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Efficient LMI-Based Quadratic Stabilization of Interval
LPV Systems With Noisy Parameter Measures

Leopoldo Jetto and Valentina Orsini

Abstract—The purpose of this note is to consider the quadratic stabiliza-
tion of LPV systems in the realistic case where only Gaussian noisy param-
eter measures are available. Though neglected in the actual literature on
LPV systems, this question is particular important because in all situations
of a practical interest the parameter measurements (or estimates) are never
exact. The assumed noisy nature of physical parameter readings requires
a specifically developed approach consisting of mixed robust and LPV con-
trol methods. In the present case, an approach based on a vertex result on
interval time varying (ITV) matrices is proposed. This allows the solvability
conditions to be stated in terms of a set of LMI’s, whose number is inde-
pendent of the number of time-varying parameters.

Index Terms—LMIs, LPV systems, stabilization, stochastic norm.

I. INTRODUCTION

Both in the quadratic [1]–[3] and nonquadratic approach, the prac-
tical tractability of the LPV control problem is attained giving up a
general formulation and introducing additional constraints such linear
fractional representation of the plant [3]–[5] affine parameter depen-
dence [1], [6]–[8], multiconvexity arguments [7], [9]. Another common
(and unrealistic) assumption of the above papers is that all the param-
eters values are exactly measured (or estimated) at all time instants.
The difficulty of extending the above methods to parameter measures
corrupted by Gaussian noise is mainly due to the loss of the original
polytopic structure of the domain where the parameter readings take
values. This problem has been noticed in [10] where, at the expense of
some conservatism, an LMIs-based design method is proposed. In the
above reference, the theoretical difficulty of dealing with noisy mea-
sures is overcome assuming a bounded observation noise and parameter
readings still belonging to the original polytopic domain containing the
exact parameter values.

This note considers the quadratic stabilization of discrete-time LPV
systems in the realistic case where the parameter vector ���� is mea-
sured under additive Gaussian noise.

This basic assumption unavoidably affects the controller syn-
thesis method because physical parameters measures corrupted by
Gaussian noise yield a stochastic dynamical matrix with theoreti-
cally unbounded elements. This requires to deal with the considered
stabilization problem in a mixed framework: LPV control and robust-
ness with respect to unbounded stochastic perturbations have to be
simultaneously taken into account. To this purpose an observer-like
controller is here used whose observer and feedback gains are de-
signed on the basis of a unique, suitably defined, vertex matrix. In
this way, robustly fixed gains are obtained, but the dependence on the
time-varying plant parameters is maintained because the dynamical
matrix of the controller contains the same dynamical matrix of the
plant with noisy parameters. This allows both the robustness and
the parameter-scheduling issues to be taken into account. To this
purpose, the stabilization problem is faced modeling the dynamical
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time-varying matrix ������� of the plant as an ITV matrix. This
allows us to make a relaxed assumption on the elements of �������,
by simply requiring they be given by piecewise continuous functions
of ����. Constructive solvability conditions are established in terms
of LMIs, which are derived exploiting a vertex result relative to the
stabilization of a unique suitably defined extreme plant. A consequent
salient feature of the resulting design procedure is that the number of
LMIs is fixed and independent of the dimension of ����. At the price of
an acceptable degree of conservatism, this approach yields a synthesis
method with a greatly enhanced numerical efficiency with respect to
classical quadratic and nonquadratic methods. Using Bellman-Gron-
wall arguments [11] and the notion of stochastic Frobenius norm [12],
the noisy measures problem is solved starting from a preliminary
result relative to exact parameter measurements. The objectives of
this note are pursued considering the stabilization problem of LPV
systems with a time-varying dynamical matrix and constant sensor and
actuator matrices (for practical control situations of this kind (see e.g.,
[1], [2], [10], and [13]). The note is organized in the following way.
Some basic notations, preliminary results, and the problem statement
are reported in Section II, the synthesis procedure of the controller is
reported in Section III. Numerical examples and concluding remarks
end the note.

