1,264 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Технология оборудования буровых скважин криогенно-гравийными фильтрами - от идеи до скважинных испытаний

    Get PDF
    In recent years there has been a considerable research on the development of indoor positioning systems. Several kinds of technologies such as ultrasonic, UWB, WLAN, optical waves and hybrid solutions were utilized already. However, using these technologies many difficulties arise in indoor environments due to none line of sight (NLoS) and multipath errors. In this paper, the realization and the evaluation of a 3D indoor localization system, which is robust for harsh and NLoS environments is presented. The positioning system is Direct Current (DC) magnetic based, shows no multipath effects and has excellent characteristics for penetrating various obstacles. To eliminate additional interference fields (e.g. earth's magnetic field, electrical disturbances) a differential measurement principle and adaptive noise suppression algorithms are used. In the case of the deployment in smaller areas, even smart phones equipped with embedded low cost sensors can be utilized as mobile station. A real time 3D position estimation with an accuracy up to 50 cm is achievable by setting up only three magnetic coils inside or around the building. In order to analyze existing systematic errors, a simple calibration procedure has been implemented. The calibration routine reduces the systematic errors, which leads to improved system's positioning accuracy up to 10 cm

    Accurate Estimation of a Coil Magnetic Dipole Moment

    Full text link
    In this paper, a technique for accurate estimation of the moment of magnetic dipole is proposed. The achievable accuracy is investigated, as a function of measurement noise affecting estimation of magnetic field cartesian components. The proposed technique is validated both via simulations and experimentally.Comment: Preprin

    Evaluation and Comparison of Ultrasonic and UWB Technology for Indoor Localization in an Industrial Environment

    Get PDF
    Evaluations of different technologies and solutions for indoor localization exist but only a few are aimed at the industrial context. In this paper, we compare and analyze two prominent solutions based on Ultra Wide Band Radio (Pozyx) and Ultrasound (GoT), both installed in an industrial manufacturing laboratory. The comparison comprises a static and a dynamic case. The static case evaluates average localization errors over 90 s intervals for 100 ground-truth points at three different heights, corresponding to different relevant objects in an industrial environment: mobile robots, pallets, forklifts and worker helmets. The average error obtained across the laboratory is similar for both systems and is between 0.3 m and 0.6 m, with higher errors for low altitudes. The dynamic case is performed with a mobile robot travelling with an average speed of 0.5 m/s at a height of 0.3 m. In this case, low frequency error components are filtered out to focus the comparison on dynamic errors. Average dynamic errors are within 0.3–0.4 m for Pozyx and within 0.1–0.2 m for GoT. Results show an acceptable accuracy required for tracking people or objects and could serve as a guideline for the least achievable accuracy when applied for mobile robotics in conjunction with other elements of a robotic navigation stack

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A Self Regulating and Crowdsourced Indoor Positioning System through Wi-Fi Fingerprinting for Multi Storey Building

    Get PDF
    [EN] Unobtrusive indoor location systems must rely on methods that avoid the deployment of large hardware infrastructures or require information owned by network administrators. Fingerprinting methods can work under these circumstances by comparing the real-time received RSSI values of a smartphone coming from existing Wi-Fi access points with a previous database of stored values with known locations. Under the fingerprinting approach, conventional methods suffer from large indoor scenarios since the number of fingerprints grows with the localization area. To that aim, fingerprinting-based localization systems require fast machine learning algorithms that reduce the computational complexity when comparing real-time and stored values. In this paper, popular machine learning (ML) algorithms have been implemented for the classification of real time RSSI values to predict the user location and propose an intelligent indoor positioning system (I-IPS). The proposed I-IPS has been integrated with multi-agent framework for betterment of context-aware service (CAS). The obtained results have been analyzed and validated through established statistical measurements and superior performance achieved

    Accurate acoustic ranging system using android smartphones

    Get PDF
    ACCURATE ACOUSTIC RANGING SYSTEM USING ANDROID SMARTPHONES By Mohammadbagher Fotouhi, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, we present the design, implementation, and evaluation of an android ranging system, a high-accuracy acoustic-based ranging system which allows two android mobile phones to learn their physical distance from each other. In this system we propose a practical solution for accurate ranging based on acoustic communication between speakers and microphones on two smartphones. Using the audible-band acoustic signal with the Wi-Fi assistance without the sound disturbance is promising for large deployment. Our method is a pure software-based solution and uses only the most basic set of commodity hardware: a speaker, a microphone, and Wi-Fi communication. So it is readily applicable to many commercial-off-the-shelf mobile devices like cell phones. Our system is the result of several design goals, including user privacy, decentralized administration, and low cost. Rather than relying on any centralized management which tracks the user’s location to help them find their distance, our system helps devices learn their distance from each other without advertising their location information with any centralized management. Compared to alternatives that require special-purpose hardware or pre-existence of precision location infrastructure , our system is applicable on most of off-the-shelf components so it is a commodity-based solution will obviously have wider applications and is cost effective. Currently, two smartphones are used to estimate the distance between them through Wi-Fi and audio communications. The basic idea is estimating the distance between two phones by estimating the traveling time of audio signal from one phone to the other as the speed of sound is known. The preliminary results of ranging demonstrate that our algorithm could achieve high accuracy, and stable and reliable results for real time smartphone-based indoor ranging

