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Abstract

The concept of medical procedure refers to the set of activities carried out by the health

care professionals to solve or mitigate the health problems that affect a patient. De-

cisions making within a medical procedure has been, for a long time, one of the most

interesting research areas in medical informatics and the research context of this thesis.

The motivation to develop this research work is based on three main aspects: Nowadays

there are not knowledge models for all the medical-clinical activities that can be induced

from medical data, there are not inductive learning solutions for all the medical-clinical

activities, and there is not an integral model that formalizes the concept of medical

procedure. Therefore, our main objective is to develop a computable model based in

knowledge that integrates all the decision and planning activities for the medical-clinical

diagnosis, treatment and prognosis.

To achieve this main objective: first, we explain the research problem. Second,

we describe the background of the work from both the medical and the informatics

contexts. Third, we explain the development of the research proposal based on four

main contributions: a novel knowledge representation model, based in data, to the

planning activity in medical-clinical diagnosis and treatment; a novel inductive learning

methodology to the planning activity in diagnosis and medical-clinical treatment; a novel

inductive learning methodology to the decision activity in medical-clinical prognosis, and

finally, a novel computable model, based on data and knowledge, which integrates the

decision and planning activities of medical-clinical diagnosis, treatment and prognosis.
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Resumen

El concepto de procedimiento médico se refiere al conjunto de actividades seguidas por

los profesionales de la salud para solucionar o mitigar el problema de salud que afecta a

un paciente. La toma de decisiones dentro del procedimiento médico ha sido, por largo

tiempo, uno de las áreas más interesantes de investigación en la informática médica y el

contexto de investigación de esta tesis. La motivación para desarrollar este trabajo de

investigación se basa en tres aspectos fundamentales: no hay modelos de conocimiento

para todas las actividades médico-clínicas que puedan ser inducidas a partir de datos

médicos, no hay soluciones de aprendizaje inductivo para todas las actividades de la

asistencia médica y no hay un modelo integral que formalice el concepto de procedimiento

médico. Por tanto, nuestro objetivo principal es desarrollar un modelo computable

basado en conocimiento que integre todas las actividades de decisión y planificación

para el diagnóstico, tratamiento y pronóstico médico-clínicos.

Para alcanzar el objetivo principal, en primer lugar, explicamos el problema de inves-

tigación. En segundo lugar, describimos los antecedentes del problema de investigación

desde los contextos médico e informático. En tercer lugar, explicamos el desarrollo de

la propuesta de investigación, basada en cuatro contribuciones principales: un nuevo

modelo, basado en datos y conocimiento, para la actividad de planificación en el diag-

nóstico y tratamiento médico-clínicos; una novedosa metodología de aprendizaje induc-

tivo para la actividad de planificación en el diagnóstico y tratamiento médico-clínico;

una novedosa metodología de aprendizaje inductivo para la actividad de decisión en el

pronóstico médico-clínico, y finalmente, un nuevo modelo computable, basado en datos y

conocimiento, que integra las actividades de decisión y planificación para el diagnóstico,

tratamiento y pronóstico médico-clínicos.
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Chapter 1

Introduction

The concept of medical procedure refers to the set of activities carried out by the health care

professionals to solve or mitigate the health problem that affects a patient. For a long time, decision

making within medical procedures has been one of the most interesting research areas in medical

informatics and the research context of this thesis. The motivation behind this research is centred

in the modelling and the integration of the decision and planning activities in medical-clinical

diagnosis, treatment and prognosis for decision making support in medicine.

1.1 Research Context

The health care professionals who attend a patient affected by one or more diseases must decide

about the best medical-clinical attention that helps to improve, stabilize or delay the worsening of

patient health. This attention begins with the application of diagnostic techniques and continues

with the selection and adaptation of a concrete treatment. Likewise, the realization of a prognostic

to determine the patient’s evolution according to the followed treatment allow us, if it is required,

to make the appropriate adjustments for giving the best medical-clinical attention. Through the

last decades, multiple computer based tools have been developed with the purpose of improving

these activities. These tools are developed to give the health care professionals an alternative

focus in the process of decisions making in medical assistance, particularly in the decision and

planning activities in diagnosis, treatment and prognosis. This is the case of the medical decision

support systems (MDSS) [Coi03, MamS06, LW06, Gre07, Har09], where advances resulting from

disciplines such as decision theory, mathematics, statistics and artificial intelligence, have allowed

its development during the last decades. An example of these advances in artificial intelligence is

inductive learning. Inductive learning consists in inferring general descriptions (knowledge) from a

2
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set of observed instances (data). So, the inductive learning algorithms are based in a data model

to be processed and in a model of knowledge to be generated. The use of learning algorithms

in medicine must therefore be based in models capable of representing data and knowledge about

medical-clinical diagnosis, treatment and prognosis. These models can be different depending on

whether the activity made by the health care professionals is of the kind decision or planning.

The decision activities are made when a health care professionals issues a definitive judgement

on the health of a patient and they are based in the available information of that patient. So, the

medical-clinical data about a patient allow the health care professional to conclude what particular

disease that patient has (i.e, diagnosis), what specific therapy that patient should follow (i.e.,

treatment), and whether a therapy is applied, what the expected evolution is (i.e., prognosis).

Otherwise, when there is not enough information available about the patient or about his/her

disease to reach a conclusion about the patient diagnosis or treatment, the health care professional

should start some planning activities which allow to organize the action sequences to be adopted in

order to end in a diagnostic or a treatment decision.

Both activities (decision and planning) for diagnosis, treatment and prognosis are mutually

related and they are part of the medical procedure. In medical assistance, the concept of medical

procedure consists in a set of medical-clinical activities carried out for the care of a specific patient.

The ways in which these activities are structured define the medical procedure applied to that

patient. So, the medical procedure is defined as the model used by health care professionals to solve

or mitigate the health problem that the patient has. The formalization of the medical procedure

in terms of the activities previously mentioned allows us to gradually increase the automation

of medical assistance through inductive learning algorithms. This medical procedure automation

through the use of intelligent computer systems can be used by the health care professionals as an

integral tool of medical decision support.

1.2 Research Motivations

The motivation of this doctoral thesis is based in the following issues:

• Nowadays there are not knowledge models for all the medical-clinical activities that can be

induced from medical data.

• So far, there are not inductive learning solutions for all the medical-clinical activities.
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• In the medical informatics context, there is not an integral model that formalizes the concept

of medical procedure.

The resolution of these three deficiencies redounds in a clear contribution to formalize and

automate the medical assistance.

1.3 Research Objectives

The main objective of this PhD thesis is to develop a computable model based in knowledge that

integrates all the decision and planning activities for medical-clinical diagnosis, treatment and prog-

nosis.

For achieving this general objective, the following specific objectives are proposed:

1. Propose a knowledge-based model for the planning activity in the medical assistance

2. Develop and integrate inductive learning methods that allow solving planning problems in

medical-clinical diagnostic and treatment.

3. Develop and integrate inductive learning methods that allow solving decision problems in

medical-clinical diagnosis, treatment and prognosis.

4. Propose a formal model to represent medical procedures that integrates the decision and

planning activities to medical-clinical diagnosis, treatment and prognosis.

5. Propose a functional model based in knowledge that automates the formal model of medical

procedures previously proposed.

1.4 Research Contributions

The main contributions of this PhD thesis are:

• Proposal of a knowledge representation model for the planning activity in medical assistance.

• Development of a method to automatically generate knowledge for the planning activity in

medical-clinical diagnosis and treatment.

• Development of a method to automatically generate knowledge for the decision activity in

medical-clinical prognosis.
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• Proposal of an integral, computable and knowledge based model that helps in the automation

of medical procedures for the decision and planning activities in medical-clinical diagnosis,

treatment and prognosis. This model integrates different learning methods that support de-

cision making in medical assistance from two different situations:

1. When the available information of the patient is sufficient for decision making. In this

case, the model proposes a value or a label indicating the disease (i.e., diagnosis), the

therapy (i.e., treatment), or the patient evolution if the therapy has been applied (i.e,

prognosis).

2. When the available information of the patient is not sufficient for decision making. In

this case, the model is able to automatically build action plans to find the patient’s

diagnosis, and after the patient has been diagnosed, obtain or adjust his/her treatment.

In this sense, these action plans can be used to support the health care professionals to

program the actions that are aimed at achieving a correct diagnosis and an adequate

treatment.

1.5 Document Organization

This document has three main parts. The first part (Introduction) explains the research problem.

The second part (State of Art) describes the background of the problem in two chapters: chapter

2 and 3. Chapter 2 describes the medical context of this document. The medical context descrip-

tion begins with the introduction of main activities that medical assistance has and how they are

used in a medical procedure for decision making in medicine. Then, the features, limitations and

problems related to the decision making process in medical assistance are specified. After that,

the main technologies for decision making support in medical assistance are introduced. Finally,

the conclusions of this chapter are presented. Chapter 3 explains the formalization of knowledge

in medical assistance. This formalization begins with an introduction to the main categories of

knowledge in medical assistance. After that, the main formalisms of knowledge representation in

medical assistance are detailed. Next, a description of the main machine learning methods used

in the process of inducing useful knowledge for decision making support in medical assistance are

described. Finally, the conclusions of this chapter are presented.

Part three (Modelling of a Holistic Architecture for the Diagnosis, Treatment and Prognosis

in Medicine) describes the development of the research proposal of this thesis, this description is
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detailed in four chapters: Chapter 4, 5, 6 and 7. Chapter 4 introduces a novel model, based in data,

to represent know-how knowledge in the medical assistance. This model called the SDA (State

Decision and Action) model is presented as an alternative to the current representation models

of this sort of knowledge. Chapter 5 presents a novel methodology for the know-how knowledge

automatically generation in the medical assistance. This learning methodology is based in the SDA

representation model, introduced in the previous chapter. Chapter 6 presents a novel methodology

for the automatic generation of know-what knowledge for medical-clinical prognosis. This learning

methodology is based in partial orders that together with state-transition diagrams, allows predict-

ing several medical events simultaneously (improve, worsen, cure, death and survival). Chapter

7 presents the proposal of a knowledge based model which integrate the decision and planning

activities for medical-clinical diagnosis, treatment and prognosis.

Finally, part four (Conclusions) composed by chapter 8, the conclusions of this thesis are de-

scribed. These conclusions are organized as limitations and future work, main contributions and

final conclusion.



Part II

State of the Art

7



Chapter 2

The Medical Assistance

This chapter presents a general description about what is medical assistance. The description is

structured in three sections. The first section introduces the concept of medical assistance, defines

its three principal activities: medical-clinical diagnosis, treatment and prognosis, and explains how

these activities are integrated in the medical procedure nowadays. The second section describes the

aspects used for medical assistance decision making: medical skills, medical knowledge and medical

reasoning. It also includes medical reasoning limitations and the problems derived from the uncer-

tainty and the variability in medicine. Finally, it presents a classification of the principal techniques

developed to offer support to decision making in medical assistance. The classification is based on

the following aspects: techniques based in protocols and clinical practice guidelines, classification

and encoding systems of medical data, decision making support systems based in decision theory,

maths and statistics, and decision making support systems based in artificial intelligence.

2.1 Introduction

Medical assistance is the process of medical intervention which is related to provide some attention

to the patient health care. Its components are data and medical information, perceptions, reasoning,

judgments and decisions of the health care professionals, the procedures used and the interventions

applied. This process begins when a patient suffering from an ailment is attended by a health

care professional, or, when the patient is submitted to a control or monitoring routine visit. The

process continues until the patient is discharged from the hospital, because the procedures have led

either to a total or partial cure or stabilization that do not involve high risks for his/her health

[Gre07, Har09]. Also, there are too many situations in which, due to the complexity or seriousness of

illness, the procedures realized do not determine a good expectation in the patient health evolution,

8
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forcing in some cases to incorporate new procedures that improve his/her quality of life.

Medical assistance depends on whether the activity made by the health care professional is

about decision or planning. Decision activities are realized when a health care professional issues a

definitive judgment about a patient’s health based on the available information about that patient.

For that reason, the medical-clinical data of a patient allows the health care professional to conclude

what particular disease that patient has (i.e., diagnosis), what specific therapy he must follow (i.e.,

treatment), and if a therapy is applied, what is the expected outcome (i.e., prognosis). Otherwise,

when there is a lack of information about the patient or his/her disease to reach a definitive decision,

the health care professional needs to realize planning activities that will allow him to organize a

sequence of actions which will lead to a diagnostic or treatment decision.

The integration of medical activities considering decision and planning for the diagnostic, treat-

ment and prognostic in medical assistance is structured following a medical procedure which repre-

sents how the health care professionals act in the process of medical-clinical decisions making.

2.1.1 Medical-Clinical Diagnosis

Medical-clinical diagnosis is the central act of medicine. The word diagnosis is used in two senses:

on the one hand, it’s the process by which the health care professional begins when he wants to know

the state of a particular patient and, on the other hand, it’s the result of the knowledge acquired

by the health care professional as consequence of the above process [Roz06]. So, in order to make

a medical-clinical diagnosis, the health care professionals observe the data provided by three main

resources [Har09]: information elicitation (or anamnesis), physical examination and diagnostic tests.

Information elicitation is the inquiry by the health care professional of the available patient’s medical

information. This information includes the patient’s perception of their symptoms, the medical

history, the family history and other aspects that the health care professional thinks are important.

Physical examination allows through senses: sight-inspection, touch-palpation, hear-auscultation,

smell-olfaction, to determine the signs or objective data, which include pathological and normal

data of the patient. Finally, the diagnostic tests allow improving the available information of the

patient with laboratory data. These diagnostic tests usually confirm or discard a specific disease

before beginning a treatment.

Given the way of making a diagnostic procedure or diagnostic test, the medical-clinical diag-

nostic can be classified in: differential diagnostic, clinical diagnostic and histological diagnostic.

Differential diagnostic is based in a set of diseases which can cause a syndrome, discarding one by
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one the possible diseases by taking into account the proposed hypothesis and the complementary

explorations, until only the most feasible disease that can cause the patient symptoms remains.

Clinical diagnostic is established through the anamnesis, the physical and complementary examina-

tions (except those of pathological anatomy) to determine the patient disease. Finally, histological

diagnostic is obtained through non-routine diagnostic tests (e.g., a biopsy1), being it, the definitive

diagnostic in complex diseases as cancer.

2.1.2 Medical-Clinical Treatment

Medical-clinical treatment or therapy of a disease can be defined as a temporal sequence of medical

actions, such as drugs prescription, lifestyles modifications, medical procedures application or other

medical actions, that a health care professional can determine for a particular patient, generally as

a continuation of a diagnostic activity.

Medical-clinical treatment can be classified in various guises. The first distinction considers the

object of the treatment [Pee00]:causal or symptomatic treatment. Causal treatment aims to fight

the causes of the disease, whereas the symptomatic treatment aims to suppress the symptoms. A

second distinction is between curative or palliative treatment. Curative treatment intends to cure

the patient completely from the disease and its underlying causes, and palliative treatment intends

to alleviate the patient’s suffering or to prolong his duration of life. Palliative treatment is mostly

symptomatic but can sometimes be classified as causal.

2.1.3 Medical-Clinical Prognosis

Medical-clinical prognosis refers to the prediction of the a disease evolution or the treatment out-

comes. When the particular characteristics of a patient are being used to predict the outcomes of

a disease, they are called prognostic factors [VH03]. A prognostic factor can be of different type:

demographic (e.g., age and sex), specific about the disease (e.g., tumour size, involvement of lymph

nodes or not), or comorbidities (e.g., diabetic patient). Health care professionals find out these

prognostic factors in a patient through the symptomatology and some diagnostic tests.

The prognosis can be expressed both qualitatively or quantitatively. In qualitative prognosis,

the health care professionals value these prognostics using terms as “good”, “bad” or “intermediate”,

or “mild”, “moderate” or “severe”. The term reserved prognostic refers to an unknown or uncertain

prognostic that can result in severe problems or even the patient death. In quantitative prognosis,
1A biopsy is the removal of a sample of tissue from the body with diagnostic purposes.
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the prognostic is made according to morbidity and mortality percentages and rates.

2.1.4 The Medical-Clinical Procedure

Medical procedure (MP) is the frame where the medical assistance activities of decisions and planning

are integrated to deal with medical-clinical diagnosis, treatment and prognosis. This integration

must consider and solve all the problems referred to how the medical diagnosis introduced in section

2.1.1 (differential, clinical and histological diagnostic) are related with the sorts of medical treatment

introduced in section 2.1.2 (causal, symptomatic, curative and palliative treatment), and to predict

how these treatments are expected to affect the evolution of the patient

The standard MP used by the health care professionals is shown in figure 2.1 [Har09, Gre07,

Roz06, Kuk03a, Pee00]. This MP begins when a patient realizes about some symptoms he has

or manifestations of some disease and decides to visit a health care professional. The health care

professional makes a set of actions to solve the ailments which affect the patient. First, the health

care professional starts carefully collecting the clinical history of the patient or anamnesis, in which

he will inquire about symptoms or subjective ailments that the patient manifests. Often, at the end

of anamnesis, a suspected diagnostic (Sd) can be deduced [Roz06].

Immediately after, secondly, the health care professional makes the physical examination of the

patient. This physical examination will permit to find causes not detected in the anamnesis. Once

the two phases finish, the health care professional will recommend, in case of being necessary, to

realize routine diagnostic tests to confirm or discard the initial Sd. The combination of the symp-

toms obtained in the anamnesis, the signs obtained after a physical exploration and the available

laboratory data, the health care professionals can set the patient medical frame. When this process

finishes, the suspected disease becomes in a presumption diagnostic or provisional diagnostic (Pd),

even in the definitive diagnostic (Dd) of the disease.

If the Pd persists, the health care professional can suggest non-routine diagnostic tests (e.g.,

imaging diagnostic techniques as radiography, echography, computed tomography or magnetic res-

onance, and other instrumental techniques such as electrocardiograms, electroencephalography,

spirometry, laparoscopy, etc.), which may help him to accept or to reject that Pd, and so to reach

a Dd. However, and due to the complexity of the non-routine diagnostic tests (high costs, required

time, a risk possibility to the patient, pain, etc.) [Pee00], the risks and benefits of these tests are

compared with the advantages and disadvantages of the possible therapeutic alternatives. This

comparative work ends with a set of suggestions to the patient [Kuk03a]. According to the patient
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Figure 2.1: Medical procedure synthesis.
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response to the proposed therapy and the obtained outcomes of non-routine diagnostic tests, the

diagnostic process can require a reconsideration in which differential diagnosis is adjusted to the

new information.

At the end of this step, the patient condition is called the therapy outcome, and the expected

condition after a short or long time (typically ranging from days to a significant number of months

or years) is the medical prognosis [Pee00]. It is common in many MP that the medical treatment has

a follow-up with regular tests to monitor the patient’s health. The therapy outcomes and prognoses

are the most important criteria to evaluate and to determine whether the sequences of actions are

right or not.

2.2 Decision Making in the Medical Assistance

Medical decisions are made during the diagnosis and medical-clinical treatment phases. These

decisions involve the practice of more studies, request of consultations and decision making based

on the prognostic. All of them force the health care professional to know all the pathophysiological

and evolutive aspects of the disease.

Medical decisions are based in factual tests (i.e., based on evidences) so that the patients obtain

the maximum benefit of the scientific knowledge available to the health care professionals [Mar07].

Planning the possibilities of a diagnostic, execution of a plan or suggesting a possible prognostic,

requires not only to have a broad knowledge base, but also to consider the relative possibilities of

evolution of some diseases and to know the importance of some symptoms and signs that arise less

frequently. Confirmed all this, forces the health care professional to apply a medical procedure that

allows the health care professional to collect data, to propose hypotheses and to reach objective

conclusions as to whether to accept or reject a particular medical diagnostic hypothesis, to design

and to execute a medical treatment plan or to determine the evolution of a disease through a medical

prognostic. In this sense, the success of the decisions taken will depend of the aspects as medical

skill against a particular situation, the medical knowledge available in that moment and the medical

reasoning used against the available information.

2.2.1 Medical Skill

Skill of the health care professionals is defined as the ability to adequately address each of the

decisions within the MP and it is closely related to other two aspects: medical knowledge and
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reasoning. This is part of one’s condition as health care professional and it is beyond the scope of

this work.

2.2.2 Medical Knowledge

The meaning of medical knowledge is complex. Several studies have been developed to deepen

in different aspects that influence in a better decision against to a determined medical situation

[Mil94, Coc99, KF05, Har09]. These studies defend that, in case of a decision situation, an health

care professional with experience reasons better than another one who does not have any experience,

therefore they are able to realize a better selection of strategies against the decision that is going

to be taken. This means that the experienced health care professionals have a better ability to

combine of the different sorts of knowledge acquired from several external sources, or from their

own professional formation and experience, allowing them to make wiser decisions. Examples of

these sorts of knowledge are: scientific and experimental knowledge. These two sorts knowledge are

the most used ones in the medical decisions making process [NS00].

In medicine, the scientific knowledge (or deep knowledge), includes the understanding of the

scientific values and their relationship among the pathophysiological conditions and the disease

symptoms. This knowledge is found in medical literature, and helps to understand and justify the

empiric phenomena, explaining how these phenomena have sense in real situations. The exper-

imental knowledge (or superficial knowledge), originates from the patient cases well documented

and validated, allowing the evidence-based medicine. This type of knowledge helps the health care

professionals to recognize a disease and proposes a medical treatment based only on their own or

others experience [Coc99].

In a medical decisions making process, these two types of knowledge: scientific and experimental,

can be intertwined. So, when a medical problem has to be solved, tests based on mathematics

(e.g., diagnostic tests accuracy estimation [KBF+07]) can be based in experimental knowledge as

alignments and approaches, whereas, the scientific knowledge shows, in this situation, to what extent

these approximations and simplifications have sense.

Also, and not less important, explicit and tacit knowledge are used in medical decisions making

[Nyk00, AKBP06]. Explicit knowledge is articulated in a formal language and is transmitted between

the different components of the decision process. This type of knowledge corresponds to the results

obtained from scientific researches and published in scientific articles, systematic reviews, protocols

and clinical practice guidelines, that allow having a background knowledge necessary to decisions
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making against to a particular patient. On the contrary, tacit knowledge describes the health

care professional abilities against to a situation of decision making. This knowledge is personal,

supported in the experience and based in intangible factors such as beliefs, perspectives and values.

In this sense, this type of knowledge is formed by cognitive elements that refer to the mental models

that the health care professional does in a particular situation of decisions making, and the technical

elements that reference all the abilities and the concrete knowledge which can be applied in that

particular situation.

2.2.3 Medical Reasoning

Medical reasoning is the last issue that influences the process of medical decisions making. Reasoning

is the human ability to solve problems. In medicine, it’s important to take into account that each

health care professional may act and think different in each particular situation of decision making.

For example, in medical diagnosis, a decision can be immediate whether the health care professional

recognize a particular “pattern”, whereas in other cases, it’s necessary a complex procedure based

on diagnostic tests, and even in ex-juvantibus treatments. In these treatments, with a medical

suspicion and the seriousness of a disease, it begins a treatment, and if it’s effective, the successful

results can be part of the diagnostic criteria [Día04].

The types of reasoning that can be followed by health care professionals in the decision making

are [SMAR97, Día04, Mar07]:

1. Causal reasoning or “model or pattern” recognition. This type of reasoning is based in the

physiology or cause-effect relation between medical variables. The causal model can be defined

as a description of anatomical, physiological and biochemical mechanisms which can be used

for stimulating the normal function of the human body, according to the pathophysiological

behaviour of the disease and the idiosyncrasies of each particular patient.

2. Deterministic reasoning. In this type of reasoning, the health care professional is limited to

follow some predetermined and proposed steps, first, he is focusing on the recognition of some

medical data and then, indicating certain medical tests. According to the results obtained, he

will continue with the proposed steps.

3. Heuristic reasoning. This reasoning is based in the use of cognitive strategies which help the

health care professional to make the best decision. These strategies or “empirical rules” are

the usual way of reasoning which the health care professionals follow for medical assistance
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decisions making, and are classified from two points of view: the representativeness heuristic

and the availability heuristic. The representativeness heuristic allows, to study a patient,

to weigh the similarity of his symptoms frame with the classes considered as the principal

diagnostic hypotheses. That is, the health care professional researches the diagnostic (or

diagnostics), which the patient is a representative example. The availability heuristic refers

to medical judgements made in function of the remembrance ease of similar cases previously

studied.

4. Probabilistic Reasoning. In this reasoning, the health care professional uses objective methods

of probabilistic estimate in the decisions making, avoiding the systematic mistake associated

with the clinical intuition or the personal inexperience. This reasoning requires having opera-

tive knowledge about diagnostic tests, and having access to statistical data about prevalence

and frequency of diseases.

5. Hypothetical-deductive Reasoning. In this reasoning, once formulated the diagnostic initial

hypotheses, the health care professional insists in the interrogatory areas with the purpose of

refuting, gradually, some of the hypotheses and finally, to confirm one of the initial hypotheses.

As shown the table 2.1, all these types of reasoning have a formal foundation which has helped the

development of several computer technologies to decision making support in the medical assistance.

Medical Reasoning Computer Technologies
Causal Causal networks

Deterministic Expert systems
Heuristic (representative) Classification
Heuristic (availability) Case-based reasoning
Hypothetic-deductive Proof by contradiction

Table 2.1: Types of medical reasoning.

2.2.4 Medical Reasoning Limitations

The main limitations of medical reasoning can be summarized in a series of troubles or implicit

biases on the types of reasoning which are previously mentioned [SMAR97, Día04]:

1. Distortion of disease model in the personal experience of the health care professional. This

trouble is due to the discrepancy between the typical pattern of disease and the medical state
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of a concrete patient, either by partial knowledge of the medical problem, or by an inadequate

estimation of the probability of the occurrence of the disease in this environment.

2. Excessive use of trails and non-specific signs to decide a medical-clinical diagnostic, to predict

the course of the disease, or to anticipate the outcome of the disease.

3. Tendency to attribute changes on the disease course to factors or specific intervention when

these changes may have a random cause.

4. Bias of memory to favour some facts and unusual phenomena in front of others (the cases

and most unusual events tend to be more accessible in the health care professional’s mind).

5. Bias of "anchor" or "hook", or the first impression is the true. This bias is due to the

ommission of relevant data obtained after building the hypothesis because of the costs of

modifying the hypothesis to host the new data.

2.2.5 Uncertainty and Variability in Medicine

In medical assistance, independently to the knowledge quality and medical reasoning used, there

is a certain inevitable grade of uncertainty and variability in every medical decision, where the

mistake and risk may be present. In this document, uncertainty is defined as equivalent to the lack

of absolute certainty in a fact, for instance, a medical-clinical diagnostic. Uncertainty is observed

on each medical procedure step, and it can arise for such dissimilar aspects as available information

deficiency (e.g., incomplete, mistaken or imprecise information), deficiencies of the applied model

when deciding (e.g. inaccurate or incomplete model), or because of the own non-determinism of the

medical practice [Die03].

1. Incomplete information. Incompleteness is defined as a partial absence of elements which

describe a fact. In many cases, the complete clinical history is not available, and the patient

is incapable of remembering every symptom he/she has experienced and how the disease has

developed itself. Besides, in other occasions, practical limitations prevent from counting with

every resource which should be available, for which the health care professional must take

decisions with partial information.

2. Mistaken information. A mistake is defined as a deviation regarding to a correct or precise fact.

The information given by the patient, could contain incorrect descriptions of symptoms and

even deliberate lies to the health care professional. It is also possible that the previous medical
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diagnostic, registered in the medical record, has been mistaken. It is also not strange that

laboratory tests outcomes are false positives or false negatives. For these reasons, the health

care professional has always to keep a reasonable doubt against to all available information.

3. Imprecise information. Imprecision is defined as the lack of precision, the vagueness degree

or poor affirmation or description of a fact. There are many medical data which are difficult

of quantify and, then, susceptible of being intrinsically imprecise. It is the case, for instance,

of certain symptoms like fatigue and pain.

4. Incomplete model. On the one hand, there are many medical phenomena in which the cause

is still unknown; on the other hand, the lack of agreement or approval between experts from

one specific field is frequent. These are the main reasons for not to have complete models for

all the medical facts.

5. Inaccurate model. Any model to quantify uncertainty needs a high number of parameters.

Great part of medical information is not usually available, for which it must be estimated

subjectively. It is desirable, then, that the implemented reasoning method can take into

account the model inaccuracy.

6. Non-deterministic real world. Non-determinism expresses which the willingness acts are spon-

taneous and non-determined. Health care professionals check every day that each patient

is “a whole different world”, in which general laws are not always applicable. Many times,

the same medical actions produce different effects in distinct patients, without any apparent

explanation. Because of this, the decision must always be prepared to admit randomness and

exceptions.

In front of uncertainty, variability in medical assistance is defined as the alternative of possi-

bilities for a concrete fact like, for instance, the event which to a same medical-clinical diagnostic

it is possible to provide diverse therapeutic alternatives. In the same way that uncertainty, the

variability has been observed in, practically, each medical procedure step, either in anamnesis, in

physical examination, in diagnostic tests interpretation or in therapeutic answer. The reasons that

explain this variability may have their origin in the patient’s characteristics, in the health care

system, in the health care professionals and in the population health state [Gál05]. In spite of these

variability sources, there is a variability that relapses on the scientific evidence that underlies to

medical decision making. This last variability, typical of evidence-based medicine and which it is
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conceptually different to the first, is defined as the dispersion degree of a sample according to a

determined medical model. This type of variability is conditioned by [Gom05]:

1. Absence of evidence or scientific knowledge, inaccessibility to the evidence sources and lack

of skill on information analysis. When there is no available scientific evidence, health care

professionals tend to base their decisions on their experience, in these cases, the possibility

of variability increases. This is due to the fact that personal observations are insufficient and

non-automatized, memory is selective, the appreciations are biased, and the mind does not

elaborate random comparisons among patients.