II. PRELIMINARIES

Notation

Given two matrices � and � , with elements ���� and ���� respec-
tively, the notation � � ��� � �� means ���� � ��������� �
�����, i, � � �� � � � � �. If the symbol �, ���, is used, the strictly
inequality holds. The notation � � ������� means that � is
an interval matrix satisfying �� � � � ��. The matrix �� ,
whose elements are ����� � 	
� 	����� 	� 	�

�
��� 	 , 	, � � �� � � � � �,

is called the majorant matrix of � . Clearly, one has � � �� and if
�� � ��, then �� � ��. A time-varying matrix ���� such that
���� � ������� 
� , is called an interval time-varying (ITV)
matrix. The stochastic Frobenius norm of a matrix � with random
elements is defined as 
 �����

���
, where 
 denotes expectation

and ���� � �
����� 	���� 	

�
���

is the classical Frobenius norm

[12]. Analogously, the size of a random vector � � ���� � � � � ���
� is

measured through 
 ����	
���

, where ���	 � �
��� 	��	

� ���
is

the classical euclidean norm. It is easy to see that if � and � are inde-
pendent then 
 �����	

���
� 
 �����

���

 ����	

���
.

The following Lemma [14] contains an improved version of
a result given in [15] and [16] on the stability of the state tran-
sition matrix 
� ��� ��� generated by an ITV dynamical matrix
���� � �������.

Lemma: If �
 �� � ��� �� such that 	��
 ���	 � 
 �� , 	 � �� � � � � �,
then, independently of the way the elements ������� of an ITV
dynamical matrix ���� vary inside their respective intervals, the
corresponding 
� ��� ��� is exponentially 
 �� -stable, namely
�
���� ���� � ��


�
�
 �
��

, for some �� � �, ���, �� � ��.
Moreover, if �� � �� or �� � ���, the condition is also
necessary.

Consider the following discrete-time LPV system �

��� � �� ������������ ������� ���� � �� (1)

���� ������ (2)

where ���� � ��� is the control input, ���� � ��� is the state,
���� � ��� is the output, ���� � ������� � � � � �
����

� is the vector
composed of the time-varying parameters which are assumed to be
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measurable on-line according to ����� � ���� � ���� where ���� is
a white Gaussian noise process with zero mean and � covariance
matrix (���� � ���� ���. The following assumptions are made: A1)
the true ���� takes values in a compact set �; A2) the extremal vectors
�� ��� � � � � � �

�

�

�
, and �� ��� � � � � � �

�
�

�
are ”a priori”

known; and A3) the elements ����������� of �������� are piecewise
continuous functions of ��. The state transition matrix of 	 is denoted
by 
��� ��.

A. Problem Statement

Given a dynamic output feedback controller �	�, the feedback con-
nection of 	 with �	� is denoted by �	� . The state vector and the state
transition matrix of �	� are denoted by �� ��� and �
���� ��, respectively.
The stabilization problem considered in this note consists in finding (if
it exists) a dynamic output feedback controller �	� scheduled by the
noisy parameter measurements, yielding a quadratically exponentially
�	-stable closed-loop system �	� . Owing to the stochastic nature of the
uncertainty affecting the parameter readings, the quadratic stability of
�	� has to be intended in a mean square sense, namely for every ini-
tial state �� �
��, 
� � �, there must exist constant scalars � � � and
�	 � ��� ��, such that

� ����
��
�
� ��� ��� �
���

�
� �	�	�	 �

�
 � 
�� 
� � �
 (3)

The above stabilization problem is referred to as a quadratic mean-
square stabilization problem (QMSSP).

III. CONTROLLER DESIGN PROCEDURE

A. Preliminary Step: The Noisy-Free Case

In this section, exact parameter measures are considered and the rel-
ative controller is denoted by 	�. The feedback connection of 	 with
the controller	� is denoted by	� , and the state transition matrix of	�

is denoted by 
� ��� ��. As ���� takes values in the compact set �, as-
sumption A3 implies that ������� is a ITV matrix such that ������� �
���� ��
 �
, for suitably defined �� and ��. The following final
assumption is now introduced: A4) the triplet �	 	 ��� �����, is reach-
able and observable.

