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ABSTRACT

Home networks were initially designed for web browsing and non-business critical applica-

tions. As infrastructure improved, internet broadband costs decreased, and home internet

usage transferred to e-commerce and business-critical applications. Today’s home com-

puters host personnel identifiable information and financial data and act as a bridge to

corporate networks via remote access technologies like VPN. The expansion of remote

work and the transition to cloud computing have broadened the attack surface for poten-

tial threats. Home networks have become the extension of critical networks and services,

hackers can get access to corporate data by compromising devices attacked to broad-

band routers. All these challenges depict the importance of home-based Unified Threat

Management (UTM) systems. There is a need of unified threat management framework

that is developed specifically for home and small networks to address emerging security

challenges. In this research, the proposed Smart Unified Threat Management (SUTMS)

framework serves as a comprehensive solution for implementing home network security,

incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a

unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improve-

ments. IPS stands out as the most resource-intensive UTM service, SUTMS successfully

reduces the performance overhead of IDS by integrating it with the flow detection mod-

ule. The artifact employs flow analysis to identify network anomalies and categorizes

encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing

optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The

research also tackles one of the limitations identified by SUTMS through the introduc-

tion of a second artifact called Secure Centralized Management System (SCMS). SCMS

is a lightweight asset management platform with built-in security intelligence that can

seamlessly integrate with a cloud for real-time updates.
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Chapter 1

Introduction

1.1 Introduction

Home broadband routers are primarily designed for internet connectivity without con-

sidering any built-in security. Cyber attacks, remote work and cloud computing have

made home networks more vulnerable than ever before. Barracuda Sentinel observed

an increase of 667% of phishing attacks in 2020 [1], use of home computer for work is

another reason of compromises as personnel computers lack proper security controls [2].

Lack of network security protection and increase of attack exposure introduces a need of

security device that is capable of providing corporate grade security for small networks.

In this chapter, we introduce an artifact that is designed to operate as a unified threat

management system for small office and home networks. The artifact is named Smart

Unified Threat Management System or SUTMS, its sole purpose is to protect against ad-

vanced attacks in a multi-layer approach. Traditional devices are restricted to Layer-3 and

Layer-4 inspection due to the limitation on resource consumption, enhanced features like

intrusion detection and anti-bot requires additional CPU cycles along with paid signature

subscriptions.

SUTMS introduces advanced security features with real-time detection and blocking

of malicious IP addresses, it can examine all IP-based communication, including the In-

ternet of Things (IoT) and mobile computing devices. The system is comprised of four
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core engines that work in collaboration with each other for optimization and inspection.

The network intrusion detection engine is responsible for analyzing traffic for known vul-

nerabilities and defined signatures. The signature database gets updated on a regular

basis as new vulnerabilities arise. The intrusion can be set to detect or prevent depend-

ing upon the mode of device operation i.e. intrusion detection system IDS or intrusion

prevention system vice versa. IPS and Firewall engine allows or blocks traffic based on

IP addresses, ports, and indicator of compromise IoC feeds. Flow detection engine serves

as the backbone, and optimization, anomaly detection, and traffic identification are the

key components of this layer. Finally, the routing engine routes the traffic to the desired

destination, this component is optional, and routing can be outsourced to the existing in-

frastructure components like broadband routers, and access points. Wi-Fi, Domain Name

Service DNS forwarding, and Dynamic Host Configuration Protocol service can also be

configured. Running multiple security services on a single device with limited resources is

a challenging task, however, using correlation services like flow detection can significantly

reduce the burden of CPU intense processes like IDS/IPS. Since IDS are log-generation

machines, therefore it is critical to eliminate false positives and only generate alerts for

critical log messages. Logs can be locally collected or sent to a centralized log server

via Syslog, it is recommended to integrate the logs into Security Incident Event Man-

agement SIEM systems in the case of corporate machines. There are various deployment

approaches for SUTMS, the device can easily be implemented in the existing home in-

frastructure without any major changes, the various deployment scenarios are discussed

later in this chapter. There is also room for expanding scanning to IoT networks like

ZigBee, Z-wave, and Bluetooth low energy BLE networks, it may require procurement of

additional hardware and software. The research conducted extends beyond the artifact

and tackles one of the identified limitations, which is the management of smart devices.

Chapter. 5 provides a comprehensive exploration of a management model.

2
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1.2 Home Network Overview

Home networks consist of end-user computing devices, routers, and internet access, as

shown in Fig. 1.1. Local area networks (LANs) and WiFi networks are comprised of

IP devices that are dynamically configured for RFC 1918 addresses [3]. WiFi access

is mostly protected by the WiFi Protected Access (WPA) protocol [4], [5]. WPA is

designed to provide encryption and integrity and to resolve the security issues associated

with Wire Equivalent Privacy (WEP) [6]. WPA/WPA2 strengthens network security

using the Temporal Key Integrity Protocol (TKIP) and the AES Advanced Encryption

Standard [7]. However, WPA is susceptible to brute-force attacks that exploit the 4-way

handshake process of association [8].

Figure 1.1: Illustration of typical topology of a home network: Common homework nodes,
such as personal computer, laptop computer, mobile phone, and printer, as well as IoT
nodes are connected via home network LAN or WiFi networks to a router, which provides
network connectivity to the Internet, including cloud computing providers and corporate
networks (typically reached via VPNs and firewalls).

Home routers are by default configured to allow benign traffic that originated from

the internal network (outbound) and deny all other traffic (inbound), as illustrated in the

access control list in Figure 1.2. In particular, Fig. 1.2 represents the access list name

”allowed-traffic” that permits RFC 1918 IP subnets (Lines 1, 2, 3) and denies everything

else (Line 4). The maximum number of host that can be assigned addresses in a given IP

3
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1 access− l i s t al lowed−t r a f f i c permit 1 9 2 . 1 6 8 . 0 . 0 2 55 . 2 5 5 . 0 . 0
any

2 access− l i s t al lowed−t r a f f i c permit 1 0 . 0 . 0 . 0 2 5 5 . 0 . 0 . 0 any
3 access− l i s t al lowed−t r a f f i c permit 1 7 2 . 1 6 . 0 . 0 2 55 . 2 4 0 . 0 . 0 any
4 access− l i s t denied t r a f f i c deny any any

Figure 1.2: Sample Access Control List

address space with n free bits can be calculated as [9]:

2n − 2. (1.1)

Two IP addresses are subtracted, i.e., −2, because one address represents the subnet

and another address is the broadcast address; hence, these two addresses cannot be pro-

grammed on host machines. For example, the subnet 10.0.0.0 with subnet mask 255.0.0.0

(which is sometimes represented as 10.0.0.0/8) has an address space with 24 free bits.

Essentially, the 255.0.0.0 subnet mask means that the first 8 bits (i.e., the 255) are al-

ready taken, leaving 24 bits (i.e., the 0.0.0) free to be used for host addresses; thus, host

IP addresses can take on any value of the form 10.x.x.x, where x is any number from

1–254. Analogously, the subnet 192.168.0.0 with subnet mask 255.255.0.0 (i.e., subnet

192.168.0.0/16) has 16 free bits, and the subnet 172.16.0.0 with subnet mask 255.240.0.0

(i.e., subnet 172.16.0.0/12) has 20 free bits. Among these, the subnet 10.0.0.0 with subnet

mask 255.0.0.0 address space has the highest number of host that can be addressed, i.e,

up to 224− 2 = 16, 777, 214 hosts. Home networks are primarily configured for the subnet

192.168.0.0 with subnet mask 255.255.0.0, which can accommodate up to 216−2 = 65, 534

hosts. The number of hosts can be increased or decreased by altering the subnet mask, for

example the subnet 10.0.0.0 with subnet mask 255.255.255.0 can only accommodate 254

hosts, compared to 16,777,214 hosts in the subnet 10.0.0.0 with subnet mask 255.0.0.0.

The sample access control lists in Fig. 1.2 can be interpreted as follows. Line 1 allows all

the traffic originating from the subnet 192.168.0.0 with subnet mask 255.255.0.0, Line 2
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allows all the traffic originating from the subnet 10.0.0.0 with subnet mask 255.0.0.0,

and Line 3 allows all the traffic originating from subnet 172.16.0.0 with subnet mask

255.240.0.0, while Line 4 denies all the traffic that is not matched by Lines 1, 2, or 3.

Since all three networks, i.e. 192.168.0.0/16, 10.0.0.0/8, and 172.16.0.0/12 are part of

the RFC 1918 private IP address space, these IP addresses cannot be configured on the

internet. Thus, the access control list in Fig. 1.2 allows traffic sourced from home networks

(RFC 1918 IP addresses) as well as the corresponding return traffic; however, traffic that

originated from the internet will be blocked as the source IP address will not be RFC

1918, and, therefore, internet-originated traffic is going to match Line 4 (deny access).

The access lists are stateful and keep track of originated sessions; thus, the access list

will allow the return traffic that is sourced from the internet because the return traffic is

a reply to an initial packet that originated from an RFC 1918 IP address (i.e., a home

network, Line 1, 2, or 3 IP address). In summary, the access lists in Fig.1.2 allows all

the traffic originating from home networks (RFC 1918 address space) and the matching

return traffic. Any inbound traffic originating from the internet is going to be blocked.

The order of operation of access lists is first-match-first-out; therefore, it is critical to put

the ”deny” at the end.

The limited awareness of home users regarding the specific services, protocols, and des-

tination IP addresses and URLs that they use makes it challenging to differentiate between

different applications. For example, distinguishing web application traffic from other ap-

plication services and protocols becomes an intricate task for users with limited knowledge

about their network activities. This lack of awareness creates a so-called network visibil-

ity issue. The lack of network visibility typically leads to inadequate implementation of

access control lists on routers. More specifically, when routers lack application awareness

and categorization functionality, then access lists are usually created based on port num-

bers rather than application signatures. Moreover, independent port applications that

use dynamic ports (which always change) or try to find an open port to communicate,
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cannot be restricted by router port based inspection. Port-agnostic (port-independent)

services, such as Remote Procedure Call (RPC) and torrents, use open ports to tunnel

traffic and, therefore, cannot be blocked by traditional access control lists.

1.2.1 IoT-Based Home Networks

The general Internet growth, increased vendor competition, and user inclination towards

modern technology have forced companies to develop the next generation of home devices

with integrated rich features. IoT has made the vision of smart homes a reality. A home

network scanning study that involved 83 million devices in 16 million homes revealed

some interesting home network characteristics [10], see Table 1.1: 71% of homes in North

America have IoT devices, compared to the global median rate of 40% [10]. The types of

IoT home devices varied by region; whereby, America has a significantly higher number

of media/TV devices than Asia. People’s adoption and perception of IoT differ by region.

4.1% of South Asia homes have at least one surveillance device, and the surveillance

devices in these homes account for 55% of the IoT devices in South Asia. In contrast,

North America has a significantly lower proportion of surveillance devices. The extensive

scanning results in [10] further indicate that IoT devices are more common in the homes

in developed countries; whereby, media and gaming devices are the dominating device

categories. Regions of the world where technology is still evolving are confined to critical

services, such as surveillance, security, and work appliances.

The study [10] also found that roughly 400 vendors account for 99% of the IoT devices

[10]. The wide variety of IoT vendors introduces novel interoperability, security, and

scalability challenges to home networks. In particular, the wide variety of IoT vendors

makes it difficult to manage vulnerabilities and support. For instance, when operating

IoT devices from many vendors at home, one vendor may be running a vulnerable version

of the Apache web server, and another vendor may be exposed to buffer overflow attacks.

Overall, the lack of standardization when many vendors provide home IoT devices tends

6
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to open new vulnerabilities or make it more challenging to manage the vulnerabilities.

IoT networks typically comprise sensors, communication protocol, gateway, and ap-

plication [11].

• Sensors: Sensors have direct exposure to the outside physical world. The sensors can

be an interface to communicate with humans (wearable devices) or home appliances

(non-wearable devices). For instance, heart rate monitors and oxygen sensors are

common types of wearable human sensors. Typical non-wearable device sensors are,

for example, temperature sensors that are integrated into smart HVAC appliances

to observe temperature changes [11].

• Communication Protocol: A protocol specifies the messages sent between IoT net-

works and the application interface. IoT networks depend on several communi-

cation protocols, such as ZigBee, Bluetooth Low Energy (LE), Z-Wave, and IPv6

over Low-Power Wireless Personal Area Networks (6LoWPAN). In addition, system

health checks, status monitoring, updates, and management functionalities utilize

the underlying WiFi and cellular networking technologies as well as a variety of IoT

protocols.

• Gateway: A gateway provides an aggregation point of communication between IoT

networks and IP networks (e.g., the Internet at large). Home users access IoT

applications via IP devices, e.g., smartphones, laptops, tablets, that are attached to

IP networks. Similarly, IoT devices need to communicate with the Internet. The

gateway works as a middleman that has the ability to translate IoT addressing

schemes to IP addresses and vice versa.

• Application Interface: The application interface is the front-end component of the

IoT. The application interface provides rich features, such as dashboards, report-

ing, and configuration management in an easy-to-use graphical user interface. The

applications can be hosted on-premises, in the cloud, or embedded within the IoT

7
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Table 1.1: Proportion [%] of homes with at least one IoT device; proportions [%] of homes
with at least one media/TV IoT device and at least one surveillance IoT device; as well as
proportions [%] of IoT devices that are a media/TV device or a surveillance IoT device;
by region [10].

Region
Homes
IoT

Media/TV
Homes

Surveil.
Home

Media/TV
Devices

Surveil.
Devices

North America 71 42.8 3.9 44.9 3.7

South America 34.4 20.5 4.6 51.7 13.3

Eastern Europe 25.7 16.8 2.5 50.2 14.0

South Asia 8.7 2.5 4.1 16.6 54.5

device. However, cloud computing is often a preferred hosting choice, providing

accessibility from anywhere.

1.3 Research Objectives

The main objective of this research is to develop a next generation security framework

that is capable of mitigating traditional and advance attacks for small and home net-

works. The artifact produced should be easy to set up, manageable, cost-effective and

dynamic in nature, equipped with enhanced security inspection and have a small form fac-

tor. Scalability, interoperability, and support of existing home infrastructure is considered

as part of the built-in design. The proposed Smart Unified Threat Management System

(SUTMS) framework is a light-weight implementation of enterprise Unified Threat Man-

agement UTM that is geared towards home networks, SUTMS assimilate firewall, IDS,

antibot and anomaly detection in a single piece of hardware i.e. RaspberryPi. SUTMS

takes advantage of automation and able to dynamically update access control lists based

on Indicator of Compromise IoC feeds, combination of flow data with intrusion detection

signatures provides a robust and efficient protection against malicious content. SUTMS

accomplishes the task of running multiple services in a hardware with limited processing

power by eliminating unnecessary functions from the modules. It is observed that IDS

can quickly overload the box as the number of signature increases, SUTMS optimizes IDS
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processing by only enabling applicable signatures. Another aspect of the research is to

highlight key challenges and improvements that can be embedded in future work, it is

inevitable to secure home networks and a compact Unified Threat Management (UTM)

designed specifically for home networks is a step forward in the right direction. COVID

and remote work has resulted in a paradigm shift, remote works has become a reality and

organizations have kept the remote work permanent, therefore the research conducted

directly influences present and future work environments.

1.4 Research Questions

In this research, the goal is to answer following questions:-

• 1. How can we justify the need of unified threat management system for

home networks?

It is critical to build a business case for any solution, importance of home networks, tar-

geted attacks and technological advancements discussed in Chapter 1 provides a sufficient

evidence for smart defense solution.

• 2. How to develop a artifact that is able to run resource intense processes

efficiently and effectively ?

Firewall, IDS, Antibot and Anomoly detection are all run in parallel, SUTMS optimizes

CPU and memory by simplifying configurations, and without impacting the system ac-

curacy. Chapter 3 and Chapter 4 provides in depth analysis on SUTMS architecture and

evaluation of large datasets.

• 3. How to make the solution dynamic and distinct from previous attempts?

Integration of STIX/TAXII and Flow data into inspection engine automates prevention

and detection capabilities at various layers. SUTMS is also able to detect anomalies and

9
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perform basic SSL inspection (without decrypting traffic) by using NTOP. Chapter 2 ex-

plains the latest research conducted on UTM components, it encourages the development

of differentiating solution like SUTMS.

• 4. How can we effectively handle the management challenges posed by a

diverse range of home devices?

Introducing the SCMS centralized management platform, proficient in automated and

manual device detection, alongside their corresponding risk assessments. Chapter. 5 pro-

vides a detailed exposition of the design, implementation, and evaluation of this manage-

ment model.

1.5 Home Network Security Challenges

Home routers are often the target of attacks. Home router attacks can be categorized

as server-side attacks or as client-side attacks. Server-side attacks compromise router

functionality, including routing, wireless access, and web services. Authentication attacks

and SQL injection are the most commonly used server-side attacks. Client-side attacks

are directed toward WiFi users, IoT networks, and connected machines. Session hijacking,

IoT vulnerabilities, and weak IoT device authentication are the most prevalent client-side

attacks.

Home routers are usually managed by a web-based front-end, indicating the presence

of a web server running on the router itself. Routers that are provided by ISPs may

also include vulnerabilities. For example, it was discovered that one of the most popular

Asymmetric Digital Subscriber Line (ADSL) routers provided by a Greek ISP contained

two zero-day vulnerabilities [12]: the router web interface was vulnerable to operating

system (OS) command line injection and stored cross-site scripting (XSS) attacks [12].

The vulnerabilities can allow the attacker to gain shell access to the router and further

infiltrate into the network by turning routers into zombie machines. Generally, the more
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Figure 1.3: Taxonomy of home network attacks and vulnerabilities.

machines a home network has, the more chances it offers for implanting backdoors and

bots. Once the attacker gains access to a home network, the malicious payload can

remain in the network without being detected for a long time, i.e., the malicious payload

can remain persistent with stealth capabilities, due to a lack of advanced security controls.

Home network attacks and vulnerabilities can be categorized according to the taxonomy

presented in Fig. 1.3.

1.5.1 Authentication Attacks

A password alone is no longer a secure way of authentication. Hence, a password is usually

combined with other factors, e.g., what you have or know, often defined as multi-factor

authentication (MFA). The more factors there are, the more secure the authentication

will be. Adversaries have to compromise all the factors to gain access. Therefore, critical

online services rely on MFA for secure communication [13].

Unfortunately, home routers have very weak authentication. Out of twenty-nine of

the home routers studied by consumer reports, twenty routers did not allow changing

the username and have no protection against password brute-force attacks [14]. Also,
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most routers had a very weak password and lacked password complexity [14]. Even top

brands had vulnerabilities. Fifty-three critical vulnerabilities were discovered on D-Link

and Netgear home routers [15]. Attackers were able to create a botnet of 420,000 routers,

modems, and other network-interconnected devices [16]. Furthermore, the router web

interface only verifies credentials for the login page and not for the configuration scripts

[16].

1.5.2 SQL Injection Attacks

Router databases do not have much valuable information from an attacker’s point of view

compared to commercial and government database systems, since the router databases

usually do not contain Personal Identifiable Information (PII). However, hackers can use

SQL injections to exploit buffer overflows and pivot into connected systems, which may

give adversaries access to sensitive data [17]. Therefore, SQL queries should require

validation to prevent attackers from gaining remote control of devices via SQL injection.

1.5.3 Session Hijacking

Routers can also contribute to client-side attacks. One of the most common attacks

is session ID hijacking (also referred to as cookie hijacking). As most routers transmit

cookies in clear text [12], an attacker can capture cookies using packet sniffing techniques

and replay them, impersonating a legitimate user. Session hijacking can be used for

access elevation, data exfiltration (i.e., unauthorized removal of data from a device),

unauthorized access, and access to other systems. Therefore, sessions should be encrypted

and authenticated to avoid session hijacking attacks.
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Table 1.2: UPnP vulnerabilities and attacks [18].

Vulnerability Adversary Attack

Absence of verifi-
cation in advertise-
ments

Service device
Advertisement forgery/flood-
ing

Absence of verifica-
tion in discovery

Control point
Discovery reply/flood-
ing/spoofing

Lack of authentica-
tion

Control point Malicious action invocation

Lack of integrity
check

Control point Event forgery and flooding

1.5.4 IoT Vulnerabilities - UPnP Protocol

Absence of device verification, lack of authentication, and no integrity checks classify

Universal Plug and Play (UPnP) as a highly insecure protocol with fundamental security

flaws, as summarized in Table 1.2 [18]–[20]. Exploitation of UPnP vulnerabilities can

result in resource exhaustion, Distributed Denial of Service (DDoS), and redirection to

Command and Control botnets. Similarly, a lack of authentication and integrity checks

can result in data exfiltration. Software Development Kits (SDKs), e.g., MiniUPnp [21]

and LibUPnP [22], are some of the lightweight UPnP implementations for IoT. These

SDKs have several security flaws. For instance, the CVE-2020-15893 vulnerability allows

an attacker to inject a malicious payload in one of the discovery fields of UPnP packets

[18].

1.5.5 Weak IoT Device Authentication

The implementation of clear-text protocols, such as FTP and Telnet, in the IoT software

stack makes the IoT software stack an easy target for session hijacking and man-in-middle

attacks. The study [10] found that 7.1% of IoT devices support FTP and Telnet protocols;

whereby, 17% of these FTP-supporting devices had default or weak credentials, see Table

1.3. Security-unaware protocols and default credentials significantly increase the chances
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Table 1.3: Percentages of used weak IoT FTP and Telnet credentials.

Weak FTP Credentials %
Weak Telnet Creden-
tials

%

admin/admin 88.3 admin/admin 35.6
admin/ 5.9 root/xc3511 16.0
Administrator/ 1.4 Vodafone/Vodafone 10.4
root/ 0.7 admin/1234 7.5
admin/password 0.3 admin/4321 1.8

of IoT network compromises. Table 1.3 gives a worrisome picture of 88% and 36 % of IoT

devices that are running FTP and Telnet services with a default username and password

of admin/admin [18]. A similar behavior is also observed for device management access

via clear-text HTTP. The existence of legacy services with default passwords indicates

that security is not a focus for IoT vendors. FTP, Telnet, and HTTP can be enhanced

by replacing the services with SFTP, SSH, and HTTPS. Simple scripts can be embedded

in software modules to force the users to change default credentials.

1.6 Home Network Standards

Home area network (HAN) relies on modem, Ethernet, WiFi, switches, routers, to estab-

lish physical, data link, and network layer connectivity. The standards that govern the

HAN are based on underlying network technologies.

1.6.1 Wireless Networks - IEEE 802.11

WiFi is the preferred and dominant media of communication for home networks. IEEE

802.11 is the standard published in 1997 governing access point (AP) based and ad-hoc

networks [23]. The standard focuses on Physical PHY and Media Access control MAC

Layers. Electrical, network, and frame characteristics are explained in detail. The origi-

nal standard allowed 1-2 Mbps of speed at a 2.4GHz frequency band utilizing Frequency

Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS), and in-
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frared (IR) technology [23]. Several amendments were made to accommodate demand

and growth in technology. Table 1.4 enlists amendments made to IEEE 802.11 from 1997

to 2009 [23]. It can be inferred that every amendment improved the data transfer rate.

Early versions of the IEEE 802.11 include security features referred to as Wired Equiva-

lent Privacy. In 2004, 802.11i amendment was introduced to overcome the flaws of WEP

and improvements to WiFi Protected Access (WPA) [23]. The IEEE 802.11i variant was

designed to implement robust security features into the existing IEEE 802.11 standard.

Table 1.4: IEEE 802.11 amendments.

Amendments Details

IEEE 802.11 (1997).
1 and 2 Mbps at 2.4 GHz with FHSS,
DSSS and IR PHY.

