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convexifying the Pareto rate region over other existing techniques in
terms of resultant user rates. Then, the MCO problem has been trans-
formed into a single-objective optimization problem by using NB. A
variety of characteristics for NB inMIMO interference systems such as
the uniqueness and the optimality of different NB solutions have been
considered. A sufficient condition ensuring the uniqueness of the pure-
strategy NB solution in MIMO interference systems has been derived.
A method to determine the optimality among FP- and TDM-based NB
solutions has been presented as well. Finally, the convexity of the rate
region and the existence of the FP-based NB solution have also been
demonstrated via numerical studies.
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Worst-Case Mahler Measure in Polytopic
Uncertain Systems

Graziano Chesi, Senior Member, IEEE

Abstract—The Mahler measure provides a way to quantify the un-
stable and plays a key role in stabilization problems. This technical
brief addresses the computation of the worst-case Mahler measure in
systems depending polynomially on uncertain parameters constrained
in a polytope. A sufficient condition for establishing an upper bound
of the worst-case Mahler measure is provided in terms of linear matrix
inequality (LMI) feasibility tests, where a homogeneous parameter-depen-
dent quadratic Lyapunov function (HPD-QLF) is searched for. Moreover,
it is shown that the best upper bound guaranteed by this condition can be
obtained by solving generalized eigenvalue problems. Then, the conser-
vatism of this methodology is investigated, showing that the upper bound
is monotonically nonincreasing with the degree of the HPD-QLF, and that
there exists a degree for which the upper bound is guaranteed to be tight.
Some numerical examples illustrate the proposed results.

Index Terms—Linear matrix inequality (LMI), Mahler measure, net-
worked control system, robustness, uncertainty.

I. INTRODUCTION

The Mahler measure [1], i.e., the absolute product of the unstable
eigenvalues of a matrix, provides a way to quantify the unstable in dis-
crete-time linear systems, see in particular the recent work [2]. This
measure plays a key role in control systems. For instance, in networked
control systems, an important issue is stabilization with information
constraint in the input channel, see e.g., [3]–[6]. This information con-
straint can be modeled in several ways including data-rate constraint
[7], [8], quantization [9], and signal-to-noise ratio [10]. As it has been
shown in the literature, solutions for this issue can be obtained in terms
of the Mahler measure of the system, see e.g., [11], [12].
Unfortunately, the model of a control system is not exactly known in

general. In fact, its coefficients can be affected by uncertain parameters,
for instance representing physical quantities that cannot be measured
exactly or that are subject to changes. This means that analysis and
control issues should consider not just one model but instead a family
of admissible ones. In terms of the Mahler measure, hence, it appears
important to determine the worst-case value among all the admissible
models.
Systems with uncertainty can be modeled in various ways. One of

the most used in the literature is known as polytopic description of the
uncertainty and consists of expressing the coefficients of the system as
functions of uncertain parameters constrained into a bounded convex
polytope. This description includes the standard case of uncertain sys-
tems affected by scalar parameters constrained into intervals, and has
been adopted for addressing numerous issues in systems with uncer-
tainty, such as robust stability, robust performance, and robust con-
trol, see e.g., [13]–[17] and references therein among many contribu-
tions. Before proceeding it is worth mentioning that the uncertainty can
be modeled also in other ways, e.g., through quadratic forms as done
in [18].
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This technical brief investigates the Mahler measure in uncertain
systems affected by polytopic uncertainty. Specifically, a discrete-time
linear system is considered, whose coefficients are generic polynomial
functions of an uncertain vector constrained in a bounded convex poly-
tope. The problem consists of determining the worst-case Mahler mea-
sure of the system for all the admissible uncertainties. A sufficient
condition for establishing an upper bound of the worst-case Mahler
measure is provided in terms of linear matrix inequality (LMI) feasi-
bility tests, where a homogeneous parameter-dependent quadratic Lya-
punov function (HPD-QLF) is searched for. Moreover, it is shown that
the best upper bound guaranteed by this condition can be obtained
by solving generalized eigenvalue problems. Then, the conservatism
of this methodology is investigated, showing that the upper bound is
monotonically nonincreasing with the degree of the HPD-QLF, and
that there exists a degree for which the upper bound is guaranteed to
be tight. Some numerical examples illustrate the proposed results.
The technical brief is organized as follows. Section II introduces

the problem formulation and some preliminaries on the representation
of polynomials. Section III describes the proposed results. Section IV
presents some illustrative examples. Lastly, Section V concludes the
technical brief with some final remarks.

