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Abstract: Clinical Practice Guidelines in paper format are still the preferred form of delivery of 

medical knowledge and recommendations to healthcare professionals. Their current support and 

development process have well identified limitations to which the healthcare community has been 

continuously searching solutions. Artificial Intelligence may create the conditions and provide the 

tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up 

to date review of Computer-Interpretable Guideline approaches, namely Arden Syntax, GLIF, 

PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these 

approaches respond to the challenges posed by paper-based guidelines and addresses topics of 

Artificial Intelligence that could provide a solution to the shortcomings of clinical guidelines. 

Among the topics addressed by this paper are Expert Systems, Case-Based Reasoning, Medical 

Ontologies and Reasoning under Uncertainty, with a special focus on methodologies for assessing 

Quality of Information when managing incomplete information. Finally, an analysis is made of the 

fundamental requirements of a guideline model and the importance that standard terminologies 

and models for clinical data have in the semantic and syntactic interoperability between a 
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guideline execution engine and the software tools used in clinical settings. It is also proposed a line 

of research that includes the development of an ontology for Clinical Practice Guidelines and a 

decision model for a guideline-based Expert System that manages non-compliance with clinical 

guidelines and uncertainty 

Keywords:  Computer-Interpretable Guidelines, Ontologies, Decision Support, 

Quality of Information  
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1. Introduction 

There is an increasing pressure in healthcare professionals to standardize their 

clinical practice in order to prevent undesired variations. Clinical Practice 

Guidelines (CPGs) are developed in order to achieve this purpose. In recent years 

there has been an explosion of interest in CPGs, with initiatives to stimulate 

guideline development promoted by many countries and healthcare institutions. In 

fact, CPGs are, currently, the best way to convey information to healthcare 

professionals, to ensure that their clinical practice follows the rules of medical 

procedures. This is a very important matter, if one takes into account the 

consequences that may arise from a poorly conducted clinical process. The 

prevalence of medical errors is significant in hospitals across the world (Brennan 

2000; Kalra 2004). Putting aside the human cost, which is immeasurable, the 

economic cost from lawsuits and other legal issues resulting from medical error 

has a deep impact in the budget of healthcare institutions. However, an 

overzealous practice, like defensive medicine, may have equally undesired 

consequences (Chawla and Gunderman 2008). The prescription of exams and 

treatments without scientific proof or basis also has a great economic impact and 

may seriously undermine the confidence that patients have in their physicians. 

This has consequences in the mental health of patients as well. The primary 

objective of CPGs is to provide a scientific support to clinical procedures, thus 

mitigating the occurrence of these situations. 

However, healthcare professionals still show some resistance towards 

complying with CPGs. The arguments used to justify this behavior are that 

guidelines stifle change and innovation, and restrain clinical practice, preventing 

healthcare professionals from adapting their practice to their social, economic and 

cultural contexts (Thomson et al. 1995). Guidelines evolved in order to address 

some of this criticism, through the development of mechanisms to smooth 

updating processes and to accommodate justified variations in clinical practice. 

Currently, we live in the age of information and, once again, CPGs should evolve 

to keep up with the rapid growth of scientific knowledge. Research in the field of 

Computer-Interpretable Guidelines (CIGs) is booming, due to the need to deliver 
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information to healthcare professionals in a faster way and to support them in 

decision making. 

This paper starts by providing some background information on CPGs and how 

they are developed. Then some Artificial Intelligence (AI) techniques will be 

addressed with the objective of determining how AI can improve the current state 

of the art as well as the development and the execution of CPGs. The final 

sections of the paper provide a general presentation of the research line that is 

being followed and how it integrates the conclusions extracted from the analysis 

made. It goes without saying that a paper format cannot be compared to a 

computerized guideline, as the first cannot be processed electronically. The 

perspective this work intends to show is how a digital format can be more 

advantageous and provide a new set of tools to facilitate the work of healthcare 

professionals. 

2. Clinical Practice Guidelines 

2.1. What are Clinical Practice Guidelines? 

CPGs are systematically developed statements to assist healthcare professionals 

and patients about appropriate healthcare in specific clinical circumstances (Miller 

and Kearney 2004). This is the most widely accepted definition of clinical 

guideline, provided by the Institute of Medicine, of the United States (US). There 

are other terms used as synonyms of CPGs such as protocols, practice policies, 

clinical policies, practice parameters and clinical pathways. Usually, the name 

given to these documents is a matter of personal preference rather than a reference 

to a standard nomenclature and it can change across healthcare institutions and 

countries. Despite these differing nomenclatures, there are common objectives 

associated (Miller and Kearney 2004) with all of them, such as:  

• Help healthcare professionals and patients in decisions about clinical 

procedures; 

• Describe appropriate care based on scientific evidence; 

• Act as the focus for quality assessment and activity improvement, 

including audits.  

CPGs are decision tools devised to shorten the distance between real clinical 

practice and optimal clinical practice (Mead 2000). The potential benefits from 
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the implementation of CPGs include the reduction of morbidity and mortality, 

efficiency improvement and cost containment. They also provide their users with 

a reference by which they guide their clinical practice, and measurable criteria to 

assess their performance. The evidence contained in CPGs is used, at the same 

time, to inform healthcare professionals of the latest developments in scientific 

knowledge and to justify their decisions during the clinical process (Thomson 

2000). 

The format of these documents is not standardized and shows variations 

according to the organization producing the guideline and the clinical area it 

addresses. Since the middle of 1990s, many worldwide organizations started 

evidence-based CPG development programs, namely the Scottish Intercollegiate 

Guidelines Network (SIGN), the New Zealand Guidelines Group (NZGG), the 

Guidelines Advisory Committee (GAC) in Canada, and the National Federation of 

Cancer Centers (FNCLCC) in France, among others (Rosenbrand et al. 2008). 

These organizations joined others that paved the way for guideline development 

like the Institute of Medicine and the Dutch Institute for Healthcare Improvement. 

In 2002, an international effort towards the dissemination of CPGs culminated in 

the creation of the Guidelines International Network (G-I-N). (Ollenschläger et al. 

2004). Currently, this global network comprises 92 organizations and 127 

individual members, representing 48 countries, putting forth efforts in order to 

standardize guideline development and implementation. In recent years, some 

online guideline repositories started to appear, among which should be 

highlighted the National Guideline Clearinghouse (NGC) of the US. NGC2 is a 

public resource for evidence-based CPGs and gathers guidelines from various 

organizations under different labels that represent their category and medical 

specialty. 

2.2. Development of Clinical Practice Guidelines 

Each organization follows its own guideline development process. However, the 

different development methodologies have common phases and follow similar 

principles.  

Initially, guidelines were only based on the consensus of groups of experts, but 

with the growth of evidence-based clinical practice, other techniques were 
                                                 
2 http://guideline.gov/index.aspx 
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included in guideline development. The Delphi and nominal group techniques are 

some of the methodologies that were later included in the development process 

and are still used today (Hutchings et al. 2006). Currently, guideline development 

is more focused on an extensive research of the literature and thorough analysis of 

empirical evidence. 

The process usually starts with the choice of the guideline topic or subject, 

based on the problems that motivate the development (Rosenbrand et al. 2008; 

Rosenfeld and Shiffman 2006). CPGs can be developed to a wide range of 

subjects and medical areas, including health conditions bound to diseases and 

economical costs.  To choose the topic, it is necessary to do a preliminary check 

of the available evidence in order to ascertain the validity of the theme.  

The composition of the work group is the following step (Rosenbrand et al. 

2008; Rosenfeld and Shiffman 2006). The efficiency of the guideline highly 

depends of the nature of the group producing it. The work group must be 

multidisciplinary, in a way that includes participants from all the areas affected by 

the topic of the guideline. Once the group is gathered, the analysis of the 

underlying problem, to which the guideline must provide a solution, starts. The 

work group must search for other guidelines concerning the topic, whose 

existence does not invalidate the creation of a new one as the existing ones may 

be outdated. The result from the analysis of the problem should be a set of key-

questions that clearly identify the population being studied (the group of 

individuals who will be the target of the diagnosis or intervention), the type of 

control used and the efficiency measures that will be used to evaluate the 

interventions. 

The objective of the literature research is to find the best available evidence, 

capable of answering the key-questions formulated in the previous step. The 

development group has to define some search constraints (e.g., to privilege a 

published work over an unpublished one) in order to assure the quality of the 

evidence. Once all the information sources are gathered, the work group does a 

critical appraisal of the evidence, based on the methodologies used to do the 

studies that generated them. The reviews are summarized in evidence tables, with 

a grade being given to the medical trials that were selected (Rosenbrand et al. 

