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Abstract

This thesis is mainly concerned with robust analysis and control synthesis of linear time-
invariant systems with polytopic uncertainties. This topic has received considerable attention
during the past decades since it offers the possibility to analyze and design controllers to
cope with uncertainties. The most common and simplest approach to establish convex
optimization procedures for robust analysis and synthesis problems is based on quadratic
stability results, which use a single (parameter-independent) Lyapunov function for the entire
uncertainty polytope. In recent years, many researchers have used parameter-dependent
Lyapunov functions to provide less conservative results than the quadratic stability condition
by working with parameterized Linear Matrix Inequalities (LMIs), where auxiliary scalar
parameters are introduced. However, treating the scalar parameters as optimization variables
leads to large computational complexity since the scalar parameters belong to an unbounded
domain in general.

To address this problem, we propose three distinct iterative procedures for H2 and H∞ state
feedback control, which are all based on true LMIs (without any scalar parameter). The
first and second procedures are proposed for continuous-time and discrete-time uncertain
systems, respectively. In particular, quadratic stability results can be used as a starting point
for these two iterative procedures. This property ensures that the solutions obtained by our
iterative procedures with one step update are no more conservative than the quadratic stability
results. It is important to emphasize that, to date, for continuous-time systems, all existing
methods have to introduce extra scalar parameters into their conditions in order to include
the quadratic stability conditions as a special case, while our proposed iterative procedure
solves a convex/LMI problem at each update. The third approach deals with the design of
robust controllers for both continuous-time and discrete-time cases. It is proved that the
proposed conditions contain the many existing conditions as special cases. Therefore, the
third iterative procedure can compute a solution, in one step, which is at least as good as the
optimal solution obtained using existing methods. All three iterative procedures can compute
a sequence of non-increasing upper bounds for H2-norm and H∞-norm. In addition, if no
feasible initial solution for the iterative procedures is found for some uncertain systems, we
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also propose two algorithms based on iterative procedures that offer the possibility of obtain-
ing a feasible initial solution for continuous-time and discrete-time systems, respectively.

Furthermore, to address the problem of analysis of H∞-norm guaranteed cost computation, a
generalized problem is firstly proposed that includes both the continuous-time and discrete-
time problems as special cases. A novel description of polytopic uncertainties is then derived
and used to develop a relaxation approach based on the S -procedure to lift the uncertainties,
which yields an LMI approach to compute H∞-norm guaranteed cost by incorporating slack
variables.

In this thesis, one of the main contributions is to develop convex iterative procedures for
the original non-convex H2 and H∞ synthesis problems based on the novel separation
result. Nonlinear and non-convex problems are general in nature and occur in other control
problems; for example, the computation of tightened invariant tubes for output feedback
Model Predictive Control (MPC). We consider discrete-time linear time-invariant systems
with bounded state and input constraints and subject to bounded disturbances. In contrast to
existing approaches which either use pre-defined control and observer gains or optimize the
volume of the invariant sets for the estimation and control errors separately, we consider the
problem of optimizing the volume of these two sets simultaneously to give a less conservative
design.
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Notation

Symbols

R The set of all real numbers

Rn The set of all real valued n-dimensional (column) vectors

Rn×m The set of all m × n matrices with real entries

Sm The set of symmetric matrices of dimension m × m

Sm
+ The set of symmetric positive definite matrices of dimension m × m

Dm
+ The set of positive semidefinite diagonal matrices of dimension m × m

In The n × n identity matrix

0n×m The n × m null matrix, with the dimensions omitted when defined by the
context

A ≻ 0 The symmetric matrix A is positive definite

A ≺ 0 The symmetric matrix A is negative definite

AT The transpose of a matrix A

H(A) H(A) := A + AT

N N := {1, · · · ,N } for integer N ≥ 1

⋆ ⋆ refers to a term readily inferred from symmetry

P(P , b) The polytope {x ∈ Rn : -b ≤ Px ≤ b}, P ∈ Rm×n and b ∈ Rm

Q(Q) The ellipsoid
{
x ∈ Rn : xTQx ≤ 1

}
, Q ∈ Sn

+



Notation xv

Nm Nm := {1, · · · ,m} for integer m ≥ 1

ei The i th column of Im , where m is defined by the context

Operators

⊕ Minkowski sum of two sets, that is X ⊕Y := {x +y ∈ Rn : x ∈ X , y ∈ Y }

⊖ Minkowski difference of two sets, that is X ⊖ Y := {z ∈ Rn : z + y ∈
X , ∀y ∈ Y }

Acronyms / Abbreviations

LMI Linear Matrix Inequality

BMI Bilinear Matrix Inequality

NLMI Non-linear Matrix Inequality

LTI Linear Time-Invariant

MPC Model Predictive Control

RCI Robust Control Invariant

RPI Robust Positively Invariant



Chapter 1

Introduction

1.1 Robust analysis and control synthesis of linear systems
with polytopic uncertainties

1.1.1 Analysis of H∞ guaranteed cost computation

H∞ theory is an integral part of many robust control problems and H∞-norm computation
for robustness analysis of linear time-invariant (LTI) systems has received a considerable
amount of studies over the past years. The well-known Bounded Real Lemma (BRL) allows
the computation of the H∞-norm for nominal LTI systems (system matrices do not include
any parameter uncertainty) based on a standard convex optimization problem in terms of LMI
conditions, which include the product between the Lyapunov function matrix and system
matrices [1]. As to uncertain linear systems with polytopic uncertainties, where system
matrices depend affinely on an unknown parameter belonging to a unit simplex, H∞-norm
computation has turned out to be a challenging problem. Based on the concept of quadratic
stability [2–4], many studies transformed the original problem into the LMI problem by
using a single (parameter-independent) Lyapunov matrix for all of the possible plants within
the uncertainty polytope [5].

To overcome the conservatism resulting from the use of parameter-independent Lyapunov
functions, many works have tried to characterize a convex procedure for assuring robust
stability and computing H∞-norm guaranteed cost through parameter-dependent Lyapunov
functions [6–8]. Robust stability conditions for the existence of a parameter-dependent
Lyapunov function have been developed in [9] for continuous-time systems and [10] for
discrete-time systems. [11] extended these stability conditions to H2 and H∞-norm charac-
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terizations for discrete-time systems. Sufficient conditions for H∞-norm cost for uncertain
continuous-time systems can be found in [12]; the author made a simple modification to the
BRL and then extended the results to a system with polytopic uncertainties. A sufficient
parameterized LMI condition to compute H∞-norm guaranteed cost was presented by in-
troducing a slack matrix variable and a scalar parameter. However, the method of [12] is
applicable for systems where the polytopic uncertainty occurs in the system matrices A,B ,C
only, and D has to be assumed parameter-independent. [13] provided an equivalent represen-
tation of the BRL and a sufficient condition for the analysis of H∞-norm performance for
linear continuous-time polytopic systems; the proposed conditions were expressed by a set of
LMI conditions involving a scalar parameter. Compared to the work of [12], the conditions
in [13] enable all of the system matrices to vary within an uncertainty polytope. In contrast,
[14] presented sufficient LMI conditions that introduced two slack variables and that did not
incorporate any scalar parameter. Their results can be considered as an extension of robust
stability conditions that appeared in [9]. Furthermore, the conditions of [14] contain the
conditions of [13] as a special case by imposing a restriction on the two slack variables.

The common idea of the aforementioned approaches using parameter-dependent Lyapunov
function is to separate the Lyapunov matrix from the system matrices and allow the system
matrices to be multiplied by extra slack variables, and then formulate a convex problem
based on a finite set of LMIs. Good reviews can be found in the survey papers [15–17]. [18]
proposed a different approach to provide robust analysis stability conditions for discrete–time
polytopic systems. With respect to the aforementioned approaches that require N (the number
of the vertices of the uncertain system) inequalities, the conditions of [18] require N 2 in-
equalities that contain the product of vertex system matrices and affine parameter-dependent
Lyapunov matrix as well as N 2 full symmetric matrix variables. In the case of the state
feedback synthesis design problem, the multiplicative conditions between the feedback gain
and Lyapunov matrices lead to non-convexity.

1.1.2 H2 and H∞ state feedback control

The design of robust H2 and H∞ state feedback controllers for linear time-invariant systems
with polytopic uncertainties has received considerable attention in the past decades. Many
studies devoted to investigating robust stability and state feedback controller synthesis are
based on LMIs as they can be solved efficiently [1]. Several methods were presented to
achieve quadratic stability for such systems using a single, parameter-independent Lyapunov
function [1, 2, 4]. To overcome the conservatism due to the use of a single Lyapunov function,
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approaches using parameter-dependent Lyapunov functions have been widely addressed
more recently [6–8, 19]. However, the use of a parameter-dependent Lyapunov function
leads to a non-convex robust control design problem due to the multiplication between the
Lyapunov and system dynamic matrices.

To address this non-convexity, a significant breakthrough in robust stability analysis for
continuous-time systems was made by [9], where an extended LMI condition was presented
which separates the system matrices from the Lyapunov matrix but with the system matrices
multiplied by two auxiliary slack variables instead. Then, imposing the condition that these
slack variables are parameter-independent allows the formulation of a convex problem with a
parameter-dependent Lyapunov matrix. The corresponding stability conditions for discrete-
time systems appeared in [10]. A great deal of work has been devoted lately to attempt
to achieve more relaxed robust control conditions for discrete-time systems by resorting
to the use of affine parameter-dependent Lyapunov functions, see [10, 20, 21] for robust
stabilization applications and [11, 22] for robust H2 and H∞ control synthesis applications.
For discrete-time systems, these new extended LMI conditions contain the quadratic stabil-
ity based conditions as special cases through with a simple choice of the slack variables,
thus they generally lead to less conservative designs [11]. More recently, [23] proposed
parameterized LMI based conditions for H2 and H∞ state feedback control of discrete-time
systems, where an additional scalar parameter is introduced. It has been shown in [23] that
the conditions of [11] can be reproduced by their results if the scalar parameter is selected
to be zero. Therefore, the solutions obtained by this parameterized LMI based method are
always no more conservative than the ones computed by [11]. However, parameterized LMIs
become linear only if this scalar parameter is fixed. Hence, exhaustive searches on the scalar
parameter have to be implemented in [23] to obtain the best possible solution, resulting in
large computational complexity.

The synthesis problem for continuous-time systems turned out to be much more challenging.
[24] proposed dilated LMI based conditions to compute H2 upper bound through the use of a
slack variable. However, their conditions do not contain quadratic stability conditions as a
special case. To reduce this conservatism, some recent work concentrated on parameterized
LMIs involving a slack matrix variable as well as an extra scalar parameter to cope with H2-
norm [25–27] and H∞-norm [12–14] control synthesis problems. The major disadvantage of
these approaches is that the scalar parameter belongs to an unbounded set; this results in a
large computational burden because exhaustive searches on the scalar parameter need to be
performed. In analogy with the work for the discrete-time case [23, 28] whose corresponding
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scalar parameter belongs to a bounded domain, [29] proposed new extended parameterized
LMI characterizations for continuous-time systems with two scalar parameters based on
a change of variables [30] and the Elimination Lemma [31]. One parameter belongs to
the bounded set (-1,1), and another parameter, though belonging to an unbounded set, is
restricted in a bounded subset through numerical experimentation. Although the search
domain is limited considerably, the results may still be conservative.

The common idea of the above-mentioned class of methods is to decouple the system
matrices and the Lyapunov matrix through an application of the Elimination Lemma [31, 32]
or Finsler’s Lemma [33] firstly, and then the corresponding infinite number of conditions are
converted into N parameterized LMIs based on affine parameter-dependent Lyapunov matrix.
Good reviews of the main existing approaches for robust stability analysis and controller
synthesis problems can be found in [8, 34]. Another type of existing approaches working
with robust stabilization for continuous-time polytopic systems was addressed in [35], which
is to convert the original infinite number of conditions into a set of N 2 bilinear matrix
inequality (BMI) conditions, and then transform these into parameterized LMIs by separating
the feedback gain and the affine Lyapunov matrix. This work was further improved by [34]
Again, an exhaustive search procedure for a scalar parameter has to be implemented in their
results in order to capture the quadratic stability conditions as a particular case.

1.1.3 Summary of the current results and motivations

The most common and simplest method to deal with H2 and H∞ state feedback control for
linear polytopic systems is the well-known quadratic stability-based method. However, the
results obtained by the quadratic based conditions are very conservative in general.

In recent years, many studies were devoted to working with parameter-dependent Lyapunov
functions to give a less conservative design than quadratic stability based results. To the
best of our knowledge, to include the quadratic stability conditions as a special case for
continuous-time systems, all existing methods introduce unbounded auxiliary scalar pa-
rameters in their design conditions. Therefore, these existing methods generally have a
large computation burden stemming from a line search procedure for the unbounded scalar
parameters. Motivated by this issue, in Chapter 2, we propose new conditions for designing
H2 and H∞ controller in terms of true LMIs (without any scalar parameter). The proposed
conditions can contain the optimal quadratic stability solution as a special case. Similar ideas
are also applied to discrete-time polytopic systems and will be discussed in Chapter 3.
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Apart from the introduction of scalar parameters, another major source of conservatism in
current works available in the literature is that these conditions impose common (parameter-
independent) slack variables in the entire polytope to establish a convex optimization prob-
lem. Motivated by this conservatism, we propose novel design conditions using parameter-
dependent slack variables in Chapter 4. It is proved that the current approaches are special
cases of the proposed conditions.

