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Abstract

The concept of medical procedure refers to the set of activities carried out by the health
care professionals to solve or mitigate the health problems that affect a patient. De-
cisions making within a medical procedure has been, for a long time, one of the most
interesting research areas in medical informatics and the research context of this thesis.
The motivation to develop this research work is based on three main aspects: Nowadays
there are not knowledge models for all the medical-clinical activities that can be induced
from medical data, there are not inductive learning solutions for all the medical-clinical
activities, and there is not an integral model that formalizes the concept of medical
procedure. Therefore, our main objective is to develop a computable model based in
knowledge that integrates all the decision and planning activities for the medical-clinical
diagnosis, treatment and prognosis.

To achieve this main objective: first, we explain the research problem. Second,
we describe the background of the work from both the medical and the informatics
contexts. Third, we explain the development of the research proposal based on four
main contributions: a novel knowledge representation model, based in data, to the
planning activity in medical-clinical diagnosis and treatment; a novel inductive learning
methodology to the planning activity in diagnosis and medical-clinical treatment; a novel
inductive learning methodology to the decision activity in medical-clinical prognosis, and
finally, a novel computable model, based on data and knowledge, which integrates the

decision and planning activities of medical-clinical diagnosis, treatment and prognosis.

v



Resumen

El concepto de procedimiento médico se refiere al conjunto de actividades seguidas por
los profesionales de la salud para solucionar o mitigar el problema de salud que afecta a
un paciente. La toma de decisiones dentro del procedimiento médico ha sido, por largo
tiempo, uno de las dreas mas interesantes de investigacion en la informatica médica y el
contexto de investigacién de esta tesis. La motivacion para desarrollar este trabajo de
investigacion se basa en tres aspectos fundamentales: no hay modelos de conocimiento
para todas las actividades médico-clinicas que puedan ser inducidas a partir de datos
médicos, no hay soluciones de aprendizaje inductivo para todas las actividades de la
asistencia médica y no hay un modelo integral que formalice el concepto de procedimiento
médico. Por tanto, nuestro objetivo principal es desarrollar un modelo computable
basado en conocimiento que integre todas las actividades de decision y planificacién
para el diagnodstico, tratamiento y pronoéstico médico-clinicos.

Para alcanzar el objetivo principal, en primer lugar, explicamos el problema de inves-
tigaciéon. En segundo lugar, describimos los antecedentes del problema de investigacion
desde los contextos médico e informatico. En tercer lugar, explicamos el desarrollo de
la propuesta de investigacién, basada en cuatro contribuciones principales: un nuevo
modelo, basado en datos y conocimiento, para la actividad de planificacion en el diag-
nostico y tratamiento médico-clinicos; una novedosa metodologia de aprendizaje induc-
tivo para la actividad de planificacion en el diagnoéstico y tratamiento médico-clinico;
una novedosa metodologia de aprendizaje inductivo para la actividad de decisiéon en el
pronostico médico-clinico, y finalmente, un nuevo modelo computable, basado en datos y
conocimiento, que integra las actividades de decision y planificacién para el diagnoéstico,

tratamiento y pronéstico médico-clinicos.
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Chapter 1

Introduction

The concept of medical procedure refers to the set of activities carried out by the health care
professionals to solve or mitigate the health problem that affects a patient. For a long time, decision
making within medical procedures has been one of the most interesting research areas in medical
informatics and the research context of this thesis. The motivation behind this research is centred
in the modelling and the integration of the decision and planning activities in medical-clinical

diagnosis, treatment and prognosis for decision making support in medicine.

1.1 Research Context

The health care professionals who attend a patient affected by one or more diseases must decide
about the best medical-clinical attention that helps to improve, stabilize or delay the worsening of
patient health. This attention begins with the application of diagnostic techniques and continues
with the selection and adaptation of a concrete treatment. Likewise, the realization of a prognostic
to determine the patient’s evolution according to the followed treatment allow us, if it is required,
to make the appropriate adjustments for giving the best medical-clinical attention. Through the
last decades, multiple computer based tools have been developed with the purpose of improving
these activities. These tools are developed to give the health care professionals an alternative
focus in the process of decisions making in medical assistance, particularly in the decision and
planning activities in diagnosis, treatment and prognosis. This is the case of the medical decision
support systems (MDSS) [Coi03, MamS06, LW06, Gre07, Har09], where advances resulting from
disciplines such as decision theory, mathematics, statistics and artificial intelligence, have allowed
its development during the last decades. An example of these advances in artificial intelligence is

inductive learning. Inductive learning consists in inferring general descriptions (knowledge) from a



set of observed instances (data). So, the inductive learning algorithms are based in a data model
to be processed and in a model of knowledge to be generated. The use of learning algorithms
in medicine must therefore be based in models capable of representing data and knowledge about
medical-clinical diagnosis, treatment and prognosis. These models can be different depending on
whether the activity made by the health care professionals is of the kind decision or planning.

The decision activities are made when a health care professionals issues a definitive judgement
on the health of a patient and they are based in the available information of that patient. So, the
medical-clinical data about a patient allow the health care professional to conclude what particular
disease that patient has (i.e, diagnosis), what specific therapy that patient should follow (i.e.,
treatment), and whether a therapy is applied, what the expected evolution is (i.e., prognosis).
Otherwise, when there is not enough information available about the patient or about his/her
disease to reach a conclusion about the patient diagnosis or treatment, the health care professional
should start some planning activities which allow to organize the action sequences to be adopted in
order to end in a diagnostic or a treatment decision.

Both activities (decision and planning) for diagnosis, treatment and prognosis are mutually
related and they are part of the medical procedure. In medical assistance, the concept of medical
procedure consists in a set of medical-clinical activities carried out for the care of a specific patient.
The ways in which these activities are structured define the medical procedure applied to that
patient. So, the medical procedure is defined as the model used by health care professionals to solve
or mitigate the health problem that the patient has. The formalization of the medical procedure
in terms of the activities previously mentioned allows us to gradually increase the automation
of medical assistance through inductive learning algorithms. This medical procedure automation
through the use of intelligent computer systems can be used by the health care professionals as an

integral tool of medical decision support.

1.2 Research Motivations
The motivation of this doctoral thesis is based in the following issues:

e Nowadays there are not knowledge models for all the medical-clinical activities that can be

induced from medical data.

e So far, there are not inductive learning solutions for all the medical-clinical activities.



e In the medical informatics context, there is not an integral model that formalizes the concept

of medical procedure.

The resolution of these three deficiencies redounds in a clear contribution to formalize and

automate the medical assistance.

1.3 Research Objectives

The main objective of this PhD thesis is to develop a computable model based in knowledge that
integrates all the decision and planning activities for medical-clinical diagnosis, treatment and prog-
nosis.

For achieving this general objective, the following specific objectives are proposed:

1. Propose a knowledge-based model for the planning activity in the medical assistance

2. Develop and integrate inductive learning methods that allow solving planning problems in

medical-clinical diagnostic and treatment.

3. Develop and integrate inductive learning methods that allow solving decision problems in

medical-clinical diagnosis, treatment and prognosis.

4. Propose a formal model to represent medical procedures that integrates the decision and

planning activities to medical-clinical diagnosis, treatment and prognosis.

5. Propose a functional model based in knowledge that automates the formal model of medical

procedures previously proposed.

1.4 Research Contributions
The main contributions of this PhD thesis are:

e Proposal of a knowledge representation model for the planning activity in medical assistance.

e Development of a method to automatically generate knowledge for the planning activity in

medical-clinical diagnosis and treatment.

e Development of a method to automatically generate knowledge for the decision activity in

medical-clinical prognosis.



e Proposal of an integral, computable and knowledge based model that helps in the automation
of medical procedures for the decision and planning activities in medical-clinical diagnosis,
treatment and prognosis. This model integrates different learning methods that support de-

cision making in medical assistance from two different situations:

1. When the available information of the patient is sufficient for decision making. In this
case, the model proposes a value or a label indicating the disease (i.e., diagnosis), the
therapy (i.e., treatment), or the patient evolution if the therapy has been applied (i.e,
Prognosis).

2. When the available information of the patient is not sufficient for decision making. In
this case, the model is able to automatically build action plans to find the patient’s
diagnosis, and after the patient has been diagnosed, obtain or adjust his/her treatment.
In this sense, these action plans can be used to support the health care professionals to
program the actions that are aimed at achieving a correct diagnosis and an adequate

treatment.

1.5 Document Organization

This document has three main parts. The first part (Introduction) explains the research problem.
The second part (State of Art) describes the background of the problem in two chapters: chapter
2 and 3. Chapter 2 describes the medical context of this document. The medical context descrip-
tion begins with the introduction of main activities that medical assistance has and how they are
used in a medical procedure for decision making in medicine. Then, the features, limitations and
problems related to the decision making process in medical assistance are specified. After that,
the main technologies for decision making support in medical assistance are introduced. Finally,
the conclusions of this chapter are presented. Chapter 3 explains the formalization of knowledge
in medical assistance. This formalization begins with an introduction to the main categories of
knowledge in medical assistance. After that, the main formalisms of knowledge representation in
medical assistance are detailed. Next, a description of the main machine learning methods used
in the process of inducing useful knowledge for decision making support in medical assistance are
described. Finally, the conclusions of this chapter are presented.

Part three (Modelling of a Holistic Architecture for the Diagnosis, Treatment and Prognosis

in Medicine) describes the development of the research proposal of this thesis, this description is



detailed in four chapters: Chapter 4, 5, 6 and 7. Chapter 4 introduces a novel model, based in data,
to represent know-how knowledge in the medical assistance. This model called the SDA (State
Decision and Action) model is presented as an alternative to the current representation models
of this sort of knowledge. Chapter 5 presents a novel methodology for the know-how knowledge
automatically generation in the medical assistance. This learning methodology is based in the SDA
representation model, introduced in the previous chapter. Chapter 6 presents a novel methodology
for the automatic generation of know-what knowledge for medical-clinical prognosis. This learning
methodology is based in partial orders that together with state-transition diagrams, allows predict-
ing several medical events simultaneously (improve, worsen, cure, death and survival). Chapter
7 presents the proposal of a knowledge based model which integrate the decision and planning
activities for medical-clinical diagnosis, treatment and prognosis.

Finally, part four (Conclusions) composed by chapter 8, the conclusions of this thesis are de-
scribed. These conclusions are organized as limitations and future work, main contributions and

final conclusion.



Part 11

State of the Art



Chapter 2

The Medical Assistance

This chapter presents a general description about what is medical assistance. The description is
structured in three sections. The first section introduces the concept of medical assistance, defines
its three principal activities: medical-clinical diagnosis, treatment and prognosis, and explains how
these activities are integrated in the medical procedure nowadays. The second section describes the
aspects used for medical assistance decision making: medical skills, medical knowledge and medical
reasoning. It also includes medical reasoning limitations and the problems derived from the uncer-
tainty and the variability in medicine. Finally, it presents a classification of the principal techniques
developed to offer support to decision making in medical assistance. The classification is based on
the following aspects: techniques based in protocols and clinical practice guidelines, classification
and encoding systems of medical data, decision making support systems based in decision theory,

maths and statistics, and decision making support systems based in artificial intelligence.

2.1 Introduction

Medical assistance is the process of medical intervention which is related to provide some attention
to the patient health care. Its components are data and medical information, perceptions, reasoning,
judgments and decisions of the health care professionals, the procedures used and the interventions
applied. This process begins when a patient suffering from an ailment is attended by a health
care professional, or, when the patient is submitted to a control or monitoring routine visit. The
process continues until the patient is discharged from the hospital, because the procedures have led
either to a total or partial cure or stabilization that do not involve high risks for his/her health
[Gre07, Har09]. Also, there are too many situations in which, due to the complexity or seriousness of

illness, the procedures realized do not determine a good expectation in the patient health evolution,



forcing in some cases to incorporate new procedures that improve his/her quality of life.

Medical assistance depends on whether the activity made by the health care professional is
about decision or planning. Decision activities are realized when a health care professional issues a
definitive judgment about a patient’s health based on the available information about that patient.
For that reason, the medical-clinical data of a patient allows the health care professional to conclude
what particular disease that patient has (i.e., diagnosis), what specific therapy he must follow (i.e.,
treatment), and if a therapy is applied, what is the expected outcome (i.e., prognosis). Otherwise,
when there is a lack of information about the patient or his/her disease to reach a definitive decision,
the health care professional needs to realize planning activities that will allow him to organize a
sequence of actions which will lead to a diagnostic or treatment decision.

The integration of medical activities considering decision and planning for the diagnostic, treat-
ment and prognostic in medical assistance is structured following a medical procedure which repre-

sents how the health care professionals act in the process of medical-clinical decisions making.

2.1.1 Medical-Clinical Diagnosis

Medical-clinical diagnosis is the central act of medicine. The word diagnosis is used in two senses:
on the one hand, it’s the process by which the health care professional begins when he wants to know
the state of a particular patient and, on the other hand, it’s the result of the knowledge acquired
by the health care professional as consequence of the above process [Roz06|. So, in order to make
a medical-clinical diagnosis, the health care professionals observe the data provided by three main
resources [Har09]: information elicitation (or anamnesis), physical examination and diagnostic tests.
Information elicitation is the inquiry by the health care professional of the available patient’s medical
information. This information includes the patient’s perception of their symptoms, the medical
history, the family history and other aspects that the health care professional thinks are important.
Physical examination allows through senses: sight-inspection, touch-palpation, hear-auscultation,
smell-olfaction, to determine the signs or objective data, which include pathological and normal
data of the patient. Finally, the diagnostic tests allow improving the available information of the
patient with laboratory data. These diagnostic tests usually confirm or discard a specific disease
before beginning a treatment.

Given the way of making a diagnostic procedure or diagnostic test, the medical-clinical diag-
nostic can be classified in: differential diagnostic, clinical diagnostic and histological diagnostic.

Differential diagnostic is based in a set of diseases which can cause a syndrome, discarding one by
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one the possible diseases by taking into account the proposed hypothesis and the complementary
explorations, until only the most feasible disease that can cause the patient symptoms remains.
Clinical diagnostic is established through the anamnesis, the physical and complementary examina-
tions (except those of pathological anatomy) to determine the patient disease. Finally, histological
diagnostic is obtained through non-routine diagnostic tests (e.g., a biopsy'), being it, the definitive

diagnostic in complex diseases as cancer.

2.1.2 Medical-Clinical Treatment

Medical-clinical treatment or therapy of a disease can be defined as a temporal sequence of medical
actions, such as drugs prescription, lifestyles modifications, medical procedures application or other
medical actions, that a health care professional can determine for a particular patient, generally as
a continuation of a diagnostic activity.

Medical-clinical treatment can be classified in various guises. The first distinction considers the
object of the treatment [Pee00]:causal or symptomatic treatment. Causal treatment aims to fight
the causes of the disease, whereas the symptomatic treatment aims to suppress the symptoms. A
second distinction is between curative or palliative treatment. Curative treatment intends to cure
the patient completely from the disease and its underlying causes, and palliative treatment intends
to alleviate the patient’s suffering or to prolong his duration of life. Palliative treatment is mostly

symptomatic but can sometimes be classified as causal.

2.1.3 Medical-Clinical Prognosis

Medical-clinical prognosis refers to the prediction of the a disease evolution or the treatment out-
comes. When the particular characteristics of a patient are being used to predict the outcomes of
a disease, they are called prognostic factors [VH03]. A prognostic factor can be of different type:
demographic (e.g., age and sex), specific about the disease (e.g., tumour size, involvement of lymph
nodes or not), or comorbidities (e.g., diabetic patient). Health care professionals find out these
prognostic factors in a patient through the symptomatology and some diagnostic tests.

The prognosis can be expressed both qualitatively or quantitatively. In qualitative prognosis,
the health care professionals value these prognostics using terms as “good”, “bad” or “intermediate”,
or “mild”, “moderate” or “severe”. The term reserved prognostic refers to an unknown or uncertain

prognostic that can result in severe problems or even the patient death. In quantitative prognostis,

LA biopsy is the removal of a sample of tissue from the body with diagnostic purposes.
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the prognostic is made according to morbidity and mortality percentages and rates.

2.1.4 The Medical-Clinical Procedure

Medical procedure (MP) is the frame where the medical assistance activities of decisions and planning
are integrated to deal with medical-clinical diagnosis, treatment and prognosis. This integration
must consider and solve all the problems referred to how the medical diagnosis introduced in section
2.1.1 (differential, clinical and histological diagnostic) are related with the sorts of medical treatment
introduced in section 2.1.2 (causal, symptomatic, curative and palliative treatment), and to predict
how these treatments are expected to affect the evolution of the patient

The standard MP used by the health care professionals is shown in figure 2.1 [Har09, Gre07,
Roz06, Kuk03a, Pee00]. This MP begins when a patient realizes about some symptoms he has
or manifestations of some disease and decides to visit a health care professional. The health care
professional makes a set of actions to solve the ailments which affect the patient. First, the health
care professional starts carefully collecting the clinical history of the patient or anamnesis, in which
he will inquire about symptoms or subjective ailments that the patient manifests. Often, at the end
of anamnesis, a suspected diagnostic (Sd) can be deduced [Roz06].

Immediately after, secondly, the health care professional makes the physical examination of the
patient. This physical examination will permit to find causes not detected in the anamnesis. Once
the two phases finish, the health care professional will recommend, in case of being necessary, to
realize routine diagnostic tests to confirm or discard the initial Sd. The combination of the symp-
toms obtained in the anamnesis, the signs obtained after a physical exploration and the available
laboratory data, the health care professionals can set the patient medical frame. When this process
finishes, the suspected disease becomes in a presumption diagnostic or provisional diagnostic (Pd),
even in the definitive diagnostic (Dd) of the disease.

If the Pd persists, the health care professional can suggest non-routine diagnostic tests (e.g.,
imaging diagnostic techniques as radiography, echography, computed tomography or magnetic res-
onance, and other instrumental techniques such as electrocardiograms, electroencephalography,
spirometry, laparoscopy, etc.), which may help him to accept or to reject that Pd, and so to reach
a Dd. However, and due to the complexity of the non-routine diagnostic tests (high costs, required
time, a risk possibility to the patient, pain, etc.) [Pee00], the risks and benefits of these tests are
compared with the advantages and disadvantages of the possible therapeutic alternatives. This

comparative work ends with a set of suggestions to the patient [Kuk03a|. According to the patient
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Figure 2.1: Medical procedure synthesis.
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response to the proposed therapy and the obtained outcomes of non-routine diagnostic tests, the
diagnostic process can require a reconsideration in which differential diagnosis is adjusted to the
new information.

At the end of this step, the patient condition is called the therapy outcome, and the expected
condition after a short or long time (typically ranging from days to a significant number of months
or years) is the medical prognosis [Pee00]. It is common in many MP that the medical treatment has
a follow-up with regular tests to monitor the patient’s health. The therapy outcomes and prognoses
are the most important criteria to evaluate and to determine whether the sequences of actions are

right or not.

2.2 Decision Making in the Medical Assistance

Medical decisions are made during the diagnosis and medical-clinical treatment phases. These
decisions involve the practice of more studies, request of consultations and decision making based
on the prognostic. All of them force the health care professional to know all the pathophysiological
and evolutive aspects of the disease.

Medical decisions are based in factual tests (i.e., based on evidences) so that the patients obtain
the maximum benefit of the scientific knowledge available to the health care professionals [Mar07].
Planning the possibilities of a diagnostic, execution of a plan or suggesting a possible prognostic,
requires not only to have a broad knowledge base, but also to consider the relative possibilities of
evolution of some diseases and to know the importance of some symptoms and signs that arise less
frequently. Confirmed all this, forces the health care professional to apply a medical procedure that
allows the health care professional to collect data, to propose hypotheses and to reach objective
conclusions as to whether to accept or reject a particular medical diagnostic hypothesis, to design
and to execute a medical treatment plan or to determine the evolution of a disease through a medical
prognostic. In this sense, the success of the decisions taken will depend of the aspects as medical
skill against a particular situation, the medical knowledge available in that moment and the medical

reasoning used against the available information.

2.2.1 Medical Skill

Skill of the health care professionals is defined as the ability to adequately address each of the

decisions within the MP and it is closely related to other two aspects: medical knowledge and
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reasoning. This is part of one’s condition as health care professional and it is beyond the scope of

this work.

2.2.2 Medical Knowledge

The meaning of medical knowledge is complex. Several studies have been developed to deepen
in different aspects that influence in a better decision against to a determined medical situation
[Mil94, Coc99, KF05, Har09]. These studies defend that, in case of a decision situation, an health
care professional with experience reasons better than another one who does not have any experience,
therefore they are able to realize a better selection of strategies against the decision that is going
to be taken. This means that the experienced health care professionals have a better ability to
combine of the different sorts of knowledge acquired from several external sources, or from their
own professional formation and experience, allowing them to make wiser decisions. Examples of
these sorts of knowledge are: scientific and experimental knowledge. These two sorts knowledge are
the most used ones in the medical decisions making process [NS00].

In medicine, the scientific knowledge (or deep knowledge), includes the understanding of the
scientific values and their relationship among the pathophysiological conditions and the disease
symptoms. This knowledge is found in medical literature, and helps to understand and justify the
empiric phenomena, explaining how these phenomena have sense in real situations. The exper-
imental knowledge (or superficial knowledge), originates from the patient cases well documented
and validated, allowing the evidence-based medicine. This type of knowledge helps the health care
professionals to recognize a disease and proposes a medical treatment based only on their own or
others experience [Coc99].

In a medical decisions making process, these two types of knowledge: scientific and experimental,
can be intertwined. So, when a medical problem has to be solved, tests based on mathematics
(e.g., diagnostic tests accuracy estimation [KBFT07]) can be based in experimental knowledge as
alignments and approaches, whereas, the scientific knowledge shows, in this situation, to what extent
these approximations and simplifications have sense.

Also, and not less important, explicit and tacit knowledge are used in medical decisions making
[Nyk00, AKBPOG6|. Explicit knowledge is articulated in a formal language and is transmitted between
the different components of the decision process. This type of knowledge corresponds to the results
obtained from scientific researches and published in scientific articles, systematic reviews, protocols

and clinical practice guidelines, that allow having a background knowledge necessary to decisions
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making against to a particular patient. On the contrary, tacit knowledge describes the health
care professional abilities against to a situation of decision making. This knowledge is personal,
supported in the experience and based in intangible factors such as beliefs, perspectives and values.
In this sense, this type of knowledge is formed by cognitive elements that refer to the mental models
that the health care professional does in a particular situation of decisions making, and the technical
elements that reference all the abilities and the concrete knowledge which can be applied in that

particular situation.

2.2.3 Medical Reasoning

Medical reasoning is the last issue that influences the process of medical decisions making. Reasoning
is the human ability to solve problems. In medicine, it’s important to take into account that each
health care professional may act and think different in each particular situation of decision making.
For example, in medical diagnosis, a decision can be immediate whether the health care professional
recognize a particular “pattern”, whereas in other cases, it’s necessary a complex procedure based
on diagnostic tests, and even in ex-juvantibus treatments. In these treatments, with a medical
suspicion and the seriousness of a disease, it begins a treatment, and if it’s effective, the successful
results can be part of the diagnostic criteria [Dia04].

The types of reasoning that can be followed by health care professionals in the decision making

are [SMAR97, Dia04, Mar07]:

1. Causal reasoning or “model or pattern” recognition. This type of reasoning is based in the
physiology or cause-effect relation between medical variables. The causal model can be defined
as a description of anatomical, physiological and biochemical mechanisms which can be used
for stimulating the normal function of the human body, according to the pathophysiological

behaviour of the disease and the idiosyncrasies of each particular patient.

2. Deterministic reasoning. In this type of reasoning, the health care professional is limited to
follow some predetermined and proposed steps, first, he is focusing on the recognition of some
medical data and then, indicating certain medical tests. According to the results obtained, he

will continue with the proposed steps.

3. Heuristic reasoning. This reasoning is based in the use of cognitive strategies which help the
health care professional to make the best decision. These strategies or “empirical rules” are

the usual way of reasoning which the health care professionals follow for medical assistance
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decisions making, and are classified from two points of view: the representativeness heuristic
and the availability heuristic. The representativeness heuristic allows, to study a patient,
to weigh the similarity of his symptoms frame with the classes considered as the principal
diagnostic hypotheses. That is, the health care professional researches the diagnostic (or
diagnostics), which the patient is a representative example. The availability heuristic refers
to medical judgements made in function of the remembrance ease of similar cases previously

studied.

4. Probabilistic Reasoning. In this reasoning, the health care professional uses objective methods
of probabilistic estimate in the decisions making, avoiding the systematic mistake associated
with the clinical intuition or the personal inexperience. This reasoning requires having opera-
tive knowledge about diagnostic tests, and having access to statistical data about prevalence

and frequency of diseases.

5. Hypothetical-deductive Reasoning. In this reasoning, once formulated the diagnostic initial
hypotheses, the health care professional insists in the interrogatory areas with the purpose of

refuting, gradually, some of the hypotheses and finally, to confirm one of the initial hypotheses.

As shown the table 2.1, all these types of reasoning have a formal foundation which has helped the

development of several computer technologies to decision making support in the medical assistance.

Medical Reasoning Computer Technologies
Causal Causal networks
Deterministic Expert systems
Heuristic (representative) Classification
Heuristic (availability) Case-based reasoning
Hypothetic-deductive Proof by contradiction

Table 2.1: Types of medical reasoning.

2.2.4 Medical Reasoning Limitations

The main limitations of medical reasoning can be summarized in a series of troubles or implicit

biases on the types of reasoning which are previously mentioned [SMAR97, Dia04]:

1. Distortion of disease model in the personal experience of the health care professional. This

trouble is due to the discrepancy between the typical pattern of disease and the medical state
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of a concrete patient, either by partial knowledge of the medical problem, or by an inadequate

estimation of the probability of the occurrence of the disease in this environment.

2. Fxcessive use of trails and non-specific signs to decide a medical-clinical diagnostic, to predict

the course of the disease, or to anticipate the outcome of the disease.

3. Tendency to attribute changes on the disease course to factors or specific intervention when

these changes may have a random cause.

4. Bias of memory to favour some facts and unusual phenomena in front of others (the cases

and most unusual events tend to be more accessible in the health care professional’s mind).

5. Bias of "anchor" or "hook", or the first impression is the true. This bias is due to the
ommission of relevant data obtained after building the hypothesis because of the costs of

modifying the hypothesis to host the new data.

2.2.5 Uncertainty and Variability in Medicine

In medical assistance, independently to the knowledge quality and medical reasoning used, there
is a certain inevitable grade of uncertainty and variability in every medical decision, where the
mistake and risk may be present. In this document, uncertainty is defined as equivalent to the lack
of absolute certainty in a fact, for instance, a medical-clinical diagnostic. Uncertainty is observed
on each medical procedure step, and it can arise for such dissimilar aspects as available information
deficiency (e.g., incomplete, mistaken or imprecise information), deficiencies of the applied model
when deciding (e.g. inaccurate or incomplete model), or because of the own non-determinism of the

medical practice [Die03].

1. Incomplete information. Incompleteness is defined as a partial absence of elements which
describe a fact. In many cases, the complete clinical history is not available, and the patient
is incapable of remembering every symptom he/she has experienced and how the disease has
developed itself. Besides, in other occasions, practical limitations prevent from counting with
every resource which should be available, for which the health care professional must take

decisions with partial information.

2. Mistaken information. A mistake is defined as a deviation regarding to a correct or precise fact.
The information given by the patient, could contain incorrect descriptions of symptoms and

even deliberate lies to the health care professional. It is also possible that the previous medical
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diagnostic, registered in the medical record, has been mistaken. It is also not strange that
laboratory tests outcomes are false positives or false negatives. For these reasons, the health

care professional has always to keep a reasonable doubt against to all available information.

3. Imprecise information. Imprecision is defined as the lack of precision, the vagueness degree
or poor affirmation or description of a fact. There are many medical data which are difficult
of quantify and, then, susceptible of being intrinsically imprecise. It is the case, for instance,

of certain symptoms like fatigue and pain.

4. Incomplete model. On the one hand, there are many medical phenomena in which the cause
is still unknown; on the other hand, the lack of agreement or approval between experts from
one specific field is frequent. These are the main reasons for not to have complete models for

all the medical facts.

5. Inaccurate model. Any model to quantify uncertainty needs a high number of parameters.
Great part of medical information is not usually available, for which it must be estimated
subjectively. It is desirable, then, that the implemented reasoning method can take into

account the model inaccuracy.

6. Non-deterministic real world. Non-determinism expresses which the willingness acts are spon-
taneous and non-determined. Health care professionals check every day that each patient
is “a whole different world”, in which general laws are not always applicable. Many times,
the same medical actions produce different effects in distinct patients, without any apparent
explanation. Because of this, the decision must always be prepared to admit randomness and

exceptions.

In front of uncertainty, variability in medical assistance is defined as the alternative of possi-
bilities for a concrete fact like, for instance, the event which to a same medical-clinical diagnostic
it is possible to provide diverse therapeutic alternatives. In the same way that uncertainty, the
variability has been observed in, practically, each medical procedure step, either in anamnesis, in
physical examination, in diagnostic tests interpretation or in therapeutic answer. The reasons that
explain this variability may have their origin in the patient’s characteristics, in the health care
system, in the health care professionals and in the population health state [Gal05]. In spite of these
variability sources, there is a variability that relapses on the scientific evidence that underlies to

medical decision making. This last variability, typical of evidence-based medicine and which it is
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conceptually different to the first, is defined as the dispersion degree of a sample according to a

determined medical model. This type of variability is conditioned by [Gom05]:

1. Absence of evidence or scientific knowledge, inaccessibility to the evidence sources and lack
of skill on information analysis. When there is no available scientific evidence, health care
professionals tend to base their decisions on their experience, in these cases, the possibility
of variability increases. This is due to the fact that personal observations are insufficient and
non-automatized, memory is selective, the appreciations are biased, and the mind does not

elaborate random comparisons among patients.

2. Presence of incorrect or tendentious information. The non-valid and non-reliable information
produces noise which confuses, disorientates and induces to the variability in the decision

making.

3. Not contrasted practices. In medical assistance, there are modes, inertias or situations which
are maintained or propagated successfully without any apparent reason. On the contrary,
it is notorious the low spreading which have several procedures that are based on scientific

information, such as protocols and clinical practice guidelines [WGH"99].

4. Lost of scientific actualization. Medical information is produced and renewed permanently,
influencing the practice in an erratic or non validated way. Access and follow up to this

scientific actualization is hard and this influence on the medical assistance variability.

After analysing, from a medical point of view, the concepts of knowledge and reasoning, just
like different factors that influence the medical assistance decision making, we are able to consider

the different tools that offer support to the medical decision making.

2.3 Decision Making Support in Medical Assistance

Decision making support in medical assistance (DMSMA) can be defined as the use of technolo-
gies which allow reducing problems derived from the limitations of human reasoning, uncertainty
and medical practice variability, to obtain a better decision in a particular medical situation. As
instances of these technologies we can cite, protocols and clinical practice guidelines, systems of
medical data codification and classification, and different technologies and systems developed from

disciplines like the decision theory, mathematics, statistics, and artificial intelligence.
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2.3.1 Protocols and Clinical Practice Guidelines

A medical protocol can be defined as a sequence of behaviours which are applied to a patient in
order to improve his/her medical course, or, as a set of procedures which can be used in patients
with a determined medical frame. A medical protocol constitutes a precise and detailed plan for
the diagnostic study and therapeutic manage of a specific medical problem [CCQS05|. Clinical
practice guidelines (CPG) |[FL90| are defined as a set of directives systematically made to assist
health care professionals and patients in the decision making about adequate health-care attention
to specific medical problems. In a more utilitarian sense, we can say that CPGs are tools to organize
the best available scientific evidence at the moment of being used in the medical decision making
[WGH™99]. Its main objective is to improve medical efficiency and the quality of the care delivered
to the patient, promoting adequate actions and reducing uncertainty and unjustified variability in
the selection of treatments.

