3 research outputs found

    A survey on 3D CAD model quality assurance and testing

    Get PDF
    [EN] A new taxonomy of issues related to CAD model quality is presented, which distinguishes between explicit and procedural models. For each type of model, morphologic, syntactic, and semantic errors are characterized. The taxonomy was validated successfully when used to classify quality testing tools, which are aimed at detecting and repairing data errors that may affect the simplification, interoperability, and reusability of CAD models. The study shows that low semantic level errors that hamper simplification are reasonably covered in explicit representations, although many CAD quality testers are still unaffordable for Small and Medium Enterprises, both in terms of cost and training time. Interoperability has been reasonably solved by standards like STEP AP 203 and AP214, but model reusability is not feasible in explicit representations. Procedural representations are promising, as interactive modeling editors automatically prevent most morphologic errors derived from unsuitable modeling strategies. Interoperability problems between procedural representations are expected to decrease dramatically with STEP AP242. Higher semantic aspects of quality such as assurance of design intent, however, are hardly supported by current CAD quality testers. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).González-Lluch, C.; Company, P.; Contero, M.; Camba, J.; Plumed, R. (2017). A survey on 3D CAD model quality assurance and testing. Computer-Aided Design. 83:64-79. https://doi.org/10.1016/j.cad.2016.10.003S64798

    An Ontology-based Approach for "Procedural CAD Models" Data Exchange

    No full text
    International audienceIn the Concurrent Engineering environment, the interoperability of various CAD systems requires maintaining the design intent. In this paper, we present an ontology based approach as a means for semantic data exchange in engineering design area. Our purpose is to provide capabilities to transfer procedural model data including the design intent. The devised approach consists of developing generic feature-based design ontology in addition of specific design ontologies for CAD systems. Concepts defined in our ontology include parts, features, constraints, history of construction. Interoperability among ontologies is fulfilled by defining several mapping rules. We use descriptive logic language, notably OWL to represent formally our ontology
    corecore