II. PRELIMINARIES

A. Problem Formulation

The notation used throughout the technical brief is as follows: :
space of real numbers; : space of complex numbers; : null
vector; : ; : identity matrix; : transpose of
matrix ; : symmetric positive definite (semidefinite)
matrix ; : entry of matrix in position ; :
convex hull of ; : block diagonal matrix with
blocks ; : real (imaginary) part of ;
: magnitude of , i.e., ; :

, .
We consider polytopic uncertain discrete-time linear systems of the

form

(1)

where is a nonnegative integer, is the state vector,
is the uncertain vector, and is a matrix polynomial of
degree . The uncertain vector is constrained according to

(2)

where is the polytope

(3)

and are given vectors.
Let us introduce the Mahler measure. This measure provides a way

to quantify how unstable amatrix is (for discrete-time systems). Specif-
ically, let . The Mahler measure of is defined as

(4)

where is the -th eigenvalue of .
1) Problem: The problem that we consider in this technical brief

consists of determining the worst-case Mahler measure of the system
(1)–(3), i.e., the quantity

(5)

B. Representation of Polynomials

Before proceeding, we briefly introduce a key tool that will be ex-
ploited in the next sections to derive the proposed conditions. For
, let be a symmetric matrix homogeneous

polynomial of degree . Let be a vector containing
all monomials of degree equal to in , where is the number of
such monomials given by

(6)

Then, can be written as

(7)

where ,
is a linear parametrization of

(8)

and is a vector of free parameters, where

(9)

The representation (7) is known as square matricial representation
(SMR) for matrix polynomials and extends the Gram matrix method
to the representation of matrix polynomials. In particular, it turns out
that is a sum of squares (SOS) of matrix polynomials if and only
if there exists satisfying the LMI

(10)

See, e.g., [16] and [19] for details.

III. PROPOSED RESULTS

This section provides the proposed results. Let us start with the fol-
lowing theorem, which provides an equivalent reformulation of the
Mahler measure.
Theorem 1: Let . For any integer satisfying

define

(11)

where is a matrix function with size given by

(12)

and whose -th entry is defined as

(13)

where is the submatrix of built with the rows
indexed by and the columns indexed by , where is the
-th -tuple built with increasing integers in . Then

(14)

Proof: Let be an integer satisfying . From the
construction of it follows that [20]:
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where is the -th eigenvalue of . Moreover, let us observe
that

if the number of eigenvalues of with magnitude larger than or equal
to 1 is different from , while

if this number is equal to . Therefore, satisfies (14).
Theorem 1 provides a certain equivalence of the Mahler measure

of a matrix with the spectrum of some matrices obtained by ,
specifically showing that the Mahler measure is the maximum between
1 and the largest absolute eigenvalue of these matrices. We can ex-
ploit Theorem 1 to determine the worst-case Mahler measure of the
system(1)–(3) defined in(5) as follows. First, let us observe that the
system(1)–(3) can be equivalently rewritten as

(15)

where is a vector constrained according to

(16)

where is the simplex

(17)

and is the matrix homogeneous polynomial of degree
satisfying

(18)

Second, let be any integer satisfying and let us define
the matrix homogeneous polynomial of degree

(19)

If there exist and such that

(20)

then one can conclude that

(21)

This suggests that we can start by looking for a matrix function
satisfying (20). To this end, we focus our attention on matrix polyno-
mials of a generic degree. Let us observe that, since , we can
assume without loss of generality that is homogeneous. Such a

defines a Lyapunov function candidate of the form

(22)

for the system

(23)

where . In particular, this class of Lyapunov functions is
known as HPD-QLFs, see e.g., [16], [21]. Hence, the problems are how
to check the existence of a HPD-QLF satisfying (20) for a given ,
and how to compute the smallest for which (20) can be satisfied by
a HPD-QLF.
To this end, let be a symmetric matrix

homogeneous polynomial of degree , where is a nonnegative in-
teger. We can parametrize as

(24)

where is a linear parametrization of the subspace

(25)

and is a vector. Then, let us define

(26)

and let be the matrix defined by

(27)

Let us express and as

(28)

where and
, and let us define

(29)

Let and be linear parametrizations of and
, respectively, and let us define

(30)

where is the vector defined by

(31)

and is the matrix defined by

(32)

Theorem 2: Let us consider the system (1)–(3). Let be a nonneg-
ative integer and a given scalar. Suppose that, for all integers
satisfying , there exist , and satisfying the following
LMIs:

(33)

Then, (20)–(21) hold. Consequently

(34)
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Proof: Suppose that the inequalities in (33) hold. For any ,
let us post- and pre-multiply the first inequality by and its
transpose, respectively. We get

i.e., is positive definite. Then, let us post- and pre-multiply
the second inequality by and its transpose, respec-
tively. By defining

and observing that

one gets

i.e., is positive definite in , where

Since and are homogeneous in , it follows (see e.g., [16])
that:

