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Abstract

The main contribution of this dissertation is to propose conditions for linear filter and

controller design, considering both robust and parameter dependent structures, for

discrete time-varying systems. The controllers, or filters, are obtained through the

solution of optimization problems, formulated in terms of bilinear matrix inequalities,

using a method that alternates convex optimization problems described in terms of

linear matrix inequalities. Both affine and multi-affine in different instants of time

(path dependent) Lyapunov functions were used to obtain the design conditions, as

well as extra variables introduced by the Finsler’s lemma. Design problems that take

into account an H∞ guaranteed cost were investigated, providing robustness with

respect to unstructured uncertainties. Numerical simulations show the efficiency

of the proposed methods in terms of H∞ performance when compared with other

strategies from the literature.
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Introduction

Similarly to all processes in nature, the scientific method is in constant evolu-

tion. This does not occur without cause or reason, but is related to the struggle for

survival waged by human beings over their history and to the constant adaptation

and development of their work tools. Due to the imperative need to understand and

accommodate nature, humans developed and improved their communication media,

ranging from cave paintings to the highest level of abstraction found in Mathematics.

It is obvious that the development of language is essential for the transmission and

recording of knowledge, and is therefore crucial to the advancement of the human

over nature.

Due to the dual character of nature, in which predominates ultimately a game

of exchange between attraction and repulsion, it is inconsistent to conceive matter

devoid of movement. And it is this movement that drives evolution, including the

scientific method itself, which evolves following the natural movement of nature. Not

surprisingly, Theory and practice also share the same duality, being impossible to

conceive one without the other. Hence, the validation of theory occurs in practice

and practice advances with the support of the theory. To paraphrase Carl Sagan,

science is a self-correcting process, to be accepted, new ideas must survive the most

rigorous standards of evidence and scrutiny. Chebyshev also remarks that the closer

1



Introduction 2

the points of view of theory and practice are, the more benefits result in both arena.

Although the motivation of this work is concerned with practical applications

such as networked control of electrical and mechanical devices, the reported exper-

imentations were limited to computer simulations. Possibly, the ideas proposed in

this dissertation may not survive the rigorous standards of evidence and scrutiny of

practice, or may need adjustments for such end, since this thesis does not cover the

two poles of the scientific movement: theory and practice. Such limitation however

does not make the research less important or the results less interesting.

The aim of this work is to advance theoretical aspects in the context of control

and filtering problems of dynamic systems. The study of control systems seeks to

establish the necessary conditions for a precise action, and the satisfactory control

of a process. Thus, the improvement of control techniques is an essential step in the

constant technological refinement, and more specifically in the constant development

of productive forces, which in turn determine the successive changes in the social

relations of humans. Hence the importance of the issues addressed in this thesis and

their proper placement in the social-economic context.

Due to the dynamic and transient nature of physical problems mentioned above,

the description of physical processes by models with constant parameters cannot

explain the highly variable behavior of the phenomena observed in practice. This

simple but essential detail reveals the inevitable presence of uncertainties in dynamic

models. Among the techniques used to treat uncertain models, the main ones are

based in adaptive and robust control. An adaptive controller changes its behavior

to comply with new or changed circumstances while a robust controller, for the

purpose of this study, are fixed yet able to tolerate limited parametric changes and

uncertainties.

Regarding the strategies for synthesis of such controllers, they are mostly divided

into two classes: the ones that directly solve the set of differential, or difference,

equations which describe the dynamics of the system, and those that indirectly an-



Introduction 3

alyze the behavior of the output based on both the parameters used in the model

and in the set of input and output data. Of particular interest is the second group

of strategies, because by not requiring the solution of the set of differential or dif-

ference equations, we obtain flexible conditions for control synthesis, particularly in

the context of uncertain systems. The second method of Lyapunov, used throughout

this work, falls within the scope of the indirect methods.

Lyapunov theory is based on the concept of energy dissipation. Lyapunov stud-

ied the phenomena of contraction and expansion of the movement in an autonomous

mechanical system, analyzing the asymptotic behavior of the state around an equilib-

rium point. The central idea of the theory is based on the fact that if an equilibrium

of a dynamic system is the local minimum of an energy function and the system

is dissipative, then this equilibrium is locally stable, as mathematically described

below.

[62, Theorem 4.1]. Let x = 0 be an equilibrium point of an autonomous system

and D a domain containing this point. If there exists a continuously differentiable

function ϑ : D →R such that

ϑ(0) = 0 and ϑ(x) > 0 in D−{0}

ϑ̇(x)≤ 0 in D

then x= 0 is stable. Moreover, if

ϑ̇(x) < 0 in D−{0}

then x= 0 is asymptotically stable.

Specifically, the analysis of stability and the synthesis of controllers and filters

by the second method of Lyapunov are based on the construction of these energy

functions, also called Lyapunov functions [62], [106]. A key point in the Lyapunov

method is the definition of the class from which the Lyapunov function candidate will
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be chosen. Several classes of functions are available nowadays, with the quadratic

ones being the most popular for linear systems.

Concerning the class of dynamic systems considered in this dissertation, we focus

on those described by differential equations in the form

ẋ(t) = f (x(t),u(t),α(t)) (1)

y(t) = h(x(t),u(t),α(t)) (2)

z(t) = r(x(t),u(t),α(t)) (3)

or by difference equations in the form

x(k+1) = f (x(k),u(k),α(k))

y(k) = h(x(k),u(k),α(k))

z(k) = r(x(k),u(k),α(k))

where x(·) ∈ R
n is the vector of state variables, u(·) ∈ R

m the vector of control in-

puts, y(·) ∈ R
p and z(·) ∈ R

r the outputs of the system, α(·) an input representing

the model variations, and f (·), h(·) linear functions. As an example, consider a

continuous-time system described by

ẋ(t) = A(α)x(t) (4)

where A(α) ∈ R
n×n is a time-invariant uncertain matrix belonging to a polytope A .

A possible way to check the robust stability of (4) is by using quadratic Lyapunov

functions in the form ϑ = x(t)′Px(t) (quadratic stability). The stability analysis

problem is then reduced to the search of a matrix P= P′ > 0 such that

A(α)′P+PA(α) < 0, ∀A(α) ∈A (5)

Many advances have been provided by the so-called quadratic stability [7] ap-

proach. Several results for the analysis, robust control, and filtering with performance
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indices such as the H2 and H∞ norms were developed, see for example [24], [40] and

the references therein. In several cases, the design conditions may be formulated in

terms of linear matrix inequalities (LMIs), which are solved numerically using spe-

cialized computer packages such as the LMI Control Toolbox [44] and SeDuMi [101],

both implemented in the Matlab software.

Note however that condition (5) is only sufficient to verify the asymptotically

stability of a dynamical. There are examples of stable uncertain systems for which

there is no positive definite symmetric matrix P satisfying the inequality above. In

this case, the search for Lyapunov functions that provide less conservative conditions

must be undertaken. The use of parameter-dependent Lyapunov matrices, P(α),

leads to conditions less conservative than the quadratic stability, as shown in [90]

and [91] for the following choice

P(α) =
N

∑
j=1

α jPj ,
N

∑
j=1

α j = 1 , α j ≥ 0, j = 1, . . . ,N (6)

Extensions of these stability conditions to deal with the H∞ and H2 guaranteed-cost

problems may be found in [34] and [35]. We mention specifically the approaches pre-

sented in [41], [45], [80], [92], [102], [111]. Some of these conditions still require a high

computational effort, or that the uncertainties satisfy a given structure, justifying

the search for broader terms that can be formulated in terms of a finite set of LMIs.

Robust stability tests based on affine parameter-dependent Lyapunov functions

appeared in [31], [32], [33], [51] and [88]. Results containing the previous ones and

providing less conservative analysis appeared in [65] for time-invariant uncertainties

and in [72] for the time-varying case.

For the robust stability of discrete-time systems based on parameter-dependent

Lyapunov functions, we mention the LMI approaches presented in [32], [33] and [88].

Robust design conditions of controllers and filters appear in [4], [33] and [53]. More

general classes of functions P(α(·)), polynomial in α(·), for which the condition (5)

approaches necessity may be seen in [84] and [85].
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The controllers considered in this dissertation are described by

u(t) = hc(x(t),α(t)) (7)

and the filters by

ẋ f (t) = f f (x f (t),y(t),α(t)) (8)

z f (t) = h f (x f (t),y(t),α(t)) (9)

where hc(·), f f (·) and h f (·) are linear functions. The connection of the filter (8)-

(9) with the system (1)-(3) results in an augmented dynamical system whose state

variables are given by the augmented vector x̃(t) = [x(t) x f (t)]
′, and the output by

the estimation error e(t) = z(t)− z f (t). The discrete-time case follows in a similar

way.

With the advance of parameter-dependent Lyapunov functions, linear parameter

varying (LPV) systems have received an increasing attention and attracted many

research efforts. LPV systems have occupied a prominent role in the scientific com-

munity, mainly because they are useful not only in the representation of dynamic

models affected by time-varying parameters, but also to describe certain classes of

nonlinear systems [95], [97]. The use of a scheduling rule for the controller gain

results, in several cases, in a better performance of the closed-loop system when

compared with the results obtained by robust structures, that is, with fixed gain.

This fact is related to the adaptive characteristic of the LPV control. For example,

consider the uncertain time-varying discrete-time system

x(k+1) = A(α(k))x(k)+Bu(α(k))u(k) (10)

y(k) =C(α(k))x(k) (11)

The vector of time-varying parameters α(k) belongs to the unit simplex

U =
{

δ ∈R
N :

N

∑
i=1

δi = 1, δi ≥ 0 , i= 1, . . . ,N
}
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for all k ≥ 0 with limited rates of variation, given by

−g(αi(k))≤ ∆αi(k)≤ q(αi(k)), (12)

where g(·) and q(·) are functions to be defined and ∆αi(k) = αi(k+ 1)−αi(k), i =

1, . . . ,N.

A possible structure for the state feedback control signal is an LPV gain, given

by

u(α,x(t)) = K(α(t))x(t) (13)

K(α(t)) =
N

∑
j=1

α jK j ,
N

∑
j=1

α j = 1 , α j ≥ 0, j = 1, . . . ,N (14)

LMI conditions to obtain the matrices K j of the controller (13) that guarantee

an upper bound to the H∞ performance of the system may be obtained by the

discrete parameter-dependent version of the bounded real lemma [37], [117]. The

conservatism of these conditions can be reduced by exploiting the extra variables

introduced by using Finsler’s lemma [31].

Finally, with recent technological advances, the extensive use of communication

channels in the control of dynamical systems have become increasingly frequent,

[108], [115]. By using a real-time communication network for exchanging informa-

tion between the control components (sensors, actuators, filters, etc), these structures

represent an attractive approach in the implementation of distributed and intercon-

nected control systems. The study of strategies for networked control systems (NCS)

has received considerable attention [69], [71], [81], [82], [83], [104], [114] and will also

be addressed in this work.

Detailed Description of the Contents

Chapter 1 presents the preliminary considerations, emphasizing the results used

throughout the other chapters.
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Chapter 2 considers the problem of gain-scheduled state feedback control for

discrete-time systems with time-varying parameters. The time-varying parameters

are assumed to belong to the unit simplex and to have bounded rates of variation,

which depend on the values of the parameters and can vary from slow to arbitrarily

fast. An augmented state vector is defined to take into account possible time-delayed

inputs, allowing a simplified closed-loop analysis by means of parameter-dependent

Lyapunov functions. A gain-scheduled state feedback controller that minimizes an

upper bound of the H∞ performance of the closed-loop system is proposed. The de-

sign conditions are expressed in terms of bilinear matrix inequalities (BMI) due to the

use of extra variables introduced by the Finsler’s lemma. By fixing some of the extra

variables, the BMIs reduce to LMIs that can be solved using an algorithm based on

the alternation of convex problems. Robust controllers for time-invariant uncertain

parameters, as well as gain-scheduled controllers for arbitrarily time-varying param-

eters can be obtained as particular cases of the proposed conditions. As illustrated

by numerical examples, the extra variables in the BMIs can provide better results

in terms of the closed-loop H∞ performance. This chapter is a preprint of a paper

accepted by the International Journal of Robust and Nonlinear Control and is sub-

ject to the John Wiley & Sons, Inc. copyright, http://www.wiley.com/WileyCDA/

Section/id-301464.html. Once the final version is published, the copy of record

will be available at http://www3.interscience.wiley.com/journal/5510/home.

Chapter 3 investigates the problem of controller design for systems with uncer-

tain sampling rates. The system is controlled through a communication network.

The sampling period, within a given interval, is assumed to be time-varying and

a simplified framework for the networked-induced delay is considered. The over-

all system is thus described by an uncertain discrete-time model with time-varying

parameters inside a polytope whose vertices are obtained by means of the Cayley-

Hamilton theorem. A digital robust controller that minimizes an upper bound to

the H∞ performance of the closed-loop networked control system is determined.
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The design conditions rely on a particular parameter-dependent Lyapunov func-

tion and are expressed as bilinear matrix inequalities in terms of extra matrix vari-

ables, which may be explored in the search for a better system behavior. Numer-

ical examples illustrate the results. This chapter is a preprint of a paper accepted

by the IET Control Theory & Applications and is subject to the IET copyright,

http://www.theiet.org/help/legalnotices.cfm. Once the final version is pub-

lished, the copy of record will be available at http://www.ietdl.org/IET-CTA.

Chapter 4 deals with the problem of LPV filter design for time-varying discrete-

time polytopic systems with bounded rates of variation. The design conditions,

expressed as BMIs, are obtained by using a parameter-dependent Lyapunov function

and extra variables for the filter design. An LPV filter, that minimizes an upper

bound to the H∞ performance of the estimation error, is obtained as the solution of

an optimization problem. A more precise geometric representation of the parameter

time variation was used in order to obtain less conservative design conditions. Ro-

bust filters for time-varying polytopic systems can be obtained as a particular case

of the proposed method. Numerical examples illustrate the results. This chapter

is a preprint of a paper accepted by the Signal Processing and is subject to the

Elsevier B.V. copyright, http://www.elsevier.com/wps/find/termsconditions.

cws_home/termsconditions. Once the final version is published, the copy of record

will be available at http://www.elsevier.com/wps/find/journaldescription.

cws_home/505662/description#description.

Finally, Chapter 5 concludes the dissertation summarizing the results obtained

during this research and presenting some perspectives for future work.



Chapter 1
Preliminary Results

The aim of this chapter is to introduce the definitions and concepts useful in

understanding the subject of this thesis. As in any systematic study of physical

phenomena, it is necessary to present and classify the tools used to obtain the main

results that are, in the case of this work, the mathematical models, the concept

of stability and performance criteria. In general, the theoretical basis presented

in this chapter is described with a usual notation, consisting of basic facts from

the calculus, analysis and linear algebra. In summary, the techniques employed

throughout this work reduce the analysis and synthesis of controllers and filters to

optimization problems involving matrix inequalities.

1.1 Concepts and General Definitions

1.1.1 System Description

Consider the linear discrete-time time-varying system

x(k+1) = A(α(k))x(k)+Bu(α(k))u(k)+Bw(α(k))w(k) (1.1)

10
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y(k) =C(α(k))x(k)+Du(α(k))u(k)+Dw(α(k))w(k) (1.2)

z(k) =C1(α(k))x(k)+Dw1(α(k))w(k) (1.3)

where x(k) ∈ R
n represents the vector of state variables, u(k) ∈ R

m the vector of

control inputs and w(k) ∈R
r the vector of ℓ2[0,∞) noise. In control problems, y(k) ∈

R
p is the controlled output, z(k)∈R

q is not used, and it is assumed full access to the

states. In filtering problem, y(k) is the measured output, Bu(α(k)) and Du(α(k)) are

zero, and z(k) is the signal to be estimated. The matrices are real, with appropriate

dimensions, and belonging to the polytope

P ,














A(α(k)) Bu(α(k)) Bw(α(k))

C(α(k)) Du(α(k)) Dw(α(k))

C1(α(k)) Dw1(α(k)) −








=
N

∑
i=1

αi(k)








Ai Bui Bwi

Ci Dui Dwi

C1i Dw1i −














(1.4)

The vector of time-varying parameters α(k) belongs to the unit simplex

U =
{

δ ∈R
N :

N

∑
i=1

δi = 1, δi ≥ 0 , i= 1, . . . ,N
}

for all k ≥ 0 with rates of variation given by

−g(αi(k))≤ ∆αi(k)≤ q(αi(k)), (1.5)

where ∆αi(k) = αi(k+ 1)−αi(k), i = 1, . . . ,N. The functions g(·) and q(·), to be

appropriately defined later on, are used to model the cases where the matrices of

the plant may vary in an arbitrary, or limited, way within the polytope. The time-

invariant case is modeled by g(αi(k)) = q(αi(k)) = 0 for all i= 1, . . . ,N.

For controller design, the signal z(k) is not used and the general structure of the

control signal is given by

u(k) = K(α(k))x(k) (1.6)

The gain K(α(k)) is designed to insure satisfactory performance of the closed-loop

system in the presence of the disturbance w(k).
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In the filtering case, the structure of the filter is given by

x f (k+1) = A f (α(k))x f (k)+B f (α(k))y(k)

z f (k) =C f (α(k))x f (k)+D f (α(k))y(k)
(1.7)

where x f (t) ∈R
n represents the vector of the filter state variables and z f (t) ∈R

q the

signal to be estimated. The filter matrices are real, with appropriate dimensions,

belonging to the polytope

F ,










A f (α(k)) B f (α(k))

C f (α(k)) D f (α(k))



 =
N

∑
i=1

αi(k)




A f i B f i

C f i D f i



 , α(k) ∈U






(1.8)

The vertices of the filter are designed to ensure satisfactory performance of the dy-

namics of the estimation error, z(k)− z f (k), in the presence of the disturbance w(k).

1.1.2 Stability

Consider the system (1.1)-(1.2) in the form

x(k+1) = A(α(k))x(k), α(k) ∈U (1.9)

Definition 1.1 ([8]). The system (1.9) is said to be globally asymptotically stable

if, for all α(k) ∈U , it is:

i) Locally Stable: For all υ > 0 there exists ς > 0 such that if ||x(0)|| ≤ ς then

||x(k)|| ≤ υ , ∀k ≥ 0

ii) Globally Attractive: For all µ > 0 and ε > 0 there exists T (µ,ε) > 0 such that

if ||x(0)|| ≤ µ then

||x(k)|| ≤ ε, ∀k ≥ T (µ,ε)

Definition 1.1 refers to robust stability since the local stability and the global

attractiveness (item i) and ii)) must be checked for every α(k)∈U . Using Lyapunov

functions, the stability of system (1.9) may be checked without knowing its trajectory

x(k). The lemma below provides a result along this line.



1.1. Concepts and General Definitions 13

Lemma 1.1. The null solution, x(k) = 0, of system (1.9) is globally asymptotically

stable if there exists a quadratic in the state Lyapunov function

ϑ(x(k),α(k)) = x(k)′P(α(k))x(k)

such that

ϑ(x(k),α(k)) > 0

and the values of ϑ(·) are decreasing along the trajectory of the system (1.9), that is

∆ϑ(x(k),α(k)) = ϑ(x(k+1),α(k+1))−ϑ(x(k),α(k)) < 0

for all x(k) ∈R
n and α(k) ∈U .

Although Lemma 1.1 has been presented as a sufficient condition, less conservative

versions may be obtained by exploring the structure of the Lyapunov matrix P(α(k)),

[64], [84], [85]. This work will consider the forms affine in α(k)

P(α(k)) =
N

∑
i=1

αi(k)Pi, α(k) ∈U (1.10)

and dependent on two instants of time (path-dependent), α(k) and α(k+1)

P(α(k),α(k+1)) =
N

∑
i=1

N

∑
j=1

αi(k)α j(k+1)Pi j, α(k) ∈U (1.11)

1.1.3 H∞ Index of Performance

The H∞ index of performance of a dynamic system coincides, in the time domain,

with its ℓ2 gain. For system (1.1)-(1.2), the H∞ performance with respect to the input

w(k) is given by

γ⋆ , sup
w 6=0

‖y‖22
‖w‖22

(1.12)

where w ∈ ℓ2[0,∞).
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The design conditions considered in this dissertation are based on the minimiza-

tion of an upper bound γ to (1.12). The motivation is to address the worst scenario

in which no information on the frequency range where the disturbance acts is avail-

able. Moreover, it is known that the H∞ index of performance is related to the small

gain theorem which states that a feedback loop is stable with a finite ℓ2 gain if the

product between the gains of each subsystem (the one in the open loop and the one

in the feedback loop) is less than or equal to one ([25]). Thus, controllers and filters

designed considering the H∞ index of performance will present a certain degree of

robustness against unstructured transfer functions that can model, as for instance,

parametric variations and time delays.

1.2 LMIs and Auxiliary Lemmas

1.2.1 Linear Matrix Inequalities

In general, the use of LMIs in system and control theory is motivated by two facts:

convex formulation and solution of problems by computer algorithms in polynomial

time. Its origin is associated with the work of Lyapunov in 1890 (the Lyapunov

equation) and its peak occurred at the beginning of the 1990s after the advent of

interior point algorithms for LMIs [24].

The general structure of an LMI is given by

L(x) , L0 +
m

∑
i=1

xiLi > 0 (1.13)

where x ∈R
m is the variable and the symmetric matrices Li ∈R

n×n, i= 0, . . . ,m are

known. However, it is more common to fiund LMI problems in which the variables

are matrices, as in the Lyapunov inequality below

A′PA−P< 0 (1.14)
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where P = P′ > 0 is the matrix variable. As mentioned in [24], the condensed form

(1.14), in addition to saving notation, may lead to more efficient computation.

