑤𝑠𝑖𝑧𝑒  𝑐𝑎𝑐ℎ𝑒𝑠𝑖𝑧𝑒 ∗ .5 Window size 

𝑚 (𝑤𝑠𝑖𝑧𝑒)2 Length of history request 𝑆 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚𝑖𝑛 0.45 Minimum support 

𝑚𝑒𝑚𝑚𝑎𝑥 70% Maximum memory threshold 

𝑅𝑢𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡
𝑚𝑎𝑥  4 Max length 𝑟𝑢𝑙𝑒𝑎𝑛𝑡 

𝑝 10% No of the top rules selected 

Algo III parameter 

Parameters Value Meaning 

𝑤 10% No of MEC that can store a cache 

 

4.4.3.1 Experimental Results  

In this section, the results obtained from the comparison of the two algorithms with respect 

to hit ratio, access delay, CPU, and memory utilization are discussed. 

• Hit Ratio: Figure 44 shows the hit ratio comparison of PCR and C-LSTM with varying 

number of MECs. It can be seen that PCR achieves a better hit ratio than C-LSTM in 

all caches with at least a 25% increase. This high increase is due to the effective use of 

the collaborative cache and its selective caching approach. Additionally, this is also 
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attributed to the efficient identification and replacement of cold cache objects and the 

ability to learn and predict cache association patterns. 

• Access Delay: The comparison of access delay is depicted in Figure 44. It can be 

deduced that PCR obtains a lower access delay than C-LSTM. This is due to the 

increase in hit ratio as the access delay is dependent on the hit ratio. There is less access 

delay incurred if the user request is served from the local cache or MEC cache 

compared to obtaining the request from the content server. Therefore, a more hit ratio 

would lead to lesser access delay. This reduction would indirectly improve the QoS 

for the end-users and a step closer to achieving URLLC. 

• CPU Utilization: The CPU utilization comparison is shown in Figure 44. C-LSTM uses 

considerably lower CPU utilization than PCR. This is because C-LSTM is an offline 

algorithm. Hence, the model has already been trained with the dataset offline and the 

trained model is then used for caching decisions. Therefore, not much CPU utilization 

is required for prediction. However, PCR is an online algorithm, therefore, the 

association prediction is done during runtime and hence obtains a higher CPU 

utilization. The CPU utilization obtained is stable and predictable. Therefore can be 

accounted for during live deployment. 

• Memory Utilization: The memory utilization for both C-LSTM and PCR can also be 

seen in Figure 44. C-LSTM obtains a higher memory utilization than PCR. However, 

it is a low percentage compared to the overall memory. The higher memory utilization 

is because C-LSTM must load each trained model into memory which is then used for 

prediction. Although PCR will have to store a lot of the parameters in memory, these 

parameters are capped to prevent overflow and hence lower memory utilization. Low 

memory utilization is essential in real MEC environments due to the limited 

computation resources of MEC nodes. The memory utilization obtained during the 
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experiment proofs that the proposed framework can be deployed in a real MEC 

environment. 

 

 

  

Figure 44 Comparison Of Hit Ratio, Access Delay, CPU And Memory Utilization Of Both PCR And C-LSTM 
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4.5 Conclusion  

In this chapter, caching resource management in MEC has been explored. Following extensive 

literature, it has been identified that the user request pattern fluctuates with time. Therefore, 

the rule-based caching schemes are not suitable to dynamically adapt to user request patterns 

[104]. Additionally, there is a need to design a cooperative caching algorithm for MECs to 

effectively utilise the cache storage and reduce data redundancy in the edge. Hence, to address 

these problems, two predictive and cooperative caching schemes for MEC have been explored 

in this chapter to improve cache resource management in MEC. Table 17 shows how the two 

proposed schemes (bottom two) designed and evaluated in this chapter, compares with other 

existing algorithms studied in the literature review of this chapter in terms of techniques used. 

Ageing is this context refers to identifying cold cache objects quickly. 

 

 TABLE 17 BENCHMARKING CACHING TECHNIQUE 

COMPARISON 

 

Algorithms Frequency Recency Size Latency Ageing Prediction Cooperative 
FIFO ❌ ✔ ❌ ❌ ❌ ❌ ❌ 

LFU ✔ ❌ ❌ ❌ ❌ ❌ ❌ 

LRU ❌ ✔ ❌ ❌ ❌ ❌ ❌ 

LRU-K ✔ ✔ ❌ ❌ ❌ ❌ ❌ 

LRFU ✔ ✔ ❌ ❌ ❌ ❌ ❌ 

FBR ✔ ✔ ❌ ❌ ✔ ❌ ❌ 

2Q ✔ ✔ ❌ ❌ ✔ ❌ ❌ 

MQ ✔ ✔ ❌ ❌ ✔ ❌ ❌ 

GD-Size ✔ ❌ ✔ ✔ ✔ ❌ ❌ 

LUV ❌ ❌ ✔ ✔ ❌ ❌ ❌ 

LLF ❌ ❌ ❌ ✔ ❌ ❌ ❌ 

Size ❌ ❌ ✔ ❌ ❌ ❌ ❌ 

Size-Adjusted LRU ❌ ✔ ✔ ❌ ✔ ❌ ❌ 

LRU-SP ❌ ✔ ✔ ❌ ❌ ❌ ❌ 

Log(size)+LRU ❌ ✔ ✔ ❌ ❌ ❌ ❌ 

Pitkow/Recker ❌ ✔ ✔ ❌ ✔ ❌ ❌ 

Liu et al  [172]  ❌ ❌ ❌ ❌ ❌ ✔ ✔ 

MixCo[176] ❌ ❌ ❌ ✔ ❌ ❌ ✔ 

Sajeev et al [183] ✔ ✔ ✔ ❌ ❌ ✔ ❌ 

Dutta et al [184] ❌ ❌ ❌ ❌ ❌ ✔ ❌ 

Chan et al [185] ❌ ❌ ❌ ❌ ❌ ✔ ❌ 

Rahman et al [186] ❌ ❌ ❌ ❌ ❌ ✔ ❌ 

CHRCA ✔ ❌ ❌ ❌ ✔ ✔ ✔ 

PCR ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
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A hybrid content caching algorithm for MEC has been proposed to improve caching 