According the problems listed in section 2.2.5, CPGs offer to the health care professionals di-
rectives based in the best results about the scientific research, and also provide references about
good medical practice points to contrast their actions [GB01]. Nevertheless, the CPGs success de-
pends on the conjunction of several factors such as the medical, social and health care context, the
elaboration system, the means of dissemination and the implementation methods.

Tables 2.2 and 2.3 show a selection of institutions, whose main labour is the development,

storage, and disclosure of the CPGs.

2.3.2 Systems of Encoding and Medical Data Classifications

The encoding and classification systems were developed in order to reduce the lack of specificity and
structuring of medical data, making them more accessible in the decision making processes. The
encoding systems are often structured lists of terms which, beside to its definitions, are designed to
unequivocally describe the care and treatment of patients. Terms cover diseases, encounters, diag-
nostics, procedures, operations, prescriptions, etc., and they can be used to describe, on detail, the
medical assistance realized to a patient, either textually or through electronic register. The classifi-
cation systems systematically organize medical concepts (terms) in classes, for instance, a diseases
classification can be defined as a category system which morbid entities are assigned according to
established criteria [Ger95]|, as suggest the International Classification of Diseases system (ICD in
its 10th version) [WHOO07|, where diseases like acute rheumatic fever (I00-102), Chronic rheumatic

heart diseases (105-109), hypertensive disease (I10-115), ischaemic heart disease (120-125), etc., are
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classified as diseases of the circulatory system.

Table 2.4 shows examples of systems used to classify and encode medical data [Bla00].

2.4 Formal Technologies for the DMSMA

The formal Technologies for DMSMA are defined as any computable program designed for helping
the health care professionals to make decisions in the MP. In this sense, in the last decades a
big variety of technologies for the design and implementation of systems for DMSMA have been

developed [Sho87, Mil94, SCC00, Kul00, MSS06, Gre07, KXY08|.

2.4.1 Classification of Formal Technologies for the DMSMA

Figure 2.2 shows a compendium of the main formal technologies which have been developed for
DMSMA. These technologies are classified according to the disciplines in which the technologies

were developed: decision theory, mathematics, statistic and artificial intelligence.

Medical Algorithms
Decision theory ¢ Decision trees
Influence diagrams

. Quantitative models
Mathematlcs{ Qualitative models
Regression analysis
Statistics patterns analysis
Bayesian analysis
Survival analysis

Statistics

DMSMA technologies

Fuzzy logic

Production rules

Decision trees

Decision tables

Bayesian networks

Artificial neural networks
Models-based systems
Case-based Systems
Ontologies

CPG representation languages

Artificial Intelligence

Figure 2.2: Compendium of formal technologies for the DMSMA.

Decision Theory Technologies for the DMSMA

The roots of decision theory are based on games theory made in the 40’s decade by Von Newman

and Morgenstern [NM44]. This theory is based on mathematical characterization of rational choice
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called utility theory which provides a mathematical foundation to make decision under uncertainty.
Utility theory (UT) is based on that given a number of hypotheses about a rational behaviour,
objectives of decision making are expressed with numerical quantities called utilities and the optimal
solving to the decision making problem is found on numerical maximization of global utility [Pee00].
Traditional tools which use UT to the DMSMA are [SCC00|: medical algorithms, decision trees and
influence diagrams.

First, medical algorithms |Tud68| are procedural models used to help in the diagnostic and
therapeutic decision, where decision sequences are codified in logical diagrams of ramifications or
flowcharts. Decision alternatives are chosen following the most logical sequence of the algorithm,
according to a binary decision function (e.g., yes/no or similar) [MMWea93|. For instance, figure
2.3 [SH06| shows the blood pressure control algorithm. This algorithm makes part of the diagnostic
and treatment general management of patients that suffer diabetes mellitus type II2. It shows that
the treatment starts with an assessment of the systolic blood pressure which, in case of being
greater than 130 mmHg, requires a treatment with ACE (Angiotensin Converging Enzyme) and
ARB (Angiotensin IT Receptor Blockers) inhibitors. Later, diastolic blood pressure is evaluated and
if this is not less than 80 mmHg, it will require a non specified treatment in the algorithm. When
both blood pressures are in the required limits, the patient is derived to a management treatment
and follow-up of the diabetes.

Second, decision trees (DT) [PK87|, different from medical algorithms, are based on probability
analysis and UT to provide a quantitative measure to each available option. From the structural
point of view, a DT is composed by decision nodes, chance nodes and utility nodes. Decision nodes
(commonly represented by squares) allow the health care professional to select the most appropriate
strategy according to the given medical situation. Chance nodes(commonly represented by circles)
represent random variables on analysis and indicate available answers to these variables that do not
have control from the health care professional part. It means that answers to random variables can
be owned to specific data of the patient. Utility nodes (represented by the DT leaves) condense a
set of all possible medical results for the chosen domain. The DT evaluation is always made from
left to right, the associated utility to each branch and each node is calculated taking into account
that: (1) for a chance node, the expected utility is calculated taking into account the wutility and

the probability of each branch which comes out of that node, and (2) the utility of a decision node

2Diabetes mellitus type II (DM) includes a set of metabolic disorders which share the common phenotype of the
hyperglycemia. Particularly, the DM type II is a heterogeneous group of disorders which are characterized by variable
levels of resistance to insulin, insulin secretion disorders and increase of glucose production [BFKea02].
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Is systolic
blood pressure
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Treat systolic blood pressure to < 130 mmHg.
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first-line therapy, two or more agents (to
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Figure 2.3: Medical algorithm to blood pressure control.

is the mazimum expected utility of its branches.

Some examples of DT application are in the cardiology domain [MSL*95, SMAR97, PFMP00|.
Figure 2.4 [SMAR97| shows a DT which presents three possible therapeutic alternatives for an
ischemic cardiopathy®: surgery, percutaneous coronary angioplasty (percutaneous coronary inter-
vention or PCI) and medical treatment. The DT indicates that, first a test of inducible ischemia
must be done in which 60% of cases is positive, then the treatment type must be decided (i.e.,
surgical, PCI or medical treatment), the first two with a 22% and 7% probability of death, and
78% and 93% of success, respectively. Following the medical treatment does not imply a risk of
death, so there is no probability distribution associated to this branch. A second DT branch in-
dicates respective alternatives and probabilities to the cases in which the test of induced ischemia
is negative. Also, this DT shows in the right margin the survival probabilities to 3 and 5 years to
each alternative.

Third, influence diagrams (ID) [HMS81, Sha86| are compact representations and mathematically

equivalent to the DTs. Just like DTs, IDs contain decision nodes, chance nodes and utility nodes

3Ischemic cardiopathy is the resulting disease of the coronary arteries incapacity of taking necessary oxygen to a
determined place of the cardiac muscle, which difficult this muscle functioning, and having as consequences angina pec-
toris, acute myocardial infarction (MI) or sudden death [Spanish Heart Foundation (www.fundaciondelcorazon.com)].
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Figure 2.4: Decision tree to the ischemic cardiopathy treatment.

[PWO05|. The arrows between two nodes can indicate information influence or conditional influence.
Information influence, represented by arrows which lead to a decision node, indicate what variables
are known by the health care professional when making the decision. Conditional influence, repre-
sented by arrows leading to a chance node, show the variables where the conditioned probability
assignment is made to the chance node. Information influence over a decision node represents a
cause-effect relation, while conditional influence over an chance node represents an arbitrary or-
der of conditions, which do not necessarily correspond to cause-effects relations, and which can be
modified through probability law application (e.g., Bayesian rules) [HMO5].

Some application examples of ID are in the cancer domain [NO97, HM05, LEKT06]. Figure 2.5
[LEKT06] shows an ID to bone metastasis detection, in patients with breast cancer, and whether
they were or not were correctly classified according to the TNM staging system®. The ID contains
five chance nodes: B (bone metastasis), S (bone scanning), and the tumour markers® C'A (car-

bohydrate antigen 15-3), C' (carcinoembryonic antigen) and AP (alkaline phosphatase). Node B

4TNM is a staging method of cancer according to the cancer size inside the patient’s body. The letter T is use to
describe the tumour size and whether the tumour invaded close tissue. The letter N is used to describe any lymph
node which is compromised and the letter M is used to describe metastasis (dissemination of the tumour from one
place to another inside the body) [American Joint Committee on Cancer (www.cancerstaging.org)].

5Tt is consider as tumour makers every substance produced or induced by the neoplastic cell which reflect its
growing and/or activity, and which let know the presence, evolution or therapeutic answer of a malignant tumour
[National Cancer Institute (www.cancer.gov)].
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represents the real state of the patient. The presence or absence of bone metastasis is represented by

” indicating positive and

the symbol “~”. Tests results are represented with the symbols “+” and “—
negative results, respectively. In the same way, decision node results (metastasis?) are represented
with “M+" and “M—", indicating if the metastasis diagnosis is positive or negative, respectively.

Utility value, represented by “correctness”, indicates that if it has a value of 1, the staging has been

correct, otherwise, the value will be 0.

p(B)=Lognormal
(0.05, 0.005)

p(S+ | B)=Uniform p(AP+ | B)=Uniform

(0.78,0.98) (0.58, 0.94)
?(gss_s‘ 6139)6:)Un1f0m . p(AP- | ~B)=Uniform

(0.86, 0.98)
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%%’7\'3 ;]93))=Uniform p(C- \’ ~i3)=Uniform
0559 , (0.95, 0.99)
L M B Co
Yy 4

Metastasis? M+ B 1

(yes/no) M+ ~B 0

M- B 0

——— > Conditional influence M- ~B 1

------- » Information Influence

Figure 2.5: Influence diagram to detect bone metastasis in breast cancer patients.

Mathematics Based Technologies for the DMSMA

Regardless of decision theory, in mathematics several quantitative and qualitative analytic models
for decision making have been developed. In medicine, these models have been used to predict
the future situation of a patient basing in his/her current situation and a representation of his/her
medical history. Quantitative models are used, for instance, on the estimation of diagnostic tests
accuracy [KBF107]. As table 2.5 shows, this estimation is based on four indicators: true positives
rate, false negatives rate, true negatives rate and false positives rate. True positives rate or sensibil-
ity, allows correctly identifying to the patients that present the disease. Its opposite, false negatives
rate, is defined as (1 — sensibility). True negatives rate or specificity, allows correctly identifying
the patients that do not present the disease. Likewise, its opposite, false positives rate, is defined

as (1 — specificity). A perfect test should present a sensibility and specificity of 100% so that it
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allows a perfect separation between the patients that present the disease of those that do not have

it.
Disease Situation
Outcome Presence Absence
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Subjects identification with disease

True positive rates (sensibility) = TP/(TP+FN)
False negative rates = FN/(TP+FN)
True positive rate = 1 - False negative rates

Subjects identification without disease

True negatives rates (specificity) = TN/(TN+FP)
True false rates = FP/(TN+FP)
True negative rates = 1 - False positive rates

Table 2.5: Diagnostic tests accuracy estimation.

Qualitative models [Kui86| analyze the time depending behaviour of a clinical practice to rep-
resent patient situation trails. This behaviour is represented as a set of connected nodes and links
between nodes which reflect restrictions on the transitions in the system. The decisions made by
this kind of models are of the sort evaluation and therapy planning. For instance, in the QSIM
(Qualitative SIMulation) algorithm [Kui86|, the value of a time-dependent variable is adjusted by
the notion of qualitative state. QSIM takes, several times, an active state and generates all possible
successors states to this one, filtering the states which do not accomplish a determined consistence
criterion. So, QSIM builds a state tree which represents the possible behaviours of the problem

under study (e.g., the disease evolution).

Statistic Based Technologies for the DMSMA

Statistics has been the most applied field for decision making in medical assistance. Regression
analysis [Fur76, SKJ84|, statistical patterns recognition [Fei70, Fei73|, Bayesian analysis [WTVS61,
GB68, dDLS*72] and survival analysis techniques [AHLO1, Mac01] are some examples of developed
technologies from this discipline, which have been widely applied in the medical decision making
[SCCO0].

Regression analysis [Fur76, SKJ84| has been used to model relations between a response vari-
able of interest for the decision making, and a set of explainable variables. For it, the regression

coefficients are adjusted (i.e., model parameters) until a “better adjustment” for data is reached.
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APACHE score (Acute Physiology, Age and Chronic Health Evaluation) [KWD™91] for a disease
severity determination, based on prognostic survival, is a good example of a logistic regression model
which has been used to routine health care [Mac01]. As figure 2.6 shows, APACHE score III uses
different physiological variables of a patient as the hearth frequency (pulse), mean blood pressure
(mean BP), temperature, respiratory rate, serum creatinine, serum albumin, serum bilirubin, etc.,
to determine the survival in an Intensive Care Unit (ICU).

Statistical pattern recognition |Fei70, Fei73] on data can be formulated as a problem of the
statistical classification of clinical conclusions in decision regions that are mutually exclusive but
collectively exhaustive. It means that not only physiological data (i.e., entry variables) can be
classified, but also the pathologies which result (i.e., diagnostic variables) and available therapy
options to treat a disease (i.e., treatment variables) [JDMO0O0|. This way, these models help to
the decision making in diagnosis and in the treatment selection. For instance, some patterns in
a complex data set were recognized to improve the health care attention in head injured patients
[TMM™*81]. Also, the patterns recognition were the support to develop technological methods in
cardiac arrhythmias analysis [Mor84].

Bayesian analysis [WTVS61, dDLS*72] has been one of the most popular methods used to
medical decision making support. Bayesian classification is an example of a parametric method
for the estimation of classes given a probability density function. The optimal decision rule which
minimizes the classification average frequency is called the Bayes rule. This rule is used as inference
mechanism to calculate the probabilities of each possible event when specific medical outcomes of
a patient are available |[WHBea87|. For instance, the Leeds abdominal pain system [dDLST72]
was a decision support system, based on Bayesian analysis, to the diagnosis of abdominal pain.
This system used the information about sensibility and specificity in conjunction with data about
signs, symptoms and diagnostic tests outcomes for calculating the probability of seven abdominal
pain causes: appendicitis, diverticulitis, perforated ulcer, cholecystitis, small bowel obstruction,
pancreatitis and non specified abdominal pain.

Finally, survival analysis [AHLO1| provides a set of statistical techniques for data analysis in
which, the response variable measures the time between two events. Survival is not limited to life
or death terms, but to situations where the time is measured until an interesting event occurs, as
the recurrence time of a disease, the efficiency time of an intervention, etc. So, survival is a time
measure to a reply, failure, death, relapse or developing of a determined disease or event.

In survival analysis, data analysis can be realized using parametric and non parametric tech-
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Figure 2.6: APACHE III decision system based on regression analysis.
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niques, as figure 2.7 shows [Mac01]. The parametric techniques require a probability density function
to estimate the survival functions and risks which give support to the medical decisions making.
In this sense, the most used parametric techniques in survival analysis are [CE58|: exponential
distribution, Weibull distribution or lognormal distribution. On the contrary, non parametric tech-
niques produce estimations of the same functions without any necessity of being adjusted to a
specific probabilistic model. Some examples of non parametric techniques used in survival analysis
are: actuarial analysis [CE58|, product-limit or Kaplan-Meier analysis [KM58| and Cox’s regression
[Cox84]. Both parametric and non parametric techniques have been used to explain the disease
progression [KMO03]) and not for predicting the survival of new cases. In the prediction of new
cases, some techniques as logistic regression [MH59] and neural networks [RM86], have been widely

used [PM02, GBF*06, BBAM06, LHHGROS].

Exponential distribution
Parametric Methods { Weibull Distribution

Lognormal Distribution
Survival Analysis Actuarial analysis
Product-limit analysis
Cox’s regression
Neural Networks

Non Parametric Methods

Figure 2.7: Compendium of survival analysis techniques.

Artificial Intelligence Based Technologies for the DMSMA

Artificial intelligence in medicine (AIM) was conceived from artificial intelligence (AI) to model
expert knowledge which allows developing systems and tools that can be used to improve medi-
cal assistance and general medicine [Sho93|. Unlike traditional methods based on decision theory,
mathematics and statistics, AIM technologies were based in symbolic models which allowed repre-
senting disease entities, its relations with the patients, and its medical manifestations. Examples of
AIM technologies in DMSMA are the medical knowledge based systems. A medical knowledge based
system (MKBS) is a computer-based program which captures the human experience elements and
perform reasoning tasks that are normally performed by expert knowledge [MB02|. The MKBS are
characterized for making an explicit distinction between the domain knowledge of medical problem
which is represented and the knowledge used to reason and to solve the current medical problem
using the available data. These systems make intensive use of domain knowledge and separate it

from mechanisms that control its use. So, the basic components of the MKBS are: a knowledge
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base and an inference engine. The knowledge base contains the domain specific knowledge. The
inference engine contains the algorithms to manipulate the knowledge represented in the knowledge
base with the aim to resolve a problem presented in the system.

The developing of AIM Technologies to represent, acquire and reason about specific medical
knowledge, have been the principal lines of research in the last decades. Technologies as fuzzy logic
[Zad65], production rules [Mic87], decision trees [Qui86], decision tables [Hol75|, Bayesians networks
[CGH97|, artificial neural networks [RM86|, ontologies [Gru93|, the CPG representation languages
[SHJ*94, Shi97, SMJ98, FJRI8, TM99, JTBT00, PBOea00, BCH'02|, the models-based systems
(MBS) [Uck92] and cases-based systems or case-based reasoning (CBR) [Kot88], are examples of
these type of AIM technologies applied to medicine.

Fuzzy logic (FL) |Zad65] has been generally used in medical diagnostic, for example, in the
inadequate analgesia diagnostic in patients under influence of anaesthesia [JLH02|, in the decision
support in radiation therapy [PSGO3|, in the breast cancer [Has03|, lung cancer [SPBea03] and
prostate cancer detection [SOPNO3], in the MedFrame/CADIAG-IV consultation system [BAHT04]
used in the disease diagnostic of internal medicine, the ESTDD system [KKO08| used in the thyroid
disease diagnostic, or recently, the developing of classification frames based on fuzzy logic to improve
the disease diagnostic [GMO09).

Production rules [Mic87] have been the most popular technologies to represent the expert knowl-
edge. Some examples of DMSMA system based in rules are: INTERNIST [PMM75| designed for
the disease diagnostics in internal medicine, MYCIN [Sho76] developed to diagnose and recommend
treatments of blood infectious diseases, ONCOSIN [Sho81| developed to help the health care profes-
sionals in the cancer treatment of patients that receives chemotherapy, PUFF [AKSR83| developed
for the diagnostic and seriousness of lungs diseases, or, rules based approaches for the coronary
disease diagnostic [RBWO04].

Decision trees [Qui86| (also called classification trees) have been used in the diagnosis of cardiac
problems [SLPKO04], in the survival prediction of breast cancer patients [DWKO05], in the prognostic
of coronary diseases [KTKO8|, in the diagnosis of optical nerve diseases [PKGGOS|, in the diag-
nosis of the leukemia patients [CPRB09], or in combination with logistic regression to predict the
periventricular leukomalacia [SBKT09], or with artificial neural networks to diagnose the Parkinson
disease [Das10].

Decision tables [Hol75] have been used for the diagnostic of depression in the EsPeR system

(preventive medicine) [CAJZT05], or in combination with influence diagrams to select the best
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course of action in the treatment of Gastric lymphoma no-Hodgkin [BAPLO§|. Also, the decision
tables have been used as CPG representation language [Shi97].

Bayesian networks (BNs) [CGH97| (also called causal networks, causal probabilistic networks
or belief networks) have been used in DMSMA system as MUNIN [AWFAS87| designed for the di-
agnostic of muscular diseases, DIAVAL [Die94]| for the diagnostic of cardiac diseases, DIABNET
[HGAPC96]| for therapy planning in gestational diabetes, MammoNet [KRSH97| as support in the
breast cancer detecting, integrating findings obtained by a mammography, with demographic factors
and physical exploration, to determine the malignancy probability of a tumour, PAIRS (Physician
assistant Artificial Intelligence System) [JJ99] for the disease diagnostics in internal medicine, Na-
soNet [GADMO02]| to help the oncologist in the diagnostic and prognostic of spread nasopharyngeal
cancer in a patient, SAMOA [FGA™T03| for the classification of sleep apnea, ProCarSur [PVTSST07]
for the prognostic reasoning in the cardiac surgery domain. Also, BNs have been used in the prog-
nostic of morbility and mortality of cardiac disease patients [RBWO04], to predict the appearance
of carcinoid heart disease [vGJTT07], to predict the patients evolution with prostate cancer after
intensity-modulated radiationtherapy treatment [SDM™09], for the diagnostic and treatment of lung
diseases [VLSB09| or the use of BN for survival analysis [SDBB09.

Artificial neural networks |[RM86] (ANN) are DMSMA technologies which simulate the human
mind and make its learning through examples. The ANN have been used in the patients classifi-
cation by risk groups [LWHS03|, in the prognostic of coronary disease [MSM™05, KTKO08]|, in the
survival prognostic of breast cancer patients [BBAMO6|, or in the prognostic of virology response
to combination HIV therapy [WLR109].

Model-based systems (MBS) [Uck92] (also called second generation expert systems [Coi03|) are
designed for using disease models with aim to cover a great group of medical problems. So, the
knowledge base is represented as a set of disease models instead of a logic rule to describe that
disease. Among the systems which incorporated pathophysiological models to decision support
making are: CASNET [Wei74] for the diagnostic and treatment of glaucoma, Digitalis Advisor
Program |[GSP78| for the diagnostic and drugs prescription, ABEL [PSS82] for the diagnostic of
acid-base and electrolyte disorders in patients, KARDIO [BMLS89] for the diagnostic of cardiac
arrhythmias, systems for disease diagnostics in internal medicine [Luc97] and the Intensive Care
Unit [ZMS97, HLVT06].

Case-based systems or case-based reasoning (CBR) [Kot88, AP94, BMO06| appear in the con-

ception of, instead of obtain solutions through of a general model of domain knowledge, the CBR
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systems recover and re-use the solutions of similar problems. These systems need a collection of ex-
periences and cases which is stored in a cases base, where each case is composed by a description of
the problem (causes of a disease) and the solution applied (diagnostic or treatment of that disease).
The fundamental hypotheses which are based the CBR systems are that a DMSMA system or a
health care professional, can solve problems without having any complete knowledge of the relation
among a problem and its solution, provided it has sufficient experience (patient’s cases already
treated or diagnosed). Furthermore, the problems tend to repeat themselves again, and for that,
the experience is an useful tool. Examples of DMSMA systems based in CBR are CASEY [Kot88]
for the diagnostic of cardiovascular diseases, MNAOMIA [Bic96]| for the diagnosis and treatment of
eating disorders in the psychiatry domain, or researches in the diagnosis and prognosis of prostate
cancer [Bar96]|, the risk estimate of bowel disease [RR08| or the diagnostic of liver disease |Lin09|.

Ontologies [Gru93| have been used in encoding and classification systems as the MANELAS
system [Zwe94] in coronary diseases domain, GALEN (Generalized Architecture for Languages,
Encyclopaedias and Nomenclatures in medicine) [RRP96], the SNOMED system (Systematized
Nomenclature of Medicine) [SCC97] and the UMLS system (Unified Medical Language System)
[HLSB9S8| in general medicine and FMA (Foundational Model of Anatomy) [RMO03| in the anatomy
domain or CPO (Case Profile Ontology) [RRCT09| to characterize patients in home. Also, the
ODDIN |[GCRM*10] and TimeDDx [DP10] systems use ontologies to realize differential diagnostic.

CPG representation languages are formal representations developed to interpret in a computable
way the knowledge contained in the CPG. Their uses are focused in the medical treatment planning
activities. The main CPG representation languages are: Arden Syntax [SHJ1T94|, augmented deci-
sion tables [Shi97|, Asbru [SMJ98], PROforma [FJR98|, EON [TM99], PRODIGY [JTB*00|, GLIF
[PBOeal0], SAGE [BCH'02|. Also, the ATHENA system [ATO%99, GHRea00], based in the EON
language, implements CPG for the comorbid disease treatment or the LISA system [BHBea02|,
based in PROforma language, implements CPG for the treatment support of childhood acute lym-

phoblastic leukemia.

2.4.2 Using Formal Technologies for DMSMA

From the point of view of decision and planning problems in diagnosis, treatment and medical
prognosis, table 2.6 shows the technologies based in decision theory, mathematics and statistics for
the DMSMA mentioned previously in this chapter. For all of them, except the survival analysis,

antecedents of use to support the decision activity in the medical diagnosis are provided [dDLS*72,
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Mor84, Kui86, MSL195, WW00, SLPK04, SHO6, LEK"06, KBF*07]. In the decision support of
medical treatment activity, technologies as medical algorithms [SH06|, decision trees [SMAR97,
PFMPO00| and influence diagrams [BAPL08| based in the decision theory, and pattern recognition
[TMM*81, JDMO0O] based in statistics, are the most used ones. Likewise, in the decision support
of medical prognosis activity, technologies as influence diagrams [NO97| based in decision theory,
qualitative models [Kui86| based in mathematics, regression analysis [MR88, KWD'91, TMGZ97,
PM02, GBFT06, LHHGRO8| and the survival analysis [Mac01, KM03, Roz06| based in statistics,
are the most used ones. Respect to the planning activity, we found no evidence of use of these
technologies.

Table 2.7 shows the Al based technologies for the DMSMA. All these technologies, except arti-
ficial neural networks and decision trees in the treatment activity, have been used to support the
decision activity in diagnostic and medical treatment. Likewise, in the prognosis decision activ-
ity, Bayesian networks [GADMO02, PVTSST07] and artificial neural networks [PM02, JAGRRJ 103,
MSM*05, GBFT06, BBAM06, KTK08, LHHGROS]|, are the technologies based in AT which more
application has had in DMSMA. The contrary happens with the planning activity, due to the fact
that the CPG representation languages are the only Al based technologies for the DMSMA used
in the diagnosis and medical treatment [SHJT94, Shi97, SMJ98, FJR98, TM99, ATO*99, JTB*00,
PBOea00, BCHT02, BHBea02].

2.4.3 Historical Evolution of Formal Technologies for DMSMA

The evolution of formal technologies for DMSMA started in the sizties, when the main represen-
tation paradigm in the decision making was based on decision theory [LL59, Ble69|, mathematics
[WTVS61]| and statistic [WTVS61, GB68| (§2.4). These methods permitted at a priori probability
subjective estimation in diagnostic probabilities calculation. However, these methods suffered one
common inconvenient: although all methods worked in specific problems, statistically well defined
and with adequate example from which probabilities were estimated, these were not incorporated
in the daily medical practice. The reason of the not acceptance of these models were its difficulty to
explain decision, which was based on strict probability computational theories, in terms of a qual-
itative language and with not familiar arguments to the health care professionals. An alternative
to this problem was the decision sequence codification of experts in ramifications logical diagram
or flowcharts, also known as medical algorithms [Tud68]. These medical algorithms (figure 2.3),

which are still used, had the advantage of its clarity, its easy explanation, and its possible valida-
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tion, but they were generally too rigid when capturing context specificities (e.g., uncertainty and
variability) without becoming very extensive, complex and computationally expensive. The HEME
program |[LEBea61] for diagnostic of haematologic disorders and the CONSIDER system [LRBT 68|,
a medical instruction system to identify disease on CMIT (manual of diseases compiled and previ-
ously maintained by the American Medical Association), are examples of developed systems in this
decade.

Given the low expressiveness of the first approaches, in the seventies, diverse researchers groups
(mainly from Rutger University, Stanford University, Pittsburg University, and the collaborative
group MIT /Tufts) incorporated AI and biomedicine to explore and develop more intense approaches
in knowledge, which allowed solving interpretation problems included in the medical decision mak-
ing. In this sense, they proposed a set of representations and approximations based on three principal
aspects [Kul00|: firstly, a more flexible uncertainty representation (§2.2.5) which allowed qualita-
tively the probability visualization. Secondly, a better medical knowledge representation (§2.2.2)
which motivated and justified a diagnostic, therapeutic or prognostic decision. And thirdly, the
development of a medical knowledge descriptive component for some problem resolution general
strategy or reasoning (§2.2.3) could be applied. As an example, the first consultation systems based
on AIM which helped the medical decision making were CASNET [Wei74|, MYCIN [Sho76]|, and
later, INTERNIST-1 [PMMT75], PIP [PGKS76] and the Digitalis Advisor Program |[GSP7§|.

An important aspect in this decade was the introduction of rules as formalism to symbolic
knowledge representation. The rules have the advantages of its simplicity, uniformity, clearness, and
inference easiness, which have made them the main paradigm to represent the experts knowledge.
The separation of rules based system of its inference engine, mark the guide to development of
medical knowledge based systems (MKBS) for the DMSMA. However, a problem came up when
trying to represent experts tacit knowledge, because the representation which was made at that time,
it was related to predefined patterns. This situation derived in the impossibility to give explanations
to reached conclusions because of the non-existence of background scientific knowledge in the system.
This emphasized the need of improving the knowledge acquisition processes, given that the skill and
human experience exist as tacit knowledge, and this one can be directly acquired from the knowledge
base and not by traditional methods of interview which had been done until that moment. This
problem was defined as the “bottleneck” of the MKBS development [BBB*83]. The MKBS basic
structure of that first age consisted on elements like a base of certain facts, a knowledge base and an

inference mechanism (§2.4, Al base technologies for DMSMA). This inference mechanism applied
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the stored knowledge in the knowledge base to the facts of the base of facts to infer new facts. The
new inferred facts constituted the system response. Besides, these MKBSs included two additional
modules to explain the followed reasoning in the production of different inferences and to facilitate
dialogue between user and system.

At the beginning of the eighties, tools like experts systems shells [WKT79] were introduced and
widely used in the MKBS development. Also, in this same age, it was evident which acquired
knowledge of the experts was inadequate to solve complex problems and which, when MKBS were
developed, the data analysis obtained in daily medical practice and stored in medical databases,
could play an important role in the decision making support. This helped to the development of the
first machine learning algorithms which objective was knowledge automatic extraction from data,
in shape of rules or decision trees. Among the first rules learning algorithms we find AQ [Mic87],
CN2 [CN89| and PRISM [Cen87|. Inside the algorithm group of decision trees learning we find
ID3 [Qui86], ASSISTANT [CKBS87| and later the development of C4.5 [Qui93]. The end of this
decade was characterized by the increasing gap between the data excessive storing not interpreted
and the understanding of those same data, which emphasized the need of having accurate tech-
niques of data intelligent analysis. This situation leaded to a new research line based on databases
such as knowledge discovery database (KDD) [PSF91, FSS96|, data mining (DM) [CHY96], and
intelligent data analysis (IDA) [LKZ00|, in which machine learning techniques played an impor-
tant role. Some examples of MKBS based in these technologies for DMSMA in this decade are:
RECONSIDER [BTS81], ONCOCIN [Sho81], DxPLAIN [HCH'86], ILIAD [WHBea87|, MUNIN
[AWFA87|, QMR [MM89|. The revolution of communications and information technologies (TICs)
marked the guide in the nineties with the appearance of the world wide web, the proliferation of
web based information services, design facility of user graphics interface, improvement of networks
and communications, etc. The incorporation of these TICs in medicine gave a new approach to the
DMSMA [Kul00], now even more worried of characterization and knowledge bases construction to
improve medical decision making, the integration of these knowledge bases in functional and useful
medical computer systems, and validation, standardization and sharing of medical knowledge. Vo-
cabulary standards development, medical codifications and nomenclatures, and the development of
unified medical language systems (UMLS) [HLSB98| (see table 2.4) are initiatives of this decade.
The knowledge reuse is widely eased by the ontologies development to different knowledge types and
problem resolution. Protégé [TEG195] is a remarkable example of a system to ontological knowledge

management. The software integration to multiple uses was every time more stimulated by propos-
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als such as integrated advance information management systems (IAIMS) [Ste97|. The appearance
of Arden syntax [SHJ194], a system to connect clinical databases, knowledge, and knowledge bases
to support medical decision, marks the beginning of multiple languages and platforms to medical
knowledge formal representation based on protocols and clinical practice guidelines (CPG). Some of
these are Asbru [SMJ98|, PROforma [FJR98|, EON [TM99| and PRODIGY [PSBS99|. Automatic
extraction of medical data from narrative corpuses also progresses due to linguistic and statistic
methods combination [CY95]. In this decade we can distinguish the following DMSMA systems:
HELP [KGP91], HERMES [BMS*93|, DIAVAL [Die94|, DTABNET [HGdPC96|.