1.2.2 Schur’s Complement

The Schur’s complement, widely used in this work, is useful in transforming a set

of non-linear matrix inequalities into LMIs, as described below.

Lemma 1.2 (Schur’s Complement). The set of non-linear matrix inequalities

{
A11 > 0, A22 > A′12A

−1
11 A12

}

in which A11 = A′11 and A22 = A′22, is equivalent to the following LMI




A11 A12

A′12 A22



 > 0 (1.15)

Exchanging rows and columns in the matrix above, it follows that (1.15) is equivalent

to the set
{
A22 > 0, A11 > A12A

−1
22 A

′
12

}

1.2.3 Stability and Index of Performance

Lemma 1.1 can be rewritten as shown below.

Lemma 1.3. The null solution of system (1.9) is globally asymptotically stable if

there exists a parameter-dependent Lyapunov matrix

P(α(k)) = P(α(k))′ > 0 (1.16)

such that

A(α(k))′P(α(k+1))A(α(k))−P(α(k)) < 0 (1.17)

for all α(k) ∈U .
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Proof: Multiply inequality (1.17) on the right by x(k) and on the left by x(k)′ in

order to obtain

x(k)′A(α(k))′
︸ ︷︷ ︸

x(k+1)′

P(α(k+1))A(α(k))x(k)
︸ ︷︷ ︸

x(k+1)

−x(k)′P(α(k))x(k) < 0

which is equivalent to ∆ϑ(x(k),α(k)) < 0 with ϑ(x(k),α(k)) = x(k)′P(α(k))x(k). Fi-

nally, P(α(k)) = P(α(k))′ > 0 assures ϑ(x(k),α(k)) > 0 and, in accordance with

Lemma 1.1, the null solution of (1.9) is globally asymptotically stable for all α(k) ∈

U .

LMI conditions for calculating the H∞ performance of system (1.1)-(1.2) with

respect to the input w(k) may be obtained by the discrete parameter-dependent

version of the bounded real lemma as shown in [29], [37]. A variant of this result is

given below.

Lemma 1.4. For a given γ, if there exist a matrix Q(α(k))′ = Q(α(k)) > 0 such

that









−Q(α(k)) Q(α(k))A(α(k))′ Q(α(k))C(α(k))′ 0

(⋆) −Q(α(k+1)) 0 Bw(α(k))

(⋆) (⋆) −γI Dw(α(k))

(⋆) (⋆) (⋆) −γI










< 0 (1.18)

for all α(k) ∈ U , then system (1.1)-(1.2), with Bu(α(k)) = 0 and Du(α(k)) = 0, is

globally asymptotically stable with an upper bound γ to the H∞ performance.

Proof: The guarantee of global asymptotic stability of system (1.1)-(1.2) with an

upper bound on the H∞ performance can be summarized by the asymptotic stability

of A(α(k)) and by the existence of a Lyapunov function ϑ(x(k),α(k)) such that

∆ϑ(x(k),α(k)) <−γ−1y(k)′y(k)+ γw(k)′w(k) (1.19)

for all x(k) ∈R
n e w(k) ∈R

r. The validity of (1.18) ensures



−Q(α(k)) Q(α(k))A(α(k))′

(⋆) −Q(α(k+1))



 < 0
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that is equivalent, applying the Schur’s complement, to the inequalities (1.16)-(1.17)

with P(·) =Q(·)−1. Therefore, according to Lemma 1.3, (1.18) ensures global asymp-

totic stability of system (1.1)-(1.2).

By appropriately, exchanging rows and columns in (1.18) it follows that










−Q(α(k)) 0 Q(α(k))C(α(k))′ Q(α(k))A(α(k))′

(⋆) −γI Dw(α(k))′ Bw(α(k))′

(⋆) (⋆) −γI 0

(⋆) (⋆) (⋆) −Q(α(k+1))










< 0 (1.20)

Multiplying both sides of (1.20) by

T = diag([P(α(k)), I, I, P(α(k+1))])

with Q(α(k)) = P(α(k))−1 and Q(α(k+1)) = P(α(k+1))−1, one has










−P(α(k)) 0 C(α(k))′ A(α(k))′P(α(k+1))

(⋆) −γI Dw(α(k))′ Bw(α(k))′P(α(k+1))

(⋆) (⋆) −γI 0

(⋆) (⋆) (⋆) −P(α(k+1))










< 0 (1.21)

Applying the Schur’s complement in (1.21) it follows that



m11 m12

(⋆) m22



 < 0 (1.22)

with

m11 = A(α(k))′P(α(k+1))A(α(k))−P(α(k))+C(α(k))′γ−1C(α(k))

m12 = A(α(k))′P(α(k+1))Bw(α(k))+C(α(k))′γ−1Dw(α(k))

m22 = Bw(α(k))′P(α(k+1)Bw(α(k)))+Dw(α(k))′γ−1Dw(α(k))− Iγ

Finally, considering ϑ(x(k),α(k)) = x(k)′P(α(k))x(k), multiply inequality (1.22)

on the right by [x(k)′ w(k)′]′ and on the left by its transpose, in order to yield (1.19)

concluding the proof.
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It is worth emphasizing that Lemma 1.4 provides a sufficient condition to verify

the stability of a time-varying discrete-time system with a given upper bound on the

H∞ performance with respect to ℓ2[0,∞) disturbances. This is the starting point for

the results obtained in the subsequent chapters.

1.2.4 Finsler’s Lemma and Extensions

The reduction of the conservatism in the conditions presented in the previous

subsection may be obtained by exploiting the extra variables introduced when using

the Finsler’s lemma.

Lemma 1.5 ([31]). Let ξ ∈R
a, Q = Q′ ∈R

a×a, B ∈R
b×a with rank(B) < a, and

B⊥ a basis for the null space of B (that is, BB⊥ = 0). The following statements

are equivalents:

i) ξ ′Qξ < 0, ∀Bξ = 0, ξ 6= 0;

ii) B⊥′QB⊥ < 0;

iii) ∃ µ ∈R : Q−µB′B < 0;

iv) ∃ X ∈R
a×b : Q +X B +B′X ′ < 0.

Finsler’s lemma has been widely used in control theory. As mentioned in [31]

and [99], in many cases the motivation is to eliminate design variables in matrix

inequalities, which may be done for example, by using the equivalence iv) ⇒ ii)

in which the variable X is eliminated. In other cases, such as those studied in

this thesis, the aim is exactly the opposite: to introduce extra variables in order

to increase the degree of freedom during the search for feasible solutions. In such

situations, one translates from the conditions described in i), ii) to the conditions in

the form of iii) and iv) with the introduction of the extra variables µ and X . In

particular, Lemma 1.4 may be rewritten using item ii) of Finsler’s lemma as follows.
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Lemma 1.6. For a given γ, if there exists a matrix P(α(k))′ = P(α(k)) > 0 such

that

B
⊥′

QB
⊥ < 0 (1.23)

for all α(k) ∈U , with

B
⊥ =








A(α(k)) Bw(α(k))

I 0

0 I








,

Q =








P(α(k)) 0 0

(⋆) −P(α(k))+C(α(k))′C(α(k))γ−1 C(α(k))′D(α(k))γ−1

(⋆) (⋆) D(α(k))′D(α(k))γ−1− γI








then system (1.1)-(1.2), with Bu(α(k)) = 0 and Du(α(k)) = 0, is globally asymptoti-

cally stable with an upper bound γ to the H∞ performance.

Proof: Developing the matrix product in (1.23) one has

B
⊥′

QB
⊥ =




V11 A(α(k))′P(α(k+1))Bw(α(k))+C(α(k))′Dw(α(k))γ−1

(⋆) Bw(α(k))′P(α(k+1))Bw(α(k))+D(α(k))′D(α(k))γ−1− γI



 < 0

(1.24)

where

V11 = A(α(k))′P(α(k+1))A(α(k))−P(α(k))+C(α(k))′C(α(k))γ−1

Applying the Schur’s complement in (1.24) it follows that










−P(α(k)) 0 C(α(k))′ A(α(k))′

(⋆) −γI D(α(k))′ Bw(α(k))′

(⋆) (⋆) −γI 0

(⋆) (⋆) (⋆) −P(α(k+1))−1










< 0 (1.25)

Multiplying both sides of (1.25) by

T = diag([P(α(k))−1, I, I, I])
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with Q(α(k)) = P(α(k))−1 and Q(α(k+1)) = P(α(k+1))−1, one has









−Q(α(k)) 0 Q(α(k))C(α(k))′ Q(α(k))A(α(k))′

(⋆) −γI D(α(k))′ Bw(α(k))′

(⋆) (⋆) −γI 0

(⋆) (⋆) (⋆) −Q(α(k+1))−1










< 0 (1.26)

that is equivalent, exchanging appropriately rows and columns, to inequality (1.18)

of Lemma 1.4.

Finally, by exploring the extra variable X in Finsler’s lemma (item iv)), it is

possible to obtain less conservative conditions for Lemma 1.6. The main idea is to

define particular structures, dependent on the parameter α(k), for matrix X . Note

that the equivalence between the items in Finsler’s lemma (that is, its necessary

and sufficient characteristic) loses its validity if the variable structure is constrained.

It will however be possible to obtain sufficient conditions that provide satisfactory

results for design problems (as will be clarified in next chapters). The next lemma

provides a condition less conservative than Lemma 1.6 by using condition iv) of

Finsler’s lemma.

Lemma 1.7. For a given γ, if there exist matrices P(α(k))′ = P(α(k)) > 0 and X

such that

Q +X B +B
′
X

′ < 0 (1.27)

for all α(k) ∈U , where Q is given as in Lemma 1.6 and

B =
[

−I A(α(k)) Bw(α(k))
]

then system (1.1)-(1.2), with Bu(α(k)) = 0 and Du(α(k)) = 0, is globally asymptoti-

cally stable with an upper bound γ to the H∞ performance.

Proof: Multiplying inequality (1.27) on the right by B⊥ and on the left by B⊥′,

with B⊥ defined as in Lemma 1.6, one has

B
⊥′

QB
⊥ < 0
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since BB⊥ = 0.

1.2.5 General Overview of the Results

In general, the contributions of this work are summarized in three main concepts:

the use of parameter-dependent Lyapunov functions, the use of extra variables in-

troduced by Finsler’s lemma and in the parametric variation modeling of α(k). The

results are illustrated on the problem of synthesis of state feedback controllers with

fixed and LPV gains, and the problem of synthesis of robust and LPV filters.

For the synthesis of LPV controllers, we use an affine Lyapunov function, as in

(1.10), the extra variable X with the structure

X = [F(α(k))′ F(α(k))′G(α(k+1))′ F(α(k))′H(α(k+1))′]′ (1.28)

and a model for the parametric variation given by

• for 0≤ b≤ 0.5

g(αi(k)) =







αi if αi ≤ b

b if b≤ αi ≤ 1−b

b if 1−b≤ αi

q(αi(k)) =







b if αi ≤ b

b if b≤ αi ≤ 1−b

1−αi if 1−b≤ αi

• for 1≥ b≥ 0.5

g(αi(k)) =







αi if αi ≤ 1−b

αi if 1−b≤ αi ≤ b

b if b≤ αi

q(αi(k)) =







b if αi ≤ 1−b

1−αi if 1−b≤ αi ≤ b

1−αi if b≤ αi

where b ∈ [0,1] is a given constant. Note that b = 0 models time-invariant systems

and b= 1 arbitrarily time-varying systems. A simplified structure, based on a mem-

ory device, is considered in order to deal with possible delays in the control input.
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The procedure consists of augmenting the state vector, adding the values stored in

memory, and proceeding with the analysis for the augmented system. This approach

is feasible for small magnitudes of delay. This topic is covered in Chapter 2, which

deals with LPV systems.

For the synthesis of robust controllers (fixed gain), we use a Lyapunov function

dependent on two instants of time, as in (1.11), the extra variable X with the

structure

X = [F ′ F ′G(α(k+1))′ F ′H(α(k+1))′]′ (1.29)

and a model for the parametric variation given by g(αi(k)) = αi(k) and q(αi(k)) =

(1−αi(k)), that is, arbitrarily rates of variation. The aim is to stabilize dynamic

systems across communication networks. We consider time-varying sampling rates,

and time delays that can be treated with the use of memory controllers (similar to

the previous case). This topic is covered in Chapter 3, which deals with systems with

uncertain sampling rates.

For the synthesis of LPV filters we use both affine Lyapunov functions, as well as

Lyapunov functions that depend two instants of time. The structure chosen for the

extra variable X is shown below

X = [F ′ F ′TG(β )′T−1 F ′TH(β )′]′ (1.30)

and the model for the parametric variation is the same as it was in the case of LPV

controllers. This topic is covered in Chapter 4, which also presents conditions for the

design of robust filters.

Note that all results use the extra variable X introduced by Finsler’s lemma.

Specifically, the design conditions presented in the subsequent chapters are based

on Lemma 1.7 and lead to BMIs due to the structure chosen for the variable X .

However, LMI conditions may be obtained with particular choices for matrices G(·)

and H(·) in X . This fact is explored in the search for lower values of the upper

bound γ to the H∞ performance, in an algorithmic process that consists of alternating
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between convex optimization problems described by LMIs.

Finally, the main difference between the results presented in chapters 2, 3 and 4 is

in the combination used for the structure of X , the type of Lyapunov functions, and

the model for the rates of variation in each specific application: robust networked

control, gain-scheduled control and robust and LPV filtering.



Chapter 2
A BMI approach for H∞ gain scheduling of

discrete time-varying systems

2.1 Introduction

One cannot deny the fact that gain scheduling has become an important topic

within control system theory [67], [95]. As shown in [62], this technique can extend

the validity of the linearization approach of nonlinear systems to a range of operating

points. Consequently, gain scheduled controllers are guaranteed to work in a larger

region instead of only in a certain neighborhood of a single operating point. The

main idea is to model the system in such a way that the different operating points

are parametrized by one or more variables, commonly called scheduling variables

[62]. Stability is then assured by a closed-loop Lyapunov function and a family of

linear controllers, whose parameters are changed in accordance with the scheduling

rules. Although there are many articles addressing the topic of gain scheduling, we

call the readers’ attention to the references [2], [3], [98].

The use of linear parameter varying (LPV) structures to model certain classes of

nonlinear systems has provided an interesting framework for gain scheduling control

24
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by means of convex optimization [23], [93], [95], [97]. It is worth mentioning that the

state-space dynamic matrices of LPV systems depend on time-varying parameters

that are assumed to be measured online. The use of such parameters in defining

scheduling rules, brings extra information during the design step that may lead to

less conservative results when compared to robust control strategies.

Lyapunov theory has been extensively used as the main tool to deal with the

synthesis of gain-scheduled controllers. In many cases, it might be possible to ex-

press the design conditions as an optimization problem in terms of linear matrix

inequalities (LMIs), that can be numerically handled by specific software packages

[24], [70], [101]. To guarantee robustness against disturbances, the H2 and H∞ norms

have been frequently used as performance indices. Recent works include: [73] where

the problem of stabilizability and H∞ control of discrete-time LPV systems is inves-

tigated by means of gain scheduled state feedback controllers, [110] in which gain

scheduled controllers for linear fractional transformation (LFT) systems is designed

using parameter-dependent Lyapunov functions, [36] where gain scheduled H2 con-

trollers for affine LPV systems are proposed, [38] in which robust and gain scheduled

controllers for LFT parameter-dependent systems are designed using duality theory,

and [113] where switching H∞ controllers for a class of LPV systems scheduled along

a measurable parameter trajectory are addressed.

Bilinear matrix inequalities (BMIs) have also been applied in the study of control

of LPV systems. It is well-known that optimization problems expressed in terms of

BMIs are non-convex. Nevertheless, the use of BMIs may represent a good strategy

for problems with either no solution, or where only sufficient conditions available in

the literature, as well as to improve the closed-loop performance. See, for instance,

[43], [61], [103], [116] and references therein.

Another important aspect observed in a large number of dynamic systems, includ-

ing LPV plants, is the presence of time delays. In many cases, a good characterization

of time delays is required since they may represent a source of instability to the sys-
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tem trajectories. When the delay is known, a simple strategy consists in defining an

augmented state vector, and then to design a standard controller that takes into ac-

count the delayed states (i.e. a memory controller). Other approaches could be used

to cope with time delays, as for instance the ones based on the Lypuanov-Krasovskii

functionals, which result in general in more complex conditions that demand a higher

computational effort.

The aim of this chapter is to provide gain-scheduled memory controllers to stabi-

lize discrete time-varying linear systems with bounded rates of parameter variation.

A simplified framework for possible time delays is assumed, where the delay is con-

stant and a memory is used to store the delayed information. The use of a memory

in the feedback loop allows one to cope with time delays without making use of more

complex Lyapunov functionals. All the system matrices are assumed to be affected

by the time-varying parameters, which are assumed to lie inside a known polytope.

An H∞ guaranteed cost, which reflects the worst-case energy gain of the system, pro-

vides robustness with respect to unmodeled uncertainties. A preliminary version of

the work presented in this chapter appeared in [14], where the time-varying param-

eters were allowed to vary arbitrarily fast inside the polytope. Here, a more precise

parameter variation modeling is used to take into account the bounds on the rates

of parameter variation, providing synthesis procedures to cope with parameters that

can be frozen or can vary slowly or arbitrarily fast. Lyapunov theory is applied to

assure the closed-loop stability with H∞ disturbance attenuation, with a parameter-

dependent Lyapunov function that reduces the conservatism of the proposed method,

resulting in a more general approach when compared to methods based on quadratic

stability. Extra variables introduced by Finsler’s lemma may be freely explored in

the search for better performance of the LPV system, and lead to design conditions

expressed in terms of BMIs. The gain-scheduled memory controller is then obtained

through the solution of an optimization problem that minimizes an upper bound to

the H∞ index of performance subject to a finite number of BMI constraints formu-
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lated only in terms of the vertices of the polytopic model. An iterative scheme is

proposed exploiting the fact that the BMIs reduce to LMIs by fixing some variables.

Some results from the literature concerned with stability without time delays may

be obtained as a particular case of the proposed method. Numerical examples illus-

trate the proposed conditions. The strategy proposed here could also be adapted to

cope with the design of gain-scheduling controllers based on other types of storage

functions, such as Lyapunov-Krasovskii functionals.

2.2 Preliminaries and Problem Statement

Consider the time-varying discrete-time system,

x(k+1) = A(α(k))x(k)+Bdu(α(k))u(k− τ)+Bu(α(k))u(k)+Bw(α(k))w(k), x(0) = 0

y(k) =C(α(k))x(k)+Ddu(α(k))u(k− τ)+Du(α(k))u(k)+Dw(α(k))w(k)

(2.1)

where τ represents the discrete-time delay, x(k) ∈R
n is the state space vector, u(k) ∈

R
m is the control signal, w(k)∈R

r is the l2[0,∞) noise and y(k)∈R
q is the controlled

output. The time delay τ is an integer number assumed to be known and constant.

The time-varying vector of parameters α(k) belongs to the unit simplex

UN =
{

ψ ∈R
N :

N

∑
i=1

ψi = 1, ψi ≥ 0 , i= 1, . . . ,N
}

for all k ≥ 0 with bounded rates of parameter variation of percentage b ∈ [0,1]. For

instance, b= 0.05 indicates that the parameters are constrained to vary only 5% of

their original values between two instants of time. The time-invariant case is modeled

by b= 0 and arbitrarily fast variations by b= 1.
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All matrices are real, with appropriate dimensions, belonging to the polytope

P̂ ,

















A(α(k)) Bu(α(k))

Bdu(α(k)) Bw(α(k))

C(α(k)) Du(α(k))

Ddu(α(k)) Dw(α(k))











=
N

∑
i=1

αi(k)











Ai Bui

Bdui Bwi

Ci Dui

Ddui Dwi











, α(k) ∈UN







(2.2)

More specifically, the system matrices are given, for any time k ≥ 0, by the con-

vex combination of the well-defined vertices of the polytope P̂. As usual in gain-

scheduling control, it is also assumed that the parameters α(k) are measured online.

In order to guarantee the stability of system (2.1), a memory state feedback

controller with a parameter-dependent gain is designed. Using extra state variables

z(k) to store the delayed values of the control signal, system (2.1) can be rewritten

as follows [5]

x̃(k+1) = Ã(α(k))x̃(k)+ B̃u(α(k))u(k)+ B̃w(α(k))w(k), x̃(0) = 0

y(k) = C̃(α(k))x̃(k)+ D̃u(α(k))u(k)+ D̃w(α(k))w(k)
(2.3)

where x̃(k) = [x(k)′ z(k)′]′ ∈R
n+mτ and

Ã(α(k)) =













A(α(k)) Bdu(α(k)) 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

0 0 0 . . . 0













, B̃u(α(k)) =













Bu(α(k))

0

0
...

I













,

B̃w(α(k))′ =
[

Bw(α(k))′ 0 0 . . . 0

]

, D̃w(α(k)) = Dw(α(k)) (2.4)

C̃(α(k)) =
[

C(α(k)) Ddu(α(k)) 0 . . . 0

]

, D̃u(α(k)) = Du(α(k))

The memory control law is given by

u(k) =
[

Kx(α(k)) Kd(α(k))
]




x(k)

z(k)



 = K(α(k))x̃(k) (2.5)
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where K(α(k)) = [Kx(α(k)) Kd(α(k))], yielding the closed-loop system

x̃(k+1) = Ãcl(α(k))x̃(k)+ B̃w(α(k))w(k), x̃(0) = 0

y(k) = C̃cl(α(k))x̃(k)+ D̃w(α(k))w(k)
(2.6)

with x̃(k) ∈R
n+mτ , w(k) ∈R

r, y(k) ∈R
q and

Ãcl(α(k)) = Ã(α(k))+ B̃u(α(k))K(α(k)) , C̃cl(α(k)) = C̃(α(k))+ D̃u(α(k))K(α(k))

(2.7)

The control problem to be dealt with may be stated as follows.