efficiency. The problems addressed include the design of a sub-optimal Belady’s algorithm 

that can be used in practice and reduce cache redundancy in the MECs. The result is a three-

fold MEC caching framework that includes a modified LFU algorithm. The proposed 

algorithm is a convergence of a modified Belady’s algorithm and a distributed co-operative 

caching algorithm. Polynomial regression algorithm has been leveraged to predict the future 

occurrences of requests using historical data of relative frequency of the requests. Cache 

redundancy in cooperative caching has been reduced by employing a selective caching 

approach. Experimental results have been obtained when the proposed algorithm is 

compared with two case study algorithms (a merge of Co-operative caching and LRU (CLRU) 

and a merge of Co-operative caching and LFU (CLFU)) on RTT, CPU utilization and cache 

performance show that the proposed algorithm obtains more cache hits and lesser average 

CPU utilization due to its selective caching approach. However, the prediction technique 

needs to be improved as the overall efficiency of the algorithm depends on the prediction 

accuracy to be near perfect which is very unlikely. Therefore, a new prediction technique 

could be explored.   

To improve the prediction technique of the proposed scheme, a new predictive caching 

scheme has been presented. Here, PCR which is a three-fold caching solution to increase the 

collaborative hit ratio in the MEC platform and reduce the access delay incurred with 

obtaining request data and improve the prediction technique has been presented. The first 

problem addressed in the study is to design an algorithm that can identify cold cache objects 

quickly and reduce latency with a very little overhead cost. This has been achieved by the 

design and development of a caching algorithm that considers access delay, frequency, and 

recency during cache replacement to optimize the hit ratio. The novel replacement algorithm 

can identify a victim to be replaced in constant. Additionally, to adjust dynamically to the 

ever-changing user request pattern a proactive predictive caching algorithm to learn cache 
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associations and prefetch cache objects when a user request is anticipated have been 

presented. The algorithm employs two sequential rule-based association mining techniques 

to learn and predict user request patterns. The rules generated are then used to effectively 

manage the MEC cache store. Finally, to increase the total hit ratio in the MEC platform a 

collaborative caching algorithm for MECs has been proposed. The algorithm relies on the 

sharing of cache information between MEC nodes. Comparisons have been made of the 

proposed algorithm PCR with an existing offline caching algorithm C-LSTM [186] and 

extensive experimentation shows that PCR is better than C-LSTM and other conventional 

algorithms with regards to the hit ratio and reduction of access delay. This improved hit ratio 

and reduction in access delay would improve the users’ QoS. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

5.1 SUMMARY 

The next generation of mobile networks (5G) is almost here, with many mobile operators in 

the deployment phase at the time of writing this thesis. Existing 4G networks are getting 

overwhelmed with the continuous increase of connected devices [1] due to the rise of IoT and 

mMTC and therefore would not be adequate for future needs. 5G aims at addressing the 

problems of 4G and additionally create a network environment that would be the base for 

emerging applications such as virtual and augmented reality, autonomous vehicles, and 

remote surgery. 5G would be beneficial for both the MNO and end-users. With regards to the 

MNOs, 5G would increase the network capacity to meet the increasing demand from the 

increase of connected devices and hence reduce the burden on 4G. Additionally, it will reduce 

the cost of deployment of future mobile network generations with network services entirely 

decoupled from the physical hardware. Therefore, making upgrades software specific rather 

than hardware-specific with the introduction of NFV and VNFs. Users also stand to benefit 

from 5G with the realization of URLLC which would support end-user applications such as 

360 video streaming, driverless cars, etc. 

MEC is essential in the realization of URLLC in 5G. This is because MEC offers cloud services 

at the edge of the network thereby reducing end-to-end latency for UE, easing traffic in the 

core network, enabling computation-intensive applications, and the use of resource-

constrained devices. MEC aims at decentralising the cloud infrastructure. Therefore, by 

eliminating the distance and time it takes to send data to centralized sources, the speed and 

performance of data transport can be improved. To facilitate enhancements to the existing 

network infrastructure and improve the QoE, MEC provides two main services at the edge of 

the RAN. These include computational and caching services. Hence, to realize the full 
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potential of MEC, it is important to effectively manage the computational resource and the 

caching resource. Therefore, this thesis has been aimed to improve the QoE of the network by 

designing and developing efficient algorithms that would effectively manage the caching and 

computational resources of MEC.  

There have been increased computation capacity for end devices over the years. However, 

end devices still have inadequate computational capacity to execute emerging computation-

intensive applications such as face recognition, etc. However, utilizing the computational 

resources available on the MEC, the end devices can offload their computationally intensive 

tasks to be executed in the MEC.  This would yield major benefits including latency reduction, 

low energy consumption, and reduced traffic in the core network. The MEC servers have 

smaller computational resources compared to the cloud servers. Additionally, there would be 

a huge demand for these computational services due to the increasing number of connected 

devices [99]. This excessive demand might cause overprovisioning of resources in MEC and 

may even lead to deadlock in the system if adequate measures are not in place [100]. 