2. Presence of incorrect or tendentious information. The non-valid and non-reliable information

produces noise which confuses, disorientates and induces to the variability in the decision

making.

3. Not contrasted practices. In medical assistance, there are modes, inertias or situations which

are maintained or propagated successfully without any apparent reason. On the contrary,

it is notorious the low spreading which have several procedures that are based on scientific

information, such as protocols and clinical practice guidelines [WGH+99].

4. Lost of scientific actualization. Medical information is produced and renewed permanently,

influencing the practice in an erratic or non validated way. Access and follow up to this

scientific actualization is hard and this influence on the medical assistance variability.

After analysing, from a medical point of view, the concepts of knowledge and reasoning, just

like different factors that influence the medical assistance decision making, we are able to consider

the different tools that offer support to the medical decision making.

2.3 Decision Making Support in Medical Assistance

Decision making support in medical assistance (DMSMA) can be defined as the use of technolo-

gies which allow reducing problems derived from the limitations of human reasoning, uncertainty

and medical practice variability, to obtain a better decision in a particular medical situation. As

instances of these technologies we can cite, protocols and clinical practice guidelines, systems of

medical data codification and classification, and different technologies and systems developed from

disciplines like the decision theory, mathematics, statistics, and artificial intelligence.
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2.3.1 Protocols and Clinical Practice Guidelines

A medical protocol can be defined as a sequence of behaviours which are applied to a patient in

order to improve his/her medical course, or, as a set of procedures which can be used in patients

with a determined medical frame. A medical protocol constitutes a precise and detailed plan for

the diagnostic study and therapeutic manage of a specific medical problem [CCQS05]. Clinical

practice guidelines (CPG) [FL90] are defined as a set of directives systematically made to assist

health care professionals and patients in the decision making about adequate health-care attention

to specific medical problems. In a more utilitarian sense, we can say that CPGs are tools to organize

the best available scientific evidence at the moment of being used in the medical decision making

[WGH+99]. Its main objective is to improve medical efficiency and the quality of the care delivered

to the patient, promoting adequate actions and reducing uncertainty and unjustified variability in

the selection of treatments.

According the problems listed in section 2.2.5, CPGs offer to the health care professionals di-

rectives based in the best results about the scientific research, and also provide references about

good medical practice points to contrast their actions [GB01]. Nevertheless, the CPGs success de-

pends on the conjunction of several factors such as the medical, social and health care context, the

elaboration system, the means of dissemination and the implementation methods.

Tables 2.2 and 2.3 show a selection of institutions, whose main labour is the development,

storage, and disclosure of the CPGs.

2.3.2 Systems of Encoding and Medical Data Classifications

The encoding and classification systems were developed in order to reduce the lack of specificity and

structuring of medical data, making them more accessible in the decision making processes. The

encoding systems are often structured lists of terms which, beside to its definitions, are designed to

unequivocally describe the care and treatment of patients. Terms cover diseases, encounters, diag-

nostics, procedures, operations, prescriptions, etc., and they can be used to describe, on detail, the

medical assistance realized to a patient, either textually or through electronic register. The classifi-

cation systems systematically organize medical concepts (terms) in classes, for instance, a diseases

classification can be defined as a category system which morbid entities are assigned according to

established criteria [Ger95], as suggest the International Classification of Diseases system (ICD in

its 10th version) [WHO07], where diseases like acute rheumatic fever (I00-I02), Chronic rheumatic

heart diseases (I05-I09), hypertensive disease (I10-I15), ischaemic heart disease (I20-I25), etc., are
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classified as diseases of the circulatory system.

Table 2.4 shows examples of systems used to classify and encode medical data [Bla00].

2.4 Formal Technologies for the DMSMA

The formal Technologies for DMSMA are defined as any computable program designed for helping

the health care professionals to make decisions in the MP. In this sense, in the last decades a

big variety of technologies for the design and implementation of systems for DMSMA have been

developed [Sho87, Mil94, SCC00, Kul00, MSS06, Gre07, KXY08].

2.4.1 Classification of Formal Technologies for the DMSMA

Figure 2.2 shows a compendium of the main formal technologies which have been developed for

DMSMA. These technologies are classified according to the disciplines in which the technologies

were developed: decision theory, mathematics, statistic and artificial intelligence.

DMSMA technologies



Decision theory

 Medical Algorithms
Decision trees
Influence diagrams

Mathematics
{

Quantitative models
Qualitative models

Statistics


Regression analysis
Statistics patterns analysis
Bayesian analysis
Survival analysis

Artificial Intelligence



Fuzzy logic
Production rules
Decision trees
Decision tables
Bayesian networks
Artificial neural networks
Models-based systems
Case-based Systems
Ontologies
CPG representation languages

Figure 2.2: Compendium of formal technologies for the DMSMA.

Decision Theory Technologies for the DMSMA

The roots of decision theory are based on games theory made in the 40’s decade by Von Newman

and Morgenstern [NM44]. This theory is based on mathematical characterization of rational choice
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called utility theory which provides a mathematical foundation to make decision under uncertainty.

Utility theory (UT) is based on that given a number of hypotheses about a rational behaviour,

objectives of decision making are expressed with numerical quantities called utilities and the optimal

solving to the decision making problem is found on numerical maximization of global utility [Pee00].

Traditional tools which use UT to the DMSMA are [SCC00]: medical algorithms, decision trees and

influence diagrams.

First, medical algorithms [Tud68] are procedural models used to help in the diagnostic and

therapeutic decision, where decision sequences are codified in logical diagrams of ramifications or

flowcharts. Decision alternatives are chosen following the most logical sequence of the algorithm,

according to a binary decision function (e.g., yes/no or similar) [MMWea93]. For instance, figure

2.3 [SH06] shows the blood pressure control algorithm. This algorithm makes part of the diagnostic

and treatment general management of patients that suffer diabetes mellitus type II2. It shows that

the treatment starts with an assessment of the systolic blood pressure which, in case of being

greater than 130 mmHg, requires a treatment with ACE (Angiotensin Converging Enzyme) and

ARB (Angiotensin II Receptor Blockers) inhibitors. Later, diastolic blood pressure is evaluated and

if this is not less than 80 mmHg, it will require a non specified treatment in the algorithm. When

both blood pressures are in the required limits, the patient is derived to a management treatment

and follow-up of the diabetes.

Second, decision trees (DT) [PK87], different from medical algorithms, are based on probability

analysis and UT to provide a quantitative measure to each available option. From the structural

point of view, a DT is composed by decision nodes, chance nodes and utility nodes. Decision nodes

(commonly represented by squares) allow the health care professional to select the most appropriate

strategy according to the given medical situation. Chance nodes(commonly represented by circles)

represent random variables on analysis and indicate available answers to these variables that do not

have control from the health care professional part. It means that answers to random variables can

be owned to specific data of the patient. Utility nodes (represented by the DT leaves) condense a

set of all possible medical results for the chosen domain. The DT evaluation is always made from

left to right, the associated utility to each branch and each node is calculated taking into account

that: (1) for a chance node, the expected utility is calculated taking into account the utility and

the probability of each branch which comes out of that node, and (2) the utility of a decision node
2Diabetes mellitus type II (DM) includes a set of metabolic disorders which share the common phenotype of the

hyperglycemia. Particularly, the DM type II is a heterogeneous group of disorders which are characterized by variable
levels of resistance to insulin, insulin secretion disorders and increase of glucose production [BFKea02].
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Figure 2.3: Medical algorithm to blood pressure control.

is the maximum expected utility of its branches.

Some examples of DT application are in the cardiology domain [MSL+95, SMAR97, PFMP00].

Figure 2.4 [SMAR97] shows a DT which presents three possible therapeutic alternatives for an

ischemic cardiopathy3: surgery, percutaneous coronary angioplasty (percutaneous coronary inter-

vention or PCI) and medical treatment. The DT indicates that, first a test of inducible ischemia

must be done in which 60% of cases is positive, then the treatment type must be decided (i.e.,

surgical, PCI or medical treatment), the first two with a 22% and 7% probability of death, and

78% and 93% of success, respectively. Following the medical treatment does not imply a risk of

death, so there is no probability distribution associated to this branch. A second DT branch in-

dicates respective alternatives and probabilities to the cases in which the test of induced ischemia

is negative. Also, this DT shows in the right margin the survival probabilities to 3 and 5 years to

each alternative.

Third, influence diagrams (ID) [HM81, Sha86] are compact representations and mathematically

equivalent to the DTs. Just like DTs, IDs contain decision nodes, chance nodes and utility nodes
3Ischemic cardiopathy is the resulting disease of the coronary arteries incapacity of taking necessary oxygen to a

determined place of the cardiac muscle, which difficult this muscle functioning, and having as consequences angina pec-
toris, acute myocardial infarction (MI) or sudden death [Spanish Heart Foundation (www.fundaciondelcorazon.com)].
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Figure 2.4: Decision tree to the ischemic cardiopathy treatment.

[PW05]. The arrows between two nodes can indicate information influence or conditional influence.

Information influence, represented by arrows which lead to a decision node, indicate what variables

are known by the health care professional when making the decision. Conditional influence, repre-

sented by arrows leading to a chance node, show the variables where the conditioned probability

assignment is made to the chance node. Information influence over a decision node represents a

cause-effect relation, while conditional influence over an chance node represents an arbitrary or-

der of conditions, which do not necessarily correspond to cause-effects relations, and which can be

modified through probability law application (e.g., Bayesian rules) [HM05].

Some application examples of ID are in the cancer domain [NO97, HM05, LEK+06]. Figure 2.5

[LEK+06] shows an ID to bone metastasis detection, in patients with breast cancer, and whether

they were or not were correctly classified according to the TNM staging system4. The ID contains

five chance nodes: B (bone metastasis), S (bone scanning), and the tumour markers5 CA (car-

bohydrate antigen 15-3), C (carcinoembryonic antigen) and AP (alkaline phosphatase). Node B
4TNM is a staging method of cancer according to the cancer size inside the patient’s body. The letter T is use to

describe the tumour size and whether the tumour invaded close tissue. The letter N is used to describe any lymph
node which is compromised and the letter M is used to describe metastasis (dissemination of the tumour from one
place to another inside the body) [American Joint Committee on Cancer (www.cancerstaging.org)].

5It is consider as tumour makers every substance produced or induced by the neoplastic cell which reflect its
growing and/or activity, and which let know the presence, evolution or therapeutic answer of a malignant tumour
[National Cancer Institute (www.cancer.gov)].
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represents the real state of the patient. The presence or absence of bone metastasis is represented by

the symbol “∼”. Tests results are represented with the symbols “+” and “−”, indicating positive and

negative results, respectively. In the same way, decision node results (metastasis?) are represented

with “M+” and “M−”, indicating if the metastasis diagnosis is positive or negative, respectively.

Utility value, represented by “correctness”, indicates that if it has a value of 1, the staging has been

correct, otherwise, the value will be 0.

Figure 2.5: Influence diagram to detect bone metastasis in breast cancer patients.

Mathematics Based Technologies for the DMSMA

Regardless of decision theory, in mathematics several quantitative and qualitative analytic models

for decision making have been developed. In medicine, these models have been used to predict

the future situation of a patient basing in his/her current situation and a representation of his/her

medical history. Quantitative models are used, for instance, on the estimation of diagnostic tests

accuracy [KBF+07]. As table 2.5 shows, this estimation is based on four indicators: true positives

rate, false negatives rate, true negatives rate and false positives rate. True positives rate or sensibil-

ity, allows correctly identifying to the patients that present the disease. Its opposite, false negatives

rate, is defined as (1 − sensibility). True negatives rate or specificity, allows correctly identifying

the patients that do not present the disease. Likewise, its opposite, false positives rate, is defined

as (1 − specificity). A perfect test should present a sensibility and specificity of 100% so that it
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allows a perfect separation between the patients that present the disease of those that do not have

it.

Disease Situation
Outcome Presence Absence

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Subjects identification with disease

True positive rates (sensibility) = TP/(TP+FN)
False negative rates = FN/(TP+FN)
True positive rate = 1 - False negative rates

Subjects identification without disease

True negatives rates (specificity) = TN/(TN+FP)
True false rates = FP/(TN+FP)
True negative rates = 1 - False positive rates

Table 2.5: Diagnostic tests accuracy estimation.

Qualitative models [Kui86] analyze the time depending behaviour of a clinical practice to rep-

resent patient situation trails. This behaviour is represented as a set of connected nodes and links

between nodes which reflect restrictions on the transitions in the system. The decisions made by

this kind of models are of the sort evaluation and therapy planning. For instance, in the QSIM

(Qualitative SIMulation) algorithm [Kui86], the value of a time-dependent variable is adjusted by

the notion of qualitative state. QSIM takes, several times, an active state and generates all possible

successors states to this one, filtering the states which do not accomplish a determined consistence

criterion. So, QSIM builds a state tree which represents the possible behaviours of the problem

under study (e.g., the disease evolution).

Statistic Based Technologies for the DMSMA

Statistics has been the most applied field for decision making in medical assistance. Regression

analysis [Fur76, SKJ84], statistical patterns recognition [Fei70, Fei73], Bayesian analysis [WTVS61,

GB68, dDLS+72] and survival analysis techniques [AHL01, Mac01] are some examples of developed

technologies from this discipline, which have been widely applied in the medical decision making

[SCC00].

Regression analysis [Fur76, SKJ84] has been used to model relations between a response vari-

able of interest for the decision making, and a set of explainable variables. For it, the regression

coefficients are adjusted (i.e., model parameters) until a “better adjustment” for data is reached.
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APACHE score (Acute Physiology, Age and Chronic Health Evaluation) [KWD+91] for a disease

severity determination, based on prognostic survival, is a good example of a logistic regression model

which has been used to routine health care [Mac01]. As figure 2.6 shows, APACHE score III uses

different physiological variables of a patient as the hearth frequency (pulse), mean blood pressure

(mean BP), temperature, respiratory rate, serum creatinine, serum albumin, serum bilirubin, etc.,

to determine the survival in an Intensive Care Unit (ICU).

Statistical pattern recognition [Fei70, Fei73] on data can be formulated as a problem of the

statistical classification of clinical conclusions in decision regions that are mutually exclusive but

collectively exhaustive. It means that not only physiological data (i.e., entry variables) can be

classified, but also the pathologies which result (i.e., diagnostic variables) and available therapy

options to treat a disease (i.e., treatment variables) [JDM00]. This way, these models help to

the decision making in diagnosis and in the treatment selection. For instance, some patterns in

a complex data set were recognized to improve the health care attention in head injured patients

[TMM+81]. Also, the patterns recognition were the support to develop technological methods in

cardiac arrhythmias analysis [Mor84].

Bayesian analysis [WTVS61, dDLS+72] has been one of the most popular methods used to

medical decision making support. Bayesian classification is an example of a parametric method

for the estimation of classes given a probability density function. The optimal decision rule which

minimizes the classification average frequency is called the Bayes rule. This rule is used as inference

mechanism to calculate the probabilities of each possible event when specific medical outcomes of

a patient are available [WHBea87]. For instance, the Leeds abdominal pain system [dDLS+72]

was a decision support system, based on Bayesian analysis, to the diagnosis of abdominal pain.

This system used the information about sensibility and specificity in conjunction with data about

signs, symptoms and diagnostic tests outcomes for calculating the probability of seven abdominal

pain causes: appendicitis, diverticulitis, perforated ulcer, cholecystitis, small bowel obstruction,

pancreatitis and non specified abdominal pain.

Finally, survival analysis [AHL01] provides a set of statistical techniques for data analysis in

which, the response variable measures the time between two events. Survival is not limited to life

or death terms, but to situations where the time is measured until an interesting event occurs, as

the recurrence time of a disease, the efficiency time of an intervention, etc. So, survival is a time

measure to a reply, failure, death, relapse or developing of a determined disease or event.

In survival analysis, data analysis can be realized using parametric and non parametric tech-
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Figure 2.6: APACHE III decision system based on regression analysis.
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niques, as figure 2.7 shows [Mac01]. The parametric techniques require a probability density function

to estimate the survival functions and risks which give support to the medical decisions making.

In this sense, the most used parametric techniques in survival analysis are [CE58]: exponential

distribution, Weibull distribution or lognormal distribution. On the contrary, non parametric tech-

niques produce estimations of the same functions without any necessity of being adjusted to a

specific probabilistic model. Some examples of non parametric techniques used in survival analysis

are: actuarial analysis [CE58], product-limit or Kaplan-Meier analysis [KM58] and Cox’s regression

[Cox84]. Both parametric and non parametric techniques have been used to explain the disease

progression [KM03]) and not for predicting the survival of new cases. In the prediction of new

cases, some techniques as logistic regression [MH59] and neural networks [RM86], have been widely

used [PM02, GBF+06, BBAM06, LHHGR08].

Survival Analysis



Parametric Methods


Exponential distribution
Weibull Distribution
Lognormal Distribution

Non Parametric Methods


Actuarial analysis
Product-limit analysis
Cox’s regression
Neural Networks

Figure 2.7: Compendium of survival analysis techniques.

Artificial Intelligence Based Technologies for the DMSMA

Artificial intelligence in medicine (AIM) was conceived from artificial intelligence (AI) to model

expert knowledge which allows developing systems and tools that can be used to improve medi-

cal assistance and general medicine [Sho93]. Unlike traditional methods based on decision theory,

mathematics and statistics, AIM technologies were based in symbolic models which allowed repre-

senting disease entities, its relations with the patients, and its medical manifestations. Examples of

AIM technologies in DMSMA are the medical knowledge based systems. A medical knowledge based

system (MKBS) is a computer-based program which captures the human experience elements and

perform reasoning tasks that are normally performed by expert knowledge [MB02]. The MKBS are

characterized for making an explicit distinction between the domain knowledge of medical problem

which is represented and the knowledge used to reason and to solve the current medical problem

using the available data. These systems make intensive use of domain knowledge and separate it

from mechanisms that control its use. So, the basic components of the MKBS are: a knowledge
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base and an inference engine. The knowledge base contains the domain specific knowledge. The

inference engine contains the algorithms to manipulate the knowledge represented in the knowledge

base with the aim to resolve a problem presented in the system.

The developing of AIM Technologies to represent, acquire and reason about specific medical

knowledge, have been the principal lines of research in the last decades. Technologies as fuzzy logic

[Zad65], production rules [Mic87], decision trees [Qui86], decision tables [Hol75], Bayesians networks

[CGH97], artificial neural networks [RM86], ontologies [Gru93], the CPG representation languages

[SHJ+94, Shi97, SMJ98, FJR98, TM99, JTB+00, PBOea00, BCH+02], the models-based systems

(MBS) [Uck92] and cases-based systems or case-based reasoning (CBR) [Kot88], are examples of

these type of AIM technologies applied to medicine.

Fuzzy logic (FL) [Zad65] has been generally used in medical diagnostic, for example, in the

inadequate analgesia diagnostic in patients under influence of anaesthesia [JLH02], in the decision

support in radiation therapy [PSG03], in the breast cancer [Has03], lung cancer [SPBea03] and

prostate cancer detection [SOPN03], in the MedFrame/CADIAG-IV consultation system [BAH+04]

used in the disease diagnostic of internal medicine, the ESTDD system [KK08] used in the thyroid

disease diagnostic, or recently, the developing of classification frames based on fuzzy logic to improve

the disease diagnostic [GM09].

Production rules [Mic87] have been the most popular technologies to represent the expert knowl-

edge. Some examples of DMSMA system based in rules are: INTERNIST [PMM75] designed for

the disease diagnostics in internal medicine, MYCIN [Sho76] developed to diagnose and recommend

treatments of blood infectious diseases, ONCOSIN [Sho81] developed to help the health care profes-

sionals in the cancer treatment of patients that receives chemotherapy, PUFF [AKSR83] developed

for the diagnostic and seriousness of lungs diseases, or, rules based approaches for the coronary

disease diagnostic [RBW04].

Decision trees [Qui86] (also called classification trees) have been used in the diagnosis of cardiac

problems [SLPK04], in the survival prediction of breast cancer patients [DWK05], in the prognostic

of coronary diseases [KTK08], in the diagnosis of optical nerve diseases [PKGG08], in the diag-

nosis of the leukemia patients [CPRB09], or in combination with logistic regression to predict the

periventricular leukomalacia [SBK+09], or with artificial neural networks to diagnose the Parkinson

disease [Das10].

Decision tables [Hol75] have been used for the diagnostic of depression in the EsPeR system

(preventive medicine) [CAJZ+05], or in combination with influence diagrams to select the best
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course of action in the treatment of Gastric lymphoma no-Hodgkin [BdPL08]. Also, the decision

tables have been used as CPG representation language [Shi97].

Bayesian networks (BNs) [CGH97] (also called causal networks, causal probabilistic networks

or belief networks) have been used in DMSMA system as MUNIN [AWFA87] designed for the di-

agnostic of muscular diseases, DIAVAL [Die94] for the diagnostic of cardiac diseases, DIABNET

[HGdPC96] for therapy planning in gestational diabetes, MammoNet [KRSH97] as support in the

breast cancer detecting, integrating findings obtained by a mammography, with demographic factors

and physical exploration, to determine the malignancy probability of a tumour, PAIRS (Physician

assistant Artificial Intelligence System) [JJ99] for the disease diagnostics in internal medicine, Na-

soNet [GADM02] to help the oncologist in the diagnostic and prognostic of spread nasopharyngeal

cancer in a patient, SAMOA [FGA+03] for the classification of sleep apnea, ProCarSur [PVTSS+07]

for the prognostic reasoning in the cardiac surgery domain. Also, BNs have been used in the prog-

nostic of morbility and mortality of cardiac disease patients [RBW04], to predict the appearance

of carcinoid heart disease [vGJT+07], to predict the patients evolution with prostate cancer after

intensity-modulated radiationtherapy treatment [SDM+09], for the diagnostic and treatment of lung

diseases [VLSB09] or the use of BN for survival analysis [SDBB09].

Artificial neural networks [RM86] (ANN) are DMSMA technologies which simulate the human

mind and make its learning through examples. The ANN have been used in the patients classifi-

cation by risk groups [LWHS03], in the prognostic of coronary disease [MSM+05, KTK08], in the

survival prognostic of breast cancer patients [BBAM06], or in the prognostic of virology response

to combination HIV therapy [WLR+09].

Model-based systems (MBS) [Uck92] (also called second generation expert systems [Coi03]) are

designed for using disease models with aim to cover a great group of medical problems. So, the

knowledge base is represented as a set of disease models instead of a logic rule to describe that

disease. Among the systems which incorporated pathophysiological models to decision support

making are: CASNET [Wei74] for the diagnostic and treatment of glaucoma, Digitalis Advisor

Program [GSP78] for the diagnostic and drugs prescription, ABEL [PSS82] for the diagnostic of

acid-base and electrolyte disorders in patients, KARDIO [BML89] for the diagnostic of cardiac

arrhythmias, systems for disease diagnostics in internal medicine [Luc97] and the Intensive Care

Unit [ZMS97, HLV+06].

Case-based systems or case-based reasoning (CBR) [Kot88, AP94, BM06] appear in the con-

ception of, instead of obtain solutions through of a general model of domain knowledge, the CBR
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systems recover and re-use the solutions of similar problems. These systems need a collection of ex-

periences and cases which is stored in a cases base, where each case is composed by a description of

the problem (causes of a disease) and the solution applied (diagnostic or treatment of that disease).

The fundamental hypotheses which are based the CBR systems are that a DMSMA system or a

health care professional, can solve problems without having any complete knowledge of the relation

among a problem and its solution, provided it has sufficient experience (patient’s cases already

treated or diagnosed). Furthermore, the problems tend to repeat themselves again, and for that,

the experience is an useful tool. Examples of DMSMA systems based in CBR are CASEY [Kot88]

for the diagnostic of cardiovascular diseases, MNAOMIA [Bic96] for the diagnosis and treatment of

eating disorders in the psychiatry domain, or researches in the diagnosis and prognosis of prostate

cancer [Bar96], the risk estimate of bowel disease [RR08] or the diagnostic of liver disease [Lin09].

Ontologies [Gru93] have been used in encoding and classification systems as the MANELAS

system [Zwe94] in coronary diseases domain, GALEN (Generalized Architecture for Languages,

Encyclopaedias and Nomenclatures in medicine) [RRP96], the SNOMED system (Systematized

Nomenclature of Medicine) [SCC97] and the UMLS system (Unified Medical Language System)

[HLSB98] in general medicine and FMA (Foundational Model of Anatomy) [RM03] in the anatomy

domain or CPO (Case Profile Ontology) [RRC+09] to characterize patients in home. Also, the

ODDIN [GCRM+10] and TimeDDx [DP10] systems use ontologies to realize differential diagnostic.

CPG representation languages are formal representations developed to interpret in a computable

way the knowledge contained in the CPG. Their uses are focused in the medical treatment planning

activities. The main CPG representation languages are: Arden Syntax [SHJ+94], augmented deci-

sion tables [Shi97], Asbru [SMJ98], PROforma [FJR98], EON [TM99], PRODIGY [JTB+00], GLIF

[PBOea00], SAGE [BCH+02]. Also, the ATHENA system [ATO+99, GHRea00], based in the EON

language, implements CPG for the comorbid disease treatment or the LISA system [BHBea02],

based in PROforma language, implements CPG for the treatment support of childhood acute lym-

phoblastic leukemia.

2.4.2 Using Formal Technologies for DMSMA

From the point of view of decision and planning problems in diagnosis, treatment and medical

prognosis, table 2.6 shows the technologies based in decision theory, mathematics and statistics for

the DMSMA mentioned previously in this chapter. For all of them, except the survival analysis,

antecedents of use to support the decision activity in the medical diagnosis are provided [dDLS+72,
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Mor84, Kui86, MSL+95, WW00, SLPK04, SH06, LEK+06, KBF+07]. In the decision support of

medical treatment activity, technologies as medical algorithms [SH06], decision trees [SMAR97,

PFMP00] and influence diagrams [BdPL08] based in the decision theory, and pattern recognition

[TMM+81, JDM00] based in statistics, are the most used ones. Likewise, in the decision support

of medical prognosis activity, technologies as influence diagrams [NO97] based in decision theory,

qualitative models [Kui86] based in mathematics, regression analysis [MR88, KWD+91, TMGZ97,

PM02, GBF+06, LHHGR08] and the survival analysis [Mac01, KM03, Roz06] based in statistics,

are the most used ones. Respect to the planning activity, we found no evidence of use of these

technologies.

Table 2.7 shows the AI based technologies for the DMSMA. All these technologies, except arti-

ficial neural networks and decision trees in the treatment activity, have been used to support the

decision activity in diagnostic and medical treatment. Likewise, in the prognosis decision activ-

ity, Bayesian networks [GADM02, PVTSS+07] and artificial neural networks [PM02, JAGRRJ+03,

MSM+05, GBF+06, BBAM06, KTK08, LHHGR08], are the technologies based in AI which more

application has had in DMSMA. The contrary happens with the planning activity, due to the fact

that the CPG representation languages are the only AI based technologies for the DMSMA used

in the diagnosis and medical treatment [SHJ+94, Shi97, SMJ98, FJR98, TM99, ATO+99, JTB+00,

PBOea00, BCH+02, BHBea02].

2.4.3 Historical Evolution of Formal Technologies for DMSMA

The evolution of formal technologies for DMSMA started in the sixties, when the main represen-

tation paradigm in the decision making was based on decision theory [LL59, Ble69], mathematics

[WTVS61] and statistic [WTVS61, GB68] (§2.4). These methods permitted at a priori probability

subjective estimation in diagnostic probabilities calculation. However, these methods suffered one

common inconvenient: although all methods worked in specific problems, statistically well defined

and with adequate example from which probabilities were estimated, these were not incorporated

in the daily medical practice. The reason of the not acceptance of these models were its difficulty to

explain decision, which was based on strict probability computational theories, in terms of a qual-

itative language and with not familiar arguments to the health care professionals. An alternative

to this problem was the decision sequence codification of experts in ramifications logical diagram

or flowcharts, also known as medical algorithms [Tud68]. These medical algorithms (figure 2.3),

which are still used, had the advantage of its clarity, its easy explanation, and its possible valida-
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tion, but they were generally too rigid when capturing context specificities (e.g., uncertainty and

variability) without becoming very extensive, complex and computationally expensive. The HEME

program [LEBea61] for diagnostic of haematologic disorders and the CONSIDER system [LRB+68],

a medical instruction system to identify disease on CMIT (manual of diseases compiled and previ-

ously maintained by the American Medical Association), are examples of developed systems in this

decade.

Given the low expressiveness of the first approaches, in the seventies, diverse researchers groups

(mainly from Rutger University, Stanford University, Pittsburg University, and the collaborative

group MIT/Tufts) incorporated AI and biomedicine to explore and develop more intense approaches

in knowledge, which allowed solving interpretation problems included in the medical decision mak-

ing. In this sense, they proposed a set of representations and approximations based on three principal

aspects [Kul00]: firstly, a more flexible uncertainty representation (§2.2.5) which allowed qualita-

tively the probability visualization. Secondly, a better medical knowledge representation (§2.2.2)

which motivated and justified a diagnostic, therapeutic or prognostic decision. And thirdly, the

development of a medical knowledge descriptive component for some problem resolution general

strategy or reasoning (§2.2.3) could be applied. As an example, the first consultation systems based

on AIM which helped the medical decision making were CASNET [Wei74], MYCIN [Sho76], and

later, INTERNIST-1 [PMM75], PIP [PGKS76] and the Digitalis Advisor Program [GSP78].

An important aspect in this decade was the introduction of rules as formalism to symbolic

knowledge representation. The rules have the advantages of its simplicity, uniformity, clearness, and

inference easiness, which have made them the main paradigm to represent the experts knowledge.