IEEE 802.11b (1999).
1, 2, 5.5 and 11 Mbps at 2.4 GHz with
CCK PHY.

IEEE 802.11a (1999).
6, 9, 12, 18, 24, 36, 48 and 54 Mbps at
5 GHz and with OFDM PHY.

IEEE 802.11g (2003).
6, 9, 12, 18, 24, 36, 48 and 54 Mbps at
2.4 GHz and with OFDM PHY.

IEEE 802.11n (2009)
HT capabilities with MIMO (bit rates
up to 600 Mbps) at 2.4 and 5 GHz.

IEEE 802.11i (2004)

Security enhancements: Temporal Key
Integrity Protocol (TKIP) and Counter
Mode (CTR) with Cipher-Block Chain-
ing Message Authentication Code
(CBC-MAC) Protocol (CCMP) en-
cryption methods and Robust Security
Network Association (RSNA) protocol
(authentication through 802.1x and
Extensible Authentication Protocol
(EAP).

1.6.2 LPWAN - IEEE 802.15

Low Power Wide Area Network (LPWAN) IEEE 802.15 is another standard that targets

the connectivity of low-power devices like IoT. LPWAN operates on license exempted

frequency bands and transmits payload at a very low bit rate [24]. The low data bit
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rate makes IEEE 802.15 an efficient choice for IoT networks. IEEE 802.15.4y amendment

integrated Advanced Encryption Standard (AES)-256 and security extensions to addresses

previous security concerns [25].

1.6.3 Home LAN Standards - IEEE 802.3

In 1985, official standard for Ethernet was published by IEEE known as IEEE 802.3,

specifying carrier sense multiple access with collision detection (CSMA/CD) method (a

medium access control MAC Ethernet mechanism to sense transmission and prevent col-

lisions) [26]. The original scope was 10 Mbps transmission on a coaxial medium operating

in a bus topology. Amendments were made in later years to include fiber optics, twisted-

pair cabling, and medium attachment unit MAU. The two prominent advancements to the

standards were introduced in 1997 and 1998, i.e., 802.3x, 802.3z. Full duplex, flow control,

and switching operations were incorporated in 802.3x and 802.3z set as the specification

for gigabit Ethernet 1000BASE-T [26]. The most commonly used standard in home Eth-

ernet networks is 1000BASE-T and continues to evolve as new technologies emerge. Home

wide area networks (HWAN) relies on broadband technologies of Digital Subscriber Line

(DSL) and cable internet. Bellcore Laboratories invented DSL in 1980 [27]. The benefit

of DSL is that it uses existing home network infrastructure utilizing existing cabling. The

same wiring can be used for data, voice, and television services. Variants of DSL often

referred to as xDSL. ADSL is the most commonly deployed technology used by home

users for internet service. ADSL can achieve download speeds of 12 Mbps and upload

speeds up to 1.5 Mbps [27].

1.6.4 IoT Standards - Zigbee, Zwave, Bluetooth and Thread

IEEE 801.15 variants such as 802.15.4 and 802.15.1 are specifically designed for low power

devices like IoT. Table 1.5 enlists IoT relevant standards [28]. ZigBee and Thread are

built on 802.15.4, whereas 802.15.1 concentrates on Bluetooth LE. ZigBee was created
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by the ZigBee alliance specifically designed for low power with long battery life devices

capable of transmitting data at lower rates [29]. ZigBee is suitable for networks with a high

number of nodes that require communication status, health checks, configuration changes

at regular intervals. Typologies supported by ZigBee are a star, mesh, and tree [30][31].

Z-Wave is another low data rate IoT protocol developed by Zensys that supports a fewer

number of nodes per network [29]. Z-Wave is appropriate for home networks as it only

supports 232 nodes, whereas ZigBee is an ideal candidate for commercial IoT networks up

to 65,000 nodes. Bluetooth LE 802.15.1 is designed as a convenience standard, as it allows

a wide variety of home devices to connect to the user interface. Bluetooth is a preferred

media to access IoT devices via smartphones, tablets, and other wearable gadgets due

to the default integration of Bluetooth functionality into end-user devices. Bluetooth LE

allows faster data transfer rates than ZigBee and Z-Wave. Thread is another wireless

protocol designed for smartphones supporting IPV6 using 6LoWPAN [28]. 6LoWPAN is

an IP-based IoT standard developed by Internet Engineering Task Force (IETF) [29].

Table 1.5: IoT standards.

Characteristics ZigBee Wi-Fi Thread Z-Wave
Bluetooth
LE

IEEE Stan-
dard

802.15.4 802.11 802.15.4 N/A 802.15.1

Frequency
band

2.4 GHz 2.4/5 GHz 2.4 GHz 900MHz 2.4 GHz

Nominal
range

100m 150m 30m 30m 10m

Data Rate 250Kbps 1Gbps 250Kbps 100Kbps 1Mbps
Number of
Nodes per
Network

65000
250/Access
Point

300 232
one-to-
many

IoT standards reveal that a home IoT network is comprised of multiple protocols

running at the same time. IoT sensors may be utilizing Zig-Bee or Z-Wave for health

monitoring and data synchronization that are managed/configured by smartphones with

integrated Bluetooth LE chips. The coexistence of multiple standards makes interoper-
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ability extremely critical for the viability of any smart home solution.
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Chapter 2

Literature Review

2.1 Unified Threat Management Overview

To study UTM, it is critical to understand each integrated feature because every inspec-

tion engine has unique requirements. Fig. 2.1 illustrates the core components of UTM.

The customization of services is what makes the UTM a functioning device. Resource

allocation varies component by component. For example, IDS requires more CPU cycles

compared to a firewall, and dedicating resources to each module requires an in-depth

analysis of various components that form UTM. Karahan and Berat [32] designed a light

weight firewall on Raspberry Pi that is able to inspect ports, user groups and malicious

traffic .Easy to use interface and compact design makes it a perfect candidate for home

users. Cruz, Goyzueta, and Cahuana [33] introduces a $209 USD intrusion detection and

prevention systems that can be managed remotely, Snort engine was utilized for attack

detection according to signature matching. Protection Internet of Things via IDS PITI

designed specifically for IoT networks, PITI combines Snort detection with anomaly de-

tection [34] on a Raspberry Pi hardware. Alarms and sounds are generated as anomalies

are detected by PITI [34]. Tirumala, Nepal, and Ray [35] conducted research to evaluate

performance of defensive controls on Raspberry Pi, the study was mainly geared towards

volumetric traffic testing across network interfaces, it was observed that built in ethernet

interface performed much better than built in WiFi interface. Malware propagation via
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malicious URL bypasses traditional security controls, Fauzi and Abdullah [36] introduces

Rasberry Pi based phishing detection technique called Netbits. Netbits was able to iden-

tify malicious content using traffic flows, the study can be useful in mitigating botnet

communication. Wireless networks can be brought down using Denial of Service DoS at-

tacks, Kismet intrusion detection system is able to detect 10 DoS attacks with a average

attack detection rate of 3.42 seconds [37]. Integration of artificial intelligence algorithms in

intrusion detection system improves device accuracy, Siddharthan and Thangavel [38] pro-

poses an algorithm for IoT devices using ensemble learning (EL). The algorithm achieved

99.99% of accuracy with lower feature selection complications [38]. Training datasets in

machine learning is the most crucial step to attain accuracy, training fewer and relevant

features is the key in designing an efficient algorithm. Algorithms can be deployed to

detect botnet infection, BotStop (IoT based botnet detection engine) make use of only

seven features from network packets and able to achieve greater than 99.99% of accuracy

[39].

Figure 2.1: Core components of UTM.
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The research carried out was focused towards IDS, Firewall, URL filtering and antibot

on low resource devices like Raspberry Pi. The study conducted was limited to individual

UTM components rather than development of a single cohesive device that is capable of

inspecting IP, port, bot communication, malicious content and anomalies. The proposed

SUTMS solution is a multi-dimension system that introduces advance inspection along

with efficient resource usage.

The study of UTM systems is attracting increased attention for enterprise and small

networks due to the high cost-efficiency of running multiple security services on a single

device. A UTM system combines several security services, i.e., commonly traditional

firewall controls, IDS, and antibot protection.

2.1.1 General Threat and Security Reviews

Home networks, including the home-based IoT networks, face numerous security threats [40]–

[47]. The growing deployment of smart home technologies further exacerbates the security

threats for home networks [48]–[50].

Bout, Loscri, and Gallais [51] surveyed misuse cases of Artificial Intelligence (AI), and

adversaries that can craft sophisticated attacks using Machine Learning (ML). ML-based

attacks are more effective and challenging to detect. More specifically, Bout, Loscri, and

Gallais [51] surveyed attack generation techniques using data analysis, data generation,

behavioral deduction, and behavioral diversion. Moreover, the survey by Bout, Loscri,

and Gallais [51] touches on the performance impact of supervised, unsupervised, and

reinforcement learning. The Bout, Loscri, and Gallais [51] survey is unique because it

covers ML from a hacker’s point of view; similar to the ways that AI can be utilized for

defensive controls, AI can also be utilized for crafting ML-based attacks.

Cloud-hosted email solutions, such as Office365, have introduced newer challenges in

terms of phishing. Phishing techniques are deployed as a gateway for command and
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control (C&C) bot communication and ransomware. A C&C bot infrastructure consists

of compromised machines (bots) and centralized C&C servers. An attacker uses C&C

servers to manage and administer bots. Attacks can be orchestrated and adversaries can

spread malicious payload by utilizing bots and by sending instructions anonymously via

C&C servers. Abdul, Maham, Liu, et al. [52] surveyed AI based strategies for tackling

phishing, as well as deep learning, hybrid learning, and scenario-based ML techniques for

countering phishing attacks. The survey taxonomy of Abdul, Maham, Liu, et al. [52] is

based on communication media, including email, websites, applications, target devices,

attack techniques, and countermeasures. The survey of the phishing research in [52] can

be beneficial for developing future antibot techniques, since successful phishing campaigns

can lead to bot networks.

Zaman, Alhazmi, Aseeri, et al. [53] surveyed artificial intelligence-based strategies to

counter Internet of Things (IoT) cyber threats. The survey [53] targets IoT protocols

deployed at various layers and discusses associated threats. The layered approach gives

readers a perspective of implementing defense in depth at various levels of processing. The

surveyed AI methods were primarily rule-based, i.e., Fuzzy Logic (FL) and Neuro-Fuzzy

System (NFS).

2.1.2 Firewall Reviews

The general research and development area of firewalls has been covered in a few surveys

with different topical focus areas. Firewall configuration has been the focus in [54], [55].

Best practices for firewalls have been surveyed in [56], while the recent survey [57] focuses

on firewall operation based on signatures and machine learning.

2.1.3 IDS Reviews

Intrusion Detection Systems (IDS) [58]–[61] are crucial in detecting intrusions and mit-

igating threats before they become security breaches and have been covered in several
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surveys. Jinisha and Jerine [62] explore IDS mechanisms on Wireless Sensor Networks

(WSNs). WSNs are critical for IoT, surveillance, and industrial use due to their ability

to operate with limited power and hardware resources. However, the limited power and

hardware resources also make WSNs an easy target for system availability attacks. Jinisha

and Jerine [62] categorized attacks based on networks, applications, and data-link layer;

the surveyed detection methods were trusted management, fault tolerance, knowledge-

based, feature selection, and deep learning. Recent attack sophistication has reduced the

detection capabilities of standalone IDS systems. Therefore, the survey by Li, Meng, and

Kwok [63] covered distributed and collaborative IDS. The survey Franco, Aris, Canberk,

et al. [64] observed that accuracy, management, and scalability can be improved by IDS

that collaborate in a distributed environment. The survey conducted by Franco, Aris,

Canberk, et al. [64] on Honeypots and Honey nets gives insights into their relationships

with firewalls, IDS, and other UTM components. Recent IDS surveys have mainly focused

on machine learning [65]–[75], as well as anomaly detection [76] and the fog computing

environment [77].

2.1.4 Antibot Reviews

Relatively few surveys have covered antibot methods. The general characteristics of bot-

nets and their detection have been surveyed in [78], [79]. Strategies for detecting malicious

bots that use social media platforms or peer-to-peer networks to spread and communicate

have been surveyed in [80], [81].

2.1.5 Limited UTM Reviews

Overview of Existing UTM Surveys

The related existing overview articles that claim to cover the overall UTM services are

very limited; they either are performance centric, e.g., Gharat, Vidhate, and Barve [82]
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and Qi, Yang, Xu, et al. [83], or geared towards firewalls, tools/methods, and attack-

specific (ransomware), e.g., Liang and Kim [84], Miloslavskaya [85], and Kapoor, Gupta,

Gupta, et al. [86]. Christopoulos [87] surveyed UTM capabilities and features; however,

only the firewall component is covered in detail. The related surveys focused on IoT [88]

and on industrial control systems [89] and emphasize the importance of controls on low-

processing devices. Latesh Kumar and Leena [90] surveyed the UTM limitations arising

from the limitations of machine learning. The improved UTM inspection capabilities

achieved by integration of anomaly detection have been covered in [91]. Recent network

security trends, such as Software Access Service Edge (SASE) and Software Defined Net-

works (SDN) are covered by Nazareth, Choi, and Ngo-Ye [92] and Yurekten and Demirci

[93], respectively. The COVID-19 pandemic has changed the security posture, leading

to adapted strategies for building a secure network environment during the pandemic, as

surveyed by Akiyama, Haruta, Tamai, et al. [94].
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Chapter 3

Research Methodology

This chapter explains the research method chosen to conduct this research, research

methodology formalize research into well-defined process and procedures. The research is

sequentially followed with inter related steps, the ultimate goal is to analyze, validate data

that can be scientifically proven. The purpose of this research is to propose a framework

for securing home networks including IP based IoT devices, the proposed system is called

Smart Home Unified Threat Management System (SUTMS). The research is dedicated to

resolve the security problems home networks are facing, artifact is validated and assessed

in context of the problem. Home networks have become critical due to remote work,

cloud computing and increase of IoT based home appliances. The absolute choice is de-

sign science for this research, design science is the study of artifact in context of problem,

artifact will be designed, analyzed and evaluated [95]. Adopting design science method-

ology ensures that the problem is highlighted and the proposed solution is developed and

validated. The artifact produced in this research will follow design science guidelines.

Hevner and Chatterjee [96] categories design science into seven guidelines. The guidelines

are:-

i) Design science must produce an artifact, artifact can be in the form of algorithm,

method, software, construct, device, framework, or instantiation.

ii) The developed artifact produced has to be in the context of problem resolution, im-

provement.

iii) Evaluation is the important part of design science; the solution will be benchmarked

against existing standards or acceptable evaluation methods.

25

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



iv) Successful research will have verifiable and relevant contributions.

v) Rigorous methods must be applied for the construction and evaluation of artifact.

vi) Artifact will be searched to meet the acceptable results in accordance with the problem

resolution.

vii) The research should be communicated to the technological aware and management

oriented audience.

Hevner and Chatterjee [96] guidelines set the foundation of design science research, Pef-

fers proposes Design Science Research Methodology DSRM [97], Peffers model closely

aligns with the research done for SUTMS framework. In this research Peffers model is

used, it is consisted of six steps. Those steps are: problem identification & motivation,

define objective of the solution, design & development, demonstration, evaluation, and

contribution.

The process is detailed, but easy to apply and follow through from the problem iden-

tification and artifact. Peffer’s six step design methodology is represented in Fig. 3.1[97].

Figure 3.1: Peffer’s six step design science methodology [97].
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3.0.1 Problem Identification and Motivation

Home networks doesn’t have a corporate grade security, it is because they are originally

designed for home users to access internet and non-business applications. As internet

infrastructure has improved, internet broadband cost has gone down and availability has

also improved. Comcast is offering internet service at $9.99 plus tax with no price increase

to families in need [98]. Affordable internet service has contributed to the rise of ecom-

merce, cloud computing, remote work and IoT home devices. In 2017 Chinese ecommerce

giant Alibaba reported rise of revenue by 56% to $7.4 billion [99]. It is expected that

cloud computing industry will grow from $371.4 in 2020 to billion $832.1 billion in 2025

[100]. Remote work in 2020 have shown improved productivity according to surveys, more

than 1 out of 3 HR leaders survey expected 40% of employee will be remote permanently

post pandemic [101]. The number of IoT devices are expected to reach 43 billion by 2023,

which is a threefold increase from 2018 [102]. It is obvious from the above data that con-

sumers are using home networks to access ecommerce and corporate applications hosted

in the cloud due to ease of access and rise of remote work. Corporations are hosting

business applications on cloud providers network like Microsoft Azure, Amazon AWS and

Google Cloud Platform, which homes users access with/without connecting to corporate

networks therefore it depends on home networks security. Homes are equipped more and

more with smart IoT based appliances and slowly legacy appliance will phase out. All

those factors make the home networks critical from availability and security perspective.

From adversaries point of view, compromising home networks can not only reward with

Personnel Identifiable Information PII, but can also lead to access to corporate data or

networks. The trend leads to the next generation of breaches using home networks. IoT

devices have increased the attack surface, hackers have many options to get into home

networks and IoT devices are the weakest of those. Similarly, home IoT devices can also

be used as bots for DDoS attacks, crypto mining. Home networks are facing numerous
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unseen threats i.e., no exposure to home networks in terms of visibility, increase of attack

surface due to easy adoption of IoT devices and no adequate network protection. Home

networks not only lack security, network visibility is also a problem. Most of the home

users are unaware of traffic, applications, and websites used in their homes. The only

protection home networks have is anti-virus software on computers and stateless firewall

inspection on internet router. Smart IoT home devices also contribute to a bigger percent-

age of traffic, which is mostly left unprotected. There is a major gap in home networks

security that has to be addressed, which motivates us for a proposed security framework

for home networks. The proposed solution provides a simplified version of corporate grade

security to home networks.

3.0.2 Objective of a Solution

The research proposes a solution that mitigates the security risks associated with home

devices and smart IoT appliances.

• The solution must be a unified artifact that provides security along with basic

connectivity. The solution can replace existing home routers by incorporating basic

WiFi and routing functionality. Home users can connect their laptops, printers,

desktops, smart phone and IoT devices to SUTMS via security WiFi. SUTMS can

route the traffic to internet after processing it through inspection engines. There is

a flexibility to deploy our solution in home networks with or without existing WiFi

routers, which makes the solution scalable and easy to deploy with user’s choice of

network.

• One of the challenges home users have is lack of technical skills, by keeping this in

mind our proposed solution requires basic configurations equivalent to home routers.

Most of the services are run as part of a startup script and doesn’t require user

interaction. The solution can be administered via a web front end and users doesn’t
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need understanding of backend Ubuntu operating system.

• Visibility is an issue when it comes to home networks, users are unaware of applica-

tions, services, protocols, and traffic in use. Traffic patterns and behavior are very

useful in detecting anomalies and machine learning algorithms executions. SUTMS

improves visibility by incorporating flow traffic into a unified threat management

platform.

• The proposed solution includes a stateful inspection engine capable of analyzing

traffic in real time. Firewall rules can be customized based on IP addresses, proto-

cols, and logs can be generated for allowed or denied traffic.

• Advanced attacks can be blocked by integrating intrusion detection and prevention

capabilities, SUTMS has a Suricata engine to detect/prevent malicious traffic based

on signatures.

• Firewall and Intrusion Detection System (IDS) inspection is not sufficient to block

malicious traffic, keeping that in mind, the solution includes dynamic antibot capa-

bilities. Antibot functionality is built on Indicators of Compromise (IoC’s) ingestion

that gets updated on regular basis and traffic to threat actor can automatically be

blocked. SUTMS security capabilities is enhanced greatly with the addition of dy-

namic blocking of IoC’s feeds.

• Firewall, IDS, Antibot configurations can be tailored towards home networks to

deliver robust security without impacting the performance and efficiency of home

networks. The solution is going to be tested thoroughly to automate and cus-

tomize configurations based on user acceptance and performance impact to network

throughput should not be significant.
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3.0.3 Design and Development

Peffer’s design and development phases focuses on artifact’s interworking, in this research

the developed artifact is the instantiation of framework of securing home networks. The

design phase of this research is comprised of topology diagrams, scenarios, and soft-

ware/hardware used. The design simulates a typical home network with the detailed

information about network ingress and egress points. Solution design determines the

attack surface for home networks and strategic deployment of artifact to reduce attack

surface, Firewall, IDS, Antibot and Flow collection engines are part of solution design.

The development phase of this research is the transformation of solution design into the

actual working artifact. Design functions and capabilities identified in design phase are

incorporated into an artifact in the form of software code. The artifact should be de-

veloped according to the design and Peffer’s research methodology. Detailed technical

information about design and development of artifact is included in the “SUTMS - Smart

Unified Threat Management System” Chapter 4.

3.0.4 Demonstration

Peffer’s demonstration phase is about the actual implementation of artifact in the context

of a problem. In this research, artifact is implemented in a simulated home network

environment as defined in solution design. The deployment replicates home networks in

a controlled environment, traffic gets routed and inspected via artifact. Demonstration

of artifact ensures that the solution is practically capable of addressing a real world

problem. Solution demonstration is explained in detail in Chapter 5 “SUTMS Testing

and Evaluation”.
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3.0.5 Evaluation

Solution evaluation, testing, and validation is the most important part of our research,

without proper evaluation the artifact will have no integrity. Evaluation requires ac-

ceptable evaluation criteria based on recognized standards. The artifact in this research

is tested against existing solutions and acceptable thresholds. Impact on network and

system performance is evaluated and tuned accordingly. The evaluation and testing of

SUTMS is based on two criteria, i.e., stress testing of the product under heavy load and

solution efficiency in mitigating security threats. Detailed artifact evaluation is included

in chapter 5 “SUTMS Testing and Evaluation”

3.0.6 Contribution

SUTMS framework sets the foundation for the next generation of affordable unified threat

management devices for home networks. The research contributes to the field of cyber-

security for IP based devices, including IoT’s and smart phones. Artifact goes through a

series of design, development, and evaluation stages to come up with a final product, which

addresses the security problems home networks are facing. COVID-19 has significantly

increased remote work therefore it is a dire need of implementing corporate grade security

for home networks, the research conducted addresses the present and future challenges in

Chapter 6.
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Chapter 4

SUTMS - Smart Unified Threat

Management System

4.1 Design and Architecture

SUTMS is consisted of three core engines and one optional component, Fig.4.1 is the

high-level graphical representation of SUTMS components and their interaction to come

up with the final processing decision. The required modules are Intrusion, flow detection

and Firewall, it is a security device therefore routing is categorized as optional. Dynamic

routing protocols are currently not supported, as the solution is geared towards small

networks. Flow detection engine correlates data with Intrusion module to improve sig-

nature efficacy, reduce CPU usage and memory consumption. Collaboration among flow

detection and IDS engines results in signature optimization. The resulting logs can be

feed to collectors for reporting, analytics, and troubleshooting. Suricata & NTOP are

deployed as Intrusion and Flow detection modules respectively. Automated IoC feeds via

STIX/TAXII turns the Iptables firewall into an antibot engine, black listed IP’s can be

blocked dynamically and without any user intervention. SUTMS takes care of the format-

ting, conversion and data duplication. The traffic flows are classified as egress and ingress,

Fig.4.2 and Fig.4.3 depicts the egress traffic and ingress flow to the internet respectively,

there are three main components of traffic flow:
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Figure 4.1: SUTMS High-Level Design
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Figure 4.2: Flow of outbound traffic via SUTMS.
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Figure 4.3: Flow of Inbound traffic via SUTMS.

• Traffic originated from the local area network, which includes IP traffic from home

computing devices like laptops, desktops, smart devices, and IoT.

• Traffic destined to log collectors. It is an optional component and can be integrated with
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security log correlations tools like SIEM. Similarly, logs can be used for reporting,

trending, and data analytics.