Computational offloading and resource provisioning have been explored in the context of 

MEC [63] [101] [77]. However, the issue of deadlock in MEC during resource provisioning has 

not been addressed. This problem has been fully explored in this thesis. The problem has been 

modelled and solved algorithmically by proposing a deadlock aware resource provisioning 

algorithm for MEC. The proposed algorithm utilises a modified resource request Banker’s 

algorithm which can also re-distribute tasks to satisfy the latency constraints of offloaded 

workloads. Extensive simulation experiments have been carried out to validate the hypothesis 

of the proposed algorithm. Results have shown that system deadlock can be avoided by 

applying the proposed algorithm. To further validate the framework proposed, experimental 

comparisons have been made between different deadlock algorithms for MEC. The metrics 

used in the comparison include Round-trip time, Queue waiting time, CPU utilization, the 

ratio of tasks that meet the deadline during the experiment for each case study algorithm, and 
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Ratio of Local execution to cooperative MEC to cloud. Results show that each case study 

algorithm performs better when given specific constraints. This method will be very useful 

for applications like autonomous vehicles that require no failure rate to ensure passenger 

safety during commute. 

Caching is another key service MEC offers that will aid mobile end devices to achieve low 

latency for delay-sensitive applications and improve the QoS. There has been a continuous 

increase in the amount of traffic in wireless networks due to the increasing demand for mobile 

video streaming and the increasing popularity of social networking [102]. Therefore, Caching 

in the MEC would help in reducing the transmission distance, reduction in transmission 

delay, reduction in energy consumption which would ultimately lead to improvement of user 

QoS. However, to ensure that this increasing demand does not overwhelm the MEC, an 

efficient caching algorithm is required to effectively manage the cache resource of the MEC. 

To address this problem, two novel intelligent caching algorithms have been explored in this 

thesis. First, a hybrid content caching algorithm for MEC is presented to improve caching 

efficiency. The proposed algorithm is a convergence of a modified Belady’s algorithm and a 

distributed co-operative caching algorithm. Polynomial regression algorithm has been 

leveraged to predict the future occurrences of requests using historical data of relative 

frequency of the requests. The efficiency of the algorithm has been shown through extensive 

experimentations and comparisons with existing schemes. Additionally, another novel 

Predictive-Collaborative-Replacement scheme PCR has been explored. PCR is a three-fold 

caching solution to increase the collaborative hit ratio in the MEC platform and reduce the 

access delay incurred when obtaining requests. Comparison between PCR and an existing 

offline caching algorithm using LSTM for prediction [186] which has been aliased as C-LSTM 

in this report has been made. Extensive experimentation shows that PCR is better than C-

LSTM and other conventional algorithms with regards to the hit ratio and reduction of access 

delay. This framework will be very useful for applications like e-health and streaming 
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applications like Netflix, Amazon Prime Video, Disney Plus etc.  These applications are 

latency-critical. Therefore, the framework could be used to proactively predict and cache 

popular items based on changing trends.  

The two MEC resources (caching and computation) explored in this research have both 

contributed to the improvement of QoS and the realization of URLLC in 5G. The research 

outcomes have been summarised in section 5.2 and finally, the future works suggestions have 

been presented in section 5.3. 

5.2 RESEARCH OUTCOMES 

This section summarizes the research outcomes of this thesis. 

5.2.1 Deadlock Aware Resource Provisioning In MEC 

A deadlock avoidance resource provisioning algorithm has been proposed for IoT devices 

using MEC platforms to ensure higher reliability of network interactions. The proposed 

scheme incorporates a Banker’s resource-request algorithm using software-defined 

networking to reduce communication overhead. Extensive simulation results have shown that 

system deadlock can be prevented by applying the proposed algorithm which ultimately 

leads to a more reliable network interaction between mobile stations and MEC platforms. 

5.2.2 Comparative Analysis For Deadlock Avoidance And Prevention for MEC 

Here, deadlock avoidance and prevention mechanism are compared using Bankers resource 

request avoidance algorithm, wound wait algorithm, and wait-die algorithms. Additionally, 

a deadlock-aware cooperative decision algorithm has been proposed. The effectiveness of 

deadlock avoidance and prevention algorithms in real-time scenarios has been evaluated. The 

metrics used for comparison include Round-trip time, Queue waiting time, and CPU 

utilization. The effect that an increase in the number of MEC nodes has on the algorithm 

convergence has also been analyzed. Results obtained show that the avoidance algorithm does 

better in the percentage of tasks executed locally and the overall percentage of tasks executed 
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on time while prevention algorithms obtain better CPU utilization. It has been concluded that 

the optimum difference between these two algorithms with regards to the framework is the 

ability to keep the system in a safe state and thus, eradiate deadlock. Thereby, improving the 

overall QoS of the system. Additionally, there was no clear optimal algorithm that is the best 

using the metrics employed for evaluation. In contrast, a clear winner can be selected by 

comparing each metric individually. Therefore, it has been deduced that the wound wait 

algorithm using RMS for task scheduling achieve the best CPU utilization. The Wait-die 

algorithm using RMS for task scheduling achieves the best percentage of tasks meeting the 

deadline while Wait Die using EDF as scheduling and Bankers using RMS as scheduling both 

achieve the best comparison in terms of total tasks executed locally and not re-offloaded.  

 

5.2.3 Predictive Caching Using Lagrange extrapolating Polynomial 

A novel hybrid content caching replacement algorithm in MEC to increase its caching 

efficiency where future request references are predicted using a polynomial fit algorithm 

along with Lagrange extrapolation has been proposed. Additionally, a distributed co-

operative caching algorithm to improve data access within MECs has been presented. 

