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Abstract. Choosing an appropriate support for Clinical Decision Sup-
port Systems is a complicated task, and dependent on the domain in
which the system will intervene. The development of wide solutions,
which are transversal to different clinical specialties, is impaired by the
existence of complex decision moments that reflect the uncertainty and
imprecision that are often present in these processes. The need for solu-
tions that combine the relational nature of declarative knowledge with
other models, capable of handling that uncertainty, is a necessity that
current systems may be faced with. Following this line of thought, this
work introduces an ontology for the representation of Clinical Practice
Guidelines, with a case-study regarding colorectal cancer. It also presents
two models, one based on Bayesian Networks, and another one on Arti-
ficial Neural Networks, for colorectal cancer prognosis. The objective is
to observe how well these two ways of obtaining and representing knowl-
edge are complementary, and how the machine learning models perform,
attending to the available information.

Keywords: Clinical Decision Support Systems, Computer-Interpretable Guide-
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1 Introduction

Currently, the penetration of Clinical Decision Support Systems (CDSSs) in
daily healthcare delivery is becoming a reality. There is even evidence that the
use of such systems can contribute positively to the improvement of healthcare
services, namely in the prevention of medication errors [2], and the improvement
of practitioner performance [3]. The main goal of these systems is to help health-
care professionals to make decisions by dealing with clinical data and knowledge.
The advent of CDSSs occurred in the middle of the 1960s and the early 1970s.
Through the years, CDSSs evolved into three main types [1]: (i) tools for in-
formation management (e.g. Electronic Medical Record (EMR) systems); (ii)
tools for focusing attention (e.g. alert systems); and (iii) tools for providing
patient-specific recommendations. This paper focuses on the last which are tools
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that provide custom assessments based on sets of patient data. Different tech-
niques have been used to support the decision making process of CDSSs, they
range from mathematical modelling, pattern recognition and statistical analysis
of large databases to specific algorithms represented as flowcharts [1].

This work follows a hybrid approach consisting in specific algorithms com-
bined with models obtained through machine learning processes. The basis for
the algorithmic part will be provided by Clinical Practice Guidelines (CPGs)
[4], which are systematically developed statements that provide healthcare pro-
fessionals with instructions regarding specific clinical circumstances. These doc-
uments are the preferred support for the delivery of medical information to
physicians, but their current format shows some fundamental limitations that,
sometimes, prevent them from fully achieving their goals. The referred limita-
tions include ambiguity of instructions and large textual descriptions that are
difficult to consult during healthcare delivery [5]. A machine-readable format
would provide a solution for some of the limitations of CPGs and, at the same
time, a proper support for a CDSS. As such, this work proposes an ontology
model for the representation of CPG tasks combined with classification models
for specific cases where uncertainty is more evident.

The paper is organized as follows. The next section contains a description
of the primitives used in the CPG ontology along with a proper case study
featuring colorectal cancer (CRC) diagnosis and treatment. In Europe, this is one
of the most common forms of cancer (only second to breast cancer) and it affects
predominantly the western countries, a group in which Portugal is included [6].
Section three introduces a moment in CRC management that is usually clouded
with uncertainty, the prognosis after surgery, as well as a set of models based on
Bayesian Networks (BNs) and Artificial Neural Networks (ANNs) for mortality
prediction. The last section presents some conclusions about the work done so
far and points out to future directions.

2 Clinical Practice Guideline Representation

The approach followed for CPG representation includes an ontology developed
in Ontology Web Language (OWL) McGuinness2004. When the objective is to
create a standard of knowledge representation for use in different applications, an
ontology is arguably the best way to convey information. OWL-DL (Description
Logics) is a highly expressive language comprised of classes (sets of individuals
having certain properties), individuals (objects of the domain) and properties
(binary relationships between individuals or between individuals and data). The
developed ontology is called CompGuide and presents a formalisation of guide-
lines as linked lists of tasks. This approach was based on Computer-Interpretable
Guideline (CIG) [8] formalisms that follow the Task Network Model (TNM),
representing CPGs as networks, or workflows, of tasks [9]. Such formalisms in-
clude the Guideline Interchange Format (GLIF)[10], PROforma [11] and the
Standards-based Sharable Active Guideline Environment (SAGE) [12], just to
name a few. The following subsections will present the main class primitives and
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the properties that enable the definition of the order between tasks, as well as
temporal and clinical constraints.

Fig. 1. Representation of the main primitive classes of CompGuide.