2008; Rosenfeld and Shiffman 2006). Healthcare institutions that produce 

guidelines do not have a common grading system, which is inconvenient when 
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one has to compare the evidence of similar guidelines. The Grading of 

Recommendations Assessment, Development and Evaluation (GRADE) 

(Kavanagh 2009) workgroup was created with the objective of developing an 

approach to evidence grading that can be used by different organizations. The 

GRADE system has been adopted by an increasing number of organizations and it 

is in continuous development. 

After the evidence grading, the workgroup must elaborate a sketch of the 

guideline and submit it to external revision. Usually, this revision is performed by 

independent entities in conferences or healthcare-related gatherings. This is an 

iterative process in which the guideline is altered according to the reviews and 

then proposed for another external revision, until it reaches a stable version. Then 

the guideline is published and disseminated through conferences and newsletters 

to healthcare professionals. 

2.3. Shortcomings of Clinical Practice Guidelines in the Present 

In the final phase of the development process, the development group has to 

choose suitable means for disseminating guidelines (Thomson et al. 1995). The 

usual ones are newsletters to healthcare professionals, disclosure at medical 

conferences and through online PDF repositories of guidelines (Cheater and Closs 

1997; Dennis et al. 2004). However, these means do not provide the desired 

coverage and sometimes fail in the delivery of knowledge to healthcare 

professionals. This is an important aspect because feedback from the medical 

community is the best mechanism through which guidelines are improved. 

Guideline documents have a structure that makes them difficult to consult. 

Usually they are long texts and the clinical recommendations are contained in the 

body of that text. This aspect interferes with the retrieval of relevant information 

by healthcare professionals and makes the consultation for real time application 

rather complicated. Moreover, these long documents are difficult to update, which 

is a great drawback in the evolution of a guideline. They should accompany the 

development of clinical knowledge in a specific medical area (Rosenbrand et al. 

2008).    

Another issue is the ambiguity of the content of guidelines (Woolf et al. 1999). 

Ambiguity can be classified into syntactic, semantic and pragmatic (Codish and 

Shiffman 2005). Syntactic ambiguity occurs when the structure of a statement is 
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not clear, thus impeding its correct interpretation. Misplaced (or lack of) 

punctuation and wrongfully applied Boolean connectors are some of the causes of 

syntactic ambiguity. The classic definition understood generically by people as 

ambiguity fits the category of semantic ambiguity, characterized by situations in 

which terms can be interpreted in more than one way. Misuse of abbreviations, 

such as the case of the word “cold”, which in the context of a guideline can mean 

“common cold”, “cold sensation” or “Chronic Obstructive Lung Disease”, fall in 

the spectre of semantic ambiguity. As for pragmatic ambiguity, it happens when 

the recommendations of CPGs are not consistent or are conflicting with each 

other. 

The vocabulary used in CPGs may also denote vagueness (Codish and 

Shiffman 2005). Sometimes the boundaries of a term are not completely 

understood by healthcare professionals. To show an example, temporal vagueness 

is frequent in guideline recommendations, with the use of terms such as “rare” or 

“common”. The poor specification of terms is also frequent, with terms like 

“moderate”, “elderly” and “adequate” being used without sufficient detail for 

clear interpretation. The texts often have occurrences of probabilistic terms to 

describe the frequency of events, namely “impossible”, “certain”, “unlikely” and 

“probable”, whose interpretation falls upon the subjective perception of the 

reader. The same situation occurs with some of the quantitative terms that are 

used. 

Healthcare professionals often complain that, rather than offering support for 

clinical practice, CPGs restrain it, the argument being that they do not consider 

the social, cultural and economic conditions of the context in which they are 

applied (Woolf et al. 1999). Healthcare professionals may need to adapt their 

clinical practice according to the origin of their patients, but the steps for doing so 

are not described in CPGs. This lack of context-awareness is one of the major 

causes of noncompliance. 

Currently, CPGs do not cope with preference-sensitive decisions, for instance, 

between scientifically valid treatments that may be applied to the same situation. 

In this case, there should be a group decision that takes into consideration the 

preferences and goals of the medical team responsible for the clinical case as well 

as those of the patient (Weidjen et al. 2011). What usually happens, in these cases, 
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is that the decision is made by one healthcare professional only, without 

consulting the other parts involved. 

The level of uncertainty and incompleteness of the information upon which 

decisions are made, during the application of guidelines, is also a matter of 

concern (Logan and Scott 1996). A symptom is a somewhat uncertain indication 

of a health condition as it may or may not occur together with the disease. Thus, it 

is necessary a measure of the uncertainty associated to the observation of a 

symptom and the risk of the occurrence of a disease. During clinical encounters, 

healthcare professionals have to collect the values of relevant clinical parameters 

that build the patient’s health state. The observations made by healthcare 

professionals in order to obtain these values have a subjective nature, mainly 

because a human being is doing them, thus the information they generate may be 

contradictory/inaccurate and sometimes the values of these parameters may not be 

obtainable due to the lack of technical means to do so. These cases of 

contradictory, inaccurate and missing information fall under the designation of 

incomplete information. 

3. Artificial Intelligence and Clinical Guidelines 

AI is a field of study that aims to explain and emulate intelligent behaviour in 

computational processes (Schalkoff, 1990). It is the branch of computer science 

that is concerned with the automation of intelligence. The ability to make 

machines think like human beings creates new possibilities in many areas. 

Research in AI helped the development of new technologies that nowadays are the 

basis of many big systems. These technologies are primarily used to automate 

tasks and improve knowledge-based processes, such as decision making. 

The application of AI in medicine can be traced back to the middle of the 1970s 

and early 1980s, and led to the appearance of a subarea in AI, called Artificial 

Intelligence in Medicine (AIM). Research in this new field was pioneered by 

research groups in the US. An early definition of AIM was provided by Shortliffe 

(1993), stating that the primary concern of this research area was the construction 

of AI programs that perform diagnosis and make therapy recommendations. This 

definition reflects the primary focus of AIM at that time, which was the 

understanding and automation of the clinical encounter. Nowadays, AIM is more 

focused on giving support to healthcare workers rather than trying to replace 
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them. As so the identification of the right areas of medicine in which this support 

can be given is the key aspect that dictates the acceptance of AI technologies by 

clinicians. 

 The variety of roles AI programs may play in medicine is very wide. The use 

of medical knowledge is one of such roles, namely the support to human cognition 

that can be implemented, for instance, as reminder systems that alert healthcare 

professionals of clinical events or contradictions in treatment plans. AI programs 

can also be used to create new knowledge by discovering new phenomena through 

data analysis, pattern discovery and associations. Machine learning is the subfield 

of AI that deals with the generation of new knowledge and includes different 

techniques to produce systems capable of providing a description of clinical 

features.  Case-based Reasoning (CBR) is one of such techniques. Based on past 

clinical cases, CBR is able to generate recommendations to new ones. The form in 

which these recommendations are provided varies, but rules and decision trees are 

among the most commonly used. An example of this type of system is KARDIO, 

for interpreting ECGs (Bratko et al. 1989). Another application of machine 

learning in medicine is the use of data-mining in the construction of 

pathophysiological models and drug discovery.  AI systems containing medical 

knowledge, usually about a specific domain, are capable of reasoning and 

reaching conclusions based on data. The array of functions AI programs can 

perform includes: alerts and reminders, diagnostic support, agents for information 

retrieval and image recognition/interpretation. DXplain (Barnett et al. 1992) and 

HELP (Gardner et al. 1999) are examples of these knowledge-based decision 

support systems and are among the first ones to be developed. 

In the remainder of this section, the focus will be placed on some topics and 

technologies of AI that may provide effective responses to the shortcomings of 

CPGs and help the development of clinical practice. 

3.1. Group Decision Making 

Group decision is a common phenomenon in human decision making activities. It 

is an arduous task because it implies the aggregation of individual alternatives to 

yield a decision that is acceptable to the group as a whole (John et al. 2008). The 

group explores a number of alternative solutions, answering what-if questions and 
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the participants may have different roles in the decision process, according to pre-

established criteria by the organization.  

During the application of CPGs, there are moments when this type of decision 

is required. The selection among scientifically valid options during the clinical 

process must be done based on the opinions of the parts involved (healthcare 

professionals and patients). Technology-assisted decision making may help the 

generation of ideas and actions, the choice of alternatives and the negotiation of 

solutions. The existence of CIG models and a tool for execution of CPGs enables 

the implementation of automated group decision making.   

The work of Karacapilidis and Pappis (1997) summarizes some of the aspects 

that must be taken into account when developing a framework for group decision. 