The time-varying controller is assumed to have the same parameter
dependence as the plant and constant input and output matrices. More
precisely 	� is assumed to have the following observer-like based con-
troller form:

��
 � �� � �����
�� � �����
�����
�
 ���
� (4)

��
� ����
� (5)

where ���� � ��� is the state of 	�. The feedback connection 	� of
	� with the ITV plant 	 	 ������������� is described by the pair
��� � �� �������, with

�� ������ �
� ������ ��


�� � ������ � �� ���

�� � �� ���� 
 
 (6)

Applying the transformation matrix � �
�� ��
�� 
��

� one has 	� 	

� ��� � ��� ������� with

��� ������ �
� ������ ��� 
��

�� � ������ � ��

��� � �� ���� 
 
 (7)

The state transition matrices corresponding to �� ������ and
��� ������ are denoted by 
� ��� �� and �
� ��� ��, respectively. Consider

now the following majorant, time-invariant matrix:

�� � �
����� 
��

�� ��� ��

 (8)

By A4, it is possible to find gains� and� such that ���� �����
� �
�� and ���� �����
� � ��, � � �� � � � � �, for arbitrarily fixed scalars
��� �� � ��� �
. If, in addition, � and � are able to satisfy the fol-
lowing further requirements: �� the positivity of the open-loop extreme
matrix �� must be preserved so that �� � � ���, ��� � ��� ������� � �� � ,
����� � �, then the exponential �-stability (for some � � � � �
������� ���� of the time-varying closed-loop system 	� directly fol-
lows by the lemma of Section II. Next theorem states LMI conditions
to find gains � and � yielding a matrix �� � with ���� �� �
� � �,
� � �� � � � � �, and satisfying requirements �� and ���.

Theorem 1: In the noise-free case, the controller 	� given by (4)
and (5) gives a quadratically exponentially �-stable closed-loop system
	� , if there exist two matrices �� and �� and two diagonal matrices
�� � �� and �� � ��, such that the following LMI based conditions
are satisfied:

��
�


� ���� �����

�

�


� ���� ����� ��

� � (9)

��
�


� ����� � �

����
�

�


� ����� � �

���� ��
� � (10)

���� ���� � ��� ��
�
�� � �

�
�� � ���
��� � �� (11)


 ���� 
 ���� 
�
�

�� � �� (12)


 ����� 
 ���
�� 
�

��
�� � ��
 (13)

The gain matrices � and � of 	� are given by

� � ���
��
� � � � ����

��
� �� 
 (14)

Proof: Putting� ���
��
� and applying the congruence trans-

formation�� � ���� ���� � �
��
� , condition (9) can be rewritten as

����
�


� �����������

�


���� � ������ ����

� � (15)

using the Schur complement and putting �� ���� , one has

�� 

�

���

�����
�
�� ����� � �
 (16)

As �� � �, inequality (16) is the classical discrete-time Lyapunov
condition implying ���� �� � ��
� � �� � �. Moreover, as �� is
diagonal and strictly positive and ������ � � , the first of conditions
(11) implies �� � �� � ��. Putting ������ �� and arguing as
before, it follows that (10) and the second of conditions (11) imply
���� �����
� � �� � � and ����� � ��, respectively. The third of
conditions (11) implies
�� � �� because�� is diagonal and strictly
positive. By (8), it follows that (9)–(11) and (14) give ���� �� �
� �

�� �� � � ���. Moreover, by (12) and (13), one has ������������ �
����� , ������������ � ����� , �������� � ���� ��
. Hence,

(7) and (8) imply: � ��� ������� � �� � � �������� � ���� ��
. By the
lemma of Section II, and the independence of condition (16) of the
time-varying parameters, the above considerations directly imply the
quadratic exponential �-stability of �
���� ��, namely ��
��
� 
���� �
� ��

�	�	 �, �
�, �
 � 
�, and for some � � � � �. The analogous
property of 
���� �� follows from �� ������ � ��� ��� ������� , which
implies �
��
� 
���� �  ��

�	�	 �, where  � � � ������
���.