Then, let us observe that

This means that (20) holds, which implies that also(21) holds. There-
fore, from Theorem 1, it follows that an upper bound of can be ob-
tained from according to (34).
Theorem 2 provides a sufficient condition for establishing whether

a given scalar is an upper bound of the worst-case Mahler measure.
This condition requires to check whether, for all integers satisfying

, there exist variables , and satisfying the LMIs (33).
This condition is built for given and , which define the degree of

and the candidate upper bound of , respectively.
Let us define the best upper bound of provided by Theorem 2 for

a chosen as

(35)

where

(36)

and

(37)

It turns out that computing involves the solution of a bilinear matrix
inequality (BMI) because multiplies in (33). Oneway to handle this
problem is to perform a line-search on where the LMI condition (33)
is checked for any fixed , for instance via a bisection algorithm. An-
other way to compute is to observe that (37) is a generalized eigen-
value problem: indeed, the first LMI in(33) ensures that ,
and consequently (37) is a generalized eigenvalue problem which be-
longs to the class of quasi-convex optimization problems [22].
The following result provides a monotonicity property for the upper

bound with respect to .
Theorem 3: Let us consider the system (1)–(3), and let be a non-

negative integer. Then

(38)

Proof: From the definition of in (35), the property (38) can
be proved by showing that, if the inequalities in (33) are feasible for
some and for any and satisfying , then they
are feasible also for and for such and . To this end,
let us denote in the sequel of this proof the quantities corresponding to
the case with the “hat” symbol, i.e., . Let
us observe that there exists such that

since is a generic symmetric matrix homogeneous polynomial
of degree parametrized by . Moreover, one can write

where

and is the matrix defined by

Since is a full column rank matrix and since is
positive definite, it follows that is positive definite, and hence there
exists such that

Next, as is replaced by , one has that the matrices ,
and are replaced by

This implies that
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where

Since is positive definite, it follows that
is positive definite, and since

one can conclude that there exists such that

Theorem 3 states an interesting property of the upper bound
of , specifically that is monotonically nonincreasing with .
At this point the question is whether and how approximates the

sought worst-case Mahler measure depending on . The following
result provides an important answer to this question.
Theorem 4: Let us consider the system (1)–(3). Then, there exists a

nonnegative integer such that

(39)

Proof: Let be any integer satisfying . Let be
any scalar satisfying (21), i.e.,

This means that there exists a matrix function such that

Such a matrix function can be obtained from the equation

which also says that is a matrix rational function. Let us express
as

where and are homogeneous, with for all
. For a nonnegative integer let us define

It follows that is a matrix polynomial and that

Consequently, there exists such that the coefficient matrices of
(say ) and
(say ) are positive definite (see e.g., [19]). Hence, let
be the degree of , and let such that . Let us
observe that

which is positive definite, and hence there exists such that
. Then, let us observe that

which is positive definite, and hence there exists such that
. Therefore, there exists such that the

condition (21) is equivalent to the existence of satisfying (33).
From Theorem 3 we conclude that(39) holds.
Theorem 4 states an important result, specifically that the upper

bound coincides with the sought worst-case Mahler measure
of the system (1)–(3) for a sufficiently large integer .

IV. ILLUSTRATIVE EXAMPLES

In this section we present two illustrative examples of the proposed
results. The matrices in the condition (33) have been generated with
the algorithms reported in [16]. The computations have been done in
Matlab.

A. Example 1

Let us consider the uncertain system

and the problem of determining the robust Mahler measure in (5).
This system can be rewritten as in(15) with

For all satisfying , we compute the matrix . We find
that

Hence, we compute the upper bound in (35). With we
find and , which provide .
Hence, we increase , and with we find and
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which provide the new upper bound . It
is possible to verify that this upper bound is indeed equal to the sought
robust Mahler measure, i.e., .

B. Example 2

Let us consider the uncertain system

and the problem of determining the robust Mahler measure in (5).
This system can be rewritten as in(15) with

We compute the upper bound in (35). With we find
, and , which provide . It

is possible to verify that this upper bound is indeed equal to the sought
robust Mahler measure, i.e., .

V. CONCLUSION

This technical brief has investigated the Mahler measure in systems
depending polynomially on uncertain parameters constrained in a poly-
tope. It has been shown that a sufficient condition for establishing an
upper bound of the worst-caseMahler measure can be obtained in terms
of LMI feasibility tests, where a HPD-QLF is searched for, and that
the best upper bound guaranteed by this condition can be computed
through generalized eigenvalue problems.Moreover, it has been shown
that the upper bound is monotonically nonincreasing with the degree of
the HPD-QLF, and that there exists a finite degree for which the upper
bound is guaranteed to be tight.
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