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Abstract. Computer-Interpretable Guidelines (CIGs) are machine readable rep-
resentations of Clinical Practice Guidelines (CPGs) that serve as the knowledge
base in many knowledge-based systems oriented towards clinical decision sup-
port. Herein we disclose a comprehensive CIG representation model based on
Web Ontology Language (OWL) along with its main components. Additionally,
we present results revealing the expressiveness of the model regarding a selected
set of CPGs. The CIG model then serves as the basis of an architecture for an
execution system that is able to manage incomplete information regarding the
state of a patient through Speculative Computation. The architecture allows for
the generation of clinical scenarios when there is missing information for clinical
parameters.

1 Introduction

Knowledge-based systems draw a clear separation of their control processes, which
determine what a system should do, from their global database, which defines what a
system knows [10, 35]. This separation can be translated into their basic architecture:
a knowledge base where knowledge is represented explicitly rather than in procedural
code, and an inference engine that runs that knowledge against information about the
state of the world. These systems have a number of desirable features such as: mak-
ing the information required to solve a decision problem explicit, their maintenance is
faster and easier with the separation of domain knowledge and code, and the ability
to explain the outputs they produce. In clinical decision support these features play an
important role given the need for well-founded and consistent advice [17]. However,
one of the most difficult parts in developing knowledge-based Clinical Decision Sup-
port Systems (CDSSs) is obtaining the necessary domain knowledge. Experts have a
limited schedule, their attention is highly demanded throughout their daily activities,
in multiple situations. Since computer-based clinical decision support is not a prior-
ity, the task of developing these systems is often overlooked in favour of tasks that are
more urgent and impactful in the short term. Despite that, there are vehicles for clin-
ical knowledge that can be used as a support for the development of CDSSs. Such is
the case of Clinical Practice Guidelines (CPGs) [22, 34], which are systematically de-
veloped statements, based on medical evidence, that provide advice for specific patient
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states. CPGs cover a wide variety of clinical categories and medical specialities, from
diagnosis to management, from family practice to surgery. They aim to promote the
standardization of medical practice as a way to prevent deviations responsible for the
occurrence of adverse events or medical errors [42]. Additionally, they are an important
tool in combating over-expenditure resulting from defensive medicine [37].

The versions of CPGs in machine-readable formats are called Computer-Interpre-
table Guidelines (CIGs) [19, 30, 26]. The advantages of adopting these machine-readable
versions over their document counterparts are related with the increased availability
of guidelines at the point and moment of care and reduced ambiguity [6]. CIGs also
help reduce the vagueness in clinical documents, namely that which stems from the
use of fuzzy terms to describe events or recommendations whose reach is difficult to
determine [6]. Furthermore, the existence of structured formats allows for the develop-
ment of automated mechanisms for the interpretation of clinical knowledge, resulting
in knowledge-based systems that help physicians make better decisions.

Research in CIG systems started in the late 1980’s and took off in the late 1990’s
and early 2000’s [30]. Currently, there are a number of CIG models focused on different
aspects of CPG representation. These aspects are related with the basic requirements for
building CIG models, namely the representation of [5]:

– Workflows of recommendations, enabling the definition of sequences of recom-
mendations, alternative recommendations, and parallel recommendations;

– Conditions about the state of the patient that restrain the application of clinical
recommendations;

– Decision points for the inference of new patient states; and
– Temporal restrictions such as durations, waiting times and periodicities.

When developing a CIG model and corresponding execution engine, these are as-
pects that must be taken into account. They establish the foundations for the develop-
ment of higher level functions in CIG execution engines [24]. One of such high level
functions is the management of uncertainty, which is a pervasive problem in health care.
There are multiple meanings and varieties of uncertainty in health care, which are not
often distinguished [20, 1, 23, ?]. According to [13], where a taxonomy for uncertainty
in health care is proposed, this concept can be defined as the perception of not having
knowledge about some aspect of the real world. The form it takes depends on many
factors such as the source of uncertainty and how it manifests. The kind of uncertainty
addressed throughout this chapter falls within the category of incomplete information,
discussed in [20], and it can be described as the lack of knowledge about the correct
values for the parameters of a model, in this case, about the data regarding the state of
a patient, necessary for CIG execution. Given this initial presentation, the objectives of
this book chapter are the following:

– To highlight the advantages of using an already established ontology language to
develop a CIG representation model;

– To demonstrate how the procedural and domain knowledge of a CPG can be repre-
sented in an ontology and to enumerate the necessary representation primitives to
do so;



– Showcase an architecture for a CIG execution environment based on the developed
ontology that not only provides the necessary elements for CIG execution, but also
a module for the management of incomplete information;

– Propose a method for handling incomplete information regarding data entry points
in CIGs in order to produce clinical scenarios of guideline executions.

In order to fulfil the above-mentioned objectives, the chapter is organized as fol-
lows. In Section 2 we briefly present the current state of the art in CIG research and
identify limitations that may pose as research opportunities. We describe a CIG repre-
sentation model based on Web Ontology Language (OWL) in Section 3. In this section
we also specify how the model fulfils the basic requirements for the representation of
CIGs. Additionally we show and discuss the results of an evaluation performed on the
expressiveness of the model. In Section 4 we propose a CIG architecture for the ex-
ecution of guidelines and management of incomplete information. We describe each
element and focus mainly on a module based on speculative computation. Finally, in
Section 5 we draw conclusions from the presented work and make considerations about
development perspectives.