�
The above theorem deserves some remarks.
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Remark 1: The requirement that �� � ���� and �� � ���� be
diagonal is not restrictive. In fact if �� � �� � ��, then ���� �� �
���� � �� � �, if and only if the matrix�� satisfying (16) is diagonal
[17]. An analogous consideration holds for �� � ���� .

Remark 2: The use of two different scalars �� and �� in (9) and
(10) introduces more flexibility in the synthesis procedure and allows
the designer to fix the maximum allowed value of � (� � � � �) such
that ��� �	
 	���� � ���

���� �. If the values �� � �� � � are
chosen, the assumption of a reachable and observable �	 � ��
 ��
��
can be relaxed to that of input-output stabilizability.

Remark 3: As shown in the proof of Theorem 1, condition (12) im-
plies ���
���� � ��� 	 �� � �� , 
��
���� � 
��
 ���, whence
� �� � ��� 	 ��. If �� � ���, the previous inequality can be
rewritten as �� � ��� 	 ��, which cannot be satisfied by any
�� 
� � because, as shown in the proof of Theorem 1, the third of
condition (11) implies ��� � ��. In this case, it is enough to define
a new plant 	� with dynamical matrix ���
���� ���
����, and the
same � and � matrices. In this way, one obtains ��� � ��

� , and the
same design procedure given in Theorem 1 can be applied to 	� re-
placing �� and �� with ��� and ��� respectively. If a stabilizing pair
of gains ���
 ��� for 	� is found, the original plant 	 is stabilized by
a controller 	� with gains � � ���, and � � ���.

Remark 4: The vertex result of Theorem 1 makes reference to the
unique majorant matrix �� and to��. As a consequence, the number of
LMIs results to be independent of the number � of uncertain parame-
ters. This is surely an advantage from the computational point of view,
especially for large �. Nevertheless if �� 
� �� and �� 
� ���, then ��
is a fictitious vertex which does not really belong either to the interval
�� where ���� takes values or to ���. Hence, the stabilization of �� is
not necessary for stabilizing the ITV matrix ��
���� � 
��
 ���. As
the gains � and � of 	� are computed with reference to ��, this could
be a source of conservatism in the case of a large distance between ��
and �� and/or between �� and ���. A possible remedy to this incon-
venience is described beneath.

Assume there exists a (possibly null) matrix � such that one of the
two following sets of LMIs are satisfied:

�
� ���� � ��
 
�� �

� ���� � ���� ����� (17)

or

�
� ���� 	 ��
 
��� ��� ����� � �

� ����� (18)

If such a matrix � exists, it can be seen as an internal static output
gain giving the pre-compensated plant 	� � ��
�����
 ��, where
����� ���� � ��� � 
��� 
 �

�
� � �� . If matrix � satisfies

condition (17), the new extremal matrix is given by ��� � ��
� �

������ , while ��� � ���� � ��������� if � satisfies (18).
Hence, the pre-compensated plant 	� is such that the corresponding
vertex matrix ��� belongs either to the interval �� where ����� takes
values or to ��� ���

� 
��
�

� and the above mentioned source
of conservatism is avoided. It is easy to see that by assumption A4) also
the extremal triplet �	� � ��
 ���
 �� of the pre-compensated plant	�

is reachable and observable.
In conclusion, for systems 	 � ��
����
 �� for which �� 
� ��

and �� 
� ���, and the set of conditions (9)–(13) is not satisfied, an
improved design procedure of the stabilizing	� (if any) consists of the
two following steps: 1) find an internal static output feedback� solving
the set of LMIs (17) or (18) and 2) apply the same design procedure
given in Theorem 1 (respectively, Remark 3) to the pre-compensated
plant 	� if � satisfies (17) [respectively, (18)].

Remark 5: On the basis of Remarks 3 and 4, it can be stated that the
present method is particularly advisable for systems for which �� � ��

or �� � ��� or conditions (17) or (18) can be satisfied by properly
choosing matrix�. An important class of systems implicitly satisfying
conditions (17) is clearly given by positive systems [17] for which one
has �� � ��. In this case conditions (17) are automatically satisfied
for null � and ��� � ��

� � ��. Analogously, for negative ITV ma-
trices ���� one has �� 	 �� so that (18) are automatically satisfied
for null � and ��� � ���� � ���. From the computational point of
view, the independence of solvability conditions on the dimension of

��� makes the method particularly appealing for LPV systems with a
large number of time-varying parameters.