Problem 1. Find parameter-dependent matrices Kx(α(k)) ∈R
m×n and Kd(α(k)) ∈

R
m×mτ of the control law (2.5), such that the closed-loop system (2.6) is asymptot-

ically stable, and an upper bound γ > 0 to the H∞ performance is minimized, that

is

sup
w 6=0

‖y‖22
‖w‖22

< γ2 (2.8)

with w ∈ l2[0,∞).

Condition (2.8) for a given closed-loop discrete time-varying linear system may

be characterized by the discrete-time version of the bounded real lemma in terms of

parameter-dependent LMIs, as was presented in [29], [37]. The result is extended

here in the context of parameter-dependent time-varying systems, as follows.

Lemma 2.1. For a given γ, if there exists a bounded matrix sequence P(α(k))′ =

P(α(k)) > 0 such that1










−P(α(k)) P(α(k))Ã(α(k))′ P(α(k))C̃(α(k))′ 0

(⋆) −P(α(k+1)) 0 B̃(α(k))

(⋆) (⋆) −γI D̃(α(k))

(⋆) (⋆) (⋆) −γI










< 0 (2.9)

1The symbol (⋆) indicates symmetric blocks in the LMIs.
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αi

∆αi

b

b

−b

1

1

−1

1−b

Figure 2.1: Region on the plane ∆αi×αi where ∆αi can assume values as a function
of αi (dark region).

for all α(k) ∈UN, then the closed-loop system (2.6) is asymptotically stable with an

upper bound γ to the H∞ performance.

Note that, since the parameters lie inside a unit simplex, the rates of variation

are intrinsically lower bounded by −b and upper bounded by b, b ∈ [0,1]. In order

to develop a model2 for the parameter variation when −b< ∆αi(k) < b, b 6= 0, note

that the feasible values of ∆αi(k) depend on the actual values of αi(k), as shown

in Figure 2.1 (darken area). Thus, any pair (αi,∆αi) belongs to the polytope Λi,

i= 1, . . . ,N given by

Λi ,
{

δ ∈R
2 : δ =

6

∑
j=1

λ js j, λ ∈U6

}

,

S= [s1 · · ·s6] =

[

0 0 1−b 1 1 b

0 b b 0 −b −b

]

,

(2.10)

that is, Λi represents the convex combination of the extremes (vertices) of the feasible

area.

2For simplicity, the same b is considered for all αi, i= 1, . . . ,N.
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To construct the (α,∆α)-space, the Cartesian product of all Λi, i= 1, . . . ,N must

be considered, taking into account that the new vertices must satisfy α1+ · · ·+αN = 1

and ∆α1 + · · ·+∆αN = 0. The resulting polytope, called Λ, is then given by

Λ ,

{

δ ∈R
2N : δ =

M

∑
i=1

λiqi, λ ∈UM

}

, (2.11)

where qi ∈R
2N are given vectors. Thus, the first step to search for a solution to any

LMI/BMI depending on both α and ∆α is to lift the inequalities to the λ -space, by

observing that from (2.11) one has
[

α
∆α

]

= Qλ , Q= [q1 · · ·qM] ∈R
2N×M, λ ∈UM. (2.12)

Therefore, in the case of parameter-dependent matrices affine on α(k), that is

X(α(k)) =
N

∑
i=1

αi(k)Xi, αi(k) =
M

∑
j=1

λ jQi j (2.13)

X(α(k+1)) =
N

∑
i=1

(αi(k)+∆αi(k))Xi, ∆αi(k) =
M

∑
j=1

λ jQ(i+N) j (2.14)

it follows that

X(α(k)) = X̄(λ ) =
N

∑
i=1

M

∑
j=1

λ jQi jXi =
M

∑
j=1

λ jX̄ j (2.15)

X(α(k+1)) = X̃(λ ) =
N

∑
i=1

M

∑
j=1

λ j(Qi j+Q(i+N) j)Xi =
M

∑
j=1

λ jX̃ j (2.16)

where

X̄ j =
N

∑
i=1

Qi jXi (2.17)

X̃ j =
N

∑
i=1

(Qi j+Q(i+N) j)Xi (2.18)

Another preliminary result, Finsler’s lemma, is reproduced here for convenience.

Lemma 2.2. Let ξ ∈ R
a, Q = Q′ ∈ R

a×a, B ∈ R
b×a with rank(B) < a, and B⊥

a basis for the null-space of B (i.e. BB⊥ = 0). The following statements are

equivalent.



2.2. Preliminaries and Problem Statement 32

i) ξ ′Qξ < 0, ∀Bξ = 0, ξ 6= 0;

ii) B⊥′QB⊥ < 0;

iii) ∃ µ ∈R : Q−µB′B < 0;

iv) ∃ X ∈R
a×b : Q +X B +B′X ′ < 0.

Proof: See [31].

The variables µ and X in statements iii) and iv) of Lemma 2.2 allow one to

present a more general version of Lemma 2.1. As pointed out in [31], these variables

represent extra degrees of freedom that may be exploited for design purposes. By

considering the particular structure

X = [F(α(k))′ F(α(k))′G(α(k+1))′ F(α(k))′H(α(k+1))′]′ (2.19)

the following condition is obtained.

Theorem 2.1. For a given γ > 0, if there exists a bounded matrix sequence F(α(k)),

G(α(k)), P(α(k))′ = P(α(k)) > 0 and H(α(k)), such that










P(α(k+1))−F(α(k))−F(α(k))′ F̂12 F̂13 0

(⋆) F̂22 F̂23 B̃wcl(α(k))

(⋆) (⋆) F̂33 D̃wcl(α(k))

(⋆) (⋆) (⋆) −γI










< 0 (2.20)

F̂12 = F(α(k))Ãcl(α(k))′−F(α(k))′G(α(k+1))′

F̂13 = F(α(k))C̃cl(α(k))′−F(α(k))′H(α(k+1))′

F̂22 = G(α(k+1))F(α(k))Ãcl(α(k))′+ Ãcl(α(k))F(α(k))′G(α(k+1))′−P(α(k))

F̂23 = G(α(k+1))F(α(k))C̃cl(α(k))′+ Ãcl(α(k))F(α(k))′H(α(k+1))′

F̂33 = H(α(k+1))F(α(k))C̃cl(α(k))′+C̃cl(α(k))F(α(k))′H(α(k+1))′− γI

for all (α(k),∆α(k)) ∈ Λ, then the closed-loop system (2.6) is asymptotically stable

with an upper bound γ to the H∞ performance.
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Proof: Firstly, using Schur complement, inequality (2.20) can be rewritten as follows








P(α(k+1))−F(α(k))−F(α(k))′ F̂12 FC̃cl(α(k))′−F ′H(α(k+1))′

(⋆) F̂22 F̂23

(⋆) (⋆) F̂33








+ γ−1
F̂4(α(k))F̂4(α(k))′ < 0 (2.21)

where

F̂4(α(k)) =
[

0 B̃wcl(α(k))′ D̃wcl(α(k))′
]′

Secondly, by setting

Q =








P(α(k+1)) 0 0

0 γ−1B̃wcl(α(k))B̃wcl(α(k))′−P(α(k)) γ−1B̃wcl(α(k))D̃wcl(α(k))′

0 γ−1D̃wcl(α(k))B̃wcl(α(k))′ γ−1D̃wcl(α(k))D̃wcl(α(k))′− γI








B =
[

−I Ãcl(α(k))′ C̃cl(α(k))′
]

, ξ =
[

x̃(k+1)′ x̃(k)′ w(k)′
]′

,

with X given by (2.19), inequality (2.21) yields statement iv) of Lemma 2.2. Finally,

if statement iv) of Lemma 2.2 holds then statement ii) also holds and Lemma 2.1

follows immediately. The fact that iv)⇒ ii) can be verified by multiplying (2.21) on

the left by B⊥ and on the right by B⊥′, where

B
⊥ =








Ãcl(α(k))′ C̃cl(α(k))′

I 0

0 I








.

The conditions of Theorem 2.1 exhibit nonlinearities and must be tested at all

points of the unit simplex UN , i.e., for an infinite number of points. Moreover, the

unknown parameter-dependent matrices appear as functions of both α(k+ 1) and

α(k). Hence, the main goal hereafter is to obtain finite-dimensional conditions in

terms of the vertices of the polytope P̂ to solve Problem 1, considering the particular
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structure for the Lyapunov matrix (similar structures for F(α(k)), G(α(k+1)) and

H(α(k+1)) have been used)

P(α(k)) = α1(k)P1 +α2(k)P2 + . . .+αN(k)PN , α(k) ∈UN . (2.22)

More complex structures, as for instance with polynomial dependence on α(k), could

be used following the ideas depicted in [85], yielding BMI conditions that would be

more precise at the expense of being much more involved. Now, considering the

λ -space presented, using the Schur complement, a change of variables and exploring

the extra variables provided by Lemma 2.2, BMI conditions assuring the existence

of such controllers are given in the next section.

2.3 Main Results

Theorem 2.2. Given the augmented discrete-time system (2.3) and matrix Q as in

(2.12), if there exist matrices Li, Hi, Fi, Gi, Pi = P
′
i > 0, with appropriate dimensions,

for i= 1, . . . ,N and a scalar γ > 0, the control law (2.5), with matrices given by

K(α(k)) =
[

Kx(α(k)) Kd(α(k))
]

= L(α(k))(F(α(k))′)−1 (2.23)

where

L(α(k)) =
N

∑
i=1

αi(k)Li, F(α(k)) =
N

∑
i=1

αi(k)Fi, α(k) ∈UN (2.24)

assures the asymptotic stability of the closed-loop system (2.6) and an H∞ guaranteed

cost γ provided that, for matrices L̄i, H̄i, F̄i, Ḡi, P̄i, Âi, B̂ui, B̂wi, Ĉi, D̂ui and D̂wi given

as in (2.17) and H̃i, G̃i, P̃i as in (2.18)

Ξi ,










P̃i− F̄i− F̄
′
i F12 F̄iĈ

′
i+ L̄

′
iD̂
′
ui− F̄

′
i H̃

′
i 0

(⋆) F22 F23 B̂wi

(⋆) (⋆) F33 D̂wi

(⋆) (⋆) (⋆) −γI










< 0

i= 1, . . . ,M

(2.25)
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F12 = F̄iÂ
′
i+ L̄

′
iB̂
′
ui− F̄

′
i G̃
′
i,

F22 = G̃iFiÂ
′
i+ ÂiF̄

′
i G̃
′
i+ G̃iL̄

′
iB̂
′
ui+ B̂uiL̄iG̃

′
i− P̄i,

F23 = G̃iF̄iĈ
′
i+ G̃iL̄

′
iD̂
′
ui+ ÂiF̄

′
i H̃

′
i + B̂uiL̄iH̃

′
i ,

F33 = H̃iF̄iĈ
′
i+ĈiF̄

′
i H̃

′
i + H̃iL̄

′
iD̂
′
ui+ D̂uiL̄iH̃

′
i − γI

Ξik ,










F̄11 F̄12 F̄13 0

(⋆) F̄22 + F̄ ′
22−2P̄i− P̄k F̄23 2B̂wi+ B̂wk

(⋆) (⋆) F̄33 + F̄ ′
33−3γI 2D̂wi+ D̂wk

(⋆) (⋆) (⋆) −3γI










< 0

i= 1, . . . ,M, k = 1, . . .M, i 6= k

(2.26)

F̄11 = 2P̃i+ P̃k−2F̄i−2F̄ ′i − F̄k− F̄
′
k , F̄12 = F̄iÂ

′
i+ F̄iÂ

′
k+ F̄kÂ

′
i+ L̄

′
iB̂
′
ui+ L̄

′
iB̂
′
uk+ L̄

′
kB̂
′
ui

−F̄ ′i G̃
′
i− F̄

′
i G̃
′
k− F̄

′
kG̃
′
i, F̄13 = F̄iĈ

′
i+ F̄iĈ

′
k+ F̄kĈ

′
i+ L̄

′
iD̂
′
ui+ L̄

′
iD̂
′
uk+ L̄

′
kD̂
′
ui− F̄

′
i H̃

′
i − F̄

′
i H̃

′
k

−F̄ ′kH̃
′
i , F̄22 = G̃iF̄iÂ

′
k+ G̃kF̄iÂ

′
i+ G̃iF̄kÂ

′
i+ G̃iL̄

′
iB̂
′
uk+ G̃kL̄

′
iB̂
′
ui+ G̃iL̄

′
kB̂
′
ui, F̄23 = G̃iF̄iĈ

′
k

+G̃kF̄iĈ
′
i+ G̃iF̄kĈ

′
i+ G̃iL̄

′
iD̂
′
uk+ G̃kL̄

′
iD̂
′
ui+ G̃iL̄

′
kD̂
′
ui+ ÂiF̄

′
i H̃

′
k+ ÂkF̄

′
i H̃

′
i + ÂiF̄

′
kH̃

′
i

+B̂uiL̄iH̃
′
k+ B̂ukL̄iH̃

′
i + B̂uiL̄kH̃

′
i , F̄33 = H̃iF̄iĈ

′
k+ H̃kF̄iĈ

′
i

+H̃iF̄kĈ
′
i+ H̃iL̄

′
iD̂
′
uk+ H̃kL̄

′
iD̂
′
ui+ H̃iL̄

′
kD̂
′
ui

Ξikℓ ,










F̃11 F̃12 F̃13 0

(⋆) F̃22 + F̃ ′
22−2P̄i−2P̄k−2P̄ℓ F̃23 B̂wi+ B̂wk+ B̂wℓ

(⋆) (⋆) F̃33 + F̃ ′
33−6γI D̂wi+ D̂wk+ D̂wℓ

(⋆) (⋆) (⋆) −6γI










< 0

i= 1, . . . ,M−2, k = i+1, . . . ,M−1, ℓ = k+1, . . . ,M,

(2.27)

F̃11 = 2P̃i+2P̃k+2P̃ℓ−2F̄i−2F̄ ′i −2F̄k−2F̄ ′k −2F̄ℓ−2F̄ ′ℓ , F̃12 = F̄iÂ
′
k+ F̄kÂ

′
i+ F̄iÂ

′
ℓ

+F̄ℓÂ
′
i+ F̄ℓÂ

′
k+ F̄kÂ

′
ℓ + L̄′iB̂

′
uk+ L̄

′
kB̂
′
ui+ L̄

′
iB̂
′
uℓ + L̄′ℓB̂

′
ui+ L̄

′
ℓB̂
′
uk+ L̄

′
kB̂
′
uℓ− F̄

′
i G̃
′
k− F̄

′
kG̃
′
i

−F̄ ′i G̃
′
ℓ− F̄

′
ℓ G̃
′
i− F̄

′
ℓ G̃
′
k− F̄

′
kG̃
′
ℓ, F̃13 = F̄iĈ

′
k+ F̄kĈ

′
i+ F̄iĈ

′
ℓ + F̄ℓĈ

′
i+ F̄ℓĈ

′
k+ F̄kĈ

′
ℓ + L̄′iD̂

′
uk

+L̄′kD̂
′
ui+ L̄

′
iD̂
′
uℓ + L̄′ℓD̂

′
ui+ L̄

′
ℓD̂
′
uk+ L̄

′
kD̂
′
uℓ− F̄

′
i H̃

′
k− F̄

′
kH̃

′
i − F̄

′
i H̃

′
ℓ− F̄

′
ℓ H̃

′
i − F̄

′
ℓ H̃

′
k

−F̄ ′kH̃
′
ℓ, F̃22 = G̃iF̄kÂ

′
ℓ + G̃iF̄ℓÂ

′
k+ G̃kF̄iÂ

′
ℓ + G̃kF̄ℓÂ

′
i+ G̃ℓF̄iÂ

′
k+ G̃ℓF̄kÂ

′
i+ G̃iL̄

′
kB̂
′
uℓ
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+G̃iL̄
′
ℓB̂
′
uk+ G̃kL̄

′
iB̂
′
uℓ + G̃kL̄

′
ℓB̂
′
ui+ G̃ℓL̄

′
iB̂
′
uk+ G̃ℓL̄

′
kB̂
′
ui, F̃23 = G̃iF̄kĈ

′
ℓ + G̃iF̄ℓĈ

′
k+ G̃kF̄iĈ

′
ℓ

+G̃kF̄ℓĈ
′
i+ G̃ℓF̄iĈ

′
k+ G̃ℓF̄kĈ

′
i+GiL

′
kD̂
′
uℓ +GiL

′
ℓD̂
′
uk+GkL

′
iD̂
′
uℓ +GkL

′
ℓD̂
′
ui+GℓL

′
iD̂
′
uk

+GℓL
′
kD̂
′
ui+ ÂiF̄

′
kH̃

′
ℓ + ÂiF̄

′
ℓ H̃

′
k+ ÂkF̄

′
i H̃

′
ℓ + ÂkF̄

′
ℓ H̃

′
i + ÂℓF̄

′
i H̃

′
k

+ÂℓF̄
′
kH̃

′
i + B̂uiL̄kH̃

′
ℓ + B̂uiL̄ℓH̃

′
k+ B̂ukL̄iH̃

′
ℓ + B̂ukL̄ℓH̃

′
i

+B̂uℓL̄iH̃
′
k+ B̂uℓL̄kH̃

′
i , F̃33 = H̃iF̄kĈ

′
ℓ + H̃iF̄ℓĈ

′
k+ H̃kF̄iĈ

′
ℓ + H̃kF̄ℓĈ

′
i+ H̃ℓF̄iĈ

′
k

+H̃ℓF̄kĈ
′
i+ H̃iL̄

′
kD̂
′
uℓ + H̃iL̄

′
ℓD̂
′
uk+ H̃kL̄

′
iD̂
′
uℓ + H̃kL̄

′
ℓD̂
′
ui+ H̃ℓL̄

′
iD̂
′
uk+ H̃ℓL̄

′
kD̂
′
ui

Proof: Applying the following operation [89]

Ξ(λ ) =
M

∑
i=1

λ 3
i Ξi+

M

∑
i=1

M

∑
k=1,k 6=i

λ 2
i λkΞik+

M−2

∑
i=1

M−1

∑
k=i+1

M

∑
ℓ=k+1

λiλkλℓΞikℓ (2.28)

to the BMIs (2.25), (2.26) and (2.27) inequality (2.20) follows immediately consider-

ing the particular structure (2.22) for the Lyapunov matrix, the change of variables

L(α(k)) = K(α(k))F(α(k))′ and the lift of the BMI to the λ -space. Note that the

choice of P(α(k)) given by (2.22) with Pi > 0 assures a lower bound to the sequence.

Lastly, the parameter-dependent gain K(α(k)) is obtained by the change of variables

given in (2.23), what concludes the proof.

Note that the actual variables are Li, Hi, Fi, Gi, Pi = P
′
i > 0, but the BMIs (2.25)-

(2.27) are written in terms of L̄i, H̄i, F̄i, Ḡi, P̄i, H̃i, G̃i and P̃i.

Corollary 2.1. The minimum γ attainable by the conditions of Theorem 2.2 is

given by the optimization problem

minγ s.t. (2.25),(2.26),(2.27) (2.29)

Note that as the problem is non-convex, only sub-optimal solutions can be ob-

tained. The use of a memory controller brings some advantages when dealing with

discrete time delay systems. Using extra variables to store the past values of the con-

trol signal, it is possible to cope with Problem 1 without applying more complex Lya-

punov methods, (for instance, the Lyapunov-Krasovskii functional). Sophisticated

Lyapunov functionals may lead to conditions that require a larger computational
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effort to be solved. Whenever possible, the use of memory controllers is suggested

when dealing with discrete time delay systems since it simplifies the analysis. Nev-

ertheless, the method could be adapted to cope with other Lyapunov functions, as

the Lyapunov-Krasovskii one.

Gain scheduled control of discrete-time systems with time-varying parameters

was also addressed by means of affinely parameter-dependent Lyapunov functions in

[28], [29] and improved in [73] to cope with systems in which all state space matrices

are supposed to be affected by time-varying parameters. In the above works, the

design conditions are given in terms of LMIs. In this chapter, however, statement

iv) in Lemma 2.2 is applied to reach more general BMI conditions with multiplier

defined as in (2.19). The advantages of this approach are due to the extra variables

that can be used in the search for better performance of the closed-loop system. For

example, lower H∞ guaranteed costs may be obtained exploring the new variables

G(α(k+1)) and H(α(k+1)). In this sense, Theorem 2.1 encompasses the conditions

in [28].

The computational time necessary to solve the sufficient BMI conditions presented

here man be estimated in terms of the number of scalar variables V and the number of

BMIs L. These two parameters are written as a function of ñ (number of augmented

states) and N (number of vertices) as follows.

V = N

(
ñ(ñ+1)

2
+2ñ2 + ñ(q+m)

)

+1, L=
(M4 +3M3 +2M2 +6M)

6
, ñ= n+mτ

When dealing with problems that take uncertainties into account, it is clear that

the difficulty in solving the problem increases with the number of uncertain parame-

ters. In the framework studied in this chapter, this fact can be particularly illustrated

by the number of BMIs in Theorem 2.2. Considering a system with a large num-

ber of uncertainties, the number of vertices used to describe the whole of possible

system outcomes will also be large, yielding a large number of inequalities in the

conditions of Theorem 2.2. Naturally, the computation time will also increase since
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for the LMI/BMI solvers available nowadays, the computational time depends on the

number of LMIs/BMIs, on the number of variables of the problem to be solved and,

of course, on the computer hardware used.