2 Modelling and Executing Computer-Interpretable Guidelines

The initial step towards the modelling of clinical recommendations from CPGs in CDSSs
was the development of the HELP system [12]. Despite its success, the development of
CDSSs based on CIG models only continued in the late 1980s. Arden Syntax [31] was
one of the early approaches to CIG modelling. It represents CPGs as sets of independent
modules, each one called a medical logical module (MLM). A MLM has a structure or-
ganized in layers. The first is the knowledge layer and contains the clinical knowledge
in the form of if-then-else rules whose premises are related to the state of the patient.
The administrative information layer provides information such as authoring and pur-
pose of the guideline. As for information regarding updates and version, they are kept
under the maintenance layer. This type of representation handles only a single decision
in a CPG and it views guidelines as independent building blocks in the clinical process.
However, in reality, the relationships between these knowledge blocks is considerably
more complex than this. As such, the most substantial limitation of Arden Syntax is
that it is not the most appropriate format for developing complete electronic guideline
applications. This model is one of the standards from Health Level 7 (HL7) for medical
knowledge.

Another approach to CIG modelling is the Guideline Interchange Format (GLIF3)
[29, 3]. It is an approach that organizes CPGs in steps, the basic building blocks of the
model. The different types of steps are decision, patient state, action, synchronization
and branch. A decision step encodes a decision moment in the CIG workflow, it is used
to infer new information based on the state of the patient. The enactment of clinical
procedures is encoded in action steps, whereas the retrieval of patient information is
performed through patient state steps. The branching of clinical pathways and their
further synchronization is achieved with the branch and synchronization steps respec-
tively. GLIF3 is an extended formalism that emphasizes the sharing of CIGs across



institutions and focuses heavily on the integration of medical knowledge with medical
terminologies. However, it relies on subsets of other CIG languages in order to express
elements such as temporal constraints on the execution of steps, which may be viewed
as a disadvantage.

Temporal constraints are the main focus of the Asbru [33, 32] model for CIGs. Clin-
ical recommendations are represented as decomposable plans with complex temporal
patterns and annotations. A plan is a collection of items called knowledge roles, which
can assume different forms, namely: preferences, plan intentions, conditions, and ef-
fects. These items define which actions to perform, what is intended with them, what
conditions should be gathered to perform them, and what is expected to happen after
they are applied. Additionally, Asbru defines a comprehensive set of temporal con-
structs to represent time. These temporal constructs include constraints on the starting
time and ending time of tasks (such as earliest possible start and earliest possible end-
ing), maximal and minimal durations, and cyclical time points (e.g., every morning,
every day, etc.). The downside to this is some criticism regarding the complexity of
temporal annotations, which seem to be unable to match the knowledge elements in
CPGs, particularly those that concern cyclical executions of procedures.

The GuideLine Acquisition, Representation and Execution (GLARE) [36] is a model
consisting of atomic and composite actions. The action is its basic unit, featuring differ-
ent types such as work action, query action, decision and conclusion. The basic build-
ing blocks of GLARE follow the structure and meaning of the other models that were
already presented. The difference here is the conclusion action, which represents the
explicit output of a process. GLARE has a comprehensive set of temporal constructs,
especially when it comes to cyclical tasks. However, this model is limited in the repre-
sentation of temporal constraints involving the evolution of the state of a patient.

The Standards Active Guideline Environment (SAGE) [38] is a CIG project that
aims to establish a framework for acquiring and sharing guidelines in multiple health
care systems. SAGE applies the EON model for the machine-readable formalization
of CPGs. Within the model, a CPG consists of recommendation sets, represented as a
graph of context nodes. Each node is an instance of one of three classes: action, decision
and routing. SAGE uses standard terminologies, such as SNOMED-CT [7] and LOINC
[9], to provide unequivocal meaning to clinical terms.

All of the above-mentioned modelling approaches have hardly transitioned from the
research phase to wide real world implementations, with the most prominent exceptions
being Arden Syntax and SAGE. In [28] it is possible to consult an inclusive summary
of CIG usage and applications. Moreover, most CIG models require proficiency in pro-
gramming languages to express logical rules or temporal constraints, which is imprac-
tical for health care professionals. With this description of CIG models we intend to
show different modelling perspectives, driven by different goals. Whether the focus is
placed on decision points, the accurate representation of workflows of procedures, or
temporal constraints, there are common features to all models, which we show in the
next section. There are other relevant approaches such as PROforma [11] or GUIDE
[4]. For an insight on these models and a more detailed overview of CIGs, we urge the
reader to consult the works in [26] and [30].



In order to properly run CIGs against patient data and obtain clinical recommen-
dations, it is necessary to develop an algorithm, often referred to as execution engine,
that analyses the CIG elements given the context provided by the state of the patient.
Surrounding the execution engine, there should be a proper system that manages all the
workflow from user inputs to the production of recommendations and automatic infer-
ences. Such a system should facilitate the inclusion of CIG advice in different settings
[8]. Guideline execution engines such as GLEE [41] for GLIF3, the Spock Engine [43]
for Asbru or the GLARE Execution Engine [36] were specifically developed for run-
ning CIGs in health care settings. Most of them, including the mentioned examples,
exist in the form of client-server applications, with the execution engine placed on the
client side. Furthermore, these applications are mostly available as desktop applications,
which is an obstacle to their reach and ease of deployment. An extensive review on the
computer-based execution of clinical guidelines can be found in [15]. These execution
engines could take a better advantage of their knowledge base, i.e, the way in which
CIGs are represented and of their knowledge elements, as well as of their patient case
base in order to address situations outside of the constraints defined in the guideline
workflow. A common example of this is the existence of missing or incomplete infor-
mation for a data entry point in a guideline, which renders the execution engine unable
to produce a clinical recommendation.