The first one is the spatial distance between decision makers and the electronic 

communication facilities that enable them to communicate with each other. In the 

clinical setting, it is not uncommon for a clinical case to be treated by a medical 

team whose members are from different healthcare institutions, so the 

development of a virtual environment that enables the communication between 

them may be an advantage to the discussion of guideline recommendations, as 

shown in previous works with successful knowledge exchanges (Anogianakis et 

al. 1998; Househ et al. 2011). The type of environment influences the goals of 

decision makers. The goals are different in an environment where the group wants 

to solve a common problem cooperatively from another in which bargaining takes 

place. Typically, in a clinical environment both situations can occur, a medical 

team may be discussing the diagnosis of a patient and their members may have 

different opinions based on different evidence. The implementation of techniques 

in a virtual clinical decision environment to extract information about the actors 

(e.g., stress level) (Novais et al. 2012), would assist the definition of the type of 

interaction between the group members and consequently the selection of a 

suitable decision model.  However, the development of mechanisms that enable 

them to express their preferences is necessary. The type of control over the 

decision process is also important. The group members may follow a democratic 

process in order to reach a solution (e.g., voting) or they may follow a hierarchical 

model in which the system is supported by a mediator, capable or not of imposing 

decisions to the other members.   



12 

A group decision environment with a decision model will help healthcare 

professionals and patients clarify their position in the decision making process and 

assure not only that their perspectives and preferences are heard, but also that they 

conform with the recommendations of  CPGs, 

3.2. Expert Systems 

An Expert System (ES) is a computer program capable of performing at the level 

of a human expert, or above it, in some knowledge domain (Nikolopoulos 1997). 

This type of systems uses knowledge and inference procedures to solve difficult 

problems. They have to mimic the adaptation capabilities of human beings in 

order to find solutions to new problems (Jackson 1990). In this sense, there is four 

fundamental aspects of the construction of ESs (Nikolopoulos 1997): the 

knowledge acquisition module, the knowledge base, the inference engine and the 

interface. The knowledge representation in an ES applies concepts of logics to 

create structured formalisms, inference rules as well as ontologies to define the 

context of the domain. The knowledge itself may be introduced in the system by 

human experts as rules, obtained from past experience through learning 

algorithms or both.  

Expert systems not only apply knowledge to situations but also generate new 

knowledge for new situations. The advantage of these systems, namely in 

healthcare, is that they are able to justify the decisions they make and provide 

confidence measures in their decisions. One of the problems healthcare 

professionals are faced with is the efficient use of all the information concerning 

clinical cases that they have. ESs provide means to treat large amounts of 

information and extract knowledge to be used in the future.  

The applicability of ESs in healthcare has been proven through cases such as 

those of MYCIN (Melle 1978), for the diagnosis of infectious diseases; and NED 

(Zhou et al. 2002), which is used for the detection of lung cancer cells in the 

images of the specimens from needle biopsies. The usefulness of ESs in 

healthcare is evidenced in the work of Seto et al. (2012) that comprises the 

development of a rule-based ES for the monitoring of heart failure. 

The development of an ES based on CPGs will enable the implementation of 

guideline acquisition tools based on domain ontologies that represent the different 

aspects of the clinical process. Such a system will also enable referencing the 
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evidence and clinical trials that endorse a clinical recommendation, in order to 

provide healthcare professionals the support they need to justify their actions. 

Inference rules are a fundamental feature of the system. Initially, they must be 

based on the available evidence, researched during the guideline development 

process by human experts, but afterwards, learning techniques, such as CBR, may 

be used to reinforce the rules of the system or offer alternatives to the 

recommendations of guidelines. Such an ES will also enable healthcare 

professionals to give their feedback of guideline recommendations, according to 

the outcomes of their application, producing data that may be used to improve 

them. The issue of guideline contextualization may also be addressed by the ES 

through the use of information retrieval techniques to search for news and articles 

that fit the scope of the health conditions addressed by a guideline. Such a feature 

may be useful when dealing, for instance, with flu outbreaks because the 

healthcare professional may consider relevant the information about new virus 

strains that are currently active and characteristics of the population that make 

them particularly vulnerable to those strains, adapting his clinical practice 

accordingly. 

Currently, web applications are growing fast. They present some advantages to 

their desktop counterparts that make them the ideal support for ESs. They require 

no installation and updating and are accessible from anywhere on the internet. The 

data is stored remotely and they do not require high specs from the devices in 

which they run. This portability makes them accessible to low spec PCs, 

smartphones and tablets. The coming of age of cloud computing and mobile cloud 

computing will have a positive impact in the way e-health services are made 

available to healthcare professionals, mainly due to the pervasive access to 

information granted by these technologies (Dinh et al., 2011). Moreover, a cloud-

based health information system eases the integration of different services from 

different service providers through the internet to meet user demands. A web-

based ES for the application of CPGs would allow healthcare professionals to 

access the information they need when they are in contact with their patients, 

filling in any knowledge gaps they might have. It would also provide decision 

support during the clinical process and solve the problem of guideline delivery to 

healthcare professionals. 
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Although there is a widespread research in the field of healthcare ESs, their 

application in real life is not so widespread. Among the reasons for this situation 

is the fact that, in many of them, developers do not consider the cognitive 

necessities of healthcare professionals when designing their interfaces (Johnson 

and Turley 2006). Intelligent interfaces reflect users’ goals, tasks and processes in 

order to make human-machine interaction a collaborative experience. As such, 

they provide an abstraction level of the processes that occur in the internal 

structure of the system that resembles the cognitive process of the users. This is 

beneficial to the implementation of CPGs, sit enables the development of user-

friendly tools consisting of graphical interfaces that support primitives for 

drawing the control information within the guideline, windows for acquiring the 

internal properties of the objects, facilities for browsing CPGs and an environment 

for consistency checking of clinical recommendations. To achieve these purposes, 

the interface needs specific data about the clinical domain that is being addressed 

as well as models for the representation of the knowledge of CPGs, their rules and 

processes.  

3.3. Case-Based Reasoning 

CBR is an AI approach that makes use of past experience to solve current 

problems (Aamodt and Plaza 1994). The applicability of CBR in health sciences 

is vast, given the similarities this research method has with the cognitive process 

of healthcare professionals: it is a natural process for them (Bichindaritz and 

Marling 2006). Case histories are the main training tool for clinicians and the 

medical literature is filled with accounts of treatments of individual patients. 

Moreover, some diseases still remain a mystery to the medical community, which 

impedes the definition of generic models to manage them. The approach to these 

clinical cases requires background knowledge recorded in practice cases. These 

background cases complement guidelines and help to interpret them. The human 

body is a complex biological system that is difficult to describe and even in well-

known health conditions (e.g., hypertension and heart disease) several diagnoses 

interact to produce a given set of symptoms.  

Typically, a CBR process is composed of four sequential phases: retrieve, 

reuse, revise and retain (Aamodt and Plaza 1994). The first phase consists in 

retrieving one or more previously experienced cases that are relevant. The 
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relevance of the cases corresponds to a similarity measure, (e.g., the difference of 

the sums of the different attributes that build the case). During the reuse phase, the 

solutions of the retrieved cases are mapped to the new case, which may involve 

adapting the solution in order for it to fit specific requirements of the new problem 

because it is unlikely that a an exact match of the new case exists in the case 

memory. In the third phase, revise, the best matching solution is tested in order to 

predict the results of its application. If the result does not meet the expectations, 

the action taken is revised. In the last phase, retain, the solution of the new case is 

stored in the case memory, contributing to its enrichment. 

Among the applications of CBR systems in the health sciences domain, 

CASEY is one of the earliest (Koton 1988). This system diagnosed heart failure 

patients by comparing them to earlier patients whose diagnoses were known. 

CASEY also integrated an earlier model-based system and pioneered the 

combined use of CBR and another reasoning methodology. PROTOS (Bareiss 

1989) is another early CBR system that assigned patients to pre-defined diagnoses 

based on past cases (Bichindarits and Marling 2006). Since the debut of these 

systems, CBR has been used for other tasks, such as nursing diagnosis (e.g., 

FLORENCE system (Bradburn and Zeleznikow 1994)), radiation therapy design 

(e.g., ROENTGEN system (Berger 1994)) and diagnosis of degenerative brain 

diseases through image segmentation of CT and MR brain images (e.g., HPISIS 

system (Perner 1999)), to name a few. 

CBR may be used to manage non-compliance with CPGs. When executing a 

clinical guideline in an ES, the healthcare professional may have to face a 

situation that was not predicted by the guideline or in which his professional 

opinion is different from the recommendations provided by it. Moreover, the 

unavailability of relevant patient data or resources, and the existence of data that 

is outside the range foreseen by the guideline may also require a deviation from 

the protocol by healthcare professionals. When faced with these situations, the ES 

may allow the healthcare professional to change the guideline in order to fit the 

current case. With the help of CBR, the system may construct a case memory of 

these deviations where the description of the cases (the pair attribute/value of the 

clinical parameters) and their solution (the alteration made to the guideline) are 

stored for later retrieval to solve similar cases. This way, the system could grasp 

the constraints (social, economic and cultural) of the medical practice of 
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physicians and provide useful feedback of the applicability of a certain guideline. 