• The flow collection engine detects the protocols used and forwards the output to IDS

to only enable the rule sets relevant to protocols. Ingress traffic from the internet

is processed according to Fig.4.3, the steps are similar to egress traffic except it is

executed in the reverse direction. Raspberry Pi is based on the following open-source

services.

a) Ubunto 22.04 LTS running on Vilros Rasberry Pi 4.

b) Suricata version 6.0.0 is selected as an intrusion detection engine, it provides real-time

scanning and detection/prevention of malicious traffic.

c) Linux iptables provides firewall services.

d) STIX/TAXII feeds from Anomali is integrated into Anti-bot capabilities.

e) Ntopng probe for protocol and anomaly detection.

f) Rasberry Pi routing and access point service.

g) Apriori algorithm can be applied to log outputs for fine-tuning and noise elimination.

h) Elasticsearch and logstash are used for log aggregation.

4.2 Deployment Strategies

The artifact is implemented, evaluated, and analyzed on Rasberry Pi 4 with 8 GB of Ram,

32Gb of SD Card memory storage, and equipped with Quad core Cortex-A72 1.5 GHz

processor [103]. Pi 4 is one of the latest models with multiple connectivity interfaces, i.e.,

Wi-Fi, Gigabit Ethernet, and Bluetooth. Different interfaces allow it to act as a mode of

communication for a variety of computing devices, including IoT. SUTMS is a multipur-

pose compact device that can be deployed according to the network specifications, home

network depends on Internet Service Provider and home user hardware requirements.
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The device is proposed by considering various possible scenarios and implementations

according to the existing home network infrastructure.

• Inline deployment with an access point

Fig. 4.4 represent the inline implementation, all the traffic will be forced through

SUTMS. The inline deployment eliminates the need for an access point as SUTMS will

be responsible for Wi-Fi access along with the advance inspection. Home networks where

the ISP handoff is not ethernet will require an external modem as currently, RasberryPi

doesn’t have a built-in modem, Fig. 4.5 illustrates the scenario with an external modem.

Figure 4.4: Inline Implementation of SUTMS.
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Figure 4.5: Inline Implementation of SUTMS with External Modem.

• Inline deployment without an access point

This is the most common form of deployment as most of the home networks already

have an access point, we can leverage existing network infrastructure and install SUTMS
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between ISP and Access point as shown in Fig. 4.6. This mode of deployment also requires

minimum configuration changes on endpoints, as WiFi services won’t be touched.

Figure 4.6: Inline implementation of SUTMS utilizing existing access point.
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• Out of band deployment

Out-of-band implementation of SUTMS is also possible, however, the inspection capa-

bilities are significantly reduced. The device won’t be able to block any traffic, intrusions

can be detected, and flow traffic can also be monitored. Out-of-band implementations are

usually done either via an SPAN port Fig. 4.7 or require physical TAP installation.

Figure 4.7: Out of band implementation of SUTMS.

40

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



4.3 Stateful Packet Inspection

Checkpoint invented stateful firewall inspection in the early 1990s [104]. Stateful firewalls

are session-aware and keep track of the start and end of established connections (allowed

traffic) in a session or state table. Filtering is conducted based on matching flows in

a session table [105]. Stateful inspection greatly reduces processing for allowed traffic;

flows for established connections are allowed by utilizing less resource-intense verification

checks, and thus avoid the processing by standard firewall rules. Entries for allowed flows

with standard protocol timeout settings are created in a session table, and the entries are

deleted once the timeout expires. Any other traffic that is not allowed will be blocked, and

no entries will be added to the session table. Typically, a session table consists of ¡source

IP address (src IP), destination IP address (dst IP), protocol (port/service), source port

(src Port), session state and timeouts¿ [106]. Stateful firewalls dynamically allow return

traffic by validating sequence numbers, timeouts, and state tables, and administrators do

not have to worry about creating permanent access lists for return traffic. Session state

and timeouts are the key components used to track and tear down connections gracefully.

Trabelsi, Zeidan, Shuaib, et al. [106] proposed architecture enhancements that can

ultimately reduce processing times, and two new data structure fields were introduced:

Session identifier & session verifier. The session identifier keeps track of ¡source IP address

(src IP), destination IP address (dst IP), protocol (port/service), source port (src Port)¿.

The session verifier keep a trail of ¡session state and timeouts¿. The Trabelsi, Zeidan,

Shuaib, et al. [106] architecture reduces the processing into single hash entries, compared

to multiple hash processing engines, such as Netfilters [107]. Single hash processing re-

quires less memory and computational power and reduces traffic filtering times.

Trabelsi and Zeidan [108] proposed an approach based on splay trees [109] for per-

formance improvements and protection against denial of service (DoS) attacks. Fig. 4.8

illustrates the sample hash table used by Trabelsi and Zeidan [108] with the following
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Figure 4.8: Collection of sample hash tables for improved stateful firewall by Trabelsi and
Zeidan [108].

Figure 4.9: Splay tree developed from the hash tables in Fig. 4.8 [108].

characteristics:

• 11*, 10*, 00* are the binary representations of destination IP address prefixes

• R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 are firewall rules.

• R1–R11 ¡Allow Rules¿ and R12 ¡Default Deny Rule¿.

• H2, H3, H4, H5 and H6 are hash tables that group together prefixes by rule hits.

DoS experimental testing [108] revealed that 90% of the packets matched some of

the allow rules (Rules R1–R11), while 10% did not match any allow filtering rule

from R1–R11, and therefore fell under the default deny rule, i.e., Rule R12.

For instance, destination IP address prefix 11 matches rules R11 and R12, which are listed

in hash table H2. The splay tree generated from the collection of hash tables in Fig. 4.8

is depicted in Fig. 4.9 [108]. The splay tree in Fig. 4.9 is derived after applying a series

of rotational operations, and counting the number of destination IP addresses prefixes
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represented in Fig. 4.8. The default rule is the prime target for DoS attacks, and hackers

can craft unnecessary traffic to overload the firewall. Rules, such as R12, gets the most

hits as traffic increases; the splay tree in Fig. 4.9 moves the hash group with the maximum

number of hits, i.e., hash group 4, to the top [109]. Consider the scenario of a continuous

targeted web/Telnet scanning attack on the destination prefix 0011*. In this scenario,

the scanning tool persistently targets port 80 (web) and 23 (Telnet). Among the various

rules, Rule R6 belongs to hash group 4 and receives a majority of the hits. Following

the general balancing principles [109], the splay tree then moves hash group 4 to the top.

The hash group at the top will be processed first, then hash groups with fewer hits. In

case of a DoS attack, Rule 12 (default) is processed first due to binary search using a

splay tree structure that ultimately improves performance during peak usage. Since the

UTM devices designed for home networks have generally limited processing power, the

enhancements of Trabelsi, Zeidan, Shuaib, et al. [106] as well as Trabelsi and Zeidan [108]

add significant value to the firewall inspection engine for UTM systems.

Xing, Wong, and Kumar [110] implemented a stateful firewall on a commercial ARM

based architecture suitable for UTM systems. More specifically, they successfully inte-

grated a stateful firewall engine on Keil Vision 4.7 with ARM MDK-Lite [110]. Home

and IoT networks can take advantage of the integration effort in Xing, Wong, and Kumar

[110] for the deployment of UTM systems on Arduino and Raspberry Pi platforms.

Recently, Melkov, Šaltis, and Paulikas [111] conducted performance evaluations that

revealed that iptables [112] outperforms nftables [113]. Similarly, several studies have

found that iptables is the more stable and efficient open-source Linux-based firewall for

smaller implementations [114], [115]. Miano, Bertrone, Risso, et al. [116] have developed

bpf-iptables, which achieves higher performance and throughput compared to traditional

iptables by exploiting hooks for the extended Berkeley Packet Filter (eBPF) and eX-

press DataPath (XDP) in the Linux kernel [117]–[122]. Firewalls with such performance

enhancements and successful small-scale deployments are promising candidates for UTM-
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based firewalls.

The latest firewall studies focus mostly on incorporating stateful inspection in switches

[123], software-defined networks (SDN) [124][125], and the cloud [126]. Home networks

are dominated by SOHO wireless internet routers; therefore, firewall studies on vendor-

managed SDN and cloud solutions that are geared mainly towards corporate and enter-

prise networks likely will not have a significant impact on UTM firewall design.

4.3.1 SUTMS Implementation Of Stateful Inspection

SUTMS takes advantage of previous lightweight implementations of stateful inspection

and deploy Iptables as a firewall and antibot agent. Iptables open source stateful firewall

is deployed for IP address and TCP/UDP port filtration. Any traffic sourced from the

internet is blocked, and outbound traffic is permitted according to need to know basis.

Fig.4.10 depicts the flow of traffic initiated from home networks destined for the internet.

The flow of traffic through iptables is processed as follows:
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Figure 4.10: Flow Of Traffic via Firewall Engine.

i) The pre-routing chain is responsible for NAT decisions before the firewall rules get

applied. NAT can be dynamic or one-to-one static. Address translation of multiple IP to
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a single source IP requires Port address translation PAT.

ii) If there is no firewall inspection required, the traffic is forwarded directly to the out-

going interface. In case there is no route to the destination, the traffic will be dropped.

In order to forward traffic, the iptables must have IP-forwarding enabled.

iii) In case of firewall inspection, the traffic is directed to the input chain and processed

according to the applied rules. SUTMS iptables module has consisted of two sources of

rules, one set of rules gets added manually by an administrator according to required

functions. The other set of rules gets updated dynamically by incorporating IoC feeds

from open-source threat intel platforms, i.e., Anomali via STIX/TAXII. Ingestion of dy-

namic feeds into iptables input chain provides protection against bots.

iv) Allowed packets goes through packet processing tasks and send to the output chain.

Only packets destined or sourced from SUTMS are inspected by the output chain, all

other packets are forwarded to the post-routing chain.

v) The post-routing chain is responsible for NAT packets after rules processing, whereas

the pre-routing chain performs NAT before rules get applied.

Manual SUTMS Rules

The required rules attached to the input chain are stated below 4.1 and categorized as:-

#DNS Rule The rule is required for internal hosts to communicate to DNS servers, the

destinations must be changed according to the local ISP.

#Allow-Web Traffic These rules allows HTTP and HTTPS traffic to the internet from

RFC 1918 address space.

#SUTMS Management- Rule The rules allows management access to the SUTMS via
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SSH and HTTPS over port 10000.

#NTOP Access Port The rules allows access to NTOP web portal for analyzing applica-

tion and traffic flows captured by the SUTMS framework.

#Stealth Rule This rule works as a catch-all rule and drop any traffic that doesn’t have

a matching rule.

Listing 4.1: iptables rules

1 # DNS Rule

2 −A INPUT −p udp −m udp −s

1 9 2 . 1 6 8 . 0 . 0 / 1 6 , 1 0 . 0 . 0 . 0 / 8 , 1 7 2 . 1 6 . 0 . 0 / 1 2 −d 8 . 8 . 8 . 8 −−dport

53 −j ACCEPT

3 # Allow−Web Tr a f f i c

4 −A INPUT −p tcp −m tcp −m mult ipor t −s

1 9 2 . 1 6 8 . 0 . 0 / 1 6 , 1 0 . 0 . 0 . 0 / 8 , 1 7 2 . 1 6 . 0 . 0 / 1 2 −j ACCEPT −−dports

80 ,443

5 # SUTMS Management −Rule

6 −A INPUT −p tcp −m tcp −m mult ipor t −s

1 9 2 . 1 6 8 . 0 . 0 / 1 6 , 1 0 . 0 . 0 . 0 / 8 , 1 7 2 . 1 6 . 0 . 0 / 1 2 −j ACCEPT −−dports

22 ,10000

7 # NTOP Access Port

8 −A INPUT −p tcp −m tcp −s

1 9 2 . 1 6 8 . 0 . 0 / 1 6 , 1 0 . 0 . 0 . 0 / 8 , 1 7 2 . 1 6 . 0 . 0 / 1 2 −−dport 3000 −j

ACCEPT

9 # Stea l th Rule

10 −A INPUT −j DROP
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Rule Verification & Logging

The firewall rules can be verified by executing the command as shown below or accessing

the WEBUI interface of the SUTMS framework i.e. Webmin. Webmin is an open-source

web-based interface to manage Linux machines remotely via browser [127]. Webmin is

highly customizable and various modules can be developed according to user requirements.

The web interface gives easy access to home users to add/delete and modify firewall rules

Fig .4.11

Figure 4.11: Webmin SUTMS Interface

Listing 4.2: iptables rules

1 root@SUTMS:/# i p t a b l e s −L

2

3 # Warning : i p t ab l e s−l egacy t ab l e s present , use i p t ab l e s−

l egacy to see them

4 Chain INPUT ( po l i c y ACCEPT)

5 ta r g e t prot opt source d e s t i n a t i on

6 ACCEPT udp −− 192 . 168 . 0 . 0/16 8 . 8 . 8 . 8

udp dpt : domain
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7 ACCEPT udp −− 1 0 . 0 . 0 . 0 / 8 8 . 8 . 8 . 8

udp dpt : domain ACCEPT udp −−

172 . 16 . 0 . 0 /12 8 . 8 . 8 . 8 udp dpt :

domain

8 ACCEPT tcp −− 192 . 168 . 0 . 0/16 anywhere

tcp mult ipor t dports http , https

9 ACCEPT tcp −− 1 0 . 0 . 0 . 0 / 8 anywhere

tcp mult ipor t dports http , https

10 ACCEPT tcp −− 172 . 16 . 0 . 0 /12 anywhere

tcp mult ipor t dports http , https

11 ACCEPT tcp −− 192 . 168 . 0 . 0/16 anywhere

tcp mult ipor t dports ssh , webmin

12 ACCEPT tcp −− 1 0 . 0 . 0 . 0 / 8 anywhere

tcp mult ipor t dports ssh , webmin

13 ACCEPT tcp −− 172 . 16 . 0 . 0 /12 anywhere

tcp mult ipor t dports ssh , webmin

14 ACCEPT tcp −− 192 . 168 . 0 . 0/16 anywhere

tcp dpt :3000

15 ACCEPT tcp −− 1 0 . 0 . 0 . 0 / 8 anywhere

tcp dpt :3000

16 ACCEPT tcp −− 172 . 16 . 0 . 0 /12 anywhere

tcp dpt :3000

17 DROP a l l −− anywhere anywhere

The rules 4.2 by default are not persistent, in order to make the rules applied at re-

boot “iptables-persistent” package has been installed [128]. The file “/usr/share/netfilter-

persistent/plugins.d/15-ip4tables” must be pointed to the rules file /etc/iptables/SUTMS.rules.

The packets can be logged by creating a new chain and forwarding the messages to that
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chain. Log messages that include a “denied” prefix in the message and have a severity log

level of 4 can capture sufficient details.. Their log levels are debug, info, notice, warning,

err, crit, alert, emerg [129], the command “-A FWLOGS -j LOG –log-prefix ”denied: ”

–log-level 4” processes all packets to chain “FWLOGS” and denied messages are logged.

The “FWLOGS” chain can be created either via CLI or Webmin, log messages are stored

in the /var/log directory however it can be modified by editing /etc/rsyslog.conf. It is

recommended to forward the logs to a Syslog server, as storing firewall logs locally can

fill up the disk space on the Raspberry Pi SD card.

Ingesting STIX/TAXII Feeds

SUTMS takes advantage of Structured Threat Information Expression and Trusted Auto-

mated Exchange of Indicator Information [130]. STIX is a machine-readable language of

threat intelligence information, and TAXII is a way to share that information [stix-taxii].

STIX-TAXII feeds allows ingesting IOCs automatically. The feeds can allow dynamic

blocking of bad actors by using the inspection capabilities of iptables. The feeds can be

collected using an API or manually via initiating an HTTP get request to the STIX-TAXII

server. There many open-source STIX-TAXII threat intel feeds are available, some of the

notable ones are MITRE [131], ANOMALI [132] and US Cybersecurity & Infrastructure

Security Agency [133]. SUTMS ingests feeds via an API call provided by ANAMOLI [7]

as shown below: -

curl -kv -o ’ioc updates’ -H ’Content-Type:

application/json’ ’https://192.168.200.160:8080/api/v1/intelligence’

-d’{”token”:”364d56025538c3dc193676cde8dd8ae9”, ”query”:”confidence¿50 AND severity=very-

high AND date last¿-1d”, ”type”:”csv”, ”size”:100 }’

In order to secure the HTTPS transaction token can be retrieved by using the curl com-
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mand and the output is shown below, IP = 192.168.200.160 is the IP address of the

server and it requires a username/password for retrieving the data. SSL handshake is

completed, followed by key exchange and certificate validation. The token acquired i.e.

364d56025538c3dc193676cde8dd8ae9 is used in the original API call.

root@SUTMS:/home/asif# curl -kv -H ’Content-Type: //application/json’

’https://192.168.200.160:8080/api/v1/login’ -d ’”username”:”admin”, ”password”:”xxxxxxxx”’*

Listing 4.3: Output of STIX/TAXII feed Ingestion

1 Trying 1 9 2 . 1 6 8 . 2 0 0 . 1 6 0 : 8 0 8 0 . . .

2 ∗ Connected to 192 . 168 . 200 . 160 ( 192 . 1 68 . 2 00 . 1 60 ) port 8080

(#0)

3 ∗ ALPN, o f f e r i n g h2

4 ∗ ALPN, o f f e r i n g http /1 .1

5 ∗ TLSv1 . 0 (OUT) , TLS header , C e r t i f i c a t e Status (22) :

6 ∗ TLSv1 . 3 (OUT) , TLS handshake , C l i en t h e l l o (1 ) :

7 ∗ TLSv1 . 2 ( IN) , TLS header , C e r t i f i c a t e Status (22) :

8 ∗ TLSv1 . 3 ( IN) , TLS handshake , Server h e l l o (2 ) :

9 ∗ TLSv1 . 2 ( IN) , TLS header , C e r t i f i c a t e Status (22) :

10 ∗ TLSv1 . 2 ( IN) , TLS handshake , C e r t i f i c a t e (11) :

11 ∗ TLSv1 . 2 ( IN) , TLS header , C e r t i f i c a t e Status (22) :

12 ∗ TLSv1 . 2 ( IN) , TLS handshake , Server key exchange (12) :

13 ∗ TLSv1 . 2 ( IN) , TLS header , C e r t i f i c a t e Status (22) :

14 ∗ TLSv1 . 2 ( IN) , TLS handshake , Server f i n i s h e d (14) :

15 ∗ TLSv1 . 2 (OUT) , TLS header , C e r t i f i c a t e Status (22) :

16 ∗ TLSv1 . 2 (OUT) , TLS handshake , C l i en t key exchange (16) :

17 ∗ TLSv1 . 2 (OUT) , TLS header , F in i shed (20) :

18 ∗ TLSv1 . 2 (OUT) , TLS change c ipher , Change c iphe r spec (1 ) :
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19 ∗ TLSv1 . 2 (OUT) , TLS header , C e r t i f i c a t e Status (22) :

20 ∗ TLSv1 . 2 (OUT) , TLS handshake , F in i shed (20) :

21 ∗ TLSv1 . 2 ( IN) , TLS header , F in i shed (20) :

22 ∗ TLSv1 . 2 ( IN) , TLS header , C e r t i f i c a t e Status (22) :

23 ∗ TLSv1 . 2 ( IN) , TLS handshake , F in i shed (20) :

24 ∗ SSL connect ion us ing TLSv1 . 2 / ECDHE−RSA−AES256−GCM−SHA384

25 ∗ ALPN, s e r v e r did not agree to a p ro to co l

26 ∗ Server c e r t i f i c a t e :

27 ∗ sub j e c t : C=US; ST=CA; L=Redwood City ; O=Anomali Inc ; OU=

Engineer ing ; CN=STAXX; emai lAddress=info@anomali . com

28 ∗ s t a r t date : Nov 18 21 : 08 : 37 2016 GMT

29 ∗ exp i r e date : Nov 15 21 : 08 : 37 2031 GMT

30 ∗ i s s u e r : C=US; ST=CA; L=Redwood City ; O=Anomali Inc ; OU=

Engineer ing ; CN=STAXX; emai lAddress=info@anomali . com

31 ∗ SSL c e r t i f i c a t e v e r i f y r e s u l t : EE c e r t i f i c a t e key too weak

(66) , cont inu ing anyway .

32 ∗ TLSv1 . 2 (OUT) , TLS header , Supplemental data (23) :

33 > POST / api /v1/ l o g i n HTTP/1 .1

34 > Host : 192 . 168 . 200 . 160 : 8080

35 > User−Agent : c u r l / 7 . 8 1 . 0

36 > Accept : ∗/∗

37 > Content−Type : a p p l i c a t i o n / j son

38 > Content−Length : 44

39 ∗ TLSv1 .2 (IN) , TLS header , Supplemental data (23) :

40 ∗ Mark bundle as not suppor t ing mu l t iu se

41 < HTTP/1.1 200 OK

42 < Content−Length : 48
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43 < Vary : Accept−Encoding

44 < Server : CherryPy/unknown

45 < Date : Wed, 22 Jun 2022 21 :18 :34 GMT

46 < X−Frame−Options : DENY

47 < Content−Type : a p p l i c a t i o n / j son

48 < Set−Cookie : s e s s i o n i d=48

d03 f2cd f7835d070c005 f f f dce3b763eb90 f8d ; e x p i r e s=Wed, 22

Jun 2022 22 :18 :34 GMT; h t t p on l y ; Path=/; secure

49 ∗ TLSv1 .2 (IN) , TLS header , Supplemental data (23) :

50 ∗ Connection #0 to hos t 192 .168 .200 .160 l e f t i n t a c t

51 {” t o k en i d ” : ”364 d56025538c3dc193676cde8dd8ae9 ”}

52 root@SUTMS:/home/ a s i f#

Feed Formatting & Automation

The downloaded feed is stored in a local directory and can be accessed by using Linux

command like more or cat as indicated below: -

root@SUTMS:/home/asif/Downloads# ls

ioc updates

root@SUTMS:/home/asif/Downloads# more ioc updates indicator,classification,confidence,itype,type,severity,source,feed

site netloc,feed name,detail,date last,actor,campaign,id,tlp

194.104.136.155,private,75,mal ip,ip,very-high,limo.anomali.com:TAXII feeds:Emerging

Threats C&C Server,limo.anomali.com,Emerging Threats C&C Server,”mal ip:-

194.104.136.155,malicious-activity”,2022-06-22 04:02:48 PM,,,indicator–8dc28cca-

34bf-4904-951e-eda05551551a,TLP:AMBER

154.56.0.108,private,92,mal ip,ip,very-high,limo.anomali.com: TAXII feeds:Emerging

Threats C&C Server,limo.anomali.com, Emerging Threats C&C Server,”mal ip:-

154.56.0.108,malicious-activity”, 2022-06-22 04:02:40 PM,,,indicator–c73e43c4-
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9f2a-4282-97fe-a4da3847a832, TLP:AMBER

The “ioc updates” fetched two malicious IPs that met the criteria i.e., 194.104.136.155 &

154.56.0.108. Once the SUTMS has IoCs it requires proper formatting and automation,

so that the rules can be dynamically created by iptables (anti-bot functionality). IoCs

can be converted into a format that can easily be embedded into iptables by a simple

while loop written below:

Listing 4.4: Program for IoC to iptables rule conversion

1 #! / bin / sh

2 i=0

3 while [ $ i − l e 1 ] ;

4 do

5 cu r l −kv −o ’ i o c update s ’ −H ’Content−Type : app l i c a t i o n /

j son ’ ’ https : / /192 . 168 . 200 . 160 : 8080/ api /v1/ i n t e l l i g e n c e ’

−d ’ {” token ”:”364 d56025538c3dc193676cde8dd8ae9 ” , ”query

” :” conf idence>5

6 0 AND s e v e r i t y=very−high AND da t e l a s t >−1d” , ” type ” :” csv ” , ”

s i z e ” :100} ’

7 p e r l −l n e ’ /\b [0 −9 . ]{7 ,15}\b/ && pr in t $&’ io c update s >

b l a c k l i s t e d IP

8 ” $ i ” ;

9 i=$ ( ( $ i +1) ) ;

10 done

The program above performs three main functions:

i) Download the IoCs.

ii) Extract IPs from the entire content.

iii) Remove any duplicate IPs.
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4.4 Intrusion Detection Engine

Our study focuses on lightweight implementations of IDS engines that are suitable for

UTM systems. Snort, developed by Martin Roesch [134], and Suricata [135] developed by

the Open Information Security Foundation (OISF) are two widely considered signature-

based open-source IDS engines. Bro, developed by Vern Paxson in 1995 and later re-

branded as Zeek, has the qualities of both signature-based and anomaly-based systems

[136].

