REAL TIME COLLISION WARNING SYSTEM IN THE CONTEXT OF VEHICLE-TO-VEHICLE DATA EXCHANGE BASED ON DRIVINGS BEHAVIOURS ANALYSIS

HUSSEIN ALI AMEEN

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

AUGUST 2021

I dedicate this Ph.D. thesis to my beloved parents and my wife whose dreams for me have resulted in this achievement and without their loving upbringing and nurturing; I would not have been where I am today and what I am today.

To my beloved parents and my wife, thank you.

ACKNOWLEDGEMENT

First and foremost, I would like to thank God Almighty for giving me the strength, knowledge, ability, and opportunity to undertake this research study and to complete it satisfactorily.

I express, with heartfelt appreciation, my gratitude to my supervisor, **ASSOC**. **PROF. IR. DR. ABD KADIR BIN MAHAMAD** for his sincere and invaluable intellectual guidance extended to me throughout the years of my postgraduate studies. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. He has been there providing his patience, kindness, guidance, and advice throughout the research. His careful editing contributed enormously to the production of this thesis.

In my journey towards this degree, I have found a teacher, a friend, an inspiration, a role model, and a pillar of support in my Guide, **DR. BILAL BAHA ZAIDAN**. He has been there providing his heartfelt support and guidance at all times and has given me invaluable guidance, inspiration, and suggestions in my quest for knowledge. Without his able guidance, this thesis would not have been possible and I shall eternally be grateful to him for his assistance.

I'm deeply grateful to my supervisor, ASSOC. PROF. DR. AWS ALAA ZAIDAN, for his guidance, patience, and support. I consider myself very fortunate for being able to work with a very considerate and encouraging professor like him. Without his offering to accomplish this research.

I also would like to thank **TS SHARIFAH SAON** for her guidance, encouragement, and advice. At many stages in the course of this research project, I benefited from her advice, particularly so when exploring new ideas. Her positive outlook and confidence in my research inspired me and gave me confidence. I also would like to thank **ASSOC. PROF. DR. WAEL JABBAR ABD** for his constant support, availability, and constructive suggestions, which were determinants for the accomplishment of the work presented in this thesis.

My sincere appreciation goes to UNIVERSITI TUN HUSSEIN ONN MALAYSIA for providing me with financial support for publishing my required articles.

Last but not least, my warmest appreciation to my beloved parents who support me with their love. My heart overflows with gratitude for my parents, my brother **WISAM**, my sisters **ANSAM** and **MAYSAM**. A special appreciation goes to my beloved wife **ZAINAB** and our daughter **JANA** for being in my life and standing with me through this journey. Your matchless love, encouragement, and support had impressively contributed to the realization of this achievement.

ABSTRACT

Worldwide injuries in vehicle accidents have been on the rise in recent years, mainly due to driver error regardless of technological innovations and advancements for vehicle safety. Consequently, there is a need for a reliable-real time warning system that can alert drivers of a potential collision. Vehicle-to-Vehicle (V2V) is an extensive area of ongoing research and development which has started to revolutionize the driving experience. Driving behaviour is a subject of extensive research which gains special attention due to the relationship between speeding behaviour and crashes as drivers who engage in frequent and extreme speeding behaviour are overinvolved in crashes. National Highway Traffic Safety Administration (NHTSA) set guidelines on how different vehicle automation levels may reduce vehicle crashes and how the use of on-board short-range sensors coupled with V2V technologies can help facilitate communication among vehicles. Based on the previous works, it can be seen that the assessment of drivers' behaviours using their trajectory data is a fresh and open research field. Most studies related to driving behaviours in terms of accelerationdeceleration are evaluated at the laboratory scale using experimental results from actual vehicles. Towards this end, a five-stage methodology for a new collision warning system in the context of V2V based on driving behaviours has been designed. Real-time V2V hardware for data collection purposes was developed. Driving behaviour was analyzed in different timeframes prior obtained from actual driving behaviour in an urban environment collected from OBD-II adapter and GPS data logger of an instrumented vehicle. By measuring the in-vehicle accelerations, it is possible to categorize the driving behaviour into four main classes based on real-time experiments: safe drivers, normal, aggressive, and dangerous drivers. When the vehicle is in a risk situation, the system based on NRF24L01+PA/LNA, GPS, and OBD-II will pass a signal to the driver using a dedicated LCD and LED light signal. The driver can instantly decide to make the vehicle in a safe mood, effectively avoid the happening of vehicle accidents. The proposed solution provides two main functions: (1) the detection of the dangerous vehicles involved in the road, and (2) the display of a message informing the driver if it is safe or unsafe to pass. System performance was evaluated to ensure that it achieved the primary objective of improving road safety in the extreme behaviour of the driver in question either the safest (or the least aggressive) and the most unsafe (or the most aggressive). The proposed methodology has retained some advantages for other literature studies because of the simultaneous use of speed, acceleration, and vehicle location. The V2V based on driving behaviour experiments shows the effectiveness of the selected approach predicts behaviour with an accuracy of over 87% in sixty-four real-time scenarios presented its capability to detect behaviour and provide a warning to nearby drivers. The system failed detection only in few times when the receiving vehicle missed data due to high speed during the test as well as the distances between the moving vehicles, the data was not received correctly since the power transmitted, the frequency range of the signals, the antenna relative positions, and the number of in-range vehicles are of interest for the V2V test scenarios. The latter result supports the conclusion that warnings that efficiently and PERPUSTAKAAN quickly transmit their information may be better when driver are under stress or time pressure.

ABSTRAK

Kecelakaan kenderaan di seluruh dunia telah meningkat dalam beberapa tahun kebelakangan ini, terutamanya disebabkan oleh kesalahan pemandu tanpa mengira inovasi teknologi dan kemajuan untuk keselamatan kenderaan. Oleh itu, terdapat keperluan untuk sistem amaran masa nyata yang boleh dipercayai yang dapat memberi amaran kepada pemandu mengenai kemungkinan berlakunya perlanggaran. Vehicleto-Vehicle (V2V) adalah bidang penyelidikan dan penbangunan yang sedang bermula merevolusikan pengalaman memandu. Tingkah laku memandu adalah subjek kajian yang meluas dan mendapat perhatian khusus kerana hubungan antara tingkah laku memandu laju dan kemalangan kerana pemandu yang kerap dan melampau memandu laju banyak terlibat dalam kemalangan. National Highway Traffic Safety Administration (NHTSA) menetapkan garis panduan bagaimana tahap automasi kenderaan yang berbeza dapat mengurangkan kemalangan kenderaan dan bagaimana penggunaan sensor jarak dekat dalam kenderaan yang digabungkan dengan teknologi V2V dapat membantu memudahkan komunikasi di antara kenderaan. Berdasarkan penyelidikan sebelumnya, dapat dilihat bahawa penilaian tingkah laku pemandu menggunakan data lintasan mereka adalah bidang penyelidikan yang baharu dan terbuka. Sebilangan besar kajian yang berkaitan dengan tingkah laku memandu dari segi pecutan-perlambatan dinilai pada skala makmal menggunakan hasil eksperimen dari kenderaan sebenar. Mutahir ini, metodologi lima peringkat untuk sistem amaran perlanggaran baru dalam kontek V2V berdasarkan tingkah laku memandu telah dirancang. Perkakasan V2V masa nyata untuk tujuan pengumpulan data telah dibangunkan. Tingkah laku memandu dianalisis dalam jangka masa yang berbeza sebelum diperoleh dari tingkah laku memandu sebenar di persekitaran bandar yang dikumpulkan dari penyesuai OBD-II dan pencatat data GPS kenderaan yang diinstrumen. Dengan mengukur pecutan dalam kenderaan, adalah mungkin untuk mengkategorikan tingkah laku memandu menjadi empat kelas utama berdasarkan eksperimen masa nyata: pemandu selamat, pemandu normal, agresif, dan berbahaya.

Apabila kenderaan berada dalam keadaan berisiko, sistem berdasarkan NRF24L01 + PA / LNA, GPS, dan OBD-II akan menyampaikan isyarat kepada pemandu menggunakan isyarat di LCD dan LED khusus. Pemandu dengan serta-merta dapat membuat keputusan untuk menjadikan kenderaan dalam keadaan selamat dan berkesan mengelakkan berlakunya kemalangan kenderaan. Penyelesaian yang dicadangkan menyediakan dua fungsi utama: (1) pengesanan kenderaan berbahaya yang terlibat di jalan raya, dan (2) paparan mesej yang memberitahu pemandu jika selamat atau tidak selamat untuk dilalui. Prestasi sistem dinilai untuk memastikan bahawa ia mencapai objektif utama untuk meningkatkan keselamatan jalan raya dalam tingkah laku pemandu yang melampau sama ada yang paling selamat (atau paling tidak agresif) dan yang paling tidak selamat (atau yang paling agresif). Metodologi yang dicadangkan telah mengekalkan beberapa kelebihan untuk kajian literatur lain kerana penggunaan kecepatan, pecutan, dan lokasi kenderaan secara serentak. V2V berdasarkan eksperimen tingkah laku memandu menunjukkan keberkesanan pendekatan yang dipilih meramalkan tingkah laku dengan ketepatan lebih dari 87% dalam enam puluh empat senario masa nyata yang menunjukkan kemampuannya untuk mengesan tingkah laku dan memberi amaran kepada pemandu yang berdekatan. Sistem gagal dikesan hanya dalam beberapa kali ketika kenderaan penerima kehilangan data kerana kelajuan tinggi semasa ujian serta jarak antara kenderaan bergerak, data tidak diterima dengan betul kerana kuasa yang dihantar, julat frekuensi isyarat, kedudukan relatif antena, dan jumlah kenderaan dalam jarak tertentu untuk senario ujian V2V. Hasil kajian terakhir menyokong kesimpulan bahawa maklumat amaran yang disampaikan adalah cekap dan cepat pada ketika pemandu dibawah tekanan atau tekanan waktu.