B. The Noisy Case

The above results are now exploited to deal with the main
problem of noisy parameter measurements. In particular, defining
����
���
 
���� ���
���� � ��
����, conditions will be stated on

� �����
���
 
�������
�	�

ensuring that 	 is stabilized by a

controller �	� given by (4) and (5), with the same gains � and � of
	�, but with ��
���� replaced by ���
����. To evidence differences and
analogies between 	� and �	�, in this section the two controllers are
denoted by 	����
����
�
 �� and �	�����
����
�
 �� respectively.
If in (4), ��
���� is replaced by ���
����, the matrix �� �
���� given
by (6) becomes

�� ��
���
 
���� �
��
���� ��

��� ���
���� � �� ���

��� �
���� � ��� ��
���
 
���� (19)

where

��� ��
���
 
����
�� ��
�� ����
���
 
����

� (20)

As a consequence, defining �� ��� 
����
 �����
 , the closed-loop
system �	� is given by

�� �	 � �� � ����
�	�� � ��� ��
�	�
 
�	������	�� (21)

Assume that, following the procedure given in the previous sec-
tion, a controller 	����
����
�
 �� quadratically stabilizing
	 in the noise-free case has been found. The purpose of the
following theorem is to prove that there exist a bound � such
that �	�����
����
�
 �� solves the QMSSP for 	, provided that

����� ��
���
 
�����
�
�

�	�

� ������
���
 
�������
�	�

� �.

Theorem 2: Assume there exists a controller 	����
����
�
 ��
yielding a quadratically exponentially �-stable 	� in the noise-free
case. Then, �	�����
����
�
 �� also solves the QMSSP for 	 in the

noisy case provided that ������
���
 
�������
�	�

� �, with

� �
�� �

��
(22)

and the closed-loop system �	� is quadratically exponentially mean-
square ��-stable with �� ���, and �� � � ���� � �.

Proof: By (21), one has

�� �	� ����	
 	�����	��

�

���

���

�� �	
 � � �������
���
 
���� �� ���


	� � �� (23)

The whiteness of the parameter measurement noise ���� implies that
��� ��
���
 
���� and �� ��� are independent. Hence, recalling the
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properties of the stochastic Frobenius norm and that by Theorem 1
one has ��� ��� ����� � ���

������, (23) implies

� ��� ����
�
�

���
� ���

���� � � ��������
�
�

���

�

���

���

���
������� � ���� ������� ������

�
�

���

� � ��� ����
�
�

���

multiplying both sides by ��� and defining
��� � ��� ����

�
�

���
�����, one obtains

����� � ���
����� �

���

���

���
��	�����

where � ���� ������� ������
�
�

���

� 	.
The above inequality is in a form to which the discrete

Bellman-Gronwall Lemma can be applied, obtaining ����� �
���

�����
���
��� � ����

��	 � which implies

� �������
�
�

���
� �� � ��������

�
�

���
� �����	�

���� �


(24)

If � ���� ������� �����
�
�

���

� 	 � �� � ����� � �� � ZZ�,

it follows that ��� ����, � ��� ����
�
�

���
is upperly bounded by a

function monotonically decreasing according to

� �������
�
�

���
��� � ��������

�
�

��� ������ �

�� 	 ��� �� 	 	 (25)

where �� ����	 � �. Inequality (3) directly follows with 
 
 ��
� ,

and �� 
 ���. 