2.1 Task Primitives

In CompGuide a GPG is represented as an instance of the class ClinicalPrac-
ticeGuideline. To sanction the nesting of classes, it was considered that all tasks
of a guideline are contained in a broader task called Plan, to which an individ-
ual of ClinicalPracticeGuideline is linked through the hasPlan object property.
Figure 1 shows a graph containing the top classes of CompGuide

Each guideline has only one Plan, and every Plan has a variable number of
tasks, including other Plans. The main classes are subclasses of ClinicalTask and
consist in Plan, Action, Question and Decision. These tasks have properties, or
are linked to individuals from other classes in order to express different proce-
dures. Starting with the Action class, it is used for steps in the guidelines that
must be performed by a healthcare agent, thus encompassing clinical procedures,
clinical exams, medication and non-medication recommendations. When some
statement concerning a patient has to be asserted, the Decision task is used to
produce it based on the verification of previously specified conditions and the
selection of defined options. The association of conditions to options is done
via object properties that link individuals from Decision to individuals from
ClinicalConstraintElement. Feeding this decision process is possible through a
Question task, which collects all the information necessary for applying a guide-
line. The individuals that belong to this class have data properties to specify
the clinical parameters, and the units under which they should be expressed.
Finally, instances of the End class are used to signal the end of a careflow.

The definition of a relative order between the tasks is achieved through a set
of object properties. A Plan is linked to the first of its tasks by the hasFirstTask
object property, and the task that follows it is connected to the previous by the
nextTask property. The property ensures the sequential execution of tasks, but
leaves out cases where they should be carried out at the same time or alterna-
tively. For these special cases, one uses the parallelTask and the alternativeTask
object properties, respectively.

Figure 2 shows a simplified excerpt from a guideline for diagnosis and man-
agement of CRC from the National Comprehensive Cancer Network (NCCN),
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represented according to CompGuide. The main Plan of the guideline starts with
a Question task with the objective of obtaining some specific clinical parame-
ters (e.g. change of bowel habits, occurrence of weight loss and vomiting, among
others). Then a Decision task is proposed to assess the need for complementary
means of diagnosis, based on the answers to the previous task. There are two
alternative tasks for the next step, selected according to trigger conditions con-
cerning the result of the Decision. If the Action task is the one selected, a set of
exams is proposed based on which the next Decision task will assess the need
for CRC surgery. Again, two tasks are shown as an alternative and the selection
is carried out the same way as in the previous situation, using trigger condi-
tions according to the possible outcomes of the Decision. If the surgery route
is followed, then the next step would be a Plan for adjuvant therapy selection,
i.e., choosing the most appropriate chemotherapy and/or radiotherapy scheme
to be applied. In the meantime, there is a prognosis stage whose representation
falls outside of the capabilities of the ontology. As such, the integration of the
careflow provided by the ontology with a classification model, derived from data,
is necessary, as it will be discussed further here-in.

Fig. 2. Excerpt of a guideline for the diagnosis and treatment of colorectal cancer.

2.2 Temporal Constraints

Besides the relative order by which they are executed, clinical procedures are
also bound by temporal constraints, such as duration and cyclic repetitions. In
this case, the duration indicates for how long the task should stay active. Hence,
to express this, there is the Duration class under TemporalElement. This class
is defined only for Plans and Actions and each of its individuals has a decimal
data property, the DurationValue, and a hasTemporalUnit object property that
connects it to an individual from TemporalUnit. The available temporal units
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are second, minute, hour, day, week, month and year. In Loop, also under Tem-
poralElement, one defines the repetition cycles for both Actions and Plans. An
individual from Loop has an integer data property named RepetitionValue where
it is possible to specify the number of repetitions of the referred tasks. Another
feature is an object property, hasPeriodicity, linking to individuals of a class
called Periodicity. The individuals from this class possess two constructors to
define periodic executions of tasks, namely the PeriodicityValue data property
and the hasTemporalUnit object property.

2.3 Clinical Constraints

The execution of tasks depends on the verification of conditions. In a Decision
task there is a choice between two or more options which are represented by in-
dividuals of the Option class under ClinicalConstraintElement. The Option class
is defined by properties that enable the expression of the Parameter the option
reports to and the value to be asserted to the patient state which might be ei-
ther a NumericalValue or a QualitativeValue. For option selection, the definition
of conditions is essential. This is done through the ConditionSet classes whose
instances represent sets of conditions which, in turn, are created as instances of
the Condition class. The later has appropriate properties to specify the clinical
parameter the condition reports to and the value of that parameter that should
be checked.