Lightweight IDS

Jin, Chung, and Xu [137] developed a lightweight IDS algorithm for Controlled Area

Network (CAN) bus networks. The drop attack, replay attack, and tempering attack

modes were considered, and five signature fields were selected, namely ID, time interval,

correlation, context changing amplitude, and value range. Fig. 4.12 illustrates how these

attack modes are addressed with the selected signature fields in the lightweight IDS de-

sign [137]. The evaluation conducted by [137] demonstrated that IDS effectively detects

a substantial number of malicious high-priority messages. This is achieved by utilizing a

pre-determined ID set for normal traffic. An increased volume of malicious packets, which

constitute a deviation from the normal ID set, is identified by the IDS as an anomaly and

is promptly flagged as a potential threat. Time intervals are crucial to trigger correla-

tion and context-changing amplitude. Context-changing amplitude is a specially designed

signature used to detect variations in the content context of the data. The signature is

crafted to identify alterations in the contextual aspects of the data. Anomalies can be

detected by observing the changes in waveform patterns and amplitude. Correlation and

context-changing signatures gets triggered for such behavior-based anomalies. The IDS
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Figure 4.12: Illustration of lightweight IDS relationships [137]: Three different types
(modes) of attacks are influenced by two distinct anomaly types and tested against specific
signature fields (signatures).

Figure 4.13: Architecture of Snort, version 2.8 [139], [140].

developed and evaluated by Jin, Chung, and Xu [137] allows the creation of signatures

based on anomalies. However, as the number of signatures increases, the computational

processing requirements escalate substantially, which can overwhelm the limited compu-

tational resources of UTM systems.

Snort

Snort depends on the Libpcap (an open-source C-language library for capturing network

packets) and AF PACKET (a socket in Linux that allows an application to receive and

send raw packets) packet capturing libraries to capture packets from the network interface

[138]. Given the importance of the Snort architecture for IDS for UTM systems, we briefly

review the Snort architecture, which is illustrated in Fig. 4.13 [139], [140]. i) Data Sniffer:

Raw data is captured, and packets are sent to preprocessors. Libpcap, AF PACKET

[138], and PCAP/LINPAC [141] are used for packet capturing.
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Figure 4.14: Snort rule matching process flow [142].

ii) Preprocessor: It is critical for Snort to identify the packets that it has to analyze.

Snort uses preprocessors/plugins to classify traffic. Http inspect is a commonly used pre-

processor to identify web traffic, and can be customized to web server type, IP address,

or port numbers [139]:

For instance, ”preprocessor http inspect server: server 10.1.2.3 profile apache” utilizes the

”preprocessor http inspect server” to conduct a thorough inspection of the HTTP proto-

col, tailored for the ”Apache” server at IP address 10.1.2.3. This rule enables Snort to

perform deep packet inspection on web applications hosted on Apache, thereby trigger-

ing alarms for potential attacks. sfPortscan is another useful plugin to decode protocol

behavior and port scanning.

iii) Detection Engine: The detection engine is responsible for identifying, alerting, and

blocking (IPS) intrusions. Once Snort can classify a packet and its behavior, the packet is

compared against a set of rules in a database. Fig. 4.14 [142] illustrates the rule matching

process, Zalbina and Stiawan [142] use Snort-specific rules as criteria for Http inspect in
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Table 4.1: Performance comparison of various IDS versions for a 10Gbps TCP Flow [138].

Snort
2.8
10Gbps
AF Pkt.

Suricata
2.1
10Gbps
AF Pkt.

Snort
3.0
10Gbps
Libpcap

Snort
3.0
10Gbps
AF Pkt.

Suricata
4.1
10Gbps
Libpcap

Suricata
4.1
10Gbps
AF Pkt.

CPU
usage

57% 11.5% 46% 40% 30% 10%

Memory
usage

2% 6% 0.10% 0.20% 0.20% 0.10%

Drop
rate

13.8% 5.9% 0% 0% 0% 0%

their study.

We further illustrate Snort with the following sample rule which has the following

noteworthy components [139]:

alert tcp $EXTERNAL NET any –> $HOME NET 7597 ( msg:”MALWARE-BACKDOOR

QAZ Worm Client Login access”; flow:to server,established; content:”qazwsx.hsq”; meta-

data:ruleset community; classtype:misc-activity; sid:108; rev:12; )

alert = action is set to detect

protocol = tcp

destination port = 7597

direction = External (internet) to Home Net (private) networks.

State = Established connections.

Malicious content = qazwsx.hsq

sid = unique identifier

The rule gets triggered if a connection attempt is made from the internet to internal

networks over port 7597 with a payload of ”qazwsx.hsq”. The same rule can be set to

block by changing ”alert” to ”drop.” flow:to server, established has added performance

benefits as only established connections will be scanned. Alerts can be sent to log servers

via Syslog, and the rules database can be set for automatic updates.

Table 4.1 [138] illustrates performance characteristics of various IDS versions on high-
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speed 10Gbps networks. Suricata 4.1 AF Pkt exhibits lower CPU usage (of 10%) than all

other IDS versions. Also, Suricata 4.1 AF Pkt has the same low memory usage (of 0.1%)

as Snort 3.0 Libpcap, with 0% packet drop. These performance results from [138], were

further corroborated by a study of Kumar, Chandak, and Dewanjee [143] that found that

Suricata has generally better performance and higher throughput than Snort.

Cruz, Goyzueta, and Cahuana [144] implemented Snort [139] on a Raspberry Pi 3

(1.2GHz CPU, 1GB of memory), demonstrating the use of Snort in home network UTM

deployments. However, the evaluation study in [144] was conducted with limited attacks

and does not detail the number of Snort signatures.

Suricata

Suricata was created to overcome some of the drawbacks of Snort, e.g., Snort is single-

threaded, and Suricata is multi-threaded [145]. Suricata takes advantage of multiple CPUs

and can distribute processing across multiple threads. Suricata has four thread modules,

see Fig. 4.15.

Figure 4.15: Suricata 6.0.0 architecture [146].

The packet acquisition thread captures packets using Libpcap, similar to Snort [138].

Packets are decoded and classified, and the flow state is established by the decode and

stream application layer. Suricata can parse application layer (Layer 7) protocols, such

as HTTP, using a stateful parser and can remove malicious content [147]. The detection

thread runs multiple instances of threads concurrently; rules are scanned, and alerts for
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(a) Single run-
mode. (b) Worker runmode. (c) Autofp runmode.

(d) Autofp runmode
with multiple packet
capture threads.

Figure 4.16: Illustration of different Suricata runmodes.

any matches are sent via the outputs thread.

Suricata Runmodes Suricata core components are threads, modules, and queues.

Threads are processes. Suricata can run multiple threads (processes) to enhance per-

formance. Modules are responsible for functionality. The modules can be used for pro-

cessing, decoding, and ingesting packets. Packets are transferred from one thread to

another via a queue. The runmodes are responsible for arranging threads, modules, and

queues. Suricata features the following runmodes:

i) Single: Traffic that enters the network interface card is be processed by a single

thread, see Fig.4.16a; multi-threading is not used.

ii) Worker: In this mode, the network interface driver load balances packets between

multiple Suricata packet processing threads, see Fig. 4.16b. An advantage of the Suricata

worker runmode is that load balancing is offloaded to the network interface.

iii) Autofp: The Suricata autofp mode is used to process packet capture (pcap) files

or NFQueue [148] IPS modes. In NFQueue, iptables firewall modules are configured in

routed mode to forward traffic to IPS for inspection. NFQ requires the Netfilter package

and the following iptables command to launch the packet inspection of Suricata: ”sudo

iptables -I FORWARD -j NFQUEUE” [148]. Autofp can be deployed with a single packet

capturing thread (Fig. 4.16c) or multiple packet capturing threads (Fig. 4.16d). Packets
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are decoded by the packet capturing threads and then rendered to the packet processing

threads.

Suricata Signature Action Order Suricata has four types of actions to perform on

a packet, namely Pass, Drop, Reject, and Alert. Suricata has to be running in IPS inline

mode for the Drop and Reject actions to take effect.

i) Pass: As the name implies, upon a signature match, the packet is allowed to pass

and scanning will be stopped for that packet.

ii) Drop: Packets matching any signature are silently dropped, and a log message will

be generated. The receiver will not be notified about the packet’s status; scans, such as

reconnaissance scans [149], may have limited information about the transaction. As a

best practice, ”Drop” actions are preferred over ”Reject” due to their stealthy nature.

iii) Reject: Reject performs a similar function as ”Drop”, except for notifying the client

with a reject message in the form of a Reset packet. An attacker can craft a packet with

a ”reset” bit set to analyze the response from the target and employ it for fingerprinting

and scanning. Packet crafting tools, such as scapy, can be used to craft such custom

packets. This way, an attacker can trick the IPS device by crafting abnormal packets,

such as sending a ”reset” packet without an initial conversation. Reset packets can also

facilitate DDoS attacks and may exhaust resources on the responding IPS.

iv) Alert: In case of a signature match, packets are allowed, and an alert is be generated

for an analyst to investigate further. The Alert action is a typical configuration for the

IDS mode. IPS can be deployed in span or TAP mode to scan traffic and generate alerts

based on rule matches. In SPAN mode, the network device is configured to send the traffic

from the uplink ports to any available destination port on that switch. An administrator

can plug in the Suricata machine network interface to the destination port for packet

analysis. The TAP mode functions similar to the SPAN mode, with the exception of a
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Figure 4.17: Illustration of Zeek 4.0 architecture [136].

network TAP being connected inline to forward the traffic to a Suricata machine.

Zeek

Formerly known as Bro, Zeek is a hybrid IDS that has adopted functions of both signature

and anomaly (behavior)-based systems. Zeek can generate events from the captured

packets. Zeek has a policy script interpreter engine with powerful features that are highly

customizable. Fig. 4.17 illustrates the core components of the Zeek architecture.

Event Engine: Traffic received from the network is processed by the ”event engine,”

and raw data is converted into events. Events can be used to track transaction logs. For

example, clients going to a website can generate HTTP::http methods: (http methods

could be GET, POST, DELETE, etc.). DNS events, such as dns mapping lost name:

event, can be configured to identify name resolution problems. Failed DNS queries that

were successfully answered in the past can trigger such events. Zeek can also process

stored pcap files, and log files native to Zeek are generated from raw data. Log files

depend on the used protocol. For example, an HTTP transaction can create conn.log,

dns.log, and http.log. The analyst may elect to only analyze dns.log if the focus of the

investigation is to identify malicious domains.

Policy Script Interpreter: Zeek has a custom scripting language that executes a set of

instructions. Scripts can be utilized to take action on the activities detected by the event

engine. The Zeek sample script below creates notifications for ssh brute force attempts.

The script starts by loading protocol and framework definitions, whereby the ”Notice”
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framework allows Zeek to flag any pattern outside of normal behavior. Three bad password

attempts ”password guesses limit= 3” within a period of five minutes ”guessing timeout

= 5 mins” will be marked as an SSH brute force attempt.

Table 4.2: Comparison of Snort, Suricata & Zeek (bro).

Features Snort Suricata Zeek (bro)
Detection
Method

Signature based Signature based Signature &
anomaly based

Blocking IDS / & IPS IDS / & IPS IDS Only
Complexity Easy to imple-

ment / configure
Easy to imple-
ment / configure

Complicated to
set up

OS Support Linux, Windows Linux, Windows Linux
Multi-Threaded No Yes No
Signature Up-
dates

Can be config-
ured for auto-
matic updates

Can be config-
ured for auto-
matic updates

Signatures are
not the preferred
detection method

Technical Fea-
tures

Thousands of sig-
natures with wide
variety of proto-
col support

Thousands of sig-
natures with wide
variety of proto-
col support

Features depend
on Zeek scripting
language

CPU Usage Medium CPU us-
age in high-traffic
networks [150]

High CPU usage
in high-traffic
networks [150]

Low CPU usage
in high-traffic
networks[150]

Integration Can be easily
integrated with
security inform.
& event man-
agmt. (SIEM),
threat intellig.
platf., and fire-
walls

Can be easily
integrated with
SIEM, threat
intellig. platf. &
firewalls; turnkey
solution avail-
able, i.e., SELKS

Integration with
other tools is
complicated

Customer Base Cisco owns Snort
and has large cus-
tomer base

Smaller footprint Smaller customer
base than Snort
and Suricata

User Acceptance High – Due to
proven track
record and Cisco
acquisition

Medium – Good
for small en-
vironm. due
to integr. /w
Kibana & Elas-
ticsearch

Low – Due to
Complexity and
Lack of IPS func-
tionality

Listing 4.5: Zeek Script For SSH Brute Force
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1 @load base / p r o t o c o l s / ssh

2 @load base / frameworks/ sumstats

3 @load base / frameworks/ no t i c e

4 module SSH ;

5 export {

6 r ed e f enum Notice : : Type += {

7 Password Guessing

8 } ;

9 const pa s swo rd gue s s e s l im i t : double = 3 &rede f ;

10 const gues s ing t imeout = 5 mins &r ede f ;

11 }

Zeek can also process signatures. However, signature based detection is not one of

the preferred detection methods [136]. The following example signature triggers a ”sig-

nature match” event when an anonymous FTP attempt is made:

Listing 4.6: Zeek Signature Template

1 s i gna tu r e zeek−s i g {

2 ip−proto == tcp

3 dst−port == 21

4 payload / .∗ anonymous/

5 event ”FTP Anonymous ac c e s s ! ”

6 }

The Zeek ”signature match” event has the following format:

event signature match(state: signature state, msg: string, data: string).

”state” includes information about the FTP connection, ”msg” contains ”FTP Anony-

mous access!” and ”data” is the payload ”/.*anonymous/”. Zeek makes use of regular

expressions to filter out the content of interest from the payload.
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4.4.1 SUTMS IDS Implementation

Suricata version 6.0.4 is selected as an intrusion detection service, Suricata’s multi-

threaded architecture and integration with other engines like Logstash, and Kibana makes

it a better choice over Snort. While Snort operates on a single thread, Suricata leverages

a multi-threaded approach for enhanced performance [145]. By harnessing the power of

multiple CPUs, Suricata efficiently distributes processing tasks across multiple thread,

which makes it a ideal IDS candidate for UTM. The Suricata rule written below has the

following key components [146].

alert http $HOME NETany− > $EXTERNAL NET 80 (msg:”TROJAN”;

flow:established,to server; flowbits:isset; content:”trojan” ; pcre:”/trojan .*[0-9]3,/i”; classtype:trojan-

activity; sid:200; rev:2;)

alert = action is set to detect

protocol = http

destination port = 80

direction = Home Net (private) networks to External (internet).

State = Established connections (flowbits:isset).

pcre = regex search set to trojan .*[0-9]3,/i

malicious content = trojan

sid = unique identifier

Suricata rule format is very similar to Snort, except for the ability to specify application

layer protocols like HTTP, DNS, etc. Raspberry Pi 4 has a single-core architecture there-

fore it won’t be able to utilize the benefits of multi-threading processing, however future

releases of Rasberry Pi can be multi-core. Suricata rules are downloaded automatically

via running the command “sudo Suricata-update”, key output details are shown below.

Listing 4.7: Suricata Installation Log Showing 27716 enabled rules
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1 asif@SUTMS :˜ $ sudo su r i c a ta−update

2 10/8/2022 −− 19 : 11 : 34 − <Info> −− Found Sur i ca ta ve r s i on

6 . 0 . 4 at / usr / bin / s u r i c a t a .

3 10/8/2022 −− 19 : 11 : 45 − <Info> −− Backing up cur rent r u l e s .

4 10/8/2022 −− 19 : 11 : 52 − <Info> −− Writing r u l e s to /var / l i b /

s u r i c a t a / r u l e s / s u r i c a t a . r u l e s : t o t a l : 35266 ; enabled :

27716 ; added : 1642 ; removed 84 ; modi f i ed : 1492

The key takeaway from the above output is that signature download process automatically

detects the version and writes the rules to the “var/lib/suricata/rules/suricata.rules” file.

Another notable fact is by default 27716 rules gets enabled out of 35266 total number of

rules. Scanning 27716 rules requires intense processing power which could significantly

degrade the performance of UTM devices. In order to avoid any negative impact to

performance, SUTMS takes advantage of NTOP probe to only enable the signatures for

the protocols that are used in an environment. In order to verify Suricata is working

as expected, test signature “suricata test rule.rules” is created and traffic is generated

from a remote system simulating as an attacker. Logs were observed in “fast.log” file for

matching signature description “This is SUTMS test signature” as shown below:-

root@SUTMS:/var/log/suricata# suricata -S suricata test rule.rules -i wlan0

root@SUTMS:/var/log/suricata# more fast.log

08/10/2022-21:53:01.707410 [**] [1:2008124:0] This is SUTMS test signature [**] [Clas-

sification: (null)] [Priority: 3] TCP 192.168.200.155:56314 -¿ 192.168.200.156:22

Signature Refinement

Data derived from ntop prob(discussed in later section) revealed that only certain pro-

tocols are used in home networks, therefore it makes sense to disable the signatures for
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unused protocols. This significantly improves the performance of the SUTMS IDS inspec-

tion engine. To automate the disablement of unwanted signatures Suricata config file i.e.,

“disable.conf” is created in /etc/suricata directory. Regex is used to filter out unused

protocols, rules with “pcre” and older irrelevant rules are also disabled, “pcre” is a very

resource intense process and can overload the UTM device. It reduces the number of

Suricata rules from, 27716 to 5565.

Listing 4.8: Suricata rule generation based on relevant protocols

1 root@SUTMS:/ var / l i b / s u r i c a t a / r u l e s# sur i ca ta−update

2 14/8/2022 −− 17 : 30 : 42 − <Info> −− Loading / e tc / s u r i c a t a /

d i s ab l e . conf .

3 14/8/2022 −− 17 : 30 : 42 − <Info> −− Loading / e tc / s u r i c a t a /

enable . conf .

4 14/8/2022 −− 17 : 31 : 03 − <Info> −− Writing r u l e s to /var / l i b /

s u r i c a t a / r u l e s / s u r i c a t a . r u l e s : t o t a l : 35267 ; enabled :

5565 ; added : 0 ; removed 0 ; modi f i ed : 33

4.5 Anomaly Detection Engine

Anomaly-based Intrusions Detection Systems (AIDS) have a fundamentally different method

of identifying intrusions than signature-based IDS, which mainly rely on rules (signatures).

Signature-based IDS are effective against the known attacks, but are ineffective against

any zero-day attacks. AIDS is designed to protect networks against advanced persistent

threats (APTs) [151] that do not have any known signatures. AIDS establishes a baseline

and issues alarms for anomalies. Traffic or protocol patterns that deviate from the baseline

are marked as an anomaly; whereby, AIDS tends to have many false positives [152]. We

conduct a comprehensive up-to-date survey of the anomaly detection mechanism that are

suitable for UTM systems. AIDS approaches can be categorized into approaches based on
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statistics [153], knowledge [154], machine learning [155], association rule data mining, and

flow data. For brevity, we abbreviate “AIDS” to “IDS” in the remainder of this section.

Statistics-based IDS

Statistics-based IDS monitors traffic to learn patterns and identify low-probability events;

statistical operations, such as mean, mode, median, ratio, and standard deviation, are ap-

plied to detect abnormal behavior. Khraisat, Gondal, Vamplew, et al. [156] notes that

two types of statistical IDS models are commonly used, namely univariate statistical IDS

models and multivariate statistical IDS models. Univariate statistical IDS models are

based on a single variable to classify the normal traffic, while multivariate statistical IDS

models rely on two or more variables to build relationships. The multivariate method

can involve complex statistical operations when correlations of multiple variables are con-

sidered. Multivariate statistical IDS models tend to reduce false alarms [157], [158], but

have difficulty in managing high-dimensional data [156]. Table 4.3 lists sample use cases

that can predict data hoarding and data exfiltration based on statistics. Statistical algo-

rithms can be applied to correlated use cases to improve detection capabilities. Table 4.4

summarizes the existing IDS statistical models that are suitable for UTM systems.

Table 4.3: Use cases for statistical analysis.

Use Cases – Alerts via Syslog/email
Source communicating to a new domain never seen in last 30 days
Source is sending/receiving more traffic than usual
More outbound/inbound encrypted traffic than usual
New protocols/applications are discovered
Machines from the internal network are communicating to Botnet
Command & Control
Single source communicating with multiple destinations in a
given time
New protocols/applications are discovered

In the following, we briefly discuss three representative statistics-based IDS approaches

from Table 4.4; the other approaches in Table 4.4 are based on similar statistics-based
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principles following the methodologies and providing the features summarized in Table 4.4.

Generally, IDS algorithms and methods are derived from statistical operations, such

as variance and entropy, as well as univariate and multivariate statistics. Xue and Hu

[159] developed a method to detect worm propagation. The developed method uses the

First Contact Connection (FCC) as one of the key variables to determine abnormalities.

FCC is defined as the first time that a connection request is made to an IP address

(that has never been used before). FCC is employed as a detection index. FCC request

packet size and failed probability are the two metrics for statistical processing. The two

parameters are compared with prescribed thresholds to decide on the marking as a worm

or as normal traffic. The algorithm is based on FCC failure attempts and packet size to

determine abnormalities. A key difficulty for the FCC based approach is to distinguish

between normal and malicious connection requests and packet sizes.
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Table 4.4: Comparison of statistical-based IDS models suitable for UTM systems.

Proposed
by

Year Algorithm/Methods Key Features

Ye, Emran,
Chen, et al.
[157]

2002 Multivariate Ap-
proach

Based on Hotelling’s T-Squared method;
limited to host-based intrusion detection

Kumar,
Kumar, and
Srinivasan
[160]

2007 Six sigma technique
Utilizes raw network data to determine
thresholds and uncertain traffic patterns

Tao, Lin,
and Liu
[161]

2010 IDSV Algorithm
Detects intrusions on different applications
with statistics variance method

Xue and Hu
[159]

2015 Worm detection algo-
rithm

Prevents worm propagation and detects
worm in the first connection; based
on First Contact Connection
(FCC) statistical indicators

Rastegari,
Lam, and
Hingston
[162]

2015 Rule Based Algorithm Entropy, volume combined with rule base tech-
niques are utilized.

Ghanshala,
Mishra,
Joshi, et al.
[163]

2018
Statistical learning
with feature
selection

Achieves accuracy of 98.9%, false positive
rate of 1.6% without extensive
monitoring of memory writes

Siffer,
Fouque,
Termier, et
al. [164]

2020 SPOT Algorithm Detects anomalies using extreme value theory

Carreón,
Gilbreath,
and Ly-
secky [165]

2020
Cumulative Distr.
Fcts. (CDFs)

Incorporates system timing with CDF
to detect anomalies in embedded system;
few false positives and high accuracy

Das, Ham-
dan,
Shukla,
et al. [166]

2023 Network port statis-
tics

Proposed an intrusion dataset UNR-IDD based on
network statistics

Kuo, Tseng,
and Chou
[167]

2023
Sequent. Prob. Ratio
Test SPRT)

Wormhole attack detection in metaverse environ-
ment

Sasikala
and Vasuhi
[168]

2023 Logistic regression Predicts anomalies with 90% accuracy
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Profiling every connection attempt is a resource-intensive process for IDS packet-

capturing modules. Siffer, Fouque, Termier, et al. [164] take advantage of the simplicity

of the univariate SPOT algorithm [169] and design an anomaly detection IDS (Netspot)

based on Extreme Value Theory (EVT). The key variable in SPOT is the probability g of

an abnormal pattern, which is computed as g = P (Y > ug), where Y denotes the sample

data and ug is the threshold. The performance evaluations in Siffer, Fouque, Termier, et

al. [164] indicate that Netspot processes packets faster than Suricata and Kitsune [170].