3 A CIG model based on an ontology language

Web Ontology Language (OWL) is an ontology standard developed by the World Wide
Web Consortium (W3C) [21]. The second version of OWL (OWL 2) has increased
expressiveness and it is built upon formats such as XML, RDF and RDF-schema. The
description logics version of OWL (OWL DL) provides additional vocabulary and its
components allow for an easy and expressive representation of the knowledge elements
in CIGs. The components that make this possible are:

– Classes: sets that contain individuals described using formal (mathematical) de-
scriptions that state precisely the requirements for membership of the class;

– Individuals: objects of the domain and instances of classes; and
– Properties: binary relations on individuals that may be used to link two individuals

(object properties) or an individual to a data element (data properties).

The advantages of this ontology language in the representation of CIGs are related
with the internal structure of an ontology in OWL DL. These components are organized
in a graph database that is unlike the more common relational and hierarchical databases
(nodes and tables). This makes the connection between knowledge components easier
and clear. The relationships in OWL assume a greater importance and are the carriers
of the semantic content of individuals. Moreover, it is possible to describe or restrain
class membership using these relationships and thus accurately delimit their scope.

There are essentially two ways of developing a CIG model. One is consulting do-
main experts in order to specify the representation primitives. The other is researching
different CPGs and determine the information needs of clinical recommendations. The
method followed in this work was hybrid in the sense that it included opinions from



a health care professional and the observation of guidelines collected from the Na-
tional Guideline Clearinghouse (NGC)3. The developed ontology for CPGs was called
CompGuide. In it, complex information elements are represented as individuals with
multiple object properties connecting them to other individuals, and simple informa-
tion elements that cannot be further decomposed are represented using data properties.
However, simple information that is reusable and will most likely be needed across
different points of a CPG is represented as class individuals as well. In this regard the
representation is similar to a linked list of procedures. As such, a CPG is represented as
an instance of the ClinicalPracticeGuideline class. Individuals from this class have a set
of data and object properties that enable the representation of descriptive and adminis-
trative guideline information such as the name of the guideline, its general description,
date of creation, date of last update, version, clinical speciality, category, intended users,
and target population.

The CompGuide model was initially presented in [25], where a more detailed de-
scription of the model can be found. In the following sections we will present the
CompGuide CIG model under the basic requirements for building CIG models defined
in Section 1.

3.1 Definition of workflows of recommendations

Like other CIG models, CompGuide follows a task network model (TNM) in which
all the knowledge elements of CPGs are represented as different tasks. The classes that
enable this are:

– Plan: a composite task that hosts any number of instances of other tasks, including
other plans. An individual of ClinicalPracticeGuideline representing a CPG has
exactly one global Plan within which are hosted all of its tasks. A Plan is connected
to its first task with the hasFirstTask object property;

– Action: an activity that should be carried out by a health care professional. It is
possible to define subtypes of Action via an object property connecting the indi-
vidual of Action to an individual belonging to Exam, MedicationRecommendation,
NonMedicationRecommendation and Procedure, which specify different types of
actions;

– Question: a task to obtain information about the health condition of a patient, more
specifically about the clinical parameters necessary to follow the guideline. The
source of this information can be a human input or an existing database. This class
is associated with data properties to define the clinical parameter to be retrieved
and the units in which it should be expressed;

– Decision: a task representing an inference made in the clinical workflow regarding
the state of the patient, based on a set of clinical parameters that act as premises. A
common example of this situation would be a diagnosis.

These different classes of tasks, along with the classes used to encode conditions
regarding the state of a patient, enclose the domain knowledge of a CPG. The procedu-
ral knowledge is defined by the connections that exist between the individuals of these

3Available at https://www.guideline.gov/



classes. In order to connect individuals belonging to the classes of tasks there is a set
of object properties that establish the relative order between them. The definition of
sequential tasks is possible with the nextTask property. For cases in which, at a split-
ting point in the clinical workflow, it is necessary to execute one of multiple alternative
tasks, the current task is connected to the alternatives with the hasAlternativeTask ob-
ject property. Another situation is when there is a set of tasks that should be executed
simultaneously. In this case, the current task is connected to the following tasks with
the hasParallelTask object property. For both alternative tasks and parallel tasks there
are synchronization tasks where the workflow converges to a single execution path.

Although this work draws some inspiration from pre-existing models, such as Arden
Syntax, PROforma, GLIF3, Asbru or SAGE, it also introduces different views on the
definition of a clinical workflow using the native elements of an ontology language, in
this case of OWL.

Fig. 1. Main classes for the representation of (a) clinical tasks and (b) temporal patterns.