Experimental results have shown that the proposed scheme obtains more cache hits and lesser 

average CPU utilization due to its selective caching approach when compared with existing 

traditional cache replacement algorithms. The validation experiment confirms that the 

proposed approach achieves a 4% higher hit ratio than other compared algorithms excluding 

OPR. 

5.2.4 PCR: A Novel Predictive-Collaborative-Replacement Algorithm for MECs 

Here, three novel schemes (proactive predictive scheme, a collaborative scheme, and a 

replacement scheme (PCR)) have been proposed to address the underlined caching problem. 

The proposed algorithm has been tested using a real dataset (MovieLens20M dataset). Finally, 
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it has been compared with an existing contemporary algorithm and results show that the 

proposed algorithm performs better in terms of hit ratio, achieving a 25% increase during 

comparison. Additionally, network access delay was reduced by approximately 40% during 

comparison. 

5.3 FUTURE WORK 

The following should be considered for further research as an extension of the work done in 

this thesis. 

5.3.1 Intelligent Deadlock Detection For MEC 

Future work on deadlock in the MEC area may be to explore deadlock prediction in MEC 

using data collected over time. In this scenario, the Resource Allocation Graph (RAG) maps 

resource consumption over time for each MEC. Additionally, the fluctuation of resource 

consumption for each edge is monitored which results in a time series. Furthermore, an 

autoregressive function may be used to estimate the probability of the RAG to form a cycle. 

Hence, a proactive solution to prevent deadlock is employed. Therefore, the algorithm can 

deprioritize processes that are more likely to result in a deadlock as a preventive measure.  

5.3.2 Distributed Deadlock Aware Algorithm For MEC 

The proposed RPA is an algorithm for distributed systems and not a distributed algorithm. 

Further works on this topic will be to improve the algorithm into a distributed algorithm for 

MEC which can map the WFG of all the MEC nodes together rather than individual MEC 

WFG node mapping. Here decision-making can be done using a consensus algorithm. 

5.3.3 Predictive Caching in ICN 

ICN is advocated to shift the communication focus from data location to the data itself by 

making the named data the priority in the network.  Therefore, data can be sourced from the 

internet using the named data and not the data location or IP address. Exploration analysis 

can be done to determine if the proposed caching algorithms can be adapted in the context of 
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ICN. In this context, the routers would be used instead of MEC for caching. Therefore, an 

analysis should be done on where to carry out model training for predictions to optimise 

latency and avoid overloading of the router’s computational resources. 

5.3.4 Distributed Predictive Caching Algorithm  

The proposed novel scheme PCR is a proactive distributed caching framework that shares its 

cache details among collaborative MECs. However, it employs a centralised learning 

approach where each MEC maintains its predictive model. A complete predictive model of 

the popular cache objects for each collaborative space can be obtained if a distributed learning 

scheme is utilized such as Federated Learning. Hence, further research can be done to 

determine how the proposed predictive algorithm can be decentralised using federated 

learning. 
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APPENDIX 1 DEADLOCK TESTBED 

The purpose of this testbed setup is to create a system that can record event traces during the 
deployed algorithm runtime.  Details of how to deploy and run the algorithms are available 
on the GitHub page12. 

1.1 DESIGN 

The network architectural emulation has been done using the GNS313 platform. This allows 
the design of complex networks using routers, switches, firewalls, end devices etc. However, 
the deployed algorithms have been implemented using python.  

1.1.1 GNS3 ARCHITECTURE   

 

 
12 https://github.com/emylincon/deadlock_project 
13 https://www.gns3.com/ 

Figure 45 Deadlock Testbed Architecture 
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Figure 45 depicts the architecture used for testing the deployed algorithms. The first layer is 

the cloud layer. It has been emulated using Linux containers14. The second layer consists of 

the SDN controller and the NAT-2 network. The Gns3 NAT node15 creates a local network 

which additionally allows the created topology internet access. Opendaylight16 has been used 

as the SDN controller for the testbed. The MECs are Linux containers running an 

OpenVswitch17 service. This allows communication with the SDN controller using 

OpenFlow18. OpenFlow is an SDN northbound communication protocol between SDN 

controllers and the forwarding plane of network devices. The testing algorithms have been 

deployed in the MECs for comparison. Finally, the end-user layer is also Linux desktops that 

submit tasks to the MEC for processing. The experiment has been conducted using two 

physical compute nodes which specifications can also be seen in Table 18.  Each of the 

compute nodes has an Intel(R) Core (TM) i7-8550U processor. Compute 1 (C1) runs the GNS3 

emulator software and GNS3 VM1 while GNS3 VM2 runs on compute 2 (C2). 

Table 18 System Specifications During Experiment 

Name Operating System CPU Cores Memory 

Compute1 (C1) Windows (x64) 16 32GB 

Compute2 (C1) Windows (x64) 8 16GB 

MEC Ubuntu (x64) 0.5 512MB 

End Device Alpine (x64) 0.4 400MB 

GNS3 VM1 (C1) Ubuntu 18.04 (x64) 8 16GB 

GNS3 VM2 (C2) Ubuntu 18.04 (x64) 4 8GB 

Software GNS3 Emulator 

 

 

1.2 IMPLEMENTATION  

In this section, the deployment and implementation setup are discussed. This includes a setup 

for each of the nodes in the 3-tier architecture. 

1.2.1 UNIQUE IDS 

Unique ids have been used to identify each task that is sent through the system. These ids 
include the task id, MEC id and the client id. 