The separation of rules based system of its inference engine, mark the guide to development of

medical knowledge based systems (MKBS) for the DMSMA. However, a problem came up when

trying to represent experts tacit knowledge, because the representation which was made at that time,

it was related to predefined patterns. This situation derived in the impossibility to give explanations

to reached conclusions because of the non-existence of background scientific knowledge in the system.

This emphasized the need of improving the knowledge acquisition processes, given that the skill and

human experience exist as tacit knowledge, and this one can be directly acquired from the knowledge

base and not by traditional methods of interview which had been done until that moment. This

problem was defined as the “bottleneck” of the MKBS development [BBB+83]. The MKBS basic

structure of that first age consisted on elements like a base of certain facts, a knowledge base and an

inference mechanism (§2.4, AI base technologies for DMSMA). This inference mechanism applied
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the stored knowledge in the knowledge base to the facts of the base of facts to infer new facts. The

new inferred facts constituted the system response. Besides, these MKBSs included two additional

modules to explain the followed reasoning in the production of different inferences and to facilitate

dialogue between user and system.

At the beginning of the eighties, tools like experts systems shells [WK79] were introduced and

widely used in the MKBS development. Also, in this same age, it was evident which acquired

knowledge of the experts was inadequate to solve complex problems and which, when MKBS were

developed, the data analysis obtained in daily medical practice and stored in medical databases,

could play an important role in the decision making support. This helped to the development of the

first machine learning algorithms which objective was knowledge automatic extraction from data,

in shape of rules or decision trees. Among the first rules learning algorithms we find AQ [Mic87],

CN2 [CN89] and PRISM [Cen87]. Inside the algorithm group of decision trees learning we find

ID3 [Qui86], ASSISTANT [CKB87] and later the development of C4.5 [Qui93]. The end of this

decade was characterized by the increasing gap between the data excessive storing not interpreted

and the understanding of those same data, which emphasized the need of having accurate tech-

niques of data intelligent analysis. This situation leaded to a new research line based on databases

such as knowledge discovery database (KDD) [PSF91, FSS96], data mining (DM) [CHY96], and

intelligent data analysis (IDA) [LKZ00], in which machine learning techniques played an impor-

tant role. Some examples of MKBS based in these technologies for DMSMA in this decade are:

RECONSIDER [BTS81], ONCOCIN [Sho81], DxPLAIN [HCH+86], ILIAD [WHBea87], MUNIN

[AWFA87], QMR [MM89]. The revolution of communications and information technologies (TICs)

marked the guide in the nineties with the appearance of the world wide web, the proliferation of

web based information services, design facility of user graphics interface, improvement of networks

and communications, etc. The incorporation of these TICs in medicine gave a new approach to the

DMSMA [Kul00], now even more worried of characterization and knowledge bases construction to

improve medical decision making, the integration of these knowledge bases in functional and useful

medical computer systems, and validation, standardization and sharing of medical knowledge. Vo-

cabulary standards development, medical codifications and nomenclatures, and the development of

unified medical language systems (UMLS) [HLSB98] (see table 2.4) are initiatives of this decade.

The knowledge reuse is widely eased by the ontologies development to different knowledge types and

problem resolution. Protégé [TEG+95] is a remarkable example of a system to ontological knowledge

management. The software integration to multiple uses was every time more stimulated by propos-
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als such as integrated advance information management systems (IAIMS) [Ste97]. The appearance

of Arden syntax [SHJ+94], a system to connect clinical databases, knowledge, and knowledge bases

to support medical decision, marks the beginning of multiple languages and platforms to medical

knowledge formal representation based on protocols and clinical practice guidelines (CPG). Some of

these are Asbru [SMJ98], PROforma [FJR98], EON [TM99] and PRODIGY [PSBS99]. Automatic

extraction of medical data from narrative corpuses also progresses due to linguistic and statistic

methods combination [CY95]. In this decade we can distinguish the following DMSMA systems:

HELP [KGP91], HERMES [BMS+93], DIAVAL [Die94], DIABNET [HGdPC96].

In the decade of the 2000’s, other areas are emphasized such as natural language processing,

ontologies, knowledge management, machine learning, data mining, reasoning and representation

temporal, use and formal representation of protocols and CPGs in medical decision making, just like

evidenced in [QBA01, DKB03, MHK05, BAHH07]. The classification problem as a particular case

in the decision making marks the guide in research at the beginning of this decade. This is reflected

in the great quantity of publications done under the data mining field [BAT+01, AHdK01, HBJ03,

Kuk03b, BFMea05, RGAS05]. Particularly, some researches were headed to the combination of

diverse machine learning techniques with the objective of taking advantage of the characteristics

in every single one of them [AHdK01]. Temporal reasoning is still an active field of research.

Questions like: how could temporal information be represented?, what is the abstraction level of

optimal granularity to discover temporal patterns and rules later?, or how can the rules information

contents be quantified?, are the aspects to solve in this context [DKB03]. Therefore, temporal

abstraction and data mining techniques are used to extract, from temporal data, recurrent typical

patterns or rules which can be associated to specific situations such as failures or patients normal

evolutions [BLMB03]. The use of ontologies for the knowledge search from textual sources [Mey09]

or the CORAAL system [NGH09]; the languages development to CPG formal representation and

in turn, the systems development based on these representations, is still the pursued objective

for many researchers. It is the case of the medical decision support system ATHENA [ATO+99,

GHRea00] which implements CPG using EON language [TM96, TM01], the web based system LISA

[BHBea02] which implements CPG using PROforma [FJR98] for the decision support in the cancer

domain, the DEGEL system [SYS+03] which uses ontologies to specification and recovery of CPG,

or the CPG representation environment SAGE (Standards-based Active Guideline Environment)

[TMSea04]. Probabilistic networks and Bayesian models are still representative work areas, well

adapted to the medical information and dynamic research [FGA+03], as for example the PAIRS
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system (Physician Assistant Artificial Intelligence System) [JJ99] , ProCarSur system [PVTSS+07]

and ESTDD [KK08].

Finally, and to summarize, table 2.8 presents, categorized by decades, the principal objectives

which were proposed to improve decision making process in medicine from AIM, next to designed

approaches for such purposes and some systems examples which implemented these approaches. This

summary is based on [Mil94, NN00, Kul00] and the compendium of DMSMA and MKB systems

available in Openclinical (www.openclinical.org).

2.5 Conclusions

Analysis of the background in medical informatics, referring to medical assistance has revealed a

series of events which define and directly condition this thesis. These facts are exposed as chapter

2 conclusions, in form of points:

• The medical assistance activities are the decision and the planning in the diagnosis, treatment

and medical prognosis.

• The medical assistance activities are integrated following a medical standard procedure where

the health care professionals currently based their decisions. However, this medical standard

procedure does not have the functional detail level to be formalized in a computable way.

• The success of decision making by health care professional in the medical assistance activities,

are based in the medical skill in front of a particular situation, in the available medical

knowledge in that moment and in the medical reasoning used in front of this knowledge.

• The current support which health care professionals have for medical assistance decision mak-

ing is based in: protocols and clinical practice guidelines, encoding and classification systems

of medical data, and technologies and systems developed through disciplines as decision theory,

mathematics, statistic and artificial intelligence.

• The decision activities in the diagnosis and treatment, are the activities which have had a

greater development from DMSMA Technologies. Also, in the medical prognosis activity, the

regression and the survival analysis, both, through statistic methods, Bayesian and artificial

neural networks in the AI field, are the DMSMA technologies with a great application.

• The augmented decision tables and the CPG representation languages are the only DMSMA

technologies found which have been used for planning activities in the medical assistance.
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Chapter 3

Knowledge Formalization in Medical Assistance

This chapter presents a description about knowledge formalization in the medical assistance domain.

This description is made from the Knowledge Management and Artificial Intelligence perspective.

First, there is a description of the formal knowledge categories in medical assistance. Second, and

based in these categories, it is an introduction about the main knowledge representation formalisms

and how they are used for reasoning and machine learning.

3.1 Introduction

The quality of medical assistance is directly related with the health care professional experience

[Mil94], where such experience is the result of the combination of several types of knowledge (§2.2.2).

Knowledge is the main part of decision making process on medical assistance, therefore, it is not sur-

prising that in the medical informatics domain a trend has been observed towards the formalization

of this knowledge [FJR98, AHL01, PT06, Ria06, KXY08].

Disciplines as Knowledge Management (KM) [MFK99] and Artificial Intelligence (AI) [Sho87]

have contributed to knowledge formalization in general, and in medical assistance knowledge for-

malization in particular. KM is centred in the development of techniques which allow to organize,

to share and to update this knowledge. Therefore, KM makes a distinction between two main

categories of knowledge: declarative knowledge and procedural knowledge. Declarative knowledge

(or know-what knowledge) is the knowledge of objects, facts and principles of a concrete domain.

Facts and principles establish the relations and restrictions in the objects and among the objects

of a domain. Procedural knowledge (or know-how knowledge) is the knowledge in which the control

information that is needed to use the knowledge is inside the same knowledge. In the medical

assistance domain, declarative knowledge refers to diseases, symptoms and signs, prescriptions,
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diagnostic tests, etc., likewise, the relations among them elements, for example, what are the symp-

toms and signs of a particular disease, the contraindications of a medication, etc. On the other

side, procedural knowledge refers to the assistance processes as making a diagnosis, treatment of a

pathology or a medical-clinical problem.

Meanwhile, AI is centred in the development and improvement of formal structures for know-

what and know-how knowledge representation. Also, in producing methods and algorithms to make

intelligent activities, such as reasoning and inductive learning these knowledge structures.

3.2 Knowledge Representation in Medical Assistance

Knowledge representation can be defined as a series of syntactical and semantic conventions which

allow the formalization of a determined type of knowledge. Syntax allows to specify a political

series to combine symbols so as to form valid expressions. Semantic is the specification of how these

expressions should be interpreted. This formalization has a double objective. First, to eliminate the

uncertainty and variability which are not part of the medical assistance, and second, to allow the

automatic manipulation of this knowledge in order to use automatic reasoning methods which arrive

to similar conclusions to those that a health care professional would obtain. These conclusions can

be solutions to proposed problems in a concrete knowledge domain (i.e., decision making support)

or the inference of new knowledge.

Table 3.1 shows a classification of the main formalizations used to knowledge representation

in medical assistance. This classification is based in four categories of knowledge representation

[KXY08]: fuzzy logic, procedural knowledge, graphs & networks, and structured knowledge.

First, fuzzy logic (FL) [Zad65] is one of the logic based formalism which has been most used for

knowledge representation in medical assistance. FL is characterized by which is a logic derived of

the set theory which allows to represent imprecise, ambiguous and vague knowledge.

Second, procedural knowledge formalisms represent the knowledge of a domain in form of proce-

dures, which describe the actions to be made in particular situations. Nowadays, the most popular

procedural formalisms to represent medical knowledge are the production systems [New73] and de-

cision tables [Hol75], where the procedural knowledge is represented by a set of production rules

which allows to incorporate the domain knowledge.

Third, graphs & networks based representations are characterized by representing medical knowl-

edge through directed graphs whose nodes are health care concepts and entities, and arcs represent

relations among these concepts and entities. Decision trees [Qui86], partial orders [DM41], Bayesian
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networks [CGH97] and artificial neural networks [RM86], are examples of these types of knowledge

representation formalisms.

Finally, the structured representations group those formalisms which allow making representa-

tions through well defined blocks of knowledge (i.e., classes or entities, their properties and the pos-

sible values which can have each property), and their relations. Traditional examples of these types

of formalisms are the semantic networks [Qui68] and frames [Min75]. However, in the last decades

the representation and organization of knowledge through ontologies [Gru93] and the use of CPG

representation languages [SHJ+94, Shi97, SMJ98, FJR98, TM99, JTB+00, PBOea00, BCH+02]

have been the last advances in the knowledge structured representation in medical assistance.

In the following sections a detailed description of these knowledge representations formalisms is

introduced. This description is done taking into account the type of knowledge which they represent

(i.e., know-what and know-how knowledge) and the medical assistance activity (i.e., diagnosis,

treatment and prognosis) in which they have been used during the last decade [QBA01, DKB03,

MHK05, BAHH07, CSAH09].

3.2.1 Know-What Knowledge Representation

Know-what knowledge in medical assistance can be represented through formalisms which allow

making a decision by assigning a label or a value to a patient according to the available information.

It is basically a classification process which proposes a diagnostic, a treatment or a prognostic from

a limited finite or continuous set of possible alternatives. For example, the medical data about a

patient can conclude that this patient has a particular disease (i.e., diagnostic), needs a specific

therapy (i.e., treatment) or predict a determined evolution for the applied therapy (i.e., prognosis).

So, the formalisms of know-what knowledge representation are characterized by being able to

solve decision processes taking into account a set of objects O (e.g., patients) and a set of classes C

(e.g., diseases), where each object oi ∈ O is described by a finite set A of discrete and/or continuous

attributes, which help to explain the medical characteristics of the cases behind the considered

medical problem (e.g., demographical data, symptoms and signs, diagnostic tests outcomes, prog-

nostic factors, etc.) and the class ci ∈ C to which oi belongs. Each class ci represents a particular

medical problem. (e.g., set of diseases, treatments list and events to predict, etc.). A decision (e.g.,

diagnostic, treatment or prognostic) will consist in classifying each one of the objects of O in one

of the classes of C, according to the particular medical problem to be considered. That is to say,

d : O → C.
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Formalisms of Know-What Knowledge Representation in Diagnosis and Medical Treat-

ment

Traditionally, the most used formalisms to know-what knowledge representation in the diagnostic

and medical treatment are: fuzzy logic [Zad65], production rules [New73], decision tables [Hol75],

decision trees [Qui86], partial orders [DM41] and, recently, ontologies [Gru93].

Fuzzy Logic

The fuzzy logic (FL) [Zad65] is based in the idea, that in a given time, it is not possible to determine

the value of an attribute aj ∈ A for an object , but only to know the degree of membership of each

one of the objects oi ∈ O, and each value inside the variation range of the attribute aj . For defining

these degrees of membership, FL uses the notion of fuzzy set. Each fuzzy set has associated a

membership function for its elements that indicates in which measure the element takes part of that

set.

Fuzzy sets can be used in the representation of input attributes or fuzzy inputs, as in the process

of classification in fuzzy classes [KS99]. In fuzzy inputs, instead of the original input values (e.g.,

measurement) its “fuzzy” versions can be used. For example, instead of a value of 145 mmHg for

blood pressure, it can be used the vector [0.0, 0.4, 0.6] which defines the degrees of membership

of that value to the fuzzy set [low, medium, high]. Also, in fuzzy classes, instead of determining

that d(oi) = ci with ci ∈ C the class which oi belongs to, a fuzzy classifier makes a mapping

d : O → [0, 1]n, with n = |C|. That is to say, d(oi) = [µ1(oi), ..., µn(oi)], where each µx(oi) denotes

the degree in which oi belongs to the class cx. The fuzzy decision d(oi) can be oriented to choose

an only class of C. This process is called “defuzzification” [LK99].

The FL as formalism of know-what knowledge representation has been used, among others,

in the diagnosis of inadequate analgesia for patients undergoing anaesthesia [JLH02], in the deci-

sion support of radiation therapy [PSG03], in the detection of breast cancer [Has03], lung cancer

[SPBea03] and prostate cancer [SOPN03]. Among the systems which use FL, MedFrame/ CADIAG-

IV [BAH+04] has been used in diseases diagnosis of internal medicine, and ESTDD [KK08] for

diagnosis of thyroid diseases. The FL also has been used in the development of classification frames

and to improve the diagnosis of diseases [GM09].
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Production Rules

Production rules (PR) [New73] have been one of the most applied formalisms in the knowledge

representation of DMSMA systems. Its representation structure is: IF antecedent THEN conse-

quent, where the antecedent represents a condition for being evaluated that is usually represented

as a conjunctive boolean expression. This expression is defined as an undetermined number of

comparisons expressed as {ai = v}, for discrete attributes and {ai ≤ v} or {ai ≥ v} for continuous

attributes; being ai ∈ A and v ∈ Dom(ai). Likewise, the consequent represents a decision ci, with

ci ∈ C. In this sense, an object o ∈ O is covered by a decision rule, if the object accomplishes all

the comparisons of the antecedent in conjunctive form. So, the decision proposed by the rule will

be that one found in the consequent.

In order to obtain conclusions, the PR based systems use, mainly, two sorts of inference: forward

chaining or progressive reasoning and backward chainning or regressive reasoning. Forward chain-

ning is a process guided by data which considers as starting point all the known data and it goes

progressively advancing towards the solution. The steps to be followed in this inference process are:

unification, resolution and execution. In the unification, the rules found in the knowledge base are

used to prove the known facts in that moment and to determine which of them are satisfied. A rule

is satisfied when the rule antecedent is resolved to true. If as result of the unification step, there are

different rules satisfied, these rules are solved by resolution. In this case, one of the satisfied rules

is chosen according to a pre-established criterion such as the most priority rule [Mic87]. The last

step is the execution of the rule. Execution can give one of the following results: a new fact which

can be added to the base of facts, or a new rule which can be added to the knowledge base.

Backward chainning is a process guided by the objective, where a possible solution is chosen

and to prove its validity the process searches for the evidence that supports it. The system starts

by the objective (consequent part of rules) and acts backward for looking how that objective is

deduced from data. It is produced directly or through intermediate conclusions or sub-objectives,

trying to prove a hypothesis from the facts contained in the base of facts and which were obtained

in the inference process.

Figure 3.1 [MSS06] shows a typical rule used in MYCIN system [Sho76]. In this rule, the MYCIN

is able of to conclude about the probable cause of bacterial infection if the five conditions of the

antecedent are satisfied by a specific patient.

Production rules as a formalism of know-what knowledge representation have been used, among

others, in the following DMSMA systems: INTERNIST system [PMM75] designed for the disease
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Figure 3.1: Example of a production rule used in the MYCIN system.

diagnosis in internal medicine, MYCIN system [Sho76] developed to diagnose and suggest treat-

ments for blood infectious diseases, ONCOSIN system [Sho81] developed to help the health care

professionals in the treatment of patients with cancer that receives chemotherapy, PUFF system

[AKSR83] developed for diagnosis and seriousness of lung diseases, or, nowadays, in rules based

approaches for the diagnostic of coronary disease [RBW04].

Decision Tables

A decision table (DTa) [Hol75] is a matrix which joins a set of decision attributes A (or conditions)

(e.g., signs, symptoms and diagnostic tests outcomes) with a set of actions C (e.g., conclude a

diagnostic, starts a treatment, etc.). In a DTa, each decision value can be represented as a categorical

value (e.g., the presence or absence of diabetes) or as a range of a continuous attribute (e.g.,

cholesterol ≥ 270 mg/dl). The number of values that each condition can assume is defined as the

condition module [Shi97].

As figure 3.2 [SLG94] shows, the conditions and actions in a DTa are of the type stub and

entry. The stub conditions represent the list of decision attributes (e.g., clinical status, anatomic

distribution of disease, risk, ejection fraction) and the stub actions represent the list of the relevant

medical action names (e.g., sort of pharmacological treatment, diagnostic tests, referals to special-

ists, medical procedures). The entry conditions contain the values or states of decision attributes

(e.g., PAIN, LOW, HIGHT, MODERATE) and the entry actions, optionally marked with a X in

the DTa. Each entry column in the table represents an appropriate decision give the pertinent

combination of decision values. Each column in the entry area is a rule, whose antecedents are
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derived from the entries conditions and whose consequents are indicated by the entries actions. For

example, the rule described in the column three of figure 3.2 can be read as: “IF clinical status is

carcinogenic shock (SHK) AND Anatomic distribution of disease is 2-vessels including proximal left

anterior descending (2V+P) AND risk is normal or low (LO) THEN CABG is appropriate”.

Figure 3.2: Example of a decision table.

The TDa as formalism of know-what knowledge representation has been used, among other

medical contexts, to determine the adequate of CABG in acute myocardial infarction [SLG94], for

the depression diagnosis in EsPeR preventive medicine system [CAJZ+05], to select the best action

course in the treatment of gastric lymphoma no-Hodgkin [BdPL08], or to model different sorts of

medical decisions [Ria11].

Decision Trees

A decision tree (DT) [Qui86] is a set of conditions organized in a hierarchical structure, so that

the final decision can be determined following the conditions that are fulfilled from the tree root to
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some of its leaf.

DTs represent the knowledge through structures formed by decision nodes (internal nodes) and

leaf nodes. Decision nodes specify an attribute ai ∈ A which is defined on the objects in the domain

O. The arcs which leave of a decision node define a partition of the range Dom(ai) of the attribute,

so, each arc has associated one of the partition components which acts as a filter of the objects in

O. Each leaf node has associated one of the categories of C. A DT with k leaf nodes partitions

the space of objects O in k disjoins subsets, where one of the possible decisions of C is applied.

Any object o ∈ O will be associated by the DT in only one leaf node. The associated leaf node is

determined following, from the root and down the tree, the path formed by the arcs of the decision

nodes with a range of values which the object value belongs to that attribute. The DT leaf node

achieved at the end of the path determines the class ci ∈ C which the object belongs to.

Figure 3.3 [Woz06] shows a DT which presents six possible diagnostic alternatives to hyperten-

sion: essential hypertension, fibroplastic renal artery stenosis, atheromatous renal artery stenosis,

Conn’s syndrome, renal cystic disease and pheochromocystoma. The decision about the sort of

hypertension is made taking into account the patients information about the blood pressure mea-

surement (i.e., systolic blood pressure), general information (i.e., palpitation and heart failure) and

biochemical data (i.e., level of serum potassium). A diagnostic decision as essential hypertension

is assigned to a patient that, following the DT, does not have palpitation symptoms and his/her

serum potassium level is greater than 3,2 mEq/L (miliequivalents per litre).

DTs as a formalism of know-what knowledge representation have been used, among other medical

domains, in the diagnosis of heart problems [SLPK04], in the diagnosis of optic nerve diseases

[PKGG08], in the diagnosis of leukemia patients [CPRB09] or in combination with artificial neural

networks in the diagnosis of Parkinson disease [Das10].

Partial Orders

Partial Orders (PO) [DM41] are formalisms which allow to represent binary relations among at-

tributes. Formally, given a set of attributes A , a PO P ⊆ A × A, over these attributes is a

binary relation such that P is reflexive (i.e., ai ∈ A ⇒ (ai, ai) ∈ P ), antysimetric (i.e., (ai, aj) ∈

P and (aj , ai) ∈ P ⇒ ai = aj), and transitive (i.e., (ai, aj) ∈ P and (aj , ak) ∈ P ⇒ (ai, ak) ∈ P ).

PO are typically represented as directed acyclic graphs (DAG) where all the deducible nodes by

reflexivity and transitivity are omitted. Figure 3.4 shows an example of how a PO represents know-

what knowledge in the breast cancer domain according to the TNM staging system (Tumour, Node
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Figure 3.3: Example of a decision tree to the diagnosis of hypertension sorts.

and Metastasis) [SW02]. This PO shows the different disease severity states and their relations.

Here, a patient in iia state has a severity level less than another one patient in iiia or iiib states

(directly connected), or in iv state (connected by transitivity), and not comparable in terms of

severity to patients in iib state. The o state represents the minor severity state of disease and

indicates carcinoma in situ without any affected lymph node, and the iv state represents the major

severity state of disease and indicates that the cancer has affected the armpits lymph nodes and

there is metastasis to other parts of the body.

Figure 3.4: Example of a partial order in the breast cancer domain according to TNM staging
system.
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PO as formalisms of know-what knowledge representation has been used, in combination with

DT, to the diagnosis of disease [LVRC07, LVRB10].

Ontologies

An ontology is a formal and explicit conceptualization of a shared knowledge [Gru93]. In this

definition, conceptualization refers to an abstract model of some phenomenon in the world by having

identified the relevant concepts of that phenomenon. Formal refers to the fact that the abstract

model which represents the ontology should be machine-readable. Explicit means that the type of

concepts used (e.g., diseases, symptoms, etc.) and the constrains on their use are explicitly defined.

Shared reflects the notion that an ontology captures consensual knowledge, that is, it is not private

to some individual, but accepted by a group.

In the Ontologies the knowledge is formalized according to five levels of components [GB99]:

classes, concepts, relations, functions, axioms, and instances. The Classes in an ontology are usually

organized in taxonomies. Sometimes, the ontology notion is distorted, the sense that the taxonomies

are considered as full ontologies [SBF98]. Concepts are used in a broad sense. A concept can be

anything about which something is said, and, therefore, it could also be the description of a task,

function, action, strategy, reasoning process, etc. Relations represent a type of interaction between

concepts Ci of the domain. That is, R : C1 × C2 × ... × Cn. For example, the “subclass-of”

and “connected to” binary relations, are parts of these interactions. Functions are special cases of

relations which the n-th element of the relationship is unique for the n−1 preceding elements. That

is, F : C1 × C2 × ... × Cn−1 → Cn. Axioms are used to model sentences which are always true.

Instances are used to represent elements or concrete facts in the Ontology.

Figure 3.5 shows the root nodes of the hierarchies of concepts of the “Case Profile Ontology”

(CPO) developed within European Project K4CARE (www.k4care.net). This ontology provides a

formal representation of medical knowledge about syndromes, signs, symptoms and diseases (e.g.,

symptoms associated to each disease) and relationships and constraints among them. The knowledge

representation is based in six basic concepts: problem evaluation (e.g., laboratory analysis, diagnos-

tic test, etc.), signs and symptoms (fever, edema, pain, dizziness, etc.) social aspects (e.g., poverty,

violence, etc.), syndromes (e.g., cognitive impairment and immobility), diseases (e.g., dementia,

delirium, depression, etc.) and interventions (e.g., pharmacological treatment, rehabilitation, etc.).

The relationships of these concepts are represented with the properties and constraints of the ontol-

ogy. For example, the property “can be expression of” allows to relate which syndrome is connected
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with what disease (e.g., immobility syndrome can be expression of arthritis disease) or the property

“has intervention” which links social aspects, syndromes and diseases with possible interventions

(e.g., dementia disease has intervention nursing care).

Figure 3.5: Example of an ontology in medical domain.

Ontologies as formalism of know-what knowledge representation have been used in encoding and

classification systems as the MANELAS [Zwe94] in coronary disease domain, GALEN (Generalized

Architecture for Languages, Encyclopaedias and Nomenclatures in medicine) [RRP96], SNOMED

(Systematized Nomenclature of Medicine) [SCC97] and UMLS (Unified Medical Language System)

[HLSB98] in general medicine, and FMA (Foundational Model of Anatomy) [RM03] in the anatomy

domain. Also, the ODDIN [GCRM+10] and TimeDDx [DP10] systems are two cases of ontologies

used for the differential diagnosis.

Formalisms of Know-what Knowledge Representation in Medical Prognosis

The traditional formalisms of know-what knowledge representation in medical prognosis activity

are Bayesian networks [CGH97] and artificial neural networks [RM86], although both formalisms

also have been used in the diagnosis and medical treatment activities, as it is shown in table 3.1.
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Bayesian Networks

Bayesian networks (BN) [CGH97] are a formalism to uncertain knowledge representation, which

allows to establish reasoning based on probability theory. A BN is a directed acyclic graph (DAG)

whose nodes A represent attributes or uncertain events and whose relationships define probability

dependencies between these events. These relationships are quantified by the association of a

conditional probability table to each node ai. Each conditional probability table contains the

probability distribution of values in a node ai, taking into account any configuration of its parent’s

values. For the root nodes, only their a priori probabilities are necessary. Prediction in a BN

will consist in providing the values of observed events and the calculation of posterior probability

of some not observed events, in the following way: let, c the class to be predicted, A the set of

attributes of an object O; P (c|A) the probability of an object with attributes A belongs to the class

c. So, the aim is to find the class c verifying P (c′|A) = maxcP (c|A). Using the Bayes theorem, we

have P (c|A) = P (A|c)πj∑
k P (A|k)πk

, where πk denote the a priori probability of each class.

Inference in a BN, and in the probabilistic networks in general, consist in evidence propagation

through of the network in order to know the posteriori probability of the variables. The propagation

consists in giving values to some attributes (evidence), and to obtain the posterior probability of

the other attributes given the known attributes (or instantiated). This propagation is one of the

most important tasks because it allows to obtain conclusions when there is new information (e.g.,

signs, symptoms, etc.) [CGH97], and it will depend of the type of network structure which is being

used, for example, a tree [KP83], a polytree 1 [Pea86] or a multi-connected network 2 [Coo90].

An example of BN application is shown in figure 3.6. This network is used in the ProCarSur

system [PVTSS+07] and it allows to make, after a cardiac surgery, prognosis about exitus, length

of stay in the intensive care unit, and occurrence of complications. For making the prognosis,

this BN uses twenty four variables which allow to distinguish three phases: the preoperative phase

composed by eight variables, the operative phase composed by four variables and the postoperative

phase composed by twelve physiological variables and of surgery complication. Also, the network

has an outcome variable hospmort which represents mortality during hospitalization.

BN as formalisms of know-what knowledge representation in medical prognosis, have been used,

among others, in the NasoNet system [GADM02] to predict the nasopharynx cancer extension in
1A polytree is a network in which a node can have many parents, but without existing multiple paths between

nodes (connected network in a simple way).
2A multi-connected network is a non-connected network in a simple way, that is, where there are multiple paths

between nodes).
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Figure 3.6: Prognostic BN in the ProCarSur system.

a patient, to predict the morbidity and mortality of patients with cardiac diseases [RBW04], to

predict the development of carcinoid heart disease [vGJT+07], to predict the patients evolution

with prostate cancer after the intensity modulated radiation therapy [SDM+09], or the survival

analysis of prostate cancer domain [SDBB09].

Artificial Neural Networks

Artificial neural networks (ANN) [RM86] are formalisms of know-what knowledge representation

based in the emulation of information biological processes. ANNs model the knowledge in classifica-

tion problems by means of a structure which presents as input nodes the predictive variables A, as

output nodes the different variables for being classified C, and several intermediate layers of nodes,

called hidden layers, that provided freedom degrees to the ANN through which it is able to represent

the environment characteristics to be modelled. The nodes in a particular level are connected to

the nodes in next level, quantifying that connection by means of synaptic weights wij , which in the

learning process, sometimes they are calculated by a backpropagation algorithm [RM86].