In the decade of the 2000’s, other areas are emphasized such as natural language processing,
ontologies, knowledge management, machine learning, data mining, reasoning and representation
temporal, use and formal representation of protocols and CPGs in medical decision making, just like
evidenced in [QBAO1, DKB03, MHKO05, BAHHO7|. The classification problem as a particular case
in the decision making marks the guide in research at the beginning of this decade. This is reflected
in the great quantity of publications done under the data mining field [BATT01, AHdKO01, HBJO3,
Kuk03b, BFMea05, RGAS05]. Particularly, some researches were headed to the combination of
diverse machine learning techniques with the objective of taking advantage of the characteristics
in every single one of them [AHdKO1|. Temporal reasoning is still an active field of research.
Questions like: how could temporal information be represented?, what is the abstraction level of
optimal granularity to discover temporal patterns and rules later?, or how can the rules information
contents be quantified?, are the aspects to solve in this context [DKBO03|. Therefore, temporal
abstraction and data mining techniques are used to extract, from temporal data, recurrent typical
patterns or rules which can be associated to specific situations such as failures or patients normal
evolutions [BLMBO03|. The use of ontologies for the knowledge search from textual sources [Mey09|
or the CORAAL system [NGHO09|; the languages development to CPG formal representation and
in turn, the systems development based on these representations, is still the pursued objective
for many researchers. It is the case of the medical decision support system ATHENA [ATO'99,
GHRea00] which implements CPG using EON language [TM96, TMO01]|, the web based system LISA
[BHBea02] which implements CPG using PROforma [FJR98| for the decision support in the cancer
domain, the DEGEL system [SYS'03] which uses ontologies to specification and recovery of CPG,
or the CPG representation environment SAGE (Standards-based Active Guideline Environment)
[TMSea04]. Probabilistic networks and Bayesian models are still representative work areas, well

adapted to the medical information and dynamic research [FGA103], as for example the PAIRS
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system (Physician Assistant Artificial Intelligence System) [JJ99] , ProCarSur system [PVTSST07]
and ESTDD [KKO08|.

Finally, and to summarize, table 2.8 presents, categorized by decades, the principal objectives
which were proposed to improve decision making process in medicine from AIM, next to designed
approaches for such purposes and some systems examples which implemented these approaches. This
summary is based on [Mil94, NN0O, Kul00| and the compendium of DMSMA and MKB systems

available in Openclinical (www.openclinical.org).

2.5 Conclusions

Analysis of the background in medical informatics, referring to medical assistance has revealed a
series of events which define and directly condition this thesis. These facts are exposed as chapter

2 conclusions, in form of points:

e The medical assistance activities are the decision and the planning in the diagnosis, treatment

and medical prognosis.

e The medical assistance activities are integrated following a medical standard procedure where
the health care professionals currently based their decisions. However, this medical standard

procedure does not have the functional detail level to be formalized in a computable way.

e The success of decision making by health care professional in the medical assistance activities,
are based in the medical skill in front of a particular situation, in the available medical

knowledge in that moment and in the medical reasoning used in front of this knowledge.

e The current support which health care professionals have for medical assistance decision mak-
ing is based in: protocols and clinical practice guidelines, encoding and classification systems
of medical data, and technologies and systems developed through disciplines as decision theory,

mathematics, statistic and artificial intelligence.

e The decision activities in the diagnosis and treatment, are the activities which have had a
greater development from DMSMA Technologies. Also, in the medical prognosis activity, the
regression and the survival analysis, both, through statistic methods, Bayesian and artificial

neural networks in the Al field, are the DMSMA technologies with a great application.

e The augmented decision tables and the CPG representation languages are the only DMSMA

technologies found which have been used for planning activities in the medical assistance.
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Chapter 3

Knowledge Formalization in Medical Assistance

This chapter presents a description about knowledge formalization in the medical assistance domain.
This description is made from the Knowledge Management and Artificial Intelligence perspective.
First, there is a description of the formal knowledge categories in medical assistance. Second, and
based in these categories, it is an introduction about the main knowledge representation formalisms

and how they are used for reasoning and machine learning.

3.1 Introduction

The quality of medical assistance is directly related with the health care professional experience
[Mil94|, where such experience is the result of the combination of several types of knowledge (§2.2.2).
Knowledge is the main part of decision making process on medical assistance, therefore, it is not sur-
prising that in the medical informatics domain a trend has been observed towards the formalization
of this knowledge [FJR98, AHLO1, PT06, Ria06, KXY0§|.

Disciplines as Knowledge Management (KM) [MFK99| and Artificial Intelligence (AI) [Sho87]
have contributed to knowledge formalization in general, and in medical assistance knowledge for-
malization in particular. KM is centred in the development of techniques which allow to organize,
to share and to update this knowledge. Therefore, KM makes a distinction between two main
categories of knowledge: declarative knowledge and procedural knowledge. Declarative knowledge
(or know-what knowledge) is the knowledge of objects, facts and principles of a concrete domain.
Facts and principles establish the relations and restrictions in the objects and among the objects
of a domain. Procedural knowledge (or know-how knowledge) is the knowledge in which the control
information that is needed to use the knowledge is inside the same knowledge. In the medical

assistance domain, declarative knowledge refers to diseases, symptoms and signs, prescriptions,
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diagnostic tests, etc., likewise, the relations among them elements, for example, what are the symp-
toms and signs of a particular disease, the contraindications of a medication, etc. On the other
side, procedural knowledge refers to the assistance processes as making a diagnosis, treatment of a
pathology or a medical-clinical problem.

Meanwhile, Al is centred in the development and improvement of formal structures for know-
what and know-how knowledge representation. Also, in producing methods and algorithms to make

intelligent activities, such as reasoning and inductive learning these knowledge structures.

3.2 Knowledge Representation in Medical Assistance

Knowledge representation can be defined as a series of syntactical and semantic conventions which
allow the formalization of a determined type of knowledge. Syntaz allows to specify a political
series to combine symbols so as to form valid expressions. Semantic is the specification of how these
expressions should be interpreted. This formalization has a double objective. First, to eliminate the
uncertainty and variability which are not part of the medical assistance, and second, to allow the
automatic manipulation of this knowledge in order to use automatic reasoning methods which arrive
to similar conclusions to those that a health care professional would obtain. These conclusions can
be solutions to proposed problems in a concrete knowledge domain (i.e., decision making support)
or the inference of new knowledge.

Table 3.1 shows a classification of the main formalizations used to knowledge representation
in medical assistance. This classification is based in four categories of knowledge representation
[KXYO08]: fuzzy logic, procedural knowledge, graphs & networks, and structured knowledge.

First, fuzzy logic (FL) [Zad65| is one of the logic based formalism which has been most used for
knowledge representation in medical assistance. FL is characterized by which is a logic derived of
the set theory which allows to represent imprecise, ambiguous and vague knowledge.

Second, procedural knowledge formalisms represent the knowledge of a domain in form of proce-
dures, which describe the actions to be made in particular situations. Nowadays, the most popular
procedural formalisms to represent medical knowledge are the production systems [New73| and de-
cision tables |[Hol75|, where the procedural knowledge is represented by a set of production rules
which allows to incorporate the domain knowledge.

Third, graphs & networks based representations are characterized by representing medical knowl-
edge through directed graphs whose nodes are health care concepts and entities, and arcs represent

relations among these concepts and entities. Decision trees [Qui86], partial orders [DM41], Bayesian



45

"90UR}SISSE [BOTPOUL UT

uo1)eIuasoIdor 98po[MOUY MOT-MOUY PUR JRYM-MOUY JO SWSI[BULIO] PU® SOLI0891R)) ¢ O[qR],

[coeegHd]
VSIT ‘[00eodHD ‘66+0LV]
VNHHLY ‘[co+HO4]
Aovs  ‘looreodd]  AITO
‘loo+9Lr] ADIA0YUJ ‘(66N
NOd  ‘[seurd] ewioy0ud

‘[86rs] nigqsy ‘[Lemug] sorq

[coeegHd]
VSIT ‘[00eedHD ‘66+0LV]
VNHAHLY ‘[co+HOd]
Aovs  ‘looreodd]  AITO
‘lo04+9Lr] ADIAOYUJ ‘(66N
NOHd  ‘[seurd] ewioy0ud

‘[86rNS] niqsy  ‘[L61ys] seiq

-eJ, UOISTOa (] pajuswSny -eJ, UOISIOa (] pajuswdny so8en3uer uory
‘6 +mmm_ xejuAg uapIy ‘v6 +mmm_ xejuAg woply | -equeserdeyy HJD paImionIg MOT[-MOUS]
[otdal xageuy,
‘0T +INYOD] NIAAO ‘[com]
[eond] VINA ‘AIINONS | VINA  ‘[L6D0DS]  dHINONS
‘[s6asTH] STNN  ‘[o6duy] | ‘[s6dSTH] STNN  ‘[96dYH]
NATVD ‘[p6emz] SVIANVIN | NATVD ‘[F6om7] SVTANVIN se180[01uQ poImjonag
[sogDOHHT] ‘[80M.LM]
‘loomvdd] ‘(90 +a9D]
‘lecoyINSI] ‘g0 rguOVIL] SYIOMPIN
‘[cosHm T ‘[zond] [o1seq] | [emoN  [RLYHAY
[609STAl
[6oaaas] ‘[60+nas] ‘lcovodl vOWvs ‘[e6rr]
(L04+10D4] ‘[L04SSLAd] [609STAl ‘[coMavol | SHIVA ‘[L6HSH]| 1o Nowmey
mgreHoid ‘[romgy] | 1NoseN  ‘[960dPOH] LAN | ‘[Feeral TVAVIA ‘[L8VAMV]
‘lcomavol] JONOsEN | -gvId  ‘[palem]  LANSVD | NINAW  ‘[pLem] LANSVD | sylomjoN ueiseleq
[OTIUAT ‘LODYUAT SIOPIQ Tered
[otseal ‘[eodudD SspIom
[60-314S] ‘[803.LM] ‘[s0Mmal ‘[805DMd] ‘[Fo>1d1s] 5001, uoIso | -1oN 2y sydern
[so1dPd] [60LZL VDI HodsH SO[qEL, uoIseg
[romad] ‘[esussivl
ddnd ‘loLouyg]  NIDAIN
([r80us] NISOONO | ‘[e2NIAd] LSINYALNI e[y UOIONPOIJ [eInpedolg
[601ND]
‘(o313 aaxsa \F_S+:<m_
AI-DVIAVD/owen{pey
‘[ecoNd OS] ‘[coeegds] Aot
[coDsd] | ‘[eoseH] ‘[coHIr] o180 Azznyg o180 Azznyg
sisou8oaJ juowIjead], _ sisouder(q wISI[eULIO _ K10833e) _ a3poarmousy

uorjejuasardayy aSpajmousy




46

networks [CGH97| and artificial neural networks [RM86], are examples of these types of knowledge
representation formalisms.

Finally, the structured representations group those formalisms which allow making representa-
tions through well defined blocks of knowledge (i.e., classes or entities, their properties and the pos-
sible values which can have each property), and their relations. Traditional examples of these types
of formalisms are the semantic networks [Qui68| and frames [Min75]. However, in the last decades
the representation and organization of knowledge through ontologies [Gru93| and the use of CPG
representation languages |[SHJT94, Shi97, SMJ98, FJR98, TM99, JTBT00, PBOea00, BCHT02]
have been the last advances in the knowledge structured representation in medical assistance.

In the following sections a detailed description of these knowledge representations formalisms is
introduced. This description is done taking into account the type of knowledge which they represent
(i.e., know-what and know-how knowledge) and the medical assistance activity (i.e., diagnosis,
treatment and prognosis) in which they have been used during the last decade [QBA01, DKBO03,
MHKO05, BAHHO7, CSAHO09.

3.2.1 Know-What Knowledge Representation

Know-what knowledge in medical assistance can be represented through formalisms which allow
making a decision by assigning a label or a value to a patient according to the available information.
It is basically a classification process which proposes a diagnostic, a treatment or a prognostic from
a limited finite or continuous set of possible alternatives. For example, the medical data about a
patient can conclude that this patient has a particular disease (i.e., diagnostic), needs a specific
therapy (i.e., treatment) or predict a determined evolution for the applied therapy (i.e., prognosis).

So, the formalisms of know-what knowledge representation are characterized by being able to
solve decision processes taking into account a set of objects O (e.g., patients) and a set of classes C'
(e.g., diseases), where each object o; € O is described by a finite set A of discrete and/or continuous
attributes, which help to explain the medical characteristics of the cases behind the considered
medical problem (e.g., demographical data, symptoms and signs, diagnostic tests outcomes, prog-
nostic factors, etc.) and the class ¢; € C' to which o; belongs. Each class ¢; represents a particular
medical problem. (e.g., set of diseases, treatments list and events to predict, etc.). A decision (e.g.,
diagnostic, treatment or prognostic) will consist in classifying each one of the objects of O in one
of the classes of C, according to the particular medical problem to be considered. That is to say,

d:0—C.
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Formalisms of Know-What Knowledge Representation in Diagnosis and Medical Treat-

ment

Traditionally, the most used formalisms to know-what knowledge representation in the diagnostic
and medical treatment are: fuzzy logic [Zad65|, production rules [New73|, decision tables [Hol75|,

decision trees [Qui86], partial orders [DM41] and, recently, ontologies [Gru93].

Fuzzy Logic

The fuzzy logic (FL) |Zad65] is based in the idea, that in a given time, it is not possible to determine
the value of an attribute a; € A for an object , but only to know the degree of membership of each
one of the objects 0; € O, and each value inside the variation range of the attribute a;. For defining
these degrees of membership, FL uses the notion of fuzzy set. Each fuzzy set has associated a
membership function for its elements that indicates in which measure the element takes part of that
set.

Fuzzy sets can be used in the representation of input attributes or fuzzy inputs, as in the process
of classification in fuzzy classes [KS99|. In fuzzy inputs, instead of the original input values (e.g.,
measurement) its “fuzzy” versions can be used. For example, instead of a value of 145 mmHg for
blood pressure, it can be used the vector |0.0, 0.4, 0.6] which defines the degrees of membership
of that value to the fuzzy set [low, medium, high|. Also, in fuzzy classes, instead of determining
that d(o;) = ¢; with ¢; € C the class which o; belongs to, a fuzzy classifier makes a mapping
d: 0 —[0,1]", with n = |C|. That is to say, d(0;) = [#1(0i), ..., tn(0;)], where each pz(0;) denotes
the degree in which o; belongs to the class ¢,. The fuzzy decision d(o;) can be oriented to choose
an only class of C. This process is called “defuzzification” [LK99].

The FL as formalism of know-what knowledge representation has been used, among others,
in the diagnosis of inadequate analgesia for patients undergoing anaesthesia [JLHO2|, in the deci-
sion support of radiation therapy [PSGO03|, in the detection of breast cancer [Has03|, lung cancer
[SPBeal3| and prostate cancer [SOPN03|. Among the systems which use FL, MedFrame/ CADIAG-
IV [BAH"04] has been used in diseases diagnosis of internal medicine, and ESTDD [KKO08| for
diagnosis of thyroid diseases. The FL also has been used in the development of classification frames

and to improve the diagnosis of diseases [GMO09].
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Production Rules

Production rules (PR) [New73| have been one of the most applied formalisms in the knowledge
representation of DMSMA systems. Its representation structure is: IF antecedent THEN conse-
quent, where the antecedent represents a condition for being evaluated that is usually represented
as a conjunctive boolean expression. This expression is defined as an undetermined number of
comparisons expressed as {a; = v}, for discrete attributes and {a; < v} or {a; > v} for continuous
attributes; being a; € A and v € Dom(a;). Likewise, the consequent represents a decision ¢;, with
¢; € C. In this sense, an object 0o € O is covered by a decision rule, if the object accomplishes all
the comparisons of the antecedent in conjunctive form. So, the decision proposed by the rule will
be that one found in the consequent.

In order to obtain conclusions, the PR based systems use, mainly, two sorts of inference: forward
chaining or progressive reasoning and backward chainning or regressive reasoning. Forward chain-
ning is a process guided by data which considers as starting point all the known data and it goes
progressively advancing towards the solution. The steps to be followed in this inference process are:
unification, resolution and execution. In the unification, the rules found in the knowledge base are
used to prove the known facts in that moment and to determine which of them are satisfied. A rule
is satisfied when the rule antecedent is resolved to true. If as result of the unification step, there are
different rules satisfied, these rules are solved by resolution. In this case, one of the satisfied rules
is chosen according to a pre-established criterion such as the most priority rule [Mic87|. The last
step is the execution of the rule. Execution can give one of the following results: a new fact which
can be added to the base of facts, or a new rule which can be added to the knowledge base.

Backward chainning is a process guided by the objective, where a possible solution is chosen
and to prove its validity the process searches for the evidence that supports it. The system starts
by the objective (consequent part of rules) and acts backward for looking how that objective is
deduced from data. It is produced directly or through intermediate conclusions or sub-objectives,
trying to prove a hypothesis from the facts contained in the base of facts and which were obtained
in the inference process.

Figure 3.1 [MSS06] shows a typical rule used in MYCIN system [Sho76]. In this rule, the MY CIN
is able of to conclude about the probable cause of bacterial infection if the five conditions of the
antecedent are satisfied by a specific patient.

Production rules as a formalism of know-what knowledge representation have been used, among

others, in the following DMSMA systems: INTERNIST system [PMMT75] designed for the disease
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Rule>07

IF

1) The infection that requires therapy is meningitis,

2) Organisms were not seen on the stain of the culture,

3) The type of infection is bacterial,

4) The patient does not have a head injury defect, and

5) The age of the patient is between 15 years and 55 years

THEN
The organisms that might be causing the infection are
diplococcus-pneumoniae and neisseria-meningitidis

Figure 3.1: Example of a production rule used in the MYCIN system.

diagnosis in internal medicine, MYCIN system [Sho76| developed to diagnose and suggest treat-
ments for blood infectious diseases, ONCOSIN system [Sho81] developed to help the health care
professionals in the treatment of patients with cancer that receives chemotherapy, PUFF system
[AKSR83| developed for diagnosis and seriousness of lung diseases, or, nowadays, in rules based

approaches for the diagnostic of coronary disease [RBWO04].

Decision Tables

A decision table (DTa) [Hol75] is a matrix which joins a set of decision attributes A (or conditions)
(e.g., signs, symptoms and diagnostic tests outcomes) with a set of actions C (e.g., conclude a
diagnostic, starts a treatment, etc.). In a DTa, each decision value can be represented as a categorical
value (e.g., the presence or absence of diabetes) or as a range of a continuous attribute (e.g.,
cholesterol > 270 mg/dl). The number of values that each condition can assume is defined as the
condition module [Shi97].

As figure 3.2 [SLG94| shows, the conditions and actions in a DTa are of the type stub and
entry. The stub conditions represent the list of decision attributes (e.g., clinical status, anatomic
distribution of disease, risk, ejection fraction) and the stub actions represent the list of the relevant
medical action names (e.g., sort of pharmacological treatment, diagnostic tests, referals to special-
ists, medical procedures). The entry conditions contain the values or states of decision attributes
(e.g., PAIN, LOW, HIGHT, MODERATE) and the entry actions, optionally marked with a X in
the DTa. FEach entry column in the table represents an appropriate decision give the pertinent

combination of decision values. Each column in the entry area is a rule, whose antecedents are
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derived from the entries conditions and whose consequents are indicated by the entries actions. For
example, the rule described in the column three of figure 3.2 can be read as: “IF clinical status is

carcinogenic shock (SHK) AND Anatomic distribution of disease is 2-vessels including proximal left

anterior descending (2V+P) AND risk is normal or low (LO) THEN CABG is appropriate”.

1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15 16 17
Giinicat status | N SHK T SHK I SHK L SHKE SHK P SHK I SHICZ SHK & SHK 2 SHIC £ SHK 2 SHK 2 SHK 3 8}
Anatomy LM 3V foVaPlaVePl ovaP : oV.P C 2V.P ¢ 2V.P i PLAD tPLAD:PLAD X 1V-P : 1V.P
JHisk 5 et MO0, HL L LD, MG i RS MO0 L LS AR, NR0,
Ejection Fraction - - - — = - — - - - - - ~ - - - -
JGABG Appropriste X X X X X 2K X X X i x X X
X X X X X
CABG Inappropriate
Column Count 8 ] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
18 19 20 21 22 23 24 25 26 27 28 20 30 3 32 33 34
Clinical status PAIN £ PAIN : PAIN : PAIN £ PAIN PAIN : PAIN 2 PAIN & PAIN : PAIN § PAIN : PAIN : PAIN : PAIN : PAIN : PAIN : PAIN
Anatomy 3v. i av i oav i gy i o3y ioveP IavePliovPiaveP iovePtovePlovaP:av.-piav.p i ov-piav.piavp
----------------------------- H
o - e
CABG Inappropriate X X
Column Court 3 3 1 1 3 1 1 1 1 1 1 3 3 1 1 1 3
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 || wbC
Clinical status PAIN i PAIN : PAIN i PAIN 2 PAIN : PAIN : PAIN i PAIN : PAIN  PAIN i PAIN : PAIN : PAIN : PAIN : PAIN : PAIN : NPN 0
Anatomy PLAD i PLAD : PLAD : PLAD PLA‘? PLAD :PLADIPLAD:PLAD Z VP : IVPZ VP I IVP VP : 1VP: 1VP — 54
Risk LO LO LO i MOD: MOD i MOD : HI H H LO Lo LO iMOD :MOD: MOD: HI - 72
Ejection Fraction | N. IRED iLOW: NL ! RED :LOW: NL : RED : LOW: NL : RED:LOW : NL :RED { LOW: - - 135
CABG Appropriate X X X X
Uncertain | X X X X X X X X
.GABG Inappropriate | X X X i XX
Column Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 54

Figure 3.2: Example of a decision table.

The TDa as formalism of know-what knowledge representation has been used, among other
medical contexts, to determine the adequate of CABG in acute myocardial infarction [SLG94], for
the depression diagnosis in EsPeR preventive medicine system |[CAJZT05], to select the best action

course in the treatment of gastric lymphoma no-Hodgkin [BAPLOS§|, or to model different sorts of

medical decisions [Riall].

Decision Trees

A decision tree (DT) [Qui86| is a set of conditions organized in a hierarchical structure, so that

the final decision can be determined following the conditions that are fulfilled from the tree root to
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some of its leaf.

DTs represent the knowledge through structures formed by decision nodes (internal nodes) and
leaf nodes. Decision nodes specify an attribute a; € A which is defined on the objects in the domain
O. The arcs which leave of a decision node define a partition of the range Dom(a;) of the attribute,
so, each arc has associated one of the partition components which acts as a filter of the objects in
O. Each leaf node has associated one of the categories of C. A DT with k leaf nodes partitions
the space of objects O in k disjoins subsets, where one of the possible decisions of C is applied.
Any object o € O will be associated by the DT in only one leaf node. The associated leaf node is
determined following, from the root and down the tree, the path formed by the arcs of the decision
nodes with a range of values which the object value belongs to that attribute. The DT leaf node
achieved at the end of the path determines the class ¢; € C' which the object belongs to.

Figure 3.3 [Woz06| shows a DT which presents six possible diagnostic alternatives to hyperten-
sion: essential hypertension, fibroplastic renal artery stenosis, atheromatous renal artery stenosis,
Conn’s syndrome, renal cystic disease and pheochromocystoma. The decision about the sort of
hypertension is made taking into account the patients information about the blood pressure mea-
surement (i.e., systolic blood pressure), general information (i.e., palpitation and heart failure) and
biochemical data (i.e., level of serum potassium). A diagnostic decision as essential hypertension
is assigned to a patient that, following the DT, does not have palpitation symptoms and his/her
serum potassium level is greater than 3,2 mEq/L (miliequivalents per litre).

DTs as a formalism of know-what knowledge representation have been used, among other medical
domains, in the diagnosis of heart problems [SLPKO04|, in the diagnosis of optic nerve diseases
[PKGGOS], in the diagnosis of leukemia patients [CPRB09] or in combination with artificial neural

networks in the diagnosis of Parkinson disease [Das10].

Partial Orders

Partial Orders (PO) [DM41] are formalisms which allow to represent binary relations among at-
tributes. Formally, given a set of attributes A , a PO P C A x A, over these attributes is a
binary relation such that P is reflexive (i.e., a; € A = (a;,a;) € P), antysimetric (i.e., (a;,a;) €
P and (aj,a;) € P = a; = a;), and transitive (i.e., (a;,a;) € P and (aj,ax) € P = (a;,a;) € P).
PO are typically represented as directed acyclic graphs (DAG) where all the deducible nodes by
reflexivity and transitivity are omitted. Figure 3.4 shows an example of how a PO represents know-

what knowledge in the breast cancer domain according to the TNM staging system (Tumour, Node
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Figure 3.3: Example of a decision tree to the diagnosis of hypertension sorts.

and Metastasis) [SWO02|. This PO shows the different disease severity states and their relations.
Here, a patient in IIA state has a severity level less than another one patient in IITA or IIIB states
(directly connected), or in IV state (connected by transitivity), and not comparable in terms of
severity to patients in 1IB state. The O state represents the minor severity state of disease and
indicates carcinoma n situ without any affected lymph node, and the 1v state represents the major
severity state of disease and indicates that the cancer has affected the armpits lymph nodes and

there is metastasis to other parts of the body.

© GQ: )

TNM BREAST CANCER CONDITION

Stage 0: carcinoma in situ; no cells in lymph nodes. Stage I: the tumor size < 2cm; armpit lymph node not affected; cancer not spread.
Stage I1A: no cells in lymph nodes, cancer has broken through the outer covering of the bowel. Stage IIB: grown through the outer covering
of the bowel wall and into tissues or organs next to the bowel, no lymph nodes affected; cancer not spread. Stage IIIA: cancer in the inner layer
of the bowel wall or has grown into the muscle layer; 1-to-3 nearby lymph nodes contain cancer cells. Stage IIIB: cancer has grown through the
bowel wall or into surrounding body tissues/organs; 1-to-3 nearby lymph nodes contain cancer cells. Stage IV: any size; armpit lymph nodes
can be affected; metastasis to other parts of the body.

Figure 3.4: Example of a partial order in the breast cancer domain according to TNM staging
system.
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PO as formalisms of know-what knowledge representation has been used, in combination with

DT, to the diagnosis of disease [LVRCO07, LVRBI10|.

Ontologies

An ontology is a formal and explicit conceptualization of a shared knowledge [Gru93|. In this
definition, conceptualization refers to an abstract model of some phenomenon in the world by having
identified the relevant concepts of that phenomenon. Formal refers to the fact that the abstract
model which represents the ontology should be machine-readable. Ezplicit means that the type of
concepts used (e.g., diseases, symptoms, etc.) and the constrains on their use are explicitly defined.
Shared reflects the notion that an ontology captures consensual knowledge, that is, it is not private
to some individual, but accepted by a group.

In the Ontologies the knowledge is formalized according to five levels of components [GB99|:
classes, concepts, relations, functions, axioms, and instances. The Classes in an ontology are usually
organized in taxonomies. Sometimes, the ontology notion is distorted, the sense that the taxonomies
are considered as full ontologies [SBF98|. Concepts are used in a broad sense. A concept can be
anything about which something is said, and, therefore, it could also be the description of a task,
function, action, strategy, reasoning process, etc. Relations represent a type of interaction between
concepts C; of the domain. That is, R : C; x Cy x ... x C,. For example, the “subclass-of”
and “connected to” binary relations, are parts of these interactions. Functions are special cases of
relations which the n-th element of the relationship is unique for the n — 1 preceding elements. That
is, F': C; x Cy X ... x Cp_1 — C),. Azioms are used to model sentences which are always true.
Instances are used to represent elements or concrete facts in the Ontology.

Figure 3.5 shows the root nodes of the hierarchies of concepts of the “Case Profile Ontology”
(CPO) developed within European Project KACARE (www.k4care.net). This ontology provides a
formal representation of medical knowledge about syndromes, signs, symptoms and diseases (e.g.,
symptoms associated to each disease) and relationships and constraints among them. The knowledge
representation is based in six basic concepts: problem evaluation (e.g., laboratory analysis, diagnos-
tic test, etc.), signs and symptoms (fever, edema, pain, dizziness, etc.) social aspects (e.g., poverty,
violence, etc.), syndromes (e.g., cognitive impairment and immobility), diseases (e.g., dementia,
delirium, depression, etc.) and interventions (e.g., pharmacological treatment, rehabilitation, etc.).
The relationships of these concepts are represented with the properties and constraints of the ontol-

ogy. For example, the property “can be expression of” allows to relate which syndrome is connected
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with what disease (e.g., immobility syndrome can be expression of arthritis disease) or the property
“has intervention” which links social aspects, syndromes and diseases with possible interventions

(e.g., dementia disease has intervention nursing care).

Has
Is sign of intervention
Has

Is

sign and . .
& intervention of

symptoms

Has

Evaluates Is sign of intervention

Sign and
Symptoms

Problem
Assessment

Has Is
sign and intervention of
symptoms

Is assessed by

Is sign of ~ Canbe Can be . Has
cause of expression of Intervention

Disease

Figure 3.5: Example of an ontology in medical domain.
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Is
intervention of

Ontologies as formalism of know-what knowledge representation have been used in encoding and
classification systems as the MANELAS [Zwe94| in coronary disease domain, GALEN (Generalized
Architecture for Languages, Encyclopaedias and Nomenclatures in medicine) [RRP96], SNOMED
(Systematized Nomenclature of Medicine) [SCC97] and UMLS (Unified Medical Language System)
[HLSB9S§]| in general medicine, and FMA (Foundational Model of Anatomy) [RM03] in the anatomy
domain. Also, the ODDIN |[GCRM™10] and TimeDDx [DP10] systems are two cases of ontologies

used for the differential diagnosis.