CONTENTS

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
ABSTRAK	viii
CONTENTS	x
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF SYMBOLS AND ABBREVIATIONS	xxiii
LIST OF APPENDICES	xxvi

CHAPTER 1 RESEARCH INTRODUCTION

1.1	Introduction	1			
1.2	Research background				
1.3	Research problem	4			
1.4	Research questions	8			
1.5	Objectives	8			
1.6	Connections among research objectives,	9			
	questions, and problems				

1

	1.7	Scopes	s of study		11
	1.8	Outlin	e of the the	esis	11
CHAPTER 2	LITE	RATUI	RE REVIE	EW	13
	2.1	Overvi	ew		13
	2.2	System	atic reviev	v protocol and analysis	14
		2.2.1	Research	of literature taxonomy	16
			2.2.1.1	Survey and review articles	17
			2.2.1.2	Development	18
			2.2.1.3	Study conducted to V2V	20
			communi	cation system	
			2.2.1.4	Framework, model and	22
			architectu	ire	
	2.3	Distrib	oution resu	lts	23
	2.4	Discus	ssion		25
		2.4.1	Data sour	rce	26
		2.4.2	Performa	nce measurement	27
		2.4.3	Evaluatio	n techniques	30
		2.4.4	Benefits	related to V2V	31
		comm	unications	system	
			2.4.4.1	Improving traffic management	32
			2.4.4.2	Benefits related to V2V	32
				interoperability	
			2.4.4.3	Benefits related to sophisticated	34
				security systems	
			2.4.4.4	Benefits related to safety	34
		2.4.5	Issues an	d challenges related to V2V	35
		comm	unication s	systems	
			2.4.5.1	Concerns on road safety	35
			2.4.5.2	Concerns on vehicle	36
				information	
			2.4.5.3	Concerns on privacy and	37
				security	

xi

		2.4.5.4	Concerns on traffic	37
		2.4.5.5	Concerns on protocol and	38
			network topology	
		2.4.5.6	Concerns on mobility and	38
			reliability	
	2.4.6	Recomm	nendation of the previous	39
	researc	ches		
		2.4.6.1	New standard	39
			recommendation for V2V	
			systems	
		2.4.6.2	Safety recommendation	41
			for V2V systems	
		2.4.6.3	Developer recommendation	42
			for V2V systems	
	2.4.7	Substant	tial analysis	42
		2.4.7.1	Devices and sensors used	43
			in previous experiments	
		2.4.7.2	Number of scenarios used	44
			in previous experiments	
		2.4.7.3	Test location	45
		2.4.7.4	Number of vehicles and	45
			speed	
		2.4.7.5	Evaluation techniques in	46
			previous experiments	
		2.4.7.6	Types of software program used	46
			in previous experiments	
2.5	Drivir	ng behavio	bur	47
	2.5.1	Measuri	ng driver behaviour	50
	2.5.2	Aggress	ive driving behaviour	51
2.6	Result	analysis r	napping for new directions	53
2.7	Hardw	are device	es in the context of vehicular	56
	comm	unications	and driving behaviour	
2.8	Summ	nary of the	chapter	61

xii

CHAPTER 3	RESE	ARCH	METHODO	OLOC	ĞΥ		63
	3.1	Overvi	ew				63
	3.2	Resear	ch Methodol	logy P	hases		64
		3.2.1	Preliminary	study	,		66
		3.2.2	Hardware-b	ased p	ohase		66
			3.2.2.1 V2V	/ wire	less comm	unication	67
			syst	tem			
			3.2.	.2.1.1	NRF24L0	l system	68
			3.2.	.2.1.2	Improving	the	69
			ran	ige	of nR	F24L01+	
			trai	nsceiv	er module		
			3.2.2.2 Dri	iving	behavi	our data	70
			col	lection	n		
			3.2.	.2.2.1	On-Board		71
			Dia	agnost	ics adapter		
			3.2.	.2.2.2	Torque Pr	0	73
			3.2.	.2.2.3	Digital d	ashboard	76
			GPS	S pro a	application		
			3.2.	.2.2.4	Adafruit	Ultimate	78
			GP	S Brea	akout Syste	em	
		3.2.3	Identification	on pha	ase		80
			3.2.3.1 De	efining	g problem	s of a	80
			broadcasting	g mess	sage in V2V	√ system	
			3.2.3.1 Ex	perim	ents		82
		3.2.4	Developme	ent pha	ase		85
			3.2.4.1 Proj	posed	system arc	hitecture	86
		3.2.5	Evaluation	phase			88
			3.2.5.1 Pac	cket Lo	oss (PKL) 1	related to	88
			V2V				
			3.2.5.2 Pac		elivery Rat	io (PDR)	89
			related to V	2V			

		3.2.5.3 Throughput related to V2V	89
		3.2.5.4 Latency related to V2V	90
		3.2.5.5 Speed and acceleration	90
		related to driving behaviour	
		3.2.5.6 Calculating the distance	92
		between vehicles	
	3.3	Algorithmic procedures of the V2V data	93
		exchange	
	3.4	Algorithmic procedures of the driving	96
		behaviours	
	3.5	Validation phase	100
	3.6	Discussions and chapter summary	102
CHAPTER 4	EXPE	CRIMENTAL WORK	103
	4 1		102
	4.1	Overview	103
	4.2	Data collection process	103
	4.3	Study sites and research participants	105
	4.4	Research vehicles and data logging	111
	4.5	equipment for a V2V system	112
	4.5	Research vehicles and data logging	113
	U2	equipment for driving behaviours	115
	4.6	Method to measure data exchange in the V2V	115
		communication system	110
		4.6.1 Leader and tail vehicles data	118
		collection experiments	100
		4.6.2 Opposite direction without traffic	126
		island data collection	100
		4.6.3 Opposite direction without traffic	128
	47	island data collection experiments	120
	4.7	Method to measure the driving profile	130
		4.7.1 Speed data collection for driving	130
		behaviours	120
		4.7.1 Acceleration collection	138

	4.8	Summary and discussion	141
CHAPTER 5	DATA	ANALYSIS	143
	5.1	Introduction	143
	5.2	Performance evaluations of the nRF24L01+	144
		PA/LNA	
		5.2.1 Throughput of the nRF24L01+	144
		PA/LNA antenna	
		5.2.2 The latency of the nRF24L01+	146
		PA/LNA antenna	
		5.2.3 The Packet Data Ratio of the	147
		nRF24L01+ PA/LNA antenna	
	5.3	Packets structure	151
	5.4	Algorithm for the passing collision warning	152
		system	
	5.5	System detection performance experiments	157
		5.5.1 Safe and normal driving behaviour	158
		experiment	
		5.5.2 Aggressive driving behaviour	159
		experiments	
		5.5.3 Dangerous driving behaviour	167
		experiments	
	5.6	Results of a V2V warning system based on	171
		driving behaviour context for different	
		scenarios	
	5.7	Validation results of the Proposed Algorithm	179
		for V2V warning scenarios	
	5.8	Calculating driving ratio	181
	5.9	Chapter summary	183
CHAPTER 6	CONC	CLUSION AND FUTURE WORK	185
	6.1	Introduction	185
	6.2	Conclusions	185
	6.3	Research goal attained	186

xv

6.4	Research contributions	188
6.5	Research limitations	189
6.6	Recommendation for future work	190
REFERENCES		192
APP	ENDIX	205
VIT	Α	206

BERPUSTAKAAN TUNKU TUN AMINAT

LIST OF TABLES

1.1	Connections among research objectives, questions, and	9
	problems	
2.1	Settings of search query	16
2.2	Dataset used in the reviewed research	26
2.3	Measurement criteria used in the reviewed papers	27
2.4	Evaluation techniques used in the reviewed research	30
2.5	Software programs used in previous experiments	47
2.6	Comparison among different criteria extracted from	58
	previous methodologies related to V2V and driving	
	behaviour systems	
3.1	V2V data exchange scenarios using nRFL041	83
3.2	Devices used for driving behaviours data collection	85
3.3	OBD-II PIDs details used in the system	91
4.1	V2V data collection scenarios	105
4.2	Descriptive statistics of speed factor between OBD-II	132
	adapter, mobile application, and GPS	
4.3	OBD-II adapter and mobile application speed statistics	133
4.4	OBD-II adapter and mobile application speed	133
	independent T-test	
4.5	OBD-II adapter and GPS device speed statistics	135
4.6	OBD-II adapter and GPS device speed independent T-	135
	test	
4.7	Mobile application and GPS device speed statistics	136
4.8	Mobile application and GPS device speed independent	137
	T-test	
4.9	Factors affecting the accuracy of GPS speed	137
4.10	Acceleration table used in the proposed system	141