Formally, an ANN represents the knowledge through a direct graph, where each node (or neuron)

ni has:
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• A set of inputs Ai (or connections with the n neurons of previous layer), each one with a

synaptic weight wij with j = 1, ..., n.

• A propagation rule hi defined from the set of inputs Ai and the synaptic weight wij . That

is, hi(ai1 , ..., ain , wi1, ..., win). The most used propagation rule is a lineal combination of the

inputs, weighted with the synaptic weight (i.e.,
∑n

j=1wijaij )).

• A activation function, which simultaneously represent the neuron output and its activation

state. if yi denotes this activaton function, then yi = fi ◦ hi.

An example of ANN application in medical prognosis is shown in figure 3.7 [MSM+05]. This

ANN was designed to predict whether a coronary arteriography3 on a particular patient could

reveal a significative coronary stenosis4 (>50%), very often, coronary stenosis leads to a coronary

intervention. For making the prognosis, the ANN uses eleven independent variables in the input

layer: age (32-79 years old), height (54-78 in), weight (105-350 lbs), pain classification according

to Canadian Cardiovascular Society (1-4), stable angina (0,1), atypical chest pain (0,1), rest pain

(0,1), positive stress test (0,1), negative stress test (0,1), diabetes (0,1) and hypertension (0,1). Also

it uses thirty-six neurons in the hidden layer and an only neuron in the output layer representing

the SIG-CAD (Significant Coronary Artery Stenosis) prediction.

The ANN as formalisms of know-what knowledge representation in medical prognosis, have

been used, among other applications, in the classification of patients into prognostic risk groups

[LWHS03], to predict the survival of breast cancer patients [BBAM06], to predict the presence the

coronary artery disease [KTK08] or to predict the virulence response, in combination with therapies,

to the AIDS (acquired immunodeficiency syndrome) [WLR+09].

3.2.2 Know-How Knowledge Representation

Unlike the know-what knowledge representation, the know-how knowledge in medical assistance is

represented through formalisms that allows guidance to the health care professionals in decision

making, when they do not have enought information about the patient or his/her disease which

prevents them from reaching conclusions respect to a diagnostic or to a specific treatment. In this

sense, these formalisms allow us to represent explicit knowledge about sequences of actions to be
3Coronary arteriography (or coronary angiography) is a procedure that uses a special dye (contrast material) and

x-rays to see how blood flows through your heart.
4Coronary stenosis is a disorder characterized by the narrowing of the coronary artery which threatening the

arriving of oxygen to the myocardial.
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Figure 3.7: Example of ANN used to predict significant coronary artery disease.

taken, with the aim of reaching a decision on the final process. Basically, these actions can be

testing, analysis and other medical procedures as prescriptions, life style modifications, etc.

Formalisms of Know-How Knowledge Representation in Diagnosis and medical Treat-

ment

Languages to represent computer-iterpretable guidelines [SHJ+94, Shi97, SMJ98, FJR98, TM99,

JTB+00, PBOea00, BCH+02] are systems to describe know-how knowledge about diagnostic and

therapeutic activities. These languages have primitives which are used for representing specific

clinical tasks [WPT+02, WTSR10]. These primitives, according the type of task which we want

to represent, are classified in two categories: actions and decisions. Also, some languages have

primitives which are used to represent intermediate states in a specific context during the CPGs

application. These intermediate states can be descriptions of the patient medical situation, or of a

guideline implementation system.

An action is a clinical or administrative task which is recommended to perform, maintain or avoid

during the process of the CPG application (e.g., recommendation of a medication, or invocation

of another CPG, etc.). A decision is a selection from a set of alternatives based on predefined
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criteria in a CPG (e.g., selection of a diagnostic test from a set of potentials). A patient state is

a clinical individual description of a patient based on actions and decisions which have been made

for that patient (e.g., the state of “eligible-for-the-second-dose” contains the description of a patient

who has received the first dose of the influenza vaccine and is elegible for the second dose). An

execution state is a description of a CPG implementation system based on the action and decision

tasks defined previously (e.g., after that a patient is in the state “eligible-for-the-second-dose”, the

CPG execution system could change to the “ready” execution state for the CPG influenza vaccine.)

CIG Representation Languages

In sections 2.3.1 and 2.4.1 CPGs and the medical algorithms (MA) were introduced as the current

alternatives of know-how knowledge representation in medical assistance. However, these repre-

sentations show the medical information in a textual and narrative way, present recommendations

based in population, and the information contained within them are of difficult access and applica-

tion to a specific patient during a medical consultation. An alternative to solve these disadvantages

has been the development of formal representations which allow computational interpretation of the

medical knowledge contained in the CPGs. This required the development of several languages to

formalize the CPGs in form of Computer Interpretable Guidelines (CIG’s). Table 3.2 summarizes

chronologically the main CPG representation languages, emphasizing, for each one of them, the

primitives which use and the institutions that have developed them.

• Arden Syntax [SHJ+94] is a model developed to represent know-how knowledge through logic

modules called Medical Logic Modules (MLMs). Each MLM has three descriptive parts or

categories: amaintenance category which contains specific information about the module (e.g.,

module title, version, author, etc.), a library category which contains the module meaning (e.g.,

purpose, explanation, keywords, etc.) and a knowledge category which describes the module

meaning. The representation primitives in Arden Syntax are based in two slots: action and

logic slots. The action slot indicates the appropriate actions to the condition. The logic slot

contains the current decision criterion which allows leading to a determined action. Also,

Arden Syntax has a data slot used to obtain the concepts values which have been mentioned

in the MLM from a hospital database and an evocation slot that specifies the context in which

the MLM should be executed.

Figure 3.8 [Hea02] shows a MLM example used by Arden Syntax. This MLM is used to alert

when a patient is allergic to the penicillin according to his/her medical record.
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Contraindication Alert MLM: 
maintenance: 

 title: Check for penicillin allergy;; 

 mlmname: pen_allergy;;  

 arden: ASTM-E1460-1995;; 

 version: 1.00;; 

 institution: Columbia-Presbyterian Medical Center;; 

 author: George Hripcsak, M.D.;; 

 specialist: ;; 

 date: 1991-03-18;; 

 validation: testing;;  

library: 

purpose:   
When a penicillin is prescribed, check for an allergy. (This MLM 
demonstrates checking for contraindications.);; 

explanation:   
This MLM is evoked when a penicillin medication is ordered. An  
alert is generated because the patient has an allergy to 
penicillin recorded.;; 

 keywords: penicillin; allergy;; 

 citations: ;; 

knowledge: 

 type: data-driven;; 

data:   
/* an order for a penicillin evokes this MLM */   
penicillin_order := event {medication_order where class = 
penicillin};   
/* find allergies */   
penicillin_allergy := read last {allergy where agent_class = 
penicillin};   
;; 

evoke:   
penicillin_order;; 

logic:   
if exist(penicillin_allergy)then   
 conclude true;   
endif;   
;; 

action: 

write "Caution, the patient has the following allergy to 
penicillin  

documented: " || penicillin_allergy;; 

 urgency: 50;; 

end: 

Figure 3.8: Example of a MLM in Arden Syntax.
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• Augmented decision tables [Shi97] are a representation based in a decision table (§3.2.1) which

incorporates in its rows and columns additional information about probability and utility. This

additional information is stored in slots of several levels under the decision table and allows

to relate several representation components with cells, rows and columns. The representation

primitives are the action stub and the decision stub, which operation is similar to the decision

tables described previously in section 3.2.1.

• Asbru[SMJ98] allows to represent know-how knowledge through a set of hierarchical plans

(skeletal-plan). Each plan is identified by a unique name and a arguments set which include

time annotations that represents the temporal link of plan. Asbru uses as representation

primitives five basic components: plan, conditions, preferences, temporal patterns and a plan

body. The plan describes the set of intentions which define the objective to be achieved.

The conditions represent the control mechanisms for executing the plans. These mechanisms

correspond to filter and execute, suspend, abort, complete and reactivate conditions. The

preferences allow to limit the selection of a plan to achieve a determined objective, or to

express the plan behaviour level (strategy). The temporal patterns allow to activate the

functional relations of model between the plan arguments and the measurable parameters.

The state plan contains a set of plans to be executed in parallel, in sequence, in any order or

with some frequency.

Figure 3.9 [Bos01] shows an Asbru hierarchical plan. The objective of this plan is the diag-

nostic and treatment of the hyperbilirubinemia or excess of bilirubin in the blood.

• PROforma[FJR98] represents the CPG knowledge as a directed graph which nodes are in-

stances of a closed set of classes, called PROforma task ontology. Each CPG is modelled as

a plan which consists in a sequence of tasks, where all of them are derived from a root task.

PROforma task ontology defines four tasks as representation primitives: actions and queries,

decisions and plans. The actions represent some procedure which needs to be issued in an

external environment (e.g., a clinical user, external software or a device). Queries represent

CPG points in which the information should be provided by an expert or an external system.

A decision is represented as a set of possible candidate outcomes, and several types of logic

expressions which support or oppose to each candidate. Each candidate is associated with a

set of schemes. Each scheme contains rules, qualitative variables, weights and certainty factors

in agree or disagree of the candidate, establishing the preference for that candidate. The plans
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Figure 3.9: Example of a plan represented in Asbru.

are collections of tasks that are grouped according to logic criteria (e.g., tasks performed at

the same time).

Figure 3.10 [FJR98] shows a general plan, based on PROforma, to the managing of acute

asthma.

• GLIF (Guideline Interchange Format)[OMGM+98, PBOea00] is a model for the structuring

representation of the CPG to three different levels of abstraction: conceptual, computable

and implementable. In the conceptual level the CPGs are represented as flowcharts for their

dissemination. In the computable level the CPGs are expressions which define the patients

data, medical actions and algorithmic control structures, allowing their logic analysis for its

coherence and integrity. The implementable level allows its integration in some information

system for being computerized. The CPG representation is made as flowcharts of temporarily

sequenced nodes. These nodes are called steps and define the following representation prim-

itives: action step, decision step and patient state step. The action step specifies medical

actions made to patients during the process of patient care. The decision step represents

decision points in the CPG. These decision points can be deterministic (case step) as non-
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Figure 3.10: Example of a plan represented in PROforma.

deterministic (option step). The patient state step is used as a label to describe the patient

state that is achieved in previous steps, or, as entry point in the CPG. Moreover, it uses a

branching step to guide the flow to different steps in parallel or in any order, and a synchro-

nization step used in conjunction with the branching step to model simultaneously multiple

paths through CPG.

Figure 3.11 [PBOea00] shows an example of GLIF based representation for patients man-

agement with chronic stable angina. The action steps are represented through squares and

the decision steps, case step and option step, are represented by diamonds and hexagons,

respectively.

• EON [TM99], represents know-how knowledge through graphs of temporal sequences (flowchart)

of instantiated classes. For representing that knowledge, EON uses the following primitives:

action and activity steps, decisions, scenarios and activity state. Actions describe the practice

workup that should be made immediately, unlike to the activities which are continuous pro-

cesses. Decisions represent options from a set of available alternatives. Actions and decisions

can have associated objectives represented by boolean criteria, which defines the intention to

be accomplished in these steps. A patient scenario is used to describe a patient state ac-

cording to decisions made and the actions completed. These sceneries allow to a health care

professional synchronize the patient management with a part of the CPG and moreover, are
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Figure 3.11: Example of a plan represented in GLIF.
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commonly used as an entry point to the CPG. An activity state is used to describe the patient

state respect to the activities.

Figure 3.12 [GHRea00] shows the representation primitives used by EON. The screen on the

left of the figure shows part of the class hierarchy used by EON. The right hand side screen

of the figure, shows how EON represents, decision points and action alternatives in terms of

patient scenarios in the setting of managing hypertension patients.

Figure 3.12: Example of a CPG represented in EON.

• PRODIGY [JTB+00], as EON, uses representation primitives based on action and activities

steps, decisions and scenarios. Here, the scenarios are patient states defined by the patient

condition and his/her current treatment. Each scenario is associated with a consultation

template which describes the best-practice workup for a patient in that scenario and an option
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between different action alternatives.

Figure 3.13 [TM00] shows an example of a representation based in PRODIGY. This represen-

tation is based in two possible scenarios Taking no antihypertensive medication and Taking

antihypertensive medication which represent the patient states, and decision criteria rule-in

which help to determine what action will be the most adequate, either continue lifestyle change

or Initiate drug therapy.

Figure 3.13: Example of CPG representation based on PRODIGY.

• SAGE (Sharable Active Guideline Environment)[BCH+02] is a model which allows to formu-

late the CPG content in a set of recommendations. The recommendation set is a formalization

of the CPG actions and decisions to a workflow context in a specific medical situation. For

that, SAGE is based in a set of nodes which describe the actions, decisions, context and the

know-how knowledge routing. The action nodes are used to support the recommendations set

(e.g., implementation options), also, the action nodes can include support to the messaging

between the system devices, the objectives specification, recovery and storage in database,

planning events, etc. The decision nodes describe the acquisition of data (directly from an

Electronic Patient Record or in interactive way through questions to the health care profes-

sional) and the decision which allows to evaluate the most logic branch to be followed. The

context nodes allow to define attributes for specifying the events, the medical properties and

the patient states. The routing nodes allow the synchronization of the different activity routes

of the model.

Figure 3.14 [RBT+04] shows a set of recommendations which are based on actions (A1, A2

and A3), decisions (D1 and D2), context (C1 and C2) and routing (R1) for the triage5 and
5Triage is a medicinal emergency and disaster management process to determine the priority of patients’ treatments
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treatment of patients that have been suffered an acute ischemic stroke.

Figure 3.14: Example of CPG representation based on SAGE.

3.3 Machine Learning of Knowledge in Medical Assistance

Machine learning (ML) objective is the development of computationally methods that, automati-

cally, optimize a performance criterion using data or previous experience. These methods establish

learning systems able to acquire high level knowledge and strategies to solve problems through

objects, in analogous way to the human mind. From the objects given by an instructor and the

background or previous knowledges, the learning system creates general descriptions of concepts.

There are four ML paradigms [Shi92, Mit97]): analogy learning, analytic learning, conexionist

learning and inductive learning.

Analogy learning or instance-based learning (IBL) [AKA91] is based in which the relations that

are fulfilled in a determined domain, also they are fulfilled in another domain. So, this type of

learning is based on similarity hypothesis in which objects with similar attributes are of the same

based on the severity of their condition, improving the survival possibility according to the therapeutical needs and
the available resources.
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class. The most known methods of this type of learning are the k-nearest neighbour (KNN) [AKA91]

or the case-based reasoning (CBR) [AP94].

Analytic learning or explanation-based learning (EBL) [DM86] is based in the use of the domain

knowledge. This type of learning has as objective to complete the processes originated by incom-

plete theories through the establishing of valid assumptions. So, given a known conclusion, several

hypotheses are proposed which explain this conclusion. Inductive Logic Programming (ILP) [LD94]

is the most known method of this type of learning.

Conexionist learning or learning of artificial neural networks [RM86, Koh88] is based in which the

mental phenomenon can be described by simple units of a network that are interconnected, where the

network units represent neurons and the connections represent synapses. Learning of the artificial

neuronal networks consists in modify, somehow, the weights associated with the connections, so, the

network generates the desired outputs for each input. The most known method is backpropagation

or propagation of error [RM86], which modify the weights from the output layer to the input in

function of the error done by the output signs (the difference between the get outputs and the

desired outputs).

Inductive learning (IL) is a special type of learning which obtains from particular cases (objects),

general cases (rules) that generalize or abstract the evidence. That generalization is based in

the application of independent knowledge about of application domain. Inductive learning has as

objective to establish the common features of a object set of a unknown class, so that, the description

obtained does not include the rest of the objects that are not concrete cases of that class. The

presence of a negative object within a class is due to the presence of noise in the set of observed data.

In terms of the information available, two sorts of inductive learning can be distinguished: supervised

and unsupervised inductive learning. In supervised inductive learning the available objects have the

“true” value that needs to be predicted for each one of them. When this information is not available

it is interesting to discover patterns which allow to grouping and distinguishing some objects from

others; this type of learning is called unsupervised inductive learning.

Among all the paradigms of machine learning previously introduced, this thesis is exclusively

concerned with the inductive learning one.

3.3.1 Supervised Inductive Learning of Know-What Knowledge

In supervised inductive learning (SIL) the most common type of problem in which this learning

operates is classification. Classification (§3.2.1) is based in a set of objects O and respective ranges,
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where each object oi ∈ O is described by a finite set of discrete and/or continuous attributes

A = {ai, ..., am}, and also the class C to which they belong to. The SIL objective is to induce a

model M that allows predicting the class ci ∈ C for all the objects oi ∈ O, given the values of the

attributes A. That is, ci = M(oi).

Some SIL methods used in classification are: ID3 [Qui86], C4.5 [Qui93] and C5.0 for inducing

decision tree induction and CN2 [CN89] for the induction of production rules.

• ID3 (Interactive Dichotomizer) [Qui86] is an induction method which implements a simple

mechanism to find a classification structure from a set of objects O which may belong to

two classes. Each object is described in terms of a fix collection of attributes, each one of

them having their own values set. ID3 builds a classification structure as a decision tree

which correctly classifies all the given objects. Each internal nodes of tree is labelled with an

attribute, while the branches that get out of the node, are labelled with their possible values.

The building of tree is heuristically guided choosing the attribute ai that maximizes the

information gain in each step, minimizing the expected number of tests. The information

gain maximization for an set O with objects which can belong to k different classes, is the

average of the information quantity need to identify the class of an object O, as shows the

formula 3.1, where pj is the objects proportion of the class cj in the set O.

info(O) = −
k∑
j=1

pj · log2pj (3.1)

With this measure the effectiveness of an attribute ai is calculated to subdivide a set of

examples in subsets (one for each possible value ai in Dom(ai)), obtaining the expected value

of the entropy after the partition as a weighted sum of the entropy of each subset Ci, which

is calculated with formula 3.2.

infoAtrib(O, ai) =
|Dom(ai)|∑

j=1

|Oi|
|O|
· info(Oj) (3.2)

At the time of choosing an attribute to establish a test in a tree node, it is important to select

one that maximizes the information gain. This information gain is calculated as the difference

between the entropy of original set and the subsets obtained by separating O in function of

the value ai, with formula 3.3.
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gain(O, ai) = info(O)− infoAtrib(O, ai) (3.3)

• C4.5 [Qui93] is an evolution of ID3 algorithm, where an improvement of the gain information

measure is incorporated. This improvement allows the choice of attributes with many possible

values, which redound in a worst generalization of the observations. So, the C4.5 algorithm

introduces an alternative measure called gain ratio to improve this deficiency. Gain ratio is

calculated with formula 3.4, where infoPart represents the entropy associated with the fact

of partitioning the set of objects O in the subset Oi.

ratio(O, ai) =
gain(O, ai)

infoPart(O, ai)
(3.4)

This entropy is calculated with equation 3.5.

infoPart(O, ai) = −
|Dom(ai)|∑

i=1

|Oi|
|O|
· log2(

|Oi|
|O|

) (3.5)

Also, the C4.5 algorithm includes a pruning of the classification tree once it has been induced.

The pruning is based in the application of a hypothesis test which indicate whether it is

necessary or not to expand a determined branch [Qui93].

Other methods for the induction of decision trees are: CART [BFOS84], ASSISTANT [CKB87]

and C5 [Qui03].

• CN2 [CN89] combines the efficiency and the information management with noise which allows

the ID3 induction algorithm of decision trees [Qui86] with the flexibility of AQ [Mic87], in its

strategy of IF −THEN rules searching. This algorithm produce a set of rules IF −THEN ,

called “decision list” [Riv87], using heuristically techniques based in a estimation of noise

present in the data to reduce the searching space. The rules obtained by CN2 are the form:

IF complex THEN class

Where complex is a conjuction of attribute-value operations on the attributes in A. The last

rule of the order list is a rule which assigns by default the more common class ci of the training

set to any object O that arrives to it. At classificcation time, it’s only necessary to follow the
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decision list in order until a rule whith a satisfiable condition is found. If none rule is satisfied,

the object is assigned to the most common class in the training set.

The CN2 algorithm works in an iterative way, each iteration searches a complex covering a

large number of objects O of a single class ci and few of other classes. The complex must

be both predictive and reliable, as determined by CN2 evaluation functions. Having found

a good complex, the examples that it covers are removed from the training set and the rule

IF complex THEN ci is added to the end of the decision list. This greedy process iterates

until no more satisfactory complexes can be found.

Other induction methods of production rules are AQ [Mic87], AQ15 [Mic87], RIPPER [Coh95],

RISE [Dom96], INNER [Lua99].

3.3.2 Unsupervised Inductive Learning of Know-What Knowledge

Unsupervised inductive learning (UIL) is an automatic learning method where a model is adjusted

to the observations. It is distinguished from the supervised learning because there is not an a priori

knowledge. In UIL, a set of data on the input objects is treated. So, UIL typically treat the input

objects as a set of attribut values with the objective of building a density model for that data set.

An UIL type is clustering [Mac67] which consists in making groups with the objects of a set

O, each group being characterized by a set of discrete and/or continuous attributes of a set A,

so that the objects of a cluster are similar and the objects of different groups are disimilar. The

similarity measure is based on the attributes that describe the objects and it is defined by proximity

in a multidimensional space. Measuring the similarity between objects can be done with different

distance measures of distance [AKA91]: Euclidean, Manhattan, etc.

Among the variety of non-hierarchical clustering [Mit97, Wit00, ORF04], the most used ones

are: the k-means algorithm [Mac67] and the expectation-maximization (EM) algorithm [DLR77] .

• K-Means [Mac67] is an algorithm for heuristical clustering which is based in partitioning

the set of objects O in a predefined number of K classes. This algorithm is based in the

minimization of the internal distance, as equation 3.6 shows. In this case the algorithm

minimizes the sum of squared distance between the assigned patterns to a cluster and the

centroid of that cluster, where p represents the centroid and µi the mean of cluster Ci (both

are multidimensional objects).
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d(p, C) =
k∑
i=1

∑
p∈Ci

|p− µi|2 (3.6)

The algorithm is simple and efficient. Also, it processes the patterns sequentially, so, it requires

a minimum storing. Moreover, it is biased by the patterns presentation ordering (i.e., the first

patterns determine the initial configuration of the clusters) and its behaviour depends of the

parameter K. There are two versions of the K-means algorithm. The first version, known as

Forgy algorithm [For65], it is based in the iteration of two steps: first, it assigns all the points

to its nearest centroids, and second, it recalculates the centroids according to the objects

contained in the new groups created previously. The process continues until a stop criterion is

reached (e.g., there are not reassignments). The second version [DH73], reassigns the points

based on the most detailed analysis of the effects caused over the objective function to move

a point of its cluster to another new. If the moving is positive, it is made, if not, it will stay

where it is.

• Expectation-Maximization algorithm (EM) [DLR77] is an efficient iterative procedure to com-

pute the maximum likelihood estimate (MLE) in the presence of missing or hidden data.

Given a likelihood function L(θ;x, z), where θ is the parameter vector, x is the observed data

and z represents the unobserved latent data or missing values, the MLE is determined by the

marginal likelihood of the observed data L(θ;x).

Each iteration of the EM algorithm consists of two steps: expectation step (E-step), and

maximization step (M-step). E-step calculate the expected value of the log likelihood function,

with respect to the conditional distribution of z given x under the current estimate of the

parameters θ(t), as shows equation 3.7:

Q(θ|θ(t)) = E(Z|x, θ(t))[logL(θ;x, Z)] (3.7)

M-step: Find the parameter that maximizes this quantity according to the equation 3.8:

θ(t+1) = argmax
θ

Q(θ|θ(t)) (3.8)

Convergence is assured since the algorithm is guaranteed to increase the likelihood at each

iteration.
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3.3.3 Supervised and Unsupervised Learning of Know-How Knowledge

In the development of this document, we found small evidence about the development of supervised

and unsupervised learning methods to the know-how knowledge in medicine. An approximation

in this area is the developing of a new induction methodology, based in medical data, of decision

trees and background knowledge, to generate formal intervention plans (FIP’s) [RBR07]. Also,

in the worflow mining context [Man11], the problem of know-how knowledge learning in medicine

is solved inducing clinical-pathways represented as Petri nets [vdAvDH+03, vdAWM04, MSL+08]

or as causal Bayesian networks [MC07]. However, the structures induced by those systems are not

explicit medical structures that health care professionals are as familiar to work with as with clinical

algorithms.

3.4 Conclusions

The analysis of antecedents in the ambit of formalizing medical assistance knowledge, a series of

facts have been revealed that contextualize the present thesis work. These facts are exposed as

conclusions of chapter 3:

• The main areas of knowledge formalization in medical assistance are diagnosis, treatment and

medical prognosis.

• Knowledge management distinguishes between two types of knowledge: know-what and know-

how knowledge. This classification is extrapolated to the domain of medical assistance.

• The majority of knowledge representation formalisms that are used in medical assistance are:

fuzzy logic, production rules, decision tables, decision trees, partial orders, Bayesian networks,

artificial neuronal networks, ontologies, and the CIG representation languages.

• Table 3.3 contains a summary of the types and knowledge areas of medical assistance in

which, broadly speaking, the formalisms of knowledge representation and the machine learning

methods introduced in this document are used. We note that:

– The main formalisms of know-what knowledge representation in diagnosis and medical

treatment are: fuzzy logic, production rules, decision tables, decision trees, partial orders

and ontologies.
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– The main formalisms of know-what knowledge representations in medical prognosis are:

Bayesian networks and artificial neuronal networks.

– The main formalisms of know-how knowledge representation in diagnosis and medical

treatment are the CIGs representation languages.

– Machine learning methods are used in the induction of know-what knowledge in the three

knowledge areas of medical assistance: diagnosis, treatment and prognosis.

– Approaches based on workflow mining context such as Petri nets and Bayesian networks,

are the most representative machine learning methods used in the induction of know-how

knowledge.

• The formalisms of know-what knowledge representation in medical prognosis, have been used

in the prediction of medical facts as the morbidity, mortality, recurrence and disease evolu-

tion, and survival analysis. These predictions depend on whether there are or not temporal

restrictions related to the prediction. An additional feature of these formalisms is their ability

to predict a concrete fact (e.g., survival) or whether they are able to predict several facts

simultaneously.

• The formalisms of know-how knowledge representation provide structure to the knowledge

contained in protocols and CPGs, where medical information appears in a textual and narra-

tive way, and describing recommendations based in the population and not patient-oriented.
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Chapter 4

Modelling Know-How Knowledge in Medical Assistance

In this chapter we propose the state-decision-action (SDA) knowledge model to represent health

care procedures as SDA diagrams which are similar to medical algorithms. This model presents an

alternative to the current languages of know-how knowledge representation in medicine.

In order to introduce this new knowledge model, this chapter is organized in five sections. In

section 4.1, an introduction to the know-how knowledge representation in medicine is provided. In

section 4.2, the SDA model is described according to the SDA elements and to the way that SDA

represents know-how knowledge, sequences, concurrences, loops, and non-determinism. In section

4.3, several examples of application of the SDA model in health care are introduced. In section 4.4,

a comparison between SDA diagrams and medical algorithms is made. Finally, section 4.5 contains

the conclusions of chapter 4.

4.1 Introduction

Clinical Practice Guidelines (CPGs) are systematically developed statements to assist health care

professionals and patient decisions about appropriate health care for specific clinical circumstances

[FL90](§2.3.1). CPGs are used to gather all the available evidence related to a disease. The main

arguments justifying the use of CPGs are: to provide a homogeneous practice, to improve the

quality, the equality and the equity of patient care, and to reduce costs [WGH+99][BTZ+01]. Some

CPGs include Medical Algorithms (MAs) [Mea92, Had95] (§2.4) as a means of summarizing some of

the medical procedures that the CPG describe. As defined by the International Society for Medical

Decision Making [Mea92], MAs are flowcharts that start with a clinical state box defining the clinical

state or problem, and then a combination of both, decision boxes representing “yes-no” questions

leading the process to alternative paths, and action boxes describing actions, either therapeutic or

78
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diagnostic. All these boxes are connected by arrows that show the logical sequence of application

of the MA. For example, the MA in figure 4.1 was published by the Institute for Clinical Systems

Improvement [ICS06] as a generalization of the long term treatment and follow up of hypertension.

This MA starts with a state box that identifies the patients with an elevated blood pressure (BP)

that must be confirmed, as the action box indicates. Then the patient is classified according to

whether BP is in stage 1 or 2 (see related table, in figure 4.1) and alternative treatments are

provided depending on the suspicion of secondary causes. This differentiation is represented with a

decision box : if there is an evidence that the BP condition is the result of a secondary cause, then

an action box orders additional work-up and it recommends considering referral to a specialist. If

there is not a secondary cause for high BP, lifestyle modifications and/or drug therapy define the

initial treatment. If this treatment is not efficient, then a change of treatment is started. If this

change of treatment does not improve BP, then the MA tells us to consider whether hypertension is

resistant or not. BP is defined to be resistant when the presure goals are not met despite compliance

with optimal doses of three antihypertensive drugs of different classes with one of the agents being

a diuretic. In the MA, if BP is not resistant, a second change of treatment is tried; otherwise the

patient is referred for consultation. Note that the level of abstraction of this MA is such that the

decision about the concrete drug therapy and the sorts of lifestyle modifications is left to the health

care professional since there is not an agreed configuration of drug treatments but many accepted

combinations.