Formalisms of Know-what Knowledge Representation in Medical Prognosis

The traditional formalisms of know-what knowledge representation in medical prognosis activity
are Bayesian networks [CGH97| and artificial neural networks [RMS86|, although both formalisms

also have been used in the diagnosis and medical treatment activities, as it is shown in table 3.1.
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Bayesian Networks

Bayesian networks (BN) [CGHI7| are a formalism to uncertain knowledge representation, which
allows to establish reasoning based on probability theory. A BN is a directed acyclic graph (DAG)
whose nodes A represent attributes or uncertain events and whose relationships define probability
dependencies between these events. These relationships are quantified by the association of a
conditional probability table to each node a;. Each conditional probability table contains the
probability distribution of values in a node a;, taking into account any configuration of its parent’s
values. For the root nodes, only their a priori probabilities are necessary. Prediction in a BN
will consist in providing the values of observed events and the calculation of posterior probability
of some not observed events, in the following way: let, ¢ the class to be predicted, A the set of
attributes of an object O; P(c|A) the probability of an object with attributes A belongs to the class
¢. So, the aim is to find the class ¢ verifying P(|A) = maz.P(c|A). Using the Bayes theorem, we
have P(c|A) = %, where 7 denote the a priori probability of each class.

Inference in a BN, and in the probabilistic networks in general, consist in evidence propagation
through of the network in order to know the posteriori probability of the variables. The propagation
consists in giving values to some attributes (evidence), and to obtain the posterior probability of
the other attributes given the known attributes (or instantiated). This propagation is one of the
most important tasks because it allows to obtain conclusions when there is new information (e.g.,
signs, symptoms, etc.) [CGH97|, and it will depend of the type of network structure which is being
used, for example, a tree [KP83], a polytree ! [Pea86] or a multi-connected network 2 [Coo90).

An example of BN application is shown in figure 3.6. This network is used in the ProCarSur
system [PVTSS'07] and it allows to make, after a cardiac surgery, prognosis about exitus, length
of stay in the intensive care unit, and occurrence of complications. For making the prognosis,
this BN uses twenty four variables which allow to distinguish three phases: the preoperative phase
composed by eight variables, the operative phase composed by four variables and the postoperative
phase composed by twelve physiological variables and of surgery complication. Also, the network
has an outcome variable hospmort which represents mortality during hospitalization.

BN as formalisms of know-what knowledge representation in medical prognosis, have been used,

among others, in the NasoNet system [GADMO02] to predict the nasopharynx cancer extension in

LA polytree is a network in which a node can have many parents, but without existing multiple paths between
nodes (connected network in a simple way).

2A multi-connected network is a non-connected network in a simple way, that is, where there are multiple paths
between nodes).
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Figure 3.6: Prognostic BN in the ProCarSur system.

a patient, to predict the morbidity and mortality of patients with cardiac diseases [RBWO04], to
predict the development of carcinoid heart disease [vGJT107]|, to predict the patients evolution
with prostate cancer after the intensity modulated radiation therapy [SDM™09|, or the survival

analysis of prostate cancer domain [SDBB09.

Artificial Neural Networks

Artificial neural networks (ANN) [RM86| are formalisms of know-what knowledge representation
based in the emulation of information biological processes. ANNs model the knowledge in classifica-
tion problems by means of a structure which presents as input nodes the predictive variables A, as
output nodes the different variables for being classified C', and several intermediate layers of nodes,
called hidden layers, that provided freedom degrees to the ANN through which it is able to represent
the environment characteristics to be modelled. The nodes in a particular level are connected to
the nodes in next level, quantifying that connection by means of synaptic weights w;;, which in the
learning process, sometimes they are calculated by a backpropagation algorithm [RMS86|.
Formally, an ANN represents the knowledge through a direct graph, where each node (or neuron)

n; has:
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o A set of inputs A; (or connections with the n neurons of previous layer), each one with a

synaptic weight w;; with j =1,...,n.

e A propagation rule h; defined from the set of inputs A; and the synaptic weight w;;. That
is, hi(a,, ..., ai, , Wi, ..., w;n). The most used propagation rule is a lineal combination of the

inputs, weighted with the synaptic weight (i.e., >°7_; wija;;)).

o A activation function, which simultaneously represent the neuron output and its activation

state. if y; denotes this activaton function, then y; = f; o h;.

An example of ANN application in medical prognosis is shown in figure 3.7 [MSM™05]. This
ANN was designed to predict whether a coronary arteriography® on a particular patient could
reveal a significative coronary stenosis? (>50%), very often, coronary stenosis leads to a coronary
intervention. For making the prognosis, the ANN uses eleven independent variables in the input
layer: age (32-79 years old), height (54-78 in), weight (105-350 lbs), pain classification according
to Canadian Cardiovascular Society (1-4), stable angina (0,1), atypical chest pain (0,1), rest pain
(0,1), positive stress test (0,1), negative stress test (0,1), diabetes (0,1) and hypertension (0,1). Also
it uses thirty-six neurons in the hidden layer and an only neuron in the output layer representing
the SIG-CAD (Significant Coronary Artery Stenosis) prediction.

The ANN as formalisms of know-what knowledge representation in medical prognosis, have
been used, among other applications, in the classification of patients into prognostic risk groups
[LWHSO03], to predict the survival of breast cancer patients [BBAMO06], to predict the presence the
coronary artery disease [KTKO08| or to predict the virulence response, in combination with therapies,

to the AIDS (acquired immunodeficiency syndrome) [WLR™09].

3.2.2 Know-How Knowledge Representation

Unlike the know-what knowledge representation, the know-how knowledge in medical assistance is
represented through formalisms that allows guidance to the health care professionals in decision
making, when they do not have enought information about the patient or his/her disease which
prevents them from reaching conclusions respect to a diagnostic or to a specific treatment. In this

sense, these formalisms allow us to represent explicit knowledge about sequences of actions to be

3Coronary arteriography (or coronary angiography) is a procedure that uses a special dye (contrast material) and
x-rays to see how blood flows through your heart.

4Coronary stenosis is a disorder characterized by the narrowing of the coronary artery which threatening the
arriving of oxygen to the myocardial.
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Figure 3.7: Example of ANN used to predict significant coronary artery disease.

taken, with the aim of reaching a decision on the final process. Basically, these actions can be

testing, analysis and other medical procedures as prescriptions, life style modifications, etc.

Formalisms of Know-How Knowledge Representation in Diagnosis and medical Treat-

ment

Languages to represent computer-iterpretable guidelines [SHJT94, Shi97, SMJ98, FJR98, TM99,
JTB*00, PBOea00, BCHT02| are systems to describe know-how knowledge about diagnostic and
therapeutic activities. These languages have primitives which are used for representing specific
clinical tasks [WPT*02, WTSR10|]. These primitives, according the type of task which we want
to represent, are classified in two categories: actions and decisions. Also, some languages have
primitives which are used to represent intermediate states in a specific context during the CPGs
application. These intermediate states can be descriptions of the patient medical situation, or of a
guideline implementation system.

An action is a clinical or administrative task which is recommended to perform, maintain or avoid
during the process of the CPG application (e.g., recommendation of a medication, or invocation

of another CPG, etc.). A decision is a selection from a set of alternatives based on predefined
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criteria in a CPG (e.g., selection of a diagnostic test from a set of potentials). A patient state is
a clinical individual description of a patient based on actions and decisions which have been made
for that patient (e.g., the state of “eligible-for-the-second-dose” contains the description of a patient
who has received the first dose of the influenza vaccine and is elegible for the second dose). An
ezecution state is a description of a CPG implementation system based on the action and decision
tasks defined previously (e.g., after that a patient is in the state “eligible-for-the-second-dose”, the

CPG execution system could change to the “ready” execution state for the CPG influenza vaccine.)

CIG Representation Languages

In sections 2.3.1 and 2.4.1 CPGs and the medical algorithms (MA) were introduced as the current
alternatives of know-how knowledge representation in medical assistance. However, these repre-
sentations show the medical information in a textual and narrative way, present recommendations
based in population, and the information contained within them are of difficult access and applica-
tion to a specific patient during a medical consultation. An alternative to solve these disadvantages
has been the development of formal representations which allow computational interpretation of the
medical knowledge contained in the CPGs. This required the development of several languages to
formalize the CPGs in form of Computer Interpretable Guidelines (CIG’s). Table 3.2 summarizes
chronologically the main CPG representation languages, emphasizing, for each one of them, the

primitives which use and the institutions that have developed them.

o Arden Syntar [SHIJT94] is a model developed to represent know-how knowledge through logic
modules called Medical Logic Modules (MLMs). Each MLM has three descriptive parts or
categories: a maintenance category which contains specific information about the module (e.g.,
module title, version, author, etc.), a library category which contains the module meaning (e.g.,
purpose, explanation, keywords, etc.) and a knowledge category which describes the module
meaning. The representation primitives in Arden Syntax are based in two slots: action and
logic slots. The action slot indicates the appropriate actions to the condition. The logic slot
contains the current decision criterion which allows leading to a determined action. Also,
Arden Syntax has a data slot used to obtain the concepts values which have been mentioned
in the MLM from a hospital database and an evocation slot that specifies the context in which

the MLM should be executed.

Figure 3.8 [Hea02| shows a MLM example used by Arden Syntax. This MLM is used to alert

when a patient is allergic to the penicillin according to his/her medical record.
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Contraindication Alert MLM:

maintenance:
title: Check for penicillin allergy;;
mlmname: pen_allergy;;
arden: ASTM-E1460-1995;;
version: 1.00;;
institution: Columbia-Presbyterian Medical Center;;
author: George Hripcsak, M.D.;;
specialist: ;;
date: 1991-03-18;;
validation: testing;;

library:

purpose:
When a penicillin is prescribed, check for an allergy. (This MLM
demonstrates checking for contraindications.);;

explanation:
This MLM is evoked when a penicillin medication is ordered. An
alert is generated because the patient has an allergy to
penicillin recorded.;;

keywords: penicillin; allergy;;

citations: ;;

knowledge:

type: data-driven;;

data:
/* an order for a penicillin evokes this MLM */
penicillin_order := event {medication_order where class =
penicillin};
/* find allergies */
penicillin_allergy := read last {allergy where agent_class =
penicillin};

evoke:
penicillin_order;;

logic:
if exist(penicillin_allergy)then

conclude true;

endif;
action:
write "Caution, the patient has the following allergy to
penicillin
documented: " || penicillin_allergy;;

urgency: 50;;
end:

Figure 3.8: Example of a MLM in Arden Syntax.
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o Augmented decision tables [Shi97| are a representation based in a decision table (§3.2.1) which
incorporates in its rows and columns additional information about probability and utility. This
additional information is stored in slots of several levels under the decision table and allows
to relate several representation components with cells, rows and columns. The representation
primitives are the action stub and the decision stub, which operation is similar to the decision

tables described previously in section 3.2.1.

o Asbru[SMJ98] allows to represent know-how knowledge through a set of hierarchical plans
(skeletal-plan). Each plan is identified by a unique name and a arguments set which include
time annotations that represents the temporal link of plan. Asbru uses as representation
primitives five basic components: plan, conditions, preferences, temporal patterns and a plan
body. The plan describes the set of intentions which define the objective to be achieved.
The conditions represent the control mechanisms for executing the plans. These mechanisms
correspond to filter and execute, suspend, abort, complete and reactivate conditions. The
preferences allow to limit the selection of a plan to achieve a determined objective, or to
express the plan behaviour level (strategy). The temporal patterns allow to activate the
functional relations of model between the plan arguments and the measurable parameters.
The state plan contains a set of plans to be executed in parallel, in sequence, in any order or

with some frequency.

Figure 3.9 [Bos01| shows an Asbru hierarchical plan. The objective of this plan is the diag-

nostic and treatment of the hyperbilirubinemia or excess of bilirubin in the blood.

e PROforma|FJRI8| represents the CPG knowledge as a directed graph which nodes are in-
stances of a closed set of classes, called PROforma task ontology. Each CPG is modelled as
a plan which consists in a sequence of tasks, where all of them are derived from a root task.
PROforma task ontology defines four tasks as representation primitives: actions and queries,
decisions and plans. The actions represent some procedure which needs to be issued in an
external environment (e.g., a clinical user, external software or a device). Queries represent
CPG points in which the information should be provided by an expert or an external system.
A decision is represented as a set of possible candidate outcomes, and several types of logic
expressions which support or oppose to each candidate. Each candidate is associated with a
set of schemes. Each scheme contains rules, qualitative variables, weights and certainty factors

in agree or disagree of the candidate, establishing the preference for that candidate. The plans
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PLAN Diagnostics& Treatment-Hyperbilirubinemia
TIME ANNOTATION

PREFERENCES

INTENTIONS Avoid intermediate state: (bilirubin = transfusion)
CONDITIONS Abort-condition:

((term-child = no)
Explanation: “Exiting the protocol to individualized clinical evaluation, including
assessment of jaundice in light of prematurity™

OR
(age = dayl)
Explanation: “Exiting the protocol to individualized clinical evaluation, including
assessment of jaundice and non-isoimmune hemolytic disease”

OR
(pathologic-reason = yes))

Complete-condition:

((jaundice-clinically-significant = no)
Explanation: “Follow this infant in routine clinical supervision”

OR
(completed(treatment-hyperbilirubinemia)))

EFFECTS

PLAN-BODY Sequential subplans:

Continuation specification: none
Ask Term-child
Ask Age-child
Diagnostics-hyperbilirubinemia
Treatment-hyperbilirubinemia

Figure 3.9: Example of a plan represented in Asbru.

are collections of tasks that are grouped according to logic criteria (e.g., tasks performed at

the same time).

Figure 3.10 |[FJR98| shows a general plan, based on PROforma, to the managing of acute

asthma.

GLIF(Guideline Interchange Format)|[OMGM™98, PBOea00| is a model for the structuring
representation of the CPG to three different levels of abstraction: conceptual, computable
and implementable. In the conceptual level the CPGs are represented as flowcharts for their
dissemination. In the computable level the CPGs are expressions which define the patients
data, medical actions and algorithmic control structures, allowing their logic analysis for its
coherence and integrity. The implementable level allows its integration in some information
system for being computerized. The CPG representation is made as flowcharts of temporarily
sequenced nodes. These nodes are called steps and define the following representation prim-
itives: action step, decision step and patient state step. The action step specifies medical
actions made to patients during the process of patient care. The decision step represents

decision points in the CPG. These decision points can be deterministic (case step) as non-
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Diagnosis Initial treatment Monitoring and further treatment

Figure 3.10: Example of a plan represented in PROforma.

deterministic (option step). The patient state step is used as a label to describe the patient
state that is achieved in previous steps, or, as entry point in the CPG. Moreover, it uses a
branching step to guide the flow to different steps in parallel or in any order, and a synchro-
nization step used in conjunction with the branching step to model simultaneously multiple

paths through CPG.

Figure 3.11 [PBOea00] shows an example of GLIF based representation for patients man-
agement with chronic stable angina. The action steps are represented through squares and
the decision steps, case step and option step, are represented by diamonds and hexagons,

respectively.

EON|[TM99], represents know-how knowledge through graphs of temporal sequences (flowchart)
of instantiated classes. For representing that knowledge, EON uses the following primitives:
action and activity steps, decisions, scenarios and activity state. Actions describe the practice
workup that should be made immediately, unlike to the activities which are continuous pro-
cesses. Decisions represent options from a set of available alternatives. Actions and decisions
can have associated objectives represented by boolean criteria, which defines the intention to
be accomplished in these steps. A patient scenario is used to describe a patient state ac-
cording to decisions made and the actions completed. These sceneries allow to a health care

professional synchronize the patient management with a part of the CPG and moreover, are
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Figure 3.11: Example of a plan represented in GLIF.
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commonly used as an entry point to the CPG. An activity state is used to describe the patient

state respect to the activities.

Figure 3.12 [GHRea00| shows the representation primitives used by EON. The screen on the
left of the figure shows part of the class hierarchy used by EON. The right hand side screen
of the figure, shows how EON represents, decision points and action alternatives in terms of

patient scenarios in the setting of managing hypertension patients.
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Figure 3.12: Example of a CPG represented in EON.

e PRODIGY |JTB™00], as EON, uses representation primitives based on action and activities
steps, decisions and scenarios. Here, the scenarios are patient states defined by the patient
condition and his/her current treatment. Each scenario is associated with a consultation

template which describes the best-practice workup for a patient in that scenario and an option
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between different action alternatives.

Figure 3.13 [TMO00| shows an example of a representation based in PRODIGY. This represen-
tation is based in two possible scenarios Taking no antihypertensive medication and Taking
antihypertensive medication which represent the patient states, and decision criteria rule-in
which help to determine what action will be the most adequate, either continue lifestyle change

or Initiate drug therapy.

action step

. rule-in:

scenario

BP adequately .
o 4 ' ife- :

controlled.~ Continue life scenario P

style change

Taking no anti-
hypertensive
medication

Taking anti-
hypertensive
medication

rule-in: BP nc\)t‘\\ action step
adequately Y\

controlled for Initiate drug

therapy

> 6 months

Figure 3.13: Example of CPG representation based on PRODIGY.

e SAGE(Sharable Active Guideline Environment)[BCH"02] is a model which allows to formu-
late the CPG content in a set of recommendations. The recommendation set is a formalization
of the CPG actions and decisions to a workflow context in a specific medical situation. For
that, SAGE is based in a set of nodes which describe the actions, decisions, context and the
know-how knowledge routing. The action nodes are used to support the recommendations set
(e.g., implementation options), also, the action nodes can include support to the messaging
between the system devices, the objectives specification, recovery and storage in database,
planning events, etc. The decision nodes describe the acquisition of data (directly from an
Electronic Patient Record or in interactive way through questions to the health care profes-
sional) and the decision which allows to evaluate the most logic branch to be followed. The
context nodes allow to define attributes for specifying the events, the medical properties and
the patient states. The routing nodes allow the synchronization of the different activity routes

of the model.

Figure 3.14 [RBT"04] shows a set of recommendations which are based on actions (A1, A2
and A3), decisions (D1 and D2), context (C'1 and C2) and routing (R1) for the triage® and

5Triage is a medicinal emergency and disaster management process to determine the priority of patients’ treatments
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treatment of patients that have been suffered an acute ischemic stroke.

C1 Al D1
ED triage ED orders ED Out of Session #1
acute guideline .
and neuro assessment for ED Evaluation
evaluation deficit stroke END
A2 Session #2
. Admit Stroke Inpatient Daily
Inpatient Stroke
orders orders Management
acute care » Dayl >
text stroke /o (PA Day 2
contex w/o tPA wio w/o tPA
R1
ED Stroke Stroke
assessment for protocol discharge
stroke converges orders
A3
Admit Stroke Stroke
orders orders
» Day 1 >
stroke w (PA Day 2
w tPA w tPA

Figure 3.14: Example of CPG representation based on SAGE.

3.3 Machine Learning of Knowledge in Medical Assistance

Machine learning (ML) objective is the development of computationally methods that, automati-
cally, optimize a performance criterion using data or previous experience. These methods establish
learning systems able to acquire high level knowledge and strategies to solve problems through
objects, in analogous way to the human mind. From the objects given by an instructor and the
background or previous knowledges, the learning system creates general descriptions of concepts.
There are four ML paradigms [Shi92, Mit97|): analogy learning, analytic learning, conexionist
learning and inductive learning.

Analogy learning or instance-based learning (IBL) [AKA91]| is based in which the relations that
are fulfilled in a determined domain, also they are fulfilled in another domain. So, this type of

learning is based on similarity hypothesis in which objects with similar attributes are of the same

based on the severity of their condition, improving the survival possibility according to the therapeutical needs and
the available resources.
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class. The most known methods of this type of learning are the k-nearest neighbour (KNN) [AKA91|
or the case-based reasoning (CBR) [AP94].

Analytic learning or explanation-based learning (EBL) [DM86] is based in the use of the domain
knowledge. This type of learning has as objective to complete the processes originated by incom-
plete theories through the establishing of valid assumptions. So, given a known conclusion, several
hypotheses are proposed which explain this conclusion. Inductive Logic Programming (ILP) [LD94|
is the most known method of this type of learning.

Conezxionist learning or learning of artificial neural networks [RM86, Koh88]| is based in which the
mental phenomenon can be described by simple units of a network that are interconnected, where the
network units represent neurons and the connections represent synapses. Learning of the artificial
neuronal networks consists in modify, somehow, the weights associated with the connections, so, the
network generates the desired outputs for each input. The most known method is backpropagation
or propagation of error [RM86|, which modify the weights from the output layer to the input in
function of the error done by the output signs (the difference between the get outputs and the
desired outputs).

Inductive learning (IL) is a special type of learning which obtains from particular cases (objects),
general cases (rules) that generalize or abstract the evidence. That generalization is based in
the application of independent knowledge about of application domain. Inductive learning has as
objective to establish the common features of a object set of a unknown class, so that, the description
obtained does not include the rest of the objects that are not concrete cases of that class. The
presence of a negative object within a class is due to the presence of noise in the set of observed data.
In terms of the information available, two sorts of inductive learning can be distinguished: supervised
and unsupervised inductive learning. In supervised inductive learning the available objects have the
“true” value that needs to be predicted for each one of them. When this information is not available
it is interesting to discover patterns which allow to grouping and distinguishing some objects from
others; this type of learning is called unsupervised inductive learning.

Among all the paradigms of machine learning previously introduced, this thesis is exclusively

concerned with the inductive learning one.

3.3.1 Supervised Inductive Learning of Know-What Knowledge

In supervised inductive learning (SIL) the most common type of problem in which this learning

operates is classification. Classification (§3.2.1) is based in a set of objects O and respective ranges,
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where each object o; € O is described by a finite set of discrete and/or continuous attributes
A = {a,...,an}, and also the class C' to which they belong to. The SIL objective is to induce a
model M that allows predicting the class ¢; € C' for all the objects o; € O, given the values of the
attributes A. That is, ¢; = M(o;).

Some SIL methods used in classification are: ID3 [Qui86], C4.5 [Qui93] and C5.0 for inducing

decision tree induction and CN2 [CN89| for the induction of production rules.

e [D3(Interactive Dichotomizer) [Qui86] is an induction method which implements a simple
mechanism to find a classification structure from a set of objects O which may belong to
two classes. Each object is described in terms of a fix collection of attributes, each one of
them having their own values set. ID3 builds a classification structure as a decision tree
which correctly classifies all the given objects. Each internal nodes of tree is labelled with an

attribute, while the branches that get out of the node, are labelled with their possible values.

The building of tree is heuristically guided choosing the attribute a; that maximizes the
information gain in each step, minimizing the expected number of tests. The information
gain maximization for an set O with objects which can belong to k different classes, is the
average of the information quantity need to identify the class of an object O, as shows the

formula 3.1, where p; is the objects proportion of the class ¢; in the set O.

k
info(O) = — ij -logap; (3.1)

J=1

With this measure the effectiveness of an attribute a; is calculated to subdivide a set of
examples in subsets (one for each possible value a; in Dom(a;)), obtaining the expected value
of the entropy after the partition as a weighted sum of the entropy of each subset C;, which

is calculated with formula 3.2.

|[Dom(a;)|

infoAtrib(O,a;) = Z

Jj=1

|O;]
0]

-info(Oj) (3.2)

At the time of choosing an attribute to establish a test in a tree node, it is important to select
one that maximizes the information gain. This information gain is calculated as the difference
between the entropy of original set and the subsets obtained by separating O in function of

the value a;, with formula 3.3.
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gain(0, a;) = info(O) — infoAtrib(O, a;) (3.3)

e (4.5 |Qui93] is an evolution of ID3 algorithm, where an improvement of the gain information
measure is incorporated. This improvement allows the choice of attributes with many possible
values, which redound in a worst generalization of the observations. So, the C4.5 algorithm
introduces an alternative measure called gain ratio to improve this deficiency. Gain ratio is
calculated with formula 3.4, where infoPart represents the entropy associated with the fact

of partitioning the set of objects O in the subset O;.

, gain(0O, a;)
i) = - 4
ratio(0, a;) infoPart(O, a;) (34)
This entropy is calculated with equation 3.5.
|Dom(a;)|
O; O;
infoPart(O,a;) = — Z ’|O]| 'l092(|‘0|‘) (3.5)
i=1

Also, the C4.5 algorithm includes a pruning of the classification tree once it has been induced.
The pruning is based in the application of a hypothesis test which indicate whether it is

necessary or not to expand a determined branch [Qui93|.

Other methods for the induction of decision trees are: CART [BFOS84|, ASSISTANT [CKB8T7|
and C5 [Qui03].

e CN2 |CN89| combines the efficiency and the information management with noise which allows
the ID3 induction algorithm of decision trees [Qui86| with the flexibility of AQ [Mic87], in its
strategy of IF —THEN rules searching. This algorithm produce a set of rules I[F —THEN,
called “decision list” [Riv87|, using heuristically techniques based in a estimation of noise

present in the data to reduce the searching space. The rules obtained by CN2 are the form:

IF complex THEN class

Where complex is a conjuction of attribute-value operations on the attributes in A. The last
rule of the order list is a rule which assigns by default the more common class ¢; of the training

set to any object O that arrives to it. At classificcation time, it’s only necessary to follow the
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decision list in order until a rule whith a satisfiable condition is found. If none rule is satisfied,

the object is assigned to the most common class in the training set.

The CN2 algorithm works in an iterative way, each iteration searches a complex covering a
large number of objects O of a single class ¢; and few of other classes. The complex must
be both predictive and reliable, as determined by CN2 evaluation functions. Having found
a good complex, the examples that it covers are removed from the training set and the rule
IF complex THEN c¢; is added to the end of the decision list. This greedy process iterates

until no more satisfactory complexes can be found.

Other induction methods of production rules are AQ [Mic87], AQ15 [Mic87], RIPPER, [Coh95],
RISE [Dom96], INNER [Lua99).

3.3.2 Unsupervised Inductive Learning of Know-What Knowledge

Unsupervised inductive learning (UIL) is an automatic learning method where a model is adjusted
to the observations. It is distinguished from the supervised learning because there is not an a priori
knowledge. In UIL, a set of data on the input objects is treated. So, UIL typically treat the input
objects as a set of attribut values with the objective of building a density model for that data set.

An UIL type is clustering [Mac67] which consists in making groups with the objects of a set
O, each group being characterized by a set of discrete and/or continuous attributes of a set A,
so that the objects of a cluster are similar and the objects of different groups are disimilar. The
similarity measure is based on the attributes that describe the objects and it is defined by proximity
in a multidimensional space. Measuring the similarity between objects can be done with different
distance measures of distance [AKA91|: Euclidean, Manhattan, etc.

Among the variety of non-hierarchical clustering [Mit97, Wit00, ORF04], the most used ones

are: the k-means algorithm [Mac67] and the expectation-maximization (EM) algorithm [DLR77| .

e K-Means |[Mac67| is an algorithm for heuristical clustering which is based in partitioning
the set of objects O in a predefined number of K classes. This algorithm is based in the
minimization of the internal distance, as equation 3.6 shows. In this case the algorithm
minimizes the sum of squared distance between the assigned patterns to a cluster and the
centroid of that cluster, where p represents the centroid and p; the mean of cluster C; (both

are multidimensional objects).
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k
d(p,C)=> > Ip—pl’ (3.6)

=1 peC;

The algorithm is simple and efficient. Also, it processes the patterns sequentially, so, it requires
a minimum storing. Moreover, it is biased by the patterns presentation ordering (i.e., the first
patterns determine the initial configuration of the clusters) and its behaviour depends of the
parameter K. There are two versions of the K-means algorithm. The first version, known as
Forgy algorithm [For65|, it is based in the iteration of two steps: first, it assigns all the points
to its nearest centroids, and second, it recalculates the centroids according to the objects
contained in the new groups created previously. The process continues until a stop criterion is
reached (e.g., there are not reassignments). The second version [DHT73|, reassigns the points
based on the most detailed analysis of the effects caused over the objective function to move
a point of its cluster to another new. If the moving is positive, it is made, if not, it will stay

where it is.

FExpectation-Mazimization algorithm (EM) [DLR77] is an efficient iterative procedure to com-
pute the maximum likelihood estimate (MLE) in the presence of missing or hidden data.
Given a likelihood function L(6; x, z), where 6 is the parameter vector, x is the observed data
and z represents the unobserved latent data or missing values, the MLE is determined by the

marginal likelihood of the observed data L(0;x).

Each iteration of the EM algorithm consists of two steps: expectation step (E-step), and
maximization step (M-step). E-step calculate the expected value of the log likelihood function,
with respect to the conditional distribution of z given z under the current estimate of the

parameters ) as shows equation 3.7:

Q(010")) = E Z|z,0")[log L(0; z, Z)] (3.7)

M-step: Find the parameter that maximizes this quantity according to the equation 3.8:

0+ = argmaz Q0|0 (3.8)
0

Convergence is assured since the algorithm is guaranteed to increase the likelihood at each

iteration.
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3.3.3 Supervised and Unsupervised Learning of Know-How Knowledge

In the development of this document, we found small evidence about the development of supervised
and unsupervised learning methods to the know-how knowledge in medicine. An approximation
in this area is the developing of a new induction methodology, based in medical data, of decision
trees and background knowledge, to generate formal intervention plans (FIP’s) [RBR07]. Also,
in the worflow mining context [Manl1|, the problem of know-how knowledge learning in medicine
is solved inducing clinical-pathways represented as Petri nets [vdAvDH'03, vd AWMO04, MSLT08]
or as causal Bayesian networks [MCO07]. However, the structures induced by those systems are not
explicit medical structures that health care professionals are as familiar to work with as with clinical

algorithms.

3.4 Conclusions

The analysis of antecedents in the ambit of formalizing medical assistance knowledge, a series of
facts have been revealed that contextualize the present thesis work. These facts are exposed as

conclusions of chapter 3:

e The main areas of knowledge formalization in medical assistance are diagnosis, treatment and

medical prognosis.

e Knowledge management distinguishes between two types of knowledge: know-what and know-

how knowledge. This classification is extrapolated to the domain of medical assistance.

e The majority of knowledge representation formalisms that are used in medical assistance are:
fuzzy logic, production rules, decision tables, decision trees, partial orders, Bayesian networks,

artificial neuronal networks, ontologies, and the CIG representation languages.

e Table 3.3 contains a summary of the types and knowledge areas of medical assistance in
which, broadly speaking, the formalisms of knowledge representation and the machine learning

methods introduced in this document are used. We note that:

— The main formalisms of know-what knowledge representation in diagnosis and medical
treatment are: fuzzy logic, production rules, decision tables, decision trees, partial orders

and ontologies.
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— The main formalisms of know-what knowledge representations in medical prognosis are:

Bayesian networks and artificial neuronal networks.

— The main formalisms of know-how knowledge representation in diagnosis and medical

treatment are the CIGs representation languages.

Machine learning methods are used in the induction of know-what knowledge in the three

knowledge areas of medical assistance: diagnosis, treatment and prognosis.

— Approaches based on workflow mining context such as Petri nets and Bayesian networks,
are the most representative machine learning methods used in the induction of know-how

knowledge.

e The formalisms of know-what knowledge representation in medical prognosis, have been used
in the prediction of medical facts as the morbidity, mortality, recurrence and disease evolu-
tion, and survival analysis. These predictions depend on whether there are or not temporal
restrictions related to the prediction. An additional feature of these formalisms is their ability
to predict a concrete fact (e.g., survival) or whether they are able to predict several facts

simultaneously.

e The formalisms of know-how knowledge representation provide structure to the knowledge
contained in protocols and CPGs, where medical information appears in a textual and narra-

tive way, and describing recommendations based in the population and not patient-oriented.
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Chapter 4

Modelling Know-How Knowledge in Medical Assistance

In this chapter we propose the state-decision-action (SDA) knowledge model to represent health
care procedures as SDA diagrams which are similar to medical algorithms. This model presents an
alternative to the current languages of know-how knowledge representation in medicine.