5.1	Predictive models results of V2V based on driving	174
	behaviour	
5.2	Comparison between the proposed model and previous	178
	research models	
5.3	Validation results for V2V warning system based on	180
	driving behaviours	
6.1	Connections among research objectives, methodology,	187
	and goals	

LIST OF FIGURES

1.1	Accident statistics based on the type of collision [4]	2					
1.2	Accident causes, adapted from [5]						
1.3	The criteria affecting the proposed V2V system						
1.4	Problem statement configurations	7					
2.1	Selection of studies, search query, and inclusion criteria	15					
2.2	Taxonomy of research literature on V2V	17					
	communications						
2.3	Number of included articles based on main categories	24					
	and database source						
2.4	Number of included articles in different categories by	24					
	year of publication						
2.5	Categories of benefits of V2V communication system	31					
2.6	Categories of challenges related to V2V communication	35					
	systems						
2.7	Categories of recommendations for V2V	40					
	communication systems						
2.8	Methodological aspects illustrated from previous	43					
	studies						
2.9	Driving style-related terminology and connections	50					
	[157]						
2.10	Study of the gap from several articles related to data	53					
	exchange in V2V system and driving behaviour data						
	analysis						
2.11	Chapter two summary	62					
3.1	Detailed research methodology	64					
3.2	Relation between methodology phases, research	65					
	objectives, and the chapters						

3.3	V2V warning system main self-content	66
3.4	nRF24L01 wireless module	68
3.5	nRF24L01 multiceiver network	69
3.6	Setting up nRF24L01 transceiver module	70
3.7	(a) an in-vehicle OBD-II female connector, (b) OBD-II	72
	male connector	
3.8	OBD-II adapter, (a) ELM327 Bluetooth, (b) ELM327	72
	Wi-Fi	
3.9	Freematics ESP32 OBD kit	73
3.10	Torque pro home page	74
3.11	Torque pro's data logging and uploading window	75
3.12	Data recorded with Torque pro's application	75
3.13	Digital Dashboard GPS Pro Application	76
3.14	Map integration from digital dashboard GPS Pro	77
	software	
3.15	Data recorded with digital dashboard GPS pro	77 AH
	application	
3.16	Adafruit Ultimate GPS breakout Arduino wiring	78
3.17	Arduino serial monitor for the Adafruit ultimate GPS	79
	breakout	
3.18	Broadcast message problem [188]	81
3.19	Instrumented vehicle for data collection	84
3.20	Proposed system architecture	87
3.21	V2V data exchange flowchart	94
3.22	Driving behaviours system flowchart	97
3.23	Schematic diagram of the proposed data exchange in the	101
	vehicle-to-vehicle system	
4.1	Study sites from google map	106
4.2	Study sites layout for V2V data exchange in	108
	Johor/Malaysia (a) Site A, (b) Site B, and (c) Site C	
4.3	Study sites layout for V2V data exchange in	108
	Babylon/Iraq	
4.4	Several study sites for data of driving behaviours	110

	4.5	Vehicles used in this research in Malaysia	111
	4.6	Vehicles used in this research in Iraq	111
	4.7	nRF24L01 V2V data exchange system	112
	4.8	Installation of OBD-II adapter inside the vehicle	114
	4.9	Accelerator pedal position diagram	115
	4.10	Data exchange in the V2V communication system	117
	4.11	A detailed example of data exchange in V2V system	118
	4.12	Road layout for site (A)	119
	4.13	Data collection for the site (A) leader and tail vehicles	121
		within 50 meters based on V2V data exchange	
	4.14	Data collection for the site (A) leader and tail vehicles	123
		within 150 meters based on V2V data exchange	
	4.15	Data collection for the site (A) leader and tail vehicles	125
		within 200 and 250 meters and speed fixed at 60 km/h	
	4.16	Data collection for the site (A) leader and tail vehicles	126
		within 200 and 250 meters and speed fixed at 80 km/h	
	4.17	Road layout for site (B)	126
	4.18	Data collection examples for the site (B) within 200	128
		meters based on V2V data exchange	
	4.19	Road layout for site (C)	128
	4.20	Data collection example for the site (C) based on V2V	129
		data exchange	
	4.21	Comparison of OBD-II adapter, mobile application, and	131
		GPS device speed	
	4.22	Comparison of OBD-II adapter speed and mobile	132
		application speed	
	4.23	Comparison of OBD-II adapter and GPS device speed	134
	4.24	Comparison of mobile application speed and GPS	136
		device speed	
	4.25	Driving behaviour analysis based on acceleration data	140
	5.1	Network layout of point-to-point link	145
	5.2	Throughput measurement for different payload size in	146
		point-to-point (PtP) link	

5.3	Latency with the impact of the number of points in V2V	147
	scenarios	
5.4	PDR with the impact of distance in multiple V2V	149
	scenarios using nRF24L01	
5.5	Impact of distance and speed on the nRF24L01 in V2V	150
	scenarios	
5.6	Packet structure of the V2V warning system	152
5.7	longitudinal acceleration and deceleration for normal	153
	and aggressive driver	
5.8	Test results of the proposed methods: (a) Safe; (b)	157
	Normal; (c) Aggressive and (d) Dangerous driving	
5.9	Field test scenarios for safe and normal driving	159
5.10	Safe driving results	160
5.11	Normal driving results	162
5.12	Snapshot from road test of the aggressive driving	163
	experiments	
5.13	Field test scenarios for aggressive driving	164
5.14	Aggressive driving results	166
5.15	Warning signal displayed by V2V LCD	167
5.16	Snapshot from road test of the dangerous driving	168
	experiments	
5.17	Field test scenario for dangerous driving	168
5.18	Dangerous driving results	170
5.19	Warning signal displayed by V2V LCD	171
5.20	The proposed method to evaluate driver's trajectories	179
5.21	Safe driving (87% total safe flags)	182
5.22	Dangerous driving (40% total safe flags)	193

LIST OF SYMBOLS AND ABBREVIATIONS

ADAS	_	Advanced Driver Assistance Systems
AIRS	_	Adaptively Intelligent Routing System
AIRS	_	Adaptively Intelligent Routing System
AVTs	_	Automated Vehicles Technologies
BSMs	_	Basic Safety Messages
C2C	_	Car-to-Car
CA	_	Collision avoidance
CAMs	_	Cooperative Awareness Messages
CAN	_	Controller Area Network
CAS	-	Collision Avoidance System
C-ITS	-	Cooperative-Intelligent Transportation System
D2D	-	Device-to-Device
DBQ	-	Driver Behaviour Questionnaire
DDoS	ET D	Distributed Denial-of-Service
DGPS	51	Differential Global Positioning System
DLC	_	Data Link Connector
DoS	_	Denial-of-Service
DSRC	_	Dedicated Short Range Communications
DTC	_	Diagnostic Trouble Code
ECU	_	Electronic Control Unit
ETSI	_	European Telecommunications Standards Institute
FCD	_	Floating Car Data
GHGs	_	Greenhouse Gas Emissions
GNSS	_	Global Navigation Satellite System
GPRS	_	General Packet Radio Service
GPS	_	Global Positioning System
HetVNETs	_	Heterogeneous Vehicular NETworks

HEVs	_	Hybrid Electric Vehicles
IEEE	_	Institute of Electrical and Electronics Engineers
IMU	_	Inertial Measurement Unit
IoV	_	Internet of Vehicles
ISM	_	The Industrial, Scientific, and Medical
ITS	_	Intelligent Transportation System
km	_	Kilometer
km/h	_	Kilometer per hour
LiDAR	_	Light Detection and Ranging
LNA	_	Low-Noise Amplifier
LTE	_	Long-Term Evolution
NDOS	_	Node Operation System
NHTSA	_	National Highway Traffic Safety Administration
NS	_	Network Simulator
OBD	_	On-Board Diagnostics
OBU	_	On-Board-Units
PA	-	On-Board Diagnostics On-Board-Units Power Amplifier
PDR	-	Packet Delivery Rate
PHY/MAC	_	Physical/Medium Access Control
PKL		Packet Loss
PSO	st P	Particle Swarm Optimization
QoS	_	Quality of Service
RF	_	Radio Frequency
RSU	_	Road Side Unit
RTS/CTS	_	Request to Send / Clear to Send
SCs	_	Secondary Crashes
SDN	_	Software Defined Networking
SES	_	Sampling-based Estimation Scheme
SNR	_	Signal-to-Noise Ratio
SPI	_	Serial Peripheral Interface
TDMA	_	Time-Division Multiple Access
ToA	_	Time of Arrival
V2V	_	Vehicle-to-Vehicle