Although other methods could be applied to problem (2.29), the following algo-

rithm is proposed.

Algorithm 1. Let Gi = 0 and Hi = 0, i = 1, . . . ,N. Let ε be given. Set k = 1 and

iterate:

1. Fix the variables Hi and Gi, minimize w.r.t. γk and determine Fi, Li and Pi.

2. Fix the variables Fi and Li, minimize w.r.t. γk and obtain Hi, Gi and Pi.

3. If |γk− γk−1|< ε, then stop (no significant changes).

4. Set k = k+1 and go to step 1.

This approach is sometimes called an Alternating Semi-Definite Programming

method [43]. At each step, a convex optimization problem in terms of LMI conditions

is solved. It is worth stressing that the aim here is not to develop new strategies to

solve BMIs. Whenever feasible, other methods from the literature may be applied

to solve Corollary 2.1, such as the methods in [43], [61], [103], [116]. Concerning the

convergence aspect, the proposed algorithm is a heuristic approach and consequently

there is no guaranteed convergence result to the local optimum. However, since steps

1 and 2 are convex optimization problems, the resulting H∞ cost is non-increasing

with the iterations.

An important aspect of Algorithm 1 is the choice of the initial values of the

variables Gi and Hi. Initializing them as null matrices produces LMI conditions in

step 1 of the first iteration similar to the ones presented in [29], [73] in terms of

stabilization, since the only extra variables in the LMIs are Fi. In this case, the

extra degree of freedom provided by Gi and Hi cannot be explored. As a remedy, an
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alternative structure to matrices Gi and Hi is proposed:

Gi = ςI, Hi = [hrs]i, hrs = ς , i= 1, . . . ,N (2.30)

where ς is a real number. In this case, the conditions of Theorem 2.2 can be tested

as LMIs through line searches.

Corollary 2.2. Given the augmented discrete-time system (2.3) and a scalar ς ∈R,

if there exist matrices Li, Fi, Pi = P
′
i > 0, with appropriate dimensions, i = 1, . . . ,N

and a scalar γ > 0 such that (2.25) and (2.26) hold with Gi and Hi given by (2.30),

then there exists a memory control law (2.5), ensuring the asymptotic stability of the

closed-loop system (2.6) and an H∞ guaranteed cost γ, with K(α) given as in (2.23)

and (2.24).

Through a line search on ς , the conditions of Corollary 2.2 can be used to search

for stabilizing controllers even when the conditions [29], [73] and the first iteration of

Algorithm 1 fail. Moreover, if Corollary 2.2 provides a feasible solution, the respective

ς can be used to initialize Gi and Hi as in (2.30), assuring a feasible solution to the

first iteration of Algorithm 1.

By fixing the variable matrices Fi = F and Li = L (not depending on α(k)), H∞

robust memory controllers can be obtained using the conditions of Theorem 2.2, as

stated in the next corollary.

Corollary 2.3. Given the augmented discrete-time system (2.3), if BMI (2.25), for

i = 1, . . . ,M, and BMI (2.26), for i = 1, . . . ,M−1, j = i+1, . . . ,M, of Theorem 2.2

are feasible with fixed variable matrices L and F then the closed-loop system (2.6)

is asymptotically stable with a robust memory controller K = L(F ′)−1 and an H∞

guaranteed cost γ.

Note that BMI (2.27) is not necessary in this case, since it would produce re-

dundant conditions. The line search strategy may also be applied in this context,

similarly to Corollary 2.2.
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It is worth stressing that for time-varying discrete-time systems, robust stabiliz-

ability implies gain scheduling stabilizability, but the converse is not true [9]. In other

words, there may exist systems for which Theorem 2.2 and Corollary 2.2 provide fea-

sible solutions but Corollary 2.3 is unfeasible. This fact points out the importance

of studying and improving gain scheduling strategies for control systems, specially

in the discrete-time domain.

Finally, the novelties presented here consist especially in the use of modeling

parameter variations in the λ -space within the gain-scheduling framework and in the

use of BMIs as a tool in the search of better H∞ performance. To the best of the

authors’ knowledge, the use of Lemma 2.2 with the particular structure (2.19) (that

results in Theorem 2.1) has never been seen in the literature in the context of gain-

scheduled control. Consequently, Theorem 2.2, obtained through Theorem 2.1 and

expressions (2.17), (2.18) and (2.22) represents a novel strategy to face the problem

of feedback control for discrete time-varying systems. The conditions provide good

results when compared to other recent methods in the control literature, as shown

in the numerical experiments, and represents a flexible strategy in the sense that it

can be used in four different contexts, namely, LPV or robust control of time-varying

systems with bounded or unbounded rates of variation.

2.4 Numerical Experiments

All the experiments have been performed in a PC equipped with: Athlon 64 X2

6000+ (3.0 GHz), 2GB RAM (800 MHz), using Linux (Ubuntu), Matlab (7.0.1) and

the SDP solver SeDuMi [101] interfaced by the parser YALMIP [70]. The numerical

complexity associated with the proposed conditions and the ones from the literature

used for comparison purposes are estimated in terms of the computational times given

in seconds. Only the time required to solve the LMIs is considered, since the time

necessary to build the set of LMIs is highly dependent on the LMI parser interface.



2.4. Numerical Experiments 41

m1 m2

k1 k2
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Figure 2.2: Mass-spring system.

Particularly with respect to the iterative procedure given in Algorithm 1, the time

of the i-th iteration is the cumulated total time.

Example I: This example is concerned with the fourth order two-mass-spring system

presented in [59] that is reproduced here in Figure 2.2. The same transfer function is

considered, i.e. from the input force d applied to mass m1 to the error signal e= x2

(position of mass m2).

The masses and the stiffness of the second spring are assumed constant as m1 = 2,

m2 = 1, k2 = 0.5. The friction forces f1 and f2 are associated to the viscous friction

coefficient c0. The stiffness of the first spring and the viscous friction coefficient are

assumed to be time-varying in the ranges

1≤ k1(k)≤ 13, 1≤ c0(k)≤ 13

resulting in a polytope of N= 4 vertices, obtained by evaluating the following discrete-

time equation at the extreme values of the parameters.

x(k+1) =










1 0 0.1 0

0 1 0 0.1

−0.1(k1+k2)
m1

0.1k2
m1

1− 0.1c0
m1

0

0.1k2
m2

−0.1k2
m2

0 1− 0.1c0
m2










x(k)+










0

0

0.1
m1

0










u(k) (2.31)

The sampled version (2.31) of the two-mass-spring system was obtained using the
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Euler’s first-order approximation for the derivative with a sampling time of 0.1 s.

The other system matrices are Ci = [0 1 0 0], Bwi = [0 0.1 0.1 0]′, Dwi = 0.01,

Dui= 0, i= 1, . . . ,4. Additionally, it is also investigated the situation where the model

is affected by a one-step-delayed input, considering Bdui = [0 0 1 0]′ and Ddui = 0,

i = 1, . . . ,4. The results obtained by the methods [29, Theorem 4] (gain scheduling

control), [29, Theorem 5] (robust control), Theorem 2.2 and Corollary 2.3 are shown

in Table 2.1 for the case of arbitrarily fast variations of the parameters (b= 1) and

for slow variations (b= 0.05), i.e. the value of the parameters are constrained to vary

only 5% from the instant k to the instant k+1.

Table 2.1: Results and elapsed time associated to the methods of [29] and the condi-
tions of Theorem 2.2 (T2.2) and Corollary 2.3 (C2.3) for the control design problem
in Example I.

Method [29, T4] [29, T5] T2.2it=1 C2.3it=2 T2.2it=1 C2.3it=2

b 1 1 1 1 0.05 0.05

γ (τ = 0) 0.80 1.50 0.79 1.48 0.43 1.03
Time (s) 0.5 0.4 460.8 69.7 810.5 63.2

γ (τ = 1) 1.40 2.52 1.39 2.49 0.63 1.55
Time (s) 0.6 0.4 1415.5 92.7 1351.0 116.3

In the case b = 1, the conditions of [29] and the ones proposed in this chapter

produce practically the same H∞ guaranteed costs. On the other hand, for b= 0.05

(slow parameter variation), the method proposed yields significantly less conserva-

tive results. Such results illustrate that the proposed approach may be beneficial

when bounds on the parameters variation are known and accounted for. In general,

this is the case for mechanical systems, as in this example, where the parameters

c0 and k2 are assumed to vary slowly. The improvements in the H∞ guaranteed

costs, when considering bounds on the rates of variation, obtained by Theorem 2.2

and Corollary 2.3 were 47% and 30%, respectively, for the delay-free case. For the

delayed input case, the improvements are larger, i.e. 54% and 40%, respectively, for
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Figure 2.3: H∞ attenuation level γ as a function of bound b.

Theorem 2.2 and Corollary 2.3. Concerning the computational complexity, the time

demanded by the proposed approach is higher due to the conversion of the parameters

to the λ -space domain. In this example, the four parameters in the original polytopic

domain yield twenty eight vertices in the λ -space domain. This is the price to be

paid in order to take into account limited rates of variation. Figure 2.3 illustrates

the H∞ attenuation level γ as a function of bound b obtained with Theorem 2.2 for

the delay free case (τ = 0) with one iteration (it=1).

Finally, a time simulation has been performed for the delayed input case with the

gain-scheduled controllers obtained through the proposed conditions. The parame-

ters k2(k) and co(k) vary ≈ 4% per instant of time, starting from their minumum

values until their maximum. The input noise was generated using the Matlab com-

mand w(k) = 0.2 ∗ randn for 0 ≤ k ≤ 100. The noise and the outputs (considering
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Figure 2.4: Time simulation of the mass-spring system, with a one step delay, stabi-
lized through the conditions of Theorem 2.2 for the cases b= 1 and b= 0.05.

Dw = 0 and x0 = 0) of the system, using the synthesized gain-scheduling controllers

for b= 1 and b= 0.05, are depicted in Figure 2.4. Clearly, the case b= 0.05 presents

a better disturbance rejection. In fact, the total error e= ∑100
i=1 |y(k)| is e= 7.91 and

e = 4.29 for the cases b = 1 and b = 0.05, respectively, yielding an improvement of

45%. Note that the error is attenuated in both cases due to the H∞ guaranteed cost.

Example II: Consider system (2.3) with vertices (borrowed from [73, Example 2])

given by

Ã1 =




0.28 −0.315

0.63 −0.84



 , Ã2 =




0.52 0.77

−0.7 −0.07



 , B̃u1 =




1

0



 , B̃u2 =




0

1



 ,

B̃wi = [1 0]′, C̃i = [1 0] and D̃wi = D̃ui = 0, i= 1,2. This system with arbitrarily fast

parameters was also studied in [29], but in a simpler case where matrix B̃u was fixed

and time-invariant (i.e. B̃u1 = B̃u2). The aim here is to compare the gain scheduling
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design conditions from [73] (capable to cope with time-varying Bu(α(k))) with the

BMI approach proposed in Theorem 2.2. Additionally, it is considered that the

system is affected by one single delay (one step) with Bdui = [0 1]′ and Ddui = 0,

i= 1,2. Table 2.2 shows the improvements due to the BMI approach over [73] as the

number of iterations (it) evolves. As can be seen in Table 2.2, the H∞ upper bound

Table 2.2: Results and elapsed time associated to the method [73] and the conditions
of Theorem 2.2 (T2.2) in the gain scheduling control design given in Example II.

Method [73] T2.2it=1 T2.2it=2 T2.2it=3 T2.2it=4 T2.2it=5 T2.2it=6

γ 20.09 14.39 9.63 8.60 8.27 8.14 8.06

Improvement – 28.33% 52.04% 57.15% 58.82% 59.46% 59.87%

Time (s) 0.12 1.12 2.07 2.98 3.91 4.80 5.70

γ was reduced in approximately 59.87% with 6 iterations, providing better rejection

of disturbances.

2.5 Conclusion

The H∞ gain scheduled memory controller for LPV discrete-time systems, with

bounded rates of variation, belonging to a polytope has been designed in this chapter.

The memory of the controller, used to store the previous values of the control signal,

was modeled as a new state-space variable leading to an augmented system represen-

tation. A sufficient condition has been proposed in terms of BMIs described only at

the vertices of the polytope. Extra variables provided by Finsler’s lemma were used

to derive the BMI conditions. The controller design is accomplished by means of

an optimization problem that combines convex optimization and line searches. An

extension to deal with the design of H∞ robust memory controllers has also been

given. The conditions compare favorably with other methods appeared recently in

the literature, as shown in the numerical experiments.



Chapter 3
Robust H∞ networked control for

uncertain sampled-data systems

3.1 Introduction

The control community has struggled for decades to find solutions to problems

concerned with the perfect operation of dynamical systems immersed in hostile en-

vironments. There is no denying that it is wise to seek better characterizations

of model uncertainties, to guarantee not only stability but also robustness against

practical disturbances and perturbations. Within this framework, networked control

system (NCS) architecture has recently received considerable attention.

Technological advances have enabled the extensive use of communication chan-

nels in the control of dynamical systems [108], [115]. Using a real-time network to

exchange information among control system components (sensors, actuators, con-

trollers, etc.), NCSs are a good alternative to implementing distributed control and

interconnected systems. To illustrate the usefulness of NCSs one can cite the follow-

ing benefits: reduced system wiring, plug and play devices, and ease of system diag-

nosis and maintenance [115]. Unfortunately there are also some drawbacks: systems

46
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with loops closed over communication networks become more complex and require

sophisticated control techniques. Among the main issues arising in NCSs deserv-

ing special attention are network-induced delays, packet dropouts, multiple-packet

transmission, and bandwidth requirements.

Network-induced delays occur whenever data are exchanged through a commu-

nication channel and, in general, can be broken into three parts: time delays at

the source node, across the network channel, and at the destination node, [68]. As

pointed out in [115], their nature is related to the medium access control (MAC)

protocol and may be constant, time-varying, or random. Packet dropouts may occur

whenever more than one node tries to transmit simultaneously, leading to message

collisions, or they may occur because of node failures. Although retransmission is an

option, there are some cases where it may be disadvantageous or even impossible to

re-transmit. Multiple-packets instead of single-packet transmission may be needed

for many reasons, such as bandwidth and packet size constraints, which in some

sense increase the chances of packet dropouts and network-induced delays. Band-

width usage has a direct impact on system stability and performance. From the

control point of view, it is known that a faster sampling rate is required to guarantee

that the behavior of sampled data models approximates that of continuous-time sys-

tems. In NCSs this implies a high network load and consequently larger bandwidth

requirements.

The study of control strategies to overcome these difficulties has received consid-

erable recent attention [26], [69], [71], [79], [83], [104], [114]. Lyapunov theory, which

has been one of the main tools for dealing with the stability analysis and synthe-

sis of controllers, is being used within the NCS framework. Recent works include

[109], where a feedback controller is constructed for a discrete-time Markovian jump

system with random delays via a set of linear matrix inequality (LMI) conditions;

[48], where the control problem is solved for the multipoint-packet system using H2

optimization techniques; [112], where stabilization of an NCS is achieved by means of
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a packet-loss dependent Lyapunov function; and [58], where a Lyapunov-Krasovskii

functional is used to design a state feedback controller for a time delay sampled sys-

tem. As can be seen from these references, much effort has been expanded to bring

together advances in control theory and the benefits of communication networks.

Depending on the system to be controlled, some networks may be more suitable

than others. For instance, Ethernet-based network solutions may be more appro-

priate for NCSs operating at low network loads, since in this case the induced time

delay is very small, whereas ControlNet network solutions equipped with a token

bus protocol perform well at high network loads when the percentage of packets

discarded is at issue, as discussed in [68]. It is important to point out that control

strategies based on a simplified framework, such as a constant delay or even zero

delay, may display reliable behavior when applied in specific cases. In any case, a

controller design method that takes into account all the characteristics of a network

which impact system stability still remains a challenge.

This chapter addresses the design of robust controllers to stabilize NCSs subject to

time-varying sampling rates. The stability of this type of system is important within

the NCS framework, especially in the context of dynamic bandwidth allocation and

bandwidth usage control. A simplified framework for the networked-induced delay

is assumed. The uncertain sampling period is taken to lie inside a known interval.

The sampled data system is represented by an uncertain discrete-time linear model

with time-varying parameters lying inside a polytope whose vertices are determined

through the Cayley-Hamilton theorem, without using approximations or truncation.

The proposed approach complements and extends the results of [79], [104] in two

directions: index of performance and the stability of sampled data systems with

time-varying sampling periods. Specifically, the stability conditions of the closed-loop

system are certified by a parameter-dependent Lyapunov function and the robustness

of the controller using an H∞ guaranteed cost, as proposed in the preliminary version

of the results presented in this chapter [15].



3.2. Preliminaries and Problem Statement 49

An improved strategy is used in which a more general parameter-dependent Lya-

punov function is applied to provide less conservative stability conditions. As shown

in [63], [64], this class of path-dependent Lyapunov functions can provide neces-

sary and sufficient conditions for robust stability analysis of arbitrarily time-varying

discrete-time systems. Extra matrix variables are introduced in the bounded real

lemma conditions, producing design conditions that are expressed in terms of bilin-

ear matrix inequalities (BMIs). A robust memory controller is then obtained from

the solution of an optimization problem that minimizes an upper bound to the H∞

index of performance subject to a finite number of BMI constraints formulated only in

terms of the vertices of a polytope. As illustrated by means of numerical examples,

the use of BMIs can improve the NCS performance. Furthermore, the conditions

may be reduced to a set of LMIs by a convenient choice of the extra variables. At

each step of the algorithm, a convex optimization problem with LMI constraints is

solved, providing nonincreasing values for the bounds on the H∞ index of perfor-

mance. Even when no communication channel is considered, the proposed approach

improves some of the results in the literature concerned with the robust control of

time-varying discrete-time systems [28], [29].

3.2 Preliminaries and Problem Statement

The NCS model considered is described in Figure 3.1.

The continuous-time plant is given by the following equations, for t ≥ 0,

ẋ(t) = Ax(t)+Bu(t− τ)

y(t) =Cx(t)+Du(t)+Ddu(t− τ)

x(0) = 0, u(ς) = 0, ς ∈ {−τ,0}

(3.1)

where τ represents the network-induced time delay, x(t)∈R
n is the state space vector,

u(t) ∈ R
m is the control signal, and y(t) ∈ R

q is the output. All matrices are real,
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Plant

Network Channel

Controller
ZOH

actuator

Continuous-time system

Sampler

h

ẋ= Ax+Bu
y=Cx+Du

x(t)

x(hk−h)u(hk−h)

u(t− τ)

Figure 3.1: NCS Model.

with appropriate dimensions.

The total networked-induced delay τ is broken into two parts: the delay that

occurs when data are transmitted from the sensor to the controller τsc and the delay

when the data are transmitted from the controller to the actuator τca. As mentioned

in [115], the delay due to computations in the controller can be modeled into either

τsc or τca. Note that the delays are not being used to model network scheduling.

Depending on the MAC protocol of the network, network-induced delays may be

constant, time-varying, or random. Under the assumption of a scheduling MAC

protocol, the delays occur while waiting for the token, or time slot. In this case,

it can be said that a scheduling network is an example of a situation in which the

delay can be bounded and made constant by transmitting packets periodically [115].

Concerned with small delays, Ethernet-based networks experience almost no delay

at low network loads [68]. Furthermore, if the controller is time-invariant (such as
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the one disucssed in this chapter), these sources of delays can be added for analysis

purposes, for example, τ = τsc+ τca. For simplicity, τ is considered constant and

known, a situation that may occur when static scheduling network protocols are

implemented. Moreover, τ is assumed to be less than one sampling period. A buffer

in the controller node is used to store the delayed information.

System (3.1) is sampled with a period h> τ , yielding the discrete-time model [5],

for k ∈ Z+, x(0) = 0, and u(ς) = 0, ς ∈ {−h,0}:

x(kh+h) = As(h)x(kh)+Bsu0(h,τ)u(kh)+Bsu1(h,τ)u(kh−h)+Bsww(kh)

y(kh) =Csx(kh)+Dsuu(kh)+Dsdu(kh−h)+Dsww(kh)
(3.2)

where w(kh) ∈ R
r is an extra input, belonging to l2[0,∞), used to model, through

matrices Bsw and Dsw, possible noise in the process. The system matrices As(h),

Bsu0(h,τ), Bsu1(h,τ), Cs, Dsu, and Dsd are given by

As(h) = exp(Ah), Bsu0(h,τ) =
∫ h−τ

0
exp(As)dsB, Dsd = Dd

Bsu1(h,τ) = exp
(
A(h− τ)

)
∫ τ

0
exp(As)dsB, Cs =C, Dsu = D

(3.3)

As discussed in [79], [104], the sampling period h may change its value at runtime

for different reasons, for example, dynamic bandwidth allocation and scheduling

decisions. By considering the sampling period as a time-varying parameter, it is

possible to reduce the flow of information between sensor and actuator. Nevertheless,

bounds on such variations can be determined, guaranteeing that the actual values of

h at each instant k, namely, hk, lie inside a finite discrete set as specified below:

hk ∈{hmin, . . . ,hmax}, hk = κ ·g, κ ∈N (3.4)

It is assumed that the real values of hk are not known at the instant of time k, but

only that they belong to (3.4) and hmin ≥ τ . The number of possible values of these

sets depends on the processor/network clock granularity g, as discussed in [104]. The

clock granularity is related to processor frequency and κ ∈ N is a function of time

that specifies how many times g the sampling period h will be at instant k.
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In order to guarantee the stability of the networked system shown in Figure 3.1, a

state feedback controller is designed. Using an extra state variable z(kh) = u(kh−h)

to store the last value of the control signal, the dynamics of system (3.2) can be

represented by the following difference equations [5]:

x̃(kh+h) = Ã(h)x̃(kh)+ B̃u(h)u(kh)+ B̃ww(kh)

y(kh) = C̃x̃(kh)+Dsuu(kh)+Dsww(kh)
(3.5)

where x̃(kh) = [x(kh)′ z(kh)′]′ and

Ã(h) =




As(h) Bsu1(h,τ)

0 0



 , B̃u(h) =




Bsu0(h,τ)

I



 ,

B̃w =




Bsw

0



 , C̃ =
[

Cs Dsd

]

(3.6)

In the case where there is no time delay (τ = 0), the state space vector becomes

x̃(kh) = x(kh) and the augmented system matrices simplify in a standard way.