An elevated number of cases in the memory case for a specific guideline are an 

indicator that a step of the guideline or the guideline itself is no longer fit for 

medical application. 

3.4. Medical Ontologies 

In the context of AI, an ontology is a formal representation of knowledge as sets 

of concepts and the relations between them within a domain (Gruber 1993). An 

ontology defines a vocabulary that contains all the concepts that may be used to 

model the domain and how they relate to each other. This conceptualization is 

achieved through the definition of classes and subclasses of individuals along with 

the properties of the individuals in a class.  

Ontologies have a key role in the Semantic Web (Berners-Lee et al 

2001),since they structure underlying data for the purpose of comprehensive and 

transportable knowledge and machine understanding. Besides allowing machines 

to read and interpret information, ontologies present other advantages to 

knowledge engineering such as automated validation and consistency checking.  

In a complex domain such as the clinical one, ontologies provide significant 

advantages in the formalization of CPGs. The vagueness and ambiguity that, 

sometimes, is present in guidelines can be removed through the usage of 

controlled vocabularies, thus eliminating fuzzy relations between the concepts of 

the domain. It would also allow the extraction of rich patterns, that would go 

unnoticed otherwise, and the construction of inference mechanisms in the domain. 

The guideline ontology can be shared in ontology repositories for widespread use 

and dissemination. Currently there is a growing interest of clinical guideline 

researchers in ontology-driven execution of CPGs (Isern et al. 2012).  

The Unified Medical Language System (UMLS) (Bodenreider 2004) reflects 

the efforts of the US National Library of Medicine to remove ambiguity and 

vagueness from the clinical setting. It is an ontology that aggregates terms used to 

describe the same concept from existent knowledge sources (e.g., SNOMED CT, 

LOINC, ICD-10, MeSH) under the same identifier. The UMLS has three main 

components: the Metathesaurus, the Semantic Network and the SPECIALIST 

Lexicon. The integration of this ontology in a CPG ontology would effectively 

improve the understanding of clinical recommendations and provide an easy 
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access to semantic networks that could provide precise definitions of medical 

terms. 

3.5. Reasoning under Uncertainty 

AI provides some techniques that deal with uncertainty and incomplete 

information in decision making scenarios. They can be classified in qualitative 

and symbolic methods (Clark 1990). The advantage of symbolic methods is that 

they bring some common sense validity that can be found in approaches such as 

non-monotonic logics, default logic and defeasible reasoning. There are also other 

symbolic methods, often called reason-based (Fox et al. 2001), that use informal 

endorsements for multiple options and formalizations of everyday strategies for 

reasoning about competing beliefs, argumentation being one of these techniques. 

However, the health sciences are, currently, more interested in the numeric 

methods such as Bayesian Networks, Dempster-Shafer Theory or Fuzzy Logic 

(Clark, 1990). 

Bayesian Networks were derived from probability theory and appeared for the 

first time in the middle of the 1980s (Pearl 1986). It is a statistical model defined 

by two components: a qualitative component and a quantitative component (Clark 

1990). The qualitative component is an acyclic orientated graph whose nodes 

represent a random variable that may assume any value from a given set and is 

associated with a probability distribution. The existence of an arch between two 

variables means that they are statistically dependent. The quantitative component 

is a conditional probability distribution. The essence of this approach is the 

representation of hypotheses and relations in the domain under consideration. In 

the medical domain, the relation of causality between clinical parameters and 

diseases may be effectively represented through Bayesian Networks and it is 

possible to obtain these relations from CPGs (van Gerven et al. 2008). Moreover, 

the prior probabilities for the different variables and  the conditional probabilities 

may be gathered from the empirical evidence displayed in the guideline. Thus, the 

combined used of Bayesian Networks and CPGs adds value to the clinical process 

and provides quantitative measures that enable healthcare professionals to assert 

the solidity of their decisions. The work of Lucas (2004) is heavily focused on the 

combined use of clinical guidelines and Bayesian networks for clinical decision 

support systems. 
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The Dempster-Shafer Theory of evidence was initially developed by 

Dempster in 1967 (Dempster 1967) and later extended by Shafer in 1976 (Shenoy 

and Shafer 1986). It relies in degrees of belief to represent uncertainty. This 

approach allows the assignment of degrees of belief to sets of hypotheses (e.g., 

{gastric cancer, gastric ulcer}, i.e. gastric cancer is caused by a gastric ulcer) 

instead of individual clinical parameters, like Bayesian networks. For this reason, 

it is considered that Dempster-Shafer Theory is better able to represent the process 

of narrowing hypotheses with the accumulation of evidence. This process is 

claimed to mimic diagnostic reasoning. Since Dempster-Shafer Theory identifies 

a set of solutions that reflect any other options that are not discretized, it can deal 

with ignorance and non-exhaustiveness (not pointing out all the existing 

solutions). However, it receives some criticism concerning the computational 

complexity that generates for large sets of hypotheses (Clark 1990). Despite these 

shortcomings, Dempster-Shaffer Theory has been used efficiently for the 

representation of medical knowledge and uncertainty in some critical areas 

(Straszecka 2004).  

The Fuzzy Sets approach was initially developed with the objective of 

quantifying imprecise classes in natural language (Zadeh 1975). It is most useful 

when sets are defined by vague concepts and variables are continuous (e.g., 

height, warmth, age). Natural language is full of examples of fuzzy classifiers, 

like predicates (e.g., small, large, young), quantifiers (e.g., most, many, few), 

probabilities (likely, unlikely) or truth values (e.g., very true, quite true, mostly 

true). The quantification in this method is provided by membership functions that 

attribute a value in the in the interval [0,1] to the relevant elements.  Fuzzy Logic 

was derived from fuzzy sets and is based on the notion of truth degree of a 

preposition. It defines operators that express the disjunction and conjunction of 

prepositions, independently of their meaning. Just as it is difficult to estimate the 

prior probabilities of a Bayesian Network, the production of membership 

functions is complex (Clark 1990). Many disciplines of medicine already use 

Fuzzy Sets in ESs, for tasks such as diagnostic and imaging analysis (Abbod et al. 

2001). Fuzzy Sets are being researched for the representation of operational 

guideline knowledge and the definition of threshold values for clinical parameters. 

In fact, currently, Fuzzy Logic is being integrated with the Arden Syntax 
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(Vetterlein 2010) guideline model in order to produce a continuously graded 

applicability of statements.  

 All these approaches deal with uncertainty from a perspective of causality 

and interdependence, but do not address the aspects of incomplete information 

and the different forms it can assume. Further in this paper we will present a 

methodology called Quality of Information (QoI) (Neves et al. 2012) that provides 

ways of dealing with this information and making it useful to the decision making 

process. 

4. Computer-Interpretable Guidelines   

4.1. Living Guidelines 

As a response to the challenges presented by CPGs, the concept of Computer-

Interpretable Guideline emerged (De Clercq et al. 2008). CIGs are representations 

of CPGs in a digital format, suitable for being interpreted by machines.  A digital 

format of CPGs may be a game changer in all the aspects that revolve around 

them, namely development, dissemination, implementation and execution.  

There is a set of features that guideline researchers would like to see guidelines 

acquire (Rosenbrand et al. 2008). Features such as modularity, dynamism and 

interactivity are gathered under the concept of living guidelines (Seyfang et al. 

2007), which basically is translated into guidelines that are easy to update and 

modify and have an active role in providing knowledge to healthcare 

professionals. The objective of researchers is to change the static and passive 

nature of guidelines. CIGs are, currently, the best way to achieve this purpose.  

The development of a standard model of CIGs may provide a deeper 

understanding of the clinical process and may have significant benefits. A 

depiction model for CPGs can be used to identify the different requirements that 

must be accomplished before making a decision, to establish decision criteria and 

thus helping healthcare professionals in this critical moment of the clinical 

process (Elkin et al. 2000). Having a model also enables the definition of methods 

to verify the semantic and syntactic structures of guidelines, providing a way to 

distinguish a well formed guideline from a poorly made one (Elkin et al. 2000). If 

the model enables the definition of modular components, like for instance clinical 
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procedures that are common to different guidelines, it may be possible to reuse 

this knowledge when building a new digital guideline (Elkin et al. 2000).  

The creation and use of CIGs offer a better description and recording of patient 

states and may provide selective access to background knowledge to be used in 

specific circumstances. The use of automatic reminders according to the 

recommendations of guidelines may also be implemented (Fox et al. 2008). 

4.2. The Document-centric and Model-centric Approaches 

Decision support systems based on CPGs may support healthcare professionals in 

following the best clinical practice in a consistent way. Formalization of 

guidelines in a guideline representation language may follow two different 

approaches (Sonnenberg and Hagerty 2006): document-centric and model-centric. 