3.2 Conditions about the state of a patient and decision points

In CompGuide, conditions about the state of a patient are associated with the tasks at
which they are verified. In this regard, there are three types of conditions represented
by the following classes:

– TriggerCondition: this is a condition regarding the clinical parameters of a patient
that is used to select an alternative task in the clinical workflow. An alternative task,
such as the ones mentioned in Section 3.1, has associated trigger conditions, which,
when validated, dictate the selection of the task. Trigger conditions can be defined
for any type of task;

– PreCondition:this condition is used for all types of task to express the requirements
of the patient state that must be met before the execution. For instance, when ad-
ministering some pharmacological agent it should be known that the patient is not
allergic to it;



– Outcome: this condition puts a restriction to a Plan or an Action representing the
result in terms of the evolution of the state of a patient to be achieved with the task.
A typical use for this Condition is the specification of therapy goals in an Action.

Each of the above-mentioned conditions is connected to an individual of the class
Condition, which actually allows for the specification of the clinical parameter in ques-
tion and the value (or range of values) that fulfil the constraint, along with the units
in which the parameter is expressed. This class is also important in the definition of
the Decision class, which consists of a set of individuals of the Option class, each one
connected to an individual of the Condition class. An individual of Option specifies a
possible conclusion for the Decision task, and, in turn it is connected to the Condition
that supports the option.

Given this exposition about the types of constraints placed on tasks, it is possible to
identify four different types of decision points in CompGuide, namely: i) the selection
of an option in a Decision task, ii) the selection of an alternative task based on a Trig-
gerCondition, iii) determining whether a task should be executed or not based on the
verification of a PreCondition, and iv) determining if a task was effective based on the
verification of an Outcome.

3.3 Temporal constraints on the execution of tasks

Time is a crucial dimension in the representation of clinical procedures. This is denoted
by the number of CIG representation models that are temporally oriented [33, 32, 36].
The temporal constraints in CPGs are used to express a variety of elements that need
to be controlled in order to ensure the correct application of recommendations and the
proper management of patients. In [27] the temporal aspects of CompGuide are ex-
plored and the main classes for temporal representation are described. These classes
aim to represent the patterns featured in clinical procedures, namely durations, repeti-
tions, periodicities and waiting times. This representation is achieved with subclasses
of TemporalElement shown in Figure 1 (b). The meaning of each one is the following:

– Duration: an individual of the class Duration allows for the specification of how
long an Action or a Plan should last, since these are the only tasks that may unfold
over time. The object property hasDuration connects the tasks to the respective
Duration. This Duration can have an exact value or be defined with maximal and
minimal values;

– WaitingTime: this class stands for a delay in a task used, for instance, to observe an
effect on a patient of a previous task. This pattern can be used in any type of task
with the hasWaitingTime object property;

– Periodicity: the class is used to define a cycle of execution for any task. It is possi-
ble to define the frequency with which the task is executed and a duration (through
the reuse of the Duration class) to specify for how long the cycle should last. Alter-
natively it is also possible to specify the number of repetitions or a stop condition
for the task. An individual of Periodicity is connected to a task through the hasPe-
riodicity object property;



– CyclePartPeriodicity: this class represents a temporal pattern in which there is a
nested periodicity, i.e., each cycle of the cyclical task has, itself, a periodicity. Has
such, whenever needed, an individual of CyclePartPeriodicity is connected to an
individual of Periodicity with the hasCyclePartPeriodicity object property.

Each temporal pattern, which is the same to say each class, has an associated tem-
poral unit. This is achieved with TemporalUnit, an enumerated class that consists of the
individuals second, minute, hour, day, week, month, and year.

This model offers a comprehensive representation of temporal patterns, at the level
of GLARE and more complete than models such as Asbru, GLIF3 and PROforma [27].
At execution time, the CIG execution engine builds a map of guideline execution for
the tasks that have temporal constraints and, then, it performs a series of verifications
on the actual starting and ending times of each one.

3.4 Expressiveness of the representation model

In order to assess the expressiveness of the ontology elements presented in Sections
3.1, 3.2, and 3.3 a study was conducted with 14 students from the fourth year of the In-
tegrated Masters in Biomedical Engineering, branch in Medical Informatics, from the
University of Minho, in Portugal. The students were familiar with both the CompGuide
ontology and the Protégé ontology editor. The study consisted in asking the students
to represent a set of CPGs extracted from the NGC. Each student had to represent one
CPG using the ontology. After the assignment they were asked to provide feedback in
the form of answers to a questionnaire and short comments regarding the expressive-
ness of the ontology, namely on whether it was possible to completely represent the
CPGs using it. The list of CPGs used in the study is showed in Table 1. A much as
possible, there was an effort to include CPGs with multiple categories, namely diagno-
sis, evaluation, treatment, and management. The statements used in the questionnaire
complete the general statement: ”The CompGuide ontology allowed the representation
of:”. The answers were provided in a five point Likert rating scale [16] (1-strongly dis-
agree, 2-disagree, 3-neutral, 4-agree, 5-strongly agree). The statements can be seen in
Figure 2, along with the results. The diverging stacked bar presents the total percentage
of agreement (calculated as agree + strongly agree), the total percentage of disagree-
ment (calculated as disagree + strongly disagree), and the percentage of participants
who were neutral (equal to the percentage of the neutral category), for each statement.

