3,023 research outputs found

    The role of ontologies and decision frameworks in computer-interpretable guideline execution

    Get PDF
    Computer-Interpretable Guidelines (CIGs) are machine readable representations of Clinical Practice Guidelines (CPGs) that serve as the knowledge base in many knowledge-based systems oriented towards clinical decision support. Herein we disclose a comprehensive CIG representation model based on Web Ontology Language (OWL) along with its main components. Additionally, we present results revealing the expressiveness of the model regarding a selected set of CPGs. The CIG model then serves as the basis of an architecture for an execution system that is able to manage incomplete information regarding the state of a patient through Speculative Computation. The architecture allows for the generation of clinical scenarios when there is missing information for clinical parameters.FCT - Fundação para a Ciência e a Tecnologia (SFRH/BD/85291/ 2012)info:eu-repo/semantics/publishedVersio

    Development and implementation of clinical guidelines : an artificial intelligence perspective

    Get PDF
    Clinical practice guidelines in paper format are still the preferred form of delivery of medical knowledge and recommendations to healthcare professionals. Their current support and development process have well identified limitations to which the healthcare community has been continuously searching solutions. Artificial intelligence may create the conditions and provide the tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up to date review of computer-interpretable guideline approaches, namely Arden Syntax, GLIF, PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these approaches respond to the challenges posed by paper-based guidelines and addresses topics of Artificial intelligence that could provide a solution to the shortcomings of clinical guidelines. Among the topics addressed by this paper are expert systems, case-based reasoning, medical ontologies and reasoning under uncertainty, with a special focus on methodologies for assessing quality of information when managing incomplete information. Finally, an analysis is made of the fundamental requirements of a guideline model and the importance that standard terminologies and models for clinical data have in the semantic and syntactic interoperability between a guideline execution engine and the software tools used in clinical settings. It is also proposed a line of research that includes the development of an ontology for clinical practice guidelines and a decision model for a guideline-based expert system that manages non-compliance with clinical guidelines and uncertainty.This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2011"

    Clinical careflows aided by uncertainty representation models

    Get PDF
    Serie : Lecture notes in computer science, ISSN 0302-9743, vol. 8073Choosing an appropriate support for Clinical Decision Support Systems is a complicated task, and dependent on the domain in which the system will intervene. The development of wide solutions, which are transversal to different clinical specialties, is impaired by the existence of complex decision moments that reflect the uncertainty and imprecision that are often present in these processes. The need for solutions that combine the relational nature of declarative knowledge with other models, capable of handling that uncertainty, is a necessity that current systems may be faced with. Following this line of thought, this work introduces an ontology for the representation of Clinical Practice Guidelines, with a case-study regarding colorectal cancer. It also presents two models, one based on Bayesian Networks, and another one on Artificial Neural Networks, for colorectal cancer prognosis. The objective is to observe how well these two ways of obtaining and representing knowledge are complementary, and how the machine learning models perform, attending to the available information.This work is funded by National Funds through the FCT Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2011. The work of Tiago Oliveira is supported by a doctoral grant by FCT (SFRH/BD/85291/2012)

    Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes

    Get PDF
    Over the past 30 years, the international conference on Artificial Intelligence in MEdicine (AIME) has been organized at different venues across Europe every 2 years, establishing a forum for scientific exchange and creating an active research community. The Artificial Intelligence in Medicine journal has published theme issues with extended versions of selected AIME papers since 1998

    Context-aware system applied in industrial assembly environment

    Get PDF
    The objective of this paper is to present an ongoing development of a context-aware system used within industrial environments. The core of the system is so-called Cognitive Model for Robot Group Control. This model is based on well-known concepts of Ubiquitous Computing, and is used to control robot behaviours in specially designed industrial environments. By using sensors integrated within the environment, the system is able to track and analyse changes, and update its informational buffer appropriately. Based on freshly collected information, the Model is able to provide a transformation of high-level contextual information to lower-level information that is much more suitable and understandable for technical systems. The Model uses semantically defined knowledge to define domain of interest, and Bayesian Network reasoning to deal with the uncertain events and ambiguity scenarios that characterize our naturally unstructured world