The document-centric approach (Kaiser and Miksch 2009) consists in using 

mark-up tools on the original guideline documents. The original document is 

either marked up or annotated to produce a more structured format with defined 

semantic elements. Usually, this process is carried out in stages. First, the mark-up 

is used to identify elements in the text of the guideline. Then, using a specialized 

tool, a semantic tag is assigned to the elements and the connections between them 

are made. The advantage of this approach lies in enabling the encoding of CIGs 

without the need to have a profound knowledge of a specialized computer 

language. However, the current tools that perform this process are not perfected 

yet and it is difficult to construct long and complex guidelines using this method.  

On the other hand, in the model-centric approach (De Clercq et al. 2004), a 

depiction model is formulated by domain experts and the relationship between the 

new model and the original document is indirect. The acquisition of guidelines in 

the model-centric approach is done directly by healthcare professionals into the 

new model. Through this process, it is possible to develop friendlier interfaces for 

healthcare professionals to encode their guidelines and, at the same time, they 

become more knowledgeable of the different steps that compose the clinical 

process. 

GEM Cutter (Shiffman et al. 2000), Stepper (Ruzicka and Svatek 2004) and 

DELT/A (Votruba et al. 2004) are some of the most relevant mark-up-based tools 

that generate semi-formal models of marked guideline texts. GEM Cutter was one 

of the first tools to apply a document-centric approach and transform guideline 
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information to an ad hoc format, called GEM. Stepper is a tool that segments the 

initial text in multiple user definable steps coded in XML. DELT/A stands for 

Document Exploration and Linking Tool/Add-ons and, as its name indicates, it 

supports the translation of HTML documents into any XML language, among 

which is the Asbru guideline representation model. There are methodologies (e.g., 

LASSIE (Kaiser and Miksch 2009)) for document-centric approaches that use 

information extraction techniques that rely on databases of medical terminologies 

to acquire guidelines in a semi-automatic way, thus eliminating the requirement of 

having an healthcare professional manually tagging the terms in the original 

document. 

Some applications for model-centric acquisition of CPGs will be presented 

when  the different representation models for CPGs are addressed, further in this 

paper. 

4.3. Aspects of CIG-based Systems  

In the conception and development of CIG-based decision support systems, 

researchers identified four aspects that must be taken into consideration in the 

development process (De Clercq et al. 2004): guideline representation and 

modelling, guideline acquisition, guideline validation and testing, and guideline 

execution.  

The model is the fundamental feature of a CIG-based decision support system 

(Peleg et al. 2003). It has to provide enough expressivity in order to accommodate 

every step of a guideline. Normally, the models created exclusively for guideline 

representation have a set of construction units (e.g., tasks or steps) that are used to 

build a guideline (De Clercq et al. 2004). These building blocks are given the 

designation of representation primitives (e.g., decisions, actions) and are used 

according to a Task Network Model (TNM). Some works consider the adaption of 

business process models, such as Petri Nets (Quaglini et al. 2000), to the 

modelling of CPGs. However, these approaches do not have enough expressivity 

due to them being developed to support business organizations and processes 

rather than medical organizations and processes. The possibility of using them in 

clinical settings is being actively studied in order to define higher abstraction 

layers, capable of expressing the different steps of the clinical process, on top of 

the basic model. 
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Whichever model is chosen, the degree of complexity the representation is able 

to accommodate is an important factor. Different models may differ in terms of 

the abstraction levels they allow, for instance, in the nesting of guidelines inside 

other guidelines. CPGs possess two different types of knowledge (Rosenbrand et 

al. 2008), the declarative (scientific knowledge about the domain) and procedural 

(the inference methods and the decision model), which have to be formalized 

through a language in the representation model. The language should provide an 

objective vocabulary, syntax and semantics, so that an inference engine can be 

developed. In a complete representation, there should also be triggering criteria, 

which include initial screening to assess if a patient should enter a protocol or not 

and connect the different elements of the guideline according to the output of 

decisions. Another indispensable feature is temporal patterns because guideline 

recommendations depend mostly of the state of the patient in a given moment.  

Knowing this, it is essential for a guideline model to provide mechanisms to 

define durations, repetitions and cycles of tasks. 

An acquisition tool must be developed in order to help healthcare professionals 

structure the knowledge according to the guideline model that was defined (De 

Clercq et al. 2004). The tool must take into account the approach followed for 

guideline acquisition, if it is either document-centric or model-centric. 

The precision, the syntactic correctness and the semantic coherence are 

extremely important in the acceptance of CIGs by healthcare professionals and in 

their integration in daily practice (De Clercq et al. 2004). As such, the inclusion of 

mechanisms for guideline validation and testing in the guideline execution engine 

is necessary. During the execution, the guideline execution engine should have 

access to a database containing the values for the clinical parameters that build the 

patient’s state in order to apply CPGs in real time.   

4.4. Current Approaches to Guideline Modelling and Execution 

Currently there are few CIG systems available and they lack application in real 

clinical settings. This review addresses them by their depiction models and 

mentions the execution engines available for each one as well as the underlying 

platforms. The selection of the approaches was based on opinions collected from 

the literature that deemed them the most relevant. Table 1 shows a summary of 

the available software tools and models as along with their main features.  
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4.4.1. Arden Syntax 

Arden Syntax (Hripcsack 1994) was developed in 1989 and is now a standard of 

Health Level 7 (HL7). The current version of Arden Syntax is Arden Syntax 2.8. 

The primary aim of this approach is the sharing of simple and independent 

guidelines as modules. Each clinical guideline is modelled as a Medical Logic 

Module (MLM), which comprises relevant knowledge for only one judgment. 

Initially, each MLM was an ACII file divided in three partitions: maintenance, 

library and knowledge. 

The maintenance and library partitions possess administrative information 

about the guideline, namely authoring and version number. The constructs of the 

maintenance partition are title, (file)name, author, version, institution, date of last 

modification and validation status. The validation status contains information 

about the approval of the guideline in a local institution and it may have three 

possible values: testing, research, production and expired. The transition from 

testing to production means a shift of responsibility from the institution that 

developed the MLM to the local institution where the guideline will be applied. 

The library compartment contains constructs used for a detailed description of the 

guideline and among them the attribute purpose enables the expression of the 

clinical objective of the MLM.  

The main constructs of the knowledge compartment are data, evoke, logic and 

action. The data construct is used to obtain the values of the concepts referred in 

the MLM from the information system of the healthcare institution. The evoke 

construct contains the events that trigger the execution of the MLM and these 

events are related with the clinical parameters in data. The decision criteria are 

expressed in the logic construct through if-then-else rules and sets of logical, 

mathematical and temporal operators.  When a rule is assessed to the value true, a 

given procedure of the construct action is proposed. These procedures may 

include messages/alerts or the execution of other MLMs. This approach reveals 

great modularity and gives transparency to the decision making process, but given 

its simplicity, the ability to capture the full content of a clinical guideline is 

compromised. Arden Syntax is mainly used in alert and monitoring systems, like 

the ones provided by the Regenstrief Institute (Anand et al. 2004). Initially it was 

defined in Backus-Naur Form (BNF), a notation technique used to describe the 
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syntax of computation languages. Currently the development of Arden Syntax by 

HL7 is based on XML (Kim et al. 2008). 

There is a myriad of tools to acquire and execute guidelines in Arden Syntax. 

We will highlight the Arden Syntax IDE (Samwald et al. 2012), which is a simple 

development environment that provides syntax highlighting and testing 

functionalities for MLMs. The Arden Syntax IDE contains a compiler that 

generates java classes from MLM code. These classes are then executed by an 

Arden Syntax Rule Engine that works together with another component, the MLM 

manager, which gives the rule engine the access to the available MLMs in the 

system. Arden Syntax is a highly portable format, conceived to be integrated in 

Clinical Management Systems (CMSs). 

4.4.2. Guideline Interchange Format (GLIF) 

The Guideline Interchange Format (GLIF) (Ohno-Machado et al. 1998) represents 

an effort of Intermed Collaboratory for the development of a sharable clinical 

guideline representation model. The first published version of GLIF was released 

in 1998 and its current version is GLIF3 (Boxwala et al. 2003). This approach was 

developed in order to reflect a flowchart of steps and consists of a set of classes 

that describe the fundamental characteristics of a guideline and constructs that 

contain the clinical parameters. Through this flowchart representation, GLIF3 

provides a better understanding of the clinical process to healthcare professionals.  

A guideline in GLIF3 is an object that contains different steps, namely:   

decision steps, patient state steps, branch steps, synchronization steps or action 

steps. This approach follows the Task Network Model (TNM), so that every 

moment of the clinical process is labelled as a step. 