The statements are related with the basic requirements defined for the representation
of CIGs. Items 1-9 can be placed in the definition of workflows of recommendations.
Here the level of agreement was at least equal to or above 50%. Indeed, the item about
medication prescriptions (item 1) is the one that has the lowest agreement, the highest
percentage in the neutral category (43%), and the only one that has percentage in the
strongly disagree category (7%), which is indicative that the corresponding representa-
tion primitive for this action may not address all the cases featured in the CPGs. Despite
this, both items 2 and 3, which correspond to the representation of other types of ac-
tions, seem to correspond to the requirements of guideline representation as they have
high percentages of agreement. However, item 4, directly related with the definition of a



Table 1. List of the guidelines that were used in the study, featuring their name, organization and
the number of people assigned to their representation.

Clinical Practice Guideline Organization People Assigned
Clinical Practice Guidelines in Oncology - Colon Cancer National Comprehensive Cancer Network 2
Clinical Practice Guidelines in Oncology - Rectal Cancer National Comprehensive Cancer Network 2

Clinical Pratice Guidelines in Oncology - Distress National Comprehensive Cancer Network 2
Clinical Practice Guidelines in Oncology - Palliative Care National Comprehensive Cancer Network 2

Detection,Evaluation,and Treatment of High Blood Cholesterol in Adults National Heart Lung and Blood Institute 1
Diagnosing and Managing Asthma National Heart Lung and Blood Institute 1

Diagnosis, Evaluation and Management of von Willebrand Disease National Heart Lung and Blood Institute 1
Diagnosis and Treatment of Respiratory Illness in Children and Adults Institute for Clinical Systems Improvement 1

Diagnosis and Management of Diabetes Institute for Clinical Systems Improvement 1
Diagnosis and Treatment of Ischemic Stroke Institute for Clinical Systems Improvement 1

Question is the one that has the highest percentage of disagreement (14%). In the com-
ments provided along with the questionnaire it was mentioned that the Question lacked
a data property where it would be possible to provide an extended detailed description
of the clinical parameters that the task aims to obtain, besides the actual definition of the
parameter and units. It is possible to consider that the ontology allows the representa-
tion of series of tasks and its internal organization mimics that of the clinical workflows
in CPGs. This is evident in the high levels of agreement of items 5-9. Overall, the orga-
nization of the procedural logic of the guideline and the grouping of tasks in plans was
considered to be advantageous, mainly because this helps the delimitation of different
diagnoses and treatments. The item that refers to this grouping of tasks, item 6, has an
agreement of 100%. Despite this, in the submitted comments concerns were expressed
regarding the range of the available subtypes of actions. CPGs also have knowledge
encoded as index tables in order to calculate health indexes that are later used in deci-
sion making. This type of knowledge could not be represented, which is an aspect to
improve. A positive feedback was that, by following the design pattern of the ontology,
the participants were able to find redundant elements in the guideline workflows, which
did not trigger any kind of event or have any consequences further ahead in the clinical
process.

In terms of conditions about the state of a patient, the levels of agreement of items
10, 11, and 12, referring to trigger conditions, pre-conditions, and outcomes was fairly
high, which means that these constraints fulfilled, for the most part, their role. The
items referring to decision points (items 5, 10, 11, 12) all had high agreement rates,
which indicates that they are sufficiently expressive to model decision making in CPGs.

In the selected guidelines there were no cases of complex temporal patterns. In
fact the most common patterns were durations and periodicities. As such, the ques-
tionnaire only covers these two temporal elements, along with repetitions, which were
also present. The items referring to temporal restrictions, namely items 13-15, have low
agreement when compared to the majority of the other items in the chart. Actually, they
are among the items that have the highest percentage in the neutral category. It is possi-
ble to understand this through the comments of the participants, in which it was pointed
out that, although it was possible to represent the temporal patterns in the CPGs, it was
necessary to adapt the statements in the guidelines to fit the available constructs.

Given the difficulty and time-consuming nature of the task proposed to the partici-
pants, it would be impractical to repeat the study in a larger scale and have access to an



entire statistical population of interest. Be as it may, the study provided hints as to what
improvements should be made, namely in: the representation of medication prescrip-
tions, the tasks used to retrieve information from the patient, the diversity of actions
offered by the ontology, and temporal constraints as a whole. Overall, it is possible
to consider that the guidelines used in the survey were accurately represented in the
ontology, despite the need for certain adaptations.

Fig. 2. Diverging stacked bar chart showing the results of the questionnaire to assess the expres-
siveness of the CompGuide ontology.

4 A CIG architecture for the execution of guidelines and
management of incomplete information

As previously stated, a CIG-based CDSS is a knowledge-based system that uses machine-
readable versions of CPGs to provide clinical recommendations. As such, the basic el-
ements in the architecture of these systems are a knowledge base containing the CPG
recommendations and an execution engine that interprets them. This is a common set-
ting among CIG systems [15]. However, from our point of view, CIG systems should
take more advantage of the expressiveness of their CIG models in order to provide
additional functionalities that help health care professionals. The architecture that we



present herein aims to provide such a functionality, namely one that addresses the prob-
lem of incomplete information in decision points such as the ones presented in Section
3.2. This problem may arise due to delays in complementary means of diagnosis or
the simple impossibility to know the information regarding the clinical parameters. In
the following sections we present a description of the elements in the architecture and
provide details regarding the knowledge flow throughout the components. Additionally,
we present a speculative module in charge of managing incomplete information.

4.1 Elements of the Architecture

The proposed architecture can be seen in Figure 3. Its components are the following:

– CIG repository: this component is the knowledge base of the system. It contains
owl files, each one representing a different CPG.

