4,644 research outputs found

    Overlay networks for smart grids

    Get PDF

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges

    Get PDF
    5G wireless communication networks are currently being deployed, and B5G networks are expected to be developed over the next decade. AI technologies and, in particular, ML have the potential to efficiently solve the unstructured and seemingly intractable problems by involving large amounts of data that need to be dealt with in B5G. This article studies how AI and ML can be leveraged for the design and operation of B5G networks. We first provide a comprehensive survey of recent advances and future challenges that result from bringing AI/ML technologies into B5G wireless networks. Our survey touches on different aspects of wireless network design and optimization, including channel measurements, modeling, and estimation, physical layer research, and network management and optimization. Then ML algorithms and applications to B5G networks are reviewed, followed by an overview of standard developments of applying AI/ML algorithms to B5G networks. We conclude this study with future challenges on applying AI/ML to B5G networks.Funding Agencies|National Key R&amp;D Program of China [2018YFB1801101]; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China [61960206006]; High Level Innovation and Entrepreneurial Talent Introduction Program in Jiangsu; Research Fund of National Mobile Communications Research Laboratory, Southeast University [2020B01]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [2242019R30001]; EU H2020 RISE TESTBED2 project [872172]</p

    EcoGIS – GIS tools for ecosystem approaches to fisheries management

    Get PDF
    Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.

    A multimodal network flow problem with product quality preservation, transshipment, and asset management

    Get PDF
    In this paper, we present an optimization model for a transportation planning problem with multiple transportation modes, highly perishable products, demand and supply dynamics, and management of the reusable transport units (RTIs). Such a problem arises in the European horticultural chain, for example. As a result of geographic dispersion of production and market, a reliable transportation solutions ensures long-term success in the European market. The model is an extension to the network ow problem. We integrate dynamic allocation, ow, and repositioning of the RTIs in order to nd the trade-o between quality requirements and operational considerations and costs. We also present detailed computational results and analysis

    The Global Open Science Cloud: Vision and Initial Successes

    Get PDF
    The Global Open Science Cloud has the potential to advance the way scientific data and resources are shared and accessed, and how global collaboration happens. However, addressing the challenges associated with its creation and ensuring inclusivity, interoperability, data privacy, and sustainability are crucial for its success. The collaborative efforts of stakeholders from different disciplines, regions, and sectors will be essential in realising the vision of a truly global and open science platform. The achievements of GOSC so far, including successful collaborations, funded projects, and the development of a common reference framework, demonstrate its potential and progress towards its goals
    corecore