 
14 https://linuxcontainers.org/ 
15 https://docs.gns3.com/docs/using-gns3/advanced/the-nat-node/ 
16 https://www.opendaylight.org/ 
17 https://www.openvswitch.org/ 
18 https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/ 
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TASK ID: task id is denoted by 𝑡𝑎𝑠𝑘𝑖𝑑. The tasks are stored in a hash table which holds the 

capacity, period and deadline of the tasks. The 𝑡𝑎𝑠𝑘𝑖𝑑 is the key in the hash table. From the 

example below the keys in the hash table are ′𝑡1′,′ 𝑡2′, 𝑒𝑡𝑐. These keys are the 𝑡𝑎𝑠𝑘𝑖𝑑. There are 

5 unique types of tasks. 

tasks = {'t1': {'wcet': 3, 'period': 20, 'deadline': 15}, 

          't2': {'wcet': 1, 'period': 5, 'deadline': 4}, 

          't3': {'wcet': 2, 'period': 10, 'deadline': 8}, 

          't4': {'wcet': 1, 'period': 10, 'deadline': 9}, 

          't5': {'wcet': 3, 'period': 15, 'deadline': 12} 

          } 

 

MEC ID: 𝑚𝑒𝑐𝑖𝑑  uniquely identifies a given MEC node. The IP address can be used as the 𝑚𝑒𝑐𝑖𝑑 

to make sure each id is unique. However, in this experiment, the nodes have been configured 

in such a way that the last octet of the IP address is unique. Therefore, this has been used 

because this was enough to uniquely identify each node in this experimental set-up. 

CLIENT ID: The 𝑐𝑙𝑖𝑒𝑛𝑡𝑖𝑑 is used to uniquely identify each user end device. This is obtained the 

same way the 𝑚𝑒𝑐𝑖𝑑 is obtained. The last octet of the IP address. The Ip address has been 

statically configured to ensure that these unique IDs are not duplicated in this experiment. 

SEQUENCE NO: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖𝑑 is the sequence number of each task. When sending tasks from the 

client to the MEC for execution, the client starts allocating sequence from 0 to n. where n is 

the last batch of tasks sent.  

1.2.2 USER LAYER 

Initialization of the task is done in the user layer. To ensure that each task that is sent by the 

user is uniquely identified and can travel through the network layers and make it back to the 

client sender, a unique naming nomenclature was used.  

Task name: the 𝑡𝑎𝑠𝑘𝑛𝑎𝑚𝑒 = 𝑡𝑎𝑠𝑘𝑖𝑑 . 𝑚𝑒𝑐𝑖𝑑 . 𝑐𝑙𝑖𝑒𝑛𝑡𝑖𝑑 . 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑛𝑜. An example of this is 

𝑡2.110.170.1  

Where 𝑡2 𝑖𝑠 𝑡𝑎𝑠𝑘𝑛𝑎𝑚𝑒, 110 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑐𝑖𝑑, 170 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑖𝑒𝑛𝑡𝑖𝑑 and 1 is the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑛𝑜. Therefore, 

the task is sent from client 170 to MEC 110. 

1.2.2.1 TASK GENERATION: 

For a task to be sent to a MEC node for execution a record of the task must be stored in 

𝑡𝑎𝑠𝑘𝑟𝑒𝑐𝑜𝑟𝑑. The appropriate metadata necessary for the task execution must also be recorded 

and sent with the task to the MEC. The metadata includes: 

• RMS scheduling requirements: this includes the capacity, period and deadline. This 

is stored in the 𝑡𝑎𝑠𝑘𝑠 hash table which holds the requirement where the key is the 

𝑡𝑎𝑠𝑘𝑖𝑑 and the values is another hash table that contains details about the task capacity, 
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period and deadline. Therefore, the requirements of a task type can be obtained from 

the hash table if the task type (𝑡𝑎𝑠𝑘𝑖𝑑) is known. Therefore the 𝑡𝑎𝑠𝑘𝑖𝑑 is sent with the 

task. 𝑡𝑎𝑠𝑘 = {𝑡𝑎𝑠𝑘𝑖𝑑: {𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 𝑐, 𝑝𝑒𝑟𝑖𝑜𝑑: 𝑝, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒: 𝑑}} 

• Deadlock requirements: These are parameters required by the deadlock algorithm 

which is the resource need. Each task type (𝑡𝑎𝑠𝑘𝑖𝑑) has a maximum need stored in a 

need hash table. The need hash table stores a vector of the types of resources required 

for the task to be executed. In this experiment setup, we assume that the resource type 

required for each task type include CPU memory and storage. Therefore,  𝑛𝑒𝑒𝑑 =

{𝑡𝑎𝑠𝑘𝑖𝑑: [𝐶𝑃𝑈, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑆𝑡𝑜𝑟𝑎𝑔𝑒]} 

• Time constraint: each task has two, time constraints which include execution time and 

the latency requirement. Since each task is simulated, therefore the execution time of 

the task and the latency requirement is also simulated. These time constraints are 

assumed to follow a generic distribution. Therefore, each task, 𝑡𝑎𝑠𝑘𝑖𝑑 =

[𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 , 𝑙𝑎𝑡𝑒𝑛𝑐𝑦]. For this experimental setup, these times are assumed to be in 

milliseconds.  

1.2.2.2 TASK METADATA 

With the above metadata of the RMS, deadlock and time requirements, the task is sent to the 

MEC for execution.  

Figure 46 MEC Runtime Event Monitoring Screen 
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𝑡𝑎𝑠𝑘𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎
= {𝑡𝑎𝑠𝑘𝑖𝑑: {

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔: {𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 𝑐, 𝑝𝑒𝑟𝑖𝑜𝑑: 𝑝, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒: 𝑑},

𝑡𝑖𝑚𝑒: [𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 , 𝑙𝑎𝑡𝑒𝑛𝑐𝑦],

𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘: [𝐶𝑃𝑈, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑆𝑡𝑜𝑟𝑎𝑔𝑒]
}}  

Here the metadata is a JSON object that contains all the details of the task.   