IV. NUMERICAL EXAMPLES

Example 1: This example is a more involved version of the
example reported in [18]. Consider the following LPV system
� 
 ����������� ��:

� 
 � � � 


� 

� 	

	 	
�

������� 

�� � 	
������� � ����� �
� � 	
�������	���

	
� � �
��� �	
� � �����

where ����� � ������
�
� ����� � �	
�� 	
�
� �
��� � �	
�� 	
�
,
�	��� � ��
�� �
� ����� � �	
��� 	
�
. The two parameters �����
and ����� are assumed to be observed under additive, mutually
uncorrelated white Gaussian observation noises. According to the
notation of Section II, this corresponds to a covariance matrix
� 
 ���� 	� ��� � 	� 	� �

�
� . The first step of the synthesis method

is to apply the procedure given in Theorem 1. The ITV ������� is

such that ������� � ���� ��
 

��	
��� 	
�
 �	
�� 	
���


�	
�� 	
�
 �	
��� 	
�

,

and assumption A4 is satisfied. Choosing �� 
 	
��, �� 
 	
�,
the procedure of Theorem 1 can be applied, but the LMIs (9)–(13)
are not feasible. This is probably due to the fact that �� �
 �� and
�� �
 ���, because ����� � ����� � �� � 
 �� � save ����� � ����� .

Applying the procedure given in Remark 4, the LMI (17) is satisfied
choosing � 
 �	
��� 	
	 , which gives ��


 �� � ��� 


	 	
��

	
� 	
��
� ��
 
 ��


 �� � ��� 

	
�� �
	��

	
� 	
�
.

The set of LMIs (9)–(13) applied to ��� ��
� �� results to be fea-
sible. By (14), the gain matrices � and � of ����
��������� ��

are � 

�	
���� �	
����

��
���� ��
	���
, � 


�	
����

�	
����
, and the

following closed-loop eigenvalues are obtained: ��� ��
 � ��
 

�	
�����	
	���
, ��� ��
 � ��
 
 �	
������	
��	�
. In
the noise free-case, the closed-loop system �� with the posi-
tivized plant results to be quadratically exponentially �-stable with
������ ����� � ���

���� � 
 �	 � 	
������� �� ������ 	 ��.
In the case of noisy measures of ����� and �����, Theorem 2
states that the QMSSP is solvable by ��������������� �� if in-

equality (22) is satisfied, namely if � ���������� ��������
���

�

	 � 	
		��. As ��������� ����� 
 ����������� �����
, one has
������������ �������� � 
 � �����

� � �����
� 
 ��� ���� . Hence, the

QMSSP admits a solution if ��� � ���
���

� 	
		��.
Example 2: The widely investigated case-study of a DC motor speed

control is now considered. Assuming the rotational speed and electric
current as state variables and the voltage as input, the continuous-time
state space form is described by the triplet

�� 
 � � 	 


�� 

	
�



�� 

��
�

�
�

��



��



where � 
 	
� ���, is the damping ratio of the mechanical system,
�� 
 	
	� �� � ����� is the moment of inertia of the rotor, �� 

	
	������ is the electromotive force constant, �� 
 � is the elec-
tric resistance, �� 
 	
� ! is the electric inductance (the numerical
values of parameters have been taken from [19]). An LPV system is ob-
tained assuming a time-varying resistance ����� ���� � ��� �
 with
����� measured under a scalar additive white noise ���� � ��	���.
Approximating the derivative with Euler method and choosing a sam-
pling period �� 
 	
�, results in the following discretized triplet:

� �� 
 � � 	 


� ���� 

	

	
�

��������  � ���� � ���� ��
 

	 	
�

�	
		� �	� 	
�


which satisfies assumption A4. This first step of the synthesis is
accomplished following the procedure given in Theorem 1. Choosing
�� 
 	
�, �� 
 	
��, the LMIs (9)–(13) result to be feasible,
and (14) gives the following gain matrices: � 
 �	���
	���
,
� 
 �	
����� 	
	���
	 . In the noise free-case, the closed-loop
system �� results to be quadratically exponentially �-stable with
������ ����� � ���

���� � 
 �� � 	
�	������ �� ������ 	 ��,
where � 
 	
�	�� is the closed-loop eigenvalue with maximum mod-
ulus. In the case of noisy measures of ����� ����, Theorem 2 states
that the QMSSP is solvable by ��������������� �� if inequality (22)

is satisfied, namely if � ���������� ��������
���

� 	 � 	
	��.