The control signal is given by

u(kh) = Kxx(kh)+Kdu(kh−h) =
[

Kx Kd

]




x(kh)

z(kh)



 = Kx̃(kh) (3.7)

A discrete-time polytopic model is used to represent the set of all possible matrices

in system (3.5) due to the uncertain time-varying sampling periods hk given by (3.4).

More specifically, the system matrices (Ã(h), B̃u(h)), for any k≥ 0, are described as a

convex combination of well-defined vertices (Ã j, B̃u j). The main difficulty in defining

the vertices is related to the exponential terms in (3.3), which need to be computed

for all hk in (3.4). By using the Cayley-Hamilton theorem [1], these terms can be

written as

exp(Ah) =
n−1

∑
i=0

ρi(h)A
i (3.8)

∫ h−τ

0
exp(As)ds=

∫ h−τ

0

(n−1

∑
i=0

ρi(s)A
i
)

ds=
n−1

∑
i=0

(∫ h−τ

0
ρi(s)ds

)

Ai =
n−1

∑
i=0

ηi(h)A
i (3.9)
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where

ηi(h) =
∫ h−τ

0
ρi(s)ds

The coefficients ρi(h) and ηi(h) may be determined for each value of hk by solving a

set of linear equations defined in terms of the eigenvalues of matrix A. For instance,

the first block of the matrix Ã(hk) in (3.6) is given by

As(h) = exp(Ah) =
n−1

∑
i=0

ρi(h)A
i =

n−1

∑
i=0

θi(hk)Ωi (3.10)

where the coefficients θi(hk), i= 0, . . . ,n−1, are obtained from the modes associated

with the eigenvalues of A and matrices Ωi ∈R
n×n are determined by collecting terms

in the above equality. Similarly, Bsu1(hk,τ) and Bsu0(hk,τ) can be computed as a

linear combination of matrices, following (3.3), (3.8)-(3.9) and, in some cases, can be

described in terms of the same parameters θi(hk), i= 0, . . . ,n−1.

Since ρi(h), i= 0, . . . ,n−1, are written as linear combinations of terms hk exp(λh),

where λ is an eigenvalue of matrix A, and hk satisfies (3.4), the minimum and maxi-

mum values of θi(hk), i= 0, . . . ,n−1, can be determined in such a way that

θ i ≤ θi(hk)≤ θ i, i= 0, . . . ,n−1 (3.11)

All possible outcomes for Ã(hk) and B̃u(hk) are then given by

Ã(α(k)) =
N

∑
j=1

α j(k)Ã j, B̃u(hk) =
N

∑
j=1

α j(k)B̃u j

with N = 2n and the time-varying vector α(k) lying inside the unit simplex

U =

{

α ∈R
N :

N

∑
i=1

αi = 1, αi ≥ 0 , i= 1, . . . ,N

}

(3.12)

for all k ≥ 0. The vertices (Ã j, B̃u j) of the polytope are obtained by all possible

combinations of θ i and θ i in (3.11). In the numerical example presented later, the

above computation is given in details.



3.2. Preliminaries and Problem Statement 54

The uncertain polytopic closed-loop system is then given by

x̃(k+1) = Ãcl(α(k))x̃(k)+ B̃ww(k)

y(k) = C̃cl x̃(k)+ D̃ww(k)
(3.13)

with

Ãcl(α(k)) = Ã(α(k))+ B̃u(α(k))K, C̃cl = C̃+DsuK, D̃w = Dsw (3.14)

and the uncertain matrices
(
Ã(α(k)), B̃u(α(k))

)
belong to the polytope

P ,

{

(
Ã(α(k)), B̃u(α(k))

)
=

N

∑
j=1

α j
(
Ã j, B̃u j

)
, α ∈U

}

(3.15)

for all k ≥ 0.

The control problem to be dealt with is stated as follows.

Problem 2. Find constant matrices Kx ∈R
m×n and Kd ∈R

m×m of the state feedback

control (3.7) such that the closed-loop system (3.13) is asymptotically stable and an

upper bound γ to the H∞ performance is minimized, that is

sup
w 6=0

‖y‖22
‖w‖22

< γ2 (3.16)

with w ∈ l2[0,∞).

In the literature, an LMI characterization of such an H∞ disturbance attenuation

for a precisely known closed-loop system is given by the discrete-time version of the

bounded real lemma [24], with extensions to uncertain systems [87] and to the time-

varying case [37]. A slightly modified version, motivated by a quadratic in the state

path-dependent Lyapunov function [63] is presented in the next lemma.

Lemma 3.1. The closed-loop system (3.13) is asymptotically stable with an H∞ dis-

turbance attenuation given by γ > 0 if there exists a symmetric parameter-dependent
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matrix P(α(k),α(k+1)) such that1










P(α(k+1),α(k+2)) Ãcl(α(k))′P(α(k),α(k+1)) C̃′cl 0

(⋆) P(α(k),α(k+1)) 0 P(α(k),α(k+1))B̃w

(⋆) (⋆) γI D̃w

(⋆) (⋆) (⋆) γI










> 0

(3.17)

Proof: Note that the feasibility of (3.17) assures P(α(k),α(k+ 1)) > 0. Multiply

on the left and on the right in (3.17) by diag{P(α(k+1),α(k+2))−1,P(α(k),α(k+

1))−1,I,I} and apply the Schur complement to obtain




P(α(k),α(k+1))−1− Ãcl(α(k))P(α(k+1),α(k+2))−1Ãcl(α(k))′− γ−1B̃wB̃

′
w

(⋆)

Ãcl(α(k))P(α(k+1),α(k+2))−1C̃′cl+ γ−1B̃wD̃
′
w

γI−C̃clP(α(k+1),α(k+2))−1C̃′cl− γ−1D̃wD̃
′
w



 > 0

which is the discrete-time version of the bounded real lemma for time-varying sys-

tems. As a matter of fact, the above condition may be obtained by defining the

Lyapunov function

ϑ(x(k)) = x(k)′P(α(k),α(k+1))−1x(k) (3.18)

and imposing

∆ϑ(x(k))+ γ−1y(k)′y(k)− γw(k)′w(k) < 0

on the dual of system (3.13).

Lemma 3.2. For a given γ > 0, if there exist a symmetric parameter-dependent

matrix P(α(k),α(k+ 1)) > 0 and a parameter-dependent matrix X (α(k),α(k+ 1))

1The symbol (⋆) indicates symmetric blocks in the LMIs.



3.2. Preliminaries and Problem Statement 56

such that







P(α(k+1),α(k+2)) 0 0

(⋆) −P(α(k),α(k+1))+ γ−1B̃wB̃
′
w γ−1B̃wD̃

′
w

(⋆) (⋆) γ−1D̃wD̃
′
w− γI








+X (α(k),α(k+1))B(α(k))+B(α(k))′X (α(k),α(k+1))′ < 0 (3.19)

where

B(α(k)) =
[

−I Ãcl(α(k))′ C̃′cl

]

then the closed-loop system (3.13) is asymptotically stable with an upper bound γ > 0

to the H∞ performance.

Proof: Suppose there exist P(α(k),α(k+1)) and X (α(k),α(k+1)) such that (3.19)

is verified. Then, multiply (3.19) by (B⊥(α(k)))′ on the left and by B⊥(α(k)) on

the right with

B
⊥(α(k)) =








Ãcl(α(k))′ C̃′cl

I 0

0 I








, B(α(k))B⊥(α(k)) = 0

Considering the dual system (i.e., Ãcl = Ã
′
cl, B̃w = C̃′cl, C̃cl = B̃

′
w, and D̃w = D̃′w) and

using the Schur complement, inequality (3.17) follows in a straightforward way.

Lemma 3.2 provides a sufficient condition that assures robust asymptotic sta-

bility with γ disturbance attenuation to the uncertain time-varying closed-loop sys-

tem (3.13) in terms of the existence of a symmetric parameter-dependent matrix

P(α(k),α(k+1)) and an extra variable X (α(k),α(k+1)) that must verify inequal-

ity (3.19) for α(k) ∈U , α(k+1) ∈U . As has been presented, Lemma 3.2 cannot be

used to solve Problem 2, since the decision variables do not have a known structure,

the control gains Kx and Kd in the time-varying closed-loop matrix Ãcl(α(k)) appear

in nonlinear terms, and the parameter-dependent condition (3.19) must be tested for

all α(k) ∈U , k ≥ 0.
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The main purpose of this chapter is to provide finite-dimensional LMI based

conditions, formulated in terms of the vertices of the polytope P, to solve Problem 2.

For that, two main facts are exploited:

• The time-varying parameter of the polytopic model α(k) is allowed to vary

arbitrarily fast inside the polytope, that is, α(k+ 1) ∈ U is independent of

α(k) ∈U .

• Lemma 3.2 provides a sufficient condition for the closed-loop system asymptotic

stability with γ disturbance attenuation independently of matrix X (α(k),α(k+

1)), which represents an important degree of freedom. The result can be viewed

as an extension of Finsler’s lemma [31]. Several different sufficient conditions

could be derived by imposing particular choices to X (α(k),α(k+ 1)). As an

example, the particular choice

X =
[

F(α(k))′ 0 0

]′

produces a result which is similar to the one in [37, Theorem 1], but with

inconvenient products of terms depending on α(k). To avoid the product of

parameter-dependent terms occurring at the same instant of time, some blocks

could be made constant, zeroed out, or constrained to depend only on α(k+1).

By making α(k+2) = δ (k) ∈U , α(k+1) = β (k) ∈U and by imposing a special

structure to the the extra variable X (α(k),α(k+1)) = X (β (k)) in Lemma 3.2, BMI

conditions assuring the existence of Kx and Kd that solve Problem 2 are given in the

next section.

3.3 Main Results

Theorem 3.1. (H∞ Robust Controller) For a given γ > 0, if there exist matrices

L ∈ R
m×(n+m), Hi ∈ R

q×(n+m), F, Gi, Pi j = P
′
i j > 0 ∈ R

(n+m)×(n+m), i = 1, . . . ,N and
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j = 1, . . . ,N, such that










Pjk−F−F
′ FÃ′i+L

′B̃′ui−F
′G′j

(⋆) G jFÃ
′
i+ ÃiF

′G′j+G jL
′B̃′ui+ B̃uiLG

′
j−Pi j

(⋆) (⋆)

(⋆) (⋆)

FC̃′+L′D̃u−F
′H ′j 0

G jFC̃
′+G jL

′D̃′u+ ÃiF
′H ′j+ B̃uiLH

′
j B̃w

H jFC̃
′+C̃F ′H ′j+H jL

′D̃′u+ D̃uLH
′
j− γI D̃w

(⋆) −γI










< 0 (3.20)

i= 1, . . . ,N, j = 1, . . . ,N, k = 1, . . . ,N

then the memory state feedback control gain that solves Problem 2 is given by

K =
[

Kx Kd

]

= L(F ′)−1 (3.21)

assuring that the closed-loop system (3.13) is asymptotically stable with an upper

bound γ to the H∞ performance.

Proof: Multiplying (3.20) by αi, β j, and δk, summing for i, j,k= 1, . . . ,N, and letting

L= KF ′, one obtains










P(β ,δ )−F−F ′ F(Ã(α)+ B̃u(α)K)′−F ′G(β )′

(⋆) G(β )F(Ã(α)+ B̃u(α)K)′+(Ã(α)+ B̃u(α)K)F ′G(β )′−P(α,β )

(⋆) (⋆)

(⋆) (⋆)

F(C̃+ D̃uK)′−F ′H(β )′ 0

G(β )F(C̃+ D̃uK)′+(Ã(α)+ B̃u(α)K)F ′H(β )′ B̃w

H(β )F(C̃+ D̃uK)′+(C̃+ D̃uK)F ′H(β )′− γI D̃w

(⋆) −γI










< 0 (3.22)
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which is exactly the parameter-dependent condition (3.19) of Lemma 3.2 with

α(k) = α ∈U , α(k+1) = β ∈U , α(k+2) = δ ∈U , ∀k ≥ 0

P(α(k),α(k+1)) = P(α,β ) =
N

∑
i=1

N

∑
j=1

αiβ jPi j

P(α(k+1),α(k+2)) = P(β ,δ ) =
N

∑
j=1

N

∑
k=1

β jδkPjk

X (α(k),α(k+1)) =
N

∑
k=1

β j








F

G jF

H jF








=








F

G(β )F

H(β )F








and the closed-loop matrices Ãcl(α) and C̃cl as in (3.13). Finally, the control gain is

obtained from the change of variables L= KF ′, yielding K = L(F ′)−1.

Corollary 3.1. The minimum γ attainable by the conditions of Theorem 3.1 is

given by the optimization problem

minγ s.t. (3.20) (3.23)

3.3.1 Remarks and Extensions

The first important remark is that by fixing G = H = 0, the conditions of The-

orem 3.1 reduce to LMIs. Consequently, Corollary 3.1 in this case is a convex op-

timization problem that can be efficiently handled by semidefinite programming al-

gorithms, see for instance SeDuMi [101]. Although several methods may be applied

for the solution of the BMI problem (3.23), the following algorithm is suggested. Fix

the variables Hi = 0 and Gi = 0 and minimize γ with respect to F , L and Pi j. Then,

fix the variables F , L and Pi j, minimize γ with respect to Hi and Gi, and obtain

the new values of Hi and Gi. Repeat this procedure until no significant changes in

the value of γ occur. This algorithm is sometimes called the alternating semidefinite

programming method and consists of fixing some variables and solving for others in
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such a way that at each step one has a convex optimization problem. Despite the

fact that there is no guarantee of convergence to a local minimum in a general BMI

setting, these methods are easy to implement and provide good results in many cases,

as illustrated by the examples presented in Section 3.4.

It is important to emphasize at this point that the BMI conditions are used

to improve the quality of the H∞ attenuation level γ , that is, to make it tighter.

At each step of the proposed algorithm, a convex optimization problem with LMI

constraints is solved. More specifically, in the first step of this algorithm the matrices

G(·) and H(·) are set to zero and the initial solution is obtained from a convex

LMI optimization problem (Corollary 3.1). The start of the algorithm with zeroed

matrices turns out to be a good option since it reproduces the convex controller

design conditions appearing in the literature for discrete-time systems with time-

varying parameters [28]. Other choices for initial values G(·) and H(·), although

possible, do not have a correspondence with existing conditions. Moreover, by fixing

some variables while searching for others, one is always solving LMI problems that

assure nonincreasing values of γ . As can be seen from the numerical examples, the

algorithm provides very good results.

The fact that the conditions of Theorem 3.1 need to be satisfied by constant ma-

trices L and F guarantees the existence of a robust state feedback gain K = L(F ′)−1.

Other choices may be used, resulting in different structures for X (α(k),α(k+ 1))

that would, in general, lead to parameter-dependent feedback gains. In particular,

the choices made in Theorem 3.1 assure that the extra variable X (α(k),α(k+ 1))

depends only on α(k+1), in other words, that all the products between the uncer-

tain time-varying matrix Ã(α(k)) and G(·), H(·) in Lemma 3.2 occur at different

instants of time. Products of time-varying matrices at the same instant of time α(k)

in Lemma 3.2 would require more involved manipulations, such as, for instance, the

ones proposed in [91].

A state feedback controller has been chosen to illustrate the possibilities of the
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proposed approach. Sufficient conditions for decentralized or output feedback control

may be obtained by imposing block diagonal structures to the matrices L and F in

Theorem 3.1, following the ideas in [50], [66].

The results of Lemma 3.2 and Theorem 3.1 may be improved by considering a

larger path in the Lyapunov function (3.18) of Lemma 3.2, that is, P(α(k), . . . ,α(k+

L)). Larger paths (not necessarily of the same size) and other structures may also be

used in the extra matrix X (·) of Lemma 3.2. At the expense of a larger computa-

tional effort, lower values for γ may be obtained. Note that the LMI conditions for

a path of size L+1 provide at least the same values of γ obtained with L.

On the other hand, simpler design conditions based on a Lyapunov matrix P(α(k))

can be obtained as a particular case of Theorem 3.1. This preliminary result, stated

in the next corollary, appears in [15].

Corollary 3.2. A sufficient condition for the existence of a memory state feedback

control gain that solves Problem 2 is obtained by solving Theorem 3.1 with matrices

Pi j = Pi and Pjk = Pj, that is

P(α(k)) =
N

∑
i=1

αiPi, P(α(k+1)) =
N

∑
j=1

β jPj, α, β ∈U

Finally, it is important to emphasize that using the Cayley-Hamilton theorem

to deal with the matrix exponential in (3.3) provides a systematic way to obtain

the vertices of polytope (3.15). It is also helpful when bounded rates of variation

are involved, since in this case an explicit expression for the variation rate may be

obtained. Additionally, the use of a polytope to model the time-varying parameter

hk represents an interesting strategy for solving Problem 2. First, it does not require

a knowledge of the processor/network clock granularity g, since the only information

used to derive the polytopic model is the extreme values of sets (3.4). Second, the

time-varying uncertainties, introduced during the sampling stage, can be completely

modeled by a polytope of the form (3.15). Once one has defined the vertices of the
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closed-loop polytope, there will exist a vector α(k) such that (3.15) holds for each

instant of time k≥ 0. The only condition on vector α(k) is that it belongs to the unit

simplex U for all k≥ 0. Furthermore, the number of values in the set (3.4) does not

influence the computational burden; in other words, a larger number of hk does not

imply a greater computational effort, which allows clock granularity to be as small

as possible.

3.3.2 More complex NCS scenarios

The controller design method addressed here is mainly concerned with a time-

varying sampling period motivated by applications to reduce bandwidth usage. As

pointed out in [79], the bandwidth may be reduced by controlling the values that

hk assumes as time evolves in order to reduce the flow of information between the

sensor and the controller/actuator. Since robust control is at issue, the sampling

period is considered to be uncertain and Lyapunov theory is used for the purpose of

synthesis. Although the proposed approach simplifies, or even neglects some aspects

of the NCS (the assumptions here being constant time delay, no packet dropouts,

single-packet transmission, and infinite sensor precision), some ideas are proposed on

how to deal with more complex scenarios.

When the time delay is considered constant and longer than h, system (3.5) has

to be slightly modified and more state variables are used to describe the delay, as

proposed in [5]. In this case, the matrices in (3.6) become

Ã(h) =













As(h) Bsu1(h,τ) 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

0 0 0 . . . 0













, B̃u(h) =













Bsu0(h,τ)

0
...

0

I













, B̃w(h) =













Bsw(h,τ)

0
...

0

0












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C̃ =
[

Cs Dsd 0 . . . 0

]

Assuming an event-driven controller and actuator, Theorem 3.1 could be applied

when the delay is time-varying within an interval, but in this case the information

on the bounds of τk is used to derive the vertices of the polytope — in this case,

ηi(·) in (3.9) would be a function of both hk and τk. Whenever possible, the use

of a memory controller through the simplified analysis presented here is suggested,

but the method could be adapted to use more complex Lyapunov functions, such as

Lyapunov-Krasovskii functionals.

Data packet dropout and multiple-packet transmission in NCS can be modeled

as an asynchronous dynamic system (ADS) with rate constraints on events [115]. A

simplified ADS with rate constraints can be written as a set of difference equations,

as proposed in [115]:

x(k+1) = fs(x(k)), s= 1,2, . . . ,N (3.24)

where each discrete state fs(·) occurs in a fraction of time rs, ∑Ns=1 rs= 1. The stability

of such a class of systems is studied in [55], as reproduced in the following lemma.

Lemma 3.3 ([55]). Given an ADS as (3.24), if there exist a Lyapunov function

ϑ(x(k)) : Rn→ R+ and scalars ξ1,ξ2, . . . ,ξN corresponding to each rate such that

ξ r11 ξ r22 · · ·ξ
rN
N > ξ > 1 (3.25)

ϑ(x(k+1))−ϑ(x(k))≤ (ξ−2
s −1)ϑ(x(k)), s= 1,2, . . . ,N (3.26)

then the ADS remains exponentially stable, with a decay rate greater than ξ .

By using Lemma 3.3, Theorem 3.1 can be extended to deal with packet dropout

and multiple-packet transmission. The NCS is modeled by a set of difference equa-

tions activated by a switch that closes at a certain rate r. The packet dropout effect,

or the multiple-packet transmission, is then represented by an augmented system, as

done in [115], and Lemma 3.3 is applied in the study of stability.
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Finally, concerning the infinite sensor precision, the effect of quantizers can be

modeled using the sector bound approach. This strategy treats the quantization error

as a nonlinearity that lies inside a sector bound. It is a simple and classic approach

to study quantization effects and is closely related to absolute stability theory [62].