– CIG engine: this component is responsible for interpreting clinical guideline in-
structions contained in an owl file. It identifies different execution situations when
analysing the knowledge in the CPG such as the identification of the next task
from the control structures in place (sequential tasks, alternative tasks, and parallel
tasks), the need to retrieve information from an external source (through Question
tasks), and the use of that information for automatic inference in decision points;

– local repository: a database containing information of other patients retrieved for
the data entry points in a CPG.

The problem that the CIG engine has to solve is the choice of the next clinical task
and infer new information about the state of the patient. The information it uses is ob-
tained from external information sources, which can be health care information systems
or simply human agents providing inputs. When choosing the next clinical task from
a set of alternatives based on their trigger conditions, when verifying pre-conditions
before recommending a task or checking the outcome of an Action or Plan, such infor-
mation sources may not be able to provide the necessary information, rendering the CIG
engine unable to produce a decision. In these cases, a speculative module takes action
and compensates for these information gaps. It is based on Speculative Computation
with Default Revision (SCDR) [27], a logic programming theory that uses default rea-
soning. As such, this module intervenes when there is a Decision task, in the selection
of an alternative task based on a TriggerCondition, in determining whether a task should
be executed or not based on the verification of a PreCondition, and in determining if a
task was effective based on the verification of an Outcome.

4.2 Speculative Module

The speculative module has two components. The first is the generation of defaults and
the second is speculative computation. The generation of defaults assumes a supportive
role and its function is to produce default values to fill in missing information regarding
clinical parameters used in decision points. The speculative module then takes these de-
fault values and produces clinical scenarios in the form of tentative clinical recommen-
dations and tentative inferences regarding the state of a patient. The speculative module



Fig. 3. Architecture for the execution of CIGs and management of incomplete information.

does not ignore the general method for dealing with uncertainty in health care, which is
to use past experiences in order to fill in the missing pieces, but it is, instead, a form of
using these past experiences in a more flexible way, fitter for CIG-based CDSSs than,
for instance, Case-based Reasoning (CBR). The reason for this assumption is that the
speculative computation used in the module offers mechanisms to manage information
that are not as rigid as the complete CBR cycle. In the work [14] featuring specula-
tive computation, fixed default beliefs are used in speculative computation. However,
when applied to a real setting, the default beliefs are highly dependent on the context.
The same is to say they depend on the set of circumstances and facts that surround a
problem and change over time.

Generation of defaults The generation of defaults is a set of procedures that seek to
acquire the most likely values for the clinical parameters involved in decision points,
based on past executions of the same CPG for other patients. In order to take into ac-
count possible dependence relationships between the clinical parameters of a decision
point, there has to be a default model capable of conveying these relationships in a di-
rect and straightforward way. Bayesian Networks (BNs), for their set of characteristics
[40, 39], provide an ideal support for such a task.

The generation of defaults is depicted in Figure 3. It comprises five sequential pro-
cedures. The first is the identification of askable atoms, in which the clinical parameters
for the decision are identified and isolated. This requires the analysis of the individuals
of Condition attached to an individual of Decision, Trigger Condition, PreCondition,
or Outcome in order to extract the parameters whose values are the premises to infer
a patient state or a new task in the workflow. Next, the module retrieves relevant data
about previous guideline executions regarding the isolated parameters from the local
repository. In the following procedure, different BN learning algorithms are used in
cross-validation. The objective is to select the one that best conveys the relationships
between the parameters. It is possible to do this with a measure of the likelihood of data



given the produced model such as the log likelihood loss (logl). After the best perform-
ing algorithm is selected, a BN is generated. Through a maximum a posteriori estimate
(MAP) it is possible to provide the most likely values for the parameters, given the ev-
idence, along with a probability value for the whole distribution [18]. If no evidence
is known, i.e., if no value for the set of clinical parameters is available, a MAP can be
submitted without evidence, in which case a set of default values is generated for each
clinical parameter.

The advantage of using BNs and the MAP estimate to produce defaults is that it is
possible to adjust the default values throughout the computation of a clinical recommen-
dation. In fact, that is the principle of SCDR. At the beginning of the decision making
process, when no information is available, it is possible to use the BN to generate de-
faults for all the parameters. However, if suddenly information arrives from the external
information sources, it is possible to recalculate the default values by submitting a new
MAP query, this time with the value of the known clinical parameter as evidence, thus
obtaining default values for the remaining unknown parameters that depend on the piece
of information that is actually known at the moment.

Speculative computation SCDR acts as the decision framework for the decision points
in a CPG. The elements defined in this framework and its operational semantics enable
the management of situations of completely unknown information, partially known in-
formation and completely known information. The framework is defined as the tuple
〈Σ ,E ,∆ ,P〉, where [27]:

– Σ is a finite set of constants, each one representing an external information source
responsible for providing information on clinical parameters;

– E is a set containing the decision criteria, i.e., the clinical parameters used as
premises in the decision points;

– ∆ is the default answer set, consisting of default values for the clinical parameters
in E , obtained from the generation of defaults;

– P is a logic program of the form: H ← C ‖ B1,B2, . . . ,Bn., where H is a pos-
itive ordinary literal called a head of rule R; C is a set of constraints; and each
B1,B2, . . . ,Bn is an ordinary literal, or an askable literal. P results from the map-
ping of the procedural logic and domain knowledge of the decision point leading
to the recommendation of a clinical task or to the inference of a patient state.