    Towards a New Science of a Clinical Data Intelligence

    Full text link
    In this paper we define Clinical Data Intelligence as the analysis of data generated in the clinical routine with the goal of improving patient care. We define a science of a Clinical Data Intelligence as a data analysis that permits the derivation of scientific, i.e., generalizable and reliable results. We argue that a science of a Clinical Data Intelligence is sensible in the context of a Big Data analysis, i.e., with data from many patients and with complete patient information. We discuss that Clinical Data Intelligence requires the joint efforts of knowledge engineering, information extraction (from textual and other unstructured data), and statistics and statistical machine learning. We describe some of our main results as conjectures and relate them to a recently funded research project involving two major German university hospitals.Comment: NIPS 2013 Workshop: Machine Learning for Clinical Data Analysis and Healthcare, 201

    A system of serial computation for classified rules prediction in non-regular ontology trees

    Get PDF
    Objects or structures that are regular take uniform dimensions. Based on the concepts of regular models, our previous research work has developed a system of a regular ontology that models learning structures in a multiagent system for uniform pre-assessments in a learning environment. This regular ontology has led to the modelling of a classified rules learning algorithm that predicts the actual number of rules needed for inductive learning processes and decision making in a multiagent system. But not all processes or models are regular. Thus this paper presents a system of polynomial equation that can estimate and predict the required number of rules of a non-regular ontology model given some defined parameters

    Automated clinical decision model construction from knowledge-based GLIF guideline models

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Automatic production and integration of knowledge to the support of the decision and planning activities in medical-clinical diagnosis, treatment and prognosis.

    Get PDF
    El concepto de procedimiento médico se refiere al conjunto de actividades seguidas por los profesionales de la salud para solucionar o mitigar el problema de salud que afecta a un paciente. La toma de decisiones dentro del procedimiento médico ha sido, por largo tiempo, uno de las áreas más interesantes de investigación en la informática médica y el contexto de investigación de esta tesis. La motivación para desarrollar este trabajo de investigación se basa en tres aspectos fundamentales: no hay modelos de conocimiento para todas las actividades médico-clínicas que puedan ser inducidas a partir de datos médicos, no hay soluciones de aprendizaje inductivo para todas las actividades de la asistencia médica y no hay un modelo integral que formalice el concepto de procedimiento médico. Por tanto, nuestro objetivo principal es desarrollar un modelo computable basado en conocimiento que integre todas las actividades de decisión y planificación para el diagnóstico, tratamiento y pronóstico médico-clínicos. Para alcanzar el objetivo principal, en primer lugar, explicamos el problema de investigación. En segundo lugar, describimos los antecedentes del problema de investigación desde los contextos médico e informático. En tercer lugar, explicamos el desarrollo de la propuesta de investigación, basada en cuatro contribuciones principales: un nuevo modelo, basado en datos y conocimiento, para la actividad de planificación en el diagnóstico y tratamiento médico-clínicos; una novedosa metodología de aprendizaje inductivo para la actividad de planificación en el diagnóstico y tratamiento médico-clínico; una novedosa metodología de aprendizaje inductivo para la actividad de decisión en el pronóstico médico-clínico, y finalmente, un nuevo modelo computable, basado en datos y conocimiento, que integra las actividades de decisión y planificación para el diagnóstico, tratamiento y pronóstico médico-clínicos.The concept of medical procedure refers to the set of activities carried out by the health care professionals to solve or mitigate the health problems that affect a patient. Decisions making within a medical procedure has been, for a long time, one of the most interesting research areas in medical informatics and the research context of this thesis. The motivation to develop this research work is based on three main aspects: Nowadays there are not knowledge models for all the medical-clinical activities that can be induced from medical data, there are not inductive learning solutions for all the medical-clinical activities, and there is not an integral model that formalizes the concept of medical procedure. Therefore, our main objective is to develop a computable model based in knowledge that integrates all the decision and planning activities for the medical-clinical diagnosis, treatment and prognosis. To achieve this main objective: first, we explain the research problem. Second, we describe the background of the work from both the medical and the informatics contexts. Third, we explain the development of the research proposal based on four main contributions: a novel knowledge representation model, based in data, to the planning activity in medical-clinical diagnosis and treatment; a novel inductive learning methodology to the planning activity in diagnosis and medical-clinical treatment; a novel inductive learning methodology to the decision activity in medical-clinical prognosis, and finally, a novel computable model, based on data and knowledge, which integrates the decision and planning activities of medical-clinical diagnosis, treatment and prognosis
    corecore