The approaches discussed in [42] could be explored in this direction.

It is worth mentioning that the extensions proposed in this subsection may be

involved or may introduce some conservatism in the results. The aim here is to point

out that Theorem 3.1 is not restricted to a simplified framework and may be adapted

to deal with different situations. These topics will be further investigated in future

work.

3.4 Numerical Experiments

Example I

The aim here is to illustrate the proposed method and to show in detail the steps

based on the Cayley-Hamilton theorem to obtain the vertices of the polytopic model.

This example, borrowed from [1], is a simplified model of an armature voltage-

controlled DC servo motor consisting of a stationary field and a rotating armature and

load. All effects of the field are neglected. The aim is to design H∞ robust memory

control of the speed of the shaft. All information is sent through a communication

network. The behavior of the DC servo motor shown in Figure 3.2 is described by

the differential equations




ϕ̈

ρ̈a



 =







−
b

J

KT

J

−
Kϕ

La
−
Ra

La










ϕ̇

ρ̇a



+






0

1

L




ea(t) (3.27)

where ea is the externally applied armature voltage, ρa is the armature current, Ra is

the resistance of the armature winding, La is the armature winding inductance, em is
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the back emf voltage induced by the rotating armature winding (em = Kϕ ϕ̇,Kϕ > 0),

b is the viscous damping due to bearing friction, J is the moment of inertia of the

armature and load, and ϕ is the shaft position. The torque generated by the motor

is given by T = KT ia and J = 0.01kgm2/s2, b = 0.1Nms, KT = Kϕ = 0.01Nm/Amp,

Ra = 1Ω, and La = 0.5H.

+

+ +

+

−

− −

−
ea

Ra La

ia

armature

em

b

J
ϕ

R f

e f

L f
i f

Figure 3.2: DC Servo motor as presented in [1].

System (3.27) was also studied in [104], assuming zero delay, time-varying sam-

pling rates in the sensor, and no index of performance. Although this system is

already stable, Corollary 3.1 was applied in order to provide a gain matrix that guar-

antees robustness against unmodeled l2[0,∞) perturbations by minimizing the H∞

index of performance of the closed-loop system. Furthermore, a nonzero delay is

considered, τ = 0.5ms, and the sampling rate is allowed to vary within the interval

hk ∈ [0.001 0.099].

Closing the loop with (3.7), one can express system (3.27) by the polytope (3.15)

with four vertices (N = 4) obtained through Cayley-Hamilton theorem as follows.

First, to compute As(h) = exp(Ah), obtain ρ0(h) and ρ1(h) by solving the linear



3.4. Numerical Experiments 66

system



1 −9.9975

1 −2.0025








ρ0(h)

ρ1(h)



 =




θ1(h)

θ2(h)





θ1(h) = exp(−9.9975h), θ2(h) = exp(−2.0025h)

Then, express exp(Ah) as

exp(Ah) = ρ0(h)I+ρ1(h)A=




1.0003 −0.1251

0.0025 −0.0003



θ1(h)+




−0.0003 0.1251

−0.0025 1.0003



θ2(h)

By evaluating θ1(h) and θ2(h) at the extreme values of h, one has

0.3717≤ θ1(h)≤ 0.9901, 0.8202≤ θ2(h)≤ 0.9980

and the polytopic model with N = 4 vertices (obtained by collecting terms) is given

by

exp(Ah) = α1




0.3715 0.0561

−0.0011 0.8203



+α2




0.9901 −0.0212

0.0004 0.8201





+α3




0.3715 0.0783

−0.0016 0.9982



+α4




0.9900 0.0010

−0.0000 0.9980





Similarly, to compute Bsu0(h,τ), use Cayley-Hamilton to obtain η0(h) and η1(h)

such that
∫ h−τ

0
exp(As)ds= η0(h)I+η1(h)A

by solving the linear system




η0(h)

η1(h)



 =




0.0252 −0.6251

0.0126 −0.0625








θ1(h)

θ2(h)



−




−0.5994

−0.0500





Then, using the extreme values for θ1(h) and θ2(h) above and collecting terms, one
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obtains

Bsu0(h,τ) =
∫ h−τ

0
exp(As)dsB= α1




0.0067

0.1788



+α2




0.0222

0.1788





+α3




−0.0155

0.0010



+α4




0

0.0010





Matrix Bsu1(h,τ) can be evaluated from exp(Ah) since

Bsu1(h,τ) = exp(Ah)
(

exp(−Aτ)
∫ τ

0
exp(As)dsB

)

yielding (from similar steps) the vertices

Bsu11
=




0.0001

0.0008



 , Bsu12
=




0

0.0008



 , Bsu13
=




0.0001

0.0010



 , Bsu14
=




0

0.0010





The polytopic model for Ã(α) is then given by

Ã1 =








0.3715 0.0561 0.0001

−0.0011 0.8203 0.0008

0 0 0








, Ã2 =








0.9901 −0.0212 0

0.0004 0.8201 0.0008

0 0 0








Ã3 =








0.3715 0.0783 0.0001

−0.0016 0.9982 0.0010

0 0 0








, Ã4 =








0.9900 0.0010 0

0 0.9980 0.0010

0 0 0








System (3.27) is then rewritten as in (3.5) with matrices Dsw = [1], B′sw = [0.1 0] and

Dsd = [0].

Corollaries 3.1 and 3.2 are aplied using alternating semidefinite programming.

Each iteration consists of two steps. First, the problem is solved with G(·) = 0 and

H(·) = 0 (in this case, the problem is convex) and, second, G(·) and H(·) are explored

in the search for a better H∞ upper bound γ . The results after five iterations are

shown in Table 3.1.
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Table 3.1: H∞ Robust Memory Controller for Example I.

Method H∞ Upper Bound γ Gain Matrix K
Corollary 3.1 10.87 [−1.8822−9.6684−0.0117]
Corollary 3.2 10.90 [−1.5670−9.8076−0.0150]

Sufficient conditions for the existence of a decentralized or a static output feedback

control gain may be obtained from Theorem 3.1 by simply imposing to matrices L and

F in (3.21) a fixed structure, following the lines in [50], [66]. For instance, suppose

that the first state variable is not available for feedback. By imposing

L=
[

0 ℓ2 ℓ3

]

, F =








f11 0 0

0 f22 f23

0 f32 f33








to matrices L and F in Theorem 3.1 the following result is obtained (after five itera-

tions)

K =
[

0 0.8002 −7.5613×10−6
]

, γ = 11.09

Example II

This example is intended to point out the quality of the proposed method when no

communication channel is considered. Consider an uncertain time-varying discrete-

time system with vertices given by

Ã1 =




0.28 −0.315

0.63 −0.84



 , Ã2 =




0.52 0.77

−0.7 −0.07



 , B̃u1 =




1

2



 , B̃u2 =




9

21





B̃w =




1

0



 , C̃ =
[

1 1

]

, D̃w = D̃u =
[

0

]

This system is also studied in [29] but for a simpler case, where the parameters of

matrix B̃u are time-invariant. Here, the results from Theorem 3.1 are compared to
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[73, Remark 2]. In order to illustrate the efficiency of the proposed method due

to the use of a path-dependent Lyapunov function, Corollary 3.1 is contrasted with

Corollary 3.2. The results can be seen in Table 3.2.

Table 3.2: H∞ Robust Memory Controller for Example II.

Method Iteration γ Improvement Time (sec)
[73] – 67.33 – 0.09

Corollary 3.1 1 31.37 53.40% 0.17
Corollary 3.1 2 23.10 65.69% 0.33

...
...

...
...

Corollary 3.1 10 19.21 71.47% 1.55
Corollary 3.2 1 30.39 54.87% 0.20
Corollary 3.2 2 17.10 74.61% 0.39

...
...

...
...

Corollary 3.2 10 11.25 83.29% 1.72

3.5 Conclusion

This chapter addressed the H∞ robust controller for NCSs with uncertain time-

varying sampling rates. A new state space variable, representing the buffer of the

controller, was added to model a time-delay in the control signal. A polytope with

vertices determined by Cayley-Hamilton theorem was used to model the system. Us-

ing an approach based on path-dependent Lyapunov functions, theoretical conditions

were formulated for the existence of a state feedback control assuring an H∞ atten-

uation level for the closed-loop system. Then, sufficient conditions for the existence

of the memory controller are derived in terms of BMIs described only at the vertices

of the polytope. An algorithm exploiting appropriate choices of the extra variables

is used to solve the problem through a sequence of convex optimization procedures,

providing lower levels for the H∞ performance of the closed-loop system. When

no communication channel is considered, the proposed conditions can also provide
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better results when compared to other methods in the literature dealing with time-

varying discrete-time systems. Some remarks on possible extensions to more complex

NCS scenarios were presented and numerical experiments were provided to illustrate

different aspects of the proposed approach.



Chapter 4
H∞ filtering for discrete-time systems with

bounded time-varying parameters

4.1 Introduction

Technological advances have always pushed the control community to face more

complex problems in several different frameworks. Concerning the linear filtering

problem, that extends from the original work by Kalman [60], a large number of

papers dealing with deterministic and stochastic scenarios has appeared in the liter-

ature. More sophisticated structures are needed when dealing with signal recovery

and estimation under time-varying or constant uncertainties.

In this context, Lyapunov theory has been extensively applied as a tool to deal

with the synthesis of filters that guarantee the stability of the estimation error dy-

namics, while guaranteeing a certain level of performance. For example, quadratic

Lyapunov functions have been used to deal with time-invariant or arbitrarily time-

varying systems as can be seen in [30], [49], [52] concerning the H2 and H∞ robust

filtering. Improvements of these results may be obtained using parameter-dependent

Lyapunov functions, as proposed in [53] for the time-invariant case and in [37] for

71
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the time-varying case with bounded rates of variation. Recent published works have

also dealt with robust filtering.

Considering the case where the time-varying parameters, although unknown a

priori, may still be measured online, gain scheduling techniques represent an inter-

esting option for filtering or control of dynamic systems when contrasted with robust

methods. Furthermore, as discussed in [62], gain-scheduling strategies extend the

validity of the linearization approach of nonlinear systems to a range of operating

points. As mentioned in [95], gain scheduling is an effective and economical method

for nonlinear control design in practice. In the filtering framework, recent works

include [6], [96] where affine parameter varying filters, with limited rate of varia-

tion, are obtained, [57] in the context of parameter-dependent filters by means of

nonlinear fractional transformation and quadratic stability, [46] concerned with LPV

filtering for slowly varying systems and [18] where the LPV filtering for arbitrarily

time-varying systems in polytopic domain is addressed.

Extending the powerful features of gain scheduling (well presented in [95]) to deal

with the filtering problem is of great importance especially within the class of time-

varying discrete-time systems. It is known from [9] that for time-varying discrete-time

systems, robust stabilizability implies gain scheduling stabilizability, but the converse

is not true. These facts motivate the results and effort of the present work.

This chapter investigates the LPV filtering of time-varying systems with bounds

on the rate of variation. A preliminary version of the results presented in this chap-

ter have appeared in [16] considering only the robust filter design, and applications

in the context of networked robust filtering in [21]. Here, the proposed approach

complements and extends previous results in the literature by presenting a system-

atic procedure for filtering design that can be applied in four different frameworks,

namely, LPV or robust filtering of time-varying systems with bounded or unbounded

rates of variation. Lyapunov theory is applied in order to obtain the design condi-

tions of the filter. A parameter-dependent Lyapunov function is used to reduce the
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conservatism of the proposed method, resulting in a more general approach when

compared to methods based on quadratic stability. All system matrices are assumed

to be affected by time-varying parameters, which are assumed to lie inside a polytope.

A more precise parameter variation modeling is applied to give a better description

of the uncertainty domain and an H∞ guaranteed cost is used as a performance

index. The H∞ filtering limits the maximum possible variance of the error signal

over all exogenous inputs with bounded variance [94], i.e. the H∞ norm reflects the

worst-case energy gain of the system and does not require statistical assumptions on

the exogenous input (a situation in which the Kalman filtering cannot be employed,

[105]). Furthermore, it can provide robustness with respect to unmodeled uncertain-

ties. The LPV filter is then obtained from the solution of an optimization problem

that minimizes an upper bound to the H∞ index of performance subject to a finite

number of bilinear matrix inequality (BMI) constraints formulated only in terms of

the vertices of a polytope. No grids in the parametric space are used. Extra vari-

ables introduced through the BMI conditions can be explored in the search for better

H∞ performance of the estimation error dynamics giving more flexibility to the de-

sign process. Robust filters for time-invariant and arbitrarily time-varying uncertain

systems may be obtained as particular cases of the proposed method. Numerical

examples illustrate the efficacy of the proposed results.

4.2 Problem statement and preliminary results

Consider the time-varying discrete-time system, for k ≥ 0

x(k+1) = A(α(k))x(k)+B(α(k))w(k)

z(k) =C1(α(k))x(k)+D1(α(k))w(k) (4.1)

y(k) =C2(α(k))x(k)+D2(α(k))w(k)



4.2. Problem statement and preliminary results 74

where x(k) ∈ R
n is the state space vector, w(k) ∈ R

m is the noise input belonging

to l2[0,∞), z(k) ∈ R
p is the signal to be estimated and y(k) ∈ R

q is the measured

output. The time-varying vector of parameters α(k) belongs to the unit simplex (for

all k ≥ 0)

UN =
{

δ ∈R
N :

N

∑
i=1

δi = 1, δi ≥ 0 , i= 1, . . . ,N
}

and has bounded rates of variation of percentage b ∈ [0,1]. For instance, b = 0.05

indicates that the parameters are constrained to vary only 5% of their original values

between two instants of time. The time-invariant case is modeled by b = 0 and

arbitrarily fast variations by b= 1.

All matrices are real, with appropriate dimensions, belonging to the polytope1

P̃ ,














A(α) B(α)

C1(α) D1(α)

C2(α) D2(α)








=
N

∑
i=1

αi








Ai Bi

C1i D1i

C2i D2i








, α ∈UN







. (4.2)

More specifically, the system matrices are given, for any time k ≥ 0, by the convex

combination of the well-defined vertices of the polytope P.

A full-order, proper, LPV filter is investigated here, as given by:

x f (k+1) = A f (α)x f (k)+B f (α)y(k), x f (0) = 0

z f (k) =C f (α)x f (k)+D f (α)y(k)
(4.3)

where x f (t) ∈R
n is the filter state space vector and z f (t) ∈R

p the estimated signal.

All filter matrices are real, with appropriate dimensions, belonging to the polytope

P̂ ,










A f (α) B f (α)

C f (α) D f (α)



 =
N

∑
i=1

αi




A f i B f i

C f i D f i



 , α ∈UN






. (4.4)

The estimation error dynamics is given by

ς(k+1) = Â(α)ς(k)+ B̂(α)w(k),ς(0) = 0

e(k) = Ĉ(α)ς(k)+ D̂(α)w(k)
(4.5)

1The time dependence of α(k) will be omitted to lighten the notation.
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where ς(k) = [x(k)′ x f (k)
′]′, e(k) = z(k)− z f (k) and

Â(α) =




A(α) 0

B f (α)C2(α) A f (α)



 , B̂(α) =




B(α)

B f (α)D2(α)





Ĉ(α) =
[

C1(α)−D f (α)C2(α) −C f (α)
]

,

D̂(α) =
[

D1(α)−D f (α)D2(α)
] (4.6)

The filtering problem is stated as follows.

Problem 3. Find matrices A f i ∈ R
n×n, B f i ∈ R

n×q, C f i ∈ R
p×n and D f i ∈ R

p×q

i= 1, . . . ,N, of the filter (4.3), such that the estimation error system (4.5) is asymp-

totically stable, and an upper bound γ to the H∞ estimation error performance is

minimized, that is

sup
w 6=0

‖e‖22
‖w‖22

< γ2 (4.7)

with w ∈ l2[0,∞).

Note that, since the parameters lie inside a unit simplex, the rates of variation

are intrinsically lower bounded by −b and upper bounded by b, b ∈ [0,1]. In order

to model2 the parameter variation when −b < ∆αi(k) < b, b 6= 0, it must be taken

into account that the feasible values of ∆αi(k) depend on the actual values of αi(k),

as show in Figure 4.1 (darken area).

Thus, any pair (αi,∆αi) belongs to the polytope Λi, i= 1, . . . ,N given by

Λi ,
{

δ ∈R
2 : δ =

6

∑
j=1

λ jr j, λ ∈U6

}

,

[r1 · · ·r6] =

[

0 0 1−b 1 1 b

0 b b 0 −b −b

]

,

(4.8)

that is, Λi is the convex combination of the extremes (vertices) of the feasible area.

2For simplicity, the same b is considered for all αi, i= 1, . . . ,N.
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αi

∆αi

b

b

−b

1

1

−1

1−b

Figure 4.1: Region on the plane ∆αi×αi where ∆αi can assume values as a function
of αi (dark region).

To construct the (α,∆α)-space, the Cartesian product of all Λi, i= 1, . . . ,N must

be considered, taking into account that the new vertices must satisfy α1+ · · ·+αN = 1

and ∆α1 + · · ·+∆αN = 0. The resulting polytope, called Λ, is then given by

Λ ,

{

δ ∈R
2N : δ =

M

∑
i=1

λisi, λ ∈UM

}

, (4.9)

where si ∈ R
2N are given vectors. As a consequence, the first step to search for a

solution to any LMI/BMI depending on both α and ∆α is to make a lifting to the

λ -space. From (4.9) one has

(α ′,∆α ′)′ = Sλ , S= [s1 · · ·sM] ∈R
2N×M, λ ∈UM. (4.10)

In the case of affine parameter-dependent matrices, that is

X(α(k)) =
N

∑
i=1

αi(k)Xi, αi(k) =
M

∑
j=1

λ jSi j, (4.11)

X(α(k+1)) =
N

∑
i=1

(αi(k)+∆αi(k))Xi, ∆αi(k) =
M

∑
j=1

λ jS(i+N) j, (4.12)
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it follows that

X̄(λ ) =
N

∑
i=1

M

∑
j=1

λ jSi jXi =
M

∑
j=1

λ jX̄ j, X̃(λ ) =
N

∑
i=1

M

∑
j=1

λ j(Si j+S(i+N) j)Xi =
M

∑
j=1

λ jX̃ j,

(4.13)

where3

X̄ j =
N

∑
i=1

Si jXi, (4.14)

X̃ j =
N

∑
i=1

(Si j+S(i+N) j)Xi. (4.15)

Theorem 4.1. (Stability Analysis) For a given γ, if there exists bounded matrix

sequences P(α)′ = P(α) > 0, G(ζ ), H(ζ ), matrix F and full rank matrix T , with

appropriate dimensions, such that (the term (⋆) indicates symmetric blocks in the

matrix inequality)








P(α+)−F−F ′ FÂ(α)′−F ′TG(ζ )′T−1 FĈ(α)′−F ′TH(ζ )′

(⋆) L22 L23

(⋆) (⋆) L33








< 0, (4.16)

L22 = (T ′)−1G(ζ )T ′FÂ(α)′+ Â(α)F ′TG(ζ )′T−1−P(α)+ γ−1B̂(α)B̂(α)′,

L23 = (T ′)−1G(ζ )T ′FĈ(α)′+ Â(α)F ′TH(ζ )′+ γ−1B̂(α)D̂(α)′,

L33 = H(ζ )T ′FĈ(α)′+Ĉ(α)F ′TH(ζ )′− γI+ γ−1D̂(α)D̂(α)′,

for all α,ζ ∈ UN, where α+ = α(k+ 1), and bounded ∆α, then the error dynamics

(4.5) is asymptotically stable with an upper bound γ to the H∞ performance.

Proof: Firstly, multiply the inequality (4.16) on left by T ′ and on right by T , with

T
′ =




Â(α) I 0

Ĉ(α) 0 I



 ,

3The same conversion is applied in the system and filter matrices.
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in order to obtain




Â(α)P(α+)Â(α)′−P(α)+ γ−1B̂(α)B̂(α)′

(⋆)

Â(α)′P(α+)Ĉ(α)′+ γ−1B̂(α)D̂(α)′

Ĉ(α)P(α+)Ĉ(α)′+ γ−1D̂(α)D̂(α)′− γI



 < 0 (4.17)

If (4.17) holds, it follows that Â(α)P(α+)Â(α)′−P(α) < 0 and, from the Lya-

punov theory [62], the system is asymptotically stable. Secondly, by choosing ϑ(k) =

ς(k)′P(α)ς(k) as a parameter-dependent Lyapunov function and considering the

dual system (i.e. Â= Â′, B̂= Ĉ′, Ĉ = B̂′ and D̂= D̂′), it follows, after some algebraic

manipulation, that inequality (4.17) implies

∆ϑ(k) <−γ−1e(k)′e(k)+ γw(k)′w(k).

Therefore, system (4.5) has an upper bound γ to the H∞ performance.

It is important to stress that the extra variables F , G(ζ ) and H(ζ ) in (4.16) repre-

sent extra degrees of freedom in the search for a feasible solution of Theorem 4.1. As

pointed out in [31], these variables may be identified as Lagrangian multipliers and

can be explored for design purposes. In this sense, different structures of matrices F ,

G(ζ ) and H(ζ ) can be used yielding different sufficient conditions for stability analy-

sis. For instance, assuming polytopic structures, G(·) and H(·) c maye parametrized

in α or α+ as used throughout this chapter.