A major limitation of Netspot is that the underlying SPOT algorithm cannot process

multiple variables.

However, the applications in today’s world have complex queries with many relation-

ships. Therefore, univariate methods are being replaced by multivariate methods to ac-

commodate complex application transactions. Ye, Emran, Chen, et al. [157] incorporated

the statistical Hotelling T 2 method, is a multivariate approach, to flag abnormalities.

With Xi denoting a vector of observations of multiple relevant system or process metrics

at a given time instant i, X denoting the vector of the corresponding sample means, and

S−1 the inverse of the sample variance, Hotelling T 2 is evaluated as [157], [171]:

T 2 = (Xi −X)′S−1(Xi −X), . (4.1)

whereby the apostrophe ′ denotes the vector transpose. Large T 2 values indicate substan-

tial deviations and, thus, possible anomalies. The specific architecture for the anomaly

detection based on the Hotelling T 2 statistic in Ye, Emran, Chen, et al. [157] applies

only to host-based intrusion detection systems; therefore, the specific architecture of Ye,

Emran, Chen, et al. [157] is not applicable for UTM systems. However, the general

methodology of detecting anomalies via the Hotelling T 2 statistic can be employed in

future UTM systems and we therefore include the Hotelling T 2 statistic in this UTM

survey.
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Knowledge-based IDS

Knowledge-based IDS creates standard traffic profiles to record legitimate behavior, and

profiles are created based on human knowledge in the form of rules [156]. The process can

be tedious as it requires user intervention, but has few false positives. Knowledge-based

intrusion systems are ideal for static networks, where applications/systems are strictly

controlled, and every process is recognized. Military, regulatory, and air-gapped networks

are prime candidates for knowledge-driven IDS as data is tightly controlled and persistent

in such networks. Implementing knowledge-based IDS in dynamic enterprise computing

environments is difficult because of constant changes. Khraisat, Gondal, Vamplew, et

al. [156] noted Finite State Machine (FSM) models as computational model that can be

utilized in knowledge-based IDS to identify deviations (attacks) from normal patterns.

In a general conformance testing context, EI-Fakih, Yevtushenko, and Bochmann [172]

described FSM as an administered graph that consists of prescribed fields and associated

functions that are triggered in case of an event. For general cybersecurity analysis, Qi,

Zhong, Jiang, et al. [173] proposed a model to analyze advanced attacks, and generated

a cybersecurity knowledge graph using FSM. FSM state changes were observed at each

attack and upon successful execution of conditions. The model of Qi, Zhong, Jiang,

et al. [173] lacked accuracy as the algorithm did not have any assessment mechanism.

Against this backdrop of computational and knowledge modeling, several knowledge-

based IDS models that are suitable for UTM systems have been proposed, as summarized

in Table 4.5. We discuss representatives of these approaches in the following; the other

approaches in Table 4.5 are variations of the discussed approaches with the specific char-

acteristics given in Table 4.5.

Attacks can be detected by ingesting threat feeds. Open-source intelligence (OSINT)

collects data that is freely and publicly available. The data can be useful for adversaries or

ethical hackers to profile a target without actively engaging the target. Security experts

can utilize OSINT to strengthen company defensive and perimeter protection. Vacas,
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Medeiros, and Neves [174] proposed a knowledge-based detection mechanism based on

OSINT. The IDS system detected botnet C&C communication, phishing, and remote

attacks by ingesting 49 OSINT feeds. The IDS system of Vacas, Medeiros, and Neves

[174] was built on three main components:

i) Information Gathering: The OSINT collector ingests feeds from a diverse source

of OSINT feeds. Feeds can be categorized, e.g., as phishing, malware, or C&C. Multiple

collectors can also be installed to ingest feeds based on various categories. The information

can come in different formats, e.g., HTML, CSV, PDF, and TXT. The collector parser

harmonizes various events into an indicator of compromise (IoC). The collector is also

responsible for deduplication, and multiple sources can have similar events. Therefore, it

is critical to clear any duplicate records.

ii) Knowledge Generation: In this phase, events are generated, and the IoC is black-

listed. The administrator can write scripts to automatically tag the IoC with relevant

information, such as geolocation, domain registrar, Autonomous System Number (ASN),

and malware information. Tags can be useful for security operation center (SOC) investi-

gations and reporting purposes. IDS rules similar to Snort/Suricata are created to block

the IoC.

iii) Incident Detection: This is the validation phase that ensures that no duplicate

IDS rules are created by conducting optimization and performance checks. The checks

are performed at periodic intervals to ensure IDS integrity.
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Table 4.5: Comparison of knowledge-based IDS models.

Study, Year Algorithm / Method Key Features
Bouzar-
Benlabiod,
Meziani, Che-
bieb, et al. [175],
2016

Expert knowledge Merges knowledge from industry experts to
fine-tune IDS alerts

Vacas, Medeiros,
and Neves [174],
2018

OSINT Detection based on open-source threat intel
feeds

Olimpio, Silva,
Camargos, et al.
[176], 2021

Stream mining alg. Classifies data w/o capturing all packet head-
ers

Li, Wang, Liu, et
al. [177], 2021

FDEn: Feature Deriv.
(FD) & Ensemble models
(Enpk)

Large number of features derived; improve-
ments up to 62%

Arikan and Acar
[178], 2021

Data mining techn. Creates cyber threat intellig. based on stored
or live traffic

Machine Learning-Based IDS

Machine learning (ML) is a technique of applying a set of rules, transfer functions, and

complex algorithms to a large dataset to analyze and predict behaviors [179]. Sophisti-

cated attacks can be predicted by integrating ML into IDS; thereby, unknown patterns

can be marked as an anomaly. Our survey focuses on ML-based IDS that are suitable

for UTM systems from the last twelve years, see Table 4.6. The main components of

ML-based intrusion systems are as follows.

i) Feature Selection Method: Feature selection refers to selecting the features available

within the dataset. Feature selection is mainly used to reduce training time, to simplify

data for modeling, and to remove noise [180]. Wrapper-based, embedded-based, filter-

based, and hybrid are the commonly used types of feature selection methods [181]. The

wrapper-based method uses a supervised learning algorithm (SLA) for validation and gen-

erates feature subsets by using searching techniques [182]. The embedded-based method

partially uses SLA for feature selection and has less computational cost than the wrapper-
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based method [183]. The filter-based method does not rely on SLA, and selection depends

on various statistical tests and their correlation [181]. Therefore, the filter-based method

is suitable for high-dimension data due to less overhead. Hybrid is the combination of the

wrapper and filter-based feature selection [184].

ii) Feature Extraction Method: Feature extraction processes raw data in such a way

that key features are discovered, and the features will later be used by algorithms to

detect behavior patterns. There are two types of feature extraction methods, namely

linear and non-linear. Both types are deployed to reduce the dimensionality of the data

in the extraction method. Linear methods are suitable for initial tasks, such as pre-

processors; while non-linear methods accommodate data that require complex processing

[180]. Zhang and Chen [185] observed that higher feature extraction performance can be

achieved by using standard deviation and variance (linear functions).

iii) Classifier: A classifier is an algorithm that categorizes data into labels or buckets.

Exemplary classification labels are DDoS, high data usage, and high domain conversation.

Classifiers are first trained with labeled data. Then, after adequate learning, the classifier

can create labels based on the learned behavior patterns. Support vector machine (SVM),

K-nearest neighbor (KNN), and decision tree are commonly used classifiers [186].

iv) Datasets: Datasets have been curated to benchmark intrusions detection systems.

Notable datasets are KDD99 [187] and NSL-KDD (improved version of KDD99) [188].

The IDS ML comparison in Table 4.6 reveals that SVM is a frequently used classifier.

Table 4.6 also indicates that an accuracy rate of > 90% for both the KDD99 and NSL-

KDD datasets can be achieved with SVM based IDS models. Additional studies found

that linear SVM is generally faster than non-linear SVM in processing training data [189],

which makes linear SVM a promising choice for UTM systems.

Generally, ML-based IDS implementations can be supervised, unsupervised, semi-

supervised, and self-supervised.
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Study Year Dataset Feature Selec-

tion/Extrac-

tion method

Classifier Accuracy

Zhang, Zhang,

and Sun [190]

2009 KDD99 N/A N/A greater

than 90%

Al-Janabi and

Saeed [191]

2011 KDD99 N/A
Artif. Neural

Netw. (ANN)
Varies

Damopoulos,

Menesidou, Kam-

bourakis, et al.

[192]

2012
iPhone user

data log
N/A Random 99.8%

Alomari and Oth-

man [193]

2012 KDD99 Bees algorithm

(BA)

SVM 82%∼96%

Al Mehedi Hasan,

Nasser, and Pal

[194]

2013 KDD99 N/A SVM ∼99%

Kasliwal, Bhatia,

Saini, et al. [195]

2014 KDD99 G-LDA N/A 88.5%

Zhang, Xu, and

Gong [196]

2015 KDD99 One-class SVM SVM 99.0%
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Aburomman &

Reaz [197]

2016 KDD99

Linear

Discriminant

Analysis(LDA)

and Principle

Component

Analysis (PCA)

PCA-LDA-SVM 92.2%

Jaiswal, Manju-

natha, Madhu, et

al. [198]

2016
NSL-KDD,

ISCX
N/A

Random Tree,

Näıve Bayes
77%

∼99.8%

Thaseen and Ku-

mar [199]

2017 NSL-KDD Chi-Square Multiclass SVM 98%

Chang, Li, and

Yang [200]

2017 KDD 99 Random forest SVM 88.2 ∼93%

Mighan and Ka-

hani [201]

2018 UNB ISCX

2012

Hybrid - Self Pro-

posed

DL-SVM >90%

Shenfield, Day,

and Ayesh [202]

2018 Custom

Dataset

N/A
Artif. Neural

Netw. (ANN)
98%

Belouch, El

Hadaj, and

Idhammad [203]

2018 UNSW-

NB15

N/A Random 97.5%
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Mohammadi,

Mirvaziri,

Ghazizadeh-

Ahsaee, et al.

[204]

2019 KDD99

Feature grouping

based on lin.

corr. coeff.

(FGLCC) and

cuttlefish alg.

(CFA)

Decision tree 95.0%

Maniriho, Niyi-

gaba, Bizimana,

et al. [205]

2020 IoTID20 HFS-Engine Random ∼99%

Kabir and Luo

[206]

2020 KDD &

ISCX

N/A
K-Means, SOM,

DAGMM, ALAD
99 ∼99.8

Chen, Yin, Cai, et

al. [207]

2021

Honeybrid

honeyport

system

L-KPCA SVM 93.6%.

Amaran and Mo-

han [208]

2021 KDDCup

99

Deep belief

networks (DBN)

& Whale

optimization

algorithm.

Optimal SVM 94.1%

Tarek,

Mazumder,

Sharmin, et al.

[209]

2022 NSL-KDD Robust Maha-

lanobis Distance

(RMD)

N/A 99.1%
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Chen, Xu, Wang,

et al. [210]

2022 NSL-KDD Convolutional

Neural Network

(CNN)

SVM 94.5%

Fatani, Dahou,

Al-Qaness, et al.

[211]

2022 KDD99 Convolutional

Neural Network

(CNN)

KNN 99.9%

Cholakoska,

Gjoreski,

Rakovic, et

al. [212]

2023 IoTID20 Federated Learn-

ing (FL)

N/A ∼84%

Elnakib, Shaa-

ban, Mahmoud,

et al. [213]

2023 CICIDS2017

Deep learning

multi-class

classification

Customized 95%

Hidayat, Ali, and

Arshad [214]

2023 TON IoT Pearson correla-

tion coefficient

Hybrid 99 ∼99.2%

Mohy-eddine,

Guezzaz, Benki-

rane, et al. [215]

2023 Bot-IoT

Principal

component

analysis (PCA),

Univariate stat.

test, genetic

alg. (GA)

KNN 99.99%

Rani, Gill, Gulia,

et al. [216]

2023 DS2OS Exclusive Feature

Bundling (EFB)

Logistic regr.,

Random Forest,

Gradient boosting

>99%
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Thakkar & Lo-

hiya [217], [218]

2023

NSL-KDD,

UNSW NB

-15,

CIC-IDS-

2017,

BoT-IoT

Statistical impor-

tance variables

Deep neural

network (DNN)
75.3∼99.0%

Wang, Yang, and

Weng [219]

2023 ToN IoT Feature Tokenizer NA 95.8∼98.0%

Table 4.6: Comparison of ML-based IDS models.

Supervised Learning ML algorithms can be applied to datasets, such as KDD99 and

NSL-KDD. The data can be collected via sniffers or NetFlow in a production environ-

ment. Supervised learning techniques either involve regression or classification, relying

on previous data to predict anomalies. Anomalies are categorized as outliers, and some

prerequisites have to be met to identify imbalanced data. First, the data baselining has

to be determined to calculate normal traffic patterns. Secondly, before applying super-

vised learning, data augmentation procedures should be utilized to reduce false positives.

Augmentation facilitates consideration of all possibilities. For example, a system can be

accessed both by an IP address and a fully qualified domain name. Therefore, it is es-

sential to include both values in the classification. Augmentation increases the size of the

training data. A commonly used augmentation classifier is KNN, which can group the

data based on commonalities.

Supervised learning can be applied to the augmented dataset. A classification method

is commonly used instead of regression to detect anomalies. Since anomalies are im-

balanced traffic behaviors, regression techniques, such as linear regression or polynomial

regression, are not beneficial in identifying outliers. Many ISS models utilize Support Vec-
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Figure 4.18: Illustration of support vector machine (SVM) hyperplane in supervised learn-
ing: The points furthest from the hyperplane are considered anomalies.

Figure 4.19: Illustration of clustering in unsupervised learning: Individual outliers or
clusters of outliers, which are shaded in grey, are identified as anomalies.

tor Machines (SVMs), which use hyperplanes for segmentation, as illustrated in Fig. 4.18.

The points closest to the hyperplane are called support vectors; whereas, the points fur-

thest from the hyperplane are considered anomalies. The IDS model of Amaran and

Mohan [208] tunes data with the whale optimization algorithm [220] before applying

SVM, and the resulting system was able to achieve 94.1% accuracy. Another approach

for detecting intrusions is to use separate algorithms for feature selection and for classifi-

cation. Thereby, an SVM for feature classification can be combined with random forest

for selection to improve precision [200]. IDS detection and performance capabilities can

further be improved when the SVM is combined with other data-tuning algorithms.
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Unsupervised Learning Unsupervised learning can retrieve information from datasets

without the need for class labels. Unlike supervised learning, unsupervised learning does

not require training data, and input points are treated as random values. The learning

process allows the grouping of data to find extreme values. One such technique is clus-

tering analysis; data are clustered together based on observed common learning patterns.

Fig. 4.19 illustrates clustering of data patterns. Clusters with greater density, i.e., clus-

ters E, F, and G, are treated as normal traffic. Anomalies can be identified by clustering

together outliers, i.e., clusters A, B, C, and D. K-Means is a commonly used clustering

method [221]; whereby, n data objects are grouped into k clusters. A density-based outlier

detection model can also be used to categorize clusters based on cell density [222]. Zhang,

Zhang, and Sun [190] proposed a hybrid intrusion detection system with characteristics of

both signature and anomaly-based systems, a modified version of the K-means algorithm

has improved accuracy. Kabir and Luo [206] demonstrated that K-means has a higher

detection rate than other unsupervised learning algorithms, such as Self Organizing Maps

(SOMs) [223] and deep autoencoding Gaussian mixture models (DAGMMs) [224].

Semi-Supervised Semi-supervised learning is designed to bridge the gap between su-

pervised learning and unsupervised learning. Supervised learning can be time-consuming

due to manually labeling training data, while unsupervised leaning is limited to clustering

methods. Accuracy is also a concern for discontiguous datasets. Semi-supervised learn-

ing can be applied to a dataset that is a mixture of labeled and unlabeled data points.

Thereby, the labeled data is utilized to create classifiers, which are used to predict labels

for the unlabeled data. The resulting output is called pseudo-labels. The pseudo-labels

are added according to a confidence level, and the two datasets (i.e., initially labeled data

and pseudo-labels) are trained on again to improve the classifiers.

The IDS model of Jaiswal, Manjunatha, Madhu, et al. [198] is built upon semi-

supervised learning. In particular, an intermediary model is established from the labeled
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data, and the model is then integrated into the data mining tool Pentaho and the WeKa

plugin [225]. New classifiers (normal or anomaly) ware predicted for unlabeled data af-

ter being processed by Pentaho and WekaScoring. Thereby, IDS efficiency and detection

capabilities can be improved by classifying previously unknown data.

Self-Supervised Learning Labeling data can be tedious and may require a specialized

skill set. For example, medical or scientific data cannot be easily labeled without hu-

man intervention. To overcome this labelling challenge, so-called self-supervised learning

forms models without processing data labels. Supervised learning requires data labeling,

and unsupervised learning uses algorithms to create labels for unlabeled data; whereas,

self-supervised learning relies on supervisory signals from a dataset to predict significant

features about the dataset In many analysis contexts, there are considerable amounts

of unlabeled data from which self-supervised learning can learn, and, instead of label-

ing, self-supervised learning can simply forecast the hidden values. One implementation

of self-supervised learning is Natural Language Processing (NLP). Email and document

processing programs can apply NLP to automatically populate missing text from sen-

tences. Analogously, IDS can utilize self-supervised learning for feature extraction and

optimization, whereby features that tend to contribute little towards classification can be

removed [226]. Threat feeds and rules can be classified based on confidence and severity.

Administrators can only be alerted for intrusions with critical severity and high confidence

levels.

Data Mining & Flow Data Based

Data mining is another technique to detect anomalies when dealing with large data vol-

umes. Data mining can be applied to live or stored data to extract threat vectors and to

return IoCs in a standard format. Bouzar-Benlabiod, Meziani, Chebieb, et al. [175] used

data mining to identify standard classifiers and convert them into the Structured Threat
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Information Expression (STIX) format. The classification of threats into STIX has the

additional benefit of compatibility. Researchers have formulated STIX as the standard

format for threat intelligence feeds [227]. Data mining has benefits over machine learning

algorithms in terms of complexity, performance, and learning times. Subaira and Anitha

[228] found that IDS based on Support Vector Machines (SVMs) and neural networks

require higher computational power, more memory, and longer baselining (learning) time

than IDS based on data mining. Data mining effectively extracts information from an

existing dataset and requires human intervention; whereas, machine learning can predict

future attack patterns. Another approach to reduce false positives and to improve ac-

curacy is to ingest the knowledge of industry experts. More specifically, the syntactic

approach can merge knowledge from a diverse set of experts and find common sub-bases.

Thereby, duplicates can be eliminated and harmonized for effective IDS alert filtration

[175]. Data mining techniques can also reduce the overhead of IDS processing and the

number of log messages (i.e., tune the logging), and thus improve the UTM system per-

formance by reducing the computational burden due to the IDS processing and logging.

Foundational mining techniques, such as Apriori [229], can be deployed to achieve these

UTM efficiency enhancements.

Specifically, association rule mining techniques, such as the Apriori algorithm [229],

can be integrated into UTM systems for correlation and feature extraction. Generally, as-

sociation rule mining techniques analyze correlations between datasets in large databases.

In particular, the Apriori algorithm [230] is a data mining algorithm based on level-wise

and breadth-first search methods [229], [231], [232]. The Apriori algorithm automatically

generates association rules by determining the commonalities and frequencies of sets of

items in a database. The integration of the Apriori algorithm into a UTM intrusion de-

tection engine improves the inspection of correlated data so that anomalies can be better

detected. Also, intrusions rules can be filtered with the Apriori algorithm. In addition,

the detection capabilities can be further improved with neuro-fuzzy [233], neural networks
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[234], and semi-supervised models [235], which should be further explored for UTM sys-

tems in future research.

An alternative method for detecting anomalies involves recognizing variations in traffic

patterns or flows and flagging any deviations as anomalies. A common method of gath-

ering flow data [236] is using the Netflow protocol [237]. Netflow is a protocol used by

network devices to collect traffic statistics, application details, and routing information.

Routers, switches, firewalls, and cloud devices can be configured to forward flow infor-

mation to collectors for analysis. As a result, Netflow gives a wealth of information.

However, this solution requires enabling the Netflow protocol on network devices. To

avoid the dependency of Netflow capabilities on third-party devices, the Open-source ap-

plication NTOP [238] can perform similar functions without the need to configure network

devices.

4.5.1 SUTMS Implementation Of Anomaly Detection Engine

Netflow functions as a protocol employed by enterprise network devices to accumulate

telemetry data. Nonetheless, implementing the Netflow protocol on network devices is an

essential step in this solution. To avoid the dependency of Netflow capabilities on third-

party devices, the Open-source application NTOP can perform similar functions without

the need to configure network devices. SUTMS takes advantage of the open source probing

service ”NTOP”, it has a dual purpose. First, it is used to identify any abnormal traffic

patterns, and second, the identified protocols are utilized to enable matching Suricata

signatures. NTOP [238] is a web-based open-source tool for monitoring and measuring

network traffic. The key characteristics of NTOP include:

i) Compatible with Linux, Unix, and Win32 platforms.

ii) Efficient Kernel with easy to implement on low resource devices without impacting

CPU and memory.

iii) Can be managed remotely using a web interface.

85

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



iv) Gives a visual representation of data in tables, charts, etc.

v) Identifies applications, protocols, and network flows.

The features listed above make the NTOP an excellent flow detection service similar

to the Netflow protocol without relying on network devices. UTMs can utilize NTOP

flow detection capabilities by integrating the application data into their inspection en-

gine. Integration of NTOP takes UTM inspection capabilities to the next level, including

advanced persistence threat detection. Attacks that are stealthy and happen over time

are difficult to detect. APT relies on zero-day exploits (publicly unknown vulnerabilities)

and uses sophisticated means of payload delivery [239]. APTs bypass IDS and firewall

technologies as those exploits do not have signatures. One of the approaches to detect

APTs is to analyze normal behavior and look for abnormalities (anomalies). Anomalies

are activities that can potentially be suspicious [240].

Application Detection Engine

NTOP can be configured to sniff flows on the internal and external interfaces, eth0 is

programmed for capturing internal traffic and wlan0 give flows for internet-bound traffic.

The application discovered in our test environment is listed in Fig. 4.20. NTOP and SSH

represent management traffic to SUTMS therefore it can be ignored, HTTP constitutes

about 36.1% of overall traffic. Traffic identified in Fig. 4.20 allows us to only enable IDS

signatures for the HTTP protocol, this greatly reduces the overhead on the overall UTM

resources.
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Figure 4.20: Home applications discovered via NTOP.