SCDR starts with a top goal. The notion of goal is central for it represents what
is necessary to achieve in the computation, or, in other words, it is the outcome of the
decision. The initial set of beliefs about the state of the patient that the framework uses,
if there are no known values, is ∆ . Goals and the product of, their reduction, i.e., their
matching with rules in P , are kept in processes. They are structures that represent the
different alternative computations in the framework. In this regard, there are two types
of processes: active and suspended. Active processes are those whose constraints are
consistent with the current set of beliefs of the framework. They are regarded as the
valid clinical scenarios. Processes that do not fulfil this condition are suspended.

SCDR has a total of three phases: the process reduction phase, the fact arrival phase,
and the default revision phase.



Process reduction corresponds to the normal reduction of goals within active pro-
cesses. It implies the matching of goals with the head of rules in P and their replace-
ment in the process with the body of the rules they are matched with. If the goal cor-
responds to one of the clinical parameters, they are reduced with the belief that the
framework has about the parameter. If the process is consistent with that, it remains
active, otherwise it is suspended. This belief can be either a default or a known value.
Process reduction continues until an active process with an empty goal is obtained, in
which case it is possible to advance a conclusion as an answer to the initial query. If the
process is obtained based on default values, it is considered a clinical scenario.

In the fact arrival phase there is information about the real value of a clinical pa-
rameter that arrives at the CIG engine and is passed on to the speculative module. This
information is handled in the following way. The beliefs of the framework are updated
and the default value for the clinical parameter is replaced with the real value. It can
be the case that the real value is the same as the default. As a result, all the processes,
both active and suspended, are revised. Those that are consistent with the real value
stay or become active and those that are inconsistent are discarded because the new
information is considered to bee definitive and, thus, cannot possibly be revised again.
Following this phase there is always a round of process reduction.

The default revision phase results from the verification of changes that the newly
arrived information may cause in the default values of the other clinical parameters. As
such, a new MAP query is submitted having the known information as evidence. If the
retrieved values for the remaining clinical parameters are different from the previous
defaults, then they replace the old defaults in the beliefs of the framework. Both the
active and the suspended processes are revised and only the processes that are consis-
tent with the new defaults remain or become active, the rest is suspended. This default
revision phase ensures that the active processes move progressively to the actual true
recommendation, since the framework is able to respond to the arrival of information
by adjusting the other defaults to values that are closer to the respective real values,
according to the probability distribution of the underlying BN. After default revision,
another round of process reduction occurs.

4.3 Generation of clinical scenarios

Although in the presented architecture there is a clear separation between the knowledge
base of the system and its execution engine, the design of the CompGuide ontology de-
termines to a great extent the procedures of the execution engine. The ontology defines
a set of decision points that are identified by the CIG engine and then mapped to the
SCDR framework, which structures the reasoning process and endows the system with
dynamic belief revision capabilities. This is seen when the active processes, standing
for clinical scenarios, resulting from the different phases of SCDR are changed and up-
dated into new active processes and, thus, new scenarios. In situations where the results
of clinical exams may take some time to be known or may turn out to be inconclusive
the effect of speculative computation yields tentative answers that enhance the capacity
of health care professionals to make decisions.

If one considers the complexity of a guideline such as the Clinical Practice Guide-
lines in Oncology Colon Cancer [2] (which was one of the CPGs used in the study), with



multiple data entry points in the form of individuals of Question, followed by decision
points consisting in the choice of alternative tasks (such as the clinical workflow showed
in Figure 4), it is possible to use the speculative module on each one and, through it,
present the most likely execution threads by summing the computation of these choices.
Figure 4 shows an example of how this could be applied to a clinical workflow repre-
sented in CompGuide. For every decision point in the algorithm the speculative module
runs on top of the procedural knowledge provided by the ontology. Assuming that infor-
mation is missing in each Question task, the speculative module formulates a probable
choice for the next task at Question1, Question2, and Question3. Then, by grouping the
proposals, it is possible to build a tentative execution path, which is shown by the dashed
lines in the figure. This would be useful for a practitioner as it would provide him a map
of the potential evolution of a patient, thus giving him time to devise countermeasures
if it shows that the treatment is following an undesirable direction.

Fig. 4. Stages of the NCCN Guideline for Colon Cancer showing a symbolic representation of
tasks as questions and actions throughout the clinical process: clinical presentation, workup, find-
ings, surgery, pathological staging and adjuvant therapy. The dashed trace shows an execution
path obtained from the speculative module.

5 Conclusions and development perspectives

It was established that the CompGuide representation model was able to provide enough
expressiveness for a set of CPGs that included multiple categories and specialties, in
terms of the basic requirements for a CIG model. The CompGuide ontology enables
the creation of modular knowledge components and thus their reuse in different points
of a CPG. By analysing and identifying the decision points in a CPG represented ac-
cording to CompGuide, it is possible to map the procedural and domain knowledge
of these points into a speculative computation framework that manages incomplete in-
formation. This is the basis of a speculative module, responsible for building clinical
scenarios, based on default values retrieved from BNs. The use of probabilities, and
more specifically BNs, is motivated by the notion that the knowledge we have about the
world is imperfect and that, through a Bayesian approach, it is possible to get a degree



of belief that something may be the case. The inclusion of the speculative module is
a differentiating factor from other CIG execution engines such as GLARE, GLEE and
SAGE [15], which only execute their encoded rules, without additional functionalities.