1.2.2.3 TASK RECORD 

The client node keeps a record of all the tasks sent, when the task is sent and, what is the 

maximum deadline. It uses this record to compare when the task is executed and received 

back to ascertain if the task executed within the deadline. 

1.2.3 MEC LAYER 

Each MEC maintains a task queue where tasks are dequeued and executed. Before execution, 

the tasks are scheduled using the given real-time algorithm scheduler (RMS or EDF) and then 

checked for deadlock using a given prevention or avoidance mechanism. After this, the 

waiting time for each task is calculated and then checked with the task deadline constraint. If 

this is feasible in the MEC then the task is executed in the MEC else, the task is sent to a MEC 

where the deadline constraint is satisfied. If no such MEC is found, the task is sent to the cloud 

for execution. Figure 46 shows the live event monitoring screen for each MEC during 

algorithm runtime. 

1.2.4 CO-OPERATIVE MEC COMMUNICATION 

For the MECs to make appropriate decisions on which MEC node to re-offload tasks to for 

execution, they maintain a communication mechanism where they send their current average 

queue waiting time, RTT and current resource utilization to each MEC in the area periodically. 

The waiting time is crucial during the algorithm run time because it is one of the factors used 

by each MEC to determine which of the neighbouring MEC is suitable for task re-offload if 

need be. The waiting time here is obtained for each of the MEC periodically, similar to how 

the RTT is obtained. The waiting time is determined from the perspective of one MEC to 

another. If a MEC 𝑀𝑖 requires the waiting time for another MEC 𝑀𝑗. Then the waiting time 

𝑊𝑇𝑚𝑖→𝑚𝑗
= 𝑟𝑡𝑡𝑚𝑖→𝑚𝑗

 + 𝑄𝑚𝑗 . Where 𝑟𝑡𝑡𝑚𝑖→𝑚𝑗
  is the round-trip time from 𝑀𝑖 𝑡𝑜 𝑀𝑗 and 𝑄𝑚𝑗

 is 

the queue waiting time for 𝑀𝑗. 𝑄𝑚𝑗
 is periodically sent from each MEC to all neighbouring 

MEC for waiting time calculation. During reoffloading, the MEC with the lowest waiting time 

is always selected to evenly balance the load across the MEC platform.  

If the MEC with the lowest waiting time cannot satisfy the constraint of the task, the task is 

then sent to the cloud for execution. 
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1.2.5 BROKER BASED COMMUNICATION  

Communication between MEC and user node and communication between MEC and cloud 

is done with broker-based communication. For simulation and experimental purposes this 

setup was chosen but any means of communication would work as well.  

1.2.6 MULTICAST COMMUNICATION 

Exchange of cooperative messages Communication within the MEC platform is done with 

multicast communication. These messages include the periodic waiting item and resource 

utilization 

1.2.7 CLOUD LAYER  

In the cloud layer, tasks that cannot be executed in the MEC node is executed and sent back 

to the appropriate MEC which then forwards the task back to the user. 
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APPENDIX 2 CACHING TESTBED CHRCA 

The aim of the testbed is to create a system that can record event traces during the deployed 
caching algorithm runtime.  The source code and details of how to deploy and run the 
algorithms are available on the GitHub page19. 
 

2.1 GNS3 ARCHITECTURE  

Figure 47 depicts the architecture used for testing the deployed algorithms. An SDN network 
has been used for this testbed. SDN network is not a requirement for the testing nor the 
algorithms. However, it is a feature of the testbed. The figure shows 3 MEC nodes connected 
to a multilayer OVS switch. The management port of each OVS switch is connected to the 
ODL SDN controller. Each of the MEC nodes is Linux containers running the algorithms to be 
compared. Two networks are used in the testbed supplied by the GNS3 NAT and GNS3 
Cloud. The GNS3 cloud network is used to connect the OVS management ports to the ODL 
SDN controller. However, the GNS3 NAT gives internet access to the testbed which is used 
by the MEC nodes to send a request to the webserver deployed on OpenStack Compute if a 
request is not found in the collaborative MEC. 

2.2 IMPLEMENTATION 

The algorithms deployed have been written using python. The two main components of the 
testbed are discussed in this section. These are the webserver setup and the MEC algorithm 
deployment. 
 
 

 
19 https://github.com/emylincon/caching_project 

Figure 47 GNS3 Caching Testbed for CHRCA 
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2.2.1.1 WEBSERVER 

The webserver was deployed on the OpenStack Compute. A VM was created with 1 vCPU 
and 2GB memory. Nginx has been used as the webserver. The Nginx configuration used can 
be seen in GitHub20. Arbitrary webpages were created on the webserver to serve as the total 
content pool of requests for the MEC nodes. 

2.2.2 MEC 

The MEC nodes are Linux docker containers running the compared algorithms. Each 
algorithm has been written in python and it consists of 4 major sections which include the 
initialization, the communication, the event record, and the cache database. 

2.2.2.1 INITIALIZATION 

This includes the initialization of the variables of the algorithm previously discussed. This 
includes the number of requests, cache size, window size, and number of MEC. Additionally, 
the initialization includes the discovery of MEC nodes in the cluster to establish a connection 
to share cache information. Two communication modes have been used during the 
experiment which would be explained in the next section. 