Alerts on anomalies

NTOP application detection capabilities can not only be used for tuning intrusion signa-

tures, it can also be crucial in identifying anomalies. Table 4.7[241] enlists default security

alerts that can be triggered based on any anomalies observed. Alert key 23,24, and 25 are

able to inspect encrypted traffic without decrypting it. TLS certificate mismatch, legacy

versions, and insecure cipher can be an indication of vulnerable applications and possible

anomalies. Alert 6 and 64 deals with payload abnormalities of DNS packet, hackers tend

to use DNS for data exfiltration and command and control C&C communication. Cus-

tom alerts can also be created based on the flows observed by SUTMS, Fig. 4.21 gives the

visual representation of flows, alerts can be generated for any new flows not seen in the

last 30 days.
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Table 4.7: NTOP Built-in Security alerts [241]

Alert
Key

Alert Key String Alert Name

23 alert tls certificate mismatch TLS Certificate Mismatch
24 alert tls old protocol version Obsolete TLS Version
25 alert tls unsafe ciphers Unsafe TLS Ciphers
6 alert dns data exfiltration DNS Data Exfiltration

64 ndpi dns large packet
DNS Packet Larger
Than 512 bytes

58 alert lateral movement Lateral Movement
62 ndpi clear text credentials Clear-Text Credentials

Figure 4.21: Traffic pattern from SUTMS.

4.6 Logging Engine

Logs are crucial for troubleshooting, security analysis, and forensics investigation. Log-

ging requires additional storage and processing power; therefore, SUTMS is designed to

process logs in real time only. The product fully supports Syslog and logstash; IDS/IPS,

Firewall, and NTOP alerts/logs can be configured to send to external sources like SIEM

and Elasticsearch. Fig. 4.39 illustrates the flow of information and log generation, and

logging is an optional component of SUTMS. It is recommended to integrate logging with

data mining algorithms like Apriori [230] to further reduce false positives.
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Figure 4.22: SUTMS log analysis engine.

4.7 SUTMS Testing and Evaluation

In this section, SUTMS accuracy and efficiency is evaluated by using standard datasets.

Impact on performance is tested with and without tuning. The tests can ensure detec-

tion and inspection capabilities under high traffic volume. The tests are performed by

considering the real-world home and SOHO networks, and a special-purpose network is

provisioned to simulate the actual production environment.
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4.7.1 Test Network Overview

The network of various computing devices, including smartphones, IoT, laptops, and

printers, are deployed for SUTMS evaluation. Test network topology is illustrated in

Fig. 4.23. SUTMS is installed in in-line mode and acts as a central inspection point before

the traffic exits to the internet router. SUTMS has access to the internet for signature

updates, cloud integration, STIX/TAXII feeds, and remote security management. Any

traffic destined for the internet, regardless of device type, is inspected. The network

provides both WiFi and ethernet access. SUTMS can be configured via SSH version 2

or directly connecting to a console (keyboard, mouse, and monitor). Test machine or

SUTMS itself can be used to run the dataset, and the output of the results are exported

to elastic search [242]. Kibana [243] for analyses and graphical representation.

HTTP and HTTPS ports are allowed for outbound web browsing traffic, and DNS

traffic (UDP/53) destined for trusted DNS servers is also allowed. Application manage-

ment ports (TCP/3000 *NTOP, TCP/10000 *Webmin, TCP/22 *SSH) are allowed from

the internal network i.e., 192.168.200.0/24. Traffic required for testing SUTMS engines

are also allowed. Traffic that doesn’t match the rule base is blocked and logged for analysis
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Figure 4.23: SUTMS Evaluation Test Network.

91

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



4.7.2 Dataset

Specialized datasets are required for evaluating UTM solutions. In our evaluation criteria,

we selected CICIDS2017 dataset [244]. The dataset is used for evaluating IDS accuracy

and performance. The 8.2 GB dataset in pcap format includes common and relatively

newer attacks, and it was last updated on 2019-09-10. Tcpreplay [245] was used to run

the capture on a test machine, and traffic was intercepted by SUTMS for inspection. The

reasoning behind selecting CICIDS2017 dataset are : -

i) It is built up unique profiling mechanism, i.e., B-Profile system [246], it allows sim-

ulating of human behavioral traffic patterns and benign attacks.

ii) Generates data of 25 users and commonly used protocols, i.e., HTTP, HTTPS, SSH,

FTP, and email [244]. The number of users and protocols closely match our home network

UTM solution design.

iv) Includes common home network attacks, i.e., DDoS, Brute Force protocols, HTTP/HTTPS

exploitation, C&C communication, and DDoS.

iii) Data in pcap format is easier to manage and simulate actual user traffic.

iv) The dataset is designed for IDS evaluation. However, the size and quality of the

dataset are significant enough for stress testing and inspection capabilities of SUTMS

IDS with other modules enabled, i.e., firewall and flow detection.

4.7.3 Intrusion Engine Evaluation

SUTMS IDS engine is built upon Suricata, and it is evaluated against CICIDS2017. The

tests have two phases; in phase I, signature detection and system resources are evaluated

with default configurations. Results from the NTOP engine is integrated into IDS, and

default rule set is modified according to protocol detection in phase II. SUTMS is eval-
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uated against the modified set of configurations, and core services (firewall and NTOP)

are enabled as part of UTM evaluation criteria. Test results are recorded for individual

component testing. However, all the UTM services should be running to ensure device

integrity. It won’t be beneficial to test IDS without the firewall and flow detection engine

running because, in a UTM device, all the components are interdependent regarding re-

source allocation. Cockpit [247] and Netdata [248] are utilized for monitoring CPU, ram,

system load, and disk I/O.

Threat Detection - Phase I

SUMTS is able to detect approximately 404,776 events Fig 4.24 within minutes of dataset

execution, it is also able to detect anomalies apart from signatures. IDS events have con-

sisted of flows, protocols, and signatures. Fig. 4.25 represents the events detected during

our tests. DNS and flow are the two dominant categories of events, constituting 38.79%

& 36.14%, respectively. Security-related events are categorized as “alerts”, Fig. 4.26 lists

the number and type of signatures detected. IDS is successfully able to detect matching

signatures and hits, ”SURICATA TCPv4 invalid checksum” and ”SURICATA STREAM

CLOSEWAIT FIN out of the window” has the highest number of hits recorded. Invalid

checksum and out-of-window packets can be an indication of a DDoS attack. DNS alerts

are useful in investigating data exfiltration and C&C communication.
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Figure 4.24: SUTMS Events - Phase I.

A higher number of events and alerts can waste systems resources and generate false

positives. In phase 1, we tested system resources without ingesting data from the flow

detection engine, i.e., NTOP.

Figure 4.25: SUTMS Event Type Detected - Phase I.
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Figure 4.26: SUTMS Security Events - Phase I.

System Resources - Phase I

Performance testing is based on CPU, system load, memory, and disk inputs/outputs,

while the dataset is running. During the IDS test window, all the critical services were

enabled for inspecting and analyzing traffic to measure actual usage. CPU jumped to

25% from 3%-4% as dataset inspection started. Fig. 4.27 shows the CPU usage.

Figure 4.27: SUTMS CPU Usage - Phase I.

We noticed an initial memory spike to 2.34 GB and then stabilized below 2 GB
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(Fig .4.28). System load defines the total number of processes a CPU runs at a given

time, and it was observed that load stayed constant around 1.50 -2.52 and then dropped

to below 1.50 (Fig. 4.29). Disk reads and write can be problematic, especially when deal-

ing with systems like Raspberry Pi with non-volatile flash memory (SD-Card), disk i/o

depicted in Fig. 4.30 reveals only fewer spikes, overall it stayed well below 0.1 MiB/S.

Figure 4.28: SUTMS Memory Usage - Phase I.

Figure 4.29: SUTMS System Load - Phase I.
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Figure 4.30: SUTMS Disk Input/Output - Phase I.

IDS Phase-I testing concluded that SUTMS was able to achieve 99.99% of accuracy

in terms of event detection without causing a significant performance impact on system

resources. SUTMS performed an IDS inspection with Max.CPU = 25% , Max.disk inputs

= 5.9 MiB/S, Max.Load=2.52 and Max.RAM = 2.34 GB, overall Raspberry Pi performed

within the system’s specification in Phase-1 (without flow detection). In Phase II of IDS

testing, SUTMS is fine-tuned to improve performance and efficiency and reduce false

positives.

Threat Detection - Phase II

In Phase II of the evaluation, IPS signatures were tuned according to the traffic observed

by the NTOP engine. Flow events were also eliminated as flows were collected using

NTOP. The modification resulted in almost 50% reduction of events to 229,341 as depicted

in Fig. 4.31. The notable events are DNS 59.63%, TLS 14.52%, and HTTP 2.44% as

represented in Fig. 4.32. Among the top signatures detected in Fig. 4.33 corresponds to

HTTP, TLS, and UDP (possible DNS) protocols, which coincide with the NTOP flow

detection engine.
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Figure 4.31: SUTMS Events - Phase II.
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Figure 4.32: SUTMS Event Type Detected - Phase II.

Figure 4.33: SUTMS Security Events - Phase II.
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Integration of NTOP data into the IPS engine has enhanced detection capabilities by

targeting common protocols and reducing false positives. Inspecting encrypted traffic is

a challenge. Detection of Kerberos and TLS-based signatures like ”SURICATA Kerberos

5 weak encryption parameters” and ”SURICATA TLS invalid record type” respectively,

is an indication of early detection of weak ciphers and TLS compliance failures before the

encryption process starts. It could also highlight any outliers in the form of anomalies

and standard deviation, newer ciphers, weak authentication, and possible C&C commu-

nication.

System Resources - Phase II

In Phase II of IPS testing, all the conditions were kept the same as in Phase I except

for configuration optimization utilizing the NTOP flow detection engine. The system

achieved performance improvements across the board, with the Maximum CPU = 22.50%,

Maximum Memory= 1.01 GB, and Maximum Load= 1.50. CPU, Memory, Load, and

Disk Input/Output usage during the test window are represented in Fig. 4.34, Fig. 4.35,

Fig. 4.36 and Fig. 4.37 respectively. An initial spike and then constant usage of resources

was observed, which is a similar trend noticed in Phase I. SUTMS Core firewall and flow

detection services were also enabled along with IPS inspection.

Figure 4.34: SUTMS CPU Usage - Phase II.
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Figure 4.35: SUTMS Memory Usage - Phase II.

Figure 4.36: SUTMS System Load Usage - Phase II.

Figure 4.37: SUTMS Disk Input/Output - Phase II..

Comparison of Phase I and Phase II Test Results

Systems resources used by SUTMS IPS during Phase I and II are shown in Table. 4.8.

Signature refinement (Phase II) can achieve improvement across the board. Memory and
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System Load emerged as the biggest resource savers, i.e., 56.83% and 40% respectively

Fig. 4.38 without compromising system accuracy. CPU efficiency can also be improved

further by disabling low-priority signatures. Another significant impact of signature re-

finement is the reduction of security events; fewer events can highlight alerts of critical

nature. In both phases, it is determined that it is ideal for sending the logs to third-party

log collection engines like Syslog or SIEM. Raspberry Pi 4 with 32 GB is able to save

logs for weeks, but eventually, it can run out of space. An automated script can also

be created to remove logs older than a week or two, depending on the predefined data

retention policy.

Table 4.8: Summary of Peak System resources utilized in Phase I & II

CPU % Mem (GB) Load Accuracy
IPS Phase I 25 2.34 2.5 99.99%
IPS Phase II 22.5 1.01 1.5 99.99%

Figure 4.38: SUTMS IPS Performance Improvement after Phase II NTOP Integration
(Signature Refinement)
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4.7.4 Firewall and NTOP Engine Evaluation

SUTMS is equipped with an open-source iptables firewall inspection engine. Iptables are

configured with two types of rule sets. One set of rules is manually configured based on

observed traffic patterns, and another is automatically created according to the IoC feeds

using STIX/TAXII. The rules are generated using the conversion scripts and programs

specified in Section II. This way, the STIX/TAXII feeds are automated, optimized, and

customized. In the end, there is a default block rule to make sure any traffic that is not

matched will be blocked. The evaluation criteria used for analyzing firewall and NTOP

performance are as follows:-

Figure 4.39: Traffic Detected by SUTMS NTOP Engine.

i) Allowed rules for traffic detected by NTOP (Fig. 4.39) were created.
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ii) Default block any rule is created to block any unknown traffic.

iii) Firewall hits & performance were recorded by generating traffic.

iv) During the test, the IDS service was disabled.

One major difference between IPS and Firewall/NTOP performance tests is that dur-

ing the IPS evaluation, all the core services (firewall/NTOP) were also running to measure

the overall system resource usage, however in Firewall/NTOP testing, IDS engine was dis-

abled to calculate the impact of core services on the overall UTM device. It can be inferred

from the test results that the average CPU Fig. 4.41 and memory Fig. 4.42 are signif-

icantly lower than the one utilized by the IDS engine. The average rule hits observed

were around 5000, with the maximum hits of 45,000 in Fig. 4.40. It is also noted that

the system load was slightly lower than IDS Phase-II testing with some abrupt spikes,

Fig. 4.44.

Figure 4.40: SUTMS Firewall Rule Hits
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Figure 4.41: SUTMS CPU Usage - Firewall & NTOP Engine.

Figure 4.42: SUTMS Memory Usage - Firewall & NTOP Engine.

Figure 4.43: CPU & Memory Comparison by UTM Service.
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Figure 4.44: SUTMS System Load - Firewall & NTOP Engine.

Table 4.9: Comparison of IPS Phase II, Firewall-NTOP & IPS Only Resource Usage

Average CPU %
approx.

Mem (GB)
approx.

Load

All UTM Services running
(IPS Phase II)

21 1 1.2

Firewall and NTOP 9 0.2 1
IPS Only 12 0.8 0.2

Table 4.9 provides a comparison of system resources used by each service along with

overall SUTMS utilization. It can be concluded that IPS consumes 80% and 57% of

the memory and CPU, respectively, of the entire SUTMS usage (Fig 4.43). It has also

been noted that there is a requirement for a centralized asset management system for

home devices. Such a system would prove advantageous for tasks such as traffic profiling,

firewall rule automation, and signature optimization. Chapter. 5 introduces a lightweight

implementation of an asset inventory system. .
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Chapter 5

Home Network Device Management

Model

5.1 Introduction

Complexity of home networks have increased significantly due to the advent of smart-

phones, tablets, Internet of Things IoT and remote work. Technology has introduced

numerous features into our homes, a person sitting thousands of miles away can remotely

monitor his property anytime, air conditioning units can efficiently turn on based on

user geolocation. Technological home enhancements have also contributed towards secu-

rity and management concerns. Higher number of smart devices means more vulnerable

systems, managing various makes and model of home appliances adds another layer of

complexity. There is a need of a centralized management system for smaller devices that

will monitor, manage with integrated security assessment. In this chapter we propose

Secure Centralized Management System SCMS, the artifact provides centralized manage-

ment platform for smart home devices. SCMS will be able to detect and add devices

dynamically into the inventory, integrated scanning engine is also be able to flag vulner-

able and non-compliant devices. System statistics, load, CPU, memory can be collected

in real time and alarms can be generated for any abnormal behavior. SCMS is capable of

supporting wide variety of computing devices and alerting on any possible rogue devices in

network. The proposed solution not only addresses the management problems associated

with home devices, it also increases visibility by providing the security risk associated
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with each device.

Artificial intelligence, machine learning and improvements in voice recognition technolo-

gies have introduced a new line of computing devices, Amazon Alexa voice service has

revolutionized the connected home appliances by developing a collective response with

a single command [249]. Multiple devices can collaborate with each other to improve

automation and operate without user intervention. Home sensors can be used as smoke

detectors, security cameras, fire alarms and other critical tasks that are directly related to

safety and well-being of human life. Security breaches and malfunctioned devices can have

a significant impact, it is therefore necessary to manage and monitor them. It is unfor-

tunate that network home appliances are designed by manufacturers without considering

security, 70% of internet devices are vulnerable to threats [250]. Indirect threats have also

raised privacy concerns, adversaries can gather a person’s daily routine by analyzing the

power consumption of smart homes [251].

There is a need to develop a management platform with security intelligence and dedicated

towards home devices. The proposed SCMS is a multicomponent management system,

the solution provides ease of management with a customizable web front end. SCMS

incorporates a scanning engine into its management platform. By seamlessly integrat-

ing these two components, it not only dynamically identifies the diverse range of devices

connected to the home network but also categorizes them based on their associated risk

levels. This approach effectively resolves the challenges of device identification and risk

assessment through a centralized platform. SCMS not only empowers home users with

awareness of the devices on their network but also enables them to easily associate each

device with its respective risk level, all through a unified interface.
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5.2 Related Work

There are numerous technology specific management solutions developed, artifacts pro-

posed utilizing IoT’s, Blockchain, RFID’s and sensor systems are some of the common

research areas. Lightweight implementation of asset management system that has security

as a component is often neglected as security is overall treated as part of a broader en-

terprise solution like SIEM. Yuan and Xin [252] presented RFID based inventory system,

asset gets added into database after being validated using radio signals. The research

has commercial significance, as RFID readers are commonly deployed in stores and ware-

houses to process barcodes. In home networks, inventory is not fully known and use of

RFID devices is inefficient and costly. Smart devices can also be categorized according to

applications, Kivimäki, Sinkkonen, Marttonen, et al. [253] contributes in the field of IoT

management by developing asset groups based on applications, it also takes advantage of

“Flexible Asset Management Model (FAM)” [254] and “Life-Cycle Model for Maintenance

Service Management ” [255]. FAM is a decision-making model, it has a business signifi-

cance as it correlates return on investment and operational cost. Life-Cycle Model consid-

ers device maintenance as part of decision-making process, maintenance, and management

are significant in determining IoT viability as it impacts associated cost. Assets can be

grouped together by applying FAM and Life-Cycle Model, however such models have

commercial relevance. Aboubakar, Kellil, and Roux [256] conducts a comprehensive sur-

vey on IoT network management, the study highlights on IoT management protocols and

next generation frameworks associated with cloud and software defined networks(SDN).

Typical network management platforms relies on agent, manager, and a device itself [256].

Device CPU, wireless network range and throughput are the key factors in designing a

network management platform, home sensors counts on wireless signals and supported

encryption protocols. Encryption protocols like Wired Equivalent Privacy WEP that

leverages static keys for encryption and authentication [257] should be avoided at all cost.
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A decentralized network management system is another avenue to explore, instead of all

the sensors reporting to central authority, clusters of network assets that have common

parameters can be self-managed. Karle [258] proposes a model that is self-reliant and

independent of centralized system, each radio node collaborates concurrently to manage a

radio network without the need of network management system NMS. The ideal of decen-

tralization is elegant and works well when the inventory is already known and number of

nodes are fewer. Service based management solutions are beneficial for faster deployment

of services, policies, and configurations. Mishra, Dhakwal, Pathan, et al. [259] intro-

duces CSPMS Centralized Squid Proxy Management System that automatically registers

Squid proxy to a centralized system, apart from enrollment other features like backup,

restoration, deployment etc. are also provided. In a home network environment, services

and vendor list are widely different, therefore any application or service based solution

will have limited applicability. Artificial intelligence can be used to learn data patterns

and automate device management based on the dataset, neural networks can be used

to develop pattern matching by collecting and training data, observing patterns can be

significant for optimization and network management [260]. IoT acquisition, storage, and

lifecycle can be managed and validated using blockchain, “IEEE Standard for Frame-

work of Blockchain-based Internet of Things (IoT ) Data Management” [261] introduces

a framework for IoT management using blockchain, it also classifies elements that can

be used as blockchain building blocks. Researchers have proposed management solutions

that can be categorized as centralized, decentralized, AI-based, cloud-based, service/pro-

tocol and application specific. The ideal solution for home network device management

can utilize previous research conducted and develop a robust multidimensional platform.
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5.3 Secure Centralized Management System - SCMS

Architecture

SCMS relies on traditional network management protocols like Simple Network Manage-

ment Protocol SNMP [262], Syslog [263] and non-traditional agents like Zabbix agent[264].

Zabbix is deployed as a core component for management and monitoring, it is completely

opensource solution available and free of cost under GPL license [265]. Zabbix is highly

scalable and customizable, unlimited number of nodes can be administered via webui

and source code can also be modified as needed. Home network devices including IoT’s,

sensors and any gadget that supports SNMP is supported. SCMS is distinct from con-

ventional monitoring systems as it delivers security along with management. SCMS has

following feature enhancements: -

• Integration of thousands of nodes via Zabbix platform [265].

• Compact on premises solution suitable for Home networks.

• Monitoring of on premises home devices from anywhere via Microsoft Azure fusion.

• Dynamic security rating of each appliance ensures customer confidence.

• Improve home visibility by automatic and manual detection of sensors.

• Customize alerting and system resource monitoring.

Fig. 5.1 represents the core components of SCMS architecture, Zabbix, NMAP [266]

and Microsoft Azure [267] works in co-ordination to provide an end user a web interface

that is accessible from anywhere and anytime. Home user’s main concerns are, that the

device inventory should be current and clarity of high risk devices, the system is designed

by keeping in mind home user requirements. Fig. 5.2 illustrates the tasks involved in
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Figure 5.1: SCMS Architecture

SCMS execution, the steps are as follows :-

i) Low resource SCAN is performed every hour, if the device is detected it will be added to

the inventory. System resources, usage, alerting and monitoring can also be started upon

addition.

ii) In case the device is not detected, manual addition is required with user intervention.

iii) Both the auto and manual assets are sent to the security engine, quick NMAP oper-

ating system OS detection scan is performed to discover associated OS.

iv) Security rating system (High, Medium and Low) is added to the scan output, it is easy

to decipher for non-technical users.

v) The final output is sent to a file (report), it can be available in text, XML or another

format.
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vi) The report is uploaded to the Microsoft Azure cloud via Application programming in-

terface API.

vii) Users can access the report via browser or Azure mobile application.

The tasks are automated and run at regular intervals, various scripts are developed and

scheduled. Data is shared to the cloud via secure encrypted Transport Layer Security

TLS protocol. Scanning, scripting and data transfer is carefully designed by contemplat-

ing limited resource and low bandwidth connectivity.

Figure 5.2: SCMS Process Flow
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5.3.1 Inventory Module

Asset inventory is one of the critical functionality of SCMS architecture, Zabbix is config-

ured to automatically discover devices in home network subnet 192.168.0.0/16 by utilizing

the “discovery” rule shown in Fig. 5.3. System tries to find devices by using SNMP, ICMP

and Zabbix agent, SNMP can be configured with a default or custom community strings.

The scan is performed every 2 hours to make sure appliances are identified as soon as

they come online. Zabbix provides an intuitive interface to monitor and manage a wide

variety of systems, devices that are not detected by “discovery” rule will have to be added

manually.

Figure 5.3: Zabbix Discovery Rule. [264]

5.3.2 Security Module

The Security Module is responsible for categorizing the devices by High, Medium and

Low risk. NMAP scan is performed on the devices discovered by the inventory module,

the goal is to fingerprint the OS and tag the corresponding output with a score of 1-10

(1 being the highest risk). Once the scan is performed, a series of scripts are run to filter

out the output to human-readable format and assign the proper security labels to each

device. The scripts are automated by using a cronjob and final results are saved locally

and uploaded to the cloud. The purpose of security module is to highlight the high risk

devices, so that it can be addressed. Appliances with “Undetected OS” in an enterprise

networks can be an indication that devices are secure or scans are blocked by the firewall,

in home networks the situation is different as firewalls are not usually deployed within the

local area network and host devices also lack intrusion prevention systems. It is alarming
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to identify systems with “Undetected OS” in home networks, therefore SCMS classifies

them as “high-risk” devices.

5.3.3 Cloud Integration

The data can be accessed anytime from anywhere either via mobile application or browser

with the help of Microsoft Azure API. The output scoring file generated as part of security

module processing is uploaded to an Azure Blob Storage via azcopy [268]. Access to a

Blob storage can be restricted via API key and selected public IP addresses. TLS is used

as encryption in transit and security score of devices can be access in real time. There

is also an option to alert home user about insecure devices via email, however that will

require integration of simple mail transfer protocol SMTP [269].