V2X	_	Vehicle-to-Everything
VANETs	_	Vehicular Ad Hoc Networks
VDSA	_	Vehicular Dynamic Spectrum Access
VLC	_	Visible Light Communication
VRA	_	Vertical Relative Angle
VSimRTI	-	V2X Simulation Runtime Infrastructure
VSNs	_	Virtualized Network Services
WAVE	_	Wireless Access for Vehicular Environments
WoS	_	Web of Science

REFERENCES

- [1] J. Lianghai, M. Liu, A. Weinand, and H. D. Schotten, "Direct vehicle-to-vehicle communication with infrastructure assistance in 5G network," in 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), 2017, pp. 1-5.
- [2] L. Zhenyu, P. Lin, Z. Konglin, and Z. Lin, "Design and evaluation of V2X communication system for vehicle and pedestrian safety," *The Journal of China Universities of Posts and Telecommunications,* vol. 22, no. 6, pp. 18-26, December 2015.
- [3] H. Yang, Z. Wang, and K. Xie, "Impact of connected vehicles on mitigating secondary crash risk," *International Journal of Transportation Science and Technology*, vol. 6, no. 3, pp. 196-207, 2017.
- [4] National Safety Council. (2020). *Type of Crash*. Available: <u>https://injuryfacts.nsc.org/motor-vehicle/overview/type-of-crash/</u>
- [5] T. Zinchenko, "Reliability Assessment of Vehicle-to-Vehicle Communication," Ph.D thesis, Technical University of Braunschweig, 2015.
- [6] C. Liao, J. Chang, I. Lee, and K. K. Venkatasubramanian, "A trust model for vehicular network-based incident reports," presented at the 2013 IEEE 5th International Symposium on Wireless Vehicular Communications (WiVeC), 2-3 June 2013.
- [7] A. J. Suzuki and K. Mizui, "Bidirectional Vehicle-to-Vehicle Communication and Ranging Systems with Spread Spectrum Techniques Using Laser Radar and Visible Light," *IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences*, vol. E100A, no. 5, pp. 1206-1214, May 2017.
- [8] J. Radak, B. Ducourthial, V. Cherfaoui, and S. Bonnet, "Detecting Road Events Using Distributed Data Fusion: Experimental Evaluation for the Icy Roads Case," *IEEE Transactions on Intelligent Transportation Systems*, vol. 17, no. 1, pp. 184-194, 2016.
- [9] M. Obst, L. Hobert, and P. Reisdorf, "Multi-sensor data fusion for checking plausibility of V2V communications by vision-based multiple-object tracking," in 2014 IEEE Vehicular Networking Conference (VNC), 2014, pp. 143-150.
- [10] S. Eckelmann, T. Trautmann, H. Ußler, B. Reichelt, and O. Michler, "V2V-Communication, LiDAR System and Positioning Sensors for Future Fusion Algorithms in Connected Vehicles," *Transportation Research Procedia*, vol. 27, pp. 69-76, 2017.
- [11] L. Dorn, Driver behaviour and training. Routledge, 2017.
- [12] M. G. Jasinski and F. Baldo, "A Method to Identify Aggressive Driver Behaviour Based on Enriched GPS Data Analysis," presented at the GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services, 2017
- [13] Q. Chen, B. Bellows, M. P. Wittie, S. Patterson, and Q. Yang, "MOVESET: MOdular VEhicle SEnsor Technology," in 2016 IEEE Vehicular Networking Conference, O. Altintas, E. Ekici, M. Tsai, M. Sepulcre, B. Bloessl, and Y. L. Wei, Eds. (IEEE Vehicular Networking Conference, 2016.
- [14] F. Yu and S. Biswas, "Self-Configuring TDMA Protocols for Enhancing Vehicle Safety With DSRC Based Vehicle-to-Vehicle Communications," *IEEE Journal on Selected Areas in Communications*, vol. 25, no. 8, pp. 1526-1537, 2007.

- [15] M. Sepulcre, J. Gozalvez, and B. Coll-Perales, "Why 6 Mbps is Not (Always) the Optimum Data Rate for Beaconing in Vehicular Networks," *IEEE Transactions on Mobile Computing*, vol. 16, no. 12, pp. 3568-3579, 2017.
- [16] B. Soret, M. G. Sarret, I. Z. Kovacs, F. J. Martin-Vega, G. Berardinelli, and N. H. Mahmood, "Radio Resource Management for V2V Discovery," in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017.
- [17] J. Ahrems, "Appraisal of Feasibility of Using Vehicle-to-Vehicle Communications for Safe Passage of Unsignalled Road Intersection under Varying Conditions," *IFAC Proceedings Volumes*, vol. 46, no. 28, pp. 84-89, 2013.
- [18] B. Glas, O. Sander, V. Stuckert, K. D. Muller-Glaser, and J. Becker, "Car-to-Car Communication Security on Reconfigurable Hardware," in 2009 IEEE Vehicular Technology Conference(IEEE Vehicular Technology Conference, 2009, pp. 2155-2159.
- [19] M. A. Lebre, F. Le Mouel, and E. Menard, "Resilient, Decentralized V2V Online Stop-free Strategy in a Complex Roundabout," in 2016 IEEE 83rd Vehicular Technology Conference(IEEE Vehicular Technology Conference Proceedings, 2016.
- [20] H. Tchouankem, "Characterization of Intersection Topologies in Urban Areas for Vehicle-to-Vehicle Communication," in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp. 1-5.
- [21] F. Cardoso, A. Serrador, and T. Canas, "Algorithms for Road Safety Based on GPS and Communications Systems WAVE," *Proceedia Technology*, vol. 17, pp. 640-649, 2014.
- [22] A. M. Orozco, S. Cespedes, R. Michoud, and G. Llano, "Design and simulation of a collision notification application with geocast routing for car-to-car communications," *European Transport Research Review*, vol. 7, no. 4, Dec 2015, Art. no. 36.
- [23] N. Varga, L. Bokor, A. Takács, J. Kovács, and L. Virág, "An architecture proposal for V2X communication-centric traffic light controller systems," in 2017 15th International Conference on ITS Telecommunications (ITST), 2017, pp. 1-7.
- [24] B. Zardosht, S. S. Beauchemin, and M. A. Bauer, "A predictive accident-duration based decision-making module for rerouting in environments with V2V communication," *Journal of Traffic and Transportation Engineering (English Edition)*, vol. 4, no. 6, pp. 535-544, December 2017.
- [25] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira, and M. Ferreira, "The See-Through System: A VANET-Enabled Assistant for Overtaking Maneuvers," in 2010 IEEE Intelligent Vehicles Symposium(IEEE Intelligent Vehicles Symposium, 2010, pp. 123-128.
- [26] M. El-Said, V. Bhuse, and A. Arendsen, "An Empirical Study to Investigate the Effect of Air Density Changes on the DSRC Performance," *Procedia Computer Science*, vol. 114, pp. 523-530, 2017.
- [27] A. Memon, F. K. Shaikh, and E. Felemban, "Experimental evaluation of vehicle-tovehicle based data transfer," in 2015 International Conference on Information and Communication Technology Research (ICTRC), 2015, pp. 274-277.
- [28] W. Alghamdi, E. Shakshuki, and T. R.Sheltami, "Context-Aware Driver Assistance System," *Procedia Computer Science*, vol. 10, pp. 785-794, 2012.
- [29] F. Jiménez, J. E. Naranjo, J. J. Anaya, F. García, A. Ponz, and J. M. Armingol, "Advanced Driver Assistance System for Road Environments to Improve Safety and Efficiency," *Transportation Research Procedia*, vol. 14, pp. 2245-2254, // 2016.
- [30] V. Milanés, L. Alonso, J. Villagrá, J. Godoy, T. de Pedro, and J. P. Oria, "Traffic jam driving with NMV avoidance," *Mechanical Systems and Signal Processing*, vol. 31, pp. 332-344, Augest 2012.
- [31] J. R. Ward, G. Agamennoni, S. Worrall, A. Bender, and E. Nebot, "Extending Time to Collision for probabilistic reasoning in general traffic scenarios," *Transportation Research Part C: Emerging Technologies*, vol. 51, pp. 66-82, 2015.