CompGuide also models other types of conditions, namely TriggerConditions,
PreConditions and Outcomes, all of them defined under ClinicalConstraintEle-
ment. A TriggerCondition is used to choose the next task in the clinical careflow
when they are connected to the previous task by the alternativeTask object
property. This is accomplished using the ConditionSet class in a manner that is
similar to Option. A PreCondition is slightly different in the sense that it rep-
resents conditions that must be checked before the application of tasks. Finally,
the Outcome indicates the expected result after a Plan, or an Action, that will
only be accomplished if their results are met.

3 Management of Clinical Uncertainty

Uncertainty may be defined as something that is not certain and transmits
doubts, being an important concept in the medical domain. Indeed, a symp-
tom may be viewed as an uncertain indication of a disease, since it may occur or
not together with a certain health condition [13]. The prediction of the expected
outcome of a treatment process is one of the responsibilities of healthcare pro-
fessionals, and is also the moment of the clinical encounter in which uncertainty
affects more the decisions. Prognosis may be defined as the prediction of the
future course of a disease process that depends on the patient’s health history
[14]. In this case, the fundamental objective is to predict mortality after 30 days
of CRC surgery. This is a critical aspect for surgeons because the death of a pa-
tient during this period is considered their direct responsibility. Moreover, this
period is particularly important for the posterior recovery of patients.
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3.1 The Case of Colorectal Cancer Prognosis

CRC develops in the cells lining the colon when they suffer mutations that
cause their uncontrollable growth. They begin to invade healthy tissues, yielding
malignant tumours and may also spread to other parts of the body by entering
the bloodstream or the lymphatic system [20].

There are many variables that influence CRC prognosis, this being one of the
reasons why this process is so problematic. The other reason is the interactions
between the variables and the effect they have on the outcome, which are not
entirely known and, as such, are difficult to deal with, even when one is rigor-
ously following a CPG. For these situations, other models are necessary for the
completion of guidelines and to build a complete solution for the management
of diseases and treatments. From the literature it was possible to isolate a set
of variables considered important for CRC prognosis and group them under two
classes [15, 16]: physiological factors and operative severity factors.

The physiological factors describe the physical condition of a patient, thus in-
cluding [15, 16]: age, sex, cardiac signal, respiratory signal, ElectroCardioGram
(ECG) findings, systolic blood pressure, diastolic blood pressure, cardiac fre-
quency, levels of substances in the blood (e.g. haemoglobin, leukocytes, sodium
and potassium), urea levels, Dukes cancer classification and the American Soci-
ety of Anaesthesiologists (ASA) physical status classification.

On the other hand, the operative severity factors include elements related
with the surgery that affect the patient’s recovery [15, 16]. This class consists
of: pathology type, surgical urgency, surgical approach, operative severity (as
classified by the surgeon), total blood loss, contamination of the peritoneal cav-
ity, type of CRC procedure and cancer resection status (i.e., if the tumour is
technically removable or not).

These were the factors used for the construction of the models presented in
the next section. They were used as inputs for the models to predict the outcome
expressed as 30-day mortality after surgery.

3.2 Developed Models

The term machine learning may be regarded as the capability of machines to
identify patterns in data, use them to build a memory and then perform fu-
ture tasks based on the memory they have built. This work configures a case
of supervised learning, since one is trying to infer a function and make a gener-
alization based on labelled data. The data set used corresponds to a sample of
230 patients that received surgical treatment for CRC at the Hospital of Braga .
The attributes in the data set are the factors presented in the previous section,
regarded as inputs for a classifier. The outcome of the classifier was considered
to be the mortality within 30 days after surgery, with the possible values yes or
no.

There is a number of machine learning models for supervised learning, ac-
cording to the way they represent information. For this work, Bayesian Networks
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(BNs) and Artificial Neural Networks (ANNs) were considered as potential so-
lutions for modelling CRC prognosis. A Näıve Bayes classifier is a probabilistic
model that uses Bayes rule and has a graphical representation in the form of a
directed graph, it is characterized by the assumption that all attributes (inputs)
are independent [17]. Although the independence assumption is a simplistic one
for real life, this type of classifier usually performs well in actual data sets. As for
ANNs, they are a mathematical approach inspired in biological neuron networks
that consist in an interconnected group of artificial neurons, each one having a
specific activation function. Arguably the most well known form of ANN is the
Multi-Layer Perceptron which is an ANN that trains using backpropagation and
consists in multiple layers containing neurons, namely an input layer connected
to a variable number of hidden layers, which in turn are connected to an output
layer.

Using the Classify tab in the Weka Explorer interface, a NaiveBayes and
a MultilayerPerceptron classifiers were obtained. For testing purposes, 5-fold
cross-validation was performed, producing the results shown in Table 1.