There are, however, aspects to improve in the ontology in terms of knowledge rep-
resentation, namely in the definition of action tasks and temporal constraints. Addition-
ally, the utility of the clinical scenarios is not considered in the SCDR framework, but
it is an important dimension since it useful for the health care professionals to know
how reliable a scenario is. As such, the extension of the framework to accommodate
the computation of utilities based on the probabilities provided by the BN model is a
development perspective that we will follow.

Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and
FCT Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.
The work of Tiago Oliveira is supported by a FCT grant with the reference SFRH/BD/85291/
2012. This work was partially developed during an internship program of the National
Institute of Informatics (NII) of Japan by Tiago Oliveira.

References

1. Babrow, A., Kasch, C., Ford, L.: The Many Meanings of Uncertainty in Illness: Toward a
Systematic Accounting. Health Communication 10(1), 1–23 (1998)

2. Benson, A., Bekaii-Saab, T., Chan, E., Chen, Y.J., Choti, M., Cooper,
H., Engstrom, P.: NCCN Clinical Practice Guideline in Oncology Rec-
tal Cancer. Tech. rep., National Comprehensive Cancer Network (2013),
http://www.nccn.org/professionals/physician{ }gls/f{ }guidelines.asp

3. Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., Patel, V.L., Greenes,
R.A., Shortliffe, E.H.: GLIF3: A representation format for sharable computer-interpretable
clinical practice guidelines. Journal of Biomedical Informatics 37(3), 147–161 (2004)

4. Ciccarese, P., Kumar, A., Quaglini, S.: NEW-GUIDE: a new approach to representing clinical
practice guidelines. Advances in Clinical Knowledge Management (Figure 1), 15–18 (2002)

5. de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Approaches for creating
computer-interpretable guidelines that facilitate decision support. Artificial intelligence in
medicine 31(1), 1–27 (2004)

6. Codish, S., Shiffman, R.N.: A model of ambiguity and vagueness in clinical practice guide-
line recommendations. In: AMIA Annual Symposium Proceedings. vol. 2005, p. 146 (2005)

7. Cornet, R., Schulz, S.: Relationship groups in SNOMED CT. Studies in Health Technology
and Informatics 150(0), 223–227 (2009)

8. Costa, R., Neves, J., Novais, P., Machado, J., Lima, L., Alberto, C.: Intelligent Mixed Real-
ity for the Creation of Ambient Assisted Living, pp. 323–331. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

9. Dugas, M., Thun, S., Frankewitsch, T., Heitmann, K.U.: LOINC(R) Codes for Hospital In-
formation Systems Documents: A Case Study. Journal of the American Medical Informatics
Association 16(3), 400–403 (2009)

10. Engelmore, R.S.: Artificial Intelligence and Knowledge Based Systems: Origins, Methods
and Opportunities for NDE. Review of Progress in Quantitative Nondestructive Evaluation
6 A, 1–20 (1987)



11. Fox, J., Ma, R.T.: Decision Support for Health Care : the PROforma Evidence Base. Infor-
matics in Primary Care 14(1), 49–54 (2006)

12. Gardner, R.M., Pryor, T., Warner, H.R.: The HELP hospital information system: update 1998.
International Journal of Medical Informatics 54(3), 169–182 (1999)

13. Han, P.K.J., Klein, W.M.P., Arora, N.K.: Varieties of uncertainty in health care: a conceptual
taxonomy. Medical decision making : an international journal of the Society for Medical
Decision Making 31(6), 828–38 (2011)

14. Hosobe, H., Satoh, K., Codognet, P.: Agent-based speculative constraint processing. IEICE
Transactions on Information and Systems E90-D(9), 1354–1362 (2007)

15. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: A review. Interna-
tional Journal of Medical Informatics 77(12), 787–808 (2008)

16. Jamieson, S.: Likert scales: how to (ab)use them. Medical Education 38(12), 1217–1218
(2004)

17. Kalogeropoulos, D.A., Carson, E.R., Collinson, P.O.: Towards knowledge-based systems in
clinical practice: Development of an integrated clinical information and knowledge manage-
ment support system. Computer Methods and Programs in Biomedicine 72(1), 65–80 (2003)

18. Korb, K., Nicholson, A.: Bayesian Artificial Intelligence. CRC Press, London, 2 edn. (2003)
19. Latoszek-Berendsen, A., Tange, H., van den Herik, H.J., Hasman, a.: From clinical practice

guidelines to computer-interpretable guidelines. A literature overview. Methods of informa-
tion in medicine 49(6), 550–70 (2010)

20. Lipshitz, R., Strauss, O.: Coping with Uncertainty: A Naturalistic Decision-Making Analy-
sis. Organizational Behavior and Human Decision Processes 69(2), 149–163 (1997)

21. McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview (2004),
https://www.w3.org/TR/owl-features/

22. Miller, M., Kearney, N.: Guidelines for clinical practice: development, dissemination and
implementation. International journal of nursing studies 41(7), 813–821 (2004)

23. Mishel, M.H.: The measurement of uncertainty in illness. Nursing research 30(5), 258–263
(1981)

24. Novais, P., Oliveira, T., Neves, J.: Moving towards a new paradigm of creation, dissemi-
nation, and application of computer-interpretable medical knowledge. Progress in Artificial
Intelligence pp. 1–7 (2016)

25. Oliveira, T., Novais, P., Neves, J.: Representation of clinical practice Guideline components
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