5.4 SCMS Evaluation and Validation

5.4.1 Test Network

The network was designed to evaluate SCMS functionality and performance, network

topology is demonstrated in Fig. 5.4. The environment was build to simulate the real

world scenario, Windows 10, Linux, MacBook, and IoT devices were deployed. SCMS

server was installed on a virtual instance of Ubuntu 20.04 ARM architecture with 3.20 GHz

Processor, 6 GB of Ram and 20Gb of Disk space. Zabbix 5.0.31 [264] and NMAP [266]

were set up and accessible over a network. Connectivity is provided both via WiFi and

Ethernet, dynamic host configuration protocol DHCP is utilized for automatic assignment

of IP addresses. Wireless Access Point acts as an internet gateway, firewall and DHCP

server, network scope of 192.168.0.0/16 is configured on the access point. Access to

internet is filtered via firewall and any inbound access from internet is blocked.
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Figure 5.4: Test Network Topology.

5.4.2 System Detection Phase

Zabbix’s auto-discovery process ran to discover devices in our test network. In order to

validate typical home device inventory, the Zabbix agent was deployed on Raspberry Pi

(simulated IoT) , MAC, and SNMP service on the Windows home firewall. It is observed

that devices can be identified automatically as long as the SNMP strings and Zabbix agent

are pointing to the correct server. System resources disk, CPU, interface status, traffic,

etc. can also be monitored. IoT resource monitoring can assist in identifying anomalies

and trigger alarms in cases above-normal thresholds were observed.
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5.4.3 Security Scoring Phase

SCMS is the asset management system that is able to assign a security score to a device

after discovering it. Table.5.1 summarizes risk scores, the scoring system ranges from 1

to 10, with 1 indicating the highest and 10 the lowest risk level. Scores are determined

through NMAP scans, where any undetected operating systems are automatically clas-

sified as ’high risk’ and assigned a score of 1. Linux-based devices are categorized as

’medium’ with a default score of 5. However, as the number of open ports fluctuates, the

score adjusts accordingly. For instance, a standard Ubuntu machine with typical open

ports falls into the ’medium’ category, but one with an unusually high number of open

ports may receive a score lower than 5. The primary criteria for risk assessment include

open port identification and operating system discovery. Nevertheless, this assessment

can be further enhanced through the integration of advanced scanning tools capable of

detecting patch levels.

Table 5.1: SCMS Risk Score

Score Risk Label
1-4 High
5 Medium
6-10 Low

The administrator is able to prioritize patches and updates for high-risk devices. SCMS

makes use of the NMAP scripting engine to automate the security tagging. It is a multistep

process consisting of the integration of NMAP script, custom scripts by device type, and

the verification of results and merging of files, as discussed in the text below.

Integration of NMAP Script

NMAP script is run via SCMS and resulting output is filtered for IP addresses and oper-

ating system OS related tags. XML script “scms scan.xml” is run to detect the IP address

and find open services along with the OS as shown below.
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Script:/usr/bin/nmap --privilege -oN /home/scms/scms scan.xml -O

HOST.CONN

./usr/bin/nmap --privilege -oN /home/scms/scms scan.xml -O

192.168.200.157

Starting Nmap 7.80 ( https://nmap.org ) at 2023-05-22 19:19 CDT

Nmap scan report for 192.168.200.157

Host is up (0.0079s latency)

Not shown: 994 closed ports

PORT STATE SERVICE

22/tcp open ssh

143/tcp open imap

1720/tcp open h323q931

3000/tcp open ppp

9090/tcp open zeus-admin

10000/tcp open snet-sensor-mgmt

No exact OS matches for host (if we know what OS is running on it, see https://nmap.org/submit/).

Once the script is successfully run, the OS can either be matched or not, SCMS marks

any undetected OS as “High” risk.

Custom scripts by device type

Custom scripts are created according to the OS, score is automatically added based on

the output of scanning engine. Table.5.2 enlists shell scripts created to identify various

OS types and assign the respective score. Once the OS is detected via security scan,

scores are assigned and exported to files that are labelled as low risk, medium risk and

high risk.
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Table 5.2: Shell Scripts For Security Scoring

microsoft.sh:
grep -E -i ’192.168.*.*| Microsoft’ scms scan.xml
microsoft scan ; sed ’/ˆNmap/ s/$/ *** Score=5, Risk=Medium
*** /’ microsoft scan > medium risk
linux.sh:
grep -E -i ’192.168.*.*| linux’ scms scan.xml >linux scan ;
sed ’/ˆNmap/ s/$/ *** Score=5, Risk=Medium *** /’ linus scan>
medium risk
windows.sh:
grep -E -i ’192.168.*.*| windows’ scms scan.xml >mi-
crosoft scan ; sed ’/ˆNmap/ s/$/ *** Score=5, Risk=Medium ***
/’ microsoft scan> medium risk
router.sh:
grep -E -i ’192.168.*.*| cisco’ scms scan.xml >cisco scan ;
sed ’/ˆNmap/ s/$/ *** Score=7, Risk=Low *** /’ cisco scan >
low risk
router netgear.sh:
grep -E -i ’192.168.*.*| netgear’ scms scan.xml >netgear scan
; sed ’/ˆ Nmap/ s/$/ *** Score=7, Risk=Low *** /’ cisco scan >
low risk
Apple.sh:
grep -E -i ’192.168.*.*| Apple’ scms scan.xml >apple scan ;
sed ’/ˆNmap/ s/$/ *** Score=5, Risk=Medium *** /’ apple scan >
medium risk
Freebsd.sh :
grep -E -i ’192.168.*.*| FreeBSD’ scms scan.xml >linux scan ;
sed ’/ˆNmap/ s/$/ *** Score=5, Risk=Medium *** /’ linux scan >
medium risk
no os.sh:
grep -E -i ’192.168.*.*| No OS matches’ scms scan.xml >unde-
tected OS scan ; sed ’/ˆNmap/ s/$/ *** Score=1, Risk=High (NO
OS DETECTECD) *** /’ undetected OS scan > high risk

Verifying of results and merging of file

Once the execution of shell scripts are completed, the files along with their corresponding

scores are created.

There are multiple files created, therefore it is important to merge them into one file.

Table.5.3 shows the machines identified with their risk score, the three files (low, medium,
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Table 5.3: Files by Risk

Medium Risk
root@scms:/home/scms# more medium risk # Nmap 7.80 scan initiated Mon May
22 19:19:52 2023 as: /usr/bin/nmap –privilege -oN /home/scms/myscan1.xml -O
192.168.200.156 Nmap scan report for 192.168.200.156 *** Score=5, Risk=Medium ***

High Risk
root@scms:/home/scms# more high risk # Nmap 7.80 scan initiated Mon May
22 19:55:02 2023 as: /usr/bin/nmap –privilege -oN /home/scms/scms scan.xml -O
192.168.200.157 Nmap scan report for 192.168.200.157 *** Score=1, Risk=High(NO
OS DETECTED) ***

Low Risk
root@scms:/home/scms# more low risk # Nmap 7.80 scan initiated Mon May 22
20:01:10 2023 as: /usr/bin/nmap –privilege -oN /home/scms/scms scan.xml -O
192.168.200.160 Nmap scan report for 192.168.200.160 *** Score=10, Risk=Low ***

and high) are merged together into one file i.e., scms scan result and the output is shown

in Table.5.4. The file can be accessible within a local area network, however in order

to ensure the file is accessible from anywhere as devices get added, the cloud module is

integrated into scms.

Table 5.4: Merging output scoring file

root@scms:/home/scms# cat low risk medium risk high risk ¿scms scan result
root@scms:/home/scms# more scms scan result

# Nmap 7.80 scan initiated Mon May 22 20:01:10 2023 as: /usr/bin/nmap –privilege -oN
/home/scms/scms scan.xml -O 192.168.200.160 Nmap scan report for 192.168.200.160
*** Score=10, Risk=Low ***
# Nmap 7.80 scan initiated Mon May 22 19:19:52 2023 as: /usr/bin/nmap –privilege -oN
/home/scms/scms scan.xml -O 192.168.200.156 Nmap scan report for 192.168.200.156
*** Score=5, Risk=Medium ***
# Nmap 7.80 scan initiated Mon May 22 19:55:02 2023 as: /usr/bin/nmap –privilege -oN
/home/scms/scms scan.xml -O 192.168.200.157 Nmap scan report for 192.168.200.157
*** Score=1, Risk=High(NO OS DETECTED) ***
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5.4.4 Cloud Access Phase

Microsoft Azure blob storage is used to upload the security score file and accessible from

anywhere securely. There are two main steps for setting this up:

Step-1 : Microsoft Azure Blob storage has to be configured according to the template

defined in Appendix.B.

Step 2 - Access to blob storage is only allowed from legitimate IP address (”10.0.0.0/16”,

”73.246.185.21/32) as specified in the template. The file is uploaded using a script shown

in Fig.5.5. There is a token generated from Azure blob storage and used to upload a file,

Fig.5.6 shows the successful transfer of a file to the online blob storage via script.

Figure 5.5: Script for cloud upload.

Figure 5.6: Successful transfer of risk score file .

Step 3 - In the last step, upload can be automated using a cron job, file can be uploaded

at regular intervals. Fig. 5.7 exhibits the cron job created for regular uploads. Once the

file is uploaded to the blob storage, it can be accessible from anywhere via browser.
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Figure 5.7: Cron job for file transfer automation.

5.4.5 Results

The results are analyzed based on two criteria, i.e., device detection automatically or

manually and resource utilization by SCMS.

Device Detection

The accuracy of the SCMS relies on the successful detection of diverse devices. To achieve

this, dynamic scans are conducted on devices within the 192.168.0.0/16 network. The pro-

tocols used for detecting live machines include ICMP and SNMP. Figure.5.8 presents the

list of discovered devices, which can alternatively be identified by utilizing the Zabbix

agent. Additionally, Figure.5.9 illustrates the protocols used for these discoveries. Sys-

tem statistics like uptime, memory, cpu usage etc. can also be collected from the device.

Fig. 5.10 exhibits the CPU spikes, and Fig. 5.11 gives us inbound/outbound traffic pat-

terns of a Raspberry Pi (simulated IoT). SCMS was successfully able to detect MacBook,

Windows, IoT (Raspberry Pi) and home router.
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Figure 5.8: Test network inventory [264].

Figure 5.9: Test network inventory by agent type [264].

Figure 5.10: IoT CPU spike graph [264].
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Figure 5.11: IoT interface status [264].
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System Resource Utilization

The CPU usage of the SCMS system is depicted in Fig. 5.12. While there were occasional

CPU spikes reaching 75% and 45%, the overall CPU utilization remained below 30%. It

is worth noting that these spikes did not appear to be correlated with any specific SCMS

task. The memory usage, as illustrated in Fig. 5.13, consistently hovered around 1.07 GB

of RAM. Furthermore, as represented in Fig. 5.14, the maximum system load reached

1.80, A load of 1.80 indicates that the CPU was 80% overloaded, or it can be interpreted

as having one CPU with 1.80 running processes, with 0.80 processes waiting for their

turn.

Figure 5.12: SCMS CPU usage.
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Figure 5.13: SCMS memory usage.

Figure 5.14: SCMS load usage.
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5.5 SCMS research Challenges

The proposed management platform is a centralized asset management system accessible

remotely, with the capability to conduct security assessments of devices. While the system

can automatically detect common home devices with well-known operating systems, it

may face challenges when detecting devices with customized operating systems. Given

the extensive list of IoT vendors, automated sensor detection may prove challenging. The

security assessment relies on the NMAP scanning engine, and the scores generated by

SCMS provide a basic indication of the risk level associated with the devices. To obtain

more precise results, more comprehensive vulnerability assessment tools will be necessary.

To enable remote management of SCMS and automated alerts, internet access and a

Microsoft Azure subscription is required. This research opens up opportunities for future

researchers to explore centralized management solutions, whether they are on-premises,

cloud-based, or integrated into existing SOHO routers. Furthermore, there is a growing

demand for dynamic asset feeds categorized by device type to enhance the detection

process.

127

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



Chapter 6

Contributions and Future Outlook

6.1 Contributions

The research makes a significant contribution to the advancement of a unified threat

management framework tailored for small office and home networks. The proposed solu-

tion integrates advanced security features into a device with constrained computational

resources. The framework leverages flow data to deliver dual benefits: optimizing IPS

signatures and detecting anomalies effectively. The implementation of automated IoC

feed ingestion and the dynamic generation of firewall access control lists within SUTMS

has led to the development of an effective antibot solution. By integrating Suricata sig-

natures with the ntop flow detection module and combining iptables with STIX/TAXII

feeds, we achieved a substantial enhancement in SUTMS’s inspection capabilities, leading

to notable performance improvements. Furthermore, the inclusion of application data

from ntop not only improved IDS performance but also resulted in a notable reduction

in false positives. We conducted benchmarking on critical UTM components while moni-

toring system resource utilization. Specifically, we concurrently tested the Firewall, IDS,

Antibot, and Anomaly detection engines to assess their accuracy and effectiveness. SCMS

enhances SUTMS by offering complementary benefits in the form of centralized manage-

ment for home devices.

Another significant contribution of this study is its identification of security challenges

specific to home networks. This information serves as a valuable resource for future

researchers who can leverage the SUTMS framework to address these limitations and
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challenges effectively.

6.2 Future Outlook

Home networks are typically more heterogeneous and complex than corporate networks

when considering the coexistence of multiple technologies and user technical skills. Cor-

porate networks have trained dedicated staff and allocated budgets with vendor-support

contracts. In contrast, home networks are set up and maintained by users with limited

skill sets. In this section, we identify the main open challenges that are faced by UTM

systems in their entirety, and need to be addressed in future research. That is, we focus

on the challenges that the overall UTM system faces [and not the challenges that individ-

ual UTM components (firewall, IDS, antibot) face]. We categorize these open challenges

into architecture-related challenges (implementation, scalability, and management) and

product-specific challenges (security). The main factors that give rise to novel open UTM

system challenges are technological advancements (e.g., IoT and novel protocols) and in-

creasing attack sophistication. Addressing future prospects involves taking into account

the research challenges and limitations encountered.

6.2.1 UTM Implementation Issues

In the open-source realm, no single solution can provide firewall inspection along with

the next generation of defense, i.e., intrusion prevention, anomaly detection, and antibot

capabilities. However, some of the available open-source tools that can provide firewall in-

spection and intrusion detection services are iptables and Snort, respectively [270]. There

are some caveats with both the COTS and open-source SOHO solutions. COTS secu-

rity solutions are costly and require some advanced technical expertise. Most advanced

services require regular updates on a subscription basis, such as intrusion detection sig-

nature updates. Vendors charge based on the subscription duration of 1 to 3 years. The
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cost and complexity increase as more services are added to the firewall module. Running

multiple services on a firewall can reduce inspection rates and cause performance prob-

lems. COTS SOHO solutions are ideal for the company’s managed small offices, as they

have the technical expertise to deploy and manage advance security features running on

a UTM system.

However, the COTS solution can be overly complex and costly for home networks

that are managed by the users themselves. On the other hand, there are also numerous

problems associated with available open-source solutions. Many individual modules are

available and can help build the next generation of inspection. However, they are not

integrated and normally run as a standalone service. For example, an iptables module

is available for stateful inspection, but the iptables module is not integrated with other

protections, such as antibot protection. Hence, a UTM solution based on iptables lacks

the dynamic creation of access control lists. Out of the box, open-source solutions can

also be very resource-intensive for devices with limited resources.

6.2.2 Scalability

Home networks utilize services beyond voice, video, and data. IoT has become an integral

part of various required home applications. Sensor networks are one of the contributing

factors to design complications. Varied requirements for power, data rate, and IP con-

nectivity give rise to scalability issues. It is possible to quantify the number of laptops,

desktops, and mobile computing devices in a home network. However, each smart unit can

have more than one sensor with many interfaces. The coexistence of multiple topologies,

including ZigBee 802.15.4, WiFi 802.11, and Bluetooth LE 802.15.1, introduces man-

agement challenges. Homeowners may end up managing multiple local area networks.

Supporting a multi-vendor environment with limited technical expertise is challenging for

many homeowners.

Devices with finite power and processing power offload resource-intense processes to
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network gateways (such as internet routers), i.e., routers are not only responsible for

routing. Network Address Translation (NAT) is required for internet connectivity [271].

NAT tables grow with the number of devices. The router must translate every private

address into a public address to route the traffic to the internet. NAT has implications

regarding reduced visibility, Quality of Service (QoS) issues, and specific peer-to-peer

applications that do not work with NAT [271]. ZigBee uses a 16-bit addressing scheme

instead of the 32-bit IP addressing scheme. Hence, ZigBee gateways have to implement

NAT for any IP-based communication.

Various UTM services require the transmission of large datasets, such as IDS and ap-

plication signature updates, over the access network that connects a home network to the

internet. Traditional data transmission is based on the principle of replicating messages

bit-by-bit at a destination, i.e., the so-called technical-level communication via message

transmission defined by Shannon [272] and Weaver [273]. Some of the data that needs

to be downloaded to or uploaded from home networks for UTM services can in principle

be modelled and predicted by digital twins. Generally, digital twins [274], [275] provide a

digital model (e.g., simulation) of real processes, e.g., real robots operating in a physical

environment [276], or of a real network operating in a particular setting [277]. Recently, a

few studies have begun to explore digital twin-assisted network security mechanisms [278],

[279], including digital twin-assisted IDS [70], [280], [281] and anomaly detection [282].

Threat intelligence obtained from diverse cloud UTM sources becomes highly valuable

when shared with the on-premises UTM twin. By promptly implementing newer attack

mitigation measures, home networks can enhance their security significantly. Similarly,

changes detected in home network applications, traffic flows, firewall logs, and intrusion

alerts by home UTM systems allow the cloud digital twin to adopt and develop advanced

security strategies in response. For such data, it is not always necessary to download

or upload the messages bit-by-bit with conventional message transmission; instead, the

synchronization status between a digital twin in the cloud or UTM system with the actual
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process that is modelled by the digital twin can be verified with the goal-oriented com-

munications paradigm of identification via channels [283]–[288]. Thereby, identification

via channels achieves an exponential efficiency gain compared to conventional message

transmission, i.e., identification requires the transmission of only approximately the loga-

rithmically scaled number of bits that are required for conventional message transmission.

If the identification verifies that the digital twin is still synchronous, then there is no mes-

sage transmission needed. Only, if the identification finds that the digital twin is out of

synch, then message transmission is needed to restore the synchronization.

Future research should explore the adoption of the goal-oriented communication paradigm

of identification via channels for reducing the traffic amounts that need to be downloaded

to and uploaded from UTM systems in home networks. For instance, future research

should explore how digital twins operating in the cloud (or home network) can model

that actual processes in the UTM system (or on the internet at large) to enhance the

UTM security services. In the digital twin context, future research should examine how

the paradigm of identification via channels can reduce the access network traffic that is

required to keep the digital twin in the cloud (or UTM system) synchronized with the

respective modelled real-life processes. A related future research direction is to exploit

the security features afforded by identification via channels [289], [290] while accounting

for the security vulnerabilities that arise from operating digital twins [291].

Task-specific hardware modules can achieve significant accelerations of narrowly de-

fined computing tasks, while reducing the energy consumption [292]–[295]. Future re-

search should explore the use of hardware modules in UTM systems, whereby the tradeoffs

between increased computing power and reduced energy consumption need to be care-

fully weighed against the increased cost and potentially reduced configuration flexibility

of UTM systems with task-specific hardware modules.

As quantum computing matures in the future, cloud-based quantum malware detection

can become a useful tool to perform the processing of network security related computing
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tasks, e.g., for network intrusion detection [277], [296], [297]. Future research should

explore how home network UTM systems can take advantage of these emerging quantum

computing capabilities in the cloud, e.g., how can UTM systems effectively outsource

compute-intensive network security tasks to a quantum-computing cloud.

6.2.3 Connectivity Challenges

Home IoT devices rely on wireless technologies to connect to control systems or the cloud.

Connectivity is the main component of IoT operations. Various networking protocols and

standards are utilized, e.g., WiFi, Bluetooth, LTE, ZigBee, and Z-Wave [28]. IoT devices

are manufactured by a variety of vendors, and relying on different protocols introduces

numerous challenges. IoT success depends on compatibility and interaction with other

home devices. It is challenging to deploy a device that does not integrate with the existing

WiFi infrastructure. Interoperability allows devices to communicate, share information,

and interact with each other. Therefore, it is critical for an IoT to work in coordination

with other home devices. The key incompatibility challenges are the lack of open APIs,

proprietary services and applications, as well as complexity. In some cases, vendors have

intentionally left a gap to monopolize their products [298].

Challenges associated with IoT introduce complexity in UTM design and implemen-

tation. A UTM system has to support sensor connectivity standards, such as ZigBee,

Z-Wave LTE, and Bluetooth, and in most cases, it requires different hardware compo-

nents or radios. Software drivers will also need to be written or updated to incorporate

a wide variety of interfaces. Home-connected devices can be in proximity or far apart,

which raises a question about the placement of the UTM gateway. Deployments where

sensors are dispersed, may require an intermediary relay that supports the respective sig-

nals and media types before the traffic will get redirected to a UTM system for advanced

inspection. A higher number of sensors in a network can add additional load on the UTM

system processor, and increase the UTM system interface usage.
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Another emerging connectivity-related challenge arises due to so-called digital nomads

that operate their “home offices” in a mobile setting [299]–[302]. The digital nomads

may be stationary during a given home office work session, but could potentially also be

mobile, e.g., on a lengthy train ride, or in the passenger seat of a recreational vehicle

(RV) traveling on a highway (with printers and additional computing hardware in the

back of the RV). Future UTM systems should cater to such ”nomadic home offices”, by

providing comprehensive security services in a mobile setting. In particular, the network

infrastructure changes as the home office moves from one location to another. Therefore,

the settings for core components of home networks, such as the settings for router, switch,

WiFi, and ISP, need to be adjusted. However, the UTM configurations are typically

static, i.e., routes, IP addresses, and access lists are hard coded. Hence, changes in

network topology requires re-programming of static UTM configurations. Such changes

can be avoided, if the UTM is able to dynamically learn the network topology and to

automatically tune network and security settings without user intervention.

Additional challenges arise with digital nomads that are mobile during a home office

work session. During a mobile work session, the UTM should be able to alter its configu-

rations on the fly and without dropping and reconnecting a session. A network of UTM

devices that are synchronized according to a user profile instead of static variables can be

a useful design for stable and protected mobile work sessions. Shifting of access control

lists from static parameters, such as IP addresses and port numbers, to more dynamic

content-based fields can also be crucial for supporting mobile home office work sessions.

Also, any UTM-related services that require or interact with edge cloud computing

resources need to operate in a mobile edge computing (MEC) context [303]–[306] during

a mobile work session. Importantly, the current state information of the various UTM

functions needs to be continuously updated. Signature based inspection, such as IDS and

application-aware firewalls, as well as threat intelligence feeds require regular updates

via a cloud and edge cloud infrastructure [307]–[309]. Future research needs to adapt
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approaches for MEC state migration, e.g., [310]–[314] to MEC-supported UTM services,

and to conduct comprehensive evaluations of the resulting mechanisms.

An interesting future research direction is to integrate the UTM for mobile nomadic

home offices with the threat assessment and defense systems for the intelligent vehi-

cle [315] in which the nomadic office is housed. Future research should explore synergies

between intelligent vehicle security and UTM functionalities for nomadic offices operated

in intelligent vehicles.