- [32] N. Motamedidehkordi, M. Margreiter, and T. Benz, "Shockwave Suppression by Vehicle-to-Vehicle Communication," *Transportation Research Procedia*, vol. 15, pp. 471-482, 2016.
- [33] P. Gora and I. Rub, "Traffic models for self-driving connected cars," in *Transport Research Arena Tra2016*, vol. 14, L. Rafalski and A. Zofka, Eds. (Transportation Research Procedia, 2016, pp. 2207-2216.
- [34] J.-N. Russo, T. Sproesser, F. Drouhin, and M. Basset, "Risks Level Assessments for Automotive Application," *IFAC-PapersOnLine*, vol. 49, no. 15, pp. 163-168, 2016.
- [35] Y. Ma, Z. Zhang, S. Chen, Y. Yu, and K. J. I. A. Tang, "A comparative study of aggressive driving behavior recognition algorithms based on vehicle motion data," vol. 7, pp. 8028-8038, 2018.
- [36] J. H. Ogle, "Quantitative assessment of driver speeding behavior using instrumented vehicles," Ph.D thesis, Civil Engineering, Georgia Institute of Technology, 2005.
- [37] E. G. Mantouka, E. N. Barmpounakis, and E. I. Vlahogianni, "Identifying driving safety profiles from smartphone data using unsupervised learning," *Safety Science*, vol. 119, pp. 84-90, 2019.
- [38] O. Bagdadi and A. Várhelyi, "Jerky driving—An indicator of accident proneness?," *Accident Analysis & Prevention*, vol. 43, no. 4, pp. 1359-1363, Jul. 2011.
- [39] A. Tang and A. Yip, "Collision avoidance timing analysis of DSRC-based vehicles," *Accident Analysis & Prevention*, vol. 42, no. 1, pp. 182-195, January 2010.
- [40] S. H. Lee, S. Lee, and M. H. Kim, "Development of a Driving Behavior-Based Collision Warning System Using a Neural Network," *International Journal of Automotive Technology*, journal article vol. 19, no. 5, pp. 837-844, Oct. 2018.
- [41] N. Pothirasan and M. P. Rajasekaran, "Automatic vehicle to vehicle communication and vehicle to infrastructure communication using NRF24L01 module," in 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2016, pp. 400-405.
- [42] H. Saha, S. Mandal, S. Mitra, S. Banerjee, U. J. I. J. o. C. N. Saha, and I. Security, "Comparative Performance Analysis between nRF24L01+ and XBEE ZB Module Based Wireless Ad-hoc Networks," vol. 9, pp. 36-44, 2017.
- [43] C. Bernardini, M. R. Asghar, and B. Crispo, "Security and privacy in vehicular communications: Challenges and opportunities," *Vehicular Communications*, vol. 10, pp. 13-28, 2017.
- [44] D. Antolino Rivas, J. M. Barceló-Ordinas, M. Guerrero Zapata, and J. D. Morillo-Pozo, "Security on VANETs: Privacy, misbehaving nodes, false information and secure data aggregation," *Journal of Network and Computer Applications*, vol. 34, no. 6, pp. 1942-1955, 2011.
- [45] B. Mokhtar and M. Azab, "Survey on Security Issues in Vehicular Ad Hoc Networks," *Alexandria Engineering Journal*, vol. 54, no. 4, pp. 1115-1126, 2015.
- [46] R. G. Engoulou, M. Bellaïche, S. Pierre, and A. Quintero, "VANET security surveys," *Computer Communications*, vol. 44, pp. 1-13, 2014.
- [47] F. Cunha *et al.*, "Data communication in VANETs: Protocols, applications and challenges," *Ad Hoc Networks*, vol. 44, pp. 90-103, 2016.
- [48] S. A. Ben Mussa, M. Manaf, and K. Z. Ghafoor, *Beaconing and Transmission Range Adaptation Approaches in Vehicular Ad Hoc Networks: Trends & Research Challenges* (2014 International Conference on Computational Science and Technology). 2014.
- [49] N. Torabi and B. S. Ghahfarokhi, "Survey of medium access control schemes for intervehicle communications," *Computers & Electrical Engineering*, vol. 64, pp. 450-472, 2017.
- [50] R. S. Bali, N. Kumar, and J. J. P. C. Rodrigues, "Clustering in vehicular ad hoc networks: Taxonomy, challenges and solutions," *Vehicular Communications*, vol. 1, no. 3, pp. 134-152, 2014.

- [51] N.-E. E. Faouzi, H. Leung, and A. Kurian, "Data fusion in intelligent transportation systems: Progress and challenges A survey," *Information Fusion*, vol. 12, no. 1, pp. 4-10, 2011.
- [52] K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, and Y. Q. Zhou, "Heterogeneous Vehicular Networking: A Survey on Architecture, Challenges, and Solutions," *IEEE Communications Surveys and Tutorials*, vol. 17, no. 4, pp. 2377-2396, 2015.
- [53] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, "VANet security challenges and solutions: A survey," *Vehicular Communications*, vol. 7, pp. 7-20, 2017.
- [54] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, "A comprehensive survey on vehicular Ad Hoc network," *Journal of Network and Computer Applications*, vol. 37, pp. 380-392, 2014.
- [55] L. C. Hua, M. H. Anisi, P. L. Yee, and M. Alam, "Social networking-based cooperation mechanisms in vehicular ad-hoc network—a survey," *Vehicular Communications*, vol. 10, pp. 57-73, 2017.
- [56] H. T. Cheng, H. Shan, and W. Zhuang, "Infotainment and road safety service support in vehicular networking: From a communication perspective," *Mechanical Systems and Signal Processing*, vol. 25, no. 6, pp. 2020-2038, 2011.
- [57] I. Achour, T. Bejaoui, and S. Tabbane, *Network coding approach for vehicle-to-vehicle communication: Principles, Protocols and Benefits* (2014 22nd International Conference on Software, Telecommunications and Computer Networks). 2014.
- [58] H. S. Basheer and C. Bassil, "A review of broadcasting safety data in V2V: Weaknesses and requirements," *Ad Hoc Networks*, vol. 65, pp. 13-25, 2017.
- [59] M. S. Kakkasageri and S. S. Manvi, "Information management in vehicular ad hoc networks: A review," *Journal of Network and Computer Applications*, vol. 39, pp. 334-350, 2014.
- [60] B. Rashid and M. H. Rehmani, "Applications of wireless sensor networks for urban areas: A survey," *Journal of Network and Computer Applications*, vol. 60, pp. 192-219, 2016.
- [61] K. Lidstrom *et al.*, "A Modular CACC System Integration and Design," *IEEE Transactions on Intelligent Transportation Systems*, vol. 13, no. 3, pp. 1050-1061, 2012.
- [62] F. Visintainer, L. Altomare, A. Toffetti, A. Kovacs, and A. Amditis, "Towards Manoeuver Negotiation: AutoNet2030 Project from a Car Maker Perspective," *Transportation Research Procedia*, vol. 14, pp. 2237-2244, 2016.
- [63] M. García Sánchez, M. Portela Táboas, and E. Lemos Cid, "Millimeter wave radio channel characterization for 5G vehicle-to-vehicle communications," *Measurement*, vol. 95, pp. 223-229, 2017.
- [64] S. Medetov, M. Bakhouya, J. Gaber, K. Zinedine, M. Wack, and P. Lorenz, "A decentralized approach for information dissemination in Vehicular Ad hoc Networks," *Journal of Network and Computer Applications*, vol. 46, pp. 154-165, 2014.
- [65] H. P. Luong, M. Panda, H. L. Vu, and B. Q. Vo, "Beacon Rate Optimization for Vehicular Safety Applications in Highway Scenarios," *IEEE Transactions on Vehicular Technology*, vol. 67, no. 1, pp. 524-536, 2018.
- [66] A. Saxena, H. Li, D. Goswami, and C. B. Math, *Design and Analysis of Control Strategies for Vehicle Platooning* (2016 IEEE 19th International Conference on Intelligent Transportation Systems). 2016, pp. 1805-1812.
- [67] M. Ren, L. Khoukhi, H. Labiod, J. Zhang, and V. Vèque, "A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs)," *Vehicular Communications*, vol. 9, pp. 233-241, 2017.
- [68] Y. Allouche and M. Segal, "Cluster-Based Beaconing Process for VANET," *Vehicular Communications,* vol. 2, no. 2, pp. 80-94, April 2015.
- [69] B. Jain, G. Brar, J. Malhotra, S. Rani, and S. H. Ahmed, "A cross layer protocol for traffic management in Social Internet of Vehicles," *Future Generation Computer Systems*, 2017.