The nonlinear inequality conditions of Theorem 4.1 must be tested at all points of

the simplex UN , i.e., at an infinite number of points. Hence, the main goal hereafter

is to obtain finite-dimensional BMI conditions in terms of the vertices of the polytope

P to solve Problem 3. Using Schur complement and a change of variables, finite-

dimensional BMIs assuring the existence of such filters are given in the next section.
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4.3 Main Results

By considering the particular structure

P(α) = α1P1 +α2P2 + . . .+αNPN , α ∈UN , (4.18)

lifted to the λ -space, the following sufficient condition can be obtained.

Theorem 4.2. (H∞ LPV Filtering) Given the system (4.1) and matrix S as in

(4.10), if there exist matrices Z, Y , R, Qi ∈R
n×n, Li ∈R

n×q, Ji ∈R
p×n, D f i ∈R

p×q,

G, Mi =M
′
i > 0 ∈ R

2n×2n, H ∈ R
p×2n, i = 1, . . . ,N and a scalar γ > 0 such that, for

matrices Q̄i, L̄i, J̄i, D̄ f i, M̄i, Āi, B̄i, C̄1i, C̄2i, D̄1i and D̄2i given as in (4.14) and M̃i as

in (4.15)

Ξi ,










F11 F12 F̂3i− F̂
′
1H

′
0

(⋆) F22 GF̂3i+ F̂
′
2iH

′ F̂4i

(⋆) (⋆) HF̂3i+ F̂
′
3iH

′− γI F34

(⋆) (⋆) (⋆) −γI










< 0, i= 1, . . . ,M, (4.19)

F11 = M̃i− F̂1− F̂
′
1, F12 = F̂2i− F̂

′
1G
′,

F22 = GF̂2i+ F̂
′
2iG

′− M̄i, F34 = D̄1i− D̄ f iD̄2i,

F̂1 =




Z Y ′+R′

Z Y ′



 , F̂2i =




Ā′iZ Ā′iY

′+C̄′2iL̄
′
i+ Q̄

′
i

Ā′iZ Ā′iY
′+C̄′2iL̄

′
i



 ,

F̂3i =




C̄′1i−C̄

′
2iD̄

′
f i− J̄

′
i

C̄′1i−C̄
′
2iD̄

′
f i



 , F̂4i =




Z′B̄i

YB̄i+ L̄iD̄2i



 ,

Ξik ,










F̂11 F̂12 F̂3ik−2F̂ ′1H
′

0

(⋆) F̂22 GF̂3ik+ F̂
′
2ikH

′ F̂4ik

(⋆) (⋆) HF̂3ik+ F̂
′
3ikH

′−2γI F̂34

(⋆) (⋆) (⋆) −2γI










< 0,







i= 1, . . . ,M−1

k = i+1, . . . ,M
, (4.20)
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F̂11 = M̃i+ M̃k−2F̂1−2F̂ ′1, F̂12 = F̂2ik−2F̂ ′1G
′,

F̂22 = GF̂2ik+ F̂
′
2ikG

′− M̄i− M̄k, F̂34 = D̄1i+ D̄1k− D̄ f iD̄2k− D̄ f kD̄2i,

F̂2ik =




(Ā′i+ Ā

′
k)Z (Ā′i+ Ā

′
k)Y

′+C̄′2iL̄
′
k+C̄

′
2kL̄

′
i+ Q̄

′
i+ Q̄

′
k

(Ā′i+ Ā
′
k)Z (Ā′i+ Ā

′
k)Y

′+C̄′2iL̄
′
k+C̄

′
2kL̄

′
i



 ,

F̂3ik =




C̄′1i+C̄

′
1k−C̄

′
2iD̄

′
f k−C̄

′
2kD̄

′
f i− J̄

′
i − J̄

′
k

C̄′1i+C̄
′
1k−C̄

′
2iD̄

′
f k−C̄

′
2kD̄

′
f i



 , F̂4ik =




Z′(B̄i+ B̄k)

Y (B̄i+ B̄k)+ L̄iD̄2k+ L̄kD̄2i



 ,

then there exists an LPV filter in the form of (4.3), ensuring the asymptotic stability

of the estimation error dynamic (4.5) and an H∞ guaranteed cost γ, for all (α,∆α)∈

Λ with vertices given by

A f i = V̂
−1Qi(UZ)

−1, B f i = V̂
−1Li,

C f i = Ji(UZ)
−1, D f i,

(4.21)

where U ∈R
n×n and V̂ ∈R

n×n are matrices arbitrarily chosen such that R= V̂UZ.

Proof: Applying the following operation

Ξ(λ ) =
N

∑
i=1

λ 2
i Ξi+

N−1

∑
i=1

N

∑
k=i+1

λiλkΞik, (4.22)

to the BMIs (4.19) and (4.20) one gets

Ξ(λ ) =










F11 F12 F13 0

(⋆) F22 F23 F̂4

(⋆) (⋆) F33 F34

(⋆) (⋆) (⋆) −γI










< 0, (4.23)

F11 = M̃(λ )− F̂1− F̂
′
1, F12 = F̂2(λ )− F̂ ′1G

′, F13 = F̂3(λ )− F̂ ′1H
′,

F22 = GF̂2(λ )+ F̂2(λ )′G′− M̄(λ ), F23 = GF̂3(λ )+ F̂2(λ )′H ′,

F33 = HF̂3(λ )+ F̂3(λ )′H ′− γI, F34 = D̄1(λ )− D̄ f (λ )D̄2(λ ),
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where

F̂2(λ ) =




Ā(λ )′Z Ā(λ )′Y ′+C̄2(λ )′L̄(λ )′+ Q̄(λ )′

Ā(λ )′Z Ā(λ )′Y ′+C̄2(λ )′L̄(λ )′



 ,

F̂3(λ )′ =
[

C̄1(λ )− D̄ f (λ )C̄2(λ )− J̄(λ ) C̄1(λ )− D̄ f (λ )C̄2(λ )
]

,

F̂4(λ )′ =
[

B̄(λ )′Z B̄(λ )′Y ′+ D̄2(λ )′L̄(λ )′
]

.

Then, define the partitioned matrices [27]

F =




X ′ U ′

Û ′ X̂ ′



 , F−1 =




Y V̂

V Ŷ



 , T =




X−1 Y ′

0 V̂ ′



 , T−1 =




X −XY ′(V̂ ′)−1

0 (V̂ ′)−1





together with the following variable transformation



Q̄(λ ) L̄(λ )

J̄(λ ) D̄ f (λ )



 =




V̂ 0

0 I








Ā f (λ ) B̄ f (λ )

C̄ f (λ ) D̄ f (λ )








UZ 0

0 I



 , R= V̂UZ, (4.24)

where Z = X−1. Using the above change of variable, multiply inequality (4.23) to the

left by Ŝ′ and to the right by Ŝ with

Ŝ=




S 0

0 I



 , S =




T−1

0

0 T−1



 , I =




I 0

0 I



 ,

yielding the following inequality










P̃(λ )−F−F ′ FÂ(λ )′−F ′TG′T−1 FĈ(λ )′−F ′TH ′ 0

(⋆) L̂22 L̂23 B̂(λ )

(⋆) (⋆) L̂33 D̂(λ )

(⋆) (⋆) (⋆) −γI










< 0, (4.25)

L̂22 = (T ′)−1GT ′FÂ(λ )′+ Â(λ )F ′TG′T−1−P̄(λ ),

L̂23 = (T ′)−1GT ′FĈ(λ )′+ Â(λ )F ′TH ′,

L̂33 = HT ′FĈ(λ )′+Ĉ(λ )F ′TH ′− γI,

where P(λ ) = (T ′)−1M(λ )T−1 and the matrices Â(·), B̂(·), Ĉ(·) and D̂(·) have the

same structure of (4.6), but in the λ -space. Finally, considering the lift of the BMI
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to the λ -space and applying Schur complement, inequality (4.25) reduces to (4.16)

of Theorem 4.1 with G(ζ ) = G and H(ζ ) = H. The filter matrices are obtained by

the change of variables (4.24), which concludes the proof.

Corollary 4.1. The minimum γ attainable by the conditions of Theorem 4.2 is

given by the optimization problem

minγ s.t. (4.19)–(4.20) (4.26)

Theorem 4.2 is presented in terms of BMI constraints due to the use of extra

variables F , G and H. The advantages of this approach are due the fact that such

variables may be used in the search for better performance of the closed-loop system.

For instance, a lower H∞ guaranteed cost may be obtained by exploring the new

variables G and H. Nevertheless, by choosing G = 0 and H = 0 the conditions of

Theorem 4.2 reduce to LMIs, and, in this case, Corollary 4.1 becomes a convex

optimization problem that can be handled by Semi-Definite Programming (SDP)

algorithms.

In order to solve Corollary 4.1 within the BMI framework, many methods from

the literature may be applied, such as the two following algorithms. The first one

is sometimes called Alternating SDP (or Gauss-Seidel) method [43] and consists of

fixing some variables and solving for others in such a way that at each step a convex

optimization problem is solved. The second one is called path-following method [56]

and consists of linearizing the BMIs. Although in both cases there is no guarantee

of convergence, these methods are easy to implement and provide good results. In

this chapter, the first approach is used and the algorithm is as follows.

Algorithm 2. Let G= 0 and H = 0. Let ε and kmax be given. Set k= 1 and iterate:

1. Fix the variables H and G, minimize w.r.t. γk, Z, Y , R, Qi, Li, Ji, D f i and Mi.

Get the new values of Z, Y , R, Qi, Li, Ji and D f i.
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2. Fix the variables Z, Y , R, Qi, Li, Ji and D f i, minimize w.r.t. γk, H, G and Mi.

Get the new values of H and G.

3. If |γk− γk−1|< ε, then stop (no significant changes).

4. Set k = k+1 and go to step 1 if k ≤ kmax. Otherwise stop.

In order to reduce the number of BMIs and the computational time required to

solve the optimization problem (4.26), the conditions of Theorem 4.2 were obtained

with G(ζ ) = G and H(ζ ) = H. If G(ζ ) and H(ζ ) were parametrized with α a more

sophisticated procedure, such as the one proposed in [89], should be applied.

If b= 0, Problem 3 corresponds to the filtering problem of time-invariant uncer-

tain systems. In this case, Theorem 4.2 provides sufficient conditions to design filters

for uncertain discrete-time systems in polytopic domains. In the case b = 1, i.e.

the parameters may vary arbitrarily inside the unit simplex UN , the conditions of

Theorem 4.2 encompass the ones provided in [11, Theorem 2] leading to less conserva-

tive results when contrasted with LPV filters designed through quadratic Lyapunov

functions.

4.3.1 Robust filtering

For the robust case, consider P(α) as in (4.18) and the particular structures

G(ζ ) = G(α) =
N

∑
i=1

αiGi, H(ζ ) = H(α) =
N

∑
i=1

αiHi, α ∈UN ,

lifted to the λ -space, yielding the following result.

Theorem 4.3. (H∞ Robust Filtering) Given the system (4.1) and matrix S as

in (4.10), if there exist matrices Z, Y , R, Q ∈R
n×n, L ∈R

n×q, J ∈R
p×n, D f ∈R

p×q,

Gi, Mi =M
′
i > 0 ∈R

2n×2n, Hi ∈R
p×2n, i= 1, . . . ,N and a scalar γ > 0 such that, for

matrices Q̄, L̄, J̄, D̄ f , Ḡi, H̄i, M̄i, Āi, B̄i, C̄1i, C̄2i, D̄1i and D̄2i given as in (4.14) and

M̃i as in (4.15)
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Ξi ,










F11 F12 F̂3i− F̂
′
1H̄

′
i 0

(⋆) F22 ḠiF̂3i+ F̂
′
2iH̄

′
i F̂4i

(⋆) (⋆) H̄iF̂3i+ F̂
′
3iH̄

′
i − γI F34

(⋆) (⋆) (⋆) −γI










< 0, i= 1, . . . ,M, (4.27)

F11 = M̃i− F̂1− F̂
′
1, F12 = F̂2i− F̂

′
1Ḡ
′
i,

F22 = ḠiF̂2i+ F̂
′
2iḠ

′
i− M̄i, F34 = D̄1i− D̄ f D̄2i,

F̂1 =




Z Y ′+R′

Z Y ′



 , F̂2i =




Ā′iZ Ā′iY

′+C̄′2iL̄
′+ Q̄′

Ā′iZ Ā′iY
′+C̄′2iL̄

′



 ,

F̂3i =




C̄′1i−C̄

′
2iD̄

′
f − J̄

′

C̄′1i−C̄
′
2iD̄

′
f



 , F̂4i =




Z′B̄i

YB̄i+ L̄D̄2i



 ,

Ξik ,










F̂11 F̂12 F̂3i+ F̂3k− F̂
′
1(H̄

′
i + H̄

′
k) 0

(⋆) F̂22 ḠiF̂3k+ ḠkF̂3i+ F̂
′
2iH̄

′
k+ F̂

′
2kH̄

′
i F̂4i+ F̂4k

(⋆) (⋆) H̄iF̂3k+ H̄kF̂3i+ F̂
′
3iH̄

′
k+ F̂

′
3kH̄

′
i −2γI F̂34

(⋆) (⋆) (⋆) −2γI










< 0, (4.28)

i= 1, . . . ,M−1, k = i+1, . . . ,M,

F̂11 = M̃i+ M̃k−2F̂1−2F̂ ′1, F̂12 = F̂2i+ F̂2k− F̂
′
1(Ḡ

′
i+ Ḡ

′
k),

F̂22 = ḠiF̂2k+ ḠkF̂2i+ F̂
′
2iḠ

′
k+ F̂

′
2kḠ

′
i− M̄i− M̄k, F̂34 = D̄1i+ D̄1k− D̄ f (D̄2i+ D̄2k),

then there exists a robust filter in the form of (4.3), ensuring the asymptotic stability

of the estimation error dynamics (4.5) and an H∞ guaranteed cost γ, for all (α,∆α)∈

Λ with vertices given as in (4.21).

Proof: Similar to the proof of Theorem 4.2.

The remarks relevant for Theorem 4.2 also hold for Theorem 4.3. Additionally,

for b= 0, G(α) = 0 and H(α) = 0, the conditions of Theorem 4.3 reduce to the H∞

extension of the results in [53, Theorem 5.1].
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Figure 4.2: Networked Filtering Model.

4.3.2 Practical appeal and possible extensions

The filter design method presented in this section may be applied to all types of

dynamical processes that may be written as (4.1). It encompasses the cases of time-

invariant (b = 0), bounded time-varying (0 < b < 1) and arbitrarily time-varying

(b= 1) systems. Consequently, it can be used in many different practical situations,

including systems that exchange information through a communication channel, com-

monly known as networked control systems (NCSs). The usefulness and importance

of NCS architectures is largely due to advances in digital control and computer inter-

faced structures. Drawbacks associated with NCS are discussed in [68], [107], [115].

In the filtering framework, the problem of estimating a signal of a precisely known

continuous-time system, sampled by a zero-order hold with a time-varying sampling

period, through an NCS can be studied using the proposed technique. By using the

Cayley-Hamilton theorem or Taylor series expansion, the time-varying sampled-data

matrices can be rewritten as in (4.2) and Theorem 4.2 may be applied to provide the

filter matrices. More specifically, consider a time-invariant continuous-time system

sampled by a zero-order hold with a period h. The structure of the filtering model

is illustrated in Figure 4.2. Assuming that h may change its value at run-time due

to various reasons, such as bandwidth allocation and scheduling decisions, let the

actual value of h at each instant k (i.e., hk) lie inside a finite discrete set as specified
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below

hk ∈ {hmin, . . . ,hmax}, hk = κ ·g, κ ∈ N. (4.29)

The parameter g is known as the processor/network clock granularity, [104]. The

clock granularity is related with the processor frequency and k ∈N is a function of

time that specifies how many times g the sampling period h will be at instant k.

To represent the set of all possible sampled-data system matrices due to uncertain

sampling rates, a polytopic model is considered. In this case, the system matrices,

for any time k ≥ 0, are described as a convex combination of well-defined vertices,

which are given by the arrangements of the extreme values of (4.29) with the help of

the Cayley-Hamilton theorem or Taylor series expansion [1]. The sampled system is

then rewritten as (4.1) and Theorem 4.2 (or Theorem 4.3) may be used to provide a

networked filter such that the estimation error is asymptotically stable under time-

varying sampling rates. This problem is of great interest specially when dealing with

scheduling or dynamic bandwidth allocation for bandwidth reduction [79].

Other improvements of theorems 4.2 and 4.3 may be obtained by exploring the

structure of the Lyapunov matrix P(α) and the extra variables F , G(ζ ) and H(ζ )

of Theorem 4.1. As can be seen in (4.18), the Lyapunov matrix used in Theorem 4.2

is affine in α . More sophisticated structures may lead to better results, for example,

the polynomially parameter dependent Lyapunov (PPDL) functions used in [85] can

be explored for b< 1. The case b= 1 (arbitrarily parameter variation) seems to be

more involved. Considering stability analysis and Lyapunov matrices that depend

only on the parameter at the actual instant of time (i.e. α(k)) it turns out that

the positiveness of the affine Lyapunov matrix (4.18) is a necessary condition for the

positiveness of PPDL functions with degree greater than one. Consequently, whether

or not PPDL functions with higher degree will help to improve the performance when

compared to affine functions for synthesis purpose with b= 1 is still an open question.

Nevertheless, parameter dependent Lyapunov matrices that depend on more than one

instant of time, as the path dependent Lyapunov function proposed in [63], [64], can



4.3. Main Results 87

provide better results for b= 1 when contrasted to the affine Lyapunov matrix.

Changes in the structure of matrices F , G(·) and H(·) have appeared in (4.16) may

also lead to better results, as given in [39], [47]. A result for arbitrarily time-varying

systems, obtained with the path dependent Lyapunov matrix4

P(α) = P(α,α+) =
N

∑
i=1

N

∑
j=1

αiα+ j
Pi j, α, α+ ∈UN , (4.30)

and the particular choices

G(ζ ) = G(ρ) =
N

∑
i=1

ρiGi, H(ζ ) = H(ρ) =
N

∑
i=1

ρiHi, ρ ∈UN ,

with ρ ∈ UN , is presented in the next theorem. Note that, since b = 1 (arbitrarily

fast rates of variation), there is no need to lift the matrices to the λ -space.

Theorem 4.4. (Path dependent approach) Given the system (4.1), if there exist

matrices Z, Y , R, Qi ∈R
n×n, Li ∈R

n×q, Ji ∈R
p×n, D f i ∈R

p×q, Gi, Mi j =M
′
i j > 0 ∈

R
2n×2n, Hi ∈R

p×2n i, j = 1, . . . ,N and a scalar γ > 0 such that

Ξi jℓ ,










M jℓ− F̂1− F̂
′
1 F̂2i− F̂

′
1G
′
j F̂3i− F̂

′
1H

′
j 0

(⋆) G jF̂2i+ F̂
′
2iG

′
j−Mi j G jF̂3i+ F̂

′
2iH

′
j F̂4i

(⋆) (⋆) H jF̂3i+ F̂
′
3iH

′
j− γI D1i−D f iD2i

(⋆) (⋆) (⋆) −γI










< 0,

(4.31)

i= 1, . . . ,N, j = 1, . . . ,N, ℓ = 1, . . . ,N,

Ξik jℓ ,










2M jℓ−2F̂1−2F̂ ′1 F̂2ik−2F̂ ′1G
′
j F̂3ik−2F̂ ′1H

′
j 0

(⋆) F̂22 G jF̂3ik+ F̂
′
2ikH

′
j F̂4ik

(⋆) (⋆) H jF̂3ik+ F̂
′
3ikH

′
j−2γI F̂34

(⋆) (⋆) (⋆) −2γI










< 0,

(4.32)

4The Lyapunov matrix can also be generalized for any number of instants ahead follow-
ing the lines given in [63], at the price of a quick increase in the computational effort.
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i= 1, . . . ,N−1, k = i+1, . . . ,N j = 1, . . . ,N, ℓ = 1, . . . ,N,

F̂22 = G jF̂2ik+ F̂
′
2ikG

′
j−Mi j−Mk j, F̂34 = D1i+D1k−D f iD2k−D f kD2i,

where F̂1, F̂2i, F̂3i, F̂4i, F̂2ik, F̂3ik and F̂4ik have the same structure of the ones from

Theorem 4.2 but in the α domain, then there exists an LPV filter in the form of

(4.3), ensuring the asymptotic stability of the estimation error dynamic (4.5) and an

H∞ guaranteed cost γ, for all α ∈UN with arbitrary rates of variation and vertices

given as in (4.21).

Proof: Similar to the proof of Theorem 4.2 except that now there is no lift to the

λ -space and the operation (4.22) becomes

Ξ(α,ρ,η) =
N

∑
ℓ=1

ηℓ

{
N

∑
j=1

ρ j

{
N

∑
i=1

α2
i Ξi jℓ +

N−1

∑
i=1

N

∑
k=i+1

αiαkΞik jℓ

}}

.

Note that the Lyapunov matrix (4.30) would imply on three instants of time α(k),

α(k+1) and α(k+2) in Theorem 4.1. Since these values are completely independent

when b= 1, they are represented respectively by α , ρ and η (all of them belonging

to unit simplexes, for all k ≥ 0), yielding matrix Ξ(α,ρ,η) in Theorem 4.4. The

robust version of Theorem 4.4 can be obtained in a similar way of Theorem 4.3.