6.2.4 Protocol Challenges

IoT devices have limited processing and energy resources. Therefore, IoT networks are

built upon low-energy communication protocols, such as Bluetooth LE, ZigBee, or Z-

Wave. An IoT device that wants to communicate to the internet or smartphone applica-

tions requires an IP based stack, or the home routers have to support the IoT protocol

interface. ZigBee uses a 2.4GHz ISM band, and Bluetooth LE uses a frequency of 2.4

to 2.485GHz [28]. Separate receivers are required for signal processing. Therefore, it is

easier to integrate the two protocols with the existing WiFi network without the need for

new hardware components. The protocols are developed according to market significance,

without considering the broader IoT domain. For example, ZigBee is mostly designed for

temperature, lighting, and security systems; whereas, Z-Wave is geared towards remote

control applications, such as home theater, pool, and automatic meter reading controls

[18]. A home network UTM system has to support such protocols for connectivity and

should also be able to inspect traffic and prevent any associated malicious payload. A

firewall engine should be equipped with an IoT protocol detection function to build access

control lists effectively. Similarly, the intrusion prevention module must have the relevant

signatures to block any IoT-related attacks.

135

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



6.2.5 Management Issues

IoT devices are designed as self-managed systems that do not require human interven-

tion. An IoT device should have the intelligence to monitor its own health and to only

send alerts to a control unit (for that particular type of IoT device) in case of any prob-

lems. The self-management functionality is intriguing for home automation, as it does not

require much supervision. However, the self-management focused design introduces scal-

ability challenges for the next generation of smart homes. Collaboration among different

types of home IoT devices is critical for machine learning and automated responses. For

instance, temperature sensors may need to coordinate with lighting and security controls

to determine that it is OK to turn on/off heat/air-conditioning. In addition, managing,

monitoring, updating, and keeping track of all the IoT devices in home networks will

be challenging when there is no centralized management control. In Chapter. 5 of this

research, we introduce a centralized management platform enhanced with security intel-

ligence to address the management challenges associated with home networks.

A crucial requirement is the development of a centralized database of IoT products

categorized by their functionality, associated security score, vendor assessment, and ad-

herence to best security practices. Additionally, empowering home users to anonymously

upload device data, report bugs, and share performance statistics via an API is essential

for enhancing overall IoT security and data transparency. To enhance affordability and

simplify management, vendors should consider offering IoT products as part of bundled

packages. This approach would facilitate easier management, upgrades, and deployment

of security patches to devices through a centralized portal. Implementing a dedicated

internet solely for IoT, i.e., a dedicated IoT internet, could be a potential avenue for ad-

dressing this open challenge. By provisioning management servers with stringent security

controls, IoT registration could be allowed only after thorough compliance and security
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Table 6.1: Percentages of IoT devices that use vulnerable services, where HV = Highly
Vulnerable, V = Vulnerable, S = Slightly Vulnerable; the Server Message Block (SMB)
protocol operates over two ports.

Port Service Devices Vulnerab. Level
1900 UPnP 46.2% HV
80 HTTP 45.7% V
5353 mDNS 39.2% HV
8080 HTTP Alt 26.9% V
443 HTTPS 21.2% SV
139 SMB 10.6% V
445 SMB 8.7% V

checks. Home users could access their personalized IoT portal hosted on a management

server through the IoT internet and only from an IoT device. This approach would likely

limit intrusions and enable secure centralized management. However, implementing such

a dedicated Iot internet would demand financial investment and commitment from gov-

ernmental and corporate entities. Also, extensive research, development, evaluation, and

standardization efforts would be needed.

6.2.6 Security Challenges

Computing devices are primarily based on Microsoft Windows or Apple Mac operating

systems; whereby, both Microsoft and Apple have well-established patch management

programs to mitigate software bugs and security vulnerabilities. IoT vendors with various

applications and hardware components typically do not have well-established patch man-

agement programs, leading to a large proportion of devices that lack the latest patches.

Due to their smaller footprint, they are also used for various functions. As the number

of vendor and device functions increases, so does the number of services that expose the

system to newer vulnerabilities. Table 6.1 reveals some of the most common protocols

used by IoT devices [10]. It is alarming to see the relatively high percentages of vulnerable

protocols, such as UPnP and HTTP.

Universal Plug and Play (UPnP) services are related to device discovery. HTTP is
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mostly deployed for device administration. UPnP, in particular, is widely accepted in

the IoT domain due to its ability to discover and interact with devices in a multi-vendor

enterprise environment without any configurations [18]. HTTP is widely used in the

industry. Therefore, HTTP security issues are addressed quickly by patches or replacing

them with HTTPS. A more significant concern in the IoT domain is UPnP. Attackers

can eavesdrop on sensor communication and can retrieve a wide variety of personnel

information. Unauthorized access to cameras can provide criminals with detailed insights

in their victims’ personal lives. Cameras are considered the most dominating privacy-

violating IoT [316]. Exploitation can assist organized criminal groups in using technology

for crimes, such as theft, burglary, kidnapping, and blackmail.

The significance of IoT security came to the surface in 2016, when IoT Bots targeted

the internet DNS infrastructure and brought down parts of the Internet via a DDoS

attack [317]. There is a need for a UTM module specifically designed to counter IoT

vulnerabilities, security flaws, and non-compliant protocols. Zero-trust profiling needs to

be established for UPnP devices that fall under the high-risk category, and strict UTM

controls should be applied for profiled traffic. Data exfiltration and C&C communica-

tion over encrypted channels are also significant concerns. UTM services cannot inspect

encrypted traffic without decrypting and utilizing additional computational power.

An ongoing security challenge is the validation of STIX-TAXII feeds. While the exist-

ing approaches that are suitable for UTM systems, e.g., existing blockchain approaches

to validate the STIX-TAXII feeds, the management, validation, and auditing of STIX-

TAXII threat feeds continue to pose significant problems. Future STIX-TAXII research

needs to develop and evaluate efficient approaches for STIX-TAXII threat feed manage-

ment, validation, and auditing that are suitable for the limited computational resources

in home network UTM systems. Possible avenues for developing such future STIX-TAXII

approaches could build on the principle of collaboration [318] or on the principle of proac-

tive defensive actions [319]. Also, rigorous mathematical foundations may provide novel
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avenues for efficient STIX-TAXII management [320].

An overarching future research direction for enhancing the security levels provided by

a UTM system is to exploit synergies between the different UTM system components, i.e.,

firewall, IDS, and antibot synergistically cooperate to support and enhance each other.

The synergy among UTM system components can come in the form of serial or parallel

processing. Serial processing starts with firewall inspection, followed by IDS and antibot

inspection. In contrast, parallel processing starts examining traffic by all the inspection

engines concurrently. Parallel processing can achieve performance benefits (reduced in-

spection latency and higher throughput) since an individual UTM system component

(inspection engine) does not have to wait for the completion of the processing of other

components. In contrast, in serial processing, the IDS and antibot inspection engines may

have to wait for the decision of the firewall inspection; once the firewall module allows the

traffic, then IDS and antibot inspection are activated and run in parallel. The latency

reduction of parallel processing comes at the cost of increased rule management complex-

ity and loss of functionality. The Single Pass architecture [321] introduced by Palo Alto

Networks is an enterprise implementation of UTM parallel processing. The Single Pass

architecture requires the administrator to attach security profiles (IDS, antibot) to every

firewall rule, which can get difficult to manage as the number of rules increases; also,

there is no option to configure separate policies for firewall, IPS, and antibot inspection.

Hence, there is an urgent need for developing hybrid UTM solutions that strive to achieve

the performance benefits of parallel processing, while retaining the low complexity of the

management/administrative control of serial processing.

A related direction for exploiting synergies is to foster cooperation between the IDS

inspection and the applications that run in a home network. Specifically, future research

should explore the integration of application signatures with the IDS engine in UTM sys-

tems, so that the IDS policy can automatically be updated and tuned according to the

evolving home network systems, services, and applications. This updating is generally nec-
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essary since changes of systems, services, and application require changes of the signatures.

There have been attempts by the enterprise security vendors to develop an application-

integrated IDS solution. For instance, Cisco introduced “Firepower recommendations”

[322] to tune IDS profiles according to applications and network infrastructure. However,

protocol categorization is a challenge for the Cisco approach as the application engine is

not very robust. Hence, many protocols are classified into the “undefined” category. Also,

the Cisco solution is geared towards enterprise customers. Palo Alto Networks introduced

a cloud-based inspection engine [323] for real-time malware detection. However, the Palo

Alto Networks solution is limited to specific protocols and certain attack types.

6.2.7 SSL Inspection

According to the F5 Networks malware report, 80% of internet traffic is encrypted, and

approximately 46% of malware was hidden using encryption techniques [324]. It is evident

that inspecting encrypted traffic is inevitable. Analyzing encrypted payload requires

extensive processing power. Home UTM devices will need to be upgraded to more robust

hardware, which could increase the appliance’s cost and size. SUTMS NTOP engine

can perform basic SSL inspection without decryption; tasks like certificate verification,

compliance checks, abnormal SSL payload detection, etc., can be analyzed. Advanced

malware variants obfuscate themselves within the payload using encryption techniques

and therefore require full packet decryption. Newer avenues of SOHO UTM devices will

need to be explored to optimize SSL processing and simplify the encryption/decryption

mechanism.

6.2.8 STIX/TAXII Threat Feeds Validation

Threat intelligence feeds are critical for blocking IoCs that come in the form of IPs, do-

mains, and hashes. SUTMS relies on open source feeds like Open Threat Exchange (OTX)

[325], Anomali [132] etc. Open-source platforms lack verification, real-time updates, and
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targeted adversaries. It will require human intervention to review IoCs geared toward

home networks and client machines before applying access control lists. Commercial

threat intelligence vendors like Crowdstrike [326], and ThreatConnect [327] extract data

from various intelligence sources and validate and recommend tailored profiles according

to customer needs. Another limitation is blocking hashes due to resource constraints. The

research opens doors for developing open-source Threat intelligence platforms equivalent

to commercial feeds and technologies to inspect hashes without overloading UTM devices.

6.2.9 Signature Optimization

Our results show that IPS is the single most resource-intensive process. Optimizing sig-

natures is an integral part of SUTMS. Signatures of applications discovered via NTOP

were enabled to reduce any unnecessary processing. However, services utilized by home

networks are dynamic and can change quite frequently. There will also be services left

uncategorized due to the lack of pattern detection. Application detection engines require

constant updates, and there is a need for open-source application detection engines that

process, validate, and categorize newer applications as they emerge. Integration of such

engines with UTM’s will improve device efficiency and zero-day attacks.

6.2.10 SUTMS Usability & Economic Sustainability

One challenge lies in the technical proficiency of home users to set up and oversee a

UTM solution. Successful implementation may demand basic networking skills; however,

automation can transform it into a user-friendly plug-and-play system. Customization

might pose difficulties, as configurations are streamlined to reduce user intervention. An

intuitive web front end with fewer checks could enhance the solution’s appeal to home

users.

Another challenging aspect is ensuring the commercial viability of SUTMS. Despite its

minimal cost compared to commercially available solutions, convincing home users to
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invest in a security appliance remains a difficult task. The solution’s marketability and

acceptance within the user community hinge on factors such as awareness and integration

with elements like WiFi access points and ISP. WiFi access points are already prevalent in

home networks, and integrating UTM with a WiFi access point can serve as a replacement

for such standalone access points. Another approach is to delegate UTM services to the

ISP to reduce costs and management efforts; however, this may raise privacy concerns.

6.3 Conclusion

In this research, the proposed SUTMS solution was able to achieve 99.99% of accuracy

with significant improvements in CPU and memory. Evaluation of individual components

exposed IPS as the single most resource-intense process. The firewall engine was also

upgraded from traditional access controls list to dynamic STIX/TAXII feeds. It intro-

duced the capability of proactive blocking of bad actors. Integration of the NTOP engine

served a dual purpose, flow detection allowed us to identify anomalies, and application

awareness assisted in fine-tuning IPS signatures, ultimately improving CPU and memory

usage. Running multiple inspection engines efficiently on a single device with limited

resources is the biggest challenge for SOHO UTM appliances. SUTMS could address the

performance issues without compromising accuracy, and traditional and modern preven-

tion techniques were combined by innovative means to develop a next-generation of home

network protection solutions.

In the realm of smart home management, the proposed Smart Home Control and Manage-

ment System (SCMS) stands out as a streamlined implementation of a device management

solution. It utilizes a multifaceted approach by seamlessly integrating security and remote

management modules. A significant feature of SCMS is its ability to dynamically include

Small Office/Home Office (SOHO) devices based on their risk scores, which plays a crucial

role in creating a comprehensive inventory of smart homes and assessing their security
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posture. The outcomes achieved align perfectly with the system’s expected functionality

and performance. The CPU, memory, and system load remain well within manageable

limits, ensuring efficient operation even on devices with limited computational power.

The research work conducted opens new avenues for the mitigation, performance, and

optimization of threat management solutions. Inspecting encrypted traffic is a challenge.

Encryption is a resource-intensive process. Adversaries utilize encryption as a tool for data

hiding, malware obfuscation, and C&C communication. Most internet traffic is encrypted,

and there is a dire need to address advanced packet inspection challenges associated with

encrypted traffic. A unified threat management solution geared towards IoT is another

avenue to explore.
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Appendix A

List of main acronyms used

Acronym Explanation AcronymExplanation

AAF Application-Aware Fire-

walls:

MANET Mobile Ad-Hoc Networks

ADSL Asymmetric Digital Sub-

scriber Line

NAT Network Address Translation

AES Advanced Encryption

Standard

NFS Neuro-Fuzzy System

AI Artificial Intelligence NLP Natural Language Processing

AIDS Anomaly-based Intrusion

Detection Systems

OS Operating System

ANN Artificial Neural Networks OSINT Open Source Intelligence

API Application Programming

Interface

PCA Principal Component Analysis

APT Advanced Persistent

Threat

QoS Quality of Service

ARM Advanced RISC Machine RFC Request for Comments

C&C Command and Control RMD Robust Mahalanobis Distance

CAN Controlled Area Network RNN Recurrent Neural Network

CFA Cuttlefish Algorithm SASE Secure Access Service Edge
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CNN Convolutional Neural Net-

work

SDK Software Development Kit

COTS Commercial Off the Shelf SELKS Suricata, Elasticsearch, Logstash, Kibana

Scirius CE

CPU Central Processing Unit SFTP Secure File Transfer Protocol

CVE Common Vulnerabilities

and Exposures

SLA Supervised Learning Algorithm

DAGMM Deep Autoencoding Gaus-

sian Mixture Model

SMB Server Message Block protocol

DDoS Distributed Denial of Ser-

vice

SOHO Small Office and Home Office

DGA Domain Generation Algo-

rithms

SOM Self Organizing Maps

DoS Denial of Service SQL Structured Query Language

DT Decision Tree SSH Secure Socket Shell

EA Evolutionary Algorithms STIX Structured Threat Information Expression

EVT Extreme Value Theory SVM Support Vector Machine

FGLCC Feature Grouping based on

Linear Correlation Coeffi-

cient

TAXII Trusted Automated Exchange of Indicator

Information

FL Fuzzy Logic TCP Transmission Control Protocol

FSM Finite State Machine TKIP Temporal Key Integrity Protocol

FTP File Transfer Protocol UDP User Datagram Protocol

HR Human Resource UL Unsupervised Learning

HTTP Hypertext Transfer Proto-

col

UPnP Universal Plug and Play
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HTTPS Hypertext Transfer Proto-

col Secure

URL Uniform Resource Locator

HVAC Heating, Ventilation, and

Air Conditioning

UTM Unified Threat Management

IDS Intrusion Detection Sys-

tems

VPN Virtual Private Network

IoC Indicator of Compromise WAF Web Application Firewalls

IoT Internet of Things WCCP Web Cache Communication Protocol

IP Internet Protocol WPA WiFi Protected Access

IPS Intrusion Prevention Sys-

tems

WSN Wireless Sensor Networks

KNN K-Nearest Neighbor XSS Cross-Site Scripting

LDA Linear Discriminant Anal-

ysis

YARA Yet Another Recursive/Ridiculous Acronym

MFA Multi-Factor Authentica-

tion

ML Machine Learning
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Appendix B

Microsoft Azure copy Template

{

"$schema":␣"http://schema.management.azure.com/schemas

/2015-01-01/deploymentTemplate.json#",

"contentVersion":␣"1.0.0.0",

"parameters":␣{

"location":␣{

"type":␣"string"

},

"storageAccountName":␣{

"type":␣"string"

},

"accountType":␣{

"type":␣"string"

},

"kind":␣{

"type":␣"string"

},

"minimumTlsVersion":␣{

"type":␣"string"

},

"supportsHttpsTrafficOnly":␣{
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"type":␣"bool"

},

"allowBlobPublicAccess":␣{

"type":␣"bool"

},

"allowSharedKeyAccess":␣{

"type":␣"bool"

},

"defaultOAuth":␣{

"type":␣"bool"

},

"accessTier":␣{

"type":␣"string"

},

"publicNetworkAccess":␣{

"type":␣"string"

},

"allowCrossTenantReplication":␣{

"type":␣"bool"

},

"networkAclsBypass":␣{

"type":␣"string"

},

"networkAclsDefaultAction":␣{

"type":␣"string"

},

"networkAclsVirtualNetworkRules":␣{
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"type":␣"array"

},

"dnsEndpointType":␣{

"type":␣"string"

},

"keySource":␣{

"type":␣"string"

},

"encryptionEnabled":␣{

"type":␣"bool"

},

"keyTypeForTableAndQueueEncryption":␣{

"type":␣"string"

},

"infrastructureEncryptionEnabled":␣{

"type":␣"bool"

},

"isContainerRestoreEnabled":␣{

"type":␣"bool"

},

"isBlobSoftDeleteEnabled":␣{

"type":␣"bool"

},

"blobSoftDeleteRetentionDays":␣{

"type":␣"int"

},

"isContainerSoftDeleteEnabled":␣{

179

DocuSign Envelope ID: 2218DDBD-DFDA-41B3-94E8-0B5E3E0AD8AB



"type":␣"bool"

},

"containerSoftDeleteRetentionDays":␣{

"type":␣"int"

},

"changeFeed":␣{

"type":␣"bool"

},

"isVersioningEnabled":␣{

"type":␣"bool"

},

"isShareSoftDeleteEnabled":␣{

"type":␣"bool"

},

"shareSoftDeleteRetentionDays":␣{

"type":␣"int"

}

},

"variables":␣{},

"resources":␣[

{

"apiVersion":␣"2018-05-01",

"type":␣"Microsoft.Resources/deployments",

"name":␣"virtualNetworks_0.555364931222831",

"subscriptionId":␣"19d0790e-aeae-49e0-90da-e858be9855a5",

"resourceGroup":␣"scms",

"dependsOn":␣[],
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"resources":␣[],

"properties":␣{

"mode":␣"Incremental",

"parameters":␣{},

"template":␣{

"$schema":␣"http://schema.management.azure.com/schemas/

2015-01-01/deploymentTemplate.json#",

"contentVersion":␣"1.0.0.0",

"parameters":␣{},

"variables":␣{},

"resources":␣[

{

"apiVersion":␣"2021-01-01",

"name":␣"home_IP",

"type":␣"Microsoft.Network/virtualNetworks",

"location":␣"eastus",

"properties":␣{

"subnets":␣[

{

"name":␣"default",

"id":␣"/subscriptions/19d0790e-

aeae-49e0-90da-e858be9855a5/resourceGroups

/scms/providers/Microsoft.Network/

virtualNetworks/home_IP/subnets/default",

"properties":␣{

"addressPrefix":␣"10.0.0.0/24",

"serviceEndpoints":␣[
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{

"service":␣"Microsoft.Storage"

}]}}],

"addressSpace":␣{

"addressPrefixes":␣[

"10.0.0.0/16",

"73.246.185.21/32"

]

}

},

"tags":␣{}

}

],

"outputs":␣{}

}}},

{

"name":␣"[parameters(’storageAccountName’)]",

"type":␣"Microsoft.Storage/storageAccounts",

"apiVersion":␣"2022-05-01",

"location":␣"[parameters(’location’)]",

"properties":␣{

"minimumTlsVersion":␣"[parameters(’minimumTlsVersion’)]",

"supportsHttpsTrafficOnly":␣"[parameters(’supportsHttpsTrafficOnly’)]",

"allowBlobPublicAccess":␣"[parameters(’allowBlobPublicAccess’)]",

"allowSharedKeyAccess":␣"[parameters(’allowSharedKeyAccess’)]",

"defaultToOAuthAuthentication":␣"[parameters(’defaultOAuth’)]",

"accessTier":␣"[parameters(’accessTier’)]",
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"publicNetworkAccess":␣"[parameters(’publicNetworkAccess’)]",

"allowCrossTenantReplication":␣"[parameters(’allowCrossTenantReplication’)]",

"networkAcls":␣{

"bypass":␣"[parameters(’networkAclsBypass’)]",

"defaultAction":␣"[parameters(’networkAclsDefaultAction’)]",

"ipRules":␣[],

"virtualNetworkRules":␣"[parameters(’networkAclsVirtualNetworkRules’)]"

},

"dnsEndpointType":␣"[parameters(’dnsEndpointType’)]",

"encryption":␣{

"keySource":␣"[parameters(’keySource’)]",

"services":␣{

"blob":␣{

"enabled":␣"[parameters(’encryptionEnabled’)]"

},

"file":␣{

"enabled":␣"[parameters(’encryptionEnabled’)]"

},

"table":␣{

"enabled":␣"[parameters(’encryptionEnabled’)]"

},

"queue":␣{

"enabled":␣"[parameters(’encryptionEnabled’)]"

}

},

"requireInfrastructureEncryption":␣"[parameters

(’infrastructureEncryptionEnabled’)]"
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}

},

"dependsOn":␣[

"Microsoft.Resources/deployments/virtualNetworks_0.555364931222831"

],

"sku":␣{

"name":␣"[parameters(’accountType’)]"

},

"kind":␣"[parameters(’kind’)]",

"tags":␣{}

},

{

"name":␣"[concat(parameters(’storageAccountName’),␣’/default’)]",

"type":␣"Microsoft.Storage/storageAccounts/blobServices",

"apiVersion":␣"2022-05-01",

"properties":␣{

"restorePolicy":␣{

"enabled":␣"[parameters(’isContainerRestoreEnabled’)]"

},

"deleteRetentionPolicy":␣{

"enabled":␣"[parameters(’isBlobSoftDeleteEnabled’)]",

"days":␣"[parameters(’blobSoftDeleteRetentionDays’)]"

},

"containerDeleteRetentionPolicy":␣{

"enabled":␣"[parameters(’isContainerSoftDeleteEnabled’)]",

"days":␣"[parameters(’containerSoftDeleteRetentionDays’)]"

},
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"changeFeed":␣{

"enabled":␣"[parameters(’changeFeed’)]"

},

"isVersioningEnabled":␣"[parameters(’isVersioningEnabled’)]"

},

"dependsOn":␣[

"[concat(’Microsoft.Storage/storageAccounts

/’,␣parameters(’storageAccountName’))]"

]},

{

"name":␣"[concat(parameters(’storageAccountName’),␣’/default’)]",

"type":␣"Microsoft.Storage/storageAccounts/fileservices",

"apiVersion":␣"2022-05-01",

"properties":␣{

"shareDeleteRetentionPolicy":␣{

"enabled":␣"[parameters(’isShareSoftDeleteEnabled’)]",

"days":␣"[parameters(’shareSoftDeleteRetentionDays’)]"

}

},

"dependsOn":␣[

"[concat(’Microsoft.Storage/storageAccounts/’,

parameters(’storageAccountName’))]",

"[concat(concat(’Microsoft.Storage

/storageAccounts/’,

parameters(’storageAccountName’)),␣’

/blobServices/default’)]"

]}],
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"outputs":␣{}

}
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