- [70] B. Brik, N. Lagraa, A. Lakas, and A. Cheddad, "DDGP: Distributed Data Gathering Protocol for vehicular networks," *Vehicular Communications*, vol. 4, pp. 15-29, 2016.
- [71] B. Jarupan and E. Ekici, "PROMPT: A cross-layer position-based communication protocol for delay-aware vehicular access networks," *Ad Hoc Networks*, vol. 8, no. 5, pp. 489-505, Jul 2010.
- [72] A. Choudhury, T. Maszczyk, C. B. Math, H. Li, and J. Dauwels, "An Integrated Simulation Environment for Testing V2X Protocols and Applications," *Procedia Computer Science*, vol. 80, pp. 2042-2052, 2016.
- [73] A. Grzybek, G. Danoy, P. Bouvry, and M. Seredynski, "Mitigating flash crowd effect using connected vehicle technology," *Vehicular Communications*, vol. 2, no. 4, pp. 238-250, October 2015.
- [74] S. Allani, T. Yeferny, and R. Chbeir, "A scalable data dissemination protocol based on vehicles trajectories analysis," *Ad Hoc Networks*, vol. 71, pp. 31-44, 3/15/2018.
- [75] A. Wahid, M. A. Shah, F. F. Qureshi, H. Maryam, R. Iqbal, and V. Chang, "Big data analytics for mitigating broadcast storm in Vehicular Content Centric networks," *Future Generation Computer Systems*, 2017.
- [76] S. Gong, J. Shen, and L. Du, "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," *Transportation Research Part B: Methodological*, vol. 94, pp. 314-334, 2016.
- [77] C. Song, J. Wu, M. Liu, and H. Zheng, "Efficient routing through discretization of overlapped road segments in VANETs," *Journal of Parallel and Distributed Computing*, vol. 102, pp. 57-70, 2017.
- [78] P. Salvo, I. Turcanu, F. Cuomo, A. Baiocchi, and I. Rubin, "Heterogeneous cellular and DSRC networking for Floating Car Data collection in urban areas," *Vehicular Communications*, vol. 8, pp. 21-34, 2017.
- [79] M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, "Platooning Control Using Visible Light Communications: A Feasibility Study," in 2013 16th International IEEE Conference on Intelligent Transportation Systems(IEEE International Conference on Intelligent Transportation Systems-ITSC, 2013, pp. 1535-1540.
- [80] M. I. Ashraf, L. Chen-Feng, M. Bennis, and W. Saad, "Towards low-latency and ultrareliable vehicle-to-vehicle communication," in 2017 European Conference on Networks and Communications (EuCNC), 2017, pp. 1-5.
- [81] P. Gora and I. Rüb, "Traffic Models for Self-driving Connected Cars," *Transportation Research Procedia*, vol. 14, pp. 2207-2216, 2016.
- [82] M. S. Rayeni, A. Hafid, and P. K. Sahu, "Dynamic spatial partition density-based emergency message dissemination in VANETs," *Vehicular Communications*, vol. 2, no. 4, pp. 208-222, October 2015.
- [83] B. Singh, H. Hasbullah, M. Y. Nayan, and B. Tahlan, *Early Detection of Incident using Vehicular Ad-hoc Network* (2014 International Conference on Computer and Information Sciences). 2014.
- [84] A. Ltifi, A. Zouinkhi, and M. S. Bouhlel, "Trust-based Scheme for Alert Spreading in VANET," *Procedia Computer Science*, vol. 73, pp. 282-289, 2015.
- [85] A. Petrillo, A. Salvi, S. Santini, and A. S. Valente, "Adaptive multi-agents synchronization for collaborative driving of autonomous vehicles with multiple communication delays," *Transportation Research Part C: Emerging Technologies*, vol. 86, pp. 372-392, 2018.
- [86] S. Zhang, Y. Wu, and Y. T. Wang, An Embedded Node Operating System for Real-Time Information Interaction in Vehicle-to-Vehicle Communication (2016 IEEE 19th International Conference on Intelligent Transportation Systems). 2016, pp. 887-892.
- [87] Z. Zhou, H. Yu, C. Xu, F. Xiong, Y. Jia, and G. Li, "Joint relay selection and spectrum allocation in d2d-based cooperative vehicular networks," in 2017 International Conference on Information and Communication Technology Convergence (ICTC), 2017, pp. 241-246.

- [88] D. Jia and D. Ngoduy, "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," *Transportation Research Part B: Methodological,* vol. 90, pp. 172-191, Augest 2016.
- [89] M. Gueriau, R. Billot, N. E. El Faouzi, J. Monteil, F. Armetta, and S. Hassas, "How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies," *Transportation Research Part C-Emerging Technologies*, vol. 67, pp. 266-279, Jun 2016.
- [90] A. Sassi, Y. Elhillali, and F. Charfi, "Evaluating Experimental Measurements of the IEEE 802.11p Communication Using ARADA LocoMate OBU Device Compared to the Theoretical Simulation Results," *Wireless Personal Communications*, vol. 97, no. 3, pp. 3861-3874, Dec 2017.
- [91] Y. Agarwal, K. Jain, and O. Karabasoglu, "Smart vehicle monitoring and assistance using cloud computing in vehicular Ad Hoc networks," *International Journal of Transportation Science and Technology*, 2017.
- [92] S. Naumann, F. Wolf, and R. Schönrock, "Floating Car Observer An innovative vehicle-sensor for urban and highway scenarios," *IFAC Proceedings Volumes*, vol. 43, no. 23, pp. 19-24, 2010.
- [93] Y. Agarwal, K. Jain, S. Kumar, and G. N. Bhardwaj, *TLST: Time of Arrival Based Localization and Smart Tunnel concept in VANETs* (2016 3rd International Conference on Signal Processing and Integrated Networks). 2016, pp. 779-784.
- [94] B. R. Chang, H. F. Tsai, and C.-P. Young, "Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sensing," *Expert Systems with Applications*, vol. 37, no. 3, pp. 2439-2450, 3/15/ 2010.
- [95] M. I. Sanchez, M. Gramaglia, C. J. Bernardos, A. de la Oliva, and M. Calderon, "On the implementation, deployment and evaluation of a networking protocol for VANETs: The VARON case," *Ad Hoc Networks*, vol. 19, pp. 9-27, 2014.
- [96] V. Jindal and P. Bedi, "Reducing waiting time with parallel preemptive algorithm in VANETs," *Vehicular Communications*, vol. 7, pp. 58-65, January 2017.
- [97] A. Gibaud and P. Thomin, "Message forwarding based on vehicle trajectory history in Fully Distributed Traffic Information Systems," *Computer Communications*, vol. 60, pp. 40-52, 4/1/2015.
- [98] M. Srotyr, T. Zelinka, and Z. Lokaj, "Hybrid communication solution for C-ITS and its evaluation," in *2017 Smart City Symposium Prague (SCSP)*, 2017, pp. 1-7.
- [99] K. Golestan, F. Sattar, F. Karray, M. Kamel, and S. Seifzadeh, "Localization in vehicular ad hoc networks using data fusion and V2V communication," *Computer Communications*, vol. 71, pp. 61-72, 11/1/ 2015.
- [100] H. Tchouankem and T. Lorenzen, "Measurement-based evaluation of interference in Vehicular Ad-Hoc Networks at urban intersections," in 2015 IEEE International Conference on Communication Workshop (ICCW), 2015, pp. 2381-2386.
- [101] G. Yan and D. B. Rawat, "Vehicle-to-vehicle connectivity analysis for vehicular adhoc networks," *Ad Hoc Networks*, vol. 58, pp. 25-35, 2017.
- [102] P. Karadimas and D. Matolak, "Generic stochastic modeling of vehicle-to-vehicle wireless channels," *Vehicular Communications*, vol. 1, no. 4, pp. 153-167, 2014.
- [103] Y. Wang, Y. Zhang, J. Hu, and X. Pei, "An Analysis on Stochastic Broadcast Range in VANET Based on Generalized Packet Loss Model," in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015, pp. 1055-1060.
- [104] H. Gong, K. He, Y. Qu, and P. Wang, "Analysis and improvement of vehicle information sharing networks," *Physica A: Statistical Mechanics and its Applications*, vol. 452, pp. 106-112, 6/15/ 2016.
- [105] J. Santa, R. Toledo-Moreo, M. A. Zamora-Izquierdo, B. Úbeda, and A. F. Gómez-Skarmeta, "An analysis of communication and navigation issues in collision avoidance support systems," *Transportation Research Part C: Emerging Technologies*, vol. 18, no. 3, pp. 351-366, June 2010.