Publication of CPGs aims at reducing medical errors and unjustified variations in medical prac-

tice, and also at supporting evidence-based medicine [BTZ+01]. Unfortunately, CPGs tend to be

published in a textual format. This and other factors reduce their possibilities of making them

known and applicable [CRP+99]. The idea of using a formal representation to describe and exploit

CPGs gave rise to the idea of Computer-Interpretable Guidelines (CIGs) [BTZ+01] [WPT+01] as

the way to make computers a means to make CPGs actionable. This idea has been the depart-

ing point of multiple and successful languages to formally represent CPGs as CIGs: Arden Syn-

tax [SHJ+94], Asbru [SMJ98], PROforma [FJR98], GLIF [OMGM+98, PBOea00], EON [TM99],

PRODIGY [JTB+00] and SAGE [BCH+02] (see §2.4 and §3.2.2). The approach of all these sys-

tems is to convey knowledge from human to machine structures, and then provide health care

professionals with computer machine tools to access and exploit that knowledge. Due to this man-

to-machine approach, we may conclude that all the systems to represent CIGs share, among others

[PPT+02, WPT+02, MvdAP07, IM08, WTSR10], two significant features which are: a great ex-
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Figure 4.1: ICSI medical algorithm for the treatment of hypertension.



81

pressiveness of their constructs, and a computer orientation. Expressiveness is required since they

have to provide a way to incorporate all the medical variability that may appear in a CPG, which is

potentially very high, in the CIG. On the other hand, the computer orientation of such systems is

the consequence that they are not designed to be directly applied by health care professionals but

through the use of computer tools, and therefore CIGs are computer structures rather than medical

structures.

As an alternative to these languages here, we propose the SDA model. The SDA model promotes

the representation capability (i.e. procedural knowledge in medicine can be represented with this

language) and simplicity (i.e. the understanding and management of the language does not need

hard training) in such a way that not only computers but also health care professionals are able

to work with it. The SDA model is based on the concept of MA but it is extended with several

elements to ease health care know-how knowledge representation, as for example, the use of states

as starting points that allow the execution of the chart from different points, the introduction

of time constraints to incorporate time restrictions in medical procedures, or the application of

non-determinism to represent alternatives in the treatments.

4.2 The SDA Model

The SDA model [Ria07] was defined as a combination of all the representation primitives that any

CIG system is expected to have (see §3.2.2) [PPT+02, WPT+02, MvdAP07, IM08, WTSR10] (i.e.,

actions, decision, patient states, execution states, sequences, concurrences, alternatives, and loops)

with the simplicity of MAs. This model is founded on the concept of term or vocabulary item in

the medical domain where procedural knowledge is being generated. These terms can be of the sort

state, decision, or action. State terms define the vocabulary that is used to describe the feasible

patient conditions and situations in the area of interest (e.g., terms as “Elevated_Blood_Pressure”

or “Following_Drug_Treatment” to establish a differential treatment). Decision terms are the

terminology that health care professionals use to condition the sort of treatment to be followed (e.g.,

terms as “Secondary_Cause_Suspected” or “BP_at_Goal” that may derive the course of professional

activities in one direction or another). Action terms are the way that medical, surgical, clinical or

management activities are defined (e.g., terms as “LifeStyle_Modifications” or “Drug _Therapy” are

respective examples of counsel and prescription, which are two of the types of medical actions that

may appear in the description of a treatment).
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4.2.1 The SDA Elements

State, decision and action terms are employed to construct three sorts of elements that once inter-

connected they describe a medical procedure. These elements are, respectively: states, decisions

and actions. States, which are subsets of state terms, represent patient conditions, situations, or

statuses that deserve a particular course of action which is totally or partially different from the

actions followed when the patient is in another state, for example, to differentiate between initial

treatment and subsequent treatments or between the different stages of a disease. Decisions allow

the integration of all the variability that a treatment may have by means of conditions on decision

terms which represent some of the available information about the patient and the current situation.

Actions, which are subsets of action terms, constitute the proper health care activities involved in

the health care procedure represented.

4.2.2 The SDA Knowledge Representation

The three elements of the SDA model (i.e., states, decisions, and actions) are combined to represent

procedural knowledge in medicine. This sort of knowledge can describe a diagnostic process (e.g.,

find out the patient disease or disease stage), a therapy (e.g. what are the steps to follow in

the treatment of a disease), or any other health care procedure. Similar to the MA notation,

the SDA model represents states as circles, decisions as rhombus, and actions as squares. These

elements are related with connectors (arrows) in order to provide a join representation of a health

care procedure. The connectors can be of three sort: plain connectors, decisional connectors, and

otherwise connectors.

• Plain connectors represent evolutions of the health care procedure that any patient is able to

follow.

• Decisional connectors link decisions with other elements, they contain decision terms, and

only the patients who meet all the terms in a connector are able to follow this connector.

• Otherwise connectors link decisions with other elements, they are identified with the word

’otherwise’, and only the patients who fulfil none of the connectors leaving a decision are able

to follow the otherwise connectors of that decision.

For example, figure 4.2 shows a transcription of the MA in figure 4.1 as a SDA in which the

treatment of all the patients arriving to the ”Initial State” evolve across a plain connector to a
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decision element in which only High_Risk patients may follow the decision connector that leads to

”LifeStyle_Modification” and ”Drug_Therapy”. The rest of the patients who are not in High_Risk

follow the otherwise connector towards a different treatment. All the initial treatments converge

to the ”Intermediate State” where all the patients are expected to be after the first encounter with

the health care professional. Connectors may have time constraints of the form [min, max]; min

representing the minimum time the process must stop before following the connector (e.g., wait two

hours before measuring BP again to confirm high BP), and max the maximum time the process

must stop before moving forward in the treatment (e.g., next visit must be scheduled for not later

than one week). For example, the time constrains [15d, 1m] in figure 4.2 means that ”after the first

encounter takes place a second encounter should be scheduled for between 15 days and one month”,

or [−, 1m] means that ”monitoring never delays more than one month” or [2d, 7d] means that ”if

a change of treatment does not reduce BP in a week, the case must be reconsidered”.

4.2.3 SDA Sequences, Loops, and Concurrences

The SDA model allows the description of sequences, loops and concurrences of medical procedures

in an intuitive way, by means of the element connectors. A SDA sequence connects one state with

a decision and each branch of that decision with an action. For example in figure 4.2, the elements

”Initial State”, ”High_Risk” and ”LifeStyle_Modification” and ”Drug_Therapy”, describe a SDA

sequence.

SDA sequences can be simplified with the elimination of one or several of the elements in the

SDA sequence. So, the elimination of the state must be interpreted as if there is not a health

care reason to describe the state of the patient at this point of care (e.g., lack of medical meaning,

medical irrelevance, cause of confusion, disagreement, etc.). Sometimes, the application of a set of

actions is mandatory for all the patients arriving to the SDA sequence. In this case the decision

element is eliminated from the sequence and only one action block with all the common actions is

connected after the state. Also, if a decision element is not enough informative to reach a conclusion

about the proper sort of actions to carry on or if the representation of all the possibilities with a

single decision is confusing, then the action block must be eliminated from the SDA sequence in

order to chain several decisions one after the other. See, for example, decisions after the initial state

in figure 4.2.

SDA sequences can be concatenated one after the other in order to define complex and long

medical procedures. See for example in figure 4.2 the concatenation of sequences starting in “In-
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Figure 4.2: SDA for the hypertension treatment.
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termediate State” and following the otherwise branches (i.e., no High_Risk, no secondary cause

suspected, and no “BP at goal”), and a “Change of Treatment” that deserves “monitoring” if BP is

finally at goal.

SDA loops are defined as repeated sequences of elements in a SDA procedure. Loops may be used

to represent repetitions in a medial process or jumps to an already previously observed situation

in the course of action followed. Loops in this model do not have explicit termination conditions;

the exit of a loop occurs when one of the decisions of the loop drives the patient to an outgoing

connection which is not part of the loop. For example in figure 4.2, the elements ”Intermediate State”,

”High_Risk”, ”LifeStyle_Modification”, ”Change_Treatment” and ”Intermediate State”, describe a

loop.

SDA concurrence is described as a set of actions that should be executed in parallel. In the SDA

model, there are two alternative ways to represent concurrences: on the one hand, when several

actions are part of the same action element (e.g., ”LifeStyle_Modification” and ”Drug _Therapy”),

this means that all of them are started simultaneously in time.

4.2.4 Non-Determinism in SDAs

Determinism is the principle by which every event, act, and decision (called effect) is the conse-

quence of some antecedents (called cause). In health care, causes can be medical, surgical, genetic,

environmental, managerial, familiar, social, etc. Therefore, non-determinism states that in health

care there are events which do not correspond to a cause. Historically, there have been defined

three sorts of non-determinisms [Cla05]: one that holds that some events are uncaused (e.g., from

a practical point of view, in health care, uncaused events are equivalent to events with an unknown

unfindable cause), another one that holds that there are non-deterministically caused events (e.g.,

a health care professional that follows alternative therapies for equivalent cases without an explicit

explanation), and the third one that holds that there are agent-caused events (e.g., external events

like the arrival of a patient whose health condition allows the treatment to start at different points).

Independently of the semantics of non-determinism, the SDA model can deal with all the above

sorts of non-determinism. In this sense, the SDA model defined three sorts of non-determinism:

type 0, type I and type II.

• Type 0 non-determinism describes the situation in which a patient with a particular con-

dition can match several states. This means that the treatment of the patient can non-

deterministically start different alternative treatment sequences.
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• type I non-determinism describes the situation in which the condition of a patient can satisfy

several branches of the same decision, and therefore the treatment can follow alternative paths

at the same point of decision.

• type II non-determinism describes the situation in which either a state or an action is con-

nected to several elements causing the treatment to follow one out of several alternative

evolutions.

In a SDA diagram these three sorts of non-determinism can be interpreted in this way: when a

patient arrives, all the SDA states whose state terms are observed in the current patient condition

are eligible to start the treatment. If several states are eligible, a health care professional has to

decide the one to start at among all the eligible states (type-0 non-determinism). Once this is

decided, the connectors are followed until either a non-eligible state is found or a connector with

a positive min delay is reached. In this process, all the actions of the followed path are the SDA

recommendations for the treatment of that patient. When a decision is reached, all the outgoing

decision connectors whose decision terms are part of the patient condition are eligible to determine

the treatment of that patient. If only one decision connector is eligible, the connector is followed.

If there are several eligible connectors, then a health care professional has to choose one of them

to follow the treatment (type-1 non-determinism). If none of them is eligible, but there is an

otherwise connector, then this connector is followed. If several otherwise connectors exist, then a

health care professional decides which one is the one to be followed (this is also considered type-1

non-determinism). In case that there are several plain connectors leaving a state or an action, all

of them are eligible and it is the health care professional who has to decide the one to be followed

(type-2 non-determinism).

In our medical context, non-determinism is only observed when there is not a single accepted

and evidence-based procedure to deal with a particular situation and the choice criterion between

the alternatives is not defined.

4.3 Examples of SDA Diagrams

The SDA model has been tested in the context of the K4CARE project (www.k4care.net) where it

has been successfully used to represent different sorts of procedural knowledge in medicine, partic-

ularly in home care. In this context, the SDA model has been used to represent home care services

and procedures, and formal intervention plans.
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In K4CARE, a service is any home care activity related to the attention of a particular patient,

and a procedure is the implementation of a home care service by means of the combination of actions.

Examples of these sorts of services are the ones listed in table 4.1 [CARea06]. The patient care

services are classified into problem assessment, intervention plan definition, and intervention plan

performance. All the services for assessing the problem aim at diagnosing the patient situation and

reevaluating in time the results of the intervention. The services to define the intervention plan aim

at choosing the most promising course of actions (i.e. treatment) based on the individualization of

best practice. The services to perform the intervention plan are those addressed to the application

of the intervention plan to the concrete home care patient. The intervention plan includes and

defines the means and modalities aimed at evaluating results and measuring the implications of the

application of the intervention plan itself.

Some examples of procedures based on SDA model are depicted in figures 4.3 and 4.4. The

procedure in figure 4.3 implements the patient care service Comprehensive Assessment. This service

is devoted to detect, in home care, the patient diseases, conditions, and difficulties, from both the

medical and social perspectives. It is performed at admission, at periodical and at end-treatment

re-evaluation times defined inside the individual intervention plan, but also in case of emerging

peculiarities during the follow-up. The procedure in figure 4.4 implements the patient care service

of planning an intervention plan. This service represents the course of actions to be performed

in order to provide care to a home care patient in terms of treatment and support. It aims at

taking care of diseases and conditions, with the goal of improving functions and self-dependency.

It includes a social assistance program to provide and start up all the social services the home care

patient needs, including social, financial, and legal support.
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Patient Care Services

I. Problem Assessment and Re-Evaluation

1. Comprehensive Assessment (CA)

2. Multi-Dimensional Evaluation

3. Clinical Assessment

4. Physical Examination

5. Request of Diagnostic Examination

6. Request of Laboratory Analysis

7. Consultation

8. Social Needs and Social Network Assessment

9. Follow-up

II. Intervention Plan Definition

1. Planning Intervention Plan

2. Prescription of Pharmacological Treatment

3. Prescription of Non-Pharmacological Treatment

4. Prescription of Nursing Care

5. Prescription of Assistive Devices

III. Intervention Plan Performance

1. Case Management

2. Special Medical Services

3. Nursing Care

4. Social Assistance

5. Counselling

Table 4.1: List of health care service and procedures defined within K4CARE project
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Figure 4.3: K4CARE procedure for comprehensive assessment.
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Figure 4.4: K4CARE procedure for planning of intervention plan.

In K4CARE, formal intervention plans (FIP) are formal structures representing the health care

procedures to assist patients suffering from particular diseases or syndromes. The K4CARE project

provides a family of FIPs for fifteen of the most common syndromes, diseases, and social issues in
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home care1. The full list of these syndromes, diseases, and social issues is provided in table 4.2.

These FIPs are represented as SDA diagrams and they are validated and ready, after professional

authorisation, to guide the treatment of the K4CARE patients [CRea08a, Cea08, CRea08b].

Syndromes, Diseases and Social Issues
A. Syndromes

SY1.0 Cognitive Impairment
SY2.0 Immobility

B. Diseases
DI01.0 Anaemia
DI02.0 Arthritis
DI03.0 cerebrovascular diseases
DI04.0 Chronic ischaemic heart disease
DI05.0 Chronic Obstructive Pulmonary Disease
DI06.0 Decubit ulcer
DI07.0 Delirium
DI08.0 Dementia
DI09.0 Depression
DI010.0 Diabetes
DI011.0 Heart failure
DI012.0 Hypertension
DI013.0 Iatrogenic cognitive impairment
DI014.0 Parkinson disease

C. Social Issues
SI01 No Family support
SI02 Low Income
SI03 No Social-network
SI04 Bad Environment
SI05 Insanity

Table 4.2: List of FIPs based on SDA model to represent health care procedures

Some examples of FIPs are depicted in figures 4.5 and 4.6 [CRea08b]. These SDA diagrams

were directly constructed by health care professionals from the MA on the recognition, assessment,

treatment, and monitoring of Anaemia [AMD] that is shown in figure 4.7 and the MA on the

treatment of Chronic Heart Failure [NHS, ESC] that is shown the figure 4.8, respectively.
1The codification used to the syndromes, diseases and social issues is the standard provided by the “International

Classification of Diseases, Injuries and Causes of Death, 10th revision Clinical Modification” (ICD-10-CM).
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Figure 4.5: SDA diagram on the recognition, assessment, treatment, and monitoring of anaemia.



93

Figure 4.6: SDA diagram on the treatment of chronic heart failure.
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Figure 4.7: MA on the recognition, assessment, treatment, and monitoring of anaemia.
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Figure 4.8: MA on the treatment of chronic heart failure.

An important feature of SDA model is that the SDA knowledge can be translated without any

complexity in other knowledge representation structures such as CIG Systems (see §2.4 and §3.2.2).

For example, the SDA knowledge shown in figure 4.5, which represents the management of anemia

disease can be translated into languages to represent CIGs such as Asbru and Proforma, it is shown

in the figures 4.9 and 4.10, respectively. In both examples, only the general plan and the assessment
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plan of anaemia have been translated.

In Asbru, the anemia plan has an intention of ”manage anaemia / symptoms / causes”, a

condition (abort-condition) of if ”risk of anaemia = false” and a plan body with four sequential

subplans: ”recognition plan”, ”assessment plan”, ”treatment plan” and ”monitoring plan”. Likewise,

the assessment plan has an intention of ”identify/clarify causes of anaemia”, a condition (filter-

condition) of ”risk of anaemia = true” and a plan body with three sequential plans: ”determine

appropriateness of additional diagnostic of anaemia”, ”laboratory evaluation” and ”identify / clarify

causes of anaemia”.

Figure 4.9: SDA Knowledge translated to Asbru

In PROforma, the anaemia plan has an enquiry which defines requests for further information

or data. This is required before the anemia management can proceed with four plans: ”recogni-

tion plan”, ”assessment plan”, ”treatment plan” and ”monitoring plan”. In the assessment plan, the
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decisions of ”anaemia” and ”risk of anaemia” determine the actions to follow in the anaemia assess-

ment: ”determine appropriateness of additional diagnostic of anaemia”, ”laboratory evaluation” and

”indetify/clarify causes of anaemia”.

Figure 4.10: SDA Knowledge translated to PROforma.

4.4 Comparison of SDAs with MAs

SDAs do not only comply with the representation primitives required to CIGs [Ria07] (i.e., actions,

decision, patient states, execution states, sequences, concurrences, alternatives, and loops), but

they also extend the expressiveness and the flexibility of MAs while maintaining their simplicity.

The main features of MAs [Had95] can be categorized as summarization, quality improvement, case

standardization, precision, and computerization. Summarization is the ability of MAs to summarize

at a glance the types of patients, as well as the range of management decisions and the strategies

addressed in a procedure described in a CPG. Quality improvement refers to MAs as elements to

improve the quality of CPGs since they have been shown to result in faster learning, higher reten-

tion, and better compliance with established practice standards than standard prose text [Had95].
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Case standardization refers to the fact that MAs are focused on the standard typologies of patients

described in the CPGs. Precision is the ability that, given a certain patient typology, the MA

proposes a precise set of actions to be performed. This beneficial feature is sometimes criticized

by part of the medical community arguing that MAs impose an excessive rigidity on health care

professionals who share the opinion that patients are too variable in their presentations and pref-

erences to encapsulate them within predefined roadmaps. However, this criticism is diminished by

the benefits of MAs. Computerization is the feature of MAs of being readily translatable into com-

puterized formats, which permits the systematic application of CPGs recommendations improving

the quality of the medical assistance.

SDA diagrams extend the above features with the possibility of representing long term proce-

dures, multiple entry points, multi-term decisions and non-determinism. Firstly, the presence of

states for the different stages of a certain disease or disorder lets the SDA model to depict several

treatments in an integrated diagram allowing the representation of long term procedures. Another

feature of the SDA model is that it can deal with multiple entry points corresponding to the states

that represent the different initial patient conditions and, therefore, not only to integrate the treat-

ment of all these conditions in a single diagram, but also to address each patient directly to the

corresponding part of the treatment. SDA diagrams also extend the expressiveness of MAs using

multi-term decisions. In MAs, decisions are always [Mea92] yes-no questions but, in the SDA model,

decisions may have more than two branches with different decision terms in each one of them. In

addition, each decision may have alternative otherwise branches which are followed by the patients

that fulfil none of the other branches. This results in a more readable sequence of decisions and also

is a more compact representation of treatments. Finally, the rigidity and strictness of MAs, previ-

ously referred to as their main criticism, is reduced in the SDA model which increases the flexibility

of CAs by dealing with non-determinism. Non-determinism is frequent in medicine and it allows the

participation of health care professionals when there is not proven evidence on a unique or better

treatment. The SDA model distinguishes between type-0, type-1, and type-2 non-determinisms (see

§4.2.4).

4.5 Conclusions

The development of a knowledge-based model for the planning activity in the medical assistance is

one of the objectives of this thesis. Therefore, aspects of its solution are exposed as conclusions of

chapter 4, in form of points:
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• With the purpose of solving problems of planning activity in the medical assistance, we have

introduced a novel model, called SDA model, to represent know-how knowledge in medicine.

• The SDA model is presented as a alternative to the current CPG representation languages

which convey knowledge from human to machine structures.

• The SDA model is based on the concept of MA but it is extended with several elements (i.e.,

multiple states, multivalued decisions, otherwise connectors and non-determinism) to ease

health care know-how knowledge representation.

• The SDA model was defined as a combination of all the representation primitives that any

CIG system is expected to have (§3.2.2) (i.e., actions, decision, patient states, execution states,

sequences, concurrences, alternatives, and loops) with the simplicity of MAs.

• The knowledge of the SDA model can be easily translated to other knowledge representation

structures such as CIG systems (see §3.2.2).

• The SDA model can deal with the sorts of non-determinism that are found in decision process

in medical assistance.

• In the SDA model, the know-how knowledge has two purposes: (1) provide an explicit rep-

resentation of long-term therapies that integrate differential treatments that are conditioned

both to the patient condition and also to the patient feasible evolutions, and (2) allow the

exploitation of this knowledge by a decision support system that could recommend medical

actions in the treatment of concrete patients. This second purpose is achieved with the exe-

cution of SDA know-how knowledge. Given a patient, the SDA is used to suggest a treatment

composed of the action terms contained in all the actions in one of the paths of the SDA.

The possible paths are those starting in the eligible states, continuing through one of the

possible sequences of connectors that the patient satisfies, and ending when the path reaches

a non-eligible state or a connector with a time delay representing a momentary stop in the

treatment.

The SDA model has been widely tested and evaluated in the context of the K4CARE project

(www.k4care.net). The SDA model was successfully used to represent different sorts of procedural

knowledge in medicine related to the procedures that implement the home care services and 21

formal intervention plans that represent the more common syndromes, diseases and social issues in

home care.



Chapter 5

Automatic Generation of Know-How Knowledge in

Medical Assistance

In this chapter we propose a methodology to automatically induce state-decision-action (SDA)

diagrams from health care databases and electronic health records in order to show health care

professionals an explicit representation of the past health care procedures and to use these repre-

sentations to study their deviations with respect to official and predefined protocols and medical

algorithms.

To describe the induction methodology of SDA diagrams, this chapter is organized in five sec-

tions. Section 5.1 describes the context of our work introducing the different ways of generating

know-how knowledge in medicine. Section 5.2 proposes the methodology to induce know-how knowl-

edge as SDA diagrams from health care databases. The results of our work are presented in section

5.3. Finally, a discussion of the work and some conclusions are reported in sections 5.4 and 5.5,

respectively.

5.1 Introduction

The databases of health care centres are an unavoidable source of information about the medical

procedures followed in these centres. They can be the basis for important studies on the adherence

of the treatments to the medical standards that are published as clinical practice guidelines (CPGs),

and also to foster quality, equality, equity, and cost reduction of medical procedures. This sort of

studies for the analysis of health care procedures can be carried out using either a statistical [Mur04]

or a symbolic [BR04, RLVT07] approach.

Currently, these medical procedures are obtained by systems that convey knowledge from hu-

100
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mans to machine structures, such as it was discussed in chapter 4. Contrarily, the approach of our

work is to convey knowledge in the opposite way, i.e., from computers to health care profession-

als. With this machine-to-man approach, the knowledge obtained is not necessarily based on the

medical evidence but on the experience of the medical daily practice. Some previous works (§3.3.3)

in medicine on this approach include the induction of clinical pathways represented as Petri Nets

[vdAvDH+03, vdAWM04, MSL+08] or as causal Bayesian Networks [MC07]. However, the struc-

tures induced by those systems are not explicit medical structures that health care professionals

are as familiar to work with as with MAs. Moreover, Bayesian Networks are not used to represent

guidelines in the strict sense of continuous long-term care [MC07] but punctual decisions in diag-

nostic and prognostic reasoning, treatment selection, or discovering functional interactions between

genes [LvdGAH04]. On the contrary, we propose a process which starts with the data stored either

in health care centre databases or in electronic health records, then these data are analyzed by a

machine learning methodology to induce health care knowledge structures that represent the health

care procedures carried out in the health care centre in the long-term and in a format that health

care professionals are familiar with. The final purpose of these knowledge structures is to show

health care professionals an explicit representation of the past health care procedures and to use

these representations to study their deviations with respect to official and predefined protocols and

MAs.

Therefore, this chapter introduces a novel methodology to the automatic generation of MAs

for the analysis of the health care procedures followed in health care centres. These health care

procedures are represented with SDA diagrams introduced in chapter 4. The methodology has

been implemented and tested on the databases of the SAGESSA Group [SAG] for patients with

hypertension.

5.2 Automatic Generation of SDAs

Health care databases are a potential source of knowledge on the medical procedures followed

in health care institutions. The difficulty of dealing with hundreds or thousands of data can be

overcome with the use of intelligent machine learning algorithms that make the knowledge behind

these data explicit. We propose a methodology to generate SDA diagrams that generalize health

care procedures from health care databases. These SDA diagrams are induced by maximizing the

adherence to the data while maintaining its capability of generalization. Figure 5.1 shows a diagram

of the proposed methodology.



102

Figure 5.1: Scheme of the automatic generation of SDA diagrams.

This methodology is based on two initial structures, the EOC database and the set of rules, which

contain, respectively, patient data from a health care centre whose structure fulfils a predefined EOC

data model, and some user-defined translation rules which are used in a preprocessing step to adapt

the data of the EOC database to the terminology the final users want the resulting SDA to have.

The data obtained after the preprocessing step is used to generate the final SDA diagram by means

of a machine learning method.

All these elements (i.e., the EOC data model, the translation rules format, the data preprocessing

step, and the machine learning method) are described in the next subsections.

5.2.1 The EOC Data Model

An episode of care (EOC) of a particular patient is the sequence of encounters aiming at curing,

stabilizing, or palliating one or several of that patient’s ailments [HHJ85]. Concerning a single

encounter, the standard behaviour of a health care professional is to observe the current state

and antecedents of the patient (i.e., the patient condition) and then decide some actions. Observe

that some evidence may exist that justify these actions. Therefore within the same encounter,

several health care measures may coexist containing, each one, the evidence to a subset of the

actions performed during that encounter. For example, in the hypertension domain, for a particular

encounter the health care professional may decide both a drug therapy based on the evidence that

the patient is at high risk of cardiac disease, and a recommendation to modify the patient lifestyle,

due to the presence of cholesterol.

A simplified formalization of the EOC data model can be seen in table 5.1.

Here, the patient condition, the health care actions, and the medical evidence supporting these

actions are described as a list of state, decision, and action terms, respectively. For example, the
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episode of care ←− sequence of encounters
encounter ←− patient condition + list of health care measures
patient condition ←− list of state terms
health care measure ←− evidence + action
evidence ←− list of decision terms
action ←− list of action terms

Table 5.1: Simplified formal description of the EOC data model.

MA depicted in figure 4.1 [ICS06] (§4.1) to diagnose and treat hypertension, contains the following

indications:

• A patient in a encounter can be in one of the following four possible alternatives patient

conditions:

– Screening and identification of elevated blood pressure (BP) in patients with diabetes,

chronic kidney disease, heart failure or CAD.

– Initial assessment completed (i.e., evaluated, accurately staged, and complete risk as-

sessed).

– Hypertension is suspected to be caused by secondary causes.

– Hypertension is under control and a continuing care must start.

• The health care actions proposed are:

– Confirm hypertension on the initial encounter, plus two follow-up encounters with at least

two BP measures at each encounter; following standardized BP measurement techniques,

including home BP measurements.

– Consider a thiazide-type diuretic as initial therapy in most patients with uncomplicated

hypertension.

– For many patients, two or more drugs in combination may be needed to reach hyperten-

sion goals.

– Refer to hypertension consultation.

• The medical evidence that support these health care actions are:

– Is a second cause of hypertension suspected?.

– Is a blood pressure at goal? (i.e., within normally limits).
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– In it a resistant hypertension? (i.e., when blood pressure goals are not met despite

compliance with a triple drug regimen that includes a diuretic).

5.2.2 Translation Rules

In order to convert the data in a health care centre EOC database to the EOC data model, we use

translation rules. The purpose of this conversion process is not only to have a means to adapt any

EOC database to a common format (data formatting), but also the way to decide which are the

state, decision, and action terms that we want our final SDA be expressed with (data filtering), and

the way to transform the data in the EOC database into medical terms (data discretization). The

set of translation rules must be provided by an expert whose effort is proportional to the number

of terms that we want the SDA diagram to contain and to the number of database columns related

to these terms.

Given T a set of terms and C the columns of the EOC database that contain the information

about the states, decisions and actions of the health care procedures in a health care centre, a

translation rule is an expression of the form t ← p, where t is one of the terms in T and p is a

constraint on some of the columns in C. For all the encounters in which the patient fulfils p, the

translation rule is triggered generating the output term t.

There are two kinds of translation rules, one for state and decision terms and another one for

action terms. In the first kind, t is either a state or a decision term and p is a conjunction of

conditions of the form {c s val} where c is one of the columns in C, s is one of the comparison

symbols =, <, >, ≤, ≥, <> or the same symbols preceded by an exclamation mark (!) meaning the

negation of the symbol or unknown value; and val is either a numerical, multi-valued or Boolean

value, or another column. For example, the translation rule 5.1 will introduce the decision term

“Resistant_Hypertension′′ in all the encounters of the database in which the observed systolic

blood pressure (SBP) of the patient is greater than 140 mm Hg and the current treatment comprises

two or more drugs.

In the second kind of translation rules, t is a SDA action term and p is a conjunction of columns

of the database. For example, the rule 5.2 will introduce the action term “Drug_Therapy′′ in all

the database encounters in which the patient is prescribed with DIUREX_20MG.