As for the analysis problem of H∞- guaranteed cost, the common characteristic of the exist-
ing conditions is to convert the original parameter-dependent conditions into a finite set of
LMIs defined at the vertices of the polytopic system. Chapter 5 gives a novel characterization
of polytopic uncertainties and develops the S -Procedure to lift the uncertainties.

1.2 Computation of invariant tubes for robust output feed-
back MPC

Robust control invariant (RCI) sets are fundamental tools in robust control synthesis for
uncertain systems subject to disturbances. RCI sets play an integral part in establishing
stability of Robust Model Predictive Control (RMPC) schemes [36] and are also suitable for
robust time-optimal control [37, 38]. Invariant set computation has been discussed widely
in the past several decades [39], and important results are included in [40, 41]. In [40], the
authors showed that the exact computation of polytopic RCI sets for systems subject to
uncertainty is an intractable problem in general since it includes infinite Minkowski’s sum
terms. Therefore, most of the literature has been concerned with the efficient computation of
inner/outer approximations to the maximal/minimal RCI sets, see [42–45]. More recently,
an appealing approach is to consider both RCI set and feedback gain as decision variables.
[46] presented an algorithm to compute low complexity RCI sets for linear discrete-time
systems involving additive disturbances and norm bounded uncertainty. Nevertheless, low-
complexity polytopic RCI sets restrict the number of faces of the polytope. In the work of
[47], the authors advocated a method to compute full-complexity polytopic RCI sets for
linear systems subject to additive disturbances, which allows us to compute less conservative
invariant approximations of RCI sets. This work has been extended to linear systems subject
to additive disturbances and structured norm-bounded or polytopic uncertainties in [48].



1.3 Outline and contributions 6

Due to the large computational burden of conventional on-line optimizations for RMPC, [49]
proposed the concept of tube MPC, which uses a piecewise affine control law to maintain
the controlled trajectories in the tube even in the presence of uncertainty. In addition, in
many practical control problems, not all states are measurable and an observer is required to
estimate the states. [50] proposed output MPC design by using a Luenberger observer, the
difference between the actual and nominal states is the sum of the estimation and control
errors bounded by two separate invariant sets, which are pre-computed along with pre-defined
observer and feedback gains. [51] proposed an idea to compute less conservative results
on tighter constraints with respect to [50], they adopt a single tube to describe the sum
of the estimation and control errors, but their observer and feedback gains still need to be
pre-defined. In the work of [52], the author provided an algorithm to optimize the volume
of the invariant set of the estimation error by treating the observer gain as a variable firstly,
and then use this given set as an artificial disturbance and the associated observer gain L to
optimize the volume of the invariant set of the control error along with the feedback gain K .
However, this method is still somewhat conservative due to the fact that it takes L and K as
variables separately.

In summary, the existing approaches either use pre-defined control and observer gains or
compute the control and observer gains that optimize the volume of the invariant sets for the
estimation and control errors separately. We consider the problem of optimizing the volume
of these sets simultaneously and will discuss details in Chapter 6.

1.3 Outline and contributions

In this section, we specify in more detail the contributions of each of the following chapters.

Chapter 2

Chapter 2 considers robust H2 and H∞ state feedback control synthesis problems for
continuous-time systems. We first provide a generalized robust synthesis problem for
linear continuous-time polytopic systems. This generalized problem includes robust H2-
norm and H∞-norm problems as special cases. We then extend the approach of [34] to
propose an initial computation method based on parameterized LMI based conditions for
the generalized problem. Using a novel general separation result, which separates the state
feedback gain from the Lyapunov matrix but with the state feedback gain synthesized from
the slack variable, allows the formulation of LMI sufficient conditions for the generalized
problem. Compared to existing parameterized LMI based conditions, where auxiliary scalar
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parameters are introduced to include the quadratic stability conditions as a special case, the
proposed new conditions are true LMIs and they contain as a particular case the optimal
quadratic stability solution. Utilizing any initial solution derived by the quadratic or the
proposed initial computation method as a starting solution, we propose an algorithm based
on an iterative procedure to compute a sequence of non-increasing upper bounds for the
H2-norm and H∞-norm. In addition, if no feasible initial solution can be obtained by the
initial computation method for some uncertain systems, another algorithm is presented that
offers the possibility of obtaining a feasible initial solution.

Chapter 3

Chapter 3 considers the robust H2 and H∞ state feedback control for discrete-time systems.
We first define the problem for designing H2 and H∞ controllers in terms of BMI conditions.
Then new sufficient LMI based conditions for the BMI conditions are proposed by separating
the feedback gain and Lyapunov matrices with the introduction of slack variables. Through a
particular choice of the slack variables, the proposed LMI conditions can compute an initial
solution, including the quadratic conditions as a special case. By considering another choice
on the slack variables, it is demonstrated that any known solution to the BMI conditions
can be included in the proposed LMI conditions as a particular case. Therefore, we propose
an algorithm based on an iterative LMI procedure to compute upper bounds on the H2
and H∞-norms. When the initial computation method gives infeasibility, we propose an
iterative procedure that offers the possibility of finding a feasible initial solution. Based on
the separation result proposed in Chapter 2, we slightly modify our method to improve the
update computation for computing less conservative H2 and H∞ performance.

Chapter 4

Chapter 4 considers the problem of robust H2 and H∞ state feedback control design for
linear systems with polytopic uncertainties, in both the continuous-time and discrete-time
cases. A unified generalized problem in terms of BMI conditions for designing H2 and
H∞ controllers is firstly proposed. The proposed BMI conditions are proved to include
the existing conditions as special cases. Then, new LMI based sufficient conditions for the
BMI conditions are derived using a novel general separation result. It is also shown that the
proposed LMI conditions contain any known solution to the BMI conditions as a particular
case. Based on this property, starting with an initial solution provided by the existing methods,
an algorithm based on an iterative procedure that guarantees recursive feasibility in each
update is presented to iteratively reducing the upper bounds on H2-norm and H∞-norm.
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Moreover, it is shown that the solutions to the design BMI conditions presented in Chapter 2
and Chapter 3 can also be iteratively updated by the novel separation result proposed in this
chapter.

Chapter 5

Chapter 5 considers the problem of H∞-norm guaranteed cost computation for linear time-
invariant polytopic systems, in both the continuous-time and discrete-time cases. Firstly,
the conditions of H∞-norm guaranteed cost for both continuous-time and discrete-time
systems are introduced in terms of a unified parameter-dependent inequality. We then give
a novel characterization of polytopic uncertainties and develop the S -Procedure to lift the
uncertainties and provide a sufficient LMI condition, without any extra scalar parameter, for
the aforementioned parameter-dependent inequality. The proposed condition can provide
H∞-norm guaranteed cost that is less conservative than (at least equal to) the ones provided
by the existing methods, as illustrated by numerical comparisons.

Chapter 6

Chapter 6 considers the computation of tightened invariant tubes for tube-based robust
output MPC of discrete-time linear time-invariant systems. Two initial invariant sets for
the estimation and control errors are computed separately. The volume of these two sets is
then iteratively optimized by considering both the observer and feedback gains as variables
simultaneously. Compared with the approach that considers the observer and feedback
gains as variables separately, our approach allows considering the interaction between the
estimation and control errors and give a less conservative design.

1.4 Publications

Most of the results in this thesis are based on the following papers which have been published,
accepted, or in preparation.

Conference papers

• C. Hu and I. M. Jaimoukha. “Robust H2 and H∞ State Feedback Control for Dis-
crete–time Polytopic Systems Using an Iterative LMI Based Procedure,” in 2020
European Control Conference (ECC), Saint Petersburg, Russia, pp. 621-626, 2020.
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• C. Hu, C. Liu, and I. M. Jaimoukha. “Computation of Invariant Tubes for Robust
Output Feedback Model Predictive Control,” IFAC-PapersOnLine, Accepted for publi-
cation, 2020.

• C. Hu and I. M. Jaimoukha. “New LMI Characterizations for H∞-norm Guaranteed
Cost Computation of Linear Systems with Polytopic Uncertainties,” in 2020 59th IEEE
Conference on Decision and Control (CDC), Jeju, Korea (South), pp. 3957-3962,
2020.

Journal papers

• C. Hu and I. M. Jaimoukha. “New iterative linear matrix inequality based procedure for
H2 and H∞ state feedback control of continuous-time polytopic systems,” International
Journal of Robust and Nonlinear Control, 31(1), pp. 51-68, 2021.

• C. Hu and I. M. Jaimoukha. “Robust state feedback H2 and H∞ control synthesis
for linear polytopic systems using parameter-dependent slack variables,” Prepared to
submit.

1.5 Techniques

Throughout this thesis, some techniques will be used extensively in the development of the
main results, which are repeated here for convenience.

Lemma 1.1. (Schur complement) [1] Define matrices A = AT , C = CT and B of
appropriate dimensions. A Schur complement argument refers to the result:[

A B
BT C

]
≻ 0 ⇔ A ≻ 0,C - BTA-1B ≻ 0 ⇔ C ≻ 0,A - BC -1BT ≻ 0,

Lemma 1.2. (Elimination Lemma) [31] Given Q = QT ∈ Rn×n , R ∈ Rn×m and S ∈
Rn×p , there exists H ∈ Rm×p such that

Q + RHST + SHTRT ≺ 0, (1.1)

if and only if
RT
⊥QR⊥ ≺ 0 and ST

⊥ QS⊥ ≺ 0, (1.2)

where R⊥ and S⊥ are arbitrary matrices whose columns form a basis for the null space of
RT and ST , respectively, (i.e. RTR⊥ = 0, STS⊥ = 0).
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Lemma 1.3. [35] If the matrices Vij ∈ Sm are such that

Vij + Vji ≽ 0, 1 ≤ i < j ≤ N ,
N∑

i=1
(Vij + Vji ) ≼ 0, j = 1, . . . ,N , (1.3)

then
N∑

i ,j=1
αiαj Vij ≼ 0 ∀α ∈ Ω, (1.4)

where Ω = {α ∈ RN : αi ≥ 0,∀i ∈ N ;
∑N

i=1 αi = 1}.



Chapter 2

H2 and H∞ state feedback control
of continuous-time polytopic
systems

This chapter is organized as follows. We first provide a unified parameter-dependent BMI
condition for H2-norm and H∞-norm state feedback control problems in Section 2.1. We then
extend the approach of [35] in Section 2.2 to derive a finite set of BMI sufficient conditions.
We also outline and extend the approach of [34] to separate the terms in the bilinear product
by introducing parameterized LMIs, which are shown to include the quadratic conditions
as a special case. In Section 2.3, we propose new sufficient conditions for the BMI condi-
tions in terms of LMI conditions, without any scalar parameter, by using a novel separation
result. Our proposed LMI conditions contain one known solution to the BMI conditions as
a particular case. Therefore, starting with a feasible solution to the BMI conditions found
by an existing method (e.g., quadratic stability conditions or [34]), the upper bounds on the
H2-norm and H∞-norm are then iteratively reduced based on an update procedure. In the
case that no feasible solution can be found using an existing method, we modify our method
in Section 2.4 to provide the possibility of finding a feasible solution. We illustrate the
effectiveness of our two algorithms through four examples from the literature in Section 2.5
and summarize this chapter in Section 2.6.

The results presented in this chapter are based on our paper [53] and the associated contribu-
tions are highlighted as below:
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• Propose novel (true) LMI based conditions for H2-norm and H∞-norm design prob-
lems. The proposed conditions include the optimal quadratic stability solution as a
special case.

• Propose a novel algorithm to iteratively reduce upper bounds for the H2 and H∞-
norms.

• Propose a novel algorithm via an iterative procedure to find a feedback gain that can
stabilize the system when other existing approaches fail.

2.1 Problem description

In this section, we define the robust state feedback H2-norm and H∞-norm design problems
and embed them in a unified generalized robust design problem involving a parameter-
dependent Lyapunov matrix variable. We give sufficient conditions for the solution of this
problem in the form of a finite set of BMIs. We also show that in the quadratic case, when
the Lyapunov function is restricted to be parameter-independent, the BMIs reduce to LMIs.