 

2.2.2.2 COMMUNICATION 

During the algorithm runtime, the MEC requires communication with other nodes in the MEC 
cluster for node discovery. Additionally, communication is required to share event-driven 
updates about each MEC cache status. These events are triggered during cache evictions and 

 
20 https://github.com/emylincon/nginx 

Figure 48 Event Monitoring display for CHRCA Testbed 
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cache insertions. Communication during MEC node discovery is achieved using a multicast 
group. Each MEC in the cluster is subscribed to the same multicast group. In this scenario, 
each MEC node sends a hello message during the initialization phase to the multicast group. 
The hello message includes the IP address and the hostname of the MEC. This information is 
used to identify each MEC for further communication. Event-driven updates are achieved 
using Secure Shell (SSH) connection communication. The SSH connection has been 
implemented using python’s Paramiko21 module. In hindsight, a broker based 
communication would have been more appropriate in this situation. 

2.2.2.3 EVENT RECORD 

The event-driven records are used to monitor the experiment progress and present a report at 
the end of each experiment. The events monitored include cache hits, cache misses, CPU 
utilization and RTT. The RTT here refers to the RTT from the MEC node to the webserver 
measured in milliseconds. Figure 48 shows how the live event monitoring display looks like 
during the algorithm runtime.  

2.2.2.4 CACHE DATABASE 

A distributed cache database has been used in this scenario. Here each MEC maintains its own 
database. However, the database is updated during runtime based on the event-driven 
updates by other MECs in the cluster regarding cache status updates. 
 
 
  

 
21 http://docs.paramiko.org/en/stable/ 
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APPENDIX 3 CACHE-TRACE - CACHING TOOL SIMULATOR 

The Cache-Trace tool simulator has been developed to benchmark cache replacement 
algorithms. The aim of the tool has been to create an easy-to-use tool where users can easily 
enter their experimental parameters and obtain an appropriate result.  The tool has been 
deployed and available online at Cache-Trace22. Figure 49 depicts the home page of the tool. 
The caching algorithms available for comparison in the application include Least Frequently 
Used (LFU), Least Recently Used (LRU), First In First Out (FIFO), Least Frequently Recently 
Used (LFRU), Multi Queue (MQ), Frequency Based Replacement (FBR) and Optimal Page 
Replacement (OPR). Each algorithm has been written in python. The source code of the project 
is available on GitHub23. 

3.1 HOW TO USE 

The application works by specifying the parameters as wanted. This includes the Zipf 
parameter, number of contents, number of requests and cache sizes specified in an array 
format as shown in Figure 50.  

 

 
22 https://cachetrace.herokuapp.com/ 
23 https://github.com/emylincon/cachetrace 

Figure 49 Cache-Trace Tool Home Page 

Figure 50 Cache-Trace Parameter Input Form 

https://cachetrace.herokuapp.com/
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If you wish to upload custom requests, you can do so by turning off the Zipf switch. Only a 
CSV file with a limit size of 1MB can be uploaded. Additionally, the CSV file must have a 
column with the name 'requests' which is a series with integer datatype. 
The obtained result will be displayed as seen in Figure 51. A downloadable JSON file is 
available after each run as seen in Figure 51. API support for the tool is available and the 
documentation can be accessed on the website24. 
 

 
 
 
  

 
24 https://cachetrace.herokuapp.com/app-api 

Figure 51 Cache-Trace Result Display Page 

https://cachetrace.herokuapp.com/app-api
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APPENDIX 4 CACHING EXPERIMENT FOR PCR COMPARISON 

The aim of the testbed is to create a system that can record event traces during the deployed 
caching algorithm runtime.  Details of how to deploy and run the algorithms are available on 
the GitHub25. 
 
 

4.1 GNS3 ARCHITECTURE  

Figure 52 depicts the GNS3 architecture used for the testbed. The figure shows 10 MEC nodes 
that are connected to OVS switches and a nameserver. The GNS3 NAT gives internet access 
to the testbed which is used by the MEC nodes to send the request to the webserver. The MEC 
nodes and the nameserver are docker containers.  
 

4.2 IMPLEMENTATION  

The algorithms deployed have been written using python. Two frameworks have been tested 
using this testbed. Therefore, the implementation of both frameworks will be discussed. The 
first framework is a deep learning-based predictive edge caching algorithm26 that has been 
aliased as C-LSTM and the second one is the proposed framework PCR. 

4.2.1 C-LSTM 

This caching framework uses a Recurrent Neural Network (RNN) model using Long Short-
Term Memory (LSTM) cells trained on the MovieLens 20M dataset27. LSTM is a deep learning 
RNN architecture that uses feedback connections, unlike the standard feedforward neural 
networks. LSTM network is a well-known solution to overcome the vanishing gradient 
problem. The C-LSTM replacement framework works by replacing the least predicted 
popular cache object in the cache. The popular cache is determined using the number of clicks 
by users on a video/movie content (which is the hit rate count). This has been estimated in 
the research as the cumulative user ratings count for each movie. The implementation source 

 
25 https://github.com/emylincon/caching 
26 https://ieeexplore.ieee.org/document/9016437 
27 https://grouplens.org/datasets/movielens/20m/ 

Figure 52 PCR Testbed GNS3 Architecture 
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code of this framework is available on GitHub28. The next section discusses the 
implementation of the LSTM model. 