All the elements of��������� ����� are null save the entry (2, 2) which
is equal to ����������. It follows that ������������ �������� � 

� �����������

� � �	
	����, if �������� 
 � ��� � 	
		��.
Example 3: The purpose of this example is just to make some com-

parisons with usual synthesis method for LPV systems with exact pa-
rameter measures. A first comparison has been made with the method
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described in [8, Theor. 4], where a parameter dependent state feedback
control law is proposed. The following dynamical matrix is considered
in [8], with reference to the stability analysis problem:

������� �

��� ����� � �

� � � �

� � ��� ���	

� � � �

(26)


 ����

�

�

�

�

� ��� ���� � � � �

To deal with synthesis, the following input and measure matrices have

been assumed here: �� �
� � � �

� � � �
� � � ��. The set of

LMIs in [8, Theor. 4] results to be feasible for ������ � ���. For the
present approach, as � � ��, the set of conditions (9)–(13) reduces
to (9), the first of (11) and (12). It is easy to see that in this case one
has 
� �� �� and 
� �� ���, ����� � ��. All the same, assuming
� � ���, the above conditions result to be feasible in the larger do-
main ������ � ���. The gain matrix 	 corresponding to ������ � ���

stabilizes all the ������� 
 �	 , with ������ � ���, and is given

by 	 �
������� �����	 � �����	�

������ ����		 �� ������
. The eigenvalues of


�� 
� 
 �		 result to be �����������	� ����	�� ������	.

The following measure matrix � �
� � � �

� � � �
� has been

chosen to deal with a non accessible state vector. Assuming � � ���,
the set of conditions (8)–(12) applied to ��� 
���� results again to
be feasible for ������ � ���. By (14), the gain matrices 	 and �

of �����������	� �� are 	 �
������� � � �������

� � �� �
,

�� �
������� ������� ���� � ��� ������

���� � ���� ���� � ���� ������� ��
�

and the following closed-loop eigenvalues are ob-
tained: 
�� 
� 
 �		 � ������������� ���	����	,

�� 
� 
 ��	 � ����	�	����������������
 �����	�	.

In this case, the comparison has been made with the mixed 
��
�
gain scheduled controller for LFT plants described in [4]. According to
representation (7) in [4], the LFT structure of the considered LPV plant
particularized for the stabilization problem with the controlled variable
���� coincident with the output variable ����, and null disturbance ma-
trices ��, �	�, ���, ���, is given by

� �	 �� ��

�	 �		 �	� �	�

�� ��	 ��� ���

�� ��	 ��� �

�

��� ����� � � � � � �

� � � � � � � �

� � ��� ���	 � � � �

� � � � � � � �

��� ���� � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�	 ��� � �����	 ���

where ���� evolves in the polytopic set �	 ��������	, with
�� � ����, �� � ��� and �� stands for convex hull. The LPV
output feedback controller has the following LFT structure:

���� 
 ��

����

�����

�

�� ��� ��	

��� ���� ���	

��	 ��	� ��		

�����

����

�����

����� ������������

The LMIs relative to the LPV control problem with 
� performance
(see [4, App. A]) applied to the considered stabilization problem are
not satisfied in the domain ������ � ���, while a feasible solution is
obtained considering the smaller domain ������ � �� � ���. In this
case, the vertices of the polytopic set �	 are �� � ��� � ��� and
�� � �� � ���. The matrices of the LPV controller are

�� �

������� ������ ������ ���	 � ����

������ 	����	 ���� � � ����

		���� ���� � ��� ����		� �������

�	�� � ��� ���� � ��� ���� � ��� ������

���� �
�	����� �����	

������ �������

��� �

�����	 �� � ���
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������� 	 � ����

����� ����	��

��� �
���� � ��� ����� � ��� ���	� � ��� �����	�

����	 � ��� ���� � ��� ���� � ��� �����	

���	 �
	�����

�	�����

��	� � ������ � ��� ������ �

��	 �

�	 � ����

�������

�����	

����� � ���

��	 � � ��	� � ��� ����� � ��� ��	��� ���	�� �

��		 � � �������

According to [4, eq. (30)], one has �� ��� �� ��� �
�� ������� � ����� ������ � ���� .