2.1.1 Robust Design Problem (RDP)

Consider the uncertain continuous-time linear system

[
ẋ (t)
z (t)

]
=

[
A(α) B(α) Bw (α)
C (α) D(α) Dw (α)

] x (t)
u(t)
w(t)


where x (t) ∈ Rn , u(t) ∈ Rnu , w(t) ∈ Rnw and z (t) ∈ Rnz are the state, input, exogenous
disturbance and cost signals, respectively, and where the system distribution matrices of
appropriate dimensions lie in an uncertainty polytope spanned by the convex combination of
N given vertices [

A(α) B(α) Bw (α)
C (α) D(α) Dw (α)

]
=

N∑
i=1

αi

[
Ai Bi Bwi
Ci Di Dwi

]
,

where α is a time-invariant parameter belonging to the unit simplex

Ω = {α ∈ RN : αi ≥ 0,∀i ∈ N ;
N∑

i=1
αi = 1}.
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With single state feedback controller u(t) = Kx (t), where K ∈ Rnu×n , is to be designed,
then the closed-loop system G is described by[

ẋ (t)
z (t)

]
=

[
A(α) + B(α)K Bw (α)
C (α) + D(α)K Dw (α)

][
x (t)
w(t)

]
. (2.1)

Suppose G is Hurwitz stable and strictly proper, i.e., the eigenvalues of the closed-loop
matrix (A(α) + B(α)K ) lie in the open left half plane for all α ∈ Ω and Dw (α) = 0. Then,
the H2-norm of the system G is defined by

∥G∥2 :=

√
1
2π

∫ ∞

-∞
Trace

(
G(jw) ∗ G(jw)

)
dw

The controllability gramian Pc(α) and the observability gramian Po(α) are defined by

Pc(α) :=
∫ ∞

0
exp(Acl (α)t)Bw (α)Bw (α)T exp(Acl (α)T t)dt ,

Po(α) :=
∫ ∞

0
exp(Acl (α)T t)Ccl (α)TCcl (α)exp(Acl (α)t)dt ,

where Acl (α) = A(α)+B(α)K and Ccl (α) = C (α)+D(α)K . Note that the controllability
gramian Pc(α) and the observability gramian Po(α) are the solutions to the Lyapunov
equations

Acl (α)Pc(α) + Pc(α)Acl (α)T + Bw (α)Bw (α)T = 0,

Acl (α)TPo(α) + Po(α)Acl (α) + Ccl (α)TCcl (α) = 0,

respectively. Hence,

∥G∥2
2 = Trace

(
Ccl (α)Pc(α)Ccl (α)T

)
= Trace

(
Bw (α)TPo(α)Bw (α)

)
.

Moreover, suppose that the system G is stable, then the H∞-norm of the system G is defined
by

∥G∥∞ := sup
w(t)∈R

∥G(jw)∥ = sup
w(t)∈L2,∥w(t)∥2 ̸=0

∥z (t)∥2
∥w(t)∥2

.

In principle, we would like to find an optimal controller gain K such that achieves stabilization
and minimizes the H2-norm or the H∞-norm of the system G . However, computing such
an optimal controller is numerically challenging, a better approach in practice is to design a
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robust gain K to stabilize the system with guaranteed performance, such that

∥G∥2 < µ or ∥G∥∞ < γ,

where µ and γ are an upper bound (guaranteed cost) for the H2-norm and the H∞-norm of
the system G , respectively.
We next characterize the conditions for assuring the upper bounds of the H2-norm and the
H∞-norm in terms of parameter-dependent BMIs.

Lemma 2.1. Consider the closed-loop system in (2.1).

1. (H2-norm) [27] System (2.1) with Dw (α) = 0 is Hurwitz stable and its H2-norm is
less than µ if there exist parameter-dependent matrices P(α) ∈ Sn

+ and W (α) ∈ Snz

such that, for all α ∈ Ω,
Trace

(
W (α)

)
< µ2, (2.2)[

-P(α) ⋆

(C (α) + D(α)K )P(α) -W (α)

]
≺ 0, (2.3)

[
H
(
(A(α) + B(α)K )P(α)

)
⋆

Bw (α)T -Inw

]
≺ 0. (2.4)

2. (H∞-norm) [29] System (2.1) is Hurwitz stable and its H∞-norm is less than γ if there
exists a parameter-dependent matrix P(α) ∈ Sn

+ such that, for all α ∈ Ω,H
(
(A(α) + B(α)K )P(α)

)
⋆ ⋆

(C (α) + D(α)K )P(α) -Inz ⋆

Bw (α)T Dw (α)T -γ2Inw

≺ 0. (2.5)

Remark 2.1. The conditions in Lemma 2.1 are a simple extension of well-known standard
results in the literature. For example, the H2-norm and H∞-norm conditions follow from
controllability gramian and the bounded real lemma applied to the closed-loop system in
(2.1), respectively, by effecting a congruence transformation and using V (x ) = xTP(α)-1x
as the Lyapunov function.

The objective of H2 or H∞ control design is to find a controller gain K such that the system
G is stabilized and the upper bound µ or γ is minimized. Therefore, H2 or H∞ control design
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can be expressed as the following optimization problems, respectively,

min
P(α), W (α), µ, K

µ

s .t . (2.2), (2.3), (2.4).
(2.6)

min
P(α), γ, K

γ

s .t . (2.5).
(2.7)

Note that the above optimization problems are non-convex due to the bilinear term KP(α)
in (2.3)-(2.5), we next propose new results to translate the original nonlinear H2 and H∞
control design problems into convex problems in terms of LMIs.

2.1.2 Parameter-dependent BMI formulation for a Generalized Robust
Design Problem (GRDP)

An inspection of the conditions (2.3)-(2.5) and P(α) ≻ 0 verifies that they are special cases
of the following more general problem considered in this paper.

Problem 2.1. (GRDP) Let F ∈ Rm,n and for all i ∈ N , let Ai ∈ Rm×n ,Bi ∈ Rm×nu

and Ti ∈ Sm be given and, for any α ∈ Ω let

[
A(α) B(α) T (α)

]
:=

N∑
i=1

αi

[
Ai Bi Ti

]
.

Find a state feedback controller K ∈ Rnu×n and a parameter-dependent Lyapunov matrix
P(α) ∈ Sn

+ such that for all α ∈ Ω,

T (α) + H
(
(A(α) + B(α)K )P(α)FT

)
≺ 0. (2.8)

Remark 2.2. Note that T (α),A(α) and B(α) are in general augmented parameter-dependent
system matrices, that may also depend affinely on other variables, and F is a constant matrix:

• For the H2 case

– For the first condition in (2.3):

T (α) =

[
-P(α) 0

0 -W (α)

]
, A(α) =

[
0

C (α)

]
,B(α) =

[
0

D(α)

]
, F =

[
In
0

]
·
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– For the second condition in (2.4):

T (α) =

[
0 Bw (α)

Bw (α)T -I

]
, A(α) =

[
A(α)

0

]
, B(α) =

[
B(α)

0

]
, F =

[
In
0

]
·

• For the H∞ case in (2.5): T (α) =

 0 0 Bw (α)
0 -I Dw (α)

Bw (α)T Dw (α)T -γ2I

 ,

A(α) =

A(α)
C (α)

0

 , B(α) =

B(α)
D(α)

0

 , F =

In
0
0

 ·

Remark 2.3.

• Note that P(α) in (2.8) is required to be a general function of α for (2.3)-(2.5). For
a practical implementation, we follow the standard practice [13, 24, 29, 34, 35] and
restrict the Lyapunov function to be affine in the parameters:

P(α) =
N∑

j=1
αj Pj , Pj ∈ Sn

+, ∀j ∈ N . (2.9)

This will introduce some conservatism.

• The inequality in (2.8) is parameter-dependent which leads to an infinite number of
conditions.

• The parameter-dependent inequality (2.8) is bilinear due to the product terms KP(α)
(unless P(α) is independent of α).

2.1.3 The Quadratic GRDP

The most common, simplest, though generally conservative, approach to deal with the first
issue in Remark 2.3, which also resolves the other issues, is to assume that the Lyapunov
matrix is independent of α so that P(α) = P for all α. In this case, Problem 2.1 reduces to
the following simple LMI problem: Find M ∈ Rnu×n and P ∈ Sn

+ such that the following
LMIs

Ti + H
(
AiPFT + BiMFT

)
≺ 0, (2.10)

are satisfied for all i ∈ N , with K = MP -1.
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2.2 Extensions of current results for initial computation

In this section, we first extend the approach of [35] to derive a finite set of N 2 BMI sufficient
conditions for the parameter-dependent BMI conditions (2.8) under the assumption of an
affine parameter-dependent Lyapunov matrix, where the bilinearity is due to the multiplication
between the Lyapunov and state feedback gain matrices. We then outline and extend the
work of [34] to transform the BMI generalized problem into a parameterized LMI problem
by introducing constrained slack variables to separate the bilinear terms.

2.2.1 Finite set of BMI sufficient conditions for GRDP

In order to address the second issue in Remark 2.3, we next extend the approach of [35] and
convert the infinite-dimensional conditions (2.8) of Problem 2.1 into a finite number of BMIs
by introducing additional N 2 symmetric matrix variables.

Lemma 2.2. Let all variables be as given in Problem 2.1 and assume that P(α) has the
form (2.9). Then there exists a feasible solution to Problem 2.1 if, for all i , j ∈ N , there exist
Pj ∈ Sn

+ and Vij ∈ Sm such that

N∑
i ,j=1

αiαj Vij ≼ 0 ∀α ∈ Ω, (2.11)

Ti + H
(
AiPjFT + BiKPjFT

)
≺ Vij . (2.12)

Proof. Multiplying (2.12) by αiαj , for all i , j ∈N and summing gives

T (α) + H
(
(A(α)+B(α)K )P(α)FT

)
≺

N∑
i ,j=1

αiαj Vij ≼0.

Since characterizing (2.11) is intractable, we follow Lemma 1.3 and replace it by tractable
constraints, at the expense of introducing further conservatism, to define the following prob-
lem which requires a finite number of sufficient conditions for the solution of Problem 2.1.

Problem 2.2. Let all variables be as given in Problem 2.1. Find K ∈ Rnu×n and for all
i , j ∈ N , find Pj ∈ Sn

+ and Vij ∈ Sm such that (2.12) and

Vij + Vji ≽ 0, 1 ≤ i < j ≤ N ,
N∑

i=1
(Vij + Vji ) ≼ 0, j = 1, . . . ,N , (2.13)
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are satisfied.

Remark 2.4. Note that the LMI constraints in (2.13) are sufficient for the nonlinear con-
straints in (2.11) [35]. Note also that for control applications, the parameter Ti and
H
(
AiPjFT

)
are typically linear in the system matrices and other variables, e.g. Pj .

This makes Problem 2.2 tractable (since the inequality (2.12) linear) for system analysis
(K = 0 or K is given), while for controller synthesis, (2.12) is bilinear due to the product
terms in KPj ; this results in non-convexity of Problem 2.2. Note finally that when Pj = P
and Vij = 0 for all i , j ∈ N , (2.12) reduces to (2.10).

2.2.2 Parameterized LMI sufficient conditions for GRDP

At this stage, almost all other work in the literature uses the result of [9] which, by introducing
two slack variables F and G , separates K and Pj in the terms KPj in (2.12) and replaces
them with the terms KF and KG . Then to enforce linearity and at the same time ensure
that the solution includes the quadratic case, one of the slack variables is restricted and a
scalar parameter is introduced, such that (F ,G) → (G , rG). One of the least conservative
approaches to deal with robust stability synthesis design in the form of (2.12) is the work
in [34]. The following result is a simple extension of Lemma 9 in [34] from the robust
stabilization problem to the more general Problem 2.2 (which includes the robust H2-norm
and H∞-norm control problems).

Theorem 2.1. Let all variables be as given in Problem 2.1. Then Problem 2.2 has a feasible
solution if there exist Y ∈ Rn×n , M ∈ Rnu×n and, for all i , j ∈ N , there exist Pj ∈ Sn

+,
Vij ∈ Sm and a non-zero scalar r ∈ R such that (2.13) andTi + H

(
AiPjFT + 1

rBiMFT
)

- Vij ⋆(
F(rPj - Y T ) + 1

rBiM
)T

-H(Y )

≺ 0, (2.14)

are satisfied, in which case the state feedback gain K is given by K = MY -1. Furthermore,
if the quadratic condition (2.10) holds, then the condition (2.14) holds for a sufficiently large
r .
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Proof. Effecting the congruence transformation

[
Im 0

1
r KTBT

i In

]
on (2.14) and using the

fact that M = KY shows that (2.14) is equivalent to Ti + H
(
AiPjFT + BiKPjFT

)
- Vij ⋆(

F(rPj - Y T ) - 1
rBiKY T

)T
- H(Y )

≺ 0.

This shows that (2.14) ⇒ (2.12), so the fist part is proved. For the second, setting Pj = P ,
Y = rP , and Vij = 0, (2.14) reduces toTi + H

(
AiPFT + BiKPFT

)
⋆

(BiKP)T -2rP

≺ 0.

Using a Schur complement argument, the above condition is equivalent to

Ti +H
(
AiPFT +BiKPFT

)
+

1
2r

BiKPKTBT
i ≺ 0,

which is equivalent to (2.10) for a sufficiently large r .

Remark 2.5. Note that if (2.14) is satisfied, then Y is non-singular since H(Y ) ≻ 0 and so
K can be obtained from M = KY . Additionally, Theorem 2.1 shows that (2.14) contains
the quadratic condition (2.10) as a special case. Hence, Theorem 2.1 can be guaranteed to
provide no more conservative results than quadratic conditions. However, (2.14) contains an
unbounded tuning scalar parameter, thus exhaustive scalar searches of this parameter have
to be implemented.