4.4 Numerical Experiments

All the experiments have been performed in a PC equipped with: Athlon 64 X2

6000+ (3.0 GHz), 2GB RAM (800 MHz), using the SDP solver SeDuMi [101] inter-

faced by the parser YALMIP [70]. The numerical complexity is estimated in terms

of the computational times given in seconds. Particularly to the iterative procedure

given in Algorithm 2, the time of the i-th iteration is the total time accumulated up

to this iteration.
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Example I: Consider the following time-varying discrete-time system borrowed from

[37]

x(k+1) =




0 −0.5

1 1+θ(k)



x(k)+




−6 0

1 0



w(k),

z(k) =
[

1 0

]

x(k), (4.33)

y(k) =
[

−100 10

]

x(k)+
[

0 1

]

w(k),

where θ ≤ θ(k) ≤ θ and |∆θ(k)| ≤ δ . The equivalent polytopic representation of

system (4.33) is obtained by the change of variables θ(k) = α1(k)θ + α2(k)θ and

|∆α1(k)|= |∆α2(k)| ≤ δ/|θ −θ |= b. With respect to the ranges of the time-varying

parameters, the case to be investigated is θ =−θ = 0.4 and 0≤ δ ≤ 0.8 (correspond-

ing to 0≤ b≤ 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
8

10

12

14

16

18

20

22

δ

γ [37, Lem. 4]

[37, Thm. 2]

Thm. 4.3, it=0

Thm. 4.3, it=1

Thm. 4.3, it=5

Figure 4.3: H∞ upper bound attained by using strictly proper robust filters in the
design problem of Example I.

The first task is to synthesize robust filters using Algorithm 2 with Theorem 4.3

and the approaches from [37, Lemma 4] (Lyapunov matrix affine in θ(k)) and [37,
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Table 4.1: H∞ guaranteed costs and computational times obtained in the design
problem of Example I for time-invariant (δ = 0) and arbitrarily fast (δ = 0.8) pa-
rameters.

Method Filter δ γ Time
[37, Lem. 4] 0 11.16 0.44
[37, Thm. 2] 0 11.16 0.44

[39, Thm. 2]it=5
robust 0 9.30 1.45

Theorem 4.3it=0 0 11.16 0.38
Theorem 4.3it=1 0 10.65 0.78
Theorem 4.3it=5 0 9.16 3.55

[37, Lem. 4] 0.8 21.99 0.57
[37, Thm. 2] 0.8 21.99 0.58

Theorem 4.3it=0 0.8 21.99 0.46
Theorem 4.3it=1 0.8 17.72 0.95

Theorem 4.3it=5
robust 0.8 16.04 5.15

Theorem 4.4it=0 0.8 17.59 0.22
Theorem 4.4it=1 0.8 15.68 0.44
Theorem 4.4it=5 0.8 14.52 2.18
[118, Thm. 3] 0.8 8.49 0.42

Theorem 4.2it=0 0.8 8.49 0.33
Theorem 4.2it=1 LPV 0.8 8.49 0.48
Theorem 4.4it=0 0.8 8.49 0.24
Theorem 4.4it=1 0.8 8.49 0.33

Theorem 2] (Lyapunov matrix quadratic in θ(k)). Algorithm 2 is performed twice,

considering the maximum number of iterations as kmax = 1 and kmax = 5. Figure 4.3

shows the minimum γ achieved with strictly proper filters (D f=0). Note that with

only one iteration, where in fact the conditions of Theorem 4.3 reduce to LMIs, the

proposed approach based on affine parameter-dependent Lyapunov matrix outper-

forms the best method of [37] that is based on a Lyapunov matrix quadratic in θ(k).

The zero iteration case (it = 0) shown in the figure was obtained without introducing

the extra variables G(·) and H(·). Smaller guaranteed costs can be obtained through

the iterative procedure given in Algorithm 2 at the price of a higher computational

effort.
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The second part of the experiment concerns a more detailed comparison between

the proposed design conditions and the methods from the literature for the specific

cases δ = 0 (time-invariant parameter) and δ = 0.8 (arbitrarily fast). In the case δ = 0

the nonconvex procedure from [39, Theorem 2] is also included in the comparisons.

For δ = 0.8, the LPV filter design conditions proposed in the chapter are compared to

[118, Theorem 3]. The results are shown in Table 4.1, where it = 0 means without the

extra variables G(·) and H(·). In the robust filtering case, the proposed conditions

provide the best H∞ guaranteed costs with five iterations at the price of slightly

higher computational efforts. In the LPV filtering case the proposed conditions

presented the same H∞ guaranteed costs than [118, Theorem 3] for the case δ = 0.8.

Note that, differently from [118, Theorem 3], the proposed conditions could still

synthesize LPV filters for the range 0 < δ < 0.8.

Example II: Consider a time-varying system with state-space matrices given by

A=




0.265−0.1650θ(k) 0.45(1+θ(k))

0.5(1−θ(k)) 0.265−0.215θ(k)



 , B=




1.5−0.5θ(k)

0.1



 , C′2 =




1

0



 ,

where D2 = 1, C1 = I2, D1 = 02 and −1≤ θ(k)≤ 1 is an arbitrarily fast time-varying

parameter (∆θ(k) = 2). The polytopic representation of the system is obtained as in

Example I. The aim is to synthesize robust and LPV H∞ filters using the conditions

proposed in the chapter and the ones from [37] and [118]. For the LPV case, only

Theorem 4.2 and Theorem 4.4 were able to provide a feasible solution. In the robust

case, all methods failed except the robust version of Theorem 4.4. The results can

be seen in Table 4.2. The robust filter matrices after one iteration are given by

A f =




0.5238 1.5844

−0.0406 −0.0927



 , B f =




−0.7852

0.8116



 , C f =




0.0070 −0.0002

0.5238 1.7974



 ,

D′f =
[

0.9931 −0.7029

]

,
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and after six iterations, with an improvement of approximately 67%, by

A f =




0.2508 0.3667

−0.0201 −0.0447



 , B f =




−6.3140

4.1041



 , C f =




−0.0045 −0.0135

0.1703 0.5597



 ,

D′f =
[

1.0012 −0.3848

]

.

As expected, the H∞ guaranteed cost associated with the LPV filter was better

but no improvement was obtained with the BMI iterations. This example illustrates

the fact that there may exist systems where robust filters can only be designed

by using path-dependent Lyapunov matrices, that encompass the methods based on

Lyapunov matrices depending (affinely, quadratically or polynomially) on parameters

only at the current instant of time k.

Table 4.2: H∞ guaranteed costs and computational times obtained in the design
problem of Example II. The computational time (in seconds) is the cumulated time
as the number of BMI iterations evolves.

Method Filter γ Improvement Time
T4.4it=1 19.41 – 0.89
T4.4it=2 9.10 53.10 % 2.03
T4.4it=3 robust 7.55 61.07 % 3.17
T4.4it=4 6.82 64.85 % 4.21
T4.4it=5 6.56 66.18 % 5.30
T4.4it=6 6.26 67.75 % 6.41
T4.4it=1

LPV
1.22 – 0.85

T4.4it=2 1.22 0.00 % 1.96

Figure 4.4 shows the results for the noise input generated by the Matlab command

w(k) = 0.3∗randn, for 0≤ k≤ 50, and zero initial condition. After six iterations, the

first state of the error vector had an improvement of 2.29% and the second state of

40.05%.

Example III: This example, borrowed from [1], consists of a simplified model of

an armature voltage-controlled DC servo motor, consisting of a stationary field and
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Figure 4.4: Time-domain analysis. The first graph illustrates the parameter variation
in time while the others show the estimation errors for two robust filters designed in
Example II.

a rotating armature and load. All effects of the field are neglected. The aim is to

design an H∞ robust filter to estimate the armature current given the speed of the

shaft. All information is sent through a communication network. The behavior of

the DC servo motor shown in Figure 4.5 can be described by




θ̈

ρ̈a



 =







−
bv

J

KT

J

−
Kθ

La
−
Ra

La










θ̇

ρ̇a



+






2

2




ω, y=

[

1 0

]




θ̇

ρ̇a



 , (4.34)

where ea is the externally applied armature voltage, ρa is the armature current, Ra

the resistance of the armature winding, La the armature winding inductance, em the

back-emf voltage induced by the rotating armature winding (em = Kθ θ̇ ,Kθ > 0), bv

the viscous damping due to bearing friction, J the moment of inertia of the armature

and load and θ the shaft position. Further, the torque generated by the motor is

given by T = KT ia. For J = 0.01kgm2/s2, bv = 0.1Nms, KT = Kθ = 0.01Nm/Amp,
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Figure 4.5: DC Servo motor as presented in [1].

Ra = 1Ω and La = 0.5H, system (4.34) can be rewritten in the form (4.1) with the

following sampled-data matrices, presented as a function of hk,

As =




exp(−10hk)−0.0003exp(−2hk) 0.125(exp(−2hk)− exp(−10hk))

0.002(exp(−10hk)− exp(−2hk)) −0.0003exp(−10hk)+ exp(−2hk)



 ,

Bs =




0.025exp(−10hk)−0.125exp(−2hk)+0.099

0.0000626exp(−10hk)−0.99exp(−2hk)+0.99



 , (4.35)

C1s =
[

0 1

]

, C2s =
[

1 0

]

, D1s = 0, D2s = 0.

The sampling rate is allowed to vary within the interval hk ∈ [0.001 0.099]. The

system is then expressed by polytope (4.2) with four vertices (N = 4), obtained

by evaluating exp(−10hk) and exp(−2hk) at the extreme values of hk, where the

parameters αi are related to hk and b= 1. Theorem 4.3 provided a robust filter after

one iteration with H∞ upper bound γ = 1.1519 and matrices

A f =




9.4526 76.4453

−1.1618 −9.3958



 , B f =




−1917.2236

253.1882



 ,

C f =
[

0.0214 0.1722

]

, D f =
[

5.1008

]

.
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4.5 Conclusion

The H∞ LPV filtering for uncertain discrete-time systems with bounded time-

varying parameters has been addressed in this chapter, where all system matrices are

affected by time-varying parameters. With a convex description of the parameter

time variation, a less conservative design condition was obtained. Extra variables

were used to derive BMI conditions that may be explored in the search for a better

H∞ performance. The filter design is accomplished by means of an optimization

problem, formulated only in terms of the vertices of the polytope. The proposed

approach provides improvements and advantages when compared to other methods

from the literature, as illustrated by examples.



Chapter 5
Conclusion and Perspectives

This dissertation presented contributions to the control and filtering of discrete

time-varying systems in terms of parameter-dependent Lyapunov functions. The

main contributions are as follows.

Concerning the LPV control problems, the novelties rely mainly on the use of a

more accurate model for the parametric variations of the system, and in the use of

BMIs for the improvement of the H∞ performance. No prior results used Lemma 1.7

with the structure (1.28) for the synthesis of LPV controllers. Consequently, the

theorems obtained in Chapter 2, represent a new strategy for the synthesis of feed-

back controllers for discrete time-varying systems. The conditions presented provide

better performance when compared with recent techniques published in literature,

as verified through numerical simulations. The proposed method represents a flexi-

ble option since it can be applied in four different contexts, namely, LPV or robust

control of time-varying systems with bounded or unbounded rates of variation.

With respect to the networked control problem, a solution was proposed to stabi-

lize systems with time-varying, possibly uncertain, sampling rates, a relevant issue in

the context of dynamic bandwidth allocation. By considering time-varying sampling

rates, it is possible to control and to reduce the flow of information between sensors

96
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and actuators. This is an important issue when dealing with NCS design, which in

general is based on the cost-benefit ratio between stability/performance and the usage

of bandwidth. Although a simplified NCS structure was considered, as modeled by

a discrete time-varying uncertain system, a solution based on parameter-dependent

Lyapunov functions was presented. Furthermore, a precise characterization of the

sampling rate in terms of a polytope, with a systematic procedure for obtaining

the vertices using Cayley-Hamilton theorem was presented. In addition to provid-

ing a complete theoretical characterization for robust control systems with uncertain

sampling rates, the proposed conditions can effectively improve the performance of

the closed-loop system. Therefore, by minimizing an upper bound to the H∞ per-

formance, controllers designed with the aid of the theorems proposed in Chapter 3

present a certain degree of robustness to unstructured uncertainties. The results

proposed can also be used when no communication networks are considered.

Similarly to the case of LPV control, the main contributions in the context of

filtering problems rely on the use of Lemma 1.7, using the structure (1.30), and for the

model used for parametric variation. The performance achieved with filters designed

using the theorems presented in Chapter 4 was superior when compared with the

main techniques published recently in the literature for filtering of discrete systems

with bounded rates of variation, particularly the ones presented in [37]. Moreover,

in the case of arbitrarily fast rates of variation, the use of path-dependent Lyapunov

functions was very efficient, providing conditions for synthesis of LPV filters never

seen in this context before. Applications to filtering through communication networks

were also presented.

Perspectives

• A natural step, and a promising one from the practical point of view, is the

extension of the results to cope with the synthesis of dynamic output feedback
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controllers. It is known that most real physical systems have a larger number

of states than the number of outputs. In this sense, the use of output feedback

in the context of networked control systems is attractive since it provides a

way to reduce the volume of information to be sent through the network and

therefore the usage of network bandwidth;

• Another perspective is to consider, in the context of LPV systems, the avail-

ability of the parameter α(k) only at the instant k+1. In this case, the LPV

controller, or filter, is implemented using only the information given by α(k−1).

It is expected an increase in the number of BMIs/LMIs, and that the arbitrar-

ily time-varying case is easier to be faced than the case with bounded rates of

variation. Moreover, concerning the uncertainty modeling, another promising

approach is the use of multi-simplex [86] for the cases with more than one un-

certain parameter. This is an interesting strategy, especially for discrete-time

systems with bounded rates of variation, because it provides a direct interpre-

tation of the parameters in the polytopic model with respect to the parameters

of the real plant;

• Other possibilities for future work include: the extension of the results of

Chapter 2 to cope with networked control systems with different delays in the

sensor/controller and controller/actuator paths, what may be done using the

Lyapunov-Krasovskii functional and the techniques proposed in [54] and [100];

the minimization of the upper bound γ to the H∞ performance within specific

frequency ranges using weighting functions established in accordance with the

characteristics of the real system; and lastly explore other structures for the

Lyapunov function, such as polynomial functions, [84], [85] or dependent on

more instants of time [64].
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Publications

Directly related to the dissertation: [12], [15], [16], [17] and [21].

Indirectly related to the dissertation: [10], [11], [13], [18], [74], [75], [76], [77] and

[78]. The abstracts of these papers are presented below.

• BP06a: “Filtragem LPV com desempenho H2 para sistemas lineares politópi-

cos variantes no tempo” — In this paper, the continuous and discrete-time

filtering problems for linear time-varying systems are investigated. Convex

conditions to design linear parameter varying filters which minimize an upper

bound to the H2 estimation error performance are provided. Both system and

filter matrices are considered to be affected by arbitrarily time-varying param-

eters belonging to a polytope. Different from other strategies in the literature,

the filter design is accomplished by means of a convex optimization procedure,

formulated only in terms of the vertices of the polytope, avoiding the use of

exhaustive gridding in the parameter space. Numerical examples illustrate the

efficiency of the proposed approach.

• BP06b: “H∞ LPV filtering for linear systems with arbitrarily time-varying

parameters in polytopic domains”— In this paper, the problem of H∞ filtering

for linear systems affected by arbitrarily time-varying parameters in polytopic

domains is investigated. A linear parameter-varying filter which minimizes

an upper bound to the H∞ estimation error performance is determined for

both continuous and discrete-time cases. Different from other strategies in the

literature, the filter design is accomplished by means of a convex optimization

procedure and the time-varying parameters are supposed to affect all systems

matrices. The LPV filter is obtained from the optimal solution of a convex

linear matrix inequality problem formulated only in terms of the vertices of

the polytope. There is no use of exhaustive gridding in the parameter space.

Numerical examples illustrate the efficiency of the proposed approach.
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• BMV+08: “Filtragem LPV H∞ de sistemas cont́ınuos variantes no tempo com

atraso no estado: uma abordagem por relaxações LMIs” — In this paper, the

problem of H∞ filtering for continuous time systems with state delays and time-

varying parameters in polytopic domains is investigated. The time-varying pa-

rameters can affect all system matrices and are supposed to be available (mea-

sured) online. A linear parameter varying filter, which minimizes an upper

bound to the H∞ estimation error performance, is determined considering that

both filter and system state space variables are affected by constant time delay.

The filter design is accomplished by means of a convex optimization procedure

formulated using LMIs and parameter-dependent Lyapunov functionals, with-

out using exhaustive gridding in the parameter space. Both delay-dependent

and independent conditions are presented. LMI relaxations for the filtering

problem are also considered. Numerical examples illustrate the efficiency of

the proposed approach.

• BMO+08: “Parameter-dependent H2 and H∞ filter design for linear systems

with arbitrarily time-varying parameters in polytopic domains”— In this paper,

the problem of filter design for linear continuous-time systems with arbitrarily

fast time-varying parameters is investigated. The time-varying parameters be-

long to a polytope with known vertices, affect all the system matrices and are

assumed to be available online for implementation of the filters. Necessary and

sufficient parameter-dependent LMI conditions for the existence of a parameter-

dependent filter assuring that the estimation error dynamics is quadratically

stable and satisfies bounds to the H2 or to the H∞ norms are given. A sequence

of standard LMI conditions assuring the existence of homogeneous polynomi-

ally parameter-dependent (HPPD) solutions to the parameter-dependent LMIs

for filter design is provided in terms of the vertices of the polytope (no gridding

is required), yielding parameter-dependent filters of arbitrary degree assuring

quadratic stability of the error dynamics for the H2 or the H∞ cases. As the
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degree of the HPPD solutions increases, less and less conservative LMI con-

ditions are obtained, tending to the necessary conditions that assure optimal

values for the H2 or the H∞ performance of the estimation error dynamics un-

der quadratic stability. Numerical examples illustrate the results, showing that

parameter-dependent filters can provide better attenuation levels than the ones

obtained with robust filters, at the price of a more complex filtering strategy.

• MBP06: “Projeto de controladores escalonados H2 por realimentação de esta-

dos para sistemas politópicos variantes no tempo”— This paper focuses on the

control of linear time-varying systems affected by parameters which can vary

arbitrarily inside a polytope. The proposed conditions are sufficient to ensure

quadratic stability, exploiting the duality in systems and being described in

terms of convex optimization problems subject to linear matrix inequalities of

finite dimension whose solutions provide parameter-dependent state feedback

gains (gain-scheduled controllers) which ensure the stability of the system with

a prescribed H2 guaranteed cost. Differently from other approaches in the

literature, the conditions proposed do not use exhaustive discretization in the

space of the parameters to compute a family of controllers, do not assume that

some of the system matrices are fixed (time-invariant) neither assume special

structures for the time-varying parameters. Numerical examples including the

design of controllers subject to failures of actuators for an aircraft model are

given, illustrating the efficiency of the proposed conditions.

• MBOP06: “Śıntese convexa de controladores para sistemas arbitrariamente

variantes no tempo: estabilidade com dissipatividade garantida”— This paper

provides a convex condition to compute linearly parameter-dependent state

feedback gains (gain-scheduling) which stabilize the closed-loop system with

guaranteed dissipativity when the system is affected by arbitrarily time-varying

parameters belonging to a polytope. The proposed conditions are written as
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a convex optimization problem with linear matrix inequality constraints. A

sequence of relaxations, based on Pólya’s Theorem, provides conditions that

are progressively more accurate, ensuring a dissipation that tends to the max-

imum value of dissipation which one can obtain using quadratic stability and

linearly parameter-dependent state feedback gains, as illustrated by numerical

examples.

• MBP07: “H2 Dynamic output feedback scheduled controllers for linear time-

varying polytopic systems: a convex LMI approach” — This paper provides

a convex condition to design dynamic output feedback scheduled controllers

which ensure the closed-loop stability and minimize an upper bound to the H2

norm for linear systems whose matrices are affected by arbitrarily time-varying

parameters belonging to a polytope. Differently from the conditions for the

design of robust H2 dynamic controllers, which are non-convex, the proposed

design is entirely based on a convex linear matrix inequality optimization pro-

cedure. Moreover, in this paper, all the system matrices are affected by the

vector of time-varying parameters which can vary arbitrarily fast inside the

polytope. By means of variable elimination and also by exploiting the posi-

tivity of the parameters, it is shown that the design problem can be expressed

as a convex optimization problem subject to a finite number of linear matrix

inequality constraints formulated only in terms of the vertices of the polytope,

avoiding the use of exhaustive gridding in the parameter space to compute a

family of controllers. Numerical examples, including an application to the con-

trol of a model of a helicopter subject to abrupt failures of actuator, illustrate

the efficiency of the proposed approach.

• MOC+07: “Robust absolute stability and stabilization based on homogeneous

polynomially parameter-dependent Lur’e functions” — This paper provides

finite dimensional convex conditions to construct homogeneous polynomially



Conclusion and Perspectives 103

parameter-dependent Lur’e functions which ensure the stability of nonlinear

systems with state-dependent nonlinearities lying in general sectors and which

are affected by uncertain parameters belonging to the unit simplex. The pro-

posed conditions are written as linear matrix inequalities parameterized in

terms of the degree g of the parameter-dependent solution and in terms of

the relaxation level d of the inequality constraints, based on an extension of

Pólya’s Theorem. As g and d increase, progressive less conservative solutions

are obtained. The results in the paper include as special cases existing condi-

tions for robust stability analysis and for absolute stability. A convex solution

for control design is also provided. Numerical examples illustrate the efficiency

of the proposed conditions

• MOC+09: “Robust absolute stability and nonlinear state feedback stabiliza-

tion based on polynomial Lur’e functions” — This is a more detailed version

of the paper MOC+07, presenting a discussion of systems with sector bounded

nonlinearities and parameter dependent Lyapunov functions, published in the

international journal Nonlinear Analysis. Theory, Methods and Applications.
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