Table 1. 5-fold cross-validation results for the CRC prognosis classifiers.

Classifier Kappa statistic Mean abs. error Precision Recall F-measure

NaiveBayes 0.192 0.0715 0.927 0.939 0.932
MultilayerPerceptron -0.0452 0.093 0.904 0.913 0.908

The Kappa statistic measures the agreement between two raters, in this case,
between each classifier and the true classes in the data set [18]. This measure
removes the probability of chance agreement and if a classifier has a value higher
than 0, as it is the case of the NaiveBayes, it means that said classifier is per-
forming better than chance. On the other hand, a value inferior to 0 means that
agreement occurs less than it was predicted by chance. This happens with the
MultilayerPerceptron, revealing a poor correspondence with reality. In turn, the
mean absolute error summarises how close forecasts are to eventual outcomes
[19] and, in this parameter, the NaiveBayes is associated with a lower error than
its counterpart, thus indicating a minor deviation from the real values of the
labels, though not by much.

Precision and recall are measures that are usually used in pattern recogni-
tion to assess model performance [17]. The first corresponds to the fraction of
instances classified as positive that are true positives, while the second repre-
sents the fraction of positives that were correctly classified. The F-measure is the
harmonic mean of the previous two, a combined score [17]. The values of Table
1 are the weighted averages of these three measures, in which the NaiveBayes
shows an overall better performance. However, these values may be misleading
once the occurrence of an actual death is a rare phenomenon, which translates
into the classification classes not being approximately equally represented. In
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fact, the values for precision, recall and F-measure for class yes were abnor-
mally low, whilst for class no they were significantly higher, which results in a
high weighted average. This class imbalance results from the difficulty to obtain
data of deceased patients, evident in the sample studied for this work where
there are only 11 cases of death out of 230 instances.

The results of the the Receiver Operating Characteristics (ROC) of Figure 3
are in consonance with the ones already shown. A ROC curve is a graphical plot
of sentivity, also called true positive rate, against 1-specificity, or probability of
false alarm, that evaluates the performance of a binary classifier. The desired
result is to have low values of 1-specificity for high values of sensitivity, i.e,
the biggest possible are under the curve. As the graphics show, the NaiveBayes
classifier is the one with a bigger area under curve, with a value of 0.795, against
0.668 of the MultilayerPerceptron.

Fig. 3. Receiver operating characteristic for (a) the NaiveBayes and (b) the Multilay-
erPerceptron classifiers, regarding the class yes represents a death during the 30 day
period.

4 Conclusions and Future Work

This work suggests an alternative to the purely rule-based methods for clini-
cal decision, addressing the limitations of explicit knowledge. This enables the
system to tackle problems such as high complexity situations and uncertainty.

The CompGuide ontology deals with the definition of clinical tasks, their
ordering and scheduling, in a care flow with different plans. Care flow manage-
ment systems with an underlying ontology allow an advanced reasoning and the
sharing of a standard representation. However, the representation of clinical in-
formation requires an inherent flexibility, given the variability of decision making
processes that one may find in different medical domains. CRC prognosis is one
of such cases, where healthcare professionals require more powerful tools than
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simple CPG algorithms. This calls for the inclusion of models capable of repre-
senting complex and uncertain information in the procedural logics of the CIG
execution engine.

Two classifiers were produced to forecast the outcome of the prognosis after
CRC surgery. The NaiveBayes classifier was the one that showed a better per-
formance. Being a graphical model, it is also better at delivering information to
healthcare professionals. The belief network enables the users to selectively con-
dition each entry variable and verify its impact on the outcome variable, in the
form of a probability adjustment. This is more advantageous over the opaque-
ness of ANNs and thus the MultilayerPerceptron, where it is possible to view the
system in terms of inputs and outputs, but not its internal workings. Healthcare
professionals consider the inference process as equally valuable as the outcome.
As so, it may be concluded that the Bayesian model is the best choice for integra-
tion with the care flow modelled by the ontology. Being so, it is also noticeable
that the model needs refinement by extracting the most relevant features in or-
der to make better generalizations and achieve better performances. Moreover,
some pre-processing with techniques to adjust imbalanced data sets, such as the
(Synthetic Minority Oversampling TEchnique) SMOTE [21], is needed in order
to see if they increase the NaiveBayes performance.

The next steps include the improvement of the current classifiers and the
development of other models of the same type for other key moments of the
guideline depicted in Figure 2, such as the prediction of patient response to
adjuvant therapy. The goal is to build a general solution capable of providing
personalized recommendations.
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