4.2.1.1 LSTM MODEL DESIGN 

Figure 53 depicts the LSTM model design for C-LSTM framework to predict the popularity of 
each movie based on the cumulative ratings achieve. The design includes an input layer, 
multiple LSTM layers, a dropout layer, a dense layer, and an output layer. The 
hyperparameter values are the same as the authors of the paper specified and are summarised 
as follows: 

• 2 LSTM layer containing 50 LSTM cells. 
• 1 Dropout Layer with value 0.075 
• batch size of 5000 
• 1100 epochs 
• Nadam optimizer 

 
28 https://github.com/emylincon/caching/tree/master/LSTM_caching 

Figure 53 LSTM Model Design for C-LSTM 

Figure 54 Plot of change of Mean Absolute Error during training of Model 296 for 1100 Epochs for training 

and validation. 
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4.2.1.2 MODEL PERFORMANCE VALIDATION 

In this section, the performance of the models obtained has been evaluated in terms of 
validation Mean Absolute Error (MAE) and validation Mean Square Error (MSE). 
Additionally, the trained model is used to predict values from the holdout test data. The 
notebook used to generate the model is publicly available in Google Colab29. 
 

 
Figure 54, Figure 58, and Figure 59 shows a plot of change in the Mean Absolute Error during 
training over 1100 Epochs. It can be observed that the MSE reduces as the number of Epochs 
increases. This same behaviour has been observed for Mean Square Error in Figure 56, Figure 

 
29 https://colab.research.google.com/drive/1Ak8A7wQVMGiWBk-1gBpYikgfPUPUCpJG?usp=sharing 

 

Figure 56 Plot of change of Mean Square Error during training of Model 296 for 1100 Epochs for training and 

validation 

Figure 55 Plot of the Test data with the prediction results to validate the performance of the model 296 on the 

holdout unseen data. 

https://colab.research.google.com/drive/1Ak8A7wQVMGiWBk-1gBpYikgfPUPUCpJG?usp=sharing
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57, and Figure 62. Furthermore, Figure 55, Figure 60, and Figure 61 show the comparison 
between the validation data and the predicted data using the trained models. It can be 
observed that the obtained predicted results are close to the actual result. 

 

 

Figure 58 Plot of change of Mean Absolute Error during training of Model 6377 for 1100 Epochs for training 

and validation loss. 

Figure 57 Plot of change of Mean Square Error during training of Model 6377 for 1100 Epochs for training 

and validation loss. 



APPENDIX 

202 | P a g e  

 

 
 

Figure 59 Plot of change of Mean Absolute Error during training of Model 49272 for 1100 Epochs for training 

and validation loss. 

Figure 60 Plot of the Test data with the prediction results to validate the performance of the model 6377 on the 

holdout unseen data. 
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 C-LSTM Paper Performance Trained model Performance 

Model  Val MSE Val MAE Val MSE Val MAE 

MovieID 296 0.00015 0.0087 2.0058−6 0.0012952 

MovieID 6377 0.00014 0.0084 2.4488−5 0.0048711 

MovieID 499272 0.00021 0.010 4.4619−6 0.0016634 
Table 19 Comparison of the trained Models performance metrics with the obtained metrics from the C-LSTM 

paper 

Figure 62 Plot of change of Mean Square Error during training of Model 49272 for 1100 Epochs for training 

and validation loss. 

Figure 61 Plot of the Test data with the prediction results to validate the performance of the model 49272 on the 

holdout unseen data. 
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Table 19 shows the numeric comparison of the trained Models performance metrics with the 
obtained metrics from the C-LSTM paper. It can be seen that the performance of the trained 
models is slightly better than the performance of the model from the C-LSTM paper. 

4.2.2 PCR 

In this section, the key implementation components of PCR are discussed. This includes the 
nameserver implementation, communication, cache file sharing and event record. 

4.2.2.1 WEBSERVER  

A webserver has been used to host the web contents that would be requested by the MEC 
nodes during the algorithm runtime. The webserver hosts static contents of similar sizes 
which have been numbered from page 0 to page 1070. The web contents have been hosted 
using netlify30 free service. The hosted web contents are available online using the following 
footnote31. The Figure 63 depicts the hosted website home page with the static pages accessible 
on the right side of the page. 
 

 

4.2.2.2 NAMESERVER 

The purpose of the nameserver is to serve as a cache hash lookup similar to how the DNS 
works. It translates a given content hash to the equivalent URL and vice versa. Additionally, 
it can add a new record to the database given the appropriate content hash and the URL. This 
has been implemented as a RESTFUL API using python. Therefore, a HTTPS request can be 
sent to the nameserver to the appropriate endpoint for a response. The source code and usage 
of the API are available on GitHub32. 
 

 
30 https://www.netlify.com/ 
31 https://competent-euler-834b51.netlify.app/ 
32 https://github.com/emylincon/caching_chain 

Figure 63 Website with hosted static web contents for the experiment. The static pages can be seen as outlined 

in the right 
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4.2.2.3 COMMUNICATION AMONG MEC 

Communication among the MEC nodes in the cluster is achieved using a messaging broker. 
This communication is used to update the other MEC nodes in the cluster about the data 
stored in the cache. Update messages are sent after insertion and replacement from the cache. 
MQTT33 messaging broker has been used to achieve this. MQTT communication is based on 
a publish-subscribe architecture. In this scenario, each client subscribes to a topic, and they 
will receive all messages that have been broadcasted to that topic. 

4.2.2.4 FILESHARING  

File sharing is required to share saved cache objects among other MEC nodes for collaborative 
caching. This has been achieved using File Transfer Protocol (FTP). In this scenario, each MEC 
hosts an FTP server on which it stores its saved cache objects. Therefore, each MEC node can 
request a file using the corresponding content hash ID. 

4.2.2.5 EVENT RECORD 

The event-driven records are used to monitor the experiment progress and present a report at 
the end of each experiment. The events monitored include cache hits, cache misses, CPU 
utilization, memory utilization, and RTT. The RTT here refers to the RTT from the MEC node 
to the webserver measured in milliseconds. Figure 48 shows how the live event monitoring 
display looks like during the algorithm runtime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
33 https://mqtt.org/ 