V. CONCLUSION

This note has considered the QMSSP for discrete-time LPV in the
more general case of noisy parameter measures. This imposes an ap-
proach to the synthesis problem where both robust and LPV control el-
ements have to be simultaneously used. To this purpose, an ITV matrix
based approach has been adopted. The solvability conditions have been
established in terms of LMIs which only involve the extremal matrices
�� and 
�. This makes the method also appealing from the numerical
point of view because the set of LMIs to be checked is independent
of the number of time-varying parameters and all the calculations can
be performed off-line. Another feature of the synthesis procedure is its
independence from the way the physical parameters enter the dynam-
ical matrix. The exponential stability degree of the closed-loop system
can be controlled through parameters �� and ��. The class of systems
for which the present approach is particularly advisable has been ev-
idenced in Remark 5. The applicability of the method has been illus-
trated by numerical examples. In particular, Example 3 shows that the
method may be also competitive when applied in a different context.
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Under some additional assumptions on the parameter variability, the
present method can be also applied relaxing some conditions on the
plant dynamics. For example, very large parameter variations, possibly
preventing the quadratic approach, can be also accepted subdividing
the whole parameter set as � � �

�

����� and assuming ���� � �� for
a sufficiently long time interval ��. This assumption also allows the
hypothesis of constant sensor and actuator matrices to be relaxed to
that of piece-wise constant matrices. The case of bounded observation
noise follows as a particular case of the present approach.
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Assessing Asymptotic Stability of Linear Continuous
Time-Varying Systems by Computing the

Envelope of all Trajectories

Germain Garcia, Pedro L. D. Peres, and Sophie Tarbouriech

Abstract—In this note, necessary and sufficient numerical conditions for
asymptotic stability and for uniform asymptotic stability of linear contin-
uous time-varying systems are derived. For a given set of initial conditions,
a tube containing all the trajectories of the system is constructed in the state
space. At each instant of time, there exists an initial condition inside the set
such that the resulting trajectory attains the border of the tube. Based on
the above formulation, necessary and sufficient conditions for asymptotic
stability and for uniform asymptotic stability are expressed through the so-
lution of a linear differential Lyapunov equation. The conditions can deal
with the stability of periodic systems as well. One of the main characteris-
tics of the proposed necessary and sufficient conditions is that the only as-
sumption on the dynamical matrix of the time-varying system is continuity.
Examples from the literature illustrate the superiority of the proposed con-
ditions when compared to other methods.

Index Terms—Continuous-time systems, stability of linear systems, time-
varying systems.

I. INTRODUCTION

The stability of linear continuous time-varying systems has been in-
vestigated in numerous papers [1]–[7]. Although from a theoretical
point of view there exist necessary and sufficient conditions in the liter-
ature [8]–[10], a lot of effort has been dedicated to the search for numer-
ically tractable necessary and sufficient conditions (see [11] and refer-
ences therein). In many cases, only sufficient conditions are obtained,
as for instance in the methods based on the analysis of the eigenvalues
of a time-invariant system [12], [13].

As it is well known, even when the eigenvalues of the system have
strictly negative real parts for all instants of time the time-varying
system can be unstable (see for instance the second example in this
note). On the other hand, an asymptotically stable linear time-varying
system can exhibit a system matrix with eigenvalues that have strictly
positive real parts [12]. This gives an idea of the difficulty of assessing
the stability of a linear time-varying system.

Other techniques use the Lyapunov theory, for instance, by asso-
ciating to the time-varying original system time-invariant piecewise
approximations from which sufficient conditions for stability are de-
rived [1], [5], [7]. This is the case of the recently published paper [11],
where classical Lyapunov equations are solved for a sequence of dis-
crete points inside the time interval of interest. Associating a quadratic
Lyapunov function to each point of the grid, a tube is constructed in the
state space. For the selected set of initial conditions, all the trajectories
of the original system lie strictly inside the tube. The dynamic matrix
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