638 research outputs found

    Decentralised reliable guaranteed cost control of uncertain systems: an LMI design

    Get PDF
    © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The problem of designing a decentralised control scheme for a class of linear large scale interconnected systems with norm-bounded time-varying parameter uncertainties under a class of control failures is addressed. These failures are described by a model that considers possible outages or partial failures in every single actuator of each decentralised controller. The control design is performed through two steps. First, a decentralised reliable guaranteed cost control set is derived and, second, a feasible linear matrix inequalities procedure is presented for the effective construction of the control set. A numerical example illustrates the efficiency of the proposed control schemePeer ReviewedPostprint (published version

    Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria are dependent on the length of the time delay and therefore less conservative. By using Itô's differential formula and the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed design procedure.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Robust variance-constrained H∞ control for stochastic systems with multiplicative noises

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, the robust variance-constrained H∞ control problem is considered for uncertain stochastic systems with multiplicative noises. The norm-bounded parametric uncertainties enter into both the system and output matrices. The purpose of the problem is to design a state feedback controller such that, for all admissible parameter uncertainties, (1) the closed-loop system is exponentially mean-square quadratically stable; (2) the individual steady-state variance satisfies given upper bound constraints; and (3) the prescribed noise attenuation level is guaranteed in an H∞ sense with respect to the additive noise disturbances. A general framework is established to solve the addressed multiobjective problem by using a linear matrix inequality (LMI) approach, where the required stability, the H∞ characterization and variance constraints are all easily enforced. Within such a framework, two additional optimization problems are formulated: one is to optimize the H∞ performance, and the other is to minimize the weighted sum of the system state variances. A numerical example is provided to illustrate the effectiveness of the proposed design algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Efficient LMI-based quadratic stabilization of interval LPV systems with noisy parameter measures

    Get PDF
    none2openL. IETTO; Valentina OrsiniIetto, Leopoldo; Orsini, Valentin

    Control and filtering of time-varying linear systems via parameter dependent Lyapunov functions

    Get PDF
    The main contribution of this dissertation is to propose conditions for linear filter and controller design, considering both robust and parameter dependent structures, for discrete time-varying systems. The controllers, or filters, are obtained through the solution of optimization problems, formulated in terms of bilinear matrix inequalities, using a method that alternates convex optimization problems described in terms of linear matrix inequalities. Both affine and multi-affine in different instants of time (path dependent) Lyapunov functions were used to obtain the design conditions, as well as extra variables introduced by the Finsler\u27s lemma. Design problems that take into account an H-infinity guaranteed cost were investigated, providing robustness with respect to unstructured uncertainties. Numerical simulations show the efficiency of the proposed methods in terms of H-infinity performance when compared with other strategies from the literature

    Worst-Case Mahler Measure in Polytopic Uncertain Systems

    Get PDF
    published_or_final_versio

    Model Reduction of Hybrid Systems

    Get PDF

    Robust moving horizon H∞ control of discrete time-delayed systems with interval time-varying delays

    Get PDF
    In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method

    Robust control of uncertain systems: H2/H∞ control and computation of invariant sets

    Get PDF
    This thesis is mainly concerned with robust analysis and control synthesis of linear time-invariant systems with polytopic uncertainties. This topic has received considerable attention during the past decades since it offers the possibility to analyze and design controllers to cope with uncertainties. The most common and simplest approach to establish convex optimization procedures for robust analysis and synthesis problems is based on quadratic stability results, which use a single (parameter-independent) Lyapunov function for the entire uncertainty polytope. In recent years, many researchers have used parameter-dependent Lyapunov functions to provide less conservative results than the quadratic stability condition by working with parameterized Linear Matrix Inequalities (LMIs), where auxiliary scalar parameters are introduced. However, treating the scalar parameters as optimization variables leads to large computational complexity since the scalar parameters belong to an unbounded domain in general. To address this problem, we propose three distinct iterative procedures for H2 and H∞state feedback control, which are all based on true LMIs (without any scalar parameter). The first and second procedures are proposed for continuous-time and discrete-time uncertain systems, respectively. In particular, quadratic stability results can be used as a starting point for these two iterative procedures. This property ensures that the solutions obtained by our iterative procedures with one step update are no more conservative than the quadratic stability results. It is important to emphasize that, to date, for continuous-time systems, all existing methods have to introduce extra scalar parameters into their conditions in order to include the quadratic stability conditions as a special case, while our proposed iterative procedure solves a convex/LMI problem at each update. The third approach deals with the design of robust controllers for both continuous-time and discrete-time cases. It is proved that the proposed conditions contain the many existing conditions as special cases. Therefore, the third iterative procedure can compute a solution, in one step, which is at least as good as the optimal solution obtained using existing methods. All three iterative procedures can compute a sequence of non-increasing upper bounds for H2-norm and H∞-norm. In addition, if no feasible initial solution for the iterative procedures is found for some uncertain systems, we also propose two algorithms based on iterative procedures that offer the possibility of obtaining a feasible initial solution for continuous-time and discrete-time systems, respectively. Furthermore, to address the problem of analysis of H∞-norm guaranteed cost computation, a generalized problem is firstly proposed that includes both the continuous-time and discrete-time problems as special cases. A novel description of polytopic uncertainties is then derived and used to develop a relaxation approach based on the S-procedure to lift the uncertainties, which yields an LMI approach to compute H∞-norm guaranteed cost by incorporating slack variables. In this thesis, one of the main contributions is to develop convex iterative procedures for the original non-convex H2 and H∞ synthesis problems based on the novel separation result. Nonlinear and non-convex problems are general in nature and occur in other control problems; for example, the computation of tightened invariant tubes for output feedback Model Predictive Control (MPC). We consider discrete-time linear time-invariant systems with bounded state and input constraints and subject to bounded disturbances. In contrast to existing approaches which either use pre-defined control and observer gains or optimize the volume of the invariant sets for the estimation and control errors separately, we consider the problem of optimizing the volume of these two sets simultaneously to give a less conservative design.Open Acces

    Robust Stability of Time-varying Polytopic Systems by the Attractive Ellipsoid Method

    Get PDF
    This paper concerns the robust stabilization of continuous-time polytopic systems subject to unknown but bounded perturbations. To tackle this problem, the attractive ellipsoid method (AEM) is employed. The AEM aims to determine an asymptotically attractive (invariant) ellipsoid such that the state trajectories of the system converge to a small neighborhood of the origin despite the presence of nonvanishing perturbations. An alternative form of the elimination lemma is used to derive new LMI conditions, where the state-space matrices are decoupled from the stabilizing Lyapunov matrix. Then a robust state-feedback control law is obtained by semi-definite convex optimization, which is numerically tractable. Further, the gain-scheduled state-feedback control problem is considered within the AEM framework. Numerical examples are given to illustrate the proposed AEM and its improvements over previous works. Precisely, it is demonstrated that the minimal size ellipsoids obtained by the proposed AEM are smaller compared to previous works, and thus the proposed control design is less conservative
    corecore