Resistant_Hypertension ← {SBP > 140} & {NUM-DRUGS ≥ 2} (5.1)

Drug_Therapy ← DIUREX_20MG (5.2)
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5.2.3 Data Preprocessing

The preprocessing step in figure 5.1 uses a set of translation rules to adapt the data in a EOC

database to the terminology that we want for the final SDA. This preprocessing is justified, firstly,

by the fact that the database may contain numerical, multi-valued or Boolean values and we may

not need such amount of variability in the final SDA. Secondly, from a medical point of view, it

may be of some interest to reflect only part of the treatment or different perspectives of the same

treatment, instead of the complete treatment registered in the EOC database. For example, if

we are only interested in the nursing activities or in the treatment of critical cases. So, part of

the data should be left out of the learning process or generalized in a different way. Finally, data

preprocessing is useful to integrate data from different health care centres which may use different

terminology. In these cases, preprocessing can be used to format, filter and discretize data from

different sources and make these data homogeneous before the machine learning process is started.

Translation rules perform operations on the domain terminology such as generalization, exten-

sion, removal and replacement. Generalization allows a common term to represent different con-

ditions. Formally expressed, generalization is when a unique term t represents several constraints

p1, p2, ..., pn within the database (i.e., t ← pi with i = 1..n). For example if we consider the rules

5.3 and 5.4, the action term “Drug_Therapy′′ will generalize the prescription of either DIUREX

or DILUTOL.

Extension is the operation of increasing the vocabulary with synonyms. Formally expressed, we

may require that different terms t1, t2, ..., tn represent the same constraint p of the database (i.e.,

ti ← p with i = 1..n). For example, the constraints on Systolic Blood Pressure (SBP ) and Diastolic

Blood Pressure (DBP ) in the rules 5.5 and 5.6 give rise to the decision terms “Grade_I/II_BP ′′

related to the blood pressure level of the patient, and “High_Risk′′ related to the cardiovascular

disease risk.

Removal is used to avoid the use of some of the columns in the database because they are not

of our interest. For example, if none of the rules contain BILIRUBIN then the final data will not

take into account this information about the treatment, and the final SDA will describe a treatment

without considering bilirubin.

Finally, replacement consists in substituting a health condition by an equivalent term. Formally

expressed, replacement is the operation of using the term t to refer a constraint p in the database
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(i.e., t← p). For example, the state term ′′Initial_State′′ is used in our tests to refer the encounters

whose date is equal to the date in which the EOC started. This replacement is achieved with rule

5.7, E-DATE meaning the date of the encounter and EOC-DATE the date when the EOC was

created during the first visit.

Drug_Therapy ← DIUREX_20MG (5.3)

Drug_Therapy ← DILUTOL_10MG (5.4)

Grade_I II_BP ← {SBP ≥ 140}&{SBP ≤ 179}&

{DBP ≥ 90}&{DBP ≤ 109} (5.5)

High_Risk ← {SBP ≥ 140}&{SBP ≤ 179}&

{DBP ≥ 90}&{DBP ≤ 109} (5.6)

Initial_State ← {E-DATE = EOC-DATE} (5.7)

5.2.4 The Machine Learning Method

Provided the preprocessed data, once it is structured according to the previously described EOC

data model, it is possible to generate a SDA diagram that generalizes the individual treatments as

a global treatment. The proposed method is depicted in figure 5.2 and it involves five tasks: detect

states, detect actions, determine evolutions, determine actions, and integrate all the components in

a final SDA.

Figure 5.2: Generation of SDA diagrams.
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Task 1: Detecting states

After preprocessing the database with the translation rules, the obtained data is used by an inductive

learning method to generate a SDA diagram that generalizes all the individual treatments. In order

to detect all the states that will be part of this SDA, we apply an automatic method which is based

on a function of similarity between states. The method is as it follows. Being S1 = {s11, s12, ..., s1m}

and S2 = {s21, s22, ..., s2n} the respective sets of state terms of two encounters, each one representing

a state, then a similarity function between these states is defined as similarity(S1, S2) in equation

5.8. If this value is greater than a predefined threshold 0 ≤ α ≤ 1, these two states are considered

to be the same. The threshold chosen depends on the level of detail needed for the SDA diagram.

With α = 0 there will be only one state in the final diagram, and with α = 1 there will be as many

states as encounters with a different state are in the data.

Alternatively to the automatic detection of states, the user may define the SDA states wished and

the state terms that compose each one of these states. For example, the states S1 = {Initial_State}

and S2 = {Intermediate_State} in figure 5.4.

similarity(A,B) =
|A ∩B|
|A ∪B|

(5.8)

Task 2: Detecting sorts of actions

In order to detect all the sorts of actions that will be part of the final SDA, a similar method to

the one to detect states is applied. This is based on a function of similarity between actions. Let

A1 = {a11, a12, ..., a1m} and A2 = {a21, a22, ..., a2n} be the respective sets of action terms of two

encounters, each one representing a sort of SDA action, then a similarity function between A1 and

A2 is defined as the quotient similarity(A1, A2) in equation 5.8. If it is greater than a predefined

threshold 0 ≤ β ≤ 1, these two sorts of SDA actions are considered to be the same. The threshold

chosen depends on the level of detail needed for the SDA diagram. With β = 0 there will be only

one sort of action in the final SDA diagram (i.e., the same exact treatment is applied to all the

admitted patients), and with β = 1 there will be as many sorts of actions as encounters with a

different action are found in the data (i.e., any difference, small or big, is interpreted as a different

treatment).

Alternatively, the user may avoid the application of this process and define the available sort

of actions by choosing the action terms that compose each one of the wished actions. For ex-
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ample, A1 = {LifeStyle_Modification, Drug_Therapy}, A2 = {LifeStyle_Modification,

Change_Treatment}, etc. in figure 5.4.

Task 3: Separating patients who evolve in a different way from the same state

Once the states and the sorts of actions of the final SDA have been determined, the sequences of

decisions that determine the different treatments followed by the patients in the EOC database have

to be found. In a first stage, this is done by separating, for all the states Si obtained in task 1,

the encounters Ei of the patients in that state. In the EOC database, all these encounters evolve

to a next encounter or they are discharging encounters. The states of the patients in these next

encounters define different sorts of evolution that our learning process induces.

This process finds a combination of SDA decisions to partition Ei with a procedure that is

inspired in the split criterion used by the C4.5 algorithm [Qui93] for decision tree induction. This

procedure is the following:

A. Let D be the set of all the decision terms that appear in the encounters in Ei. For each

possible subset of decision terms D′ in D, a SDA decision is created with as many decisional

connectors as decision terms are in D′, plus an otherwise connector. Each one of the decisional

connectors is assigned a different decision term in D′.

B. The best of these SDA decisions is the one that, for each one of the encounters in Ei provides

a higher information gain [Qui93] about the state of the next encounter.

C. In the best SDA decision, each connector is related to the subset of encounters in Ei that

contain the decision term in the connector. All the encounters that contain none of the

decision terms in the SDA decision are grouped in an additional subset which is related to the

otherwise connector.

D. For each one of these subsets, the corresponding connector is linked to the resulting SDA

decision obtained after applying this same procedure with Ei that subset. The process is

repeated until all the encounters Ei correspond to patients that evolved from an initial state

Si to one same state Sj .

At the end, we have di a combination of SDA decisions which partitions the encounters of

patients in Si into several subsets of encounters Eij , each one containing the encounters of the

patients who evolved from Si to Sj . This process is represented as the first step in figure 5.3.
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Figure 5.3: Integration of states, decisions and actions in the SDA.

Task 4: Determining the correct action for the patients of each evolution

Once the patients who evolved from the same state Si to different next states Sj have been sep-

arated, each one of the combinations of SDA decisions di is extended with other combinations of

decisions that decide which is the SDA action that defines the treatment of the patients following

this evolution. The same process of task 3 is applied to all the subsets of encounters Eij but,

in this case, the selection of the best decision is based on the information gain about the sort of

action performed rather than on the expected next state. The process is repeated until all the

encounters in a subset correspond to patients that are treated with the same sort of action. We

call dij the combination of decisions which partitions Eij into several subsets Eijk, each one related

to patients who evolved from Si to Sj in the next encounter, receiving the treatment represented

by the SDA action Ak. This is represented as the second step in figure 5.3. During this partition

process, type-II non-determinism may exist if some encounters in the same subset have the same

decision terms but different medical actions. In this case, some of the decisions in dij may have

different decisional connectors with the same decision terms. A pruning process is incorporated to

reduce non-determinism. Given a threshold p%, during the whole process, whenever a subset of

encounters has less than p% of encounters with a same action, these encounters are removed from

the subset before any SDA decision is generated. If none of the actions appears in more than p%

of the encounters, then only the most frequent action is considered.

Task 5: Integration

The SDA diagram is obtained as an integration of the states, the sorts of actions and the combi-

nations of decisions obtained in the previous tasks as figure 5.3 summarizes. The states detected

in task 1 are the states in the final SDA. The root SDA decision of each di is connected after each

corresponding state Si. The root SDA decision of each dij is connected after the last decisional con-

nector of di that leads to Eij . Then, a SDA action of the sort Ak is placed after the last decisional
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connector of each dij that leads to Eijk. Each terminal action of dij is connected to the SDA state

Sj . Finally, since the same sort of action can appear several times in the SDA, all the identical

actions that lead to the same next state are unified into one single action in order to simplify the

final SDA.

5.3 Results

This methodology to generate SDAs from EOC databases has been tested using the patients treated

of hypertension in the SAGESSA Group [SAG] and the resulting SDAs analyzed from two points

of view: their ability to predict correct treatments and their similarity to already existing official

MAs.

5.3.1 Source Data and Preprocessing

The methodology has been tested on the medical domain of hypertension, which is one of the most

common chronic diseases. The EOC database was provided by the SAGESSA Group [SAG]. The

database contained 1,092 encounters of patients who were treated for hypertension.

With the purpose of studying the differences between the health care procedures of the EOC

database and some predefined official MAs, a set of translation rules was developed for each one of

the four MAs on hypertension provided by ICSI [ICS06], SIGN [SIG01], NHF [NHF08], and SEH

[SEH05]. These official MAs were represented as the SDA diagrams that are provided in figures

5.4, 5.5, 5.6, 5.7, respectively. Each set of translation rules was used to convert the data in the

EOC database to the terminology of each one of the respective MAs before the machine learning

methodology was applied, so that the SDA diagrams obtained and the MAs in figures 5.4, 5.5, 5.6,

5.7, could be compared. A total number of 379 operations were performed with translation rules.

These rules do not contain additional medical knowledge but only the matching between the data

in the SAGESSA Group database and the terminology used by the different official MAs.

The number of operations performed with the translation rules are summarized in table 5.2.

Removal is the most frequent operation because there were several columns in the database that

contained information that was not present in the official MAs (e.g., BILIRUBIN). All the

terms in the official MAs could be found in the EOC database; therefore, operations of the sort

extension were not necessary. The operations of generalization and replacement were used in all

four cases (e.g., LOW_SALT_DIET was replaced by the term ′′LifeStyle_Modification′′ and
′′LifeStyle_Measures′′ in ICSI and SIGN, respectively). The main differences are found in the
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Figure 5.4: SDA diagram obtained from MAs provided by ICSI for the treatment of hypertension.
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Figure 5.5: SDA diagram obtained from MAs provided by SIGN for the treatment of hypertension.
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Figure 5.6: SDA diagram obtained from MAs provided by NHF for the treatment of hypertension.
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Figure 5.7: SDA diagram obtained from MAs provided by SEH for the treatment of hypertension.
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number of generalization rules, this is so because the number of decision terms in NHF and SEH is

higher than in ICSI and SIGN, and more rules are needed to generate these additional terms.

Terms Operations
S D A Gen. Ext. Rem. Rep. Total

ICSI 2 4 5 7 0 75 4 86
SIGN 2 4 4 7 0 91 3 101
NHF 2 6 5 9 0 80 5 94
SEH 2 8 5 14 0 80 4 98

Table 5.2: Number of terms (State (S), Decision (D) and Actions (A)) and frequency of the opera-
tions (Generalization (Gen), Extension (Ext), Removal (Rem) and Replacement (Rep)) performed
with translation rules for each medical algorithm.

5.3.2 The Obtained SDA diagrams

The figures 5.8, 5.9, 5.10, 5.11, depict the SDA diagrams that were obtained from the EOC database

after preprocessing the data with the respective sets of translation rules. Due to the reduced

number of states the parameter α was fixed to 1, whereas β was recommended by the health

care professionals of the SAGESSA Group to be also 1 in order to obtain the most detailed SDA

diagrams possible on which these health care professionals performed a validation process. In this

process they were asked to assess several aspects of the SDA diagrams: flexibility (i.e., capacity of

the SDA diagrams to capture the treatment alternatives), generality (i.e., ability of the diagrams

to deal with the variability of patient cases), medical appropriateness (i.e., medical and clinical

correctness), common behaviour (i.e., capacity of the diagrams to capture usual treatments), level

of detail (i.e., the treatments in the diagrams have the appropriate degree of abstraction), and

comprehension (i.e., the diagrams are clear and easy to understand).

After the validation process the health care professionals evaluated satisfactorily all these aspects

and they remarked an outstanding performance with regard to flexibility, medical appropriateness,

level of detail, and comprehension. So, for example, they argued that all the diagrams describe

treatments that are more flexible than the corresponding official MAs depicted in figures 5.4, 5.5,

5.6, 5.7, because they include non-determinism in some of the decisions. For example in figure 5.8,

the decision on the left side has three decisional connectors with the decision term ′′High_Risk′′

leading to different actions. This reflects that some health care professionals of the SAGESSA Group

do not always act according to the MA indications, but providing alternative treatments under the

same circumstances of the patient. This behaviour was qualified as appropriate and common by
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independent health care professionals. Health care professionals also argued that the level of detail

of pharmacological treatment in the diagrams was adequate to the treatment of hypertension where

many correct drug combinations are possible for the same medical case.

Figure 5.8: ICSI SDA diagram induced from the EOC database for the treatment of hypertension.

Some structural differences can also be appreciated between the standard MAs in figures 5.4,

5.5, 5.6, 5.7, and the obtained SDAs in figures 5.8, 5.9, 5.10, 5.11. According to the EOC database,

the procedures carried out in the first encounter are more general than those proposed by the MAs.

For example, SEH uses BP , the associated clinical conditions (RF_TOD_DIAB_ACC)1 and the

risk levels (of types A and B)2 for making decisions in the first encounter (see figure 5.11) whereas

the corresponding health care professionals of the SAGESSA Group do only consider BP in the

first encounter (see figure 5.11), and leave the rest of conditions for later consideration. Another

difference is that SDAs include a third new state to represent patient discharge, which is depicted
1RF: Risk Factor, TOD: Target Organ Damage, DIAB: Diabetes Mellitus, ACC: Associated Clinical Conditions.
2Risk stratification according to SEH.
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Figure 5.9: SIGN SDA diagram induced from the EOC database for the treatment of hypertension.
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Figure 5.10: NHF SDA diagram induced from the EOC database for the treatment of hypertension.
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Figure 5.11: SEH SDA diagram induced from the EOC database for the treatment of hypertension.
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as an empty state.

Semantically, the treatments described by both MAs and SDAs are similar as it is suggested in

the analysis of quality of medical adherence.

5.3.3 Analysis of the Adherence

Medical adherence is defined as the extent to which real medical practices follow the suggestions of

medical standards. Here the analysis of the adherence is used both to verify that the methodology

introduced to generate accurate representation of medical procedures is correct (SDA-data analysis)

and also to validate the SDAs obtained with respect to several predefined standard MAs (SDA-MA

analysis). In both cases, the adherence was calculated in terms of type I and type II errors [Doa].

Type I error is related to the medical relevance of not taking the correct medical decision (e.g.,

forgetting a drug prescription when it is completely necessary) and type II error is related to the

medical relevance of taking a wrong medical decision (e.g., ordering a visit to a specialist when it

is not necessary). To calculate these errors in the SDA-data analysis, we register the deviations

between the treatment performed in each encounter of the EOC database and the treatment pro-

posed by the induced SDA diagram. In the SDA-MA analysis, for the list of all the possible patient

conditions and their probability provided by the health care professionals, we register the deviations

between the treatment suggested by the MA and the treatment proposed by the SDA diagram. In

both cases, each possible deviation of the treatment is given a certain medical relevance provided

by a health care professional. The addition of type I and type II errors is called here the total error.

The SDA-data analysis was performed to verify the correctness of the methodology, that is to

say, the level of adjustment of the SDA diagrams to the health care procedures within the database.

In table 5.3, the columns SDA-Data contain the weighted-mean of type I, type II and total errors

when the health care procedures in the EOC database were compared with those proposed by the

SDA diagrams in figures 5.8, 5.9, 5.10 and 5.11. The pruning in tasks 3 and 4 of the learning

process is the main reason for type I and type II errors. An average 5,1% of the medical orders in

the EOC database are not reflected in the SDA diagrams (type I error), and an average 0,3% of

medical orders suggested by the SDA diagram do not coincide with the database (type II error).

The SDA-MA analysis determines the adherence of the SDA diagrams to the official MAs in

order to study the resemblance of the health care procedures carried out in the SAGESSA Group

to some official and predefined standards. This serves as a way to determine which type of health

care assistance is rendered in a certain clinical centre. In table 5.3, the columns SDA-MA contain
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Type I Error Type II Error Total Error
SDA-Data SDA-MA SDA-Data SDA-MA SDA-Data SDA-MA

ICSI 0,070 0,160 0,004 0,016 0,074 0,176
SIGN 0,083 0,139 0,002 0,011 0,085 0,150
NHF 0,024 0,078 0,003 0,018 0,027 0,096
SEH 0,027 0,083 0,003 0,014 0,030 0,097

Averange 0,051 0,115 0,003 0,015 0,054 0,130

Table 5.3: Averange type I, type II and total errors obtained in the SDA-Data and SDA-MA analysis
of the adherence on hypertension.

the weighted-mean of type I, type II and total errors when the health care procedures of the MAs

were compared with those proposed by the SDA diagrams in figure 5.8, 5.9, 5.10, 5.11. The SDA

diagrams have an average type I error of 11,5% and an average type II error of 1,5% with respect

to the MAs. This means that the patients of the SAGESSA Group were approximately ten times

more under-prescribed than over-prescribed3, respect to official MAs. One of the reasons for this

difference is that in this work and for the disease under study health care professionals determined

that forgetting a medical action is more critical than performing it when it is unnecessary. For

example, the medical error of not doing a necessary monitoring of the patient can imply important

health consequences. On the contrary, planning an unnecessary monitoring can be a common

practice to corroborate the state of the patient, but with null health implications. Therefore, from

a medical point of view, type I error has to be greater than type II error.

Observe also that the health care procedures in the EOC database have a lower total error with

respect to the MAs provided by NHF and SEH, than to the MAs provided by ICSI and SIGN. This

indicates that the health care professionals in the SAGESSA Group act more closely to NHF and

SEH indications than to the ICSI or SIGN MAs. The interpretation of the health care professionals

of the SAGESSA Group to these results is related to the fact that health care in Spain is mainly a

public service coordinated by the Spanish National Health Ministry. This Ministry watches for the

national health care centres to provide an homogeneous assistance in all the Spanish regions and

it works together with national health societies, as the SEH, to disseminate health care guidelines.

Therefore, it is not surprising that the health care professionals in a Spanish health care centre as

the SAGESSA Group treat hypertension as it is recommended by the SEH. On the other hand,

the good adherence of the SAGESSA Group treatments to the MA of the Australian NHF was

unexpected but it also confirmed the similarities between NHF and SEH MAs.
3A patient is said to be under-prescribed when the received treatment lacks of some actions with respect to the

official treatment (i.e., a positive type I error). A patient is over-prescribed when the treatment followed contains
actions that are not explicitly recommended in the official treatment (i.e., a positive type II error). The under- and
over-prescription values in table III represent qualitative rather than quantitative measures of the medical errors.
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Some of the deviations observed in this comparative analysis between official MAs and real treat-

ments have been interpreted and justified by health care professionals as experience-based knowl-

edge which complements official MAs. For example, the MA of SEH (figure 5.7) proposes LifeStyle

_Modification for patients with Normal/Normal_High_BP, while the respective induced SDA (fig-

ure 5.11) recommends Monitoring in addition to LifeStyle_Modification. Health care professionals

argue that monitoring is highly recommended also for mild hypertension cases for preventive reasons.

5.4 Discussion

We are not aware of friendly machine-to-man methods in medical informatics available for inducing

know-how knowledge from health care databases and electronic health records using explicit medical

structures that health care professionals are familiar with. Nowadays this kind of knowledge is

represented with CIGs as a result of a knowledge engineering process.

Other approaches as the automatic construction of Petri Nets [vdAvDH+03, vdAWM04, MSL+08]

or causal Bayesian Networks [MC07] from health care data produce knowledge structures that are

not as familiar to health care professionals as MAs and they do not represent long-term treatments

[MC07] but punctual decisions in diagnostic, prognostic or treatment procedures, or gene analysis

[LvdGAH04]. Therefore the methodology introduced here is innovative because it automates the

induction of knowledge structures representing the long-term health care procedures carried out in

a certain health care centre in a manner that health care professionals may understand. Moreover,

the fact that this knowledge is represented using the SDA model (see chapter 4) offers several ad-

vantages with respect to the classical MA representation as, for example, the representation of long

term procedures, the identification of multiple entry points and the possibility of using multi-term

decisions and non-determinism.

All the tests presented in section 5.3 correspond to hypertension because the SAGESSA Group

was interested in the analysis of their databases for this particular disease. Hypertension is a

controlled well-known medical domain that affects a big percentage of chronic population, it is a

common disease of any health care centre and, therefore, the amount of data available in different

centres is (1) representative of the different sorts of treatments, (2) usually non-biased, and (3)

sufficient to apply the inductive learning methodology introduced in this chapter.

Moreover, on the contrary of other already analyzed diseases as Chronic Obstructive Pulmonary

Disease and certain cancers [RLVT07], hypertension is a medical domain with multiple available

official MAs and whose treatments are always described at the level of abstraction that avoids the
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extreme personalization of medical procedures (e.g., considering drug treatment instead of concrete

drugs). Both, having several official MAs and being adjusted to the level of abstraction of the

terms in these MAs were compelling conditions satisfied by hypertension but not by other diseases

considered.

The results obtained provide evidence on the correctness of the machine learning methodology

with an average total error of 5,4% when the generated SDA diagrams are compared with the health

care procedures in the source database. According to health care professionals, this percentage cor-

responds to some atypical cases. Observe that 94% of this error concerns to type I error (i.e.,

rejecting decisions which appear in the database of the health care centre) and 6% to type II error

(i.e., proposing additional decisions which do not appear in the database of the health care cen-

tre). So, the learning methodology shows a conservative behaviour with respect to the treatments

observed in the database. Furthermore, the methodology has been used to study the differences

between the health care procedures registered in the health care database of the SAGESSA Group

and four official and predefined standards [ICS06, SIG01, NHF08, SEH05]. These differences rep-

resent an average total error of 13% which is below 10% for NHF and SEH. For hypertension, this

means that health care professionals in the SAGESSA Group are following more than 90% of the

recommendations of official organizations.

5.5 Conclusions

The development of a machine learning methodology to solve problems of the planning activities

in diagnosis and medical-clinical treatment, is one of the objectives of this thesis. Therefore, the

aspects followed to achieve this objective are exposed as chapter 5 conclusions:

• Based on SDA model introduced in the chapter 4, in this chapter we have proposed a new

methodology to machine learn SDA diagrams from the databases of health care centres. These

structures represent know-how knowledge on the health care activities of such centres.

• A data model which is based on the concept of EOC is introduced as a means to provide a

common design for the health care databases to induce SDAs.

• The proposed machine learning methodology involves five tasks: detect states, detect actions,

determine evolutions, determine actions, and integrate all the components in a final SDA.

• A formalism to represent translation rules is also provided. This sort of rules is used to adapt
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and to translate the data in health care databases to the terminology that we want the final

SDA diagrams to have.

• The machine learning methodology proposed can be used for two purposes. On the one

hand, to generate SDA diagrams that serve as graphical representations of the health care

procedures carried out in health care centres. In this sense, we have tested it over the database

of the SAGESSA Group obtaining a SDA diagram which represents an average 94,6% of the

treatments in the database, only excluding some atypical cases. On the other hand, since SDA

diagrams are easily comparable to MAs, it is possible to use them to study the adherence of

these health care procedures to the official standards. Therefore, we have compared the health

care procedures of the SAGESSA Group with the standards defined by ICSI [ICS06], SIGN

[SIG01], NHF [NHF08], and SEH [SEH05]. The highest level of adherence has been obtained

for NHF and SEH with about 91,4% of treatment coincidence.

• All the results obtained in this chapter have been analyzed and evaluated by medical experts

of the SAGESSA Group who have also stated that the SDA diagrams obtained are easy to

understand and medically correct. Therefore, the proposed methodology provides a valid tool

to automatically induce know-how knowledge SDA diagrams from health care EOC databases.



Chapter 6

Automatic Generation of Know-What Knowledge for

Prognosis in Medical Assistance

In this chapter we propose a novel machine learning method to solve problems of the decision

activity in medical-clinical prognosis. This method uses an algorithm to induce partial orders on

the patient conditions of a disease. The induction process takes the data of the patients that are

registered in the hospital databases and that are described in terms of the variables that condition

the health state of the patient in the target disease, and produces a partial order that, together

with a state-transition diagram that represent the changes of condition of the patients in the health

care centre, is able to predict the evolution of new patients.

To describe the induction algorithm of partial orders, this chapter is organized in five sections.

Section 6.1 an introduction of the prognosis concept and their antecedents is realized. Section 6.2

formalizes the problem and proposes the structures that the algorithm in section 6.3 uses to induce

partial orders on the feasible patient conditions of a disease. Section 6.4 describes the tests and

the results of these algorithms on three sorts of cancer. The discussion of the work are exposed in

section 6.5 and, finally, the conclusions in section 6.6.

6.1 Introduction

As it was described in the state of the art of this document, medical-clinical prognosis is the

process by which the probable course and outcome of a disease is predicted (§2.1.3). Statistics and

Artificial Intelligence have traditionally faced this process with several methodologies as survival

analysis [Mac01, KM03, Roz06], regression analysis [MR88, KWD+91, TMGZ97, PM02, GBF+06,

LHHGR08], Bayesian networks [GADM02, RBW04, vGJT+07, PVTSS+07, SDM+09, SDBB09],

125



126

artificial neural networks [PM02, LWHS03, JAGRRJ+03, MSM+05, GBF+06, BBAM06, KTK08,

LHHGR08] (see §2.4 and §3.2.1). All these methodologies have been applied to predict medical facts

as survival, relapse, improvement, worsening, or death. These predictions depend on whether there

is a temporal restriction related to the prediction or not. Temporal restrictions may be represented

as a single point (e.g. probability of suffering a relapse “after one year”) or as multiple independent

points in time [Mac01] (e.g., probability of getting an improvement “within the next three months”).

Also, prognostic models are classified into those that predict on populations (e.g. patients that are

in a similar condition) and those others that predict on individuals [AHL01]. An additional feature

of the above methodologies is whether they are able to predict only one fact (e.g. survival) or

whether they are able to predict several facts simultaneously.

A feasible approach to obtain predictions on several facts simultaneously is based on the concept

of patient condition (concept introduced in §5.2.1), which represents the state of the patient con-

cerning a disease. Thus, finding out the probability of a patient to cure, to improve, to worsen, or

to die is equivalent to calculate how likely it is that this patient evolves from his current condition

to a condition representing cure, a better than the current condition, an equivalent to the current

condition, a worse condition, or the death condition, respectively.

All the possible patient conditions (i.e., states) of a disease define an order relation that rep-

resents the pair-wise comparison of the severity of the possible conditions in the disease. So, for

instance in breast cancer, stage IV (patients with metastasis) represents a patient condition that is

worse than stage I (where the tumour is less than 2 cm across and it is not spread). Unfortunately,

the severities of two patient conditions are not always comparable or, if they are comparable, it is

not always possible to establish one as clearly better than the other one. Therefore, the relationships

among the patient conditions of a disease in health-care are frequently represented with partial or-

ders (PO) [DM41] (§3.2.1) which for complex diseases as cancer they are created after an agreement

between experts. However, the so created POs are not necessarily designed to represent conditions

and relationships from a point of view of the severity of the disease but, for instance, to represent

the relationships among these conditions from a practical point of view like the sort of recommended

treatment is. This can foster differences between what the theoretical model represents (i.e., the

expert-based PO or standard PO) and what is really observed at the health-care centres (i.e., the

experience-based PO). For example, for the data of the SEER repository [SEE10] describing real

breast cancer cases, it is observed that 15% of these cases are in a condition whose severity does not

correspond to the severity of the stage indicated by the TNM Staging System [SW02] in figure 6.1.
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The reason for that is that the degree of severity of a particular patient condition is not necessarily

Figure 6.1: TNM staging system for breast cancer.

based on whether this patient fulfills a set of facts or not, but on the combination of the degrees of

severity of each one of the variables that define the state of a patient in a particular disease. For

instance, it does not seem very wise to admit patients with breast cancers of 2.0 cm in stage II (i.e.,

severity 2), and at the same time do not consider the possibility of a patient with a 2.1 cm tumour

to be in stages with severities below or equal to 2 just because the definition of stage II in breast

cancer sets the size upper limit in 2 cm. Following with the example, it could be the case that the

first patient with a 2 cm tumour has other complications affecting the seriousness of his disease,

making his condition more severe than the one of the second patient, and causing the prognostic of

the first patient not to be very accurate.

In order to support the correct joint analysis of the condition of a patient with respect to both

the standard PO and the experience-based PO, it is required to develop algorithms to derive POs

from the patient records stored in hospital databases. The purpose of this is twofold: on the one

hand, these algorithms can be used to generate new health-care knowledge on the feasible stages

of a particular disease, and on the other hand, they can be combined with probability theory to

increase the accuracy of prognosis on the evolution of a patient.
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6.2 Condition-Based Prognosis

In the process of making a prognosis about the evolution of the health of a patient within a proba-

bilistic framework, there are three main questions to be answered: what are the possible conditions

of a patient in the selected disease?, what sort of order there is to compare the seriousness of these

conditions?, and how the past evolutions registered in the hospital databases can be used to define

a probabilistic model to support the prognostic process?