- [106] A. Baiocchi, "Analysis of timer-based message dissemination protocols for intervehicle communications," *Transportation Research Part B: Methodological*, vol. 90, pp. 105-134, 8// 2016.
- [107] A. M. Said, M. Marot, A. W. Ibrahim, and H. Afifi, "Modeling interactive real-time applications in VANETs with performance evaluation," *Computer Networks*, vol. 104, pp. 66-78, 2016.
- [108] M. R. Jabbarpour, A. Marefat, A. Jalooli, R. M. Noor, R. H. Khokhar, and J. Lloret, "Performance analysis of V2V dynamic anchor position-based routing protocols," *Wireless Networks*, vol. 21, no. 3, pp. 911-929, Apr 2015.
- [109] H. Su, C. H. Cho, Y. H. Chu, and W. Y. Chang, A Traffic Information Dissemination Mechanism Based on DSRC/WAVE and Its Applications (2012 12th International Conference on Its Telecommunications). 2012, pp. 629-632.
- [110] S. Carrese, E. Cipriani, L. Mannini, and M. Nigro, "Dynamic demand estimation and prediction for traffic urban networks adopting new data sources," *Transportation Research Part C: Emerging Technologies*, vol. 81, pp. 83-98, 2017.
- [111] J. Liu, B. Cai, Y. Wang, and J. Wang, "A lane level positioning-based cooperative vehicle conflict resolution algorithm for unsignalized intersection collisions," *Computers & Electrical Engineering*, vol. 39, no. 5, pp. 1381-1398, 2013.
- [112] T. Y. Wu, N. Guizani, and C. Y. Hsieh, "An efficient adaptive intelligent routing system for multi-intersections," *Wireless Communications & Mobile Computing*, vol. 16, no. 17, pp. 3175-3186, Dec 2016.
- [113] D. Perez-Diaz de Cerio and J. L. Valenzuela, "Provisioning Vehicular Services and Communications Based on a Bluetooth Sensor Network Deployment," *Sensors*, vol. 15, no. 6, pp. 12765-12781, Jun 2015.
- [114] M. Bou Farah, D. Mercier, F. Delmotte, and É. Lefèvre, "Methods using belief functions to manage imperfect information concerning events on the road in VANETs," *Transportation Research Part C: Emerging Technologies*, vol. 67, pp. 299-320, 2016.
- [115] J. Toutouh and E. Alba, "Light commodity devices for building vehicular ad hoc networks: An experimental study," *Ad Hoc Networks*, vol. 37, Part 2, pp. 499-511, February 2016.
- [116] Z. He and D. Zhang, "Cost-efficient traffic-aware data collection protocol in VANET," *Ad Hoc Networks*, vol. 55, pp. 28-39, February 2017.
- [117] A. Sassi, F. Charfi, L. Kamoun, Y. Elhillali, and A. Rivenq, "The impact of mobility on the performance of V2X communication," in 2011 4th International Conference on Logistics, 2011, pp. 434-438.
- [118] L. Kristiana, C. Schmitt, and B. Stiller, "A filtering concept for improving the anglebased forwarding scheme in Vehicular Ad-Hoc Network communications," in 2016 22nd Asia-Pacific Conference on Communications (APCC), 2016, pp. 545-551.
- [119] B. C. Dhas and P. P. E. Winston, "Efficient vehicular communication using random access channels in UMTS based network
- " in International Conference on Electronics and Communication Systems, 2014.
- [120] S. Pagadarai, B. A. Lessard, A. M. Wyglinski, R. Vuyyuru, and O. Altintas, "Vehicular Communication: Enhanced Networking Through Dynamic Spectrum Access," *IEEE Vehicular Technology Magazine*, vol. 8, no. 3, pp. 93-103, 2013.
- [121] L. Du, L. Han, and X.-Y. Li, "Distributed coordinated in-vehicle online routing using mixed-strategy congestion game," *Transportation Research Part B: Methodological*, vol. 67, 2014.
- [122] B. Baron *et al.*, "Virtualizing vehicular node resources: Feasibility study of virtual machine migration," *Vehicular Communications*, vol. 4, pp. 39-46, 2016.
- [123] F. Bounini, D. Gingras, H. Pollart, and D. Gruyer, "Real time cooperative localization for autonomous vehicles," in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 1186-1191.

- [124] G. M. Hoang, B. Denis, J. Härri, and D. T. M. Slock, "Robust data fusion for cooperative vehicular localization in tunnels," in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1372-1377.
- [125] A. Bazzi, B. M. Masini, A. Zanella, and A. Calisti, "Visible light communications as a complementary technology for the internet of vehicles," *Computer Communications*, vol. 93, pp. 39-51, 11/1/ 2016.
- [126] Z. Zhou, C. Gao, C. Xu, Y. Zhang, and D. Zhang, "Reliable Content Dissemination in Internet of Vehicles Using Social Big Data," in *IEEE Global Communications Conference*, 2017, pp. 1-6.
- [127] D. B. Rawat, C. Bajracharya, and G. Yan, "Towards intelligent transportation Cyber-Physical Systems: Real-time computing and communications perspectives," in *SoutheastCon 2015*, 2015, pp. 1-6.
- [128] M. Barradi, A. S. Hafid, and S. Aljahdali, "Highway Multihop Broadcast Protocols for Vehicular Networks," in *IEEE International Conference on Communications*, 2012.
- [129] T. Petrov, M. Dado, K. E. Ambrosch, and P. Holecko, *Experimental Topology for V2V Communication Based on Internet of Things* (2016 Elektro 11th International Conference). 2016, pp. 72-76.
- [130] Z. Wu, J. Yang, and L. Huang, "Study on the Collision Avoidance Strategy at Unsignalized Intersection based on PreScan Simulation," *Procedia - Social and Behavioral Sciences*, vol. 96, pp. 1315-1321, 11/6/2013.
- [131] O. Shagdar and P. Muhlethaler, "Study on Merging Control Supported by IEEE 802.11p Systems for Highway Environments'," in *IFIP Wireless Days*, 2013.
- [132] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, and J. M. S. Nogueira, "Vehicular networks using the IEEE 802.11p standard: An experimental analysis," *Vehicular Communications*, vol. 1, no. 2, pp. 91-96, 2014.
- [133] T. Acarman, C. Yaman, Y. Peksen, and A. U. Peker, "Intersection Based Routing in Urban VANETs," in *IEEE 18th International Conference on Intelligent Transportation Systems*, 2015, pp. 1087-1092.
- [134] A. Olia, H. Abdelgawad, B. Abdulhai, and S. N. Razavi, "Assessing the Potential Impacts ofConnected Vehicles: Mobility, Environmental, and Safety Perspectives," *Journal of Intelligent Transportation Systems*, vol. 20, no. 3, pp. 229-243, 2016.
- [135] M. Amadeo, C. Campolo, and A. Molinaro, "Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs," *Ad Hoc Networks*, vol. 10, no. 2, pp. 253-269, 2012.
- [136] A. Mukhopadhyay, S. Raghunath, and M. Kruti, "Feasibility and performance evaluation of VANET techniques to enhance real-time emergency healthcare services," in 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2016, pp. 2597-2603.
- [137] Y. Lu, Q. Cui, Y. Hou, Z. Gao, and B. Zhang, "Graph-based time-critical cooperative data exchange in V2V via network coding strategy," in 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2017, pp. 1-5.
- [138] S. Szigeti, C. Csiszár, and D. Földes, "Information Management of Demandresponsive Mobility Service Based on Autonomous Vehicles," *Procedia Engineering*, vol. 187, pp. 483-491, 2017.
- [139] C. Y. Qu, D. A. Ulybyshev, B. K. Bhargava, R. Ranchal, and L. T. Lilien, "Secure Dissemination of Video Data in Vehicle-to-Vehicle Systems," in 2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop(Symposium on Reliable Distributed Systems Proceedings, 2015, pp. 47-51.
- [140] C. A. Kerrache, N. Lagraa, C. T. Calafate, and A. Lakas, "TFDD: A trust-based framework for reliable data delivery and DoS defense in VANETs," *Vehicular Communications*, vol. 9, pp. 254-267, 2017.
- [141] S. Sousa *et al.*, "A New Approach on Communications Architectures for Intelligent Transportation Systems," *Procedia Computer Science*, vol. 110, pp. 320-327, 2017.

- [142] A. J. Ghandour, K. Fawaz, H. Artail, M. Di Felice, and L. Bononi, "Improving vehicular safety message delivery through the implementation of a cognitive vehicular network," *Ad Hoc Networks*, vol. 11, no. 8, pp. 2408-2422, 2013.
- [143] C. A. Kerrache, N. Lagraa, C. T. Calafate, J.-C. Cano, and P. Manzoni, "T-VNets: A novel trust architecture for vehicular networks using the standardized messaging services of ETSI ITS," *Computer Communications*, vol. 93, pp. 68-83, 11/1/2016.
- [144] A. Baiocchi, F. Cuomo, M. De Felice, and G. Fusco, "Vehicular Ad-Hoc Networks sampling protocols for traffic monitoring and incident detection in Intelligent Transportation Systems," *Transportation Research Part C: Emerging Technologies*, vol. 56, pp. 177-194, July 2015.
- [145] Z. Li and M. Shahidehpour, "Deployment of cybersecurity for managing traffic efficiency and safety in smart cities," *The Electricity Journal*, vol. 30, no. 4, pp. 52-61, May 2017.
- [146] N. Salameh, G. Challita, S. Mousset, A. Bensrhair, and S. Ramaswamy, "Collaborative positioning and embedded multi-sensors fusion cooperation in advanced driver assistance system," *Transportation Research Part C-Emerging Technologies*, vol. 29, pp. 197-213, Apr 2013.
- [147] M. Hübner, T. Lück, and E. Schnieder, "Cooperative Control of Multi-Vehicle-Formations in Road Traffic by means of Consensus Algorithm and Petri Nets," *IFAC Proceedings Volumes*, vol. 42, no. 15, pp. 328-333, 2009.
- [148] M. Aramrattana, T. Larsson, J. Jansson, and A. Nåbo, "A simulation framework for cooperative intelligent transport systems testing and evaluation," *Transportation Research Part F: Traffic Psychology and Behaviour*, 2017.
- [149] S. K. Choi, "An ontological model to support communications of situation-aware vehicles," *Transportation Research Part C: Emerging Technologies*, vol. 53, pp. 112-133, 2015.
- [150] B. HomChaudhuri, R. Lin, and P. Pisu, "Hierarchical control strategies for energy management of connected hybrid electric vehicles in urban roads," *Transportation Research Part C: Emerging Technologies*, vol. 62, pp. 70-86, 2016.
- [151] L. Lucien, C. Lang, N. Marilleau, and L. Philippe, "Multiagent Hybrid Architecture for Collaborative Exchanges between Communicating Vehicles in an Urban Context," *Procedia Computer Science*, vol. 83, pp. 695-699, 2016.
- [152] W. Balzano, A. Murano, and F. Vitale, "V2V-EN Vehicle-2-Vehicle Elastic Network," *Procedia Computer Science*, vol. 98, pp. 497-502, 2016.
- [153] A. B. Ellison, S. P. Greaves, and M. C. J. Bliemer, "Driver behaviour profiles for road safety analysis," *Accident Analysis & Prevention*, vol. 76, pp. 118-132, 2015.
- [154] L. M. Martinussen, M. Møller, and C. G. Prato, "Assessing the relationship between the Driver Behavior Questionnaire and the Driver Skill Inventory: Revealing subgroups of drivers," *Transportation Research Part F: Traffic Psychology and Behaviour*, vol. 26, pp. 82-91, 2014.
- [155] D. Farooq *et al.*, "Analyzing the importance of driver behavior criteria related to road safety for different driving cultures," *International journal of environmental research public health*, vol. 17, no. 6, p. 1893, 2020.
- [156] C. Z. Na Lin, Masayoshi Tomizuka, Pan Song, Zexing Zhang and Gang Li, "An overview on study of identification of driver behavior characteristics for automotive control," *Mathematical Problems in Engineering*, p. 15, 17 March 2014.
- [157] L. Ball, "Aggressive driving behaviour : a forensic psychological perspective," Ph.D thesis, University of Nottingham, 2018.
- [158] C. M. Martinez, M. Heucke, F. Wang, B. Gao, and D. Cao, "Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey," *IEEE Transactions on Intelligent Transportation Systems*, vol. 19, no. 3, pp. 666-676, 2018.
- [159] A. Wahab, T. G. Wen, and N. Kamaruddin, "Understanding driver behavior using multi-dimensional CMAC," in 2007 6th International Conference on Information, Communications & Signal Processing, 2007, pp. 1-5: IEEE.