    Sensory and control system for smart fan

    Get PDF
    A smart fan is a development of an ordinary fan that consists of several features to help more comfortable and easier life. Ordinary stand fan is operated manually which people has to determine the speed of the fan and the oscillation of the fan is fix at a certain degrees. The smart fan is developed to have a speed regarding to the environment temperature and it will only operate as there is presence of human. Furthermore the fan is designed to oscillate with respect to the human location. To this extend, researches on the temperature controller and human location detection have been done and the system design explained in this report. The working principle of smart fan is interrelated between electromechanical, electronics and control system. The LM35 is used to determine the environment temperature meanwhile the passive infrared is used to determine the presence of human and ultrasonic sensors are used to detect the human location. The system is controlled by microcontroller which making the typical stand fan to be smarter

    Overview of current indoor positioning systems

    Get PDF
    Precise positioning in indoor environments faces different challenges the outdoor ones. While indoor environments are limited in size to rooms and buildings, outdoor positioning capabilities require regional or even global coverage. Secondly, the difficulty of receiving satellite signals indoor has triggered the development of high sensitive and AGNSS receivers – with many issues remaining unsolved. Thirdly, the accuracy requirements are dissimilar between indoor and outdoor environments – typically there is a higher demand for relative accuracy indoors. This paper should be regarded as an overview of the current and near future positioning capabilities for indoor and outdoor environments. However, it does not lay claim to completeness. Focus is given on various novel position systems that achieve cm-level accuracy or better, which is a requirement for most geodetic applications. Article in English Dabartinės pozicionavimo sistemos patalpose Santrauka. Nustatant įrenginių padėtis patalpoje susiduriama su visiškai kitomis problemomis nei atvirame lauke. Pirma, kai patalpos aplinka yra ribota kambario ar pastato dydžio, pozicionavimas atvirame lauke turi būti atliekamas regioniniu ar net pasauliniu mastu. Antra, palydovų signalų priėmimo patalpoje sunkumai lėmė didesnio jautrumo bei AGNSS imtuvų kūrimą. Jų veikimo problemos dar nėra galutinai išspręstos. Trečia – patalpos vidaus bei išorės pozicionavimo tikslumo reikalavimai labai skirtingi – pavyzdžiui, patalpoje labai svarbu užtikrinti didelį santykinį pozicionavimo tikslumą. Šiame straipsnyje apžvelgiamos dabarties bei artimiausios ateities patalpų vidaus bei atviro lauko pozicionavimo galimybės. Ši apžvalga negali būti visiškai išsami. Daugiausia dėmesio straipsnyje skiriama įvairioms modernioms pozicionavimo sistemoms, galinčioms pasiekti centimetrų ar geresnį tikslumą, kuris yra būtinas daugumai geodezinių matavimų

    A loose-coupled fusion of inertial and UWB assisted by a decision-making algorithm for localization of emergency responders

    Get PDF
    Combining different technologies is gaining significant popularity among researchers and industry for the development of indoor positioning systems (IPSs). These hybrid IPSs emerge as a robust solution for indoor localization as the drawbacks of each technology can be mitigated or even eliminated by using complementary technologies. However, fusing position estimates from different technologies is still very challenging and, therefore, a hot research topic. In this work, we pose fusing the ultrawideband (UWB) position estimates with the estimates provided by a pedestrian dead reckoning (PDR) by using a Kalman filter. To improve the IPS accuracy, a decision-making algorithm was developed that aims to assess the usability of UWB measurements based on the identification of non-line-of-sight (NLOS) conditions. Three different data fusion algorithms are tested, based on three different time-of-arrival positioning algorithms, and experimental results show a localization accuracy of below 1.5 m for a 99th percentile.This work has been partially supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019 and Project UID/CTM/00264/2019 of 2C2T - Centro de Ciência e Tecnologia Têxtil, funded by National Founds through FCT/MCTES. The work of A. G. Ferreira and D. Fernandes was supported by the FCT under Grant SFRH/BD/91477/2012 and Grant SFRH/BD/92082/2012
    corecore