In order to introduce this new knowledge model, this chapter is organized in five sections. In
section 4.1, an introduction to the know-how knowledge representation in medicine is provided. In
section 4.2, the SDA model is described according to the SDA elements and to the way that SDA
represents know-how knowledge, sequences, concurrences, loops, and non-determinism. In section
4.3, several examples of application of the SDA model in health care are introduced. In section 4.4,
a comparison between SDA diagrams and medical algorithms is made. Finally, section 4.5 contains

the conclusions of chapter 4.

4.1 Introduction

Clinical Practice Guidelines (CPGs) are systematically developed statements to assist health care
professionals and patient decisions about appropriate health care for specific clinical circumstances
[FL90](§2.3.1). CPGs are used to gather all the available evidence related to a disease. The main
arguments justifying the use of CPGs are: to provide a homogeneous practice, to improve the
quality, the equality and the equity of patient care, and to reduce costs [WGH99][BTZ"01]. Some
CPGs include Medical Algorithms (MAs) [Mea92, Had95] (§2.4) as a means of summarizing some of
the medical procedures that the CPG describe. As defined by the International Society for Medical
Decision Making [Mea92|, MAs are flowcharts that start with a clinical state box defining the clinical
state or problem, and then a combination of both, decision boxes representing “yes-no” questions

leading the process to alternative paths, and action boxes describing actions, either therapeutic or
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diagnostic. All these boxes are connected by arrows that show the logical sequence of application
of the MA. For example, the MA in figure 4.1 was published by the Institute for Clinical Systems
Improvement [ICS06] as a generalization of the long term treatment and follow up of hypertension.
This MA starts with a state boxr that identifies the patients with an elevated blood pressure (BP)
that must be confirmed, as the action bor indicates. Then the patient is classified according to
whether BP is in stage 1 or 2 (see related table, in figure 4.1) and alternative treatments are
provided depending on the suspicion of secondary causes. This differentiation is represented with a
decision box: if there is an evidence that the BP condition is the result of a secondary cause, then
an action box orders additional work-up and it recommends considering referral to a specialist. If
there is not a secondary cause for high BP, lifestyle modifications and/or drug therapy define the
initial treatment. If this treatment is not efficient, then a change of treatment is started. If this
change of treatment does not improve BP, then the MA tells us to consider whether hypertension is
resistant or not. BP is defined to be resistant when the presure goals are not met despite compliance
with optimal doses of three antihypertensive drugs of different classes with one of the agents being
a diuretic. In the MA, if BP is not resistant, a second change of treatment is tried; otherwise the
patient is referred for consultation. Note that the level of abstraction of this MA is such that the
decision about the concrete drug therapy and the sorts of lifestyle modifications is left to the health
care professional since there is not an agreed configuration of drug treatments but many accepted
combinations.

Publication of CPGs aims at reducing medical errors and unjustified variations in medical prac-
tice, and also at supporting evidence-based medicine [BTZ"01]. Unfortunately, CPGs tend to be
published in a textual format. This and other factors reduce their possibilities of making them
known and applicable [CRPT99]. The idea of using a formal representation to describe and exploit
CPGs gave rise to the idea of Computer-Interpretable Guidelines (CIGs) [BTZ101] [WPT*01] as
the way to make computers a means to make CPGs actionable. This idea has been the depart-
ing point of multiple and successful languages to formally represent CPGs as CIGs: Arden Syn-
tax [SHIJT94], Asbru [SMJ98|, PROforma [FJR98|, GLIF [OMGM*98, PBOea00], EON [TM99],
PRODIGY [JTB*00] and SAGE [BCHT02] (see §2.4 and §3.2.2). The approach of all these sys-
tems is to convey knowledge from human to machine structures, and then provide health care
professionals with computer machine tools to access and exploit that knowledge. Due to this man-
to-machine approach, we may conclude that all the systems to represent CIGs share, among others

[PPTT02, WPT*02, MvdAP07, IM08, WTSR10|, two significant features which are: a great ex-



Screening and identification of elevated

BP >= 140/90 or >= 130/80 in patients

with diabetes, chronic kidney disease,
heart failure or CAD

4
Confirm elevated
blood pressure

v
Complete initial assessment:
evaluate, accurately stage and
complete risk assessment

Is
Secondary cause
Suspected?

Lifestyle modifications
+/- drug therapy

Classification of Blood Pressure (BP) for adults:

BP Classification = SBP mmHg DBP mmHg
Normal <120 and <80
Prehypertension: 120-139 or 80-89
Stage 1 hypertension: 140-159 or 90-99
Stage 2 hypertension: >=160 or >=100
Order additional
work-up
Consider referral

BP at goal? yes

no

Change treatment:

e Increase initial agent

e Add another agent
from a different class

e Substitute new agent

A 4

yes

BP at goal?

no

\ 4

yes

no \/ Resistant

hypertension?

Hypertension consult

Hypertension

continuing care

Figure 4.1: ICSI medical algorithm for the treatment of hypertension.
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pressiveness of their constructs, and a computer orientation. Ezpressiveness is required since they
have to provide a way to incorporate all the medical variability that may appear in a CPG, which is
potentially very high, in the CIG. On the other hand, the computer orientation of such systems is
the consequence that they are not designed to be directly applied by health care professionals but
through the use of computer tools, and therefore CIGs are computer structures rather than medical
structures.

As an alternative to these languages here, we propose the SDA model. The SDA model promotes
the representation capability (i.e. procedural knowledge in medicine can be represented with this
language) and simplicity (i.e. the understanding and management of the language does not need
hard training) in such a way that not only computers but also health care professionals are able
to work with it. The SDA model is based on the concept of MA but it is extended with several
elements to ease health care know-how knowledge representation, as for example, the use of states
as starting points that allow the execution of the chart from different points, the introduction
of time constraints to incorporate time restrictions in medical procedures, or the application of

non-determinism to represent alternatives in the treatments.

4.2 The SDA Model

The SDA model [Ria07| was defined as a combination of all the representation primitives that any
CIG system is expected to have (see §3.2.2) [PPTT02, WPTT02, MvdAP07, IM08, WTSR10] (i.e.,
actions, decision, patient states, execution states, sequences, concurrences, alternatives, and loops)
with the simplicity of MAs. This model is founded on the concept of term or vocabulary item in
the medical domain where procedural knowledge is being generated. These terms can be of the sort
state, decision, or action. State terms define the vocabulary that is used to describe the feasible
patient conditions and situations in the area of interest (e.g., terms as “Elevated_ Blood Pressure”
or “Following Drug Treatment” to establish a differential treatment). Decision terms are the
terminology that health care professionals use to condition the sort of treatment to be followed (e.g.,
terms as “Secondary Cause_ Suspected” or “BP _at (Goal” that may derive the course of professional
activities in one direction or another). Action terms are the way that medical, surgical, clinical or
management activities are defined (e.g., terms as “LifeStyle Modifications” or “Drug _ Therapy” are

respective examples of counsel and prescription, which are two of the types of medical actions that

may appear in the description of a treatment).
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4.2.1 The SDA Elements

State, decision and action terms are employed to construct three sorts of elements that once inter-
connected they describe a medical procedure. These elements are, respectively: states, decisions
and actions. States, which are subsets of state terms, represent patient conditions, situations, or
statuses that deserve a particular course of action which is totally or partially different from the
actions followed when the patient is in another state, for example, to differentiate between initial
treatment and subsequent treatments or between the different stages of a disease. Decisions allow
the integration of all the variability that a treatment may have by means of conditions on decision
terms which represent some of the available information about the patient and the current situation.
Actions, which are subsets of action terms, constitute the proper health care activities involved in

the health care procedure represented.

4.2.2 The SDA Knowledge Representation

The three elements of the SDA model (i.e., states, decisions, and actions) are combined to represent
procedural knowledge in medicine. This sort of knowledge can describe a diagnostic process (e.g.,
find out the patient disease or disease stage), a therapy (e.g. what are the steps to follow in
the treatment of a disease), or any other health care procedure. Similar to the MA notation,
the SDA model represents states as circles, decisions as rhombus, and actions as squares. These
elements are related with connectors (arrows) in order to provide a join representation of a health
care procedure. The connectors can be of three sort: plain connectors, decisional connectors, and

otherwise connectors.

e Plain connectors represent evolutions of the health care procedure that any patient is able to

follow.

e Decisional connectors link decisions with other elements, they contain decision terms, and

only the patients who meet all the terms in a connector are able to follow this connector.

o Otherwise connectors link decisions with other elements, they are identified with the word
‘otherwise’, and only the patients who fulfil none of the connectors leaving a decision are able

to follow the otherwise connectors of that decision.

For example, figure 4.2 shows a transcription of the MA in figure 4.1 as a SDA in which the

treatment of all the patients arriving to the “Initial State” evolve across a plain connector to a
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decision element in which only High Risk patients may follow the decision connector that leads to
"LifeStyle Modification” and "Drug Therapy”. The rest of the patients who are not in High Risk
follow the otherwise connector towards a different treatment. All the initial treatments converge
to the “Intermediate State” where all the patients are expected to be after the first encounter with
the health care professional. Connectors may have time constraints of the form [min, maz|; min
representing the minimum time the process must stop before following the connector (e.g., wait two
hours before measuring BP again to confirm high BP), and maz the maximum time the process
must stop before moving forward in the treatment (e.g., next visit must be scheduled for not later
than one week). For example, the time constrains [15d, 1m] in figure 4.2 means that "after the first
encounter takes place a second encounter should be scheduled for between 15 days and one month”,
or [—, 1m] means that "monitoring never delays more than one month” or [2d, 7d] means that "if

a change of treatment does not reduce BP in a week, the case must be reconsidered”.

4.2.3 SDA Sequences, Loops, and Concurrences

The SDA model allows the description of sequences, loops and concurrences of medical procedures
in an intuitive way, by means of the element connectors. A SDA sequence connects one state with
a decision and each branch of that decision with an action. For example in figure 4.2, the elements
“Initial State”, "High Risk” and “LifeStyle Modification” and "Drug Therapy”, describe a SDA
sequence.

SDA sequences can be simplified with the elimination of one or several of the elements in the
SDA sequence. So, the elimination of the state must be interpreted as if there is not a health
care reason to describe the state of the patient at this point of care (e.g., lack of medical meaning,
medical irrelevance, cause of confusion, disagreement, etc.). Sometimes, the application of a set of
actions is mandatory for all the patients arriving to the SDA sequence. In this case the decision
element is eliminated from the sequence and only one action block with all the common actions is
connected after the state. Also, if a decision element is not enough informative to reach a conclusion
about the proper sort of actions to carry on or if the representation of all the possibilities with a
single decision is confusing, then the action block must be eliminated from the SDA sequence in
order to chain several decisions one after the other. See, for example, decisions after the initial state
in figure 4.2.

SDA sequences can be concatenated one after the other in order to define complex and long

medical procedures. See for example in figure 4.2 the concatenation of sequences starting in “In-
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LifeStyle Modification

+/- Drug_Therapy

Secondary cause suspected
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Drug Therapy

Order additional
Work-up

Otherwise

High Risk

Otherwise
LifeStyle Modification

Secondary cause suspected

LifeStyle Modification
Change Treatment

Order_additional
Work-up

BP_at goal

Otherwise

A 4

Monitoring

Change Treatment [«

A

Resistant

BP_at goal

Hypertension

Otherwise

Otherwise

Figure 4.2: SDA for the hypertension treatment.
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termediate State” and following the otherwise branches (i.e., no High Risk, no secondary cause
suspected, and no “BP at goal”), and a “Change of Treatment” that deserves “monitoring” if BP is
finally at goal.

SDA loops are defined as repeated sequences of elements in a SDA procedure. Loops may be used
to represent repetitions in a medial process or jumps to an already previously observed situation
in the course of action followed. Loops in this model do not have explicit termination conditions;
the exit of a loop occurs when one of the decisions of the loop drives the patient to an outgoing
connection which is not part of the loop. For example in figure 4.2, the elements "Intermediate State”,
"High Risk”, "LifeStyle Modification”, "Change_ Treatment” and “Intermediate State”, describe a
loop.

SDA concurrence is described as a set of actions that should be executed in parallel. In the SDA
model, there are two alternative ways to represent concurrences: on the one hand, when several
actions are part of the same action element (e.g., "LifeStyle Modification” and "Drug _ Therapy”),

this means that all of them are started simultaneously in time.

4.2.4 Non-Determinism in SDAs

Determinism is the principle by which every event, act, and decision (called effect) is the conse-
quence of some antecedents (called cause). In health care, causes can be medical, surgical, genetic,
environmental, managerial, familiar, social, etc. Therefore, non-determinism states that in health
care there are events which do not correspond to a cause. Historically, there have been defined
three sorts of non-determinisms [Cla05]: one that holds that some events are uncaused (e.g., from
a practical point of view, in health care, uncaused events are equivalent to events with an unknown
unfindable cause), another one that holds that there are non-deterministically caused events (e.g.,
a health care professional that follows alternative therapies for equivalent cases without an explicit
explanation), and the third one that holds that there are agent-caused events (e.g., external events
like the arrival of a patient whose health condition allows the treatment to start at different points).

Independently of the semantics of non-determinism, the SDA model can deal with all the above
sorts of non-determinism. In this sense, the SDA model defined three sorts of non-determinism:

type 0, type I and type II.

o Type 0 non-determinism describes the situation in which a patient with a particular con-
dition can match several states. This means that the treatment of the patient can non-

deterministically start different alternative treatment sequences.
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o type I non-determinism describes the situation in which the condition of a patient can satisfy
several branches of the same decision, and therefore the treatment can follow alternative paths

at the same point of decision.

o type Il non-determinism describes the situation in which either a state or an action is con-
nected to several elements causing the treatment to follow one out of several alternative

evolutions.

In a SDA diagram these three sorts of non-determinism can be interpreted in this way: when a
patient arrives, all the SDA states whose state terms are observed in the current patient condition
are eligible to start the treatment. If several states are eligible, a health care professional has to
decide the one to start at among all the eligible states (type-0 non-determinism). Once this is
decided, the connectors are followed until either a non-eligible state is found or a connector with
a positive min delay is reached. In this process, all the actions of the followed path are the SDA
recommendations for the treatment of that patient. When a decision is reached, all the outgoing
decision connectors whose decision terms are part of the patient condition are eligible to determine
the treatment of that patient. If only one decision connector is eligible, the connector is followed.
If there are several eligible connectors, then a health care professional has to choose one of them
to follow the treatment (type-1 non-determinism). If none of them is eligible, but there is an
otherwise connector, then this connector is followed. If several otherwise connectors exist, then a
health care professional decides which one is the one to be followed (this is also considered type-1
non-determinism). In case that there are several plain connectors leaving a state or an action, all
of them are eligible and it is the health care professional who has to decide the one to be followed
(type-2 non-determinism).

In our medical context, non-determinism is only observed when there is not a single accepted
and evidence-based procedure to deal with a particular situation and the choice criterion between

the alternatives is not defined.

4.3 Examples of SDA Diagrams

The SDA model has been tested in the context of the KACARE project (www.k4care.net) where it
has been successfully used to represent different sorts of procedural knowledge in medicine, partic-
ularly in home care. In this context, the SDA model has been used to represent home care services

and procedures, and formal intervention plans.
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In K4CARE, a service is any home care activity related to the attention of a particular patient,
and a procedure is the implementation of a home care service by means of the combination of actions.
Examples of these sorts of services are the ones listed in table 4.1 [CARea06]. The patient care
services are classified into problem assessment, intervention plan definition, and intervention plan
performance. All the services for assessing the problem aim at diagnosing the patient situation and
reevaluating in time the results of the intervention. The services to define the intervention plan aim
at choosing the most promising course of actions (i.e. treatment) based on the individualization of
best practice. The services to perform the intervention plan are those addressed to the application
of the intervention plan to the concrete home care patient. The intervention plan includes and
defines the means and modalities aimed at evaluating results and measuring the implications of the
application of the intervention plan itself.

Some examples of procedures based on SDA model are depicted in figures 4.3 and 4.4. The
procedure in figure 4.3 implements the patient care service Comprehensive Assessment. This service
is devoted to detect, in home care, the patient diseases, conditions, and difficulties, from both the
medical and social perspectives. It is performed at admission, at periodical and at end-treatment
re-evaluation times defined inside the individual intervention plan, but also in case of emerging
peculiarities during the follow-up. The procedure in figure 4.4 implements the patient care service
of planning an intervention plan. This service represents the course of actions to be performed
in order to provide care to a home care patient in terms of treatment and support. It aims at
taking care of diseases and conditions, with the goal of improving functions and self-dependency.
It includes a social assistance program to provide and start up all the social services the home care

patient needs, including social, financial, and legal support.



] Patient Care Services

I. Problem Assessment and Re-Evaluation

Comprehensive Assessment (CA)
Multi-Dimensional Evaluation
Clinical Assessment

Physical Examination

Request of Diagnostic Examination
Request of Laboratory Analysis
Consultation

Social Needs and Social Network Assessment

© ® NS oD

Follow-up
II. Intervention Plan Definition

Planning Intervention Plan
Prescription of Pharmacological Treatment
Prescription of Non-Pharmacological Treatment

Prescription of Nursing Care

AR R

Prescription of Assistive Devices
III. Intervention Plan Performance

Case Management
Special Medical Services
Nursing Care

Social Assistance

CU W =

Counselling

Table 4.1: List of health care service and procedures defined within K4CARE project
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INew document D11 is created |
|Internal ID: iid6 JI— — [[[EU]I>[ANY]EU.1 Evaluate_Through_Scales
A 4
________ [[FD][PC]]>[[ANY]IM.1
[New document D13 is created _II_ __ |Perform_Clinical_Assessment
|Internal ID: iid7 ] [[FD][PCII>[[ANY]IM.2
_________ Perform_Physical Examination

Otherwise
»1[[CCP]]>[[ANY]]BO.1 Provide Information

Compliant HCP
Reliable HCP

[[HCP]>[[ANY]]BO.1 Provide Information

A 4
INew document D11 is created I __ |[IANYT]]>[[ANY]]SS.7 Start_Service - P
Iinternal ID: iid9 ~ Social Needs and Social_Network_Assessment |
e o — —— — — — — -

EU: Evaluation Unit Actions, FD: Family Doctor, PC: Physician in Charge of the Home Care, M: Medical Activities, CCP: Continous
Care Provider, BO: Back Office Activities, SS: Social Activities

Figure 4.3: KACARE procedure for comprehensive assessment.



[[ANY]]>[[EU]JEU.2 Define Intervention Plan

v

—[[ANY]]>[[EU]JEU.3 Define_Outcomes

v

—[[ANY]]>[[SW]]S.2 Define_Social_Intervention

v

—[[ANY]]>[[EU]JEU.5 Schedule Re-evaluations

v

Agree_on_Interventions

II\Ew_doZm;nt_DO?is_cre;ed_ )

[[FD][SW]]>[[EU]]EU.4 Schedule Controls |Internal ID: iid5 Fi
_________ -

|

|

Otherwise [T ANY]]>[[CCP]]P.2 | _!

Compliant HCP
Reliable HCP

[[ANY]]>[[HCP]]P.2 Agree on_Interventions

v

—[[ANY]]>[[HN]]BO.4 Assign_Actor

v

—[[HN]]>[[ANY]]BO.13 Actor Confirmation

Assignation_Refused

A

Assignation_Confirmed

_|[HNTI>[[HN]1BO.6

Confirm_or_Modify Waiting_List

v

=[[HN]]>[[HN]]BO.7 Schedule_Activity

EU: Evaluation Unit Actions, SW: Social Worker, S: Social Activities, CCP: Continous Care Provider, P: Patient Activities,
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HCP: Home Care Patient, HN: Head Nurse, BO: Back Office Activities

Figure 4.4: KACARE procedure for planning of intervention plan.

In KACARE, formal intervention plans (FIP) are formal structures representing the health care
procedures to assist patients suffering from particular diseases or syndromes. The KACARE project

provides a family of FIPs for fifteen of the most common syndromes, diseases, and social issues in
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. The full list of these syndromes, diseases, and social issues is provided in table 4.2.

These FIPs are represented as SDA diagrams and they are validated and ready, after professional

authorisation, to guide the treatment of the KACARE patients [CRea08a, Cea08, CRea08b|.

|

Syndromes, Diseases and Social Issues

|

A. Syndromes

SY1.0 Cognitive Impairment
SY2.0 Immobility

B.

Diseases

DI01.0 Anaemia

DI02.0 Arthritis

DI03.0 cerebrovascular diseases

DI04.0 Chronic ischaemic heart disease
DI05.0 Chronic Obstructive Pulmonary Disease
DI06.0 Decubit ulcer

DI07.0 Delirium

DI08.0 Dementia

DI09.0 Depression

DI010.0 Diabetes

DI011.0 Heart failure

DI012.0 Hypertension

DI013.0 Tatrogenic cognitive impairment
DI014.0 Parkinson disease

C.

Social Issues

SI01 No Family support
S102 Low Income

SI03 No Social-network
S104 Bad Environment

SI05 Insanity

Table 4.2: List of FIPs based on SDA model to represent health care procedures

Some examples of FIPs are depicted in figures 4.5 and 4.6 [CRea08b|. These SDA diagrams

were directly constructed by health care professionals from the MA on the recognition, assessment,

treatment, and monitoring of Anaemia [AMD] that is shown in figure 4.7 and the MA on the

treatment of Chronic Heart Failure [NHS, ESC]| that is shown the figure 4.8, respectively.

'The codification used to the syndromes, diseases and social issues is the standard provided by the “International
Classification of Diseases, Injuries and Causes of Death, 10th revision Clinical Modification” (ICD-10-CM).
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Figure 4.5: SDA diagram on the recognition, assessment, treatment, and monitoring of anaemia.
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Figure 4.8: MA on the treatment of chronic heart failure.

An important feature of SDA model is that the SDA knowledge can be translated without any
complexity in other knowledge representation structures such as CIG Systems (see §2.4 and §3.2.2).
For example, the SDA knowledge shown in figure 4.5, which represents the management of anemia
disease can be translated into languages to represent CIGs such as Asbru and Proforma, it is shown

in the figures 4.9 and 4.10, respectively. In both examples, only the general plan and the assessment
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plan of anaemia have been translated.

In Asbru, the anemia plan has an intention of "manage anaemia / symptoms / causes’, a
condition (abort-condition) of if "risk of anaemia = false” and a plan body with four sequential
subplans: "recognition plan”, "assessment plan”, "treatment plan” and "monitoring plan”. Likewise,
the assessment plan has an intention of “identify/clarify causes of anaemia”, a condition (filter-
condition) of "risk of anaemia = true” and a plan body with three sequential plans: “determine

appropriateness of additional diagnostic of anaemia”, "laboratory evaluation” and “identify / clarify

causes of anaemia’.

PLAN Anaemia

TIME ANNOTATION

PREFERENCES

INTENTIONS Manage anaemia/symptoms/causes
CONDITIONS Abort- condition: (Risk of anaemia =false)
EFFECTS

PLAN BODY Sequential subplans:

Continuation specification. (recognition, assessment, treatment
and monitoring ofanaemia)

Anaemia recognition

Anaemia assessment

Anaemiatreatment

Anaemia monitoring

PLAN Anaemia assessment

TIME ANNOTATION

PREFERENCES

INTENTIONS Identify/clarify causes of anaemia
CONDITIONS Filter-condition: (Risk of anaemia=true)
EFFECTS

PLAN BODY Sequential subplans:

Continuation specification: all

Any-order subplans:

Continuation specification: all
Determine appropriteness of additional diagnostic ofanaemia
Laboratory evaluation
Identify/clarify causes of anaemia

Figure 4.9: SDA Knowledge translated to Asbru

In PROforma, the anaemia plan has an enquiry which defines requests for further information

or data. This is required before the anemia management can proceed with four plans: “recogni-

” N

tion plan”, "assessment plan”, "treatment plan” and "monitoring plan”. In the assessment plan, the
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decisions of "anaemia” and "risk of anaemia” determine the actions to follow in the anaemia assess-

)

ment: “determine appropriateness of additional diagnostic of anaemia”, "laboratory evaluation” and

"indetify /clarify causes of anaemia”.

<enquiry>

Patient data

RECOGNITION, ASSESSMENT, TREATMENT AND MONITORING OF ANAEMIA

<plan>

Anaemia Anaemia Anaemia Anaemia
recognition assessment treatment monitoring
ANAEMIA ASSESSMENT
<action> <decision>

<decision> Assess risk factor Risk of

for anaemia anaemia

Anaemia <action> <action> <action>

Determine Laboratory Identify/clarify
appropriateness of evaluation  causes of anaemia
additional diagnostic of
anaemia

Figure 4.10: SDA Knowledge translated to PROforma.

4.4 Comparison of SDAs with MAs

SDAs do not only comply with the representation primitives required to CIGs [Ria07] (i.e., actions,

decision, patient states, execution states, sequences, concurrences, alternatives, and loops), but

they also extend the expressiveness and the flexibility of MAs while maintaining their simplicity.

The main features of MAs [Had95| can be categorized as summarization, quality improvement, case

standardization, precision, and computerization. Summarization is the ability of MAs to summarize

at a glance the types of patients, as well as the range of management decisions and the strategies

addressed in a procedure described in a CPG. Quality improvement refers to MAs as elements to

improve the quality of CPGs since they have been shown to result in faster learning, higher reten-

tion, and better compliance with established practice standards than standard prose text [Had95|.
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Case standardization refers to the fact that MAs are focused on the standard typologies of patients
described in the CPGs. Precision is the ability that, given a certain patient typology, the MA
proposes a precise set of actions to be performed. This beneficial feature is sometimes criticized
by part of the medical community arguing that MAs impose an excessive rigidity on health care
professionals who share the opinion that patients are too variable in their presentations and pref-
erences to encapsulate them within predefined roadmaps. However, this criticism is diminished by
the benefits of MAs. Computerization is the feature of MAs of being readily translatable into com-
puterized formats, which permits the systematic application of CPGs recommendations improving
the quality of the medical assistance.

SDA diagrams extend the above features with the possibility of representing long term proce-
dures, multiple entry points, multi-term decisions and non-determinism. Firstly, the presence of
states for the different stages of a certain disease or disorder lets the SDA model to depict several
treatments in an integrated diagram allowing the representation of long term procedures. Another
feature of the SDA model is that it can deal with multiple entry points corresponding to the states
that represent the different initial patient conditions and, therefore, not only to integrate the treat-
ment of all these conditions in a single diagram, but also to address each patient directly to the
corresponding part of the treatment. SDA diagrams also extend the expressiveness of MAs using
multi-term decisions. In MAs, decisions are always [Mea92| yes-no questions but, in the SDA model,
decisions may have more than two branches with different decision terms in each one of them. In
addition, each decision may have alternative otherwise branches which are followed by the patients
that fulfil none of the other branches. This results in a more readable sequence of decisions and also
is a more compact representation of treatments. Finally, the rigidity and strictness of MAs, previ-
ously referred to as their main criticism, is reduced in the SDA model which increases the flexibility
of CAs by dealing with non-determinism. Non-determinism is frequent in medicine and it allows the
participation of health care professionals when there is not proven evidence on a unique or better
treatment. The SDA model distinguishes between type-0, type-1, and type-2 non-determinisms (see
§4.2.4).

4.5 Conclusions

The development of a knowledge-based model for the planning activity in the medical assistance is
one of the objectives of this thesis. Therefore, aspects of its solution are exposed as conclusions of

chapter 4, in form of points:



99

e With the purpose of solving problems of planning activity in the medical assistance, we have

introduced a novel model, called SDA model, to represent know-how knowledge in medicine.

e The SDA model is presented as a alternative to the current CPG representation languages

which convey knowledge from human to machine structures.

e The SDA model is based on the concept of MA but it is extended with several elements (i.e.,
multiple states, multivalued decisions, otherwise connectors and non-determinism) to ease

health care know-how knowledge representation.

e The SDA model was defined as a combination of all the representation primitives that any
CIG system is expected to have (§3.2.2) (i.e., actions, decision, patient states, execution states,

sequences, concurrences, alternatives, and loops) with the simplicity of MAs.

e The knowledge of the SDA model can be easily translated to other knowledge representation

structures such as CIG systems (see §3.2.2).

e The SDA model can deal with the sorts of non-determinism that are found in decision process

in medical assistance.

e In the SDA model, the know-how knowledge has two purposes: (1) provide an explicit rep-
resentation of long-term therapies that integrate differential treatments that are conditioned
both to the patient condition and also to the patient feasible evolutions, and (2) allow the
exploitation of this knowledge by a decision support system that could recommend medical
actions in the treatment of concrete patients. This second purpose is achieved with the exe-
cution of SDA know-how knowledge. Given a patient, the SDA is used to suggest a treatment
composed of the action terms contained in all the actions in one of the paths of the SDA.
The possible paths are those starting in the eligible states, continuing through one of the
possible sequences of connectors that the patient satisfies, and ending when the path reaches
a non-eligible state or a connector with a time delay representing a momentary stop in the

treatment.

The SDA model has been widely tested and evaluated in the context of the KACARE project
(www.k4care.net). The SDA model was successfully used to represent different sorts of procedural
knowledge in medicine related to the procedures that implement the home care services and 21
formal intervention plans that represent the more common syndromes, diseases and social issues in

home care.



Chapter 5

Automatic Generation of Know-How Knowledge in

Medical Assistance

In this chapter we propose a methodology to automatically induce state-decision-action (SDA)
diagrams from health care databases and electronic health records in order to show health care
professionals an explicit representation of the past health care procedures and to use these repre-
sentations to study their deviations with respect to official and predefined protocols and medical
algorithms.

To describe the induction methodology of SDA diagrams, this chapter is organized in five sec-
tions. Section 5.1 describes the context of our work introducing the different ways of generating
know-how knowledge in medicine. Section 5.2 proposes the methodology to induce know-how knowl-
edge as SDA diagrams from health care databases. The results of our work are presented in section
5.3. Finally, a discussion of the work and some conclusions are reported in sections 5.4 and 5.5,

respectively.

5.1 Introduction

The databases of health care centres are an unavoidable source of information about the medical
procedures followed in these centres. They can be the basis for important studies on the adherence
of the treatments to the medical standards that are published as clinical practice guidelines (CPGs),
and also to foster quality, equality, equity, and cost reduction of medical procedures. This sort of
studies for the analysis of health care procedures can be carried out using either a statistical [Mur(04]
or a symbolic [BR04, RLVTO07] approach.

Currently, these medical procedures are obtained by systems that convey knowledge from hu-

100
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mans to machine structures, such as it was discussed in chapter 4. Contrarily, the approach of our
work is to convey knowledge in the opposite way, i.e., from computers to health care profession-
als. With this machine-to-man approach, the knowledge obtained is not necessarily based on the
medical evidence but on the experience of the medical daily practice. Some previous works (§3.3.3)
in medicine on this approach include the induction of clinical pathways represented as Petri Nets
[vdAvDH'03, vdAWMO04, MSL*08] or as causal Bayesian Networks [MCO07|. However, the struc-
tures induced by those systems are not explicit medical structures that health care professionals
are as familiar to work with as with MAs. Moreover, Bayesian Networks are not used to represent
guidelines in the strict sense of continuous long-term care [MCO07] but punctual decisions in diag-
nostic and prognostic reasoning, treatment selection, or discovering functional interactions between
genes [LvdGAHO4]. On the contrary, we propose a process which starts with the data stored either
in health care centre databases or in electronic health records, then these data are analyzed by a
machine learning methodology to induce health care knowledge structures that represent the health
care procedures carried out in the health care centre in the long-term and in a format that health
care professionals are familiar with. The final purpose of these knowledge structures is to show
health care professionals an explicit representation of the past health care procedures and to use
these representations to study their deviations with respect to official and predefined protocols and
MAs.