2.3 Linearization and update computation algorithm

In this section, we propose a general separation result to provide sufficient conditions for
Problem 2.2 by removing the associated bilinearity with the help of slack variables. Our
conditions are attractive from a computational point of view since they are expressed as true
LMIs. Moreover, the proposed conditions contain one known solution to Problem 2.2 as a
particular case. By adopting this attractive property, we then present an algorithm to reduce
the upper bound on the H2-norm or H∞-norm via an iterative procedure if one solution to
Problem 2.2 is known.
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2.3.1 A general separation result

The next theorem is a general result which allows us to separate the product of two variables
of the form EX in a BMI without any conservatism by replacing the term EX by the bilinear
terms EY and EZ , where Y and Z are slack variables. It also suggests a procedure for
restricting these two slack variables to allow a linear solution that captures a given feasible
solution of the BMI.

Theorem 2.2. Let T ∈ Sm , E ,F ∈ Rm×n and X ∈ Sn . Then

T + H
(
EXFT

)
≺ 0, X ≻ 0, (2.15)

if and only if there exist Z ∈ Rn×n and Y ∈ Rn×m such thatT -H
(
(E - 1

2F )Y
)

⋆ ⋆

Y -X ⋆

((E + 1
2F )Z )T 0 X -H(Z )

 ≺ 0. (2.16)

Proof. Effecting the congruence

 Im 0 0
(E - 1

2F )T In 0
(E + 1

2F )T 0 In

 on (2.16) shows that it is equiv-

alent to T - (E - 1
2F )X (E - 1

2F )T + (E + 1
2F )X (E + 1

2F )T ⋆ ⋆

Y - X (E - 1
2F )T -X ⋆

(X - Z )(E + 1
2F )T 0 X - H(Z )

 ≺ 0. (2.17)

This shows that (2.16) ⇒ (2.15) since H
(
EXFT

)
= -(E - 1

2F )X (E - 1
2F )T + (E +

1
2F )X (E + 1

2F )T . Furthermore, if (2.15) is satisfied, then an inspection of (2.17) shows
that by defining

Y = X (E -
1
2
F )T , Z = X , (2.18)

then (2.15) ⇒ (2.17) which is equivalent to (2.16) and completes the proof.

Remark 2.6. Note that, provided that F is constant, then both (2.15) and (2.16) are bilinear.
However, (2.16) is linear in X and, provided that the slack variables Y and Z are suitably
restricted e.g. Y = WY0 and Z = WZ0 where W is a variable while Y0 and Z0 are
constant, then (2.16) becomes linear by considering M := EW and W as decision variables,
although it will be only sufficient for (2.15) because of this restriction.
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2.3.2 LMI sufficient conditions that include one known solution

The following corollary is a direct application of Theorem 2.2 to Problem 2.2, and with a
choice of the slack variables Y and Z suggested by (2.17)-(2.18) that will ensure that the
solution includes at least one known feasible solution to Problem 2.2.

Corollary 2.1. Suppose that K̃ ∈ Rnu×n and for all i , j ∈ N , T̃i ∈ Sm , P̃j ∈ Sn
+ and

Ṽij ∈ Sm solve Problem 2.2 so that

Ṽij + Ṽji ≽ 0, 1 ≤ i < j ≤ N ;
N∑

i=1
(Ṽij + Ṽji ) ≼ 0, j = 1, . . . ,N ;

T̃i + H
(
Ai P̃jFT + Bi K̃ P̃jFT

)
≺ Ṽij .

If there exist Y ∈ Rn×n and M ∈ Rnu×n and, for all i , j ∈ N , there exist Pj ∈ Sn
+ and

Vij ∈ Sm such that (2.13) and
Ti + H

(
AiPjFT - (BiM - 1

2FY )P̃j (Bi K̃ - 1
2F)T

)
- Vij ⋆ ⋆

Y P̃j (Bi K̃ - 1
2F)T -Pj ⋆

((BiM + 1
2FY )P̃j )T 0 Pj - H

(
Y P̃j

)
≺ 0.

(2.19)
are satisfied, then with K = MY -1, and for all i , j ∈ N , Ti , Pj and Vij also solve
Problem 2.2. Furthermore, condition (2.19) is satisfied by

(Ti ,Pj ,Vij ,Y ,M ) := (T̃i , P̃j , Ṽij , In , K̃ ).

Proof. For the first part, inequality (2.12) can be rewritten as the first inequality in (2.15)
with T = Ti +H

(
AiPjFT

)
-Vij , E = BiK , F = F , and X = Pj , so that it follows from

Theorem 2.2 that (2.12) is satisfied if and only if there exist matrices Yij and Zij , ∀i , j ∈ N
such that

Ti + H
(
AiPjFT - (BiK - 1

2F)Yij

)
- Vij ⋆ ⋆

Yij -Pj ⋆

((BiK + 1
2F)Zij )T 0 Pj - H

(
Zij

)
 ≺ 0. (2.20)



2.3 Linearization and update computation algorithm 22

Setting Yij = Y P̃j (Bi K̃ - 1
2F)T and Zij = Y P̃j give (2.19). Furthermore, When

(Ti ,Pj ,Vij ,Y ,M ) := (T̃i , P̃j , Ṽij , I , K̃ ), inequality (2.19) becomesT̃i + H
(
Ai P̃jFT - (Bi K̃ - 1

2F)P̃j (Bi K̃ - 1
2F)T

)
- Ṽij ⋆ ⋆

P̃j (Bi K̃ - 1
2F)T -P̃j ⋆

((Bi K̃ + 1
2F)P̃j )T 0 -P̃j

 ≺ 0.

Using a Schur complement argument shows that the above inequality is equivalent to T̃i +
H
(
Ai P̃jFT

)
+ H

(
Bi K̃ P̃jFT

)
≺ Ṽij and proves the second part.

Remark 2.7. Note that K̃ and P̃j are given by a known feasible solution to Problem 2.2,
so (2.19) is a true LMI and therefore it can be efficiently implemented by an LMI solver.
Corollary 2.1 illustrates that if a feasible solution to Problem 2.2 can be found, then there
exist solutions to Corollary 2.1. Furthermore, these solutions to Corollary 2.1 also solve
Problem 2.2. Note also that the slack variable Y remains unconstrained since it is not
restricted to have any definiteness or symmetry property, so it provides extra degrees of
freedom to search for a better solution. Hence, we conclude that the new solution to
Corollary 2.1 is at least as good as the previous known solution to Problem 2.2. Note also
that for achieving linearity of the terms KYij and KZij in (2.20), we impose the additional
constraints Yij = Y P̃j (Bi K̃ - 1

2F)T and Zij = Y P̃j so that M := KY and Y are decision
variables.

Remark 2.8. Suppose that (2.19) is satisfied. Then H
(
Y P̃j

)
- Pj ≻ 0, and this, together

with the fact that P̃j and Pj are positive definite implies that Y is nonsingular. Thus the
feedback gain K can always be recovered from K = MY -1.

As illustrated in Corollary 2.1, there must exist a feasible solution to Corollary 2.1 if a
feasible solution to Problem 2.2 is available. In an optimization problem, this solution to
Problem 2.2 may be chosen as the optimal solution obtained by an existing method (e.g.,
quadratic conditions, or indeed some other appropriate methods proposed in Theorem 2.1.
This ensures that our solution is no more conservative than the optimal solution computed by
any of these existing methods with one step computation. Furthermore, this solution may be
chosen as the current solution, which defines an iterative procedure if better solutions are
required. We next take advantage of this useful property to present an algorithm to iteratively
compute potentially less conservative bounds on the H2- or the H∞-norm problems by
utilizing the optimal solution computed by any existing method as a starting point.

Algorithm 2.1. Given F , Ti , Ai , Bi for all i ∈ N , tolerance level tol , and itmax (maximum
number of iterations).
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1. Initial solution: Find a solution to Problem 2.2 by using the quadratic method of
Section 2.1.3, other appropriate methods available in the literature (e.g. Theorem 2.1)
or the methods of Section 2.4 below. Set µ̃ = µ (or γ̃ = γ), K̃ = K and P̃j = Pj for
all j ∈ N , and set k = 0.

2. Update: Minimize µ (or γ) over the related variables in Corollary 2.1. Record K , Pj ,
µ (or γ).

3. Stopping condition: If (µ̃ - µ)/µ̃ ≤ tol (or (γ̃ - γ)/γ̃ ≤ tol ) or k > itmax stop. Else
set K̃ = K and P̃j = Pj , µ̃ = µ (or γ̃ = γ), k = k + 1, and go to step 2.

2.4 Robust stabilization when no known initial solution ex-
ists

As mentioned in the last section, the proposed Algorithm 2.1 requires a feasible solution to
Problem 2.2 provided by an existing method as a starting point; then it can iteratively update
the upper bounds of H2-norm or H∞-norm. However, as illustrated in the work of [34] and
[54], these existing methods may fail to compute a feasible solution for some open-loop
unstable uncertain system even when the system is known to be robustly closed-loop stabiliz-
able. Hence, we next propose a modified method via an iterative procedure, based on the
results in Corollary 2.1, to allow the possibility of finding a feedback gain that can stabilize
the system when all other methods fail.

Our approach for finding a feasible solution to (2.15) uses the following general result. The
result is based on Finsler’s Lemma and shows that a perturbed version of the BMI in (2.15)
is always feasible and easily solvable.

Lemma 2.3. Let T ∈ Sm , E ,F ∈ Rm×n and X ∈ Sn
+ be given.

1. If rank(F ) = m, then there exists β ∈ R such that

T + H
(
(E - βF )XFT

)
≺ 0. (2.21)

2. If rank(F ) < m, let F⊥ denotes an arbitrary matrix whose columns form a basis for
the null space of FT (i.e. FTF⊥ = 0). Then there exists β ∈ R such that (2.21) is
satisfied if and only if FT

⊥ TF⊥ ≺ 0.

Proof.
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1. Suppose that rank(F ) = m and let Z := T +H
(
EXFT

)
∈ Sm and Y := 2FXFT ∈

Sm so that (2.21) can be written as Z - βY ≺ 0. Since rank(F ) = m then FXFT ≻ 0
since X ≻ 0. Therefore Y ≻ 0 and there always exists a β ∈ R such that Z - βY ≺ 0,
e.g. any β larger than the largest eigenvalue of Y -1Z .

2. Suppose that rank(F ) < m. Since X ≻ 0, then it has a Cholesky factorization
X = RRT , where R ∈ Rn×n is nonsingular. Now, (2.21) can be rewritten as
Q - µBTB ≺ 0 where Q := T + H

(
EXFT

)
∈ Sm , B := RTFT ∈ Rn×m and

µ := 2β ∈ R with rank(B) =rank(F ) < m. It follows from Finsler’s Lemma (see
e.g., [33] for details) that (2.21) is satisfied if and only if FT

⊥ TF⊥ ≺ 0 since R is
nonsingular.

Thus, if we cannot find a feasible solution to (2.15) using any of the current approaches, then
Lemma 2.3 implies there always exists a solution to (2.21) for some β ∈ R. If β ≤ 0, we are
done, otherwise we proceed as follows, where we carry out the analysis for robust stability
since we only need a feasible stabilizing solution for the H2-norm and H∞-norm problems.
We next introduce a slightly modified characterization of Hurwitz stability for the continuous-
time closed-loop systems.

Lemma 2.4. The closed-loop system in (2.1) is Hurwitz stable if, for all i , j ∈ N , there exist
K ∈Rnu×n , β ≤ 0,Pj ∈ Sn

+ and Vij ∈ Sm such that (2.13) and

H
(
(Ai - βI )Pj + BiKPj

)
- Vij ≺ 0, (2.22)

are satisfied.

Proof. Multiplying (2.22) by αiαj , for all i , j ∈ N , summing and using (2.13) yields

H
(
(A(α)+B(α)K - βI )P(α)

)
≺

N∑
i ,j=1

αiαj Vij ≼0,

which shows that (A(α)+B(α)K - βI ) is Hurwitz stable. It follows that the closed-loop
system in (2.1) is Hurwitz stable for β ≤ 0.

We next relax this characterization by removing the sign requirement on β and consider the
following problem:
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Problem 2.3. Let all variables be as in Lemma 2.4. Find

min{β :K ∈Rnu×n ,Pj ∈ Sn
+,Vij ∈ Sm s.t.

(2.13) and H
(
AiPj

)
+H

(
BiKPj

)
-Vij ≺2βPj are satisfied, ∀i , j ∈N }.

(2.23)

Problem 2.3 is bilinear because of the product terms KPj . Note that if we set Pj = P
and Vij = 0 for all i , j ∈ N , then it follows that the computation of the initial solution
to Problem 2.3 can now be formulated by the following generalized eigenvalue problem
(GEVP) [1].

Problem 2.4. Let all variables be as in Lemma 2.4. Find

min{β :M ∈Rnu×n ,P ∈ Sn
+ s.t.