Decision steps model decision points in a guideline and direct the careflow 

from one to alternative steps. There are two subclasses in decision: case step and 

choice step. A case step contains a set of logical expressions that initially 

corresponded to an excerpt of Arden Syntax. Currently, GLIF3 uses an OCL 

(Object Constraint Language) expression language called GELLO (Sordo et al. 

2003) that has more expressive power than the previous. As for choice steps, they 

contain only a set of options for the next step in the clinical process and the 

selection is made by an external agent (e.g., the user).  
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Patient state steps function as labels that have constructs used to describe the 

patient’s health condition. These steps are used as data entry points in the system. 

When the state of the patient is updated, the guideline that possesses the 

corresponding patient state is executed.  

The tasks of the clinical process are modelled in the action steps through three 

distinct constructs: medical actions, activity oriented actions (e.g., messaging, 

retrieving of patient data) and control actions (invocation of structures such as 

sub-guidelines). 

At Columbia University, GLIF is being integrated with the Clinical Event 

Monitor and the Computerized Physician Order Entry systems to provide clinical 

decision support (Peleg and Wang 2006) for post-CABG (Coronary Artery 

Bypass Grafting) (Zheng et al. 2010). Encoded GLIF guidelines are also being 

used in Israeli clinics for the management of feet injuries of diabetics. The GLIF3 

Guideline Execution Engine (GLEE) (Wang et al. 2004) is a tool for executing 

guidelines in this format. It defines three layers of abstraction: data, business logic 

and user interface. The data level contains the Electronic Medical Record (EMR) 

and a guideline repository. The execution engine is in the business logic layer and 

includes a server that interacts with the data layer and clients that interact with the 

users. Applications exchange data with the other two layers through the user 

interface layer. GLEE may be linked with a clinical event monitor, thus enabling 

event-driven execution of CPGs, responding to alterations in the state of the 

patient. This software tool also defines a set of methods to connect it to CMSs and 

uses representations like the Resource Description Framework (RDF) and HL7 as 

a general patient data model (Schadow et al. 2006) to support CPGs and encode 

medical data in order to share information across different institutions.
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Table 1 Software tools for guideline development (adapted from Isern and Moreno (2008)). 

Tool CG Repository CG Editor 
CG representation 

language 
CG basic elements 

Run-time 
engine 

Access to 
EMR 

Access to 
CMS 

Standards used 

Arden Syntax 

IDE 
Yes Yes Arden Syntax MLMs Rule-based No No XML 

GLEE Yes Yes GLIF3 
Decision, action, patient state, 

branch, synchronization steps 

Event-based 

and rule-

based 

Yes Yes RDF,HL7 

Arezzo Yes Yes PROforma Plan, action, decision, enquiry Rule-based Yes Yes No 

DeGeL Yes Yes Asbru 
Preferences, intentions, 

conditions, effects, plan body 
Rule-based Yes Yes 

XML, ICD-9, 

SNOMED-CT, 

CPT, LOINC 

GLARE Yes Yes Graph-like 
Query actions, work actions,  

decision actions, conclusions 
Rule-based Yes Yes XML, ICD-9 

SAGE Yes Yes SAGE model 
Context, action, decision, 

routing nodes 
Event-based Yes Yes HL7, UMLS 
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4.4.3. PROforma  

In 1998, the Advanced Computation Laboratory of Cancer Research of the United 

Kingdom initiated the development of the PROforma (Fox et al. 1998; Sutton and 

Fox 2003) depiction model. The objective of this model is the development of 

guidelines as flowcharts where the nodes are instances of pre-defined classes of 

tasks. The main classes are plans, actions, decisions and enquiries. Each class has 

a set of attributes that reflect its information needs. The syntax of PROforma was 

also initially defined in BNF in an ASCII file.  

Every task of a guideline derives from a common task called root task.  A root 

task contains several guidelines encoded as sets of tasks called plans. On the other 

hand, a plan contains any number of instances of atomic tasks, such as actions, 

decisions and enquiries. A plan also has constructs that enable the definition of 

clinical objectives (that reflect the objective of a guideline), abort or termination 

conditions and scheduling constraints on the atomic tasks. It is also possible to 

define temporal constraints on plans, such as cycles, durations and number of 

repetitions. One of the core features of PROforma is the possibility of nesting 

plans inside other plans. 

An action in PROforma is a task whose execution has to be performed by an 

external agent. Typically, these tasks consist in sending messages and calling 

external programs or clinical procedures.  

The enquiry task defines data entry points in the guideline as questions to the 

patients or internal procedures to retrieve the relevant information from the 

patient’s EMR. This class contains data definition constructs that specify how a 

value for a clinical parameter must be stored (e.g., data type, unit). 

Perhaps the most important class in PROforma is decision. Among all the CIG 

formalisms, PROforma was the first to offer a support to deal with uncertainty 

during the decision process. A decision contains constructs to express candidate 

solutions to the decision problem as well as logical expressions that endorse or 

refute each candidate. Each expression, in favour or against a candidate, is 

associated with positive signs (represented by a plus sign +) and negative signs 

(represented by a minus sign -). The weight of an argument in the overall score of 

its candidate depends of the number of positive and negative signs it has. This is a 
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symbolic method of endorsement that uses a mathematical function to convert the 

signs in numeric values for calculating the scores of each option. Then the options 

are presented by descending order of scores. According to the results of a decision 

task, the next task in the careflow is the one that has a construct called trigger 

condition matching the output of the decision.PROforma has been used in a few 

prototypes for clinical management, namely CAPSULE for general practice and 

Bloedlink for advice on laboratory tests and management of chronic diseases 

(dyspepsia, asthma and depression) (Fox and Thomson 1998). 

Among the software tools for PROforma, Arezzo (Fox et al. 2006) is arguably 

the most disseminated. It has an architecture composed of three elements: a 

composer, a tester and a performer. The composer is responsible for providing an 

acquisition suite of guidelines in PROforma. The tester verifies the syntactic 

integrity of the PROforma guidelines before deployment by the performer, which 

is an inference engine. The performer can be linked to existing EMRs and CMSs 

to acquire data related to patients and also defines different states of guideline 

execution (e.g., waiting for data, suspended, finished). 

4.4.4. Asbru 

Asbru (Shahar et al. 1998) is the result of collaboration between Stanford and 

Vienna Technology Universities. This formalism presents a notion of plan similar 

to PROforma in the sense that it represents a collection of items. The knowledge 

required to perform a plan is defined by its knowledge roles, which include 

preferences, intentions, conditions, effects and plan body. 

The content of a plan body is composed of other plans until they are no longer 

decomposable, reflecting a parent-child structure. The plans that cannot be 

decomposed are called actions. The functionalities of plans and actions are 

defined by the remaining knowledge roles. The plan body is the layout of a given 

plan. 

The restrictions on the execution of a plan, in order to achieve a given objective 

are defined by preferences. The categories in preferences that define these 

restrictions are select-method, resources and strategy. 

The objectives of plan are represented in the intentions knowledge role.  The 

definition of intentions helps the selection of an adequate plan and is crucial in 

decision support. Intentions are defined as temporal constraints on the actions of 
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healthcare professionals.  There are four types of intentions: intermediate state, 

intermediate action, overall state pattern and overall patient pattern. Intermediate 

state refers to patient states that must be maintained, reached or avoided (e.g., the 

control of levels of substances in the blood) during the execution of the plan. On 

the other hand, intermediate actions define the actions the healthcare 

professionals must perform during the plan. The overall state pattern is the state 

of the patient that must be verified at the end of the execution of the plan and the 

overall action pattern is the pattern of actions of the healthcare professional that 

should result from the plan. 

There are different types of conditions, namely filter-preconditions and setup 

conditions, suspend conditions, and abort conditions, that are used to express the 

respective following situations: conditions that must hold for a plan to be 

considered applicable, conditions that determine the suspension of a plan and 

conditions that determine the abortion of a plan. 

Effects describe the expected behaviour of the execution of a plan. It is 

composed of the following two constructs: argument-dependency and plan-effect. 

The first is used to describe the functional relationship between the plan 

arguments and the measurable parameters, describing how they influence each 

other. The second describes the relationship between the overall plan and its 

expected effect.   

Asbru is heavily focused on temporal aspects of CPGs and that is evident in its 

temporal annotations, which specify four points in time for the execution of plans 

and verification of conditions, with the particularity of allowing the expression of 

uncertainty in starting time, ending time and duration of a time interval. The 

temporal annotations of Asbru are earliest starting shift (ESS), latest starting shift 

(LSS), earliest finishing shift (EFS) and latest finishing shift (LFS). It is also 

possible to specify two types of durations: minimum duration (MinDu) and 

maximum duration (MaxDu).  

This model has been used in the Asgaard project in the development of 

prototype applications for the management of diabetes, jaundice and breast cancer 

(Zheng et al. 2010). 