Therefore, this chapter introduces a novel methodology to the automatic generation of MAs
for the analysis of the health care procedures followed in health care centres. These health care
procedures are represented with SDA diagrams introduced in chapter 4. The methodology has
been implemented and tested on the databases of the SAGESSA Group [SAG] for patients with

hypertension.

5.2 Automatic Generation of SDASs

Health care databases are a potential source of knowledge on the medical procedures followed
in health care institutions. The difficulty of dealing with hundreds or thousands of data can be
overcome with the use of intelligent machine learning algorithms that make the knowledge behind
these data explicit. We propose a methodology to generate SDA diagrams that generalize health
care procedures from health care databases. These SDA diagrams are induced by maximizing the
adherence to the data while maintaining its capability of generalization. Figure 5.1 shows a diagram

of the proposed methodology.
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I— Preprocessed database ]
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Figure 5.1: Scheme of the automatic generation of SDA diagrams.

This methodology is based on two initial structures, the EOC database and the set of rules, which
contain, respectively, patient data from a health care centre whose structure fulfils a predefined FOC
data model, and some user-defined translation rules which are used in a preprocessing step to adapt
the data of the EOC database to the terminology the final users want the resulting SDA to have.
The data obtained after the preprocessing step is used to generate the final SDA diagram by means
of a machine learning method.

All these elements (i.e., the EOC data model, the translation rules format, the data preprocessing

step, and the machine learning method) are described in the next subsections.

5.2.1 The EOC Data Model

An episode of care (EOC) of a particular patient is the sequence of encounters aiming at curing,
stabilizing, or palliating one or several of that patient’s ailments [HHJ85|. Concerning a single
encounter, the standard behaviour of a health care professional is to observe the current state
and antecedents of the patient (i.e., the patient condition) and then decide some actions. Observe
that some evidence may exist that justify these actions. Therefore within the same encounter,
several health care measures may coexist containing, each one, the evidence to a subset of the
actions performed during that encounter. For example, in the hypertension domain, for a particular
encounter the health care professional may decide both a drug therapy based on the evidence that
the patient is at high risk of cardiac disease, and a recommendation to modify the patient lifestyle,
due to the presence of cholesterol.

A simplified formalization of the EOC data model can be seen in table 5.1.

Here, the patient condition, the health care actions, and the medical evidence supporting these

actions are described as a list of state, decision, and action terms, respectively. For example, the
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episode of care «—— sequence of encounters

encounter «—— patient condition + list of health care measures
patient condition +—— list of state terms

health care measure +— evidence + action

evidence «—— list of decision terms

action «—— list of action terms

Table 5.1: Simplified formal description of the EOC data model.

MA depicted in figure 4.1 [ICS06] (§4.1) to diagnose and treat hypertension, contains the following

indications:

e A patient in a encounter can be in one of the following four possible alternatives patient

conditions:
— Screening and identification of elevated blood pressure (BP) in patients with diabetes,
chronic kidney disease, heart failure or CAD.

— Initial assessment completed (i.e., evaluated, accurately staged, and complete risk as-

sessed).
— Hypertension is suspected to be caused by secondary causes.

— Hypertension is under control and a continuing care must start.
e The health care actions proposed are:

— Confirm hypertension on the initial encounter, plus two follow-up encounters with at least
two BP measures at each encounter; following standardized BP measurement techniques,

including home BP measurements.

— Consider a thiazide-type diuretic as initial therapy in most patients with uncomplicated

hypertension.

— For many patients, two or more drugs in combination may be needed to reach hyperten-

sion goals.

— Refer to hypertension consultation.
e The medical evidence that support these health care actions are:

— Is a second cause of hypertension suspected?.

— Is a blood pressure at goal? (i.e., within normally limits).
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— In it a resistant hypertension? (i.e., when blood pressure goals are not met despite

compliance with a triple drug regimen that includes a diuretic).

5.2.2 Translation Rules

In order to convert the data in a health care centre EOC database to the EOC data model, we use
translation rules. The purpose of this conversion process is not only to have a means to adapt any
EOC database to a common format (data formatting), but also the way to decide which are the
state, decision, and action terms that we want our final SDA be expressed with (data filtering), and
the way to transform the data in the EOC database into medical terms (data discretization). The
set of translation rules must be provided by an expert whose effort is proportional to the number
of terms that we want the SDA diagram to contain and to the number of database columns related
to these terms.

Given T a set of terms and C' the columns of the EOC database that contain the information
about the states, decisions and actions of the health care procedures in a health care centre, a
translation rule is an expression of the form ¢ < p, where ¢ is one of the terms in T and p is a
constraint on some of the columns in C'. For all the encounters in which the patient fulfils p, the
translation rule is triggered generating the output term t.

There are two kinds of translation rules, one for state and decision terms and another one for
action terms. In the first kind, ¢ is either a state or a decision term and p is a conjunction of
conditions of the form {c s val} where c is one of the columns in C, s is one of the comparison
symbols =, <, >, <, >, <> or the same symbols preceded by an exclamation mark (!) meaning the
negation of the symbol or unknown value; and wal is either a numerical, multi-valued or Boolean
value, or another column. For example, the translation rule 5.1 will introduce the decision term
“Resistant _Hypertension” in all the encounters of the database in which the observed systolic
blood pressure (SBP) of the patient is greater than 140 mm Hg and the current treatment comprises
two or more drugs.

In the second kind of translation rules, ¢ is a SDA action term and p is a conjunction of columns
of the database. For example, the rule 5.2 will introduce the action term “Drug Therapy” in all

the database encounters in which the patient is prescribed with DIUREX 20MG.

Resistant _Hypertension <« {SBP > 140} & {NUM-DRUGS > 2} (5.1)

Drug_Therapy < DIUREX 20MG (5.2)



105

5.2.3 Data Preprocessing

The preprocessing step in figure 5.1 uses a set of translation rules to adapt the data in a EOC
database to the terminology that we want for the final SDA. This preprocessing is justified, firstly,
by the fact that the database may contain numerical, multi-valued or Boolean values and we may
not need such amount of variability in the final SDA. Secondly, from a medical point of view, it
may be of some interest to reflect only part of the treatment or different perspectives of the same
treatment, instead of the complete treatment registered in the EOC database. For example, if
we are only interested in the nursing activities or in the treatment of critical cases. So, part of
the data should be left out of the learning process or generalized in a different way. Finally, data
preprocessing is useful to integrate data from different health care centres which may use different
terminology. In these cases, preprocessing can be used to format, filter and discretize data from
different sources and make these data homogeneous before the machine learning process is started.

Translation rules perform operations on the domain terminology such as generalization, exten-
sion, removal and replacement. Generalization allows a common term to represent different con-
ditions. Formally expressed, generalization is when a unique term t represents several constraints
D1, P2, ..., pn, within the database (i.e., t < p; with i = 1..n). For example if we consider the rules
5.3 and 5.4, the action term “Drug Therapy” will generalize the prescription of either DIUREX
or DILUTOL.

Ezxtension is the operation of increasing the vocabulary with synonyms. Formally expressed, we
may require that different terms ¢y, ta, ..., t, represent the same constraint p of the database (i.e.,
t; < p with i = 1..n). For example, the constraints on Systolic Blood Pressure (SBP) and Diastolic
Blood Pressure (DBP) in the rules 5.5 and 5.6 give rise to the decision terms “Grade I/II BP"
related to the blood pressure level of the patient, and “High Risk” related to the cardiovascular
disease risk.

Removal is used to avoid the use of some of the columns in the database because they are not
of our interest. For example, if none of the rules contain BILIRU BIN then the final data will not
take into account this information about the treatment, and the final SDA will describe a treatment
without considering bilirubin.

Finally, replacement consists in substituting a health condition by an equivalent term. Formally

expressed, replacement is the operation of using the term ¢ to refer a constraint p in the database
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(i.e., t < p). For example, the state term " Initial _State” is used in our tests to refer the encounters
whose date is equal to the date in which the EOC started. This replacement is achieved with rule
5.7, E-DATE meaning the date of the encounter and FOC-DATE the date when the EOC was

created during the first visit.

Drug_Therapy <« DIUREX 20MG (5.3)
Drug Therapy <« DILUTOL 10MG (5.4)
Grade III BP « {SBP > 1,0}&{SBP < 179}&
(DBP > 90}&{DBP < 109} (5.5)
High Risk — {SBP > 10}&{SBP < 179}&
(DBP > 90}&{DBP < 109} (5.6)

Initial_State «— {E-DATE = EOC-DATE} (5.7)

5.2.4 The Machine Learning Method

Provided the preprocessed data, once it is structured according to the previously described EOC
data model, it is possible to generate a SDA diagram that generalizes the individual treatments as
a global treatment. The proposed method is depicted in figure 5.2 and it involves five tasks: detect

states, detect actions, determine evolutions, determine actions, and integrate all the components in

a final SDA.
9 SDA %

Preprocessed database

l Detect Determine
states evolutions

J/

| Detect
[ actions
[y

9 Determine

actions

Integrate

Figure 5.2: Generation of SDA diagrams.
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Task 1: Detecting states

After preprocessing the database with the translation rules, the obtained data is used by an inductive
learning method to generate a SDA diagram that generalizes all the individual treatments. In order
to detect all the states that will be part of this SDA, we apply an automatic method which is based
on a function of similarity between states. The method is as it follows. Being S1 = {s11, 512, .-, Sim }
and Sy = {s21, $22, ..., Son } the respective sets of state terms of two encounters, each one representing
a state, then a similarity function between these states is defined as similarity(Si, S2) in equation
5.8. If this value is greater than a predefined threshold 0 < « < 1, these two states are considered
to be the same. The threshold chosen depends on the level of detail needed for the SDA diagram.
With o = 0 there will be only one state in the final diagram, and with o = 1 there will be as many
states as encounters with a different state are in the data.

Alternatively to the automatic detection of states, the user may define the SDA states wished and
the state terms that compose each one of these states. For example, the states S; = {Initial _State}

and So = {Intermediate State} in figure 5.4.

ANB
similarity(A,B) = ASB} (5.8)

Task 2: Detecting sorts of actions

In order to detect all the sorts of actions that will be part of the final SDA, a similar method to
the one to detect states is applied. This is based on a function of similarity between actions. Let
A1 = {a11,a12,...,a1m} and Ay = {a21,a99, ...,a2,} be the respective sets of action terms of two
encounters, each one representing a sort of SDA action, then a similarity function between A; and
As is defined as the quotient similarity(Ai, A2) in equation 5.8. If it is greater than a predefined
threshold 0 < 8 < 1, these two sorts of SDA actions are considered to be the same. The threshold
chosen depends on the level of detail needed for the SDA diagram. With 8 = 0 there will be only
one sort of action in the final SDA diagram (i.e., the same exact treatment is applied to all the
admitted patients), and with 5 = 1 there will be as many sorts of actions as encounters with a
different action are found in the data (i.e., any difference, small or big, is interpreted as a different
treatment).

Alternatively, the user may avoid the application of this process and define the available sort

of actions by choosing the action terms that compose each one of the wished actions. For ex-
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ample, A1 = {LifeStyle Modification, Drug Thera Ay = {LifeStyle Modification
ple, yee_ ) g_ PYy, yee_ )

Change_Treatment}, etc. in figure 5.4.

Task 3: Separating patients who evolve in a different way from the same state

Once the states and the sorts of actions of the final SDA have been determined, the sequences of
decisions that determine the different treatments followed by the patients in the EOC database have
to be found. In a first stage, this is done by separating, for all the states S; obtained in task 1,
the encounters E; of the patients in that state. In the EOC database, all these encounters evolve
to a next encounter or they are discharging encounters. The states of the patients in these next
encounters define different sorts of evolution that our learning process induces.

This process finds a combination of SDA decisions to partition E; with a procedure that is
inspired in the split criterion used by the C4.5 algorithm [Qui93| for decision tree induction. This

procedure is the following:

A. Let D be the set of all the decision terms that appear in the encounters in F;. For each
possible subset of decision terms D’ in D, a SDA decision is created with as many decisional
connectors as decision terms are in D’, plus an otherwise connector. Each one of the decisional

connectors is assigned a different decision term in D’.

B. The best of these SDA decisions is the one that, for each one of the encounters in E; provides

a higher information gain [Qui93| about the state of the next encounter.

C. In the best SDA decision, each connector is related to the subset of encounters in F; that
contain the decision term in the connector. All the encounters that contain none of the
decision terms in the SDA decision are grouped in an additional subset which is related to the

otherwise connector.

D. For each one of these subsets, the corresponding connector is linked to the resulting SDA
decision obtained after applying this same procedure with FE; that subset. The process is
repeated until all the encounters E; correspond to patients that evolved from an initial state

S; to one same state 5.

At the end, we have d; a combination of SDA decisions which partitions the encounters of
patients in S; into several subsets of encounters Fj;;, each one containing the encounters of the

patients who evolved from S; to S;. This process is represented as the first step in figure 5.3.
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Figure 5.3: Integration of states, decisions and actions in the SDA.

Task 4: Determining the correct action for the patients of each evolution

Once the patients who evolved from the same state S; to different next states S; have been sep-
arated, each one of the combinations of SDA decisions d; is extended with other combinations of
decisions that decide which is the SDA action that defines the treatment of the patients following
this evolution. The same process of task 3 is applied to all the subsets of encounters E;; but,
in this case, the selection of the best decision is based on the information gain about the sort of
action performed rather than on the expected next state. The process is repeated until all the
encounters in a subset correspond to patients that are treated with the same sort of action. We
call d;; the combination of decisions which partitions E;; into several subsets E; i, each one related
to patients who evolved from S; to S; in the next encounter, receiving the treatment represented
by the SDA action Aj. This is represented as the second step in figure 5.3. During this partition
process, type-II non-determinism may exist if some encounters in the same subset have the same
decision terms but different medical actions. In this case, some of the decisions in d;; may have
different decisional connectors with the same decision terms. A pruning process is incorporated to
reduce non-determinism. Given a threshold p%, during the whole process, whenever a subset of
encounters has less than p% of encounters with a same action, these encounters are removed from
the subset before any SDA decision is generated. If none of the actions appears in more than p%

of the encounters, then only the most frequent action is considered.

Task 5: Integration

The SDA diagram is obtained as an integration of the states, the sorts of actions and the combi-
nations of decisions obtained in the previous tasks as figure 5.3 summarizes. The states detected
in task 1 are the states in the final SDA. The root SDA decision of each d; is connected after each
corresponding state S;. The root SDA decision of each d;; is connected after the last decisional con-

nector of d; that leads to F;;. Then, a SDA action of the sort Ay, is placed after the last decisional
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connector of each d;; that leads to Ej;;. Each terminal action of d;; is connected to the SDA state
S;. Finally, since the same sort of action can appear several times in the SDA, all the identical
actions that lead to the same next state are unified into one single action in order to simplify the

final SDA.

5.3 Results

This methodology to generate SDAs from EOC databases has been tested using the patients treated
of hypertension in the SAGESSA Group [SAG]| and the resulting SDAs analyzed from two points
of view: their ability to predict correct treatments and their similarity to already existing official

MAs.

5.3.1 Source Data and Preprocessing

The methodology has been tested on the medical domain of hypertension, which is one of the most
common chronic diseases. The EOC database was provided by the SAGESSA Group [SAG|. The
database contained 1,092 encounters of patients who were treated for hypertension.

With the purpose of studying the differences between the health care procedures of the EOC
database and some predefined official MAs, a set of translation rules was developed for each one of
the four MAs on hypertension provided by ICSI [ICS06], SIGN [SIGO01], NHF [NHF08|, and SEH
[SEHO05]. These official MAs were represented as the SDA diagrams that are provided in figures
5.4, 5.5, 5.6, 5.7, respectively. Each set of translation rules was used to convert the data in the
EOC database to the terminology of each one of the respective MAs before the machine learning
methodology was applied, so that the SDA diagrams obtained and the MAs in figures 5.4, 5.5, 5.6,
5.7, could be compared. A total number of 379 operations were performed with translation rules.
These rules do not contain additional medical knowledge but only the matching between the data
in the SAGESSA Group database and the terminology used by the different official MAs.

The number of operations performed with the translation rules are summarized in table 5.2.
Remowal is the most frequent operation because there were several columns in the database that
contained information that was not present in the official MAs (e.g., BILIRUBIN). All the
terms in the official MAs could be found in the EOC database; therefore, operations of the sort
extension were not necessary. The operations of generalization and replacement were used in all
four cases (e.g., LOW SALT DIET was replaced by the term " LifeStyle Modification” and
"LifeStyle Measures” in ICSI and SIGN, respectively). The main differences are found in the
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number of generalization rules, this is so because the number of decision terms in NHF and SEH is

higher than in ICSI and SIGN, and more rules are needed to generate these additional terms.

Terms Operations
S | D | A | Gen. | Ext. | Rem. | Rep. | Total
ICSI |21 415 7 0 75 4 86
SIGN | 2| 4 | 4 7 0 91 3 101
NHF | 2] 6 | 5 9 0 80 5 94
SEH | 2 | 8 | 5 14 0 80 4 98

Table 5.2: Number of terms (State (S), Decision (D) and Actions (A)) and frequency of the opera-
tions (Generalization (Gen), Extension (Ext), Removal (Rem) and Replacement (Rep)) performed
with translation rules for each medical algorithm.

5.3.2 The Obtained SDA diagrams

The figures 5.8, 5.9, 5.10, 5.11, depict the SDA diagrams that were obtained from the EOC database
after preprocessing the data with the respective sets of translation rules. Due to the reduced
number of states the parameter o was fixed to 1, whereas # was recommended by the health
care professionals of the SAGESSA Group to be also 1 in order to obtain the most detailed SDA
diagrams possible on which these health care professionals performed a validation process. In this
process they were asked to assess several aspects of the SDA diagrams: flexibility (i.e., capacity of
the SDA diagrams to capture the treatment alternatives), generality (i.e., ability of the diagrams
to deal with the variability of patient cases), medical appropriateness (i.e., medical and clinical
correctness), common behaviour (i.e., capacity of the diagrams to capture usual treatments), level
of detail (i.e., the treatments in the diagrams have the appropriate degree of abstraction), and
comprehension (i.e., the diagrams are clear and easy to understand).

After the validation process the health care professionals evaluated satisfactorily all these aspects
and they remarked an outstanding performance with regard to flexibility, medical appropriateness,
level of detail, and comprehension. So, for example, they argued that all the diagrams describe
treatments that are more flexible than the corresponding official MAs depicted in figures 5.4, 5.5,
5.6, 5.7, because they include non-determinism in some of the decisions. For example in figure 5.8,
the decision on the left side has three decisional connectors with the decision term ”High Risk”
leading to different actions. This reflects that some health care professionals of the SAGESSA Group
do not always act according to the MA indications, but providing alternative treatments under the

same circumstances of the patient. This behaviour was qualified as appropriate and common by
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independent health care professionals. Health care professionals also argued that the level of detail
of pharmacological treatment in the diagrams was adequate to the treatment of hypertension where
many correct drug combinations are possible for the same medical case.
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Figure 5.8: ICSI SDA diagram induced from the EOC database for the treatment of hypertension.

Some structural differences can also be appreciated between the standard MAs in figures 5.4,
5.5, 5.6, 5.7, and the obtained SDAs in figures 5.8, 5.9, 5.10, 5.11. According to the EOC database,
the procedures carried out in the first encounter are more general than those proposed by the MAs.
For example, SEH uses BP, the associated clinical conditions (RE_TOD _DIAB_ACC)" and the
risk levels (of types A and B)? for making decisions in the first encounter (see figure 5.11) whereas
the corresponding health care professionals of the SAGESSA Group do only consider BP in the
first encounter (see figure 5.11), and leave the rest of conditions for later consideration. Another

difference is that SDAs include a third new state to represent patient discharge, which is depicted

IRF: Risk Factor, TOD: Target Organ Damage, DIAB: Diabetes Mellitus, ACC: Associated Clinical Conditions.
2Risk stratification according to SEH.
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as an empty state.
Semantically, the treatments described by both MAs and SDAs are similar as it is suggested in

the analysis of quality of medical adherence.

5.3.3 Analysis of the Adherence

Medical adherence is defined as the extent to which real medical practices follow the suggestions of
medical standards. Here the analysis of the adherence is used both to verify that the methodology
introduced to generate accurate representation of medical procedures is correct (SDA-data analysis)
and also to validate the SDAs obtained with respect to several predefined standard MAs (SDA-MA
analysis). In both cases, the adherence was calculated in terms of type I and type II errors [Doal.
Type I error is related to the medical relevance of not taking the correct medical decision (e.g.,
forgetting a drug prescription when it is completely necessary) and type II error is related to the
medical relevance of taking a wrong medical decision (e.g., ordering a visit to a specialist when it
is not necessary). To calculate these errors in the SDA-data analysis, we register the deviations
between the treatment performed in each encounter of the EOC database and the treatment pro-
posed by the induced SDA diagram. In the SDA-MA analysis, for the list of all the possible patient
conditions and their probability provided by the health care professionals, we register the deviations
between the treatment suggested by the MA and the treatment proposed by the SDA diagram. In
both cases, each possible deviation of the treatment is given a certain medical relevance provided
by a health care professional. The addition of type I and type II errors is called here the total error.
The SDA-data analysis was performed to verify the correctness of the methodology, that is to
say, the level of adjustment of the SDA diagrams to the health care procedures within the database.
In table 5.3, the columns SDA-Data contain the weighted-mean of type I, type II and total errors
when the health care procedures in the EOC database were compared with those proposed by the
SDA diagrams in figures 5.8, 5.9, 5.10 and 5.11. The pruning in tasks 3 and 4 of the learning
process is the main reason for type I and type II errors. An average 5,1% of the medical orders in
the EOC database are not reflected in the SDA diagrams (type I error), and an average 0,3% of
medical orders suggested by the SDA diagram do not coincide with the database (type II error).
The SDA-MA analysis determines the adherence of the SDA diagrams to the official MAs in
order to study the resemblance of the health care procedures carried out in the SAGESSA Group
to some official and predefined standards. This serves as a way to determine which type of health

care assistance is rendered in a certain clinical centre. In table 5.3, the columns SDA-MA contain
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Type I Error Type II Error Total Error
SDA-Data [ SDA-MA | SDA-Data [ SDA-MA | SDA-Data [ SDA-MA
ICSI 0,070 0,160 0,004 0,016 0,074 0,176
SIGN 0,083 0,139 0,002 0,011 0,085 0,150
NHF 0,024 0,078 0,003 0,018 0,027 0,096
SEH 0,027 0,083 0,003 0,014 0,030 0,097
Averange 0,051 0,115 0,003 0,015 0,054 0,130

Table 5.3: Averange type I, type II and total errors obtained in the SDA-Data and SDA-MA analysis
of the adherence on hypertension.

the weighted-mean of type I, type II and total errors when the health care procedures of the MAs
were compared with those proposed by the SDA diagrams in figure 5.8, 5.9, 5.10, 5.11. The SDA
diagrams have an average type I error of 11,5% and an average type II error of 1,5% with respect
to the MAs. This means that the patients of the SAGESSA Group were approximately ten times
more under-prescribed than over-prescribed?, respect to official MAs. One of the reasons for this
difference is that in this work and for the disease under study health care professionals determined
that forgetting a medical action is more critical than performing it when it is unnecessary. For
example, the medical error of not doing a necessary monitoring of the patient can imply important
health consequences. On the contrary, planning an unnecessary monitoring can be a common
practice to corroborate the state of the patient, but with null health implications. Therefore, from
a medical point of view, type I error has to be greater than type II error.

Observe also that the health care procedures in the EOC database have a lower total error with
respect to the MAs provided by NHF and SEH, than to the MAs provided by ICSI and SIGN. This
indicates that the health care professionals in the SAGESSA Group act more closely to NHF and
SEH indications than to the ICSI or SIGN MAs. The interpretation of the health care professionals
of the SAGESSA Group to these results is related to the fact that health care in Spain is mainly a
public service coordinated by the Spanish National Health Ministry. This Ministry watches for the
national health care centres to provide an homogeneous assistance in all the Spanish regions and
it works together with national health societies, as the SEH, to disseminate health care guidelines.
Therefore, it is not surprising that the health care professionals in a Spanish health care centre as
the SAGESSA Group treat hypertension as it is recommended by the SEH. On the other hand,
the good adherence of the SAGESSA Group treatments to the MA of the Australian NHF was
unexpected but it also confirmed the similarities between NHF and SEH MAs.

3A patient is said to be under-prescribed when the received treatment lacks of some actions with respect to the
official treatment (i.e., a positive type I error). A patient is over-prescribed when the treatment followed contains
actions that are not explicitly recommended in the official treatment (i.e., a positive type II error). The under- and
over-prescription values in table III represent qualitative rather than quantitative measures of the medical errors.
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Some of the deviations observed in this comparative analysis between official MAs and real treat-
ments have been interpreted and justified by health care professionals as experience-based knowl-
edge which complements official MAs. For example, the MA of SEH (figure 5.7) proposes LifeStyle
_ Modification for patients with Normal/Normal_High BP, while the respective induced SDA (fig-
ure 5.11) recommends Monitoring in addition to LifeStyle Modification. Health care professionals

argue that monitoring is highly recommended also for mild hypertension cases for preventive reasons.

5.4 Discussion

We are not aware of friendly machine-to-man methods in medical informatics available for inducing
know-how knowledge from health care databases and electronic health records using explicit medical
structures that health care professionals are familiar with. Nowadays this kind of knowledge is
represented with CIGs as a result of a knowledge engineering process.

Other approaches as the automatic construction of Petri Nets [vdAvDH03, vd AWMO04, MSL108]
or causal Bayesian Networks [MCO7| from health care data produce knowledge structures that are
not as familiar to health care professionals as MAs and they do not represent long-term treatments
[MCO7] but punctual decisions in diagnostic, prognostic or treatment procedures, or gene analysis
[LvdGAHO04|. Therefore the methodology introduced here is innovative because it automates the
induction of knowledge structures representing the long-term health care procedures carried out in
a certain health care centre in a manner that health care professionals may understand. Moreover,
the fact that this knowledge is represented using the SDA model (see chapter 4) offers several ad-
vantages with respect to the classical MA representation as, for example, the representation of long
term procedures, the identification of multiple entry points and the possibility of using multi-term
decisions and non-determinism.

All the tests presented in section 5.3 correspond to hypertension because the SAGESSA Group
was interested in the analysis of their databases for this particular disease. Hypertension is a
controlled well-known medical domain that affects a big percentage of chronic population, it is a
common disease of any health care centre and, therefore, the amount of data available in different
centres is (1) representative of the different sorts of treatments, (2) usually non-biased, and (3)
sufficient to apply the inductive learning methodology introduced in this chapter.

Moreover, on the contrary of other already analyzed diseases as Chronic Obstructive Pulmonary
Disease and certain cancers [RLVTO07|, hypertension is a medical domain with multiple available

official MAs and whose treatments are always described at the level of abstraction that avoids the
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extreme personalization of medical procedures (e.g., considering drug treatment instead of concrete
drugs). Both, having several official MAs and being adjusted to the level of abstraction of the
terms in these MAs were compelling conditions satisfied by hypertension but not by other diseases
considered.

The results obtained provide evidence on the correctness of the machine learning methodology
with an average total error of 5,4% when the generated SDA diagrams are compared with the health
care procedures in the source database. According to health care professionals, this percentage cor-
responds to some atypical cases. Observe that 94% of this error concerns to type I error (i.e.,
rejecting decisions which appear in the database of the health care centre) and 6% to type II error
(i.e., proposing additional decisions which do not appear in the database of the health care cen-
tre). So, the learning methodology shows a conservative behaviour with respect to the treatments
observed in the database. Furthermore, the methodology has been used to study the differences
between the health care procedures registered in the health care database of the SAGESSA Group
and four official and predefined standards [ICS06, SIGO1, NHF08, SEH05|. These differences rep-
resent an average total error of 13% which is below 10% for NHF and SEH. For hypertension, this
means that health care professionals in the SAGESSA Group are following more than 90% of the

recommendations of official organizations.

5.5 Conclusions

The development of a machine learning methodology to solve problems of the planning activities
in diagnosis and medical-clinical treatment, is one of the objectives of this thesis. Therefore, the

aspects followed to achieve this objective are exposed as chapter 5 conclusions:

e Based on SDA model introduced in the chapter 4, in this chapter we have proposed a new
methodology to machine learn SDA diagrams from the databases of health care centres. These

structures represent know-how knowledge on the health care activities of such centres.

e A data model which is based on the concept of EOC is introduced as a means to provide a

common design for the health care databases to induce SDAs.

e The proposed machine learning methodology involves five tasks: detect states, detect actions,

determine evolutions, determine actions, and integrate all the components in a final SDA.

A formalism to represent translation rules is also provided. This sort of rules is used to adapt
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and to translate the data in health care databases to the terminology that we want the final

SDA diagrams to have.

The machine learning methodology proposed can be used for two purposes. On the one
hand, to generate SDA diagrams that serve as graphical representations of the health care
procedures carried out in health care centres. In this sense, we have tested it over the database
of the SAGESSA Group obtaining a SDA diagram which represents an average 94,6% of the
treatments in the database, only excluding some atypical cases. On the other hand, since SDA
diagrams are easily comparable to MAs, it is possible to use them to study the adherence of
these health care procedures to the official standards. Therefore, we have compared the health
care procedures of the SAGESSA Group with the standards defined by ICSI [ICS06], SIGN
[SIGO1], NHF [NHF08|, and SEH [SEHO05|. The highest level of adherence has been obtained
for NHF and SEH with about 91,4% of treatment coincidence.

All the results obtained in this chapter have been analyzed and evaluated by medical experts
of the SAGESSA Group who have also stated that the SDA diagrams obtained are easy to
understand and medically correct. Therefore, the proposed methodology provides a valid tool

to automatically induce know-how knowledge SDA diagrams from health care EOC databases.



Chapter 6

Automatic Generation of Know-What Knowledge for

Prognosis in Medical Assistance

In this chapter we propose a novel machine learning method to solve problems of the decision
activity in medical-clinical prognosis. This method uses an algorithm to induce partial orders on
the patient conditions of a disease. The induction process takes the data of the patients that are
registered in the hospital databases and that are described in terms of the variables that condition
the health state of the patient in the target disease, and produces a partial order that, together
with a state-transition diagram that represent the changes of condition of the patients in the health
care centre, is able to predict the evolution of new patients.

To describe the induction algorithm of partial orders, this chapter is organized in five sections.
Section 6.1 an introduction of the prognosis concept and their antecedents is realized. Section 6.2
formalizes the problem and proposes the structures that the algorithm in section 6.3 uses to induce
partial orders on the feasible patient conditions of a disease. Section 6.4 describes the tests and
the results of these algorithms on three sorts of cancer. The discussion of the work are exposed in

section 6.5 and, finally, the conclusions in section 6.6.

6.1 Introduction

As it was described in the state of the art of this document, medical-clinical prognosis is the
process by which the probable course and outcome of a disease is predicted (§2.1.3). Statistics and
Artificial Intelligence have traditionally faced this process with several methodologies as survival
analysis [Mac01, KM03, Roz06], regression analysis [MR88, KWD*91, TMGZ97, PM02, GBF*06,
LHHGRO8|, Bayesian networks [GADM02, RBW04, vGJT*07, PVTSST07, SDM*09, SDBB09],
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artificial neural networks [PM02, LWHS03, JAGRRJ ™03, MSM 105, GBF*06, BBAM06, KTKO08,
LHHGROS]| (see §2.4 and §3.2.1). All these methodologies have been applied to predict medical facts
as survival, relapse, improvement, worsening, or death. These predictions depend on whether there
is a temporal restriction related to the prediction or not. Temporal restrictions may be represented
as a single point (e.g. probability of suffering a relapse “after one year”) or as multiple independent
points in time [Mac01] (e.g., probability of getting an improvement “within the next three months”).
Also, prognostic models are classified into those that predict on populations (e.g. patients that are
in a similar condition) and those others that predict on individuals [AHLO1|. An additional feature
of the above methodologies is whether they are able to predict only one fact (e.g. survival) or
whether they are able to predict several facts simultaneously.