6.2.1 Finding Disease Conditions

For each particular disease D, there is a set of descriptive variables V = {v1, ..., vk} with respective

domains Dom(vi); i = 1, ..., k. Each variable vi represents a property of the disease that is relevant

to understand the condition of the patients suffering from that disease. Each vi defines a severity

function si : Dom(vi) → [0, 1] that provides the degree of seriousness of each one of the values

that the variable can take. That is to say, si(v) is a value between zero and one representing the

severity of the condition of any patient for which vi takes the value v, zero being the lowest severity

(i.e., null), and one being the highest one. Slightness is defined as the opposite of severity (i.e.,

µi(v) = 1 − si(v)). For the sake of being positive, the rest of the chapter will be based on the

concept of slightness rather than on severity. So, Table 6.1 contains the slightness functions for the

variables of tumour size (T), nodes (N) and metastasis (M) in the breast, lung and uterus cancer.

These functions are derived from the information contained in the SEER repository [SEE10] and

may vary from other sources of information.

Given a set of variables V , the condition of a patient p (or patient condition cp) can be formally

described as an element of the set Dom(v1) × Dom(v2) × ... × Dom(vk) (i.e., cp = (a1, ..., ak),

ai being the value p has for variable vi), and the global slightness of cp in the disease D as a

combination of all the slightness functions of the descriptive variables. Many sorts of combinations

exist [FGE05], though here only the arithmetic mean is used. So, µ(cp) = 1/k ·
∑

i µi(ai) is the

function to calculate the global slightness of any patient condition with values a1, ..., ak in the

variables of V . This combination is possible since a correlation analysis of the data in the SEER

repository shows that T, N and M are mutually independent variables. Although they are not

considered here, alternative combination functions should be taken if the variables to combine are

not independent.

A patient condition of a disease D (or disease condition C) is defined as a restriction on the

domains of the variables of that disease. So, any disease condition can be formalized as C =
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(D1, ..., Dk) with Di ⊆ Dom(vi), i = 1, ..., k, and represents a common state of a set of patients

suffering from D. The set of all the disease conditions C1, ..., Cn of a disease D contains the

alternative states in which a patient of that disease can be.

For some diseases the set of disease conditions Ci are fixed and well defined, like in cancers

where the Tumour Node Metastasis Staging System (TNM) [SW02] was created by the American

Joint Committee on Cancer (AJCC) to describe the alternative conditions of diverse cancers; for

example, the stages 0, I, IIa, IIb, IIIa, IIIb, and IV in breast cancer that figure 6.1 extends with

the extreme conditions cure (left side C node) and death (right side D node).

In other diseases where there in not an agreed criterion on the set of conditions, these can be

obtained from the application of a non-supervised clustering algorithm on a representative sample

of patient conditions described in terms of the set of variables V . Two alternative sorts of clustering

algorithms can be applied: data clustering and conceptual clustering (§3.3.2). Data clustering

algorithms like kMEANS [Mac67] obtain clusters of similar patient conditions that are dissimilar

to the patient conditions in other clusters. On the contrary, conceptual clustering algorithms like

COBWEB [Fis87] obtain clusters as expressions describing the patient conditions contained in the

cluster, in terms of the variables in V .

The application of a clustering algorithm can be made directly on the values of the variables

in V (i.e. patient respective values a1, ..., ak) or, alternatively, on the values of the slightness

functions of the variables in V (i.e. values µ1(a1), ..., µk(ak)). Whereas the first option puts patient

conditions with similar descriptions in the same cluster, the second group of algorithms gathers

patient conditions with similar slightness values in the same cluster.

6.2.2 Sorting the Disease Seriousness

The global slightness function µ defines a complete order relation among the patient conditions that

can be described in terms the variables in V . So, for any particular disease, if ci and cj represent two

patient conditions and µ(ci) > µ(cj), we interpret that ci is better than cj . Nevertheless, this sort

of order relation cannot be extended to the comparison of disease conditions where two conditions

Ci and Cj of the same disease can not only represent one a worse state than the other, but also

incomparable states from the point of view of their respective slightness. This implies that, for any

disease D, the order relation of the feasible disease conditions is not necessarily complete.

Based in the definition of PO [DM41] introduced in section 3.2.1 and given a set of elements A,

a PO P ⊆ A × A on these elements is a binary relation such that P is reflexive (i.e., ei ∈ A ⇒
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(ei, ei) ∈ P ), anti-symmetric (i.e., (ei, ej) ∈ P and (ej , ei) ∈ P ⇒ ei = ej), and transitive (i.e.,

(ei, ej) ∈ P and (ej , ek) ∈ P ⇒ (ei, ek) ∈ P ). PO are typically represented as directed acyclic

graphs where all the edges that are deducible by transitivity (i.e., weak relations) are omitted.

A set of disease conditions {C1, ..., Cn} on a disease D defines a PO. This PO can be used to

know whether one condition is better or worse than other condition, or if they cannot be compared.

For example, figure 6.1 depicts a directed acyclic graph that represents the standard PO of the

breast cancer conditions according to the TNM staging system [SW02]. It shows, for instance, that

a patient in stage IIa is healthier than one patient in stage IIIa or IIIb (direct edge connection), or

IV (connected by edge transitivity), and not comparable in terms of slightness to patients in stage

IIb.

The difference between two POs P1 and P2 can be measured in terms of the cardinality of the

set (P1 ∪ P2)− (P1 ∩ P2).

6.2.3 Representing the Cases in Hospital DBs

In the previous section we showed how the conditions of a disease define a PO of their respective

slightness. This conceptual structure, however, is unable to represent the evolutions of patients in

time which are based on patient improvements, worsenings and stable periods. State-Transition

Diagrams are directed graphs that model behaviours in terms of states, transitions and actions.

Here, states stand for the conditions of a disease, transitions are the evolutions of the observed

patients as their conditions change in time, and actions remain unused. Formally speaking, if C

is a set of disease conditions of a disease D, a state-transition diagram is a pair (C, t) such that

t : C ×C → N is the transition function that, for each couple of disease conditions Ci and Cj in C,

t(Ci, Cj) is the number of patients whose conditions evolve directly from Ci to Cj . The inflow and

the outflow of a disease condition Ci can be calculated with the functions in(Ci) =
∑

j t(Cj , Ci)

and out(Ci) =
∑

j t(Ci, Cj), respectively.

If this model is used to represent the evolutions of a set of patients across the feasible conditions

of a disease, it must be extended with the admission and the discharge functions a : C → N and

d : C → N such that for any condition Ci, a(Ci) is the number of patients arriving in condition Ci,

and d(Ci) the number of patients leaving from (or still remaining in) condition Ci. See that, for any

disease condition Ci, a(Ci) + in(Ci) must be equal to out(Ci) + d(Ci). Then, if ni = a(Ci) + in(Ci)

represents the number of times any patient has been in condition Ci, and nt =
∑

i

∑
j t(Ci, Cj)

the number of changes of disease condition of all the patients registered in a hospital database, the
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probability of a patient to be in condition Ci is p(Ci) = ni/nt, the probability of a patient p in

condition Ci to evolve to Cj in one transition is p(Ci, Cj) = t(Ci, Cj)/ni, and the probability of

finding a patient that evolves from Ci to Cj is t(Ci, Cj)/nt.

The above function p(Ci, Cj) can be used to compute the probability of a patient to evolve from

one set of disease conditions A ⊆ {C1, ..., Cn} to another set of disease conditions B ⊆ {C1, ..., Cn}

in one step as Pr(A,B) =
∑

Ci∈A
∑

Cj∈B p(Ci,Cj). In its turn, this function, together with a PO

P on the disease conditions, can be used to make prognoses on the likelihood a patient gets cured,

improves, worsens, dies, or survives. See equations 6.1 to 6.5, respectively where Condition(p)

represents the current condition of the patient, cure is the condition of a healthy patient, and death

is the condition representing a deceased patient.

Pr(pcures) = Pr({Condition(p)}, {cure}) (6.1)

Pr(pimproves) = Pr({Condition(p)}, {C : (condition(p), C) ∈ P}) (6.2)

Pr(pworsens) = Pr({Condition(p)}, {C : (C, condition(p)) ∈ P}) (6.3)

Pr(pdies) = Pr({Condition(p)}, {death}) (6.4)

Pr(psurvives) = 1− Pr(pdies) (6.5)

6.3 Induction of Partial Orders

Condition-Based Prognosis as it was introduced in section 6.2 is a three step process that starts

with the determination of the conditions of a disease (here, we will consider the set of conditions

already available). Once the disease conditions are fixed, a second step takes the data of the

evolutions of patients in a health-care centre to induce both a PO on these conditions, and also

a state-transition diagram that contains the probabilities p(Ci, Cj) of evolving from any disease

condition Ci to any other disease condition Cj in the context of the selected health-care centre.

After that, a third step can be applied that consists on the utilisation of both structures to predict

the evolution of new patients: the PO provides the semantic meaning of what "cure", "improve",

"worsen", "die", or "survive" means in the context of the patient current medical condition, and

the state-transition diagram supplies the probabilities needed to compute the final prognostic value.

This section describes the procedures to carry out the second and the third steps.
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6.3.1 The Data Model

The data model used in the induction of POs is the EOC data model (§5.2.1). Here, an episode

of care (EOC) contains all the medical information about the treatment of one patient between

the date of admission and the date of discharge. Formally, if V = v1, ..., vk is a set of descriptive

variables of the patient conditions in a disease D and A = {a1, ..., ap} is a set of medical actions,

then an encounter e is a pair (c, a) such that c is a patient condition (i.e. c ∈ Dom(v1)×Dom(v2)×

...×Dom(vk)) and a is a subset of actions in A; an EOC is a sequence e1, ..., eq of encounters, and

the database is a list of EOCs.

6.3.2 The Statistical Model

According to the data structure described above, for any pair of disease conditions (Ci, Cj), we can

apply a statistical procedure to determine, in a first stage, whether there is an order relation between

Ci and Cj and, if there is one, in a second stage, decide which of the two conditions represents a

better state of the disease from a health point of view (i.e. the order of the relation between Ci

and Cj). Once all the pairs of disease conditions are considered, a statistically significant PO on

these conditions is obtained. Here, the above mentioned two stages are implemented as statistical

hypothesis Student’s t-tests.

In the study of a disease D, with {C1, ..., Cn} the set of all possible conditions of D, and

provided a database containing a representative sample of encounters of all the patients that have

been treated of that D, the description of the state of the patient in each encounter ek in terms of

the variables in V defines a patient condition ck with a slightness value µ(ck) (or µ̂(ck) in statistics

notation). Simultaneously, this patient condition ck classifies the encounter in one of the disease

conditions C1, ..., Cn.

Let us call Ek the set of the encounters in the database that are classified in Ck, and Sk = {(cj) :

ej ∈ Ek} the set of µ-values of their patient conditions. Then, for any pair of disease conditions Ci

and Cj , the respective sets Si and Sj are the two independent samples of a Student’s t-test with

null hypothesis the means of the slightness values of the elements in Ci and the elements in Cj are

equal, provided that the underlying distributions are normal.

Only if the null hypothesis is rejected, Ci and Cj have an order relation whose sense is evaluated

with a new Student’s t-test with null hypothesis the means of the slightness values of the elements

are larger in Ci than in Cj . Both t-tests are based on the t-value (equation 6.6) where µ’s, σ’s and

n’s represent the mean, standard deviation, and number of elements of the samples, respectively.
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β =
µ̄i − µ̄j√
σ2

i
ni−1 +

σ2
j

nj−1

(6.6)

6.3.3 The Induction Algorithm

The algorithm 1 allows the induction of POs under the previously described statistical model. This

algorithm realizes the induction process according to the data and the statistical models of sections

6.3.1 and 6.3.2, respectively. The final result of the algorithm is a PO that explains the slightness

degree of a disease in terms of the improvement or worsening between the conditions of a disease.

Algorithm 1 Algorithm to make PO
Require: C, data, α
Ensure: PO
{Let C = {C1, ..., Cn} be a set of conditions on a disease D}
{Let data = {EOC1, ..., EOCk} be a list of episodes of care of D}
{EOCi = {ei1, ..., eiki} the list of encounters in EOCi, i = 1..k}
{Let α the statistical significance of the test -e.g. 0.01}
β : float
PO = ∅ ; {empty PO on the set of disease conditions C}
for any pair of conditions (Ci, Cj) ∈ C × C do
Ei = {exy ∈ ∪zEOCz: Ci is the condition of the patient in encounter exy}
Ej = {exy ∈ ∪zEOCz: Cj is the condition of the patient in encounter exy}
Si = {µ(cx): cx is the condition of the patient in ex, for all ex ∈ Ei}
Sj = {µ(cx): cx is the condition of the patient in ex, for all ex ∈ Ej}
Calculate the t-value β according to equation 6.6
if |β| < tα/2 (first hypothesis test indicates Ci and Cj are related) then
if β > tα (second hypothesis test indicates Ci is better than Cj) then
Insert (Ci, Cj) in PO;

else
Insert (Cj , Ci) in PO;

end if
end if

end for
Write the order relation PO;

6.4 Testing Prognosis on Several Sorts of Cancer

In order to induce POs, we used the databases on the diseases breast cancer (55939 encounters), lung

cancer (19491 encounters) and uterus cancer (705 encounters) obtained from the SEER repository

[SEE10]. These databases contain information on patient conditions based on three variables:
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Tumour Size, Lymph Nodes, and Metastasis classified according to the TNM System [SW02]. Data

with unknown or missing values are removed from the databases. The distribution of these data

according to each disease condition is described in Table 6.2.

Cancer
Disease

Disease Conditions Total0 1a 1b 2a 2b 3a 3b 4a 4b
Breast 7073 25566 13387 6550 1456 940 967 55939
Lung 11 7298 1338 2629 3022 5193 19491

Uterus 51 242 203 79 45 5 80 705

Table 6.2: Distribution of episodes according to each disease condition.

Two sorts of tests have been performed on these databases: one that is used to compare the

difference between the standard POs which are proposed by the TNM Staging System [SW02], and

the experience-based POs obtained by the inductive algorithm introduced in section 6.3.3 when it

is applied on the proposed databases. The second test is about how these differences affect the

process of prediction on the facts of cure, improvement, worsening, death, and survival in breast,

lung, and uterus cancers.

6.4.1 Results on the Induction Process

Table 6.3 shows both the standard POs [SW02] and the POs that the proposed algorithm induces

form the three databases. The distances between the standard and the induced POs are 2, 1, and

2, respectively. These differences are caused either by the detection of new relations that were not

present in the standard PO or by the elimination of relations that do not achieve the statistical

significance level required to be part of the experience-based PO. So in breast cancer, the relations

IIa-IIb and IIIa-IIIb are statistically justified though they were not in the standard PO. A similar

case is observed in lung cancer with the relation IIIa-IIIb, and in uterus cancer with relation Ia-Ib.

In this last domain, the SEER repository does not provide enough evidence to keep the standard

order relation between stages II and III in the experience-based PO.

These single differences between standard and experience-based POs are cause of new differences

when the transitivity property is applied, and the final differences increase to 3%, 2%, and 10% of

the total number of binary relations, this meaning that 3, 2, and 10 out of 100 comparisons get

different responses whether the standard or the experience-based POs are queried.
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6.4.2 Results on the Condition-Based Prognosis

Equations 1 to 5 in section 6.2.3 are used to calculate the probabilities of improvement, worsening,

cure, death and survival in breast, lung and uterus cancers for both, the standard PO, and the

experience-based PO the algorithm in section 6.3.3 obtains for the data of the SEER repository

[SEE10], representing real patients.

In order to analyse the differences between the prediction values obtained with the utilization

of either the standard or the experience-based POs, the probabilities p(Ci,Cj) that are obtained

from the real evolution of a set of patients, are used to define a matrix of patient evolutions. Tables

6.4, 6.5, and 6.6 show the probability matrices employed to analyze these differences in the cases of

breast, lung, and uterus cancers, respectively.

Disease Conditions STND EXP
0 1 2a 2b 3a 3b 4 I W I W

0 1 0 0 0 0 0 0 0 0 0 0
1 0,6 0,2 0,1 0,1 0 0 0 0,75 0,25 0,75 0,25
2a 0,3 0,2 0,1 0,2 0,1 0,1 0 0,64 0,36 0,55 0,44
2b 0,1 0,1 0,2 0,1 0,1 0,2 0,2 0,36 0,64 0,44 0,55
3a 0 0 0,1 0,1 0,3 0,2 0,3 0,39 0,61 0,29 0,71
3b 0 0 0 0,2 0,3 0,1 0,4 0,25 0,65 0,55 0,44
4 0 0 0 0 0 0 1 0 0 0 0

Table 6.4: Probabilities of evolution among disease conditions in breast cancer

Disease Conditions STND EXP
0 1 2 3a 3b 4 I W I W

0 1 0 0 0 0 0 0 0 0 0
1 0,8 0,1 0,1 0 0 0 0,88 0,11 0,88 0,11
2 0,1 0,3 0,1 0,2 0,2 0,1 0,44 0,55 0,44 0,55
3a 0 0,1 0,2 0,1 0,2 0,4 0,39 0,61 0,33 0,66
3b 0 0 0,1 0,3 0,1 0,5 0,24 0,76 0,44 0,55
4 0 0 0 0 0 1 0 0 0 0

Table 6.5: Probabilities of evolution among disease conditions in lung cancer

Disease Conditions STND EXP
0 1a 1b 2 3 4a 4b I W I W

0 1 0 0 0 0 0 0 0 0 0 0
1a 0,4 0,3 0,1 0,1 0,1 0 0 0,68 0,32 0,57 0,43
1b 0,4 0,4 0,1 0 0,1 0 0 0,75 0,25 0,88 0,11
2 0,1 0,1 0,1 0,1 0,2 0,2 0 0,33 0,67 0,58 0,42
3 0 0 0,1 0,1 0,1 0,2 0,5 0,22 0,78 0,32 0,68
4a 0 0 0 0,1 0,1 0,2 0,6 0,25 0 0,25 0
4b 0 0 0 0 0 0 1 0 0 0 0

Table 6.6: Probabilities of evolution among disease conditions in uterus cancer
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6.5 Discussion

The probabilities of cure, death, and survival are identical for the standard and the experience-based

POs, as expected, since the conditions of cure and death are the same in both POs. However, the

predictions on improvement (I) and worsening (W) differ if we use one or the other POs, as the

numbers in bold indicates. Some of these differences cause the prognostic with the standard PO to

provide excessive “hope” (e.g., in uterus cancer, patients in stage Ia are given 68% of improvement,

whereas the experience says that only 57% will improve), or excessive “despair” (e.g., in uterus

cancer, patients in stage II get 67% of worsening, when reality shows that it is only 42%).

6.6 Conclusion

The development of a machine learning methodology to solve problems of the decision activity in

medical-clinical prognosis, is one of the objectives of this thesis. Therefore, the aspects followed to

achieve this objective are exposed as chapter 6 conclusions:

• In this chapter, we have introduced a new machine learning method to support decision

activities in medical-clinical prognosis.

• This method is based on partial orders and state transition diagrams to predict the evolution

of new patients.

• This method is able to predict several facts simultaneously (improvement, worsening, cure,

death and survival) unlike current methods based on statistics and artificial intelligence (§2.4

and §3.2.1) which, generally, they predict only a particular fact.

• The partial orders induced are built from real experiences happened in health-care centres

this showing the gap between the criteria to assess the patient condition proposed by medical

experts (standard partial order), and the criteria coming out of the medical daily situations

(experience-based partial order).

• Based on the tests realized in the section 6.4, we can conclude there are clear structural

differences between the standard POs proposed by the health care professionals and those

others that are induced from the data of the SEER repository [SEE10] about real patients. A

direct implication of these differences is that the prognosis about the evolution of patients may

change drastically. This effect has been confirmed with the results of the tests performed which
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may drive the health care professional to incorrect predictions of patient future improvements

and worsenings.

The work introduced in this chapter has been presented and published in the 11th Conference

on Artificial Intelligence in Medicine (AIME2007) [BRR07].



Chapter 7

Integral Modelling of Know-What and Know-How

Knowledge for the Medical Assistance Activities of

Diagnosis, Treatment and Prognosis

In this chapter we propose a integral, computable and knowledge based model that automate the

medical-clinical procedure for the decision and planning activities in the diagnosis, treatment and

medical-clinical prognosis.

To describe the novel medical-clinical procedure model, this chapter is organized in six sections.

In section 7.1 an introduction to the concept of medical-clinical procedure is realized. In section 7.2

a novel medical-clinical procedure model (MPM) is described, the sorts of AI problems in MPM are

determined and the MPM Knowledge Structures are defined. In section 7.3 the automatic induction

of MPM Knowledge is introduced. In section 7.5 the medical application of MPM is shown. This

application is tested on four real Clinical Cases. A discussion of the work is exposed in section 7.6

and, finally, the conclusions appear in section 7.7.

7.1 Introduction

In medicine, the concept of medical-clinical procedure (§2.1.4) is used to refer to a course of action

aiming to achieve a result in the care of one or more patients. Some of the most important medical

procedures are diagnosis (i.e., identification of a patient’s illnesses), treatment (i.e., health care given

to a patient), and prognosis (i.e., prediction of the probable evolution of a patient or disease). All

the evidence found about the medical procedures of one disease or syndrome is gathered together

in clinical practice guidelines (§2.3.1) and put into practice by means of specific protocols which are

140
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disease-driven plans implementing concrete medical procedures.

In the last decades, modern medicine has been influenced by several social and technological

changes that have affected the way that medical procedures are considered and modeled. Based on

the increment of life expectancy, one of the most important social changes is in the sort of average

patient arriving at the health care centres who can be described as a chronic comorbid elderly

patient. This sort of patient has forced a change of perspective of medical procedures that have

shifted from a disease-driven approach to a patient-driven approach, in order to be able to deal with

all the variability of the patient with a single holistic procedure. Currently, this change of perspective

is widely accepted by the health care community [Har09] and poorly addressed with methodologies

for merging and personalizing some specific procedures like medical treatments. In this chapter,

based on the Harrison’s principles [Har09], we propose a broader approach which integrates the

medical procedures of diagnosis, treatment, and prognosis in a Medical Procedure Model (MPM)

that provides a holistic management of chronic comorbid patients. The MPM contains internal

loops that allow not only a continuous adaptation to the patient evolutions but also the possibility

of reconsidering wrong or incomplete diagnoses, treatments, or prognoses.

The practice of medicine is sustained in a medical knowledge that combines scientific evidence

and past individual experiences. Scientific evidence is primarily accumulated in clinical practice

guidelines (§2.3.1), while past experiences can be found registered in the data of the information

systems of the health care centres (§5.2.1). Converting this knowledge into computer-interpretable

knowledge structures has been argued to be a difficult task [WPT+02, WTSR10]; for this reason,

developing mechanisms to automate this process is seen as one of the grand challenges in clinical

decision support for the future [SWO+08]. Here, the MPM represents the effort for identifying

the medical decision problems appearing in the combination of diagnosis, treatment, and prognosis

procedures for the medical management of patients. For each subproblem a computer-interpretable

knowledge structure to solve it is proposed. If knowledge structures exist for all the MPM sub-

problems, then their integration defines a knowledge-base architecture of a decision support system

towards a holistic management of patients. If some of these knowledge structures do not exist, then

we also propose both the minimal data structure required to induce such knowledge structures, and

also the induction algorithm to transform those data structures into knowledge structures (some of

these algorithms are outcomes of this thesis).

The result is a computer model which is equivalent to the MPM, but exclusively based on

computer programs.



142

7.2 The Medical-Clinical Procedure Model

Medical decisions making (§2.2) are made during the diagnostic and medical-clinical treatment

phases. These decisions are based on factual tests (i.e., based on evidence) so patients can ob-

tain maximum benefit from the scientific knowledge available to health care professionals [Mar07].

Proposing the diagnostic possibilities, the execution of a plan or venturing a possible prognosis, not

only forces to consider a wide background knowledge, but also to evaluate the relative possibilities

within the progress of some diseases and to know the importance of some signs and symptoms

that appear with less frequency. In this sense, health care professionals apply a standard medical

procedure (§2.1.4), that allows to collect data, to propose hypothesis and to obtain objective con-

clusions about whether a particular diagnostic must be accepted or rejected, to design and execute

a treatment plan or to determine the disease progress through a prognosis.

However, this medical standard procedure (see 2.1) does not have the functional detail level to

be formalized in a computable way. So, we propose a novel model that solves this problem allowing

to integrate the decision and planning activities of medical assistance for diagnosis, treatment and

prognosis. This model, which we have called medical-clinical procedure model (MPM), is shown in

figure 7.1.

MPM begins with the elicitation process (1.1) where the patient information which is relevant

for the current medical process is gathered. This information can be obtained by direct observation

or by consultation of the patient medical record. The information constitutes the set of signs

and symptoms that describe the current health condition of the patient. With this information, a

decision (1.2) is made on whether the patient requires a diagnosis, a treatment of their signs and

symptoms (symptomatic treatment), or both. Symptomatic treatment can be performed in parallel

to the process of finding out the patient diagnosis.

The relevant signs and symptoms are employed to generate the feasible hypotheses (1.3) which

are the possible causes of the patient health conditions. Signs and symptoms can identify a single

disease (i.e., hypothesis), a comorbidity or alternative hypotheses. The diagnostic process aim is

the reduction of feasible hypotheses in order to achieve a concrete diagnosis for the patient. The

first step consists in deciding among a set of diagnostic tests (1.4), where the results may help the

health care professional to discard or to confirm some of the available hypotheses. Sometimes these

results are organized in a diagnostic test plan (1.5) that describes the medical logic about how

these tests must be deployed. Once the diagnostic test plan is chosen, it is executed (1.6) in order

to obtain additional information. The results of the test are used to modify/adjust the hypotheses



143

Figure 7.1: Medical Procedure Model.
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(1.7) extracted from the elicitation process.

If several hypotheses are still possible, the diagnostic process must iterate from step 1.4 in order

to keep refining until there is a unique hypothesis (1.8). Even if only a single hypothesis remains,

the confidence of the patient can be low, and the health care professional may decide to continue

studying the case from step 1.1. When there is a single confident hypothesis, the health care

professional accept it as the patient diagnosis and the treatment process starts.

Some of the signs and symptoms detected during elicitation may need symptomatic treatment.

In this case, the symptomatic treatment plan (2.1) must be chosen. Similarly, the patient diagnosis

must be treated, so a treatment plan (2.2) must be performed. Symptomatic treatment and

diagnosis treatment are combined in a single treatment (i.e., merging) (2.3) in order to smooth

feasible undesired interaction. Once the unified treatment has been determined, it is executed (2.4).

Simultaneously, a prognosis process (2.5) of the patient evolutions according to the treatment

begins.

The treatment results, along with the prognostic results (if it is the case), allow the health

care professional to determine whether the treatment followed by the patient was successful or not

(2.6). If the treatment is successful and the patient has been cured, the patient will be discharged

of the health care centre. In the case of chronic disease, the patient will have a follow up to keep

his health stable. On the contrary case, if the treatment is unsuccessful the whole process must be

reconsidered from step 1.1.

7.2.1 Sorts of AI Problems in MPM

The tasks in MPM can be expressed according to four AI problems: binary and multiple decision,

planning and prediction. Table 7.1 describes these problems according to each medical activity

of MPM (i.e., diagnosis, treatment and prognosis). First, the binary decision problem is used to

represent tasks where any medical decision in MPM depends only of two possibles alternatives.

For example, in the task 1.2a is necessary to decide if a patient requires a diagnostic or not, or in

the task 1.8b the decision depends of the number of hypothesis obtained after a diagnostic process

(single hypothesis or several hypotheses). Secondly, the multiple decision problem is used when

solving a task in MPM implies a set of possible alternatives and it is necessary to decide which of

these alternatives are better in the solution of this task. For example, in the task 1.2b if a patient

needs symptomatic treatment, it is necessary to decide which signs and symptoms of this patient

require a treatment. A similarly situation occurs in the task 1.3 (generate hypotheses) where the
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decision problem is to determine which are the feasible diagnostic hypotheses, or in task 1.4 (Select

diagnostic test) to decide which are the diagnostic test to perform, or in task 1.7 (Modify/Adjust

hypotheses) to decide, which hypothesis are still feasible after modify/adjust the initial hypotheses

with the results of diagnostic tests.

Third, the planning problem is used when, solving a medical task in MPM, requires to define and

to execute a logical sequence of medical actions. For example, to solve tasks 1.5 (generate diagnostic

test plan) and 1.6 (execute diagnostic test plan), it is necessary to define how the diagnostic tests

are organized and how these are applied, respectively. Also, the planing problem can be applied

in tasks 2.1 (generate symptomatic treatment plan) and 2.2 (generate treatment plan) to define

the sequence of medical actions necessary in the treatment of the patient. Once these plans are

observed, the planning problem is used in task 2.3 (integrate plans) to obtain a unique treatment

plan and its subsequent application in task 2.4 (execute treatment plan). Finally, the prediction

problem is used in task 2.6 (Prognostic) of MPM to determine the patient evolution.

7.2.2 MPM Knowledge Structures

The AI problems previously discussed can be represented through computer-interpretable knowledge

structures. These structures are summarized in table 7.2. The binary and multiple decision problems

are represented by decision trees (§3.2.1) and decision tables (§3.2.1), respectively. The planning

problems are represented by SDA structures (§4.2), and the prediction problems are represented by

partial orders and state transition diagrams (§6.3).