Acquisition and execution of Asbru guidelines is possible through DeGeL 

(Shahar et al. 2004), a tool in development at Ben Gurion University, in Israel, 

and is a web-based architecture that facilitates the conversion of textual guidelines 
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to Asbru guidelines. This distributed architecture has some key components 

responsible for the creation of new guidelines, guideline retrieval from an XML 

repository as well as testing and execution of guidelines. The execution module is 

called Spock and it incorporates an inference engine that can retrieve data from the 

patient’s EMR. It is a modular client-server application that consists of a set of 

classes to store guidelines, a parser to interpret their content and a synchronizer 

that establishes the communication with external systems. DeGeL also has a 

vocabulary server for supporting guideline specification and establishing 

mappings between the standardized terms and each clinical database vocabulary. 

The set of standard terminologies that is used includes International Classification 

of Diseases (ICD-9), Standard Nomenclature of Medicine (SNOMED-CT), 

Current Procedural Terminology (CPT) and Logical Observation Identifiers, 

Names, and Codes (LOINC). 

4.4.5. GuideLine Acquisition, Representation and Execution (GLARE) 

The GuideLine Acquisition, Representation and Execution (GLARE) (Bottrighi et 

al. 2006) project includes a guideline depiction model and a system to acquire and 

execute CPGs. It was developed by the Computer Science Department of the 

University of Piemonte Orientale, Alessandria, Italy.  

The depiction model does not use a standard representation. Instead, it defines a 

proprietary graph-based structure for displaying CPGs, where a clinical action is 

represented by a node. It is possible to define atomic actions that represent simple 

tasks like queries to obtain external information, work actions that represent 

medical procedures, decision actions with sets of conditions to select alternatives 

and conclusions that describe the output of a decision.  Decision actions are 

specific types of actions that contain the criteria used to select from alternative 

paths from a guideline. These criteria are represented as sets of triplets in the form 

<diagnosis, parameter, score> and, in turn, a parameter is another triplet <data, 

attribute, value>. It is also possible, in GLARE, to define composite actions, 

which are collections of atomic actions or other composite actions. GLARE was 

designed to cope with different types of temporal constraints and implements 

specialized temporal reasoning algorithms.  

The GLARE execution engine (Bottrighi et al. 2006) distinguishes between the 

acquisition phase and the execution phase of guidelines. Similarly to GLEE, 
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GLARE defines three architecture levels, namely System, XML and DBMS. The 

System level encompasses the acquisition and execution modules. The XML level 

is responsible for the data exchanges between the System level and the DBMS 

level. The DBMS is the bottom level, responsible for establishing a physical 

connection between the top levels and the databases where the information for 

creating and executing guidelines is stored. This information includes open 

instances of guidelines, a repository of guidelines and medical records of patients. 

GLARE uses ICD-9 as a terminology standard. 

4.4.6. Standards-Based Sharable Active Guideline Environment (SAGE) 

The Standards-Based Sharable Active Guideline Environment (SAGE) (Ram et al. 

2004; Tu et al. 2007) project is a collaboration of six research groups (IDX 

Systems, University of Nebraska Medical Center, Intermountain Health Care, 

Apelon, Inc., Stanford Medical Informatics and the Mayo Clinic). SAGE includes 

a guideline depiction model and a guideline authoring and execution environment 

and is perceived as an evolution of GLIF3 and EON. Its objective is to establish 

an infrastructure to enable sharing guidelines in heterogeneous clinical 

information systems. SAGE is involved with standards organizations to bridge the 

gap between guideline logic and real life implementations. 

 In this depiction model a guideline is a recommendation set, which is 

composed as a graph of nodes. These nodes can be context, action, decision and 

routing nodes. Context nodes describe the environment in which the guidelines 

are applied (e.g., a physician in an emergency room).  The action nodes represent 

activities of the information system that support the execution of a guideline. The 

control of the careflow is performed by the decision and routing nodes. The 

patient state is retrieved directly from the electronic health record of the 

healthcare entity.  

So far, application of SAGE in practice is very limited. However the Mayo 

Clinic has plans to apply it in the implementation of guidelines for immunization, 

diabetes and pneumonia in controlled environments (Zheng et al. 2010). 

The SAGE system consists of an execution engine, an event listener and a set of 

services (terminology, patient record and general applications) (Ram et al. 2004; 

Tu et al. 2007). The execution engine is called SAGEDesktop and it interprets the 

content of the context, action decision and routing nodes. The event-listener 
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communicates with the CMS and the EMR with the objective of detecting sudden 

alterations in a patient’s state and notifies the execution engine if that is the case. 

There is also a terminology server that was added to customize terms used in local 

applications. The communication between the CMS and the execution engine is 

facilitated by and Application Programming Interface (API) developed 

specifically for this purpose, which hints to the main focus of SAGE, 

interoperability. Semantic and syntactic interoperability of clinical data requires 

the use of standard data types, terminology, information models and conventions 

for expressing clinical statements. SAGE puts this to practice through the use of 

HL7 version three and the UMLS.  

5. Active Guidelines in a Clinical Setting 

After the analysis of some of the existing projects in the field of CIGs, there are 

some issues  that leave room for improvement and innovation. This work focuses 

mainly on guideline modeling and decision support during guideline execution.  

Concerning guideline modelling, there are some issues that may be pointed out, 

namely the fact that the available models lack real life application outside the 

academic environment and are still in the development phase. As such, there is 

not a reference standard for CIG representation that can be used when developing 

a system for acquisition and execution of CPGs. None of the models was largely 

adopted by the health informatics community. The degree of complexity the 

different models can accommodate is also a matter of discussion: the model 

cannot be too simple because it may not be able to represent all the information 

contained in a guideline. A paradigmatic example of this case is Arden Syntax, 

arguably the model with the highest number of implementations, with its MLMs 

capable of only representing a decision point in a guideline. At the other end is 

PROforma, which defines a number of proprietary specifications for data that may 

be difficult to use and apply to real practice. The challenge is to develop a model 

capable of representing complex guidelines, yet simple enough to do it with a 

minimal set of components. Most models and tools do not use terminology and 

data model standards, which makes the transition to clinical applications in a 

clinical setting difficult and impairs interoperability with other software tools 

already used in such environments. Moreover, some of the models require some 

proficiency in languages to formalize logical rules, numerical expressions and 
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temporal constraints (e.g., BNF, GELLO), which non-expert clinicians do not 

have, thus precluding the correct acquisition of CPGs. Furthermore, the software 

tools provided for editing, visualizing and executing guidelines are often too 

complex and not user-friendly. The ontology and related tools should be 

developed in order to allow clinicians with no advanced programming knowledge 

to revise and customize the guideline representations. Most of the existing models 

are specialized in certain disease domains which limits their capability to 

represent other knowledge domains and their applicability to other areas of 

medicine. 

Decision support has also been neglected in the current CIG approaches. The 

current systems do not complement the decision schemes proposed by their 

models with techniques to infer the confidence in the outputs of the decision 

process. Furthermore, the problem of incomplete and uncertain information 

mentioned in previous sections of this paper remains unaddressed.  

Next one   will mention the efforts that are underway towards the development 

and implementation of active CPGs, by extracting elements from the current CIG 

representations and applying the above mentioned techniques of AI. Ultimately, 

the aim is to create truly interactive and living guidelines by building upon the 

work done so far and through the introduction of new technologies, models and 

methods. 

5.1. Ontology for Clinical Practice Guidelines  

The approach to guideline modelling that one intends to develop presents an 

abstract view of decision making processes and task management during a clinical 

procedure (Oliveira et al. 2012). The model is depicted in Fig. 1. The main 

objective is the development of an ontology capable of accommodating any 

clinical guideline. To do so, the model should be generic in order to adapt to the 

context and necessities of different guidelines and, at the same time, allow the 

definition of constraints characteristic of clinical workflows. There are certain 

aspects to take into account when developing the model, namely scheduling 

constraints of the recommendations, time constraints, clinical parameter 

constraints,   terminology and the modularity of the model. 

Every task described in a clinical guideline is modelled as a task displayed in an 

oriented graph. The task is the basic unit of the model. As so, a guideline is 
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viewed as a plan, which is a collection of tasks represented by the following 

constructs: action, question, decision, and aggregation module. A plan has any 

number of instances of these constructs and their ordering and sequence inside a 

plan will be expressed in the form of a linked list that connects the different 

instances. 

Actions represent tasks that must be performed during the execution of a 

guideline. They can either be clinical procedures, exams, medication prescription, 

simple recommendations or internal data operations (e.g., calculation of the body 

mass index from the available clinical parameters). 