A feasible approach to obtain predictions on several facts simultaneously is based on the concept
of patient condition (concept introduced in §5.2.1), which represents the state of the patient con-
cerning a disease. Thus, finding out the probability of a patient to cure, to improve, to worsen, or
to die is equivalent to calculate how likely it is that this patient evolves from his current condition
to a condition representing cure, a better than the current condition, an equivalent to the current
condition, a worse condition, or the death condition, respectively.

All the possible patient conditions (i.e., states) of a disease define an order relation that rep-
resents the pair-wise comparison of the severity of the possible conditions in the disease. So, for
instance in breast cancer, stage IV (patients with metastasis) represents a patient condition that is
worse than stage I (where the tumour is less than 2 cm across and it is not spread). Unfortunately,
the severities of two patient conditions are not always comparable or, if they are comparable, it is
not always possible to establish one as clearly better than the other one. Therefore, the relationships
among the patient conditions of a disease in health-care are frequently represented with partial or-
ders (PO) [DM41] (§3.2.1) which for complex diseases as cancer they are created after an agreement
between experts. However, the so created POs are not necessarily designed to represent conditions
and relationships from a point of view of the severity of the disease but, for instance, to represent
the relationships among these conditions from a practical point of view like the sort of recommended
treatment is. This can foster differences between what the theoretical model represents (i.e., the
expert-based PO or standard PO) and what is really observed at the health-care centres (i.e., the
experience-based PO). For example, for the data of the SEER repository [SEE10| describing real
breast cancer cases, it is observed that 15% of these cases are in a condition whose severity does not

correspond to the severity of the stage indicated by the TNM Staging System [SW02]| in figure 6.1.
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The reason for that is that the degree of severity of a particular patient condition is not necessarily

TNM BREAST CANCER STAGES
Stage C: no breast cancer observed (Cure). Stage 0: Carcinoma in situ. Stage 1: The tumour
size <2 cm; armpit lymph nodes not affected; cancer not spread. Stage Ila: no cells in lymph
nodes; cancer in outer covering of the bowel. Stage 11b: cancer in outer covering of bowel wall
& 1in nest tissues/organs, lymph nodes not affected; cancer not spread. Stage Illa: cancer in
inner layer of bowel wall or in the muscle layer; 1-to-3 nearby lymph nodes contain cancer
cells. Stage I1Ib: cancer through the bowel wall or in surrounding body tissues/organs; 1-to-3

nearby lymph nodes with cancer cells. Stage IV: any size; armpit lymph nodes can be affected;
metastasis to other parts of the body. Stage D: The patient died (Death).

Figure 6.1: TNM staging system for breast cancer.

based on whether this patient fulfills a set of facts or not, but on the combination of the degrees of
severity of each one of the variables that define the state of a patient in a particular disease. For
instance, it does not seem very wise to admit patients with breast cancers of 2.0 cm in stage II (i.e.,
severity 2), and at the same time do not consider the possibility of a patient with a 2.1 cm tumour
to be in stages with severities below or equal to 2 just because the definition of stage II in breast
cancer sets the size upper limit in 2 cm. Following with the example, it could be the case that the
first patient with a 2 cm tumour has other complications affecting the seriousness of his disease,
making his condition more severe than the one of the second patient, and causing the prognostic of
the first patient not to be very accurate.

In order to support the correct joint analysis of the condition of a patient with respect to both
the standard PO and the experience-based PO, it is required to develop algorithms to derive POs
from the patient records stored in hospital databases. The purpose of this is twofold: on the one
hand, these algorithms can be used to generate new health-care knowledge on the feasible stages
of a particular disease, and on the other hand, they can be combined with probability theory to

increase the accuracy of prognosis on the evolution of a patient.
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6.2 Condition-Based Prognosis

In the process of making a prognosis about the evolution of the health of a patient within a proba-
bilistic framework, there are three main questions to be answered: what are the possible conditions
of a patient in the selected disease?, what sort of order there is to compare the seriousness of these
conditions?, and how the past evolutions registered in the hospital databases can be used to define

a probabilistic model to support the prognostic process?

6.2.1 Finding Disease Conditions

For each particular disease D, there is a set of descriptive variables V' = {vy, ..., v} with respective
domains Dom(v;); i = 1, ..., k. Each variable v; represents a property of the disease that is relevant
to understand the condition of the patients suffering from that disease. Each v; defines a severity
function s; : Dom(v;) — [0, 1] that provides the degree of seriousness of each one of the values
that the variable can take. That is to say, s;(v) is a value between zero and one representing the
severity of the condition of any patient for which v; takes the value v, zero being the lowest severity
(i.e., null), and one being the highest one. Slightness is defined as the opposite of severity (i.e.,
wi(v) = 1 — s;(v)). For the sake of being positive, the rest of the chapter will be based on the
concept of slightness rather than on severity. So, Table 6.1 contains the slightness functions for the
variables of tumour size (T), nodes (N) and metastasis (M) in the breast, lung and uterus cancer.
These functions are derived from the information contained in the SEER repository [SEE10| and
may vary from other sources of information.

Given a set of variables V, the condition of a patient p (or patient condition ¢,) can be formally
described as an element of the set Dom(vi) x Dom(ve) X ... x Dom(vg) (i.e., ¢ = (a1, ...,ax),
a; being the value p has for variable v;), and the global slightness of ¢, in the disease D as a
combination of all the slightness functions of the descriptive variables. Many sorts of combinations
exist [FGEO5|, though here only the arithmetic mean is used. So, p(cp) = 1/k - >, pi(a;) is the
function to calculate the global slightness of any patient condition with values aq,...,ar in the
variables of V. This combination is possible since a correlation analysis of the data in the SEER
repository shows that T, N and M are mutually independent variables. Although they are not
considered here, alternative combination functions should be taken if the variables to combine are
not independent.

A patient condition of a disease D (or disease condition C') is defined as a restriction on the

domains of the variables of that disease. So, any disease condition can be formalized as C' =
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(D1, ..., Dy) with D; € Dom(v;), i = 1,...,k, and represents a common state of a set of patients
suffering from D. The set of all the disease conditions C1,...,C, of a disease D contains the
alternative states in which a patient of that disease can be.

For some diseases the set of disease conditions C; are fixed and well defined, like in cancers
where the Tumour Node Metastasis Staging System (TNM) [SW02| was created by the American
Joint Committee on Cancer (AJCC) to describe the alternative conditions of diverse cancers; for
example, the stages 0, I, I1a, IIb, IIla, IIIb, and IV in breast cancer that figure 6.1 extends with
the extreme conditions cure (left side C node) and death (right side D node).

In other diseases where there in not an agreed criterion on the set of conditions, these can be
obtained from the application of a non-supervised clustering algorithm on a representative sample
of patient conditions described in terms of the set of variables V. Two alternative sorts of clustering
algorithms can be applied: data clustering and conceptual clustering (§3.3.2). Data clustering
algorithms like KMEANS [Mac67] obtain clusters of similar patient conditions that are dissimilar
to the patient conditions in other clusters. On the contrary, conceptual clustering algorithms like
COBWESB [Fis87| obtain clusters as expressions describing the patient conditions contained in the
cluster, in terms of the variables in V.

The application of a clustering algorithm can be made directly on the values of the variables
in V' (i.e. patient respective values ay,...,ax) or, alternatively, on the values of the slightness
functions of the variables in V' (i.e. values pj(ay),..., ux(ag)). Whereas the first option puts patient
conditions with similar descriptions in the same cluster, the second group of algorithms gathers

patient conditions with similar slightness values in the same cluster.

6.2.2 Sorting the Disease Seriousness

The global slightness function i defines a complete order relation among the patient conditions that
can be described in terms the variables in V. So, for any particular disease, if ¢; and ¢; represent two
patient conditions and p(c;) > p(cj), we interpret that ¢; is better than c¢;. Nevertheless, this sort
of order relation cannot be extended to the comparison of disease conditions where two conditions
C; and Cj of the same disease can not only represent one a worse state than the other, but also
incomparable states from the point of view of their respective slightness. This implies that, for any
disease D, the order relation of the feasible disease conditions is not necessarily complete.

Based in the definition of PO [DM41] introduced in section 3.2.1 and given a set of elements A,

a PO P C A x A on these elements is a binary relation such that P is reflexive (i.e., ¢, € A =
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(€i,ei) € P), anti-symmetric (i.e., (e;,e;) € P and (ej,e;) € P = e; = ¢;), and transitive (i.e.,
(€i,ej) € P and (ej,er) € P = (ej,er) € P). PO are typically represented as directed acyclic
graphs where all the edges that are deducible by transitivity (i.e., weak relations) are omitted.

A set of disease conditions {C1,...,Cy} on a disease D defines a PO. This PO can be used to
know whether one condition is better or worse than other condition, or if they cannot be compared.
For example, figure 6.1 depicts a directed acyclic graph that represents the standard PO of the
breast cancer conditions according to the TNM staging system [SW02]|. It shows, for instance, that
a patient in stage Ila is healthier than one patient in stage IIla or IIIb (direct edge connection), or
IV (connected by edge transitivity), and not comparable in terms of slightness to patients in stage
ITb.

The difference between two POs P; and P, can be measured in terms of the cardinality of the

set (P, U P2) — (P1N P2).

6.2.3 Representing the Cases in Hospital DBs

In the previous section we showed how the conditions of a disease define a PO of their respective
slightness. This conceptual structure, however, is unable to represent the evolutions of patients in
time which are based on patient improvements, worsenings and stable periods. State-Transition
Diagrams are directed graphs that model behaviours in terms of states, transitions and actions.
Here, states stand for the conditions of a disease, transitions are the evolutions of the observed
patients as their conditions change in time, and actions remain unused. Formally speaking, if C'
is a set of disease conditions of a disease D, a state-transition diagram is a pair (C,t) such that
t: C x C — Nis the transition function that, for each couple of disease conditions C; and Cj in C,
t(Cj, C;) is the number of patients whose conditions evolve directly from C; to C;. The inflow and
the outflow of a disease condition C; can be calculated with the functions in(C;) = >, ¢(Cj, C;)
and out(C;) = >, t(C;, Cj), respectively.

If this model is used to represent the evolutions of a set of patients across the feasible conditions
of a disease, it must be extended with the admission and the discharge functions a : C' — N and
d : C'— N such that for any condition Cj, a(C;) is the number of patients arriving in condition Cj,
and d(C;) the number of patients leaving from (or still remaining in) condition C;. See that, for any
disease condition Cj, a(C;) + in(C;) must be equal to out(C;) + d(C;). Then, if n; = a(C;) + in(C;)
represents the number of times any patient has been in condition Cj, and ny = 3, >, ¢(C;, Cj)

the number of changes of disease condition of all the patients registered in a hospital database, the
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probability of a patient to be in condition C; is p(C;) = n;/n;, the probability of a patient p in
condition Cj; to evolve to C; in one transition is p(Cy, Cj) = t(Cs, Cj)/n;, and the probability of
finding a patient that evolves from C; to Cj is t(Cj, C;)/nt.

The above function p(Cj, C;) can be used to compute the probability of a patient to evolve from
one set of disease conditions A C {C1,...,C,} to another set of disease conditions B C {C4,...,Cy}
in one step as Pr(A,B) =) c.ca chegp(Ci, C3j). In its turn, this function, together with a PO
P on the disease conditions, can be used to make prognoses on the likelihood a patient gets cured,
improves, worsens, dies, or survives. See equations 6.1 to 6.5, respectively where Condition(p)
represents the current condition of the patient, cure is the condition of a healthy patient, and death

is the condition representing a deceased patient.

Pr(peures) = Pr({Condition(p)}, {cure}) (6.1)

Pr(pimproves) = Pr({Condition(p)}, {C : (condition(p),C) € P}) (6.2)
Pr(pworsens) = Pr({Condition(p)}, {C : (C,condition(p)) € P}) (6.3)
Pr(pdies) = Pr({Condition(p)}, {death}) (6.4)

Pr(psurvives) = 1 — Pr(pdies) (6.5)

6.3 Induction of Partial Orders

Condition-Based Prognosis as it was introduced in section 6.2 is a three step process that starts
with the determination of the conditions of a disease (here, we will consider the set of conditions
already available). Once the disease conditions are fixed, a second step takes the data of the
evolutions of patients in a health-care centre to induce both a PO on these conditions, and also
a state-transition diagram that contains the probabilities p(Cj, C;) of evolving from any disease
condition C; to any other disease condition C; in the context of the selected health-care centre.
After that, a third step can be applied that consists on the utilisation of both structures to predict
the evolution of new patients: the PO provides the semantic meaning of what "cure", "improve",
"worsen", "die", or "survive" means in the context of the patient current medical condition, and
the state-transition diagram supplies the probabilities needed to compute the final prognostic value.

This section describes the procedures to carry out the second and the third steps.
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6.3.1 The Data Model

The data model used in the induction of POs is the EOC data model (§5.2.1). Here, an episode
of care (EOC) contains all the medical information about the treatment of one patient between
the date of admission and the date of discharge. Formally, if V = vy,...,v; is a set of descriptive
variables of the patient conditions in a disease D and A = {a1,...,a,} is a set of medical actions,
then an encounter e is a pair (¢, a) such that ¢ is a patient condition (i.e. ¢ € Dom(v1) x Dom(vs) X
... Xx Dom(vy)) and a is a subset of actions in A; an EOC is a sequence ey, ..., e, of encounters, and

the database is a list of EOC's.

6.3.2 The Statistical Model

According to the data structure described above, for any pair of disease conditions (Cj, C}), we can
apply a statistical procedure to determine, in a first stage, whether there is an order relation between
C; and C; and, if there is one, in a second stage, decide which of the two conditions represents a
better state of the disease from a health point of view (i.e. the order of the relation between C;
and Cj). Once all the pairs of disease conditions are considered, a statistically significant PO on
these conditions is obtained. Here, the above mentioned two stages are implemented as statistical
hypothesis Student’s t-tests.

In the study of a disease D, with {C,...,Cy,} the set of all possible conditions of D, and
provided a database containing a representative sample of encounters of all the patients that have
been treated of that D, the description of the state of the patient in each encounter ej in terms of
the variables in V' defines a patient condition ¢, with a slightness value p(cg) (or fi(cg) in statistics
notation). Simultaneously, this patient condition ¢ classifies the encounter in one of the disease
conditions C1, ..., Cj,.

Let us call E, the set of the encounters in the database that are classified in Cy, and Sy, = {(¢;) :
ej € Ej} the set of p-values of their patient conditions. Then, for any pair of disease conditions C;
and C, the respective sets S; and S} are the two independent samples of a Student’s t-test with
null hypothesis the means of the slightness values of the elements in C; and the elements in C; are
equal, provided that the underlying distributions are normal.

Only if the null hypothesis is rejected, C; and C; have an order relation whose sense is evaluated
with a new Student’s t-test with null hypothesis the means of the slightness values of the elements
are larger in C; than in C. Both t-tests are based on the t-value (equation 6.6) where u’s, o’s and

n’s represent the mean, standard deviation, and number of elements of the samples, respectively.
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(6.6)

6.3.3 The Induction Algorithm

The algorithm 1 allows the induction of POs under the previously described statistical model. This
algorithm realizes the induction process according to the data and the statistical models of sections
6.3.1 and 6.3.2, respectively. The final result of the algorithm is a PO that explains the slightness

degree of a disease in terms of the improvement or worsening between the conditions of a disease.

Algorithm 1 Algorithm to make PO
Require: C, data, «
Ensure: PO
{Let C = {C4,...,Cy} be a set of conditions on a disease D}
{Let data = {EOC, ..., EOC}} be a list of episodes of care of D}
{EOC; = {e;1, ..., €ik; } the list of encounters in EOC;, i = 1..k}
{Let « the statistical significance of the test -e.g. 0.01}
G : float
PO =0 ; {empty PO on the set of disease conditions C}
for any pair of conditions (C;,C;) € C' x C do
E; = {ezy € U,EOC,: Cj is the condition of the patient in encounter e}
E; = {ezy € U,EOC;: C; is the condition of the patient in encounter e, }
S; = {p(cz): ¢y is the condition of the patient in ey, for all e; € Ei}
Sj = {p(cy): ¢g is the condition of the patient in e, for all e, € Ej}
Calculate the t-value 3 according to equation 6.6
if [3] < t,/2 (first hypothesis test indicates C; and Cj are related) then
if 3 > t, (second hypothesis test indicates C; is better than C;) then
Insert (Cj, Cj) in PO,
else
Insert (C}, C;) in PO;
end if
end if
end for
Write the order relation PO;

6.4 Testing Prognosis on Several Sorts of Cancer

In order to induce POs, we used the databases on the diseases breast cancer (55939 encounters), lung
cancer (19491 encounters) and uterus cancer (705 encounters) obtained from the SEER repository

[SEE10]. These databases contain information on patient conditions based on three variables:
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Tumour Size, Lymph Nodes, and Metastasis classified according to the TNM System [SW02|. Data
with unknown or missing values are removed from the databases. The distribution of these data

according to each disease condition is described in Table 6.2.

Cancer Disease Conditions Total

Disease 0 la | 1b 2a 2b 3a 3b [4a ] 4b

Breast 7073 25566 13387 | 6550 | 1456 | 940 967 55939
Lung 11 7298 1338 2629 | 3022 5193 19491
Uterus 51 | 242 [ 203 79 45 5 [ 80 | 705

Table 6.2: Distribution of episodes according to each disease condition.

Two sorts of tests have been performed on these databases: one that is used to compare the
difference between the standard POs which are proposed by the TNM Staging System [SW02]|, and
the experience-based POs obtained by the inductive algorithm introduced in section 6.3.3 when it
is applied on the proposed databases. The second test is about how these differences affect the
process of prediction on the facts of cure, improvement, worsening, death, and survival in breast,

lung, and uterus cancers.

6.4.1 Results on the Induction Process

Table 6.3 shows both the standard POs [SW02]| and the POs that the proposed algorithm induces
form the three databases. The distances between the standard and the induced POs are 2, 1, and
2, respectively. These differences are caused either by the detection of new relations that were not
present in the standard PO or by the elimination of relations that do not achieve the statistical
significance level required to be part of the experience-based PO. So in breast cancer, the relations
[Ta-IIb and IIIa-IITb are statistically justified though they were not in the standard PO. A similar
case is observed in lung cancer with the relation IIIa-IIIb, and in uterus cancer with relation Ia-Ib.
In this last domain, the SEER repository does not provide enough evidence to keep the standard
order relation between stages II and III in the experience-based PO.

These single differences between standard and experience-based POs are cause of new differences
when the transitivity property is applied, and the final differences increase to 3%, 2%, and 10% of
the total number of binary relations, this meaning that 3, 2, and 10 out of 100 comparisons get

different responses whether the standard or the experience-based POs are queried.
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6.4.2 Results on the Condition-Based Prognosis

Equations 1 to 5 in section 6.2.3 are used to calculate the probabilities of improvement, worsening,
cure, death and survival in breast, lung and uterus cancers for both, the standard PO, and the
experience-based PO the algorithm in section 6.3.3 obtains for the data of the SEER repository
[SEE10], representing real patients.

In order to analyse the differences between the prediction values obtained with the utilization
of either the standard or the experience-based POs, the probabilities p(Ci,Cj) that are obtained
from the real evolution of a set of patients, are used to define a matrix of patient evolutions. Tables
6.4, 6.5, and 6.6 show the probability matrices employed to analyze these differences in the cases of

breast, lung, and uterus cancers, respectively.

Disease Conditions STND EXP
0 1 2a 2b 3a 3b 4 I W I A%
0 1 0 0 0 0 0 0 0 0 0 0
1 06 | 0,2 0,1 | 0,1 0 0 0 0,75 0,25 0,75 0,25

2a [03]02[01]02]01]0,1 0,64 0,36 0,55 0,44
2b [01 |01 |02|01]01]02]02]0,36 064 0,44 0,55
3a [ 0 0 [01]01|03]02]|]03] 0,39 0,61 029 0,71
3b [0 0 0 [02]03|01]04]| 0,25 065 0,555 0,44
4 [0 0 0 0 0 0 I 0 0 0 0

o

Table 6.4: Probabilities of evolution among disease conditions in breast cancer

Disease Conditions STND EXP
0 1 2 3a 3b 4 I \Y% I \Y%
1 0 0 0 0 0 0 0 0 0

08 | 0L 01| 0 0 0 | 088 0,11 088 0,11

01|03 |01 |02]02]01]| 044 055 044 0,55
0 [01]02[01]02]|04] 0,39 0,61 0,33 0,66
0 0 [0l]03][|01]|05] 024 0,76 0,44 0,55
0 0 0 0 0 I 0 0 0 0

AEPwro

Table 6.5: Probabilities of evolution among disease conditions in lung cancer

Disease Conditions STND EXP
0 la 1b 2 3 4a 4b I \Y% I \Y\%
0 1 0 0 0 0 0 0 0 0 0 0

la [ 04 | 03 | 01|01 |01 ] 0 0 | 0,68 0,32 0,57 0,43
ib [04 |04 |01 ] 0 |01 O 0 | 0,75 0,25 0,88 0,11
2 [01|01|01|01]02]02] 0 | 0,33 067 0,58 0,42
3 [0 0 [ol]ol]|o01l]|o02]05] 022 0,78 032 0,68
d4a [ 0 0 0 [0l |o01]|02]06] 025 0 0,25 0
4b [0 0 0 0 0 0 I 0 0 0 0

Table 6.6: Probabilities of evolution among disease conditions in uterus cancer
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6.5 Discussion

The probabilities of cure, death, and survival are identical for the standard and the experience-based
POs, as expected, since the conditions of cure and death are the same in both POs. However, the
predictions on improvement (I) and worsening (W) differ if we use one or the other POs, as the
numbers in bold indicates. Some of these differences cause the prognostic with the standard PO to
provide excessive “hope” (e.g., in uterus cancer, patients in stage Ia are given 68% of improvement,
whereas the experience says that only 57% will improve), or excessive “despair” (e.g., in uterus

cancer, patients in stage IT get 67% of worsening, when reality shows that it is only 42%).

6.6 Conclusion

The development of a machine learning methodology to solve problems of the decision activity in
medical-clinical prognosis, is one of the objectives of this thesis. Therefore, the aspects followed to

achieve this objective are exposed as chapter 6 conclusions:

e In this chapter, we have introduced a new machine learning method to support decision

activities in medical-clinical prognosis.

e This method is based on partial orders and state transition diagrams to predict the evolution

of new patients.

e This method is able to predict several facts simultaneously (improvement, worsening, cure,
death and survival) unlike current methods based on statistics and artificial intelligence (§2.4

and §3.2.1) which, generally, they predict only a particular fact.

e The partial orders induced are built from real experiences happened in health-care centres
this showing the gap between the criteria to assess the patient condition proposed by medical
experts (standard partial order), and the criteria coming out of the medical daily situations

(experience-based partial order).

e Based on the tests realized in the section 6.4, we can conclude there are clear structural
differences between the standard POs proposed by the health care professionals and those
others that are induced from the data of the SEER repository [SEE10| about real patients. A
direct implication of these differences is that the prognosis about the evolution of patients may

change drastically. This effect has been confirmed with the results of the tests performed which
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may drive the health care professional to incorrect predictions of patient future improvements

and worsenings.

The work introduced in this chapter has been presented and published in the 11th Conference
on Artificial Intelligence in Medicine (AIME2007) [BRRO7].



Chapter 7

Integral Modelling of Know-What and Know-How
Knowledge for the Medical Assistance Activities of

Diagnosis, Treatment and Prognosis

In this chapter we propose a integral, computable and knowledge based model that automate the
medical-clinical procedure for the decision and planning activities in the diagnosis, treatment and
medical-clinical prognosis.

To describe the novel medical-clinical procedure model, this chapter is organized in six sections.
In section 7.1 an introduction to the concept of medical-clinical procedure is realized. In section 7.2
a novel medical-clinical procedure model (MPM) is described, the sorts of Al problems in MPM are
determined and the MPM Knowledge Structures are defined. In section 7.3 the automatic induction
of MPM Knowledge is introduced. In section 7.5 the medical application of MPM is shown. This
application is tested on four real Clinical Cases. A discussion of the work is exposed in section 7.6

and, finally, the conclusions appear in section 7.7.

7.1 Introduction

In medicine, the concept of medical-clinical procedure (§2.1.4) is used to refer to a course of action
aiming to achieve a result in the care of one or more patients. Some of the most important medical
procedures are diagnosis (i.e., identification of a patient’s illnesses), treatment (i.e., health care given
to a patient), and prognosis (i.e., prediction of the probable evolution of a patient or disease). All
the evidence found about the medical procedures of one disease or syndrome is gathered together

in clinical practice guidelines (§2.3.1) and put into practice by means of specific protocols which are

140
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disease-driven plans implementing concrete medical procedures.

In the last decades, modern medicine has been influenced by several social and technological
changes that have affected the way that medical procedures are considered and modeled. Based on
the increment of life expectancy, one of the most important social changes is in the sort of average
patient arriving at the health care centres who can be described as a chronic comorbid elderly
patient. This sort of patient has forced a change of perspective of medical procedures that have
shifted from a disease-driven approach to a patient-driven approach, in order to be able to deal with
all the variability of the patient with a single holistic procedure. Currently, this change of perspective
is widely accepted by the health care community [Har09] and poorly addressed with methodologies
for merging and personalizing some specific procedures like medical treatments. In this chapter,
based on the Harrison’s principles [Har09], we propose a broader approach which integrates the
medical procedures of diagnosis, treatment, and prognosis in a Medical Procedure Model (MPM)
that provides a holistic management of chronic comorbid patients. The MPM contains internal
loops that allow not only a continuous adaptation to the patient evolutions but also the possibility
of reconsidering wrong or incomplete diagnoses, treatments, or prognoses.

The practice of medicine is sustained in a medical knowledge that combines scientific evidence
and past individual experiences. Scientific evidence is primarily accumulated in clinical practice
guidelines (§2.3.1), while past experiences can be found registered in the data of the information
systems of the health care centres (§5.2.1). Converting this knowledge into computer-interpretable
knowledge structures has been argued to be a difficult task [WPT*02, WTSR10]; for this reason,
developing mechanisms to automate this process is seen as one of the grand challenges in clinical
decision support for the future [SWO™08|. Here, the MPM represents the effort for identifying
the medical decision problems appearing in the combination of diagnosis, treatment, and prognosis
procedures for the medical management of patients. For each subproblem a computer-interpretable
knowledge structure to solve it is proposed. If knowledge structures exist for all the MPM sub-
problems, then their integration defines a knowledge-base architecture of a decision support system
towards a holistic management of patients. If some of these knowledge structures do not exist, then
we also propose both the minimal data structure required to induce such knowledge structures, and
also the induction algorithm to transform those data structures into knowledge structures (some of
these algorithms are outcomes of this thesis).

The result is a computer model which is equivalent to the MPM, but exclusively based on

computer programs.
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7.2 The Medical-Clinical Procedure Model

Medical decisions making (§2.2) are made during the diagnostic and medical-clinical treatment
phases. These decisions are based on factual tests (i.e., based on evidence) so patients can ob-
tain maximum benefit from the scientific knowledge available to health care professionals [Mar07].
Proposing the diagnostic possibilities, the execution of a plan or venturing a possible prognosis, not
only forces to consider a wide background knowledge, but also to evaluate the relative possibilities
within the progress of some diseases and to know the importance of some signs and symptoms
that appear with less frequency. In this sense, health care professionals apply a standard medical
procedure (§2.1.4), that allows to collect data, to propose hypothesis and to obtain objective con-
clusions about whether a particular diagnostic must be accepted or rejected, to design and execute
a treatment plan or to determine the disease progress through a prognosis.

However, this medical standard procedure (see 2.1) does not have the functional detail level to
be formalized in a computable way. So, we propose a novel model that solves this problem allowing
to integrate the decision and planning activities of medical assistance for diagnosis, treatment and
prognosis. This model, which we have called medical-clinical procedure model (MPM), is shown in
figure 7.1.

MPM begins with the elicitation process (1.1) where the patient information which is relevant
for the current medical process is gathered. This information can be obtained by direct observation
or by consultation of the patient medical record. The information constitutes the set of signs
and symptoms that describe the current health condition of the patient. With this information, a
decision (1.2) is made on whether the patient requires a diagnosis, a treatment of their signs and
symptoms (symptomatic treatment), or both. Symptomatic treatment can be performed in parallel
to the process of finding out the patient diagnosis.

The relevant signs and symptoms are employed to generate the feasible hypotheses (1.3) which
are the possible causes of the patient health conditions. Signs and symptoms can identify a single
disease (i.e., hypothesis), a comorbidity or alternative hypotheses. The diagnostic process aim is
the reduction of feasible hypotheses in order to achieve a concrete diagnosis for the patient. The
first step consists in deciding among a set of diagnostic tests (1.4), where the results may help the
health care professional to discard or to confirm some of the available hypotheses. Sometimes these
results are organized in a diagnostic test plan (1.5) that describes the medical logic about how
these tests must be deployed. Once the diagnostic test plan is chosen, it is ezxecuted (1.6) in order

to obtain additional information. The results of the test are used to modify/adjust the hypotheses
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Figure 7.1: Medical Procedure Model.
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(1.7) extracted from the elicitation process.

If several hypotheses are still possible, the diagnostic process must iterate from step 1.4 in order
to keep refining until there is a unique hypothesis (1.8). Even if only a single hypothesis remains,
the confidence of the patient can be low, and the health care professional may decide to continue
studying the case from step 1.1. When there is a single confident hypothesis, the health care
professional accept it as the patient diagnosis and the treatment process starts.

Some of the signs and symptoms detected during elicitation may need symptomatic treatment.
In this case, the symptomatic treatment plan (2.1) must be chosen. Similarly, the patient diagnosis
must be treated, so a treatment plan (2.2) must be performed. Symptomatic treatment and
diagnosis treatment are combined in a single treatment (i.e., merging) (2.3) in order to smooth
feasible undesired interaction. Once the unified treatment has been determined, it is ezecuted (2.4).
Simultaneously, a prognosis process (2.5) of the patient evolutions according to the treatment
begins.

The treatment results, along with the prognostic results (if it is the case), allow the health
care professional to determine whether the treatment followed by the patient was successful or not
(2.6). If the treatment is successful and the patient has been cured, the patient will be discharged
of the health care centre. In the case of chronic disease, the patient will have a follow up to keep
his health stable. On the contrary case, if the treatment is unsuccessful the whole process must be

reconsidered from step 1.1.