- [160] O. Raz, H. Fleishman, and I. Mulchadsky, "System and method for vehicle driver behavior analysis and evaluation," ed: Google Patents, 2008.
- [161] E. M. Carboni and V. Bogorny, "Inferring Drivers Behavior through Trajectory Analysis," Cham, 2015, pp. 837-848: Springer International Publishing.
- [162] A. B. Ellison, M. C. Bliemer, S. P. J. A. A. Greaves, and Prevention, "Evaluating changes in driver behaviour: a risk profiling approach," vol. 75, pp. 298-309, 2015.
- [163] F. Tango and M. Botta, "Real-Time Detection System of Driver Distraction Using Machine Learning," *IEEE Transactions on Intelligent Transportation Systems*, vol. 14, no. 2, pp. 894-905, 2013.
- [164] A. Aksjonov, P. Nedoma, V. Vodovozov, E. Petlenkov, and M. Herrmann, "A Novel Driver Performance Model Based on Machine Learning," *IFAC-Papers On Line*, vol. 51, no. 9, pp. 267-272, 2018.
- [165] X. Zheng *et al.*, "Big Data for Social Transportation," *IEEE Transactions on Intelligent Transportation Systems*, vol. 17, no. 3, pp. 620-630, 2016.
- [166] D. Crundall, "Hazard prediction discriminates between novice and experienced drivers," *Accident Analysis & Prevention*, vol. 86, pp. 47-58, 2016.
- [167] T. Petzoldt, T. Weiß, T. Franke, J. F. Krems, and M. Bannert, "Can driver education be improved by computer based training of cognitive skills?," *Accident Analysis & Prevention*, vol. 50, pp. 1185-1192, 2013.
- [168] M. Plöchl and J. Edelmann, "Driver models in automobile dynamics application," *Vehicle System Dynamics*, vol. 45, no. 7-8, pp. 699-741, 2007.
- [169] J. X. Wenshuo Wang, and Huiyan Chen, "Modeling and recognizing driver behavior based on driving data: A survey," *Mathematical Problems in Engineering*, February 2014.
- [170] J. Engelbrecht, M. J. Booysen, and G.-J. Van Rooyen, "Recognition of driving manoeuvres using smartphone-based inertial and GPS measurement," *Proceedings of the 1st International Conference on the Use of Mobile ICT in Africa*, 2014.
- [171] M. Niezgoda, T. Kamiński, and M. Kruszewski, "Measuring driver behaviourindicators for traffic safety," *Journal of KONES Powertrain and Transport*, vol. 19, pp. 503-511, 2012.
- [172] D. L. Van Rooy, J. Rotton, and T. M. Burns, "Convergent, discriminant, and predictive validity of aggressive driving inventories: they drive as they live," vol. 32, no. 2, pp. 89-98, 2006.
- [173] C. Miyajima *et al.*, "Driver Modeling Based on Driving Behavior and Its Evaluation in Driver Identification," *Proceedings of the IEEE*, vol. 95, no. 2, pp. 427-437, 2007.
- [174] A. S. Zeeman and M. J. Booysen, "Combining speed and acceleration to detect reckless driving in the informal public transport industry," in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, pp. 756-761.
- [175] S. Mehar and S. M. Senouci, "An optimization location scheme for electric charging stations," in 2013 International Conference on Smart Communications in Network Technologies (SaCoNeT), 2013, vol. 01, pp. 1-5.
- [176] J. Xu, K. Yang, Y. Shao, and G. Lu, "An Experimental Study on Lateral Acceleration of Cars in Different Environments in Sichuan, Southwest China," *Discrete Dynamics in Nature and Society*, vol. 2015, p. 494130, 2015.
- [177] A. Aljaafreh, N. Alshabatat, and M. S. N. Al-Din, "Driving style recognition using fuzzy logic," in *IEEE International Conference on Vehicular Electronics and Safety*, 2012, pp. 460-463.
- [178] T. Imkamon, P. Saensom, P. Tangamchit, and P. Pongpaibool, "Detection of hazardous driving behavior using fuzzy logic," in 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008, vol. 2, pp. 657-660.
- [179] W. Hailin, L. Hanhui, and S. Zhumei, "Fatigue Driving Detection System Design Based on Driving Behavior," in 2010 International Conference on Optoelectronics and Image Processing, 2010, vol. 1, pp. 549-552.

- [180] L. Eboli, G. Mazzulla, and G. Pungillo, "Combining speed and acceleration to define car users' safe or unsafe driving behaviour," *Transportation Research Part C: Emerging Technologies*, vol. 68, pp. 113-125, 2016.
- [181] S.-H. Chen, J.-S. Pan, and K. Lu, "Driving behavior analysis based on vehicle OBD information and adaboost algorithms," in *Proceedings of the international multiconference of engineers and computer scientists*, 2015, vol. 1, pp. 18-20.
- [182] T. Ezaki, T. Date, and H. Inoue, "An Analysis Platform for the Information Security of In-Vehicle Networks Connected with External Networks," Cham, 2015, pp. 301-315: Springer International Publishing.
- [183] J. Zaldivar, C. T. Calafate, J. C. Cano, and P. Manzoni, "Providing accident detection in vehicular networks through OBD-II devices and Android-based smartphones," in 2011 IEEE 36th Conference on Local Computer Networks, 2011, pp. 813-819.
- [184] M. Wu, S. Zhang, and Y. Dong, "A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors," vol. 16, no. 10, p. 1746, 2016.
- [185] C. G. Q. M, J. O. López, and A. C. C. Pinilla, "Driver behavior classification model based on an intelligent driving diagnosis system," in 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, pp. 894-899.
- [186] Z. Szalay et al., "ICT in road vehicles Reliable vehicle sensor information from OBD versus CAN," in 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2015, pp. 469-476.
- [187] Freematics. (2017). *Freematics ESP32 OBD Kit.* Available: <u>https://freematics.com/store/index.php?route=product/product&product_id=87</u>
- [188] Adafruit. (2017). Adafruit ultimate gps breakout 66 channel w/10 hz updates. Available: <u>https://www.adafruit.com/product/746</u>
- [189] S. Latif *et al.*, "Multicriteria Based Next Forwarder Selection for Data Dissemination in Vehicular Ad Hoc Networks Using Analytical Network Process," *Mathematical Problems in Engineering*, p. 18, 2017.
- [190] M. Rohani, "Bus driving behaviour and fuel consumption," Ph.D thesis, Faculty of Engineering, Science & Mathematics University of Southampton, 2012.
- [191] T. Sato, M. Akamatsu, T. Shibata, S. Matsumoto, N. Hatakeyama, and K. Hayama, "Predicting Driver Behavior Using Field Experiment Data and Driving Simulator Experiment Data: Assessing Impact of Elimination of Stop Regulation at Railway Crossings," *International Journal of Vehicular Technology*, vol. 2013, p. 912860, 2013/03/31 2013.
- [192] S. G. Klauer, T. A. Dingus, V. L. Neale, J. D. Sudweeks, and D. J. Ramsey, "The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data," Apr. 2006.