To feed inputs to the system one uses the question task. A question is a task to 

obtain data about the patient’s state, in the context of a guideline. It is a data entry 

point that acts as the substratum for the execution of the other tasks, it is the 

mechanism through which one feeds information to the CIG system. It also 

contains a series of constructs to describe the clinical parameters and the data 

types for their values. 

 When a decision point is reached in the guideline workflow, the decision task 

is used. This task contains rules that associate options to the parameters of the 

patient’s state. It has constructs to express the conjunction and disjunction of 

conditions. 

The aggregation module aims at controlling special cases in guidelines and 

groups tasks that are part of a cycle or iteration, creating the conditions for the 

user to define their periodicity, duration and objective. It also enables the 

representation of tasks that belong to alternative pathways of the clinical 

workflow, like the ones that follow a decision task, in which the system chooses 

the next step of the clinical process according to the conclusion reached at the 

decision. One more requirement is the representation of simultaneous tasks that 

should be executed in parallel.  

Another relevant aspect of the model is the terminology construct of a plan. 

Terminology comprehends the terms used in all the tasks of the plan along with 

their Concept Unique Identifier (CUI) (Bodenreider 2006), which is a code used 

in the UMLS Metathesaurus to identity a concept and associate the different terms 

that can be used as synonymous. This controlled vocabulary is an answer to the 

ambiguity and vagueness of CPGs. 



35 

The version construct contains administrative information about the guideline 

and its authoring, as displayed in Fig. 1. Also in Fig. 1, it is visible a construct 

called plan reference whose function is to make a reference to other plan that 

must be executed in the context of the current one. 

To capture the knowledge of the domain and thus create the guideline ontology 

one will resort to the Ontology Web Language (OWL) (Antoniou and Hamerlen, 

2009) because it is the emerging modelling paradigm of the Semantic Web and a 

standard of the World Wide Web Consortium (W3C). More specifically, the 

OWL undertaking to be used is OWL-DL, which uses description logics to 

formalize its classes, individuals and properties. There are a number of reasoners 

developed to verify the semantic correctness of OWL ontologies (e.g., HermiT, 

FaCT++), which is an advantage of using this language for modelling guidelines. 

Moreover, the underlying support for OWL is provided by RDF and XML, which 

are well known standards.  

The set of tools that support the ontology are crucial and they greatly determine 

the adoption (or not) of the model by the medical community. Knowing this, the 

ontology will be integrated in a web-based ES, whose advantages were already 

mentioned in this paper. The importance of the interface in such a system is 

paramount, mainly because the interface is often the factor of exclusion of a 

system by clinicians. The system must possess a patient data model and it is 

essential that the data model is compliant with HL7, namely HL7 version 3 (Dolin 

and Alschuler 2011). 
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Fig. 1 Representation of the ontology proposed for guideline modelling. 

5.2. Clinical Decision Model  

Before applying a clinical decision model that contemplates incomplete 

information, it is necessary to represent this information in an appropriate way. 

The Extension to Logic Programming (ELP) (Neves et al. 2012; Novais et al. 

2010) is one of the few techniques that enable this representation, using 

Mathematical Logic. ELP uses two types of negation: default (weak) negation and 

classic (strong) negation. The use of these two types of negation is the core 

feature that enables the association of ELP programs to sets of abducibles, 

represented as exceptions to the extensions of the predicates that represent the 

clinical parameters. This representation technique augments the usual truth values 

that are assigned to information (true and false), by adding the truth value 

unknown, and allows one to represent explicitly negative information. For 

instance, in cases of inexactitude where there are different possibilities for the 

value of a clinical parameter, these possibilities are represented as abducibles or 

exceptions. In cases of uncertainty, if the value of the clinical parameter is 

unknown, this is represented as a null value. 

Decision making in these situations requires the use of an information 

quantification method. The Quality of Information (QoI) (Neves et al. 2012; 
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Novais et al. 2010) is a methodology associated with ELP. It is defined in terms of 

truth values taken in the interval [0, 1] that are attributed to the clinical parameters 

of the patient according to their number of abducibles and null values. Knowing 

this, it is possible to calculate the QoI of each condition in a decision and calculate 

scores for each option with the relative weights of its conditions. 

By assimilating the concepts of CBR and contextual information with the ELP 

and the QoI in the context of a runnable clinical guideline, it is possible to devise 

a decision model that focuses on preeminent matters of guideline execution, non-

compliance and inadequacy (Oliveira et al. 2012). Such a decision model is 

depicted in Fig. 2. Starting with the retrieval of relevant information about the 

clinical parameters of the patient, this data is presented to the healthcare 

professional along with a feed of contextual information. This newsfeed is 

composed of recent news and articles retrieved by an agent from relevant online 

sources (e.g., the website of the Center for Disease Control and Prevention). Then, 

based on this information, the healthcare professional assesses the adequacy of the 

guideline to the case in hand and defines if it is a compliance situation with the 

guideline he is following or, on the contrary it is a non-compliance situation. In 

the compliance situation, the decision process moves to the core stages of the 

decision model. These core stages start with the Formulation of Clinical 

Hypotheses, where the system carries out a survey on the available options in a 

decision task of the clinical guideline. The following stage is Voting, where, for 

each option and consequently for the rules that dictate their choice, the system 

performs an Evaluation of Conditions, to see if they hold true. Next, in the 

Evaluation of the QoI, the system assesses the state of the information responsible 

for validating each rule and assigns a score to each option. In the following stage, 

the Selection of the Clinical Option, the output of the decision is generated. The 

selected option will be used as a trigger condition for the following tasks in the 

clinical process. In the Clinical Task Assignment, the next task of the clinical 

process is selected according to its trigger condition. On the other hand, before a 

non-compliance situation the system may perform one of two things: retrieve a 

similar case from the case memory or suggest that the healthcare professional 

alters the current guideline in order to fit the current case. The case memory 

contains the previous alterations made to the guideline, as well as the clinical 

parameters of the patient that made him alter it and the output of the process 
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generated by the alteration. If a similar case does not exist, the healthcare 

professional alters the guideline accordingly and this alteration will enter the 

memory case as a new case. Once selected the case or made the alteration, the 

system shifts from a non-compliance situation to a compliance one and enters the 

core stages of the model. 

This decision model leaves the door open to further research on the 

complementarity that other techniques that manage uncertainty in different ways, 

namely Bayesian Networks, Dempster-Shafer Theory and Fuzzy Logic, may offer 

to the QoI.  

The implementation of such a decision model is necessary in order to capture 

the context of the execution of guidelines and provide measures of confidence in 

the outputs. 

 

Fig. 2 Clinical decision model for the execution of Clinical Practice Guidelines in an Expert 

System. 

 

The development of such a decision model is but a step in the construction of a 

wider decision platform, represented in Fig. 2, where healthcare professionals, 

members of the same medical team, possibly dispersed across different locations, 

can discuss the case of a patient in the context of an intelligent environment. 

Through the use of AI techniques, it is possible to perceive information about the 

state of stakeholders, namely their attitudes and emotions and thus determine the 

type of interaction they are developing. If one throws into the equation relevant 
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knowledge, from exterior sources, concerning the health condition (that is the 

object of the discussion) and guideline recommendations, a group decision 

environment is established for healthcare professionals to discuss if a guideline is 

suitable for the situation at hand and mediate/negotiate solutions. Having all this 

information enables the medical team, in cases of non-compliance of guidelines, 

to build new strategies and adapt their content to maximize the probability of a 

successful treatment. 

 

 

 

Fig. 3 Characterization of an intelligent clinical environment where a group decision framework is 

established using Clinical Practice Guidelines. 

6. Conclusions and Future Work 

It is widely accepted that the adoption of CIGs would greatly improve the 

efficiency of healthcare, both in clinical and in economic aspects. This is an on-

going research line with numerous people working on the implementation of 

useful models and the development of execution engines. However, after 

perceiving the main necessities of paper-based CPGs and analysing the current 

CIG approaches, one may conclude that they do not solve completely the 

shortcomings of guidelines, as it is evident by the fact that the available models 

and systems are not widely implemented. 
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The line of research proposed in this paper focuses on the development of an 

ontology for the representation of CPGs that effectively encompasses different 

clinical domains and, at the same time, shows portability, for implementation in 

heterogeneous systems. The requirements to achieve this purpose include the 

conception of structures to accommodate different types of clinical tasks, 

temporal and scheduling constraints, logical rules, triggering criteria and shows 

conformance with data and terminology standards. The current CIG models are 

not complete in the way that they do not have a transversal approach to all of 

these issues. 

It is also viable to conclude that there is a need for a decision model that 

addresses the aspects of the contextualization of guideline execution and the 

handling of incomplete and uncertain information. However, healthcare 

professionals and their opinions should not be excluded of the process because 

one of the current criticisms to guidelines is that they are too rigid and do not give 

space for innovation and change.. 
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