7.2.1 Sorts of AI Problems in MPM

The tasks in MPM can be expressed according to four Al problems: binary and multiple decision,
planning and prediction. Table 7.1 describes these problems according to each medical activity
of MPM (i.e., diagnosis, treatment and prognosis). First, the binary decision problem is used to
represent tasks where any medical decision in MPM depends only of two possibles alternatives.
For example, in the task 1.2a is necessary to decide if a patient requires a diagnostic or not, or in
the task 1.8b the decision depends of the number of hypothesis obtained after a diagnostic process
(single hypothesis or several hypotheses). Secondly, the multiple decision problem is used when
solving a task in MPM implies a set of possible alternatives and it is necessary to decide which of
these alternatives are better in the solution of this task. For example, in the task 1.2b if a patient
needs symptomatic treatment, it is necessary to decide which signs and symptoms of this patient

require a treatment. A similarly situation occurs in the task 1.3 (generate hypotheses) where the
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decision problem is to determine which are the feasible diagnostic hypotheses, or in task 1.4 (Select
diagnostic test) to decide which are the diagnostic test to perform, or in task 1.7 (Modify/Adjust
hypotheses) to decide, which hypothesis are still feasible after modify/adjust the initial hypotheses
with the results of diagnostic tests.

Third, the planning problem is used when, solving a medical task in MPM, requires to define and
to execute a logical sequence of medical actions. For example, to solve tasks 1.5 (generate diagnostic
test plan) and 1.6 (execute diagnostic test plan), it is necessary to define how the diagnostic tests
are organized and how these are applied, respectively. Also, the planing problem can be applied
in tasks 2.1 (generate symptomatic treatment plan) and 2.2 (generate treatment plan) to define
the sequence of medical actions necessary in the treatment of the patient. Once these plans are
observed, the planning problem is used in task 2.3 (integrate plans) to obtain a unique treatment
plan and its subsequent application in task 2.4 (execute treatment plan). Finally, the prediction

problem is used in task 2.6 (Prognostic) of MPM to determine the patient evolution.

7.2.2 MPM Knowledge Structures

The AI problems previously discussed can be represented through computer-interpretable knowledge
structures. These structures are summarized in table 7.2. The binary and multiple decision problems
are represented by decision trees (§3.2.1) and decision tables (§3.2.1), respectively. The planning
problems are represented by SDA structures (§4.2), and the prediction problems are represented by

partial orders and state transition diagrams (§6.3).

7.3 Automatic Induction of MPM Knowledge

The basic structure used in the automatic induction of MPM knowledge is the EOC database. This
database contains patient data from a health care centre whose structure allow to build supervised
data matrix and to fulfil EOC data model to solve the AI problems of decision, planning and
prediction in MPM, as it is indicated in table 7.2. To decision problem, a supervised data matriz M
is building through of queries, SELECT-FROM, to the EOC database according to the decisional
questions that have to be solved in the MPM, for example, the question “is a diagnosis needed?”
(task 1.2a). To solve this question it is necessary to know, for all patients P, the signs and symptoms
S&S of each patient p; and if each patient p; has been diagnosed of c¢. Therefore, the query would
be:
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AT Problems Knowledge Structure
Binary decision Decision tree
Multiple decision | Decision table
Planning SDA structures
Prediction Partial orders and state transition
diagrams

Table 7.2: Knowledge structures in MPM.

SELECT SéS, diagnosed-Y/N FROM patients

Once the data are obtained after the queries execution, these data are used to induce the
structures of knowledge representation which solve the decision problem in MPM. This induction
process is based on machine learning methods described in section 3.3.1.

For the planning problem, the FOC data model (§5.2.1) is applied which adapts the data from
EOC database and by means of a set of translation rules to the terminology the final users want
the resulting SDA to have (§5.2.2). This adaptation process is realized according to the planning
questions that have to be solved in the MPM, for example, the medical question “how is the symp-
tomatic treatment organized?” (task 2.1), to solve this question it is necessary to know the data of
all the patients that received a symptomatic treatment, and to organize these data in state-terms
(terms on the health conditions), decision-terms (S&S) and action-terms (terms on the medical
actions <treatment>). The data obtained after the preprocessing step are used to generate the
final SDA diagram by means of a machine learning method introduced in section 5.2.4. Likewise,
for the prediction problem, the EOC' data model 6.3.1 is used to adapt the data of patient evolutions
from EOC database and to induce both a partial order on patient conditions and a state transition
diagram which contains the probabilities of evolving from any disease condition to any other disease
condition in the context of the selected health-care centre. The induction procedure of partial orders
is based in the inductive algorithm introduced in the section 6.3.3.

All the data structures, based on supervised data matrix and EOC data model, used in the

automatic induction of MPM knowledge are described in table 7.3.
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7.4 Integrated usage of the MPM

Figure 7.2 shows the functional model of the MPM. This functional model uses computable pro-
cedures P; (represented by circles) based on the knowledge which is provided after a knowledge
engineering process or induced by a machine learning algorithm from data contained in data struc-
tures M; or EOC (represented by squares), to be applied in the MPM tasks T}, as it is described
in table 7.3. In this process, new knowledge (represented by arrows) is generated. The generation
of new knowledge can start the activation of other MPM procedures. These procedures can be
grouped into blocks that allow to solve a single MPM task, such as 1.2 task where the P1.2a and
P1.2b procedures, based on a decision tree and a decision table, solve the Al problem of binary
and multiple decision, respectively. A similar situation occurs to task 1.8, where the computable
procedures P1.8a and P1.8b must decide what to do if there is a single hypothesis or if there are

several hypotheses at the end of the diagnosis process.

7.5 Application of MPM in Four Clinical Cases

Based on the model of figure 7.1, the figures 7.3, 7.4, 7.5 and 7.6 show the behavior of MPM according
to four real clinical cases published in the medical literature [FIS|. The medical situations described
in these cases are suggested by Dr. Collado, a senior GP of the SAGESSA Group [SAG], that

qualified these cases as diverse and representative of primary care.

o [irst case (figure 7.3): 34-year-old male who comes to a health care centre by feelings of
dysthermia, general ailment and arthromyalgia with 24 hours of evolution. In the last 48

hours he has been suffering from: dysury, pollakiuria and mictional urgency (A).

Initial Physical Examination:

Temperature: 38°C

Otorhinolaryngology: mild hyperemia of the oropharynx
— Cardiopulmonary auscultation: normal
— Abdomen: normal

— negative Goldflam’s sign bilaterally (B).
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A radioactive tests is done (D1) where main results are: Ph = 5,5, density > 1030, leucocytes
+ 4+ +; blood +; resting — (E). A genitourinary examination is completed with normal
results, and it is performed a rectal exam that shows an enlarged prostate, soft, hot, painful
on palpation and with effacement of the central sulcus. We ask for a blood test, urine test
and uroculture, and we begin an empirical treatment with ciprofloxacin 500 mg/12h. Alter
48 hours, the patient is asymptomatic and has no fever, hence we complete the antibiotic

guideline during 28 days (I).

Complementary tests results:

— Inmediate blood test: leukocytosis with predominance of polymorphonuclear, urea and

creatinine within normal.

— Inmediate urine test: Ph 5.5, density > 1030, total protein = 0, 3 g/1, blood +, leucocytes
o+

— Sediment (cytometry): leucocytes 1772(0 — 20), red blood cell 6(0 — 15), epithelial cells
48(0 — 25), cylinders 1(0 — 1), bacteria 4443(0 — 2, 5).

— Sediment (manual): abundant leukocytes/field and abundant bacteria/field.

— Uroculture: > 100000 ufc/ml. E. coli sensitive.

Once the medical treatment is finished, another uroculture is realized. The result is negative
(J).

Second case (figure 7.4): 59 year-old male, controlled at the health care centre by presenting a
pulmonary edema secondary to paroxysmal atrial fibrillation recent and by her diabetes mel-
litus type 2 (DM2). He explains that he has had throatache and earache with no suppuration,

fever or expectoration in the past few days (A1).

We revise the patient’s medical record and we find that:

— Personal antecedents: smoker ( 1,5 pack/day from 20 year ago), no other toxic habits,
DM2 no dependent of insulin, paroxismal atrial fibrillation, without family history of

interes.

— Regular treatment: Metformin, Amiodarone, Acenocoumarol and Furosemide.

During the physical examination it is observed a slightly hyperemic pharynx, whitout exudate

plaques. There are no submandibular lymphadenopathy. The otoscopy and the cardiopul-
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monary auscultation are also normal. The rest of the examinations results are normal (B1). It
is established a treatment with anti-inflammatory (ibuprofen 600 each 8h), antibiotics (amox-
icillin/ac. clavulanic 500/125 each 8h for 7 days) and plenty of fluids, by suspect of acute
pharyngitis.

A few weeks later, the patient attends to the health care centre indicating that have pain throat
and left otalgia alter the treatment. Besides, he has found a small lump to left submandibular
level since a few days. He does not have dysphonia, hemoptysis nor general symptoms (A2).
In the physical examination it is shown a normal pharynx, with no oropharyngeal injuries.
shows an adenopathy of 2 cm to left submandibular level. The ear examination (otoscopy)
is normal. No lymphadenopathies are observed. There is no goiter nor hepatosplenomegaly.
The rest of the examination is normal (B2). Alter the examination, a blood test and a
thorax radiography are requested. The results of the hemogram and biochemistry are normal;
Epstein-Barr virus (EBV) negative; toxoplasmosis negative; erythrocyte sedimentation rate
(ESR) and C-Reactive Protein (CRP) normal; thorax radiography normal and Mantoux less

of bmm.

The patient experiences an increase of odynphagia and the appearence of an associated dys-
phagia. He is sent to the medical emergency, where he is attended by an otorhinolaryngologist.
Indirect laryngoscopy was performed, in which lesions were observed at the supraglottic level
suspicious of neoplasia, and a biopsy is programmed. While the patient is waiting for biopsy

results, he goes to consultation due dysphonia, that had not been present yet (C).

The biopsy is informed as supraglottic neoplasia (D) with glottic affectation whitout metas-
tasis to distance. The following decisions are taken: first, practice total laryngectomy (by
glottis affectation) with tracheostomy and radiotherapy. Second, definitive tracheostoma and

starting the voice rehabilitation.

Third case (figure 7.5): 19 year-old female who comes to the health care centre suffering
from occipital headache of oppressive way and progressive intensity, whitout vomit, whitout
increase (when applied Valsalva test) and no other symptomsy. The profile was preceded by
neck and back pain of mechanics characteristics. There was no traumatic precedent (A1).
The neurologic examination was normal and there was no alteration on the rest of the phys-
ical examination, except obesity. There were neither personal nor familiar record of interest

(B1). Possible triggering socio-familial factors are investigated and the patient recognises
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couple problems (C). An analgesic treatment is established (D) and the patient is to cited
in consultation scheduled to deepen into her personal problems, her clinical record and the

physical examination.

In consultation, 10 days alter the first encounter, the patient shows an increase of intensity
of the headache (F'), despite the scheduled treatment. Besides the patient has suffered two
morning vomiting, and blurred vision with a sensation of double vision (A2). The patient
is conscious and oriented, but because of the arise of alarm symptoms a new neurological
examination is donce. The results are normal, with no oculomotor paresis or others alterations
(B2). Ophthalmoscopy was performed and displays an image of papilledema (G). It was
done a lumbar punction (G) that was diagnostic: output of fluid pressure. The patient was
admitted in the neurological service with the diagnostic of genign intracranial hypertension
associated to obesity. It is rejected that the hypertension was secondary. The patient was
derived to ophthalmology for assessment of campimetry and visual acuity. Currently, the
patient is asymptomatic, has not suffered similar episodes, and her weight is being controlled

by nursing (H).

Fourth case (figure 7.6): A 45-year-old female with precedents of extrinsic bronchial asthma go
to consultation, she is a former smoker whitout clinical record of chronic obstructive pulmonary
disease (COPD), she have dyspnea of three days of evolution, with fever of 38°C' and clinic
non-productive dry cough, myalgia, headache, and pleuritic right subcostal pain (A). She have
a 02 saturation of 92% (C) and a heart rate of 113 bpm (beats per minute). Cardiopulmonary
auscultation is normal and the meningeal signs are negatives. There are no other significant
findings (B). The health care professional asks a blood test and a thorax radiography, which
provides normal results. She is sent home with an antibiotic (amoxicillin and clavulanic acid)
and asymptomatic treatment, and she is scheduled for a revision in a few days if there is no
improvement (D).

Alter a week, she returns to persisting fever and resting dyspnea (A2). In the analytic
done the previous week it can be noticed: hemoglobin, 11; absence of leukocytes; High-
density lipoprotein (HDL), 876; C-Reactive Protein (CRP), 14, and the rest is normal. A
new examination is done and it is find oral thrush, decreased vesicular murmur with scattered
wheeze (B2) and O2 saturations of 88 (C2). She is repeatedly asked about her personal
antecedents and she explains that she suffered herpes zoster, weight loss of 15 kg in the last

2 years and that she’s been parenteral drug addict (PDA) until 17 years ago (A3,B3). A
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new thorax radiography is requested (C3) where emerge a bilateral interstitial pattern. The
patient was referred to the hospital urgency service with a diagnosis of suspicion of atypical
pneumonia (H) by pneumocystis jirovecii in possible immunosuppressed. The suspicion was

confirmed and she was also diagnosed AIDS (H).
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Figure 7.4: Behavior of second real clinical case.
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7.6 Discussion

Integrating the medical assistance activities of decision and planning for the diagnosis, treatment
and prognosis, in a single computable model, allows that a great diversity of medical situations can
be represented and solved by this model, as it was shown for four representative clinical cases whose
management is depicted in figures 7.3, 7.4, 7.5 and 7.6. So, the implementation and use of MPM

can be used to help to improve the medical-clinical processes of decision making.

7.7 Conclusions

The development of an integral, computable and knowledge based model that automate the medical
procedure for the decision and planning activities in medical-clinical diagnosis, treatment and prog-
nosis, is one of the objectives of this thesis. Therefore, the steps followed to achieve this objective

are exposed as chapter 7 conclusions:

e Based on standard procedure model introduced in the chapter 2, in this chapter we have
proposed a new formal medical procedure model, called MPM, that integrates the decision

and planning activities to the diagnosis, treatment and medical-clinical prognosis.

e We Propose a computable architecture based in knowledge that automates the formal model

MPM.

e In MPM, the main AI problems in the medical assistance activities have been identified as

binary and multiple decision, planning and prediction problems.

e The formalisms of decision tree, decision table, and partial orders plus state transition dia-
grams were proposed to represent the sort of know-what knowledge required to solve the Al

problems of binary decision, multiple decision, and prediction problems, respectively.

e The SDA structure to represent know-how knowledge was proposed to solve the Al problem

of planning.

e To validate the MPM, this model was applied to four real clinical cases. These medical
situations described in these cases are suggested by Dr. Collado, a senior GP of the SAGESSA

Group [SAG], that qualified these cases as diverse and representative of primary care cases.
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Chapter 8

Contributions, Limitations, Future Work, and Final

Comment

8.1 Introduction

This chapter concludes the thesis. In section 8.2 we provide a summary of the main contributions.
In section 8.3 we discuss general limitations of our results. Finally, in section 8.4 we present the

final comment of this thesis.

8.2 Summary of Main Contributions

This thesis has contributed to the development of a computable model based in knowledge that
integrates all the decision and planning activities for the medical-clinical diagnosis, treatment and
prognosis. To accomplish this, first, in chapter 2 we did an analysis of the background in medical
informatics, referring to medical assistance. The results obtained (§2.5) allowed us to reveal a series
of events which defined and directly conditioned this thesis. Second, in chapter 3 an analysis of
antecedents in the scope of formalizing knowledge about medical assistance was realized. This anal-
ysis showed (§3.4) the importance of proposing new alternatives of representation and induction of
know-how and know-what knowledge. Therefore, in chapter 4 we propose the state-decision-action
(SDA) knowledge model to represent health care procedures as SDA diagrams which are similar to
medical algorithms. This novel model presents an alternative to the current languages of know-how
knowledge representation in medicine. In chapter 5 we propose a novel methodology to automati-
cally induce state-decision-action (SDA) diagrams from health care databases and electronic health

records in order to show health care professionals an explicit representation of the past health care
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procedures and to use these representations to study their deviations with respect to official and
predefined protocols and medical algorithms. In chapter 6 we propose a novel machine learning
method, based on partial orders and state transition diagrams, to solve problems of the decision
activity in medical-clinical prognosis.

Finally, in chapter 7 we propose a novel and broader approach which integrates the medical pro-
cedures of diagnosis, treatment, and prognosis in a Medical Procedure Model (MPM) that provides

a holistic management of chronic comorbid patients.

8.3 Limitations and Future Work

The SDA model to represent know-how knowledge in medical assistance, introduced in chapter 4,
permits two sort of time constraints in the diagrams [KRRWO7|: micro and macro-temporality.
Micro-temporality is used to attach temporal restrictions to the terms in the SDA diagram (e.g.,
durations, frequencies, deadlines, etc.), while macro-temporality is used to attach temporal restric-
tions to the connectors in the SDA diagram (e.g., delays, waits, schedules, etc.). In this thesis, we
have not considered these time features given its complexity [KRRW07, KRW08, KRW09], however,
the SDA model is prepared for the introduction of time knowledge.

The methodology of automatic generation of know-how knowledge in medical assistance, re-
ported in chapter 5, has a limitation respect to the lack of medical background knowledge involved
in the learning method which may be particularly useful to detect states and actions. Here, the
similarity between states (and actions) is done manually by health care professionals or using an
approach which is based on the coincidence of terms (see equation 5.8 and parameters o and [ in
tasks 1 and 2 of section 5.2.4). This approach is mathematical rather than medical, which may
affect the medical quality of the SDAs obtained. In the future, we aim to incorporate background
knowledge represented by means of ontologies in the machine learning method.

The methodology of automatic generation of know-what knowledge for prognosis in medical
assistance, introduced in chapter 6, is based on the concept of patient condition (5.2.1), which
represents the state of the patient concerning a disease. The tests realized in this methodology, was
based on diseases where the set of disease conditions are fixed and well defined, such as cancers
(Tumour Node Metastasis Staging System (TNM) [SW02|). However, for other diseases there are
is an agreed criterion on the set of conditions, in this case, we propose the use of a non-supervised
clustering algorithm to obtain the set of disease conditions in 6.2.1.

All these limitations are the starting point of alternative works that are left out of the current
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thesis and considered as future improvements.

8.4 Final Comment

As it is previously evidenced, the research work of this thesis contributes to formalize and to auto-
mate medical assistance with the support of a knowledge-based model. In order to accomplish this,
we have proposed knowledge models for all the medical-clinical activities that can be induced from
medical data, we have raised inductive learning solutions for all the medical-clinical activities and
we have proposed an integral model that formalizes the concept of medical procedure. These con-
tributions allow to improve the processes of medical-clinical decision that health care professionals
have to face in their daily work.

Finally, in spite that the research work has been fully concluded, there are some minor issues
that should be improved before finalizing this PhD thesis. These are twofold, on the one hand
we're currently working together with Dr. Colomés and Dr. Collado from SAGESA Health Group
(Tarragona, Spain) and Dr. Roca and colleagues from Clinic Hospital (Barcelona, Spain) testing our
algorithms with additional databases. The current results are promising, though medical analysis
and the consequences of this analysis are still not concluded. On a second hand we expect to
introduce the new results within the sections about conclusions at the end of several of the current
chapters and in chapter 8, which may cause a slight restructuring of some parts of the current

document.
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Appendix A

Publications

List of articles realized as part of the development of this PHD thesis.
A. Journal Publications

1. MPM: A Knowledge-Based Model of Medical Practice

David Riano, John A. Bohada, Antoni Collado, and Joan A. Lopez-Vallverdu, (submitted
to) Journal of Biomedical Informatics. February 2012.

abstract. Medical practice (or the practice of medicine) is a varied and complex discipline
that involves medical tasks as diagnosis, therapy providing, and prognosis which are
supported on intelligent acts such as intelligent search, decision making or knowledge
merging and deployment. The application of artificial intelligence technologies in medical
practice has been a continuous research area since the early 1970’s, but usually restricted
to specific medical tasks and not as a solution to medical practice as a whole. We
think that one of the reasons for that is that there is not a formal model describing the
interactions among diagnostic, therapeutic and prognostic tasks in medical practice. In
this paper, we introduce a medical practice model (MPM) resulting from the analysis and
integration of partial models surveyed in specialized literature. The integrated model is
described, together with the health care data involved, the functionality of the model,
and the sorts of knowledge to support such functionality. The validity of the model
is tested against 93 medical cases, but also in comparison to other models and some
published clinical decision support systems. The limitations and capacities of the model

are also discussed.

2. Automatic Generation of Clinical Algorithms within the State-Decision-Action Model
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John A. Bohada, David Riafio and Joan A. Lopez-Vallverdt, (submitted to) Journal of
Expert Systems with Applications. January 2012.

abstract. Objective: To propose a methodology to automatically induce state-decision-
action diagrams from health care databases and electronic health records in order to show
health care professionals an explicit representation of the past health care procedures
and to use these representations to study their deviations with respect to official and
predefined protocols and clinical algorithms.

Materials and Methods: The methodology is based on two initial models giving rise to
the data and knowledge structures episode of care database and set of rules. These two
structures contain, respectively, patient data from health care centres and the translation
rules which are used to adapt the data of the episode of care database to the terminology
we want the resulting state-decision-action diagram to have. The data expressed in the
new terminology is used to generate the final state-decision-action diagram by means
of a machine learning method. We have performed several tests on the treatment of
hypertension with data from the SAGESSA Health Care Group. The state-decision-
action diagrams obtained have been analyzed at the level of their ability to predict correct
treatments and at the level of their adherence to the clinical algorithms published by four
official health care organizations.

Results: The state-decision-action diagrams obtained represent an average 94.6% of the
treatments in the database, only excluding some atypical cases. Moreover, these dia-
grams show a high level of adherence to the treatment proposed by the National Heart
Foundation and the Spanish Society for Hypertension with about 91.4% of coincident
treatment.

Conclusions: A new methodology has been developed which automatically induces state-
decision-action diagrams which can be used as a graphical representation of the health
care procedures carried out in health care centres. The methodology is also a tool to

study the adherence of these health care procedures to the official standards.

. Improving Medical Decision Trees by Combining Relevant Health-Care Criteria

Joan A. Lopez-Vallverda, David Riafio and John A. Bohada, (submitted to) Journal on

Knowledge and Information Systems. November 2011.

abstract. Through the years, decision trees have been widely used both to represent

and to conduct decision processes. They can be automatically induced from databases
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using supervised learning algorithms which usually aim at minimizing the size of the
tree. When inducing decision trees in a medical setting, the induction process should
consider the background knowledge used by health-care professionals to make decisions
in order to produce decision trees that are medically and clinically comprehensible and
correct. Comprehensibility measures the medical coherence of the sequence of questions
represented in the tree, and correctness rates how much irrelevant are the errors of
the decision tree from a medical or clinical point of view. Some algorithms partially
solve these problems pursuing alternative objectives as reducing the economic cost or
improving the adherence of the decision process to medical standards. However, from a
clinical point of view, none of these criteria is valid when it is considered alone, because
real medical decisions use to be taken attending to a combination of them, and also other
health-care criteria, simultaneously. Moreover, this combination of criteria is not static
and may vary if the decision tree is made for different purposes as screening, diagnosing,
prognosing or drug and therapy prescription. In this paper, a decision tree induction
algorithm that uses combinations of health-care criteria is presented and used to generate
decision trees for screening and diagnosing in four medical domains. The different criteria
have been selected from internal quality studies performed at the Clinical Hospital in
Barcelona (Spain) and the SAGESSA Health Care Group (Spain). The mechanisms to
formalize and to combine these criteria are also presented. The results have been analyzed
from both a statistical and a medical point of view, and they suggest that our algorithm
obtains decision trees that physicians evaluated as more comprehensible and correct than

the decision trees obtained by previous approaches as they keep an equivalent accuracy.
B. Congress Publications

1. Induction of Partial Orders to Predict Patient Evolutions in Medicine.
John A. Bohada, David Riano and Francis Real. 11th Conference on Artificial Intelli-
gence in Medicine (AIME2007), Amsterdam, The Netherland, 2007. Participation and

Presentation.

Abstract: In medicine, prognosis is the task of predicting the probable course and outcome
of a disease. Questions like, is a patient going to improve?, what is his/her chance of
recovery?, and how likely a relapse is? are common and they rely on the concept of state.

The feasible states of a disease define a partial order structure with extreme states those
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of 'cure’ and ’death’; improving, recovering, and survival meaning particular transitions
between states of the partial order. In spite of this, it is not usual in medicine to find an
explicit representation either of the states or of the states partial order for many diseases.
On the contrary, the variables (e.g. signs and symptoms) related to a disease and their
normality and abnormality values are broadly agreed. Here, an inductive algorithm
is introduced that generates partial orders from a data matrix containing information
about the patient-professional encounters, and the normality functions of each one of

these disease variables.

. Automatic generation of Formal Intervention Plans based in the SDA* representation
model.

Francis Real, David Riano and John A. Bohada. 20th IEEE International Symposium
on Computer-Based Medical System (CBMSO07), Special Track on Machine Learning and
Management of Health-Care Procedural Knowledge, Maribor, Slovenia, 2007. Participa-
tion.

Abstract: Clinical practice guidelines are important in the work of physicians. These
guidelines are manually created by experts using their knowledge and experience. This
work gives an approach to automatically develop the clinical guideline charts with the
SDA* representation model. In addition, this paper details an example of application of

the methodology proposed with the treatment of Hypertension.

. Knowledge production and integration for diagnosis, treatment and prognosis in medicine.
John A. Bohada, David Rianio. 20th Catalan congress of Artificial Intelligence, Alguer,
Italy, 2005. Participation and Presentation.

Abstract: Diagnosis, treatment and prognosis are three of the most frequent labors of
physician in health care institutions. In decision making, these activities can be tackled
from two approaches: decision and planning. Decision structures are designed to help
physician in their task of taking atemporal decisions. Planning structures are designed
to guide physicians in the time-dependant complex medical procedures. The goal of this
article is to present a model that integrates several learning tools to develop decision
and planning structures in the medical domain, specifically in the support of decision
making.

. Data modelling for medical knowledge production.

John A. Bohada, Aida Kamisalic, David Riano, Tatjana Welzer. The Tenth International
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Symposium on Health Information Management Research (ISHIMR2005), Theme: Im-
proving the quality of health information - an international perspective Thessaloniki,

Greece, 2005. Participation.

Abstract: Current medical information systems are designed to support practitioners
and managers in their activities in healthcare centres. However, from a cognitive point
of view, the power of the data stored in huge hospital databases is not only in the storage
or daily use, but on the embedded medical knowledge that they contain and that can
be made explicit with artificial intelligence techniques. In contrast to the traditional
approach of electronic patient records this paper describes a database structure model
aiming, on the one hand, at hosting all the information required about the medical
processes of diagnosis, treatment follow-up, and prognosis as they happen during the
consecutive appointments of doctors and patients in a healthcare centre, and on the
other hand at easing the artificial intelligent processes of making medical knowledge
explicit.

. A CPG-based CBR model to offer the best available medical Therapy.

John A. Bohada, David Riafio. 2nd European Starting AI Researcher Symposium
(STAIRS 2004), Valencia, Spain, 2004. Participation and Presentation.

Abstract: Therapy assignment is one of the most frequent labours of physicians in health-
care institutions. A Clinical Practice Guideline (CPG) is the way that the medical knowl-
edge about a particular therapy is represented with the purpose of defining standards in
clinical assistance. The assignment of a therapy to a concrete patient requires the com-
bination of theoretical and empirical medical knowledge to propose the most convenient
CPG according to the situation and also to adapt it to the particularities of the patient.
Even though CBR seems the natural artificial intelligence paradigm to deal with therapy
assignment, there are still some difficulties to overcome. Here, we describe the first steps
towards the definition of a CBR model based on clinical practice guidelines and oriented
to the search, proposal, and adaptation of medical therapies. The model has been tested

on two cardiopathies: atrial fibrillation and hypertension.
. The DTP Model: Integration of intelligent techniques for the decision support in Health-
care Assistance.

David Riano, John A. Bohada, Tatjana Welzer. Fourth International ICSC Symposium
on ENGINEERING OF INTELLIGENT SYSTEMS (EIS2004), Madeira Island, Portu-
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gal, 2004. Participation.

Abstract: The paper introduces a new model, called the DTM model, that uses Artificial
Intelligence techniques to obtain health-care knowledge that can be applied in a combined
way to support the decision making in some relevant medical activities as diagnosis,
treatment selection, and prognosis. The DTP model applies inductive learning techniques
to hospital data and obtains action rules, clinical guidelines and belief networks. These
knowledge structures are respectively exploited by an inference engine, a case-based
reasoner, and a probability propagation system to automatically propose a Diagnostic-
Treatment-Prognostic (DTP) sequence that the new patients should follow. The model
and its implementation has been tested with data concerning cardiopathologies of the

patients assisted in the Hospital Joan XXIII in Tarragona.
C. Technical Reports

1. Temporal Aspects in Database Modelling for Medical Knowledge Production.
Aida kamisalic, David Riafio, John A. Bohada, Tatjana Welzer. Report de recerca DEIM-
RR~05-006, Juny 2005. Universitat Rovira i Virgili.
Abstract: The document gives an overview of existing temporal aspects and their imple-
mentation in TIMEER model considering their usage over specific constructs (entities,

attributes and relationsships).
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Projects Participation

Lists of research projects in which I participated as part of the development of this thesis.

A. Project: KACARE: Knowledge-Based HomeCare eServices for an Ageing Europe (FP6-026968),
2005-2009.

Funded by: Furopean Union

Description: In eHealth it is increasingly necessary to develop tele-informatic applications
that can support everyone involved in providing basic medical assistance (doctors, nurses,
patients, relatives, and citizens in general). The care of senior citizens, chronically ill and dis-
abled people, and people with mental illnesses involves life long treatment under continuous
expert supervision. Moreover, health care workers and patients accept that being cared for
in hospitals or social centres may be unnecessary and even counterproductive. From a global
view, such patients may saturate national health services and increase health related costs.
The debate over the crisis of financing health care is open and is a basic political issue for old
and new EU member countries and could hinder European convergence. To face these chal-
lenges we can differentiate medical assistance in health centres from assistance in a ubiquitous
way (Home Care model); the latter can undoubtedly benefit from the introduction of ICT.
This project will develop a platform to manage the information needed to guarantee an ICT

Home Care service.

B. Project: HYGIA, 2006-2009
Funded by: Ministerio de Educacion y Ciencia (Espana)

Description: In this project we propose the use of Intelligent Systems in the processes of

acquiring, formalizing, adaptating, using and assessing knowledge models that describe Care
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Pathways (CPs). This project sets out that CPs are not generated directly from the clinical
practice guideline (CPGs), but from electronic protocols, that represent versions of the adapted
guidelines when they are made specific to the particular healthcare circumstances. The CPs
obtained could be used by intelligent computer science distributed systems to facilitate the
decision making that allows the e-care in the context of a new Information Society. The
project considers in a frame of convergence of diverse technologies developed in diverse work
groups and European and national R+D projects of which the present investigators have
been or are co-ordinators (PROTOCURE I, PROTOCURE II, KACARE, HeCaSe, PalliaSys,
AgentCities Working Group on Health Care Applications, AgentLink III Technical Forum
Group on Applications of Agents in Health Care). It is defined, therefore, like a project that
integrates compatible and complementary groups that at the moment have obtained financing
of independent way, with the purpose of forming a group of national and international reference

in the area of the management of the medical knowledge.

. Project: Knowledge and exploitation in wholistic medical treatments, 2004-2005.

Funded by: This project is an integrated action between the Rovira i Virgili University (Spain)

and the University of Maribor (Slovenia).

Description: This project aims to define the appropriate information systems to store medical
requirements in order to automatically generate diagnosis, treatment and prognosis knowledge;
develop Data Mining and Machine Learning techniques to exploit the data in the above
information systems, and define knowledge structures suitable to store the results of the data

exploitation.
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