7.3 Automatic Induction of MPM Knowledge

The basic structure used in the automatic induction of MPM knowledge is the EOC database. This

database contains patient data from a health care centre whose structure allow to build supervised

data matrix and to fulfil EOC data model to solve the AI problems of decision, planning and

prediction in MPM, as it is indicated in table 7.2. To decision problem, a supervised data matrix M

is building through of queries, SELECT-FROM, to the EOC database according to the decisional

questions that have to be solved in the MPM, for example, the question “is a diagnosis needed?”

(task 1.2a). To solve this question it is necessary to know, for all patients P , the signs and symptoms

S&S of each patient pi and if each patient pi has been diagnosed of c. Therefore, the query would

be:
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AI Problems Knowledge Structure
Binary decision Decision tree
Multiple decision Decision table
Planning SDA structures
Prediction Partial orders and state transition

diagrams

Table 7.2: Knowledge structures in MPM.

SELECT S&S, diagnosed-Y/N FROM patients

Once the data are obtained after the queries execution, these data are used to induce the

structures of knowledge representation which solve the decision problem in MPM. This induction

process is based on machine learning methods described in section 3.3.1.

For the planning problem, the EOC data model (§5.2.1) is applied which adapts the data from

EOC database and by means of a set of translation rules to the terminology the final users want

the resulting SDA to have (§5.2.2). This adaptation process is realized according to the planning

questions that have to be solved in the MPM, for example, the medical question “how is the symp-

tomatic treatment organized?” (task 2.1), to solve this question it is necessary to know the data of

all the patients that received a symptomatic treatment, and to organize these data in state-terms

(terms on the health conditions), decision-terms (S&S) and action-terms (terms on the medical

actions <treatment>). The data obtained after the preprocessing step are used to generate the

final SDA diagram by means of a machine learning method introduced in section 5.2.4. Likewise,

for the prediction problem, the EOC data model 6.3.1 is used to adapt the data of patient evolutions

from EOC database and to induce both a partial order on patient conditions and a state transition

diagram which contains the probabilities of evolving from any disease condition to any other disease

condition in the context of the selected health-care centre. The induction procedure of partial orders

is based in the inductive algorithm introduced in the section 6.3.3.

All the data structures, based on supervised data matrix and EOC data model, used in the

automatic induction of MPM knowledge are described in table 7.3.
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7.4 Integrated usage of the MPM

Figure 7.2 shows the functional model of the MPM. This functional model uses computable pro-

cedures Pi (represented by circles) based on the knowledge which is provided after a knowledge

engineering process or induced by a machine learning algorithm from data contained in data struc-

tures Mi or EOC (represented by squares), to be applied in the MPM tasks Ti, as it is described

in table 7.3. In this process, new knowledge (represented by arrows) is generated. The generation

of new knowledge can start the activation of other MPM procedures. These procedures can be

grouped into blocks that allow to solve a single MPM task, such as 1.2 task where the P1.2a and

P1.2b procedures, based on a decision tree and a decision table, solve the AI problem of binary

and multiple decision, respectively. A similar situation occurs to task 1.8, where the computable

procedures P1.8a and P1.8b must decide what to do if there is a single hypothesis or if there are

several hypotheses at the end of the diagnosis process.

7.5 Application of MPM in Four Clinical Cases

Based on the model of figure 7.1, the figures 7.3, 7.4, 7.5 and 7.6 show the behavior of MPM according

to four real clinical cases published in the medical literature [FIS]. The medical situations described

in these cases are suggested by Dr. Collado, a senior GP of the SAGESSA Group [SAG], that

qualified these cases as diverse and representative of primary care.

• First case (figure 7.3): 34-year-old male who comes to a health care centre by feelings of

dysthermia, general ailment and arthromyalgia with 24 hours of evolution. In the last 48

hours he has been suffering from: dysury, pollakiuria and mictional urgency (A).

Initial Physical Examination:

– Temperature: 38◦C

– Otorhinolaryngology: mild hyperemia of the oropharynx

– Cardiopulmonary auscultation: normal

– Abdomen: normal

– negative Goldflam’s sign bilaterally (B).
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Figure 7.2: MPM functional model.
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A radioactive tests is done (D1) where main results are: Ph = 5, 5, density > 1030, leucocytes

+ + +; blood +; resting − (E). A genitourinary examination is completed with normal

results, and it is performed a rectal exam that shows an enlarged prostate, soft, hot, painful

on palpation and with effacement of the central sulcus. We ask for a blood test, urine test

and uroculture, and we begin an empirical treatment with ciprofloxacin 500 mg/12h. Alter

48 hours, the patient is asymptomatic and has no fever, hence we complete the antibiotic

guideline during 28 days (I).

Complementary tests results:

– Inmediate blood test: leukocytosis with predominance of polymorphonuclear, urea and

creatinine within normal.

– Inmediate urine test: Ph 5.5, density ≥ 1030, total protein = 0, 3 g/l, blood +, leucocytes

+ + +.

– Sediment (cytometry): leucocytes 1772(0− 20), red blood cell 6(0− 15), epithelial cells

48(0− 25), cylinders 1(0− 1), bacteria 4443(0− 2, 5).

– Sediment (manual): abundant leukocytes/field and abundant bacteria/field.

– Uroculture: > 100000 ufc/ml. E. coli sensitive.

Once the medical treatment is finished, another uroculture is realized. The result is negative

(J).

• Second case (figure 7.4): 59 year-old male, controlled at the health care centre by presenting a

pulmonary edema secondary to paroxysmal atrial fibrillation recent and by her diabetes mel-

litus type 2 (DM2). He explains that he has had throatache and earache with no suppuration,

fever or expectoration in the past few days (A1).

We revise the patient’s medical record and we find that:

– Personal antecedents: smoker ( 1, 5 pack/day from 20 year ago), no other toxic habits,

DM2 no dependent of insulin, paroxismal atrial fibrillation, without family history of

interes.

– Regular treatment: Metformin, Amiodarone, Acenocoumarol and Furosemide.

During the physical examination it is observed a slightly hyperemic pharynx, whitout exudate

plaques. There are no submandibular lymphadenopathy. The otoscopy and the cardiopul-
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monary auscultation are also normal. The rest of the examinations results are normal (B1). It

is established a treatment with anti-inflammatory (ibuprofen 600 each 8h), antibiotics (amox-

icillin/ac. clavulanic 500/125 each 8h for 7 days) and plenty of fluids, by suspect of acute

pharyngitis.

A few weeks later, the patient attends to the health care centre indicating that have pain throat

and left otalgia alter the treatment. Besides, he has found a small lump to left submandibular

level since a few days. He does not have dysphonia, hemoptysis nor general symptoms (A2).

In the physical examination it is shown a normal pharynx, with no oropharyngeal injuries.

shows an adenopathy of 2 cm to left submandibular level. The ear examination (otoscopy)

is normal. No lymphadenopathies are observed. There is no goiter nor hepatosplenomegaly.

The rest of the examination is normal (B2). Alter the examination, a blood test and a

thorax radiography are requested. The results of the hemogram and biochemistry are normal;

Epstein-Barr virus (EBV) negative; toxoplasmosis negative; erythrocyte sedimentation rate

(ESR) and C-Reactive Protein (CRP) normal; thorax radiography normal and Mantoux less

of 5mm.

The patient experiences an increase of odynphagia and the appearence of an associated dys-

phagia. He is sent to the medical emergency, where he is attended by an otorhinolaryngologist.

Indirect laryngoscopy was performed, in which lesions were observed at the supraglottic level

suspicious of neoplasia, and a biopsy is programmed. While the patient is waiting for biopsy

results, he goes to consultation due dysphonia, that had not been present yet (C).

The biopsy is informed as supraglottic neoplasia (D) with glottic affectation whitout metas-

tasis to distance. The following decisions are taken: first, practice total laryngectomy (by

glottis affectation) with tracheostomy and radiotherapy. Second, definitive tracheostoma and

starting the voice rehabilitation.

• Third case (figure 7.5): 19 year-old female who comes to the health care centre suffering

from occipital headache of oppressive way and progressive intensity, whitout vomit, whitout

increase (when applied Valsalva test) and no other symptomsy. The profile was preceded by

neck and back pain of mechanics characteristics. There was no traumatic precedent (A1).

The neurologic examination was normal and there was no alteration on the rest of the phys-

ical examination, except obesity. There were neither personal nor familiar record of interest

(B1). Possible triggering socio-familial factors are investigated and the patient recognises
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couple problems (C). An analgesic treatment is established (D) and the patient is to cited

in consultation scheduled to deepen into her personal problems, her clinical record and the

physical examination.

In consultation, 10 days alter the first encounter, the patient shows an increase of intensity

of the headache (F), despite the scheduled treatment. Besides the patient has suffered two

morning vomiting, and blurred vision with a sensation of double vision (A2). The patient

is conscious and oriented, but because of the arise of alarm symptoms a new neurological

examination is donce. The results are normal, with no oculomotor paresis or others alterations

(B2). Ophthalmoscopy was performed and displays an image of papilledema (G). It was

done a lumbar punction (G) that was diagnostic: output of fluid pressure. The patient was

admitted in the neurological service with the diagnostic of genign intracranial hypertension

associated to obesity. It is rejected that the hypertension was secondary. The patient was

derived to ophthalmology for assessment of campimetry and visual acuity. Currently, the

patient is asymptomatic, has not suffered similar episodes, and her weight is being controlled

by nursing (H).

• Fourth case (figure 7.6): A 45-year-old female with precedents of extrinsic bronchial asthma go

to consultation, she is a former smoker whitout clinical record of chronic obstructive pulmonary

disease (COPD), she have dyspnea of three days of evolution, with fever of 38◦C and clinic

non-productive dry cough, myalgia, headache, and pleuritic right subcostal pain (A). She have

a O2 saturation of 92% (C) and a heart rate of 113 bpm (beats per minute). Cardiopulmonary

auscultation is normal and the meningeal signs are negatives. There are no other significant

findings (B). The health care professional asks a blood test and a thorax radiography, which

provides normal results. She is sent home with an antibiotic (amoxicillin and clavulanic acid)

and asymptomatic treatment, and she is scheduled for a revision in a few days if there is no

improvement (D).

Alter a week, she returns to persisting fever and resting dyspnea (A2). In the analytic

done the previous week it can be noticed: hemoglobin, 11; absence of leukocytes; High-

density lipoprotein (HDL), 876; C-Reactive Protein (CRP), 14, and the rest is normal. A

new examination is done and it is find oral thrush, decreased vesicular murmur with scattered

wheeze (B2) and O2 saturations of 88 (C2). She is repeatedly asked about her personal

antecedents and she explains that she suffered herpes zoster, weight loss of 15 kg in the last

2 years and that she’s been parenteral drug addict (PDA) until 17 years ago (A3,B3). A
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new thorax radiography is requested (C3) where emerge a bilateral interstitial pattern. The

patient was referred to the hospital urgency service with a diagnosis of suspicion of atypical

pneumonia (H) by pneumocystis jirovecii in possible immunosuppressed. The suspicion was

confirmed and she was also diagnosed AIDS (H).
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Figure 7.3: Behavior of first real clinical case.
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Figure 7.4: Behavior of second real clinical case.
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Figure 7.5: Behavior of third real clinical case.
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Figure 7.6: Behavior of fourth real clinical case.
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7.6 Discussion

Integrating the medical assistance activities of decision and planning for the diagnosis, treatment

and prognosis, in a single computable model, allows that a great diversity of medical situations can

be represented and solved by this model, as it was shown for four representative clinical cases whose

management is depicted in figures 7.3, 7.4, 7.5 and 7.6. So, the implementation and use of MPM

can be used to help to improve the medical-clinical processes of decision making.

7.7 Conclusions

The development of an integral, computable and knowledge based model that automate the medical

procedure for the decision and planning activities in medical-clinical diagnosis, treatment and prog-

nosis, is one of the objectives of this thesis. Therefore, the steps followed to achieve this objective

are exposed as chapter 7 conclusions:

• Based on standard procedure model introduced in the chapter 2, in this chapter we have

proposed a new formal medical procedure model, called MPM, that integrates the decision

and planning activities to the diagnosis, treatment and medical-clinical prognosis.

• We Propose a computable architecture based in knowledge that automates the formal model

MPM.

• In MPM, the main AI problems in the medical assistance activities have been identified as

binary and multiple decision, planning and prediction problems.

• The formalisms of decision tree, decision table, and partial orders plus state transition dia-

grams were proposed to represent the sort of know-what knowledge required to solve the AI

problems of binary decision, multiple decision, and prediction problems, respectively.

• The SDA structure to represent know-how knowledge was proposed to solve the AI problem

of planning.

• To validate the MPM, this model was applied to four real clinical cases. These medical

situations described in these cases are suggested by Dr. Collado, a senior GP of the SAGESSA

Group [SAG], that qualified these cases as diverse and representative of primary care cases.
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Chapter 8

Contributions, Limitations, Future Work, and Final

Comment

8.1 Introduction

This chapter concludes the thesis. In section 8.2 we provide a summary of the main contributions.

In section 8.3 we discuss general limitations of our results. Finally, in section 8.4 we present the

final comment of this thesis.

8.2 Summary of Main Contributions

This thesis has contributed to the development of a computable model based in knowledge that

integrates all the decision and planning activities for the medical-clinical diagnosis, treatment and

prognosis. To accomplish this, first, in chapter 2 we did an analysis of the background in medical

informatics, referring to medical assistance. The results obtained (§2.5) allowed us to reveal a series

of events which defined and directly conditioned this thesis. Second, in chapter 3 an analysis of

antecedents in the scope of formalizing knowledge about medical assistance was realized. This anal-

ysis showed (§3.4) the importance of proposing new alternatives of representation and induction of

know-how and know-what knowledge. Therefore, in chapter 4 we propose the state-decision-action

(SDA) knowledge model to represent health care procedures as SDA diagrams which are similar to

medical algorithms. This novel model presents an alternative to the current languages of know-how

knowledge representation in medicine. In chapter 5 we propose a novel methodology to automati-

cally induce state-decision-action (SDA) diagrams from health care databases and electronic health

records in order to show health care professionals an explicit representation of the past health care
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procedures and to use these representations to study their deviations with respect to official and

predefined protocols and medical algorithms. In chapter 6 we propose a novel machine learning

method, based on partial orders and state transition diagrams, to solve problems of the decision

activity in medical-clinical prognosis.

Finally, in chapter 7 we propose a novel and broader approach which integrates the medical pro-

cedures of diagnosis, treatment, and prognosis in a Medical Procedure Model (MPM) that provides

a holistic management of chronic comorbid patients.

8.3 Limitations and Future Work

The SDA model to represent know-how knowledge in medical assistance, introduced in chapter 4,

permits two sort of time constraints in the diagrams [KRRW07]: micro and macro-temporality.

Micro-temporality is used to attach temporal restrictions to the terms in the SDA diagram (e.g.,

durations, frequencies, deadlines, etc.), while macro-temporality is used to attach temporal restric-

tions to the connectors in the SDA diagram (e.g., delays, waits, schedules, etc.). In this thesis, we

have not considered these time features given its complexity [KRRW07, KRW08, KRW09], however,

the SDA model is prepared for the introduction of time knowledge.

The methodology of automatic generation of know-how knowledge in medical assistance, re-

ported in chapter 5, has a limitation respect to the lack of medical background knowledge involved

in the learning method which may be particularly useful to detect states and actions. Here, the

similarity between states (and actions) is done manually by health care professionals or using an

approach which is based on the coincidence of terms (see equation 5.8 and parameters α and β in

tasks 1 and 2 of section 5.2.4). This approach is mathematical rather than medical, which may

affect the medical quality of the SDAs obtained. In the future, we aim to incorporate background

knowledge represented by means of ontologies in the machine learning method.

The methodology of automatic generation of know-what knowledge for prognosis in medical

assistance, introduced in chapter 6, is based on the concept of patient condition (5.2.1), which

represents the state of the patient concerning a disease. The tests realized in this methodology, was

based on diseases where the set of disease conditions are fixed and well defined, such as cancers

(Tumour Node Metastasis Staging System (TNM) [SW02]). However, for other diseases there are

is an agreed criterion on the set of conditions, in this case, we propose the use of a non-supervised

clustering algorithm to obtain the set of disease conditions in 6.2.1.

All these limitations are the starting point of alternative works that are left out of the current
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thesis and considered as future improvements.

8.4 Final Comment

As it is previously evidenced, the research work of this thesis contributes to formalize and to auto-

mate medical assistance with the support of a knowledge-based model. In order to accomplish this,

we have proposed knowledge models for all the medical-clinical activities that can be induced from

medical data, we have raised inductive learning solutions for all the medical-clinical activities and

we have proposed an integral model that formalizes the concept of medical procedure. These con-

tributions allow to improve the processes of medical-clinical decision that health care professionals

have to face in their daily work.

Finally, in spite that the research work has been fully concluded, there are some minor issues

that should be improved before finalizing this PhD thesis. These are twofold, on the one hand

we’re currently working together with Dr. Colomés and Dr. Collado from SAGESA Health Group

(Tarragona, Spain) and Dr. Roca and colleagues from Clinic Hospital (Barcelona, Spain) testing our

algorithms with additional databases. The current results are promising, though medical analysis

and the consequences of this analysis are still not concluded. On a second hand we expect to

introduce the new results within the sections about conclusions at the end of several of the current

chapters and in chapter 8, which may cause a slight restructuring of some parts of the current

document.
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Appendix A

Publications

List of articles realized as part of the development of this PHD thesis.

A. Journal Publications

1. MPM: A Knowledge-Based Model of Medical Practice

David Riaño, John A. Bohada, Antoni Collado, and Joan A. López-Vallverdú, (submitted

to) Journal of Biomedical Informatics. February 2012.

abstract. Medical practice (or the practice of medicine) is a varied and complex discipline

that involves medical tasks as diagnosis, therapy providing, and prognosis which are

supported on intelligent acts such as intelligent search, decision making or knowledge

merging and deployment. The application of artificial intelligence technologies in medical

practice has been a continuous research area since the early 1970’s, but usually restricted

to specific medical tasks and not as a solution to medical practice as a whole. We

think that one of the reasons for that is that there is not a formal model describing the

interactions among diagnostic, therapeutic and prognostic tasks in medical practice. In

this paper, we introduce a medical practice model (MPM) resulting from the analysis and

integration of partial models surveyed in specialized literature. The integrated model is

described, together with the health care data involved, the functionality of the model,

and the sorts of knowledge to support such functionality. The validity of the model

is tested against 93 medical cases, but also in comparison to other models and some

published clinical decision support systems. The limitations and capacities of the model

are also discussed.

2. Automatic Generation of Clinical Algorithms within the State-Decision-Action Model
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John A. Bohada, David Riaño and Joan A. López-Vallverdú, (submitted to) Journal of

Expert Systems with Applications. January 2012.

abstract. Objective: To propose a methodology to automatically induce state-decision-

action diagrams from health care databases and electronic health records in order to show

health care professionals an explicit representation of the past health care procedures

and to use these representations to study their deviations with respect to official and

predefined protocols and clinical algorithms.

Materials and Methods: The methodology is based on two initial models giving rise to

the data and knowledge structures episode of care database and set of rules. These two

structures contain, respectively, patient data from health care centres and the translation

rules which are used to adapt the data of the episode of care database to the terminology

we want the resulting state-decision-action diagram to have. The data expressed in the

new terminology is used to generate the final state-decision-action diagram by means

of a machine learning method. We have performed several tests on the treatment of

hypertension with data from the SAGESSA Health Care Group. The state-decision-

action diagrams obtained have been analyzed at the level of their ability to predict correct

treatments and at the level of their adherence to the clinical algorithms published by four

official health care organizations.

Results: The state-decision-action diagrams obtained represent an average 94.6% of the

treatments in the database, only excluding some atypical cases. Moreover, these dia-

grams show a high level of adherence to the treatment proposed by the National Heart

Foundation and the Spanish Society for Hypertension with about 91.4% of coincident

treatment.

Conclusions: A new methodology has been developed which automatically induces state-

decision-action diagrams which can be used as a graphical representation of the health

care procedures carried out in health care centres. The methodology is also a tool to

study the adherence of these health care procedures to the official standards.

3. Improving Medical Decision Trees by Combining Relevant Health-Care Criteria

Joan A. López-Vallverdú, David Riaño and John A. Bohada, (submitted to) Journal on

Knowledge and Information Systems. November 2011.

abstract. Through the years, decision trees have been widely used both to represent

and to conduct decision processes. They can be automatically induced from databases
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using supervised learning algorithms which usually aim at minimizing the size of the

tree. When inducing decision trees in a medical setting, the induction process should

consider the background knowledge used by health-care professionals to make decisions

in order to produce decision trees that are medically and clinically comprehensible and

correct. Comprehensibility measures the medical coherence of the sequence of questions

represented in the tree, and correctness rates how much irrelevant are the errors of

the decision tree from a medical or clinical point of view. Some algorithms partially

solve these problems pursuing alternative objectives as reducing the economic cost or

improving the adherence of the decision process to medical standards. However, from a

clinical point of view, none of these criteria is valid when it is considered alone, because

real medical decisions use to be taken attending to a combination of them, and also other

health-care criteria, simultaneously. Moreover, this combination of criteria is not static

and may vary if the decision tree is made for different purposes as screening, diagnosing,

prognosing or drug and therapy prescription. In this paper, a decision tree induction

algorithm that uses combinations of health-care criteria is presented and used to generate

decision trees for screening and diagnosing in four medical domains. The different criteria

have been selected from internal quality studies performed at the Clinical Hospital in

Barcelona (Spain) and the SAGESSA Health Care Group (Spain). The mechanisms to

formalize and to combine these criteria are also presented. The results have been analyzed

from both a statistical and a medical point of view, and they suggest that our algorithm

obtains decision trees that physicians evaluated as more comprehensible and correct than

the decision trees obtained by previous approaches as they keep an equivalent accuracy.

B. Congress Publications

1. Induction of Partial Orders to Predict Patient Evolutions in Medicine.

John A. Bohada, David Riaño and Francis Real. 11th Conference on Artificial Intelli-

gence in Medicine (AIME2007), Amsterdam, The Netherland, 2007. Participation and

Presentation.

Abstract : In medicine, prognosis is the task of predicting the probable course and outcome

of a disease. Questions like, is a patient going to improve?, what is his/her chance of

recovery?, and how likely a relapse is? are common and they rely on the concept of state.

The feasible states of a disease define a partial order structure with extreme states those
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of ’cure’ and ’death’; improving, recovering, and survival meaning particular transitions

between states of the partial order. In spite of this, it is not usual in medicine to find an

explicit representation either of the states or of the states partial order for many diseases.

On the contrary, the variables (e.g. signs and symptoms) related to a disease and their

normality and abnormality values are broadly agreed. Here, an inductive algorithm

is introduced that generates partial orders from a data matrix containing information

about the patient-professional encounters, and the normality functions of each one of

these disease variables.

2. Automatic generation of Formal Intervention Plans based in the SDA* representation

model.

Francis Real, David Riaño and John A. Bohada. 20th IEEE International Symposium

on Computer-Based Medical System (CBMS07), Special Track on Machine Learning and

Management of Health-Care Procedural Knowledge, Maribor, Slovenia, 2007. Participa-

tion.

Abstract : Clinical practice guidelines are important in the work of physicians. These

guidelines are manually created by experts using their knowledge and experience. This

work gives an approach to automatically develop the clinical guideline charts with the

SDA* representation model. In addition, this paper details an example of application of

the methodology proposed with the treatment of Hypertension.

3. Knowledge production and integration for diagnosis, treatment and prognosis in medicine.

John A. Bohada, David Riaño. 20th Catalan congress of Artificial Intelligence, Alguer,

Italy, 2005. Participation and Presentation.

Abstract : Diagnosis, treatment and prognosis are three of the most frequent labors of

physician in health care institutions. In decision making, these activities can be tackled

from two approaches: decision and planning. Decision structures are designed to help

physician in their task of taking atemporal decisions. Planning structures are designed

to guide physicians in the time-dependant complex medical procedures. The goal of this

article is to present a model that integrates several learning tools to develop decision

and planning structures in the medical domain, specifically in the support of decision

making.

4. Data modelling for medical knowledge production.

John A. Bohada, Aida Kamisalic, David Riaño, Tatjana Welzer. The Tenth International
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Symposium on Health Information Management Research (ISHIMR2005), Theme: Im-

proving the quality of health information - an international perspective Thessaloniki,

Greece, 2005. Participation.

Abstract : Current medical information systems are designed to support practitioners

and managers in their activities in healthcare centres. However, from a cognitive point

of view, the power of the data stored in huge hospital databases is not only in the storage

or daily use, but on the embedded medical knowledge that they contain and that can

be made explicit with artificial intelligence techniques. In contrast to the traditional

approach of electronic patient records this paper describes a database structure model

aiming, on the one hand, at hosting all the information required about the medical

processes of diagnosis, treatment follow-up, and prognosis as they happen during the

consecutive appointments of doctors and patients in a healthcare centre, and on the

other hand at easing the artificial intelligent processes of making medical knowledge

explicit.

5. A CPG-based CBR model to offer the best available medical Therapy.

John A. Bohada, David Riaño. 2nd European Starting AI Researcher Symposium

(STAIRS 2004), Valencia, Spain, 2004. Participation and Presentation.

Abstract : Therapy assignment is one of the most frequent labours of physicians in health-

care institutions. A Clinical Practice Guideline (CPG) is the way that the medical knowl-

edge about a particular therapy is represented with the purpose of defining standards in

clinical assistance. The assignment of a therapy to a concrete patient requires the com-

bination of theoretical and empirical medical knowledge to propose the most convenient

CPG according to the situation and also to adapt it to the particularities of the patient.

Even though CBR seems the natural artificial intelligence paradigm to deal with therapy

assignment, there are still some difficulties to overcome. Here, we describe the first steps

towards the definition of a CBR model based on clinical practice guidelines and oriented

to the search, proposal, and adaptation of medical therapies. The model has been tested

on two cardiopathies: atrial fibrillation and hypertension.

6. The DTP Model: Integration of intelligent techniques for the decision support in Health-

care Assistance.

David Riaño, John A. Bohada, Tatjana Welzer. Fourth International ICSC Symposium

on ENGINEERING OF INTELLIGENT SYSTEMS (EIS2004), Madeira Island, Portu-
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gal, 2004. Participation.

Abstract : The paper introduces a new model, called the DTM model, that uses Artificial

Intelligence techniques to obtain health-care knowledge that can be applied in a combined

way to support the decision making in some relevant medical activities as diagnosis,

treatment selection, and prognosis. The DTP model applies inductive learning techniques

to hospital data and obtains action rules, clinical guidelines and belief networks. These

knowledge structures are respectively exploited by an inference engine, a case-based

reasoner, and a probability propagation system to automatically propose a Diagnostic-

Treatment-Prognostic (DTP) sequence that the new patients should follow. The model

and its implementation has been tested with data concerning cardiopathologies of the

patients assisted in the Hospital Joan XXIII in Tarragona.

C. Technical Reports

1. Temporal Aspects in Database Modelling for Medical Knowledge Production.

Aida kamisalic, David Riaño, John A. Bohada, Tatjana Welzer. Report de recerca DEIM-

RR-05-006, Juny 2005. Universitat Rovira i Virgili.

Abstract : The document gives an overview of existing temporal aspects and their imple-

mentation in TIMEER model considering their usage over specific constructs (entities,

attributes and relationsships).



Appendix B

Projects Participation

Lists of research projects in which I participated as part of the development of this thesis.

A. Project : K4CARE: Knowledge-Based HomeCare eServices for an Ageing Europe (FP6-026968),

2005-2009.

Funded by : European Union

Description: In eHealth it is increasingly necessary to develop tele-informatic applications

that can support everyone involved in providing basic medical assistance (doctors, nurses,

patients, relatives, and citizens in general). The care of senior citizens, chronically ill and dis-

abled people, and people with mental illnesses involves life long treatment under continuous

expert supervision. Moreover, health care workers and patients accept that being cared for

in hospitals or social centres may be unnecessary and even counterproductive. From a global

view, such patients may saturate national health services and increase health related costs.

The debate over the crisis of financing health care is open and is a basic political issue for old

and new EU member countries and could hinder European convergence. To face these chal-

lenges we can differentiate medical assistance in health centres from assistance in a ubiquitous

way (Home Care model); the latter can undoubtedly benefit from the introduction of ICT.

This project will develop a platform to manage the information needed to guarantee an ICT

Home Care service.

B. Project : HYGIA, 2006-2009

Funded by : Ministerio de Educación y Ciencia (España)

Description: In this project we propose the use of Intelligent Systems in the processes of

acquiring, formalizing, adaptating, using and assessing knowledge models that describe Care
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Pathways (CPs). This project sets out that CPs are not generated directly from the clinical

practice guideline (CPGs), but from electronic protocols, that represent versions of the adapted

guidelines when they are made specific to the particular healthcare circumstances. The CPs

obtained could be used by intelligent computer science distributed systems to facilitate the

decision making that allows the e-care in the context of a new Information Society. The

project considers in a frame of convergence of diverse technologies developed in diverse work

groups and European and national R+D projects of which the present investigators have

been or are co-ordinators (PROTOCURE I, PROTOCURE II, K4CARE, HeCaSe, PalliaSys,

AgentCities Working Group on Health Care Applications, AgentLink III Technical Forum

Group on Applications of Agents in Health Care). It is defined, therefore, like a project that

integrates compatible and complementary groups that at the moment have obtained financing

of independent way, with the purpose of forming a group of national and international reference

in the area of the management of the medical knowledge.

C. Project : Knowledge and exploitation in wholistic medical treatments, 2004-2005.

Funded by : This project is an integrated action between the Rovira i Virgili University (Spain)

and the University of Maribor (Slovenia).

Description: This project aims to define the appropriate information systems to store medical

requirements in order to automatically generate diagnosis, treatment and prognosis knowledge;

develop Data Mining and Machine Learning techniques to exploit the data in the above

information systems, and define knowledge structures suitable to store the results of the data

exploitation.
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