H(AiP)+H(BiM ) ≺2βP are satisfied,∀i ∈N , with K = MP -1}.
(2.24)

We will call this the relaxed quadratic stabilization problem since it follows from Lemma 2.3
(since F = I for Problem 2.4) that it is always feasible. Furthermore, it is a GEVP since
P ≻ 0 and is therefore easily solvable. The key idea of our method is to find a feasible initial
solution to Problem 2.3 by solving Problem 2.4, which means that the closed-loop system
has all its eigenvalues to the left of the line Re(s) = β in the complex plane (in general
β > 0) instead of the open left half-plane required by Lemma 2.4. Subsequently, we try to
use the degrees of freedom in the slack variable to obtain a solution for Problem 2.3 with a
smaller value of β through the following corollary, until β ≤ 0.

Corollary 2.2. Let K̃ ∈ Rnu×n , β̃ ∈ R, and for all i , j ∈ N , P̃j ∈ Sn
+ and Ṽij ∈ Sm solve

Problem 2.3 so that
Ṽij + Ṽji ≽ 0, 1 ≤ i < j ≤ N ;
N∑

i=1
(Ṽij + Ṽji ) ≼ 0, j = 1, . . . ,N ;

H
(
(Ai - β̃I )P̃j + Bi K̃ P̃j

)
- Ṽij ≺ 0.

(2.25)

If there exist Y ∈ Rn×n , M ∈ Rnu×n , β ∈ R, and, for all i , j ∈ N , Pj ∈ Sn
+ and

Vij ∈ Sm such that (2.13) and
H
(
(Ai - βI )Pj - (BiM - 1

2Y )P̃j (Bi K̃ - 1
2I )T

)
- Vij ⋆ ⋆

Y P̃j (Bi K̃ - 1
2I )T -Pj ⋆

((BiM + 1
2Y )P̃j )T 0 Pj - H

(
Y P̃j

)
 ≺ 0,

(2.26)
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are satisfied, then with K = MY -1, β, and for all i , j ∈ N , Pj and Vij also solve
Problem 2.3. Furthermore, condition (2.26) is satisfied by

(Pj ,Vij ,Y ,M , β) := (P̃j , Ṽij , In , K̃ , β̃).

.

Proof. The inequality involving β in (2.23) can be rewritten as (2.12) with Ti = 0, Ai =
Ai - βI , Bi = Bi , and F = In , and so the result follows from Corollary 2.1.

Remark 2.9. Note that the inequalities in (2.26) can be written as

Aij (x )︷ ︸︸ ︷[
Aij

11(x ) Aij
12(x )

⋆ Aij
22(x )

]
≺ β

B ij (x )︷ ︸︸ ︷[
B ij

11(x ) 0
0 0

]

where x denotes all the variables. Technically this cannot be posed as a GEVP since B ij (x )
is positive semidefinite rather than positive definite (see Section 2.2.3 of [1], where we have
defined Aij (x ) and B ij (x ) to agree with their notation, with C (x ) ≺ 0 denoting all the other
LMI conditions in Corollary 2). However, replacing the constraints Aij (x ) ≺ βB ij (x ) by

Aij (x ) ≺

[
Y ij 0
0 0

]
, Y ij < βB ij

11(x ), B ij
11(x ) ≻ 0,

where Y ij are additional symmetric variables of appropriate dimensions, shows that mini-
mizing β subject to the conditions of Corollary 2.2 can be reformulated as a GEVP (see See
Section 4.39 of [55] for details), although in this work we use a binary search algorithm as
shown in Algorithm 2.2 below.

As demonstrated in Corollary 2.2, the solution provided by Corollary 2.2 would be no more
conservative than the solution to Problem 2.3 since (2.26) and (2.13) contain (2.25) as a
special case. Therefore, by solving Corollary 2.2 it may be possible to provide a feasible
solution to Problem 2.3 with a smaller value of β. Based on this property, we next propose an
update procedure to obtain feasible solutions for Problem 2.3 for a non-increasing sequence
of β. If β ≤ 0, then the robust stabilization of closed-loop system is achieved.

Algorithm 2.2. Given Ai , Bi for all i ∈ N , tolerance level tol , and itmax (maximum
number of iterations).
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1. Initial solution: Solve Problem 2.4 via gevp solver to find the smallest β. If β ≤ 0,
then stop, a stabilizing gain is found. Else set K̃ = K , β̃ = β, and P̃j = P for all
j ∈ N , and set k = 0.

2. Update: Given K̃ , β̃, and P̃j for all j ∈ N , solve the conditions of Corollary 2.2 for
β = 0. If feasible, record K , β, and Pj for all j ∈ N and stop, a stabilizing gain is
found. If infeasible, use a bisection algorithm to find a β in the interval (0 β̃] for which
the conditions of Corollary 2.2 are feasible and record K , β, and Pj for all j ∈ N .

3. Stopping condition: If (β̃ - β)/β̃ ≤ tol or k > itmax then stop, the algorithm has
failed to find a stabilizing gain. Else set K̃ = K , β̃ = β, P̃j = Pj , k = k + 1, and go
to Step 2.

Remark 2.10. It is worth mentioning that the traditional methods in the literature are
based on parameterized LMIs, where an additional exhaustive search procedure on scalar
parameters needs to be performed. Though the conditions of Corollary 2.2 also contain a
scalar variable β, which are quasiconvex and therefore can be solved efficiently via CVX
toolbox using the bisection algorithm (see section 4.2.5 of Boyd and Vandenberghe[56] for
details). Moreover, in order to reduce ill-conditioning of Lyapunov matrices, in the practical
implementation for Problem 2.4 and the conditions of Corollary 2.2 (which are homogeneous
in the variables), we impose the constraint P ≻ In for Problem 2.4 and In ≺ Pj ≺ ζIn and
take ζ as the cost function to be minimized for Corollary 2.2 in the numerical examples later,
see [1] for more details.

Remark 2.11. Note that although Algorithm 2.2 can guarantee that the computed sequence
of β is non-increasing, the final converged value of β cannot be guaranteed to be non-
positive, even if Problem 2.3 is known to have a feasible solution for β ≤ 0. Hence the
algorithm has two stopping outcomes: (a) a stabilizing gain has been found in Step 1 or
Step 2; (b) Algorithm 2.2 fails to find a stabilizing gain in Step 3. In addition, since β is
only a upper bound on the maximum real part of eigenvalues of the closed-loop system
(λmax (A(α)+B(α)K ), [57] remarked that the actual value of λmax (A(α)+B(α)K ) could
be negative and therefore the closed-loop system is Hurwitz stable even if β > 0. Hence, once
a state feedback gain K is computed in Step 2, the actual value of λmax (A(α)+B(α)K ) can
be verified, a stabilizing gain is found and therefore Algorithm 2.2 terminates if it is negative.
However, checking the actual value of λmax (A(α)+B(α)K ) in each iteration increases the
complexity of Algorithm 2.2; this will be left to a future work.
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2.5 Numerical examples

In this section, we give four examples to illustrate the efficiency of our algorithms. The benefit
of Algorithm 2.1 for the computation of less conservative upper bounds on the H2-norm
and H∞-norm for state feedback control design is illustrated by Example 1 and Example 2.
Subsequently, Example 3 and Example 4 are presented to demonstrate the effectiveness
of the proposed Algorithm 2.2 for robust stabilization. All algorithms are implemented in
Matlab 9.0.0 (R2016a) using the CVX toolbox with MOSEK as solver [58, 59] and running
on an Intel(R) Xeon (R) CPU E5-1650, 3.5 GHz, Windows 7 Professional.

2.5.1 Example 1

The problem of controlling a satellite system from [12, 13, 27] is considered in this example.
The state space representation is given as follow:

ẋ (t) =


0 0 1 0
0 0 0 1
-k k -f f
k -k f -f

 x (t) +


0
0
1
0

 u(t) +


0
0
0
1

w(t),

z (t) =

[
0 1 0 0
0 0 0 0

]
x (t) +

[
0

0.01

]
u(t),

where k and f denote the uncertain parameters of the system, whose uncertainty ranges are
[0.09 0.4] and [0.0038 0.04], respectively. This system can be described as in Section 2.1.1
using N = 4 vertices. Exhaustive searches on the scalar parameters are performed for current
parameterized LMI based methods and Theorem 2.1. The comparisons of the minimum
upper bound µ on the H2-norm and γ on the H∞-norm obtained by Algorithm 2.1 and some
methods in the literature are given in Table 2.1 and Table 2.2.

Method µ Scalars
Quadratic [1] 2.5923 -

[24] 1.5526 -
[26] 1.7025 r = 0.13
[27] 1.3564 r = 1.8

Theorem 2.1 2.1209 r = 7.7
Algorithm 2.1 1.2185 tol=0.1%

Table 2.1 The minimum upper bound on H2-norm computed using some existing methods
and Algorithm 2.1 for Example 1.
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Method γ Scalars
Quadratic [1] 1.5776 -

[12] 1.4782 r = 0.01
[13] 1.2416 r = 0.07
[29] 1.2414 ϵ = 0.1, ξ = 0.54

Theorem 2.1 1.3062 r = 28.5
Algorithm 2.1 1.0418 tol=0.1%

Table 2.2 The minimum upper bound H∞-norm computed using some existing methods and
Algorithm 2.1 for Example 1.

Starting with the solution provided by Theorem 2.1 and setting the tolerance level to be 0.1%,
it can be noted from Table 2.1 that Algorithm 2.1 provides less conservative upper bounds
on the H2-norm and H∞-norm compared to the ones obtained from all other methods. In
particular, [27] gives a µ level of 1.3564 with optimized r = 1.8, but Algorithm 2.1 obtains
a final converged value of 1.2185 for the H2-norm performance µ with state feedback gain
K = [-16.3676 - 95.9845 - 8.8811 - 194.6665]. Compared with the work of [29], which
yields the value of 1.2414 for the H∞-norm performance γ, an upper bound of γ = 1.0418
can be achieved using Algorithm 2.1 with K = -104 × [0.1195 1.2424 0.0274 1.6604].

0 1 2 3 4 5 6 7 8 9 10

Iterations

1

2

3
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µ

r=1

r=7.7

r=100

Fig. 2.1 Bound on the H2-norm against the number of iterations computed using Algo-
rithm 2.1 for Example 1.

Figure 2.1 and Figure 2.2 display the relation between the computed values of µ and γ

through Algorithm 2.1 and the number of iterations for different values of r as the initial
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Fig. 2.2 Bound on the H∞-norm against the number of iterations computed using Algo-
rithm 2.1 for Example 1.

point. It can be seen that the bounds µ and γ are non-increasing with the number of iterations
and both converge to nearly the same final values independently of which value of r is used
as the initial point. This observed quadratic speed of convergence seems to be an interesting
property of our iterative procedure, although a rigorous theoretical proof of this is beyond
the scope of this paper.

2.5.2 Example 2

Consider the following uncertain coupled spring-mass system taken from [29]:

ẋ (t) =


0 0 1 0
0 0 0 1

- k
m1

k
m1

0 0
k

m2
- k
m2

0 0

 x (t) +


0
0
1

m1
0

 u(t) +


0 0
0 0
1

m1
0

0 1
m2

w(t),

z (t) =
[
0.5k 0.5k - 2k - k

]
x (t) - 0.1u(t).

Here x (t) = [x1(t) x2(t) x3(t) x4(t)]T where the states x1(t) and x2(t) are the displace-
ments of body 1 and body 2, respectively, while their respective velocities are represented by
the states x3(t) and x4(t). The parameters m1 and m2 denote the masses of body 1 and body
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2, respectively, and whose values are given as m1 = m2 = 1. The stiffness parameter k is
uncertain but is known to lie in the interval [0.5 2].

It has been suggested in [29], that in order to avoid the large computational burden caused
by an exhaustive search procedure on scalar parameters, the search range of scalar vari-
ables is constrained to the following values (total of 12 searches): ϵ ∈

{
10-1, 100

}
and

ξ ∈ {-0.9, -0.54, -0.18, 0.18, 0.54, 0.9}. For the other parameterized LMI based meth-
ods, the scalar is limited to thirteen logarithmically spaced values (total of 13 searches):
r ∈

{
10-6, 10-5, · · · , 100, 101, · · · 106

}
. For the scalar parameter r of Theorem 2.1, we

select r = 1 instead of performing searches on r , to obtain a feasible solution used for the
starting point of Algorithm 2.1.

Table 2.3 compares the results of µ achieved using our Algorithm 2.1 with the other existing
approaches available in the literature as well as the associated solution time.

Method µ Scalars T : solution time
Quadratic [1] 10.2217 - 0.19 s

[26] 5.2704 r = 0.1 2.89 s
[24] 3.2638 - 0.20 s
[27] 1.4855 r = 0.1 2.65 s

Theorem 2.1 6.8438 r = 1 0.34 s
Algorithm 2.1 1.1511 it = 7 3.05 s
Algorithm 2.1 0.5044 it = 15 6.14 s

Table 2.3 The minimum upper bound on H2-norm achieved with some existing methods and
Algorithm 2.1, as well as the associated solution time for Example 2.

Among the current methods, [27] gives the minimum upper bound on the H2-norm as µ =
1.4855 with the mean solution time 2.65 s . Applying Theorem 2.1 gives the initial stabilizing
state feedback gain K0 = [-0.8560 0.2864 - 1.7048 - 0.7639] in 0.34 s . Algorithm 2.1
shows improvement on H2-norm performance with respect to [27] after 7 iterations and gives
a converged value of µ = 0.5044 after 15 iterations by setting tol = 0.5%; the corresponding
state feedback gain is K = [-5.8340 0.1948 - 29.0254 - 15.4930]. The mean times for
Algorithm 2.1 to take 7 iterations and 15 iterations are 3.05 s and 6.14 s , respectively.
As shown in the second column in Table 2.4, the H∞-norm upper bound provided by [29]
is 1.9745. Starting with the initial stabilizing state feedback gain K0 = [-0.6036 0.0001 -
1.0105 - 0.4056] provided by Theorem 2.1, our Algorithm 2.1 can outperform [29] after
6 iterations and finally gives γ = 1.1153 after 17 iterations (with tol = 0.5%). The final
resulting feedback gain is K = [-4.6271 - 0.7696 - 17.4697 - 9.3864]. Table 2.4 also gives
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Method γ Scalars V R T
Quadratic [1] 8.5569 - 15 15 0.18 s

[12] 7.9236 r = 0.01 41 23 2.52 s
[13] 2.3847 r = 10 41 31 2.65 s
[29] 1.9745 ϵ = 1, ξ = 0.18 41 23 2.33 s

Theorem 2.1 9.4149 r = 1 153 74 0.28 s
Algorithm 2.1 1.6275 it = 6 153 90 1.99 s
Algorithm 2.1 1.1153 it = 17 153 90 5.19 s

Table 2.4 The minimum upper bound on H∞-norm achieved with some existing methods
and Algorithm 2.1, as well as the associated numerical complexity for Example 2 (V : scalar
variables, R: LMI rows, T : total solution time).

the associated numerical complexity of the existing methods and Algorithm 2.1 for H∞
control. For each LMI test, in contrast to the current approaches, the greater number of scalar
variables and LMI rows in Corollary 2.1 is due to the additional matrix variables Vij . Note
that parameterized LMI based methods require exhaustive search procedures on the scalar
parameters while Algorithm 2.1 requires the repeated use of Corollary 2.1. The last column
in Table 2.4 gives the total solution time for all methods to evaluate their computational
burden.

Algorithm 2.1, which implements the computation of initial solution by Theorem 2.1 and
17 iterations to convergence, demands a longer solution time than the methods from the
previous studies. However, it is worth mentioning that the number of LMI tests for the pa-
rameterized LMI methods is limited to at most 13 since the search range on scalar parameters
is substantially constrained in this example, this leads to less computational time but the
obtained results are in general suboptimal. Furthermore, the second row from the bottom in
Table 2.4 indicates that Algorithm 2.1 is able to provide less conservative results than the
ones in the literature after only 6 iterations, which takes a shorter computational time than
these parameterized LMI methods.

Finally, the relation between the computed values of µ and γ through Algorithm 2.1 and
the number of iterations for different initial points (r = 0.5, 1, and 1.5) can be observed by
Figure 2.3 and Figure 2.4.
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Fig. 2.3 Bound on the H2-norm against the number of iterations computed using Algo-
rithm 2.1 for Example 2.
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Fig. 2.4 Bound on the H∞-norm against the number of iterations computed using Algo-
rithm 2.1 for Example 2.



2.5 Numerical examples 34

2.5.3 Example 3

Consider the following example for n = 4, nu = 1 and N = 2 presented in [35] and [54]
The vertex system matrices of the continuous-time polytopic system are given by

A1 =


0 1 0 0
0 0 1 0
0 0 0 1

-12 - 3d - 12 - 3d - 25 - 1

 , B1 =


0
0
-6
6

 ,

A2 =


0 1 0 0
0 0 1 0
0 0 0 1

-12 + 3d - 12 + 3d - 25 - 1

 , B2 =


0
0
0
6

 ,

where d ∈ R is a free parameter. For each value of d ≥ 0, the robust stability conditions
available in the literature have been solved to yield a state feedback gain K to guarantee that
A(K ) := co {Ai + BiK : i ∈ N } is Hurwitz stable.

The scalar searches performed by the parameterized LMI based methods described in previous
works follow from the values suggested in Example 2, so that a total of 13 searches for Sha01
[12], EH04 [25], GK06 [35], and OdOP11 [34] (Lemma 9) are conducted while a total of
12 searches are conducted for ROC18 [29, 54]. The maximum value of d assuring that the
existing robust stability conditions and Algorithm 2.2 are feasible as well as the associated
numerical complexity can be seen in the Table 2.5 below.

ATB01[24] Sha01 EH04 GK06 OdOP11 ROC18 Algorithm 2.2
dmax 5.44 10.37 13.30 11.62 12.60 14.29 19.42
V 40 40 40 120 80 40 80
R 24 16 24 84 52 16 68
T 0.20 s 2.57 s 2.59 s 3.59 s 3.48 s 2.45 s 22.04 s

Table 2.5 The maximum values of d within stability domain achieved with some existing
methods and Algorithm 2.2, as well as the associated numerical complexity for Example 3
(V : scalar variables, R: LMI rows, T : total solution time).

The first row in Table 2.5 demonstrates that ROC18 [29, 54] provides the best performance
of among the existing approaches in the literature; their robust stability conditions are always
feasible for all 0 ≤ d ≤ 14.29. However, when d is slightly larger than 14.29 all the above
methods give infeasibility for finding a stabilizing state feedback gain. Next, applying the
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proposed Algorithm 2.2 to this system for d > 14.29, setting itmax = 30, tol = 0.1%, and
ϵ = 10-3, where ϵ is the tolerance of the bisection algorithm.[56] It can be verified that Algo-
rithm 2.2 can stabilize the uncertain system up to d ≤ 19.42. For d = 19.42, Algorithm 2.2
gives a feasible state feedback gain K = [-13.0706 - 23.9313 - 0.0693 - 1.3499]. This
controller gives the maximum real part of eigenvalues of A(K ) as -0.0536 which verifies the
stability of the closed-loop system.

Regarding the associated computational burden for each LMI test, Sha01[12] and ROC18[29,
54] demand a lower number of scalar variables and LMI rows followed by ATB01[24],
EH04[25], OdOP11 [34], Algorithm 2.2, and GK06[35], respectively. Moreover, the last
row in Table 2.5 gives the solution time for each method. It can be observed that the
solution time for ROC18[29, 54] (total of 12 LMI tests) is 2.45 s . For d = 19.42, it takes
22.04 s for Algorithm 2.2 to find the stabilizing gain, where a total of 80 LMI tests are
conducted. Moreover, exhaustive numerical experiments show that the uncertain system
becomes increasingly harder to be stabilized as d increases, this leads to the number of
LMI tests and therefore the solution time by Algorithm 2.2 growing accordingly. When d is
smaller, for example, Algorithm 2.2 can stabilize the uncertain system for d = 16.5 in 5.79 s
(total of 21 LMI tests) and for d = 18.5 in 13.82 s (total of 50 LMI tests), respectively. In
particular, when d = 14.29, Algorithm 2.2 solves 10 LMI tests in 2.75 s to find a stabilizing
gain, the solution time is comparable to ROC18[29, 54]. It is also important to mention that
even for d = 16.5, the current parameterized LMI based methods cannot provide feasible
solutions even if an exhaustive search procedure on scalar parameters is implemented. In
conclusion, Algorithm 2.2 can be used as an alternative way to find a feasible solution
for robust stabilization when all other methods fail but at the price of a potentially larger
computational effort.

2.5.4 Example 4

In this example we compare the performance of Algorithm 2.2 with the previous methods
in robust stabilization for uncertain systems through statistical analysis. The database of
open-loop unstable uncertain systems from [34] (available for download) is used in this
example. We only consider uncertain systems that are guaranteed to be robustly stabilizable
by a state feedback gain, but not quadratically stabilizable. In what follows, 100 systems for
each combination of the dimension n = 2, · · · , 5 and N = 2, · · · , 5 and nu = 1 are tested.
We use the values of scalar parameters suggested in Example 3 for the current methods
[34, 54] while Algorithm 2.2 sets tol = 0.1%, ϵ = 10-3, and itmax = 100.
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(n,N ) ATB01 Sha01 EH04 GK06 OdOP11 ROC18 Algorithm 2.2
(2, 2) 64 9 100 4 13 100 68
(2, 3) 33 18 58 11 13 57 75
(2, 4) 2 16 50 6 8 52 79
(2, 5) 2 24 60 13 19 63 89
(3, 2) 44 11 82 6 11 81 75
(3, 3) 2 11 49 8 10 52 83
(3, 4) 0 19 38 10 13 39 80
(3, 5) 0 21 33 11 15 37 94
(4, 2) 32 17 75 9 12 74 81
(4, 3) 1 13 49 9 12 54 87
(4, 4) 0 21 41 5 5 42 84
(4, 5) 0 13 28 5 6 32 93
(5, 2) 18 17 77 13 15 78 78
(5, 3) 0 24 54 12 14 61 87
(5, 4) 0 17 39 10 11 45 96
(5, 5) 0 17 26 5 8 30 93

success 12.38% 16.75% 53.69% 8.56% 11.56% 56.06% 83.88%
time 0.21 s 2.71 s 2.73 s 7.04 s 6.68 s 2.55 s 31.11 s

Table 2.6 Number of uncertain systems (among 100) stabilized by some existing methods and
Algorithm 2.2, as well as the associated solution time per system demanded for Example 4.

As can be observed from Table 2.6, for the overall success rate of systems stabilized by all
methods for all 1600 systems, ROC18 [29, 54] provides the highest success rate of 56.06%
among the methods from the previous works, but Algorithm 2.2 shows a clear improvement
over ROC18 [29, 54] with 83.88% success rate. Additionally, compared with the robust
stabilization conditions of [30], which use polynomial Lyapunov matrices, and which give
81.3% success rate, Algorithm 2.2 still has a higher success rate even though we only use
affine Lyapunov matrices. Moreover, the last row in Table 2.6 gives the mean solution time
per system spent by each method. Compared with ROC18 [29, 54] which demands 2.55 s
per system, the mean solution time per system taken by Algorithm 2.2 is 31.11 s per system.
Note finally that Algorithm 2.2 can stabilize 87.44% of the systems in 60.21 s per system if
tol = 0.01%, ϵ = 10-4, and itmax = 200. The statistical results of this example corroborate
our expectation that Algorithm 2.2 can provide better robust stabilization performance than
the methods from the previous works but at the expense of more computational effort.
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2.6 Summary

In conclusion, this chapter has investigated the problem of robust H2 and H∞ state feed-
back control of continuous-time polytopic systems. We proposed an iterative procedure
(Algorithm 2.1) to compute a sequence of non-increasing upper bounds for the H2-norm and
H∞-norm by utilizing the initial solution obtained by the quadratic method or the proposed
Theorem 2.1 as a starting point. Example 1 and Example 2 from the literature were presented
to show that the proposed Algorithm 2.1 can provide much less conservative upper bounds on
H2-norm and H∞-norm than the ones obtained by the methods from previous works. More-
over, we also presented Algorithm 2.2 as an alternative way to find a stabilizing gain when
the initial computation fails. Example 3 and Example 4 from the literature were provided to
illustrate that Algorithm 2.2 can find a stabilizing gain for some uncertain systems when all
other methods are infeasible at the expense of an increased computational effort.



Chapter 3

H2 and H∞ state feedback control
of discrete-time polytopic systems

This chapter is organized as follows. We first provide parameter-dependent BMI conditions
for H2-norm and H∞-norm state feedback control synthesis problems in Section 3.1. In
Section 3.2, we extend the approach of [18] to derive a finite set of BMI sufficient conditions.
We then propose new sufficient LMI conditions for the BMI conditions by introducing slack
variables. We also propose a method by imposing a particular choice on the slack variables
to compute the initial solution, which includes the quadratic conditions as a special case. By
considering another special choice for the slack variables, it is proved that the proposed LMI
conditions contain one known solution to the BMI conditions as a particular case. Therefore,
in Section 3.3, we propose an iterative procedure to iteratively reduce the upper bounds on
the H2-norm and H∞-norm once a feasible initial solution is found. If the proposed initial
method cannot find a feasible solution, we modify our method in Section 3.4 to provide the
possibility of finding a feasible initial solution. Improvement on the update computation for
computing less conservative upper bounds is discussed in Section 3.5. We give numerical
examples in Section 3.6 to compare our proposed results with existing approaches and
summarize this chapter in Section 3.7.

The results presented in this chapter are based on our paper [60] and the associated contribu-
tions are highlighted as below:

• Propose a new initial computation method for H2-norm and H∞-norm design problems.
The proposed conditions include the quadratic conditions as a particular case.
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• Propose a new iterative procedure to iteratively reduce the upper bounds for both the
H2 and H∞-norms.

• Propose a new iterative procedure to find a feasible initial solution when the initial
computation method fails.

• Propose less conservative conditions for update computation by using the general
separation result proposed in Chapter 2.

3.1 Problem description

Consider the discrete-time linear time-invariant system with polytopic uncertainties

[
x (k + 1)

z (k)

]
=

[
A(α) B(α) Bw (α)
C (α) D(α) Dw (α)

] x (k)
u(k)
w(k)


where x (k) ∈ Rn is the state vector, u(k) ∈ Rnu is the control signal, w(k) ∈ Rnw is
the arbitrary noisy input and z (k) ∈ Rnz is the cost signal. The uncertain system matrices
A(α) ∈ Rn×n , B(α) ∈ Rn×nu , Bw (α) ∈ Rn×nw , C (α) ∈ Rnz×n , D(α) ∈ Rnz×nu ,
Dw (α) ∈ Rnz×nw belong to the polytopic domain[

A(α) B(α) Bw (α)
C (α) D(α) Dw (α)

]
=

N∑
i=1

αi

[
Ai Bi Bwi
Ci Di Dwi

]
,

where the uncertain parameter α lies in the unit simplex given by

Ω =

α ∈ RN : αi ≥ 0,∀i ∈ N ;
N∑

i=1
αi = 1

 ,

with N = {1, · · · ,N }. A linear parameter-independent constant state feedback control law
u(k) = Kx (k), where K ∈ Rnu×n is considered. Then the closed-loop system G is given
by [

x (k + 1)
z (k)

]
=

[
Acl (α) Bw (α)
Ccl (α) Dw (α)

][
x (k)
w(k)

]
, (3.1)

where Acl (α) = A(α) + B(α)K and Ccl (α) = C (α) + D(α)K .
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Suppose G is Schur stable, i.e., the eigenvalues of Acl (α) for all α ∈ Ω lie in the open unit
circle centered around the origin of the complex plane. Then, the H2-norm and H∞-norm of
the system G are defined by

∥G∥2 :=

√
1
2π

∫ π

-π
Trace

(
G(ejw ) ∗ G(ejw )

)
dw ,

∥G∥∞ := sup
w(k)∈[0 2π]

∥G(ejw )∥ = sup
w(k)∈L2,∥w(k)∥2 ̸=0

∥z (k)∥2
∥w(k)∥2

.

The problem investigated in this Chapter is to design a gain matrix K such that the closed-
loop system in (3.1) is Schur stable and also guarantees that its H2 or H∞-norm is less
than an upper bound, i.e., ∥G∥2 < µ or ∥G∥∞ < γ. The following is a simple extension
of standard results of H2 and H∞-norms available in the literature [11] to the closed-loop
system in (3.1), which follows from discrete controllability gramian and the bounded real
lemma by using V (x ) = xTP(α)-1x as the Lyapunov function.

Lemma 3.1. Consider the closed-loop system in (3.1).

1. (H2-norm) System (3.1) (assuming that Dw (α) = 0) is Schur stable and its H2-norm
is less than µ if there exist P(α) ∈ Sn

+ and W (α) ∈ Snz , such that for all α ∈ Ω,
Trace

(
W (α)

)
< µ2, [

-W (α) Ccl (α)P(α)
⋆ -P(α)

]
≺ 0 (3.2)

and -P(α) Bw (α) Acl (α)P(α)
⋆ -Inw 0
⋆ ⋆ -P(α)

 ≺ 0. (3.3)

2. (H∞-norm) System (3.1) is Schur stable and its H∞-norm is less than γ if there exist
P(α) ∈ Sn

+, such that for all α ∈ Ω,
-P(α) Bw (α) 0 Acl (α)P(α)
⋆ -γ2Inw Dw (α)T 0
⋆ ⋆ -Inz Ccl (α)P(α)
⋆ ⋆ ⋆ -P(α)

 ≺ 0. (3.4)

Note that the matrix inequalities (3.2)-(3.4) are nonlinear because of the product terms
Acl (α)P(α) and Ccl (α)P(α). This causes the optimization of minimizing µ (or γ) subject
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to the H2-norm (or H∞-norm) conditions in Lemma 3.1 to be non-convex. In [61] and [62],
a simple procedure based on parameter-independent Lyapunov function for linearizing these
inequalities is to fix P(α) = P , and subsequently to consider P and M (M = KP ) as the
decision variables. However, this often leads to excessive conservativenes, which forms our
motivation to propose new results to better cope with the problem.

3.2 Linearization and initial computation

Based on the work of [18] that provides robust stability analysis conditions for discrete-time
polytopic systems, we extend their idea to robust H2 and H∞ state feedback control design
and derive sufficient conditions in the form of BMIs

Theorem 3.1. Define

AK
i := Ai + BiK , CK

i := Ci + DiK .

Let Vij ∈ Sm satisfying

Vij + Vji ≽ 0, 1 ≤ i < j ≤ N ,
N∑

i=1
(Vij + Vji ) ≼ 0, j = 1, . . . ,N . (3.5)

1. (H2-norm) System (3.1) is Schur stable and its H2-norm is less than µ if, for all
i , j ∈ N , there exist Pj ∈ Sn

+, Wi ∈ Snz , V̂1ij ∈ S(n+nz ) satisfying (3.5), and
V̂2ij ∈ S(2n+nw ) satisfying (3.5), such that Trace (Wi )<µ2,[

-Wi CK
i Pj

⋆ -Pj

]
- V̂1ij ≺ 0, (3.6)

-Pj Bwi AK
i Pj

⋆ -Inw 0
⋆ ⋆ -Pj

 - V̂2ij ≺ 0. (3.7)
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2. (H∞-norm) System (3.1) is Schur stable and its H∞-norm is less than γ if, for all
i , j ∈ N , there exist Pj ∈ Sn

+ and V̂ij ∈ S(2n+nz+nw ) satisfying (3.5), such that
-Pj Bwi 0 AK

i Pj
⋆ -γ2Inw DT

wi 0
⋆ ⋆ -Inz CK

i Pj
⋆ ⋆ ⋆ -Pj

 - V̂ij ≺ 0. (3.8)

Proof. First, when inequality (3.5) is satisfied, it yields that
∑N

i ,j=1αiαj Vij ≼ 0,∀α ∈ Ω

(see Lemma 1.3). Then multiplying Trace (Wi )<µ2 and the inequalities in (3.6)-(3.7) by
αiαj , for all i , j ∈ N and taking their sum, we get Trace

(
W (α)

)
< µ2,[

-W (α) Ccl (α)P(α)
⋆ -P(α)

]
≺

N∑
i ,j=1

αiαj V̂1ij ≼ 0,

-P(α) Bw (α) Acl (α)P(α)
⋆ -Inw 0
⋆ ⋆ -P(α)

 ≺
N∑

i ,j=1
αiαj V̂2ij ≼ 0,

respectively. Then the H2-norm conditions of Lemma 3.1 are immediately satisfied.
The H∞-norm condition follows from following a similar procedure on (3.8) which gives

-P(α) Bw (α) 0 Acl (α)P(α)
⋆ -γ2Inw Dw (α)T 0
⋆ ⋆ -Inz Ccl (α)P(α)
⋆ ⋆ ⋆ -P(α)

≺
N∑

i ,j=1
αiαj V̂ij ≼0,

then the H∞-norm condition of Lemma 3.1 is immediately satisfied.

Note that the bilinearity of the conditions of Theorem 3.1 comes from the multiplicative
terms KPj . We next propose sufficient conditions for conditions of Theorem 3.1 based on
the Elimination Lemma and slack variables, in the form of LMIs. Furthermore, by imposing
a special structure for the slack variables, it will be shown that, through the computation of
an initial solution, the proposed conditions can contain quadratic stability based conditions
as special cases.
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3.2.1 Initial computation for robust H2 control

Theorem 3.2. Given pre-defined nonsingular matrices Ỹj ∈ Rn×n for all j ∈ N . Suppose
there exist Y ∈ Rn×n , M ∈ Rnu×n , and, for all i , j ∈ N , there exist Pj ∈ Sn

+, Wi ∈ Snz ,
V1ij ∈ Snz satisfying (3.5), and V2ij ∈ S(n+nw ) satisfying (3.5), such that Trace (Wi )<µ2,-Wi - V1ij CM ,Y

i Ỹj

⋆ -H
(
Y Ỹj

)
+ Pj

 ≺ 0, (3.9)


[

-Pj Bwi
BT

wi -Inw

]
- V2ij

[
AM ,Y

i Ỹj
0

]
⋆ -H

(
Y Ỹj

)
+ Pj

 ≺ 0, (3.10)

where AM ,Y
i = AiY + BiM and CM ,Y

i = CiY + DiM . Then the H2-norm conditions of
Theorem 3.1 are satisfied with K := MY -1 and therefore system (3.1) is Schur stable and its
H2-norm is less than µ.

Proof. Inequality (3.9) can be rewritten as (1.1) with

[
Q R
ST H

]
:=

 -Wi - V1ij 0 CK
i

0 Pj -In
0 Ỹj Y

,
and bases of the null spaces of RT and ST are given by

R⊥ =

[
In

(CK
i )T

]
and S⊥ =

[
In
0

]
,

respectively. Based on the result of the Elimination Lemma, inequality (3.9) is satisfied,
which implies, for all i , j ∈ N ,

RT
⊥QR⊥ = -Wi - V1ij + CK

i Pj CKT
i ≺ 0, (3.11)

ST
⊥ QS⊥ = -Wi - V1ij ≺ 0. (3.12)

It is clear that (3.11) implies (3.6) directly by effecting a Schur complement and imposing a

particular structure V̂1ij =

[
V1ij 0

0 0

]
. (3.12) is immediately satisfied when (3.9) is satisfied.
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Similarly, condition (3.10) can be rewritten as (1.1) with H = Y ,

Q =


[

-Pj Bwi
BT

wi Inw

]
- V2ij

[
0
0

]
⋆ -Pj

 ,R =

AK
i
0

-In

 , S =


0
0

Ỹj
T

 ,

respectively. The bases of the null spaces of R and S are given by

R⊥ =

 In 0
0 Inw

(AK
i )T 0

 and S⊥ =

In 0
0 Inw

0 0

,
respectively. From the Elimination Lemma, inequality (3.10) implies the following two
conditions for all i , j ∈ N ,

RT
⊥QR⊥ =

[
-Pj + AK

i Pj (AK
i )T Bwi

⋆ -I

]
- V2ij ≺ 0, (3.13)

ST
⊥ QS⊥ =

[
-Pj Bwi
⋆ -I

]
- V2ij ≺ 0. (3.14)

Note that (3.14) is obtained from (3.10) by excluding the third row and column, and (3.13) is

equivalent to (3.7) from a direct application of a Schur complement and V̂2ij =

[
V2ij 0

0 0

]
.

Note that Ỹj is not a matrix variable; it can be pre-defined in several ways. We next
demonstrate the benefit for a particular choices of Ỹj = In for all j ∈ N .

Corollary 3.1. If quadratic stability based conditions for H2-norm (see Lemma 4 of [23])
hold, then the conditions of Theorem 3.2 also hold when Ỹj = In .

Proof. When Pj = P and Ỹj = In for all j ∈ N , the conditions of Theorem 3.2 reduce to
Trace (Wi )<µ2, [

-Wi - V1ij CM ,Y
i

⋆ -H (Y ) + P

]
≺ 0,


[

-P Bwi
BT

wi -Inw

]
- V2ij

[
AM ,Y

i
0

]
⋆ -H (Y ) + P

 ≺ 0.
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The above conditions are equivalent to quadratic stability based conditions for H2-norm with
the choices Y = P , V1ij = 0 and V2ij = 0.

3.2.2 Initial computation for robust H∞ control

Theorem 3.3. Given pre-defined nonsingular matrices Ỹj ∈ Rn×n for all j ∈ N . Suppose
there exist Y ∈ Rn×n , M ∈ Rnu×n , and, for all i , j ∈ N , there exist Pj ∈ Sn

+ and
V̂ij ∈ S(2n+nz+nw ) satisfying (3.5), such that

 -Pj Bwi 0
BT

wi -γ2Inw DT
wi

0 Dwi -Inz

 - Vij

AM ,Y
i Ỹj

0
CM ,Y

i Ỹj


⋆ -H

(
Y Ỹj

)
+ Pj

 ≺ 0. (3.15)

Then the H∞-norm conditions Theorem 3.1 are satisfied with K := MY -1 and therefore
system (3.1) is Schur stable and its H∞-norm is less than γ.

Proof. Condition (3.15) can be reformulated as (1.1) with H = Y ,

Q =


 -Pj Bwi 0
BT

wi -γ2Inw DT
wi

0 Dwi -Inz

-Vij

0
0
0


⋆ -Pj

,R=


AK

i
0

CK
i

-In

, S =


0
0
0

Ỹj
T

,

respectively. The bases of the null spaces of R and S are given by

R⊥ =


In 0 0
0 Inw 0
0 0 Inz

(AK
i )T 0 (CK

i )T

 and S⊥ =


In 0 0
0 Inw 0
0 0 Inz

0 0 0

,
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respectively. By the Elimination Lemma, if inequality (3.15) holds, which implies, for all
i , j ∈ N

RT
⊥QR⊥ =

-Pj +AK
i Pj (AK

i )T Bwi AK
i Pj (CK

i )T

⋆ -γ2Inw DT
wi

⋆ ⋆ - Inz +CK
i Pj (CK

i )T

-Vij ≺0, (3.16)

ST
⊥ QS⊥ =

-Pj Bwi 0
⋆ -γ2Inw DT

wi
⋆ ⋆ -Inz

 - Vij ≺ 0. (3.17)

Note that (3.17) is included in (3.15) after excluding its fourth row and column, and (3.16) is

equivalent to (3.8) by applying a Schur complement and V̂ij =

[
Vij 0
0 0

]
.

Corollary 3.2. If quadratic stability based conditions for H∞-norm (see Lemma 2 of [23])
hold, then the conditions of Theorem 3.3 also hold when Ỹj = In .

Proof. The proof is similar to that of Corollary 3.1 with Pj = P = Y , Vij = 0 and is
therefore omitted.

Remark 3.1. The computation of K from the equality K = MY -1 is feasible if and only if
Y is nonsingular. This is satisfied since Y Ỹj + Ỹj

TY T ≻ Pj ≻ 0 (which follows from (3.9),
(3.10), (3.15)) implies that Y Ỹj is nonsingular, which in turn shows that Y is nonsingular
since Ỹj is presupposed to be nonsingular.

3.3 Update computation algorithm

In last section, it is shown that a feasible initial solution for H2 and H∞ design can be
obtained by Theorem 3.2 and 3.3 with Ỹj = In , respectively. This section will show that
any known solution to Theorem 3.1 is a special case of Theorem 3.2 and 3.3 by means of
another particular choice of Ỹj . Then, an iterative algorithm is proposed to update the initial
solution.

3.3.1 Update computation for robust H2 control

Corollary 3.3. Suppose there exist a feasible initial solution P̃j , W̃i , K̃ , µ̃, Ṽ1ij ∈ Snz

satisfying (3.5), and Ṽ2ij ∈ S(n+nw ) satisfying (3.5), for all i , j ∈ N , such that the H2-norm
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conditions of Theorem 3.1 hold, so that Tr(W̃i ) < µ̃2

-W̃i - Ṽ1ij C K̃
i P̃j

⋆ -P̃j

 ≺ 0,


[

-P̃j Bwi
BT

wi -Inw

]
- Ṽ2ij

AK̃
i P̃j
0


⋆ -P̃j

 ≺ 0.

Then the conditions of Theorem 3.2 also hold when Ỹj = P̃j .

Proof. When Ỹj = P̃j , with the choices Pj = P̃j , Wi = W̃i , µ = µ̃, V1ij = Ṽ1ij ,
V2ij = Ṽ2ij , Y = In and M = K̃ , it is direct to see the conditions in Theorem 3.2 become
the initial conditions as above.

3.3.2 Update computation for robust H∞ control

Corollary 3.4. Suppose there exist a feasible initial solution P̃j , K̃ , and γ̃, and Ṽij ∈
S(n+nz+nw ) satisfying (3.5), for all i , j ∈ N , such that the H∞-norm conditions of Theo-
rem 3.1 hold, so that

 -P̃j Bwi 0
BT

wi -γ̃2Inw DT
wi

0 Dwi -Inz

 - Ṽij

AK̃
i P̃j
0

C K̃
i P̃j


⋆ -P̃j

 ≺ 0.

Then the conditions of Theorem 3.3 also hold when Ỹj = P̃j .

Proof. When Ỹj = P̃j , with the choices Pj = P̃j , γ = γ̃, Vij = Ṽij , Y = In and M = K̃ ,
it is clear to see that the conditions of Theorem 3.3 become the initial conditions.

3.3.3 Iterative algorithm

It is necessary to mention that the conservatism of the method of [11] and [23] comes from
the fact that they use a common slack variable Y for all i ∈ N . We pursue a different
approach to overcome the conservatism by inserting the pre-defined matrix Ỹj into the
expression for the slack variables such that Yj = Y Ỹj , ∀j ∈ N . By doing this the slack
variables are allowed to vary with the index j but at the same time allowing the optimization
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problem to be still tractable since Ỹj is not a variable.

The degrees of freedom provided by these extra pre-defined matrices Ỹj have been exploited.
When Ỹj = In , the initial solution obtained by Theorem 3.2 and Theorem 3.3 can reproduce
quadratic stability based results for H2 and H∞-norm as special cases. Once an feasible
initial solution is found, then solving the conditions of Theorem 3.2 and Theorem 3.3 with
Ỹj = P̃j will generally provide a less conservative solution than the initial ones; at least it
is capable of reproducing the initial solution. Therefore, it is possible to search for better
solutions via an iterative procedure. The next algorithm presents such an iterative procedure
based on our results to compute sequences of non-increasing H2 and H∞ guaranteed costs.

Algorithm 3.1. Given tolerance level tol and itmax (maximum number of iterations)

1. Initial solution: Apply Theorem 3.2 and Theorem 3.3 with Ỹj = In to compute an
feasible initial solution for the H2 or H∞ problem. Set µ̃ = µ (or γ̃ = γ), P̃j = Pj for
all j ∈ N , and k = 0.

2. Update: Minimize µ (or γ) over the related variables Theorem 3.2 (or Theorem 3.3)
with Ỹj = P̃j . Record Pj , µ (or γ).

3. Stopping condition: If (µ̃ - µ)/µ̃ ≤ tol (or (γ̃ - γ)/γ̃ ≤ tol ) or k > itmax stop. Else
set P̃j = Pj , µ̃ = µ (or γ̃ = γ), k = k + 1, and go to step 2.

3.4 Robust stabilization when no known initial solution ex-
ists

As illustrated in the last section, getting a feasible initial solution to the H2-norm and
H∞-norm conditions of Theorem 3.1 through the initial computation method proposed in
Section 3.2 is an essential step to execute Algorithm 3.1. However, there exist some open-
loop unstable uncertain systems that are known to be robustly stabilizable by some robust
state feedback gain, but the initial computation method may fail to find a feasible solution.
Hence, in this section, we propose an algorithm based on an iterative procedure to allow the
possibility of finding a stabilizing gain when the initial computation fails.

We next carry out robust stabilization analysis since we only need a feasible stabilizing
solution for the H2-norm and H∞-norm problems. First, we need the following slightly
modified characterization of Schur stability for the discrete-time closed-loop systems.
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Lemma 3.2. The closed-loop system in (3.1) is Schur stable if, for all i , j ∈ N , there exist
K ∈Rnu×n , r ≤ 1,Pj ∈ Sn

+, and Vij ∈ Sn satisfying (3.5), such that[
-rPj - Vij (Ai + BiK )Pj

⋆ -rPj

]
≺ 0 (3.18)

are satisfied.

Proof. First, let Vij ∈ Sn satisfying (3.5), which implies
∑N

i ,j=1αiαj Vij ≼ 0,∀α ∈ Ω.
Then multiplying (3.18) by αiαj , for all i , j ∈ N , summing them, we have[

-rP(α) (A(α) + B(α)K )P(α)
⋆ -rP(α)

]
≺

[∑N
i ,j=1αiαj Vij 0

0 0

]
≼ 0.

Using a Schur complement argument, the above inequality implies

-P(α) - (
1
r
(
A(α) + B(α)K )

)
P(α)(

1
r
(
A(α) + B(α)K )

)T ≺ 0,

which shows that the eigenvalues of A(α)+B(α)K for all α ∈ Ω lie in a open disk centered
at the origin with radius r . It follows that the closed-loop system in (3.1) is stabilized by K
when r ≤ 1.

We next relax this characterization by removing the inequality constraint on r and consider
the following relaxed problem:

Problem 3.1. Find K ∈Rnu×n , a scalar r ∈ R, and for all i , j ∈ N , Pj ∈ Sn
+, Vij ∈ Sn

satisfying (3.5), such that[
-Vij (Ai + BiK )Pj
⋆ 0

]
≺ r

[
Pj 0
⋆ Pj

]
(3.19)

The above Problem 3.1 is non-convex since the bilinear term KPj in (3.19). Note that if we
set Pj = P and Vij = 0 for all i , j ∈ N , then it follows the following relaxed quadratic
stabilization problem that can be used to compute an initil solution to Problem 3.1.

Problem 3.2. Find M ∈Rnu×n , a scalar r ∈ R, and P ∈ Sn
+, i ∈ N , such that[

0 AiP + BiM
⋆ 0

]
≺ r

[
P 0
⋆ P

]
, (3.20)

then with K := MP -1, r , and P solve Problem 3.1.
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Note that let

Z :=

[
0 (Ai + BiK )P
⋆ 0

]
, Y =

[
P 0
⋆ P

]
so that (3.20) can be written as Z - rY ≺ 0. Since P ≻ 0 then Y ≻ 0, there always exists
a r ∈ R such that Z - rY ≺ 0, e.g. any r larger than the largest eigenvalue of Y -1Z .
Therefore, there always exists a solution to Problem 3.2. Furthermore, Problem 3.2 is a
standard generalized eigenvalue problem (GEVP) [1] since Y ≻ 0 and therefore it is easily
solvable via gevp solver. Once a feasible initial solution to Problem 3.1 is found by solving
Problem 3.2, which means that the closed-loop system has all its eigenvalues to lie in a open
disk centered at the origin with radius r (in general r > 1), then we can update the solution
to Problem 3.1 with a smaller value of r through the following result, until r ≤ 1.

Theorem 3.4. Let K̃ ∈ Rnu×n , r̃ ∈ R, and for all i , j ∈ N , P̃j ∈ Sn
+, and Ṽij ∈ Sn

satisfying (3.5), solve Problem 3.1 so that[
-r̃ P̃j - Ṽij (Ai + Bi K̃ )P̃j

⋆ -r̃ P̃j

]
≺ 0 (3.21)

If there exist Y ∈ Rn×n , M ∈ Rnu×n , r ∈ R, and, for all i , j ∈ N , Pj ∈ Sn
+ and Vij ∈ Sm

satisfying (3.5) , such that-rPj - Vij
r̃
r (AiY + BiM )P̃j

⋆ - H
(
r̃Y P̃j

)
+ rPj

 ≺ 0, (3.22)

then with K = MY -1, r , and for all i , j ∈ N , Pj and Vij also solve Problem 3.1. Further-
more, condition (3.22) is satisfied by

(Pj ,Vij ,Y ,M , r) := (P̃j , Ṽij , In , K̃ , r̃).

.

Proof. For the first part, effecting the congruence diag
(
In , (rPj )-1Y (r̃ P̃j )

)
on (3.19)

shows that it implies[
-rPj - Vij

r̃
r (AiY + BiM )P̃j

⋆ - (r̃Y P̃j )T (rPj )-1(r̃Y P̃j )

]
≺ 0,
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the above inequality gives (3.22) since -(r̃Y P̃j )T (rPj )-1(r̃Y P̃j ) ≼ -H
(
r̃Y P̃j

)
+ rPj .

For the second part, it is readily to see (3.22) becomes the initial one of (3.21) when
(Pj ,Vij ,Y ,M , r) := (P̃j , Ṽij , In , K̃ , r̃).

As demonstrated in Theorem 3.4, the update solution obtained by Theorem 3.4 would be
no more conservative than any known solution to Problem 3.1 since (3.21) is included by
(3.22) as a special case. Hence, an iterative procedure can be employed to find a feasible
solution to Problem 3.1 for a non-increasing sequence of r . If r ≤ 1, the stabilizing gain for
the closed-loop system is found.

Algorithm 3.2. Given tolerance level tol and itmax (maximum number of iterations).

1. Initial solution: Solve Problem 3.2 via gevp solver to find the smallest r . If r ≤ 1,
then stop, a stabilizing gain is found. Else set K̃ = K , r̃ = r , and P̃j = P for all
j ∈ N , and set k = 0.

2. Update: Given K̃ , r̃ , and P̃j for all j ∈ N , solve Theorem 3.4 for r = 1. If feasible,
record K , r , and Pj for all j ∈ N and stop, a stabilizing gain is found. If infeasible,
use a bisection algorithm to find r in the interval (1 r̃ ] for which Theorem 3.4 is
feasible and record K , r , and Pj for all j ∈ N .

3. Stopping condition: If (r̃ - r)/r̃ ≤ tol or k > itmax then stop, the algorithm has
failed to find a stabilizing gain. Else set K̃ = K , r̃ = r , P̃j = Pj ,k = k + 1, and go
to Step 2.

3.5 Improvement on update computation

Theorem 3.2 and Theorem 3.3 give sufficient LMI conditions for the H2-norm and H∞-norm
conditions of Theorem 3.1, respectively, by separating the bilinear term KPj . Moreover, we
impose a particular structure on the matrices V̂1ij , V̂2ij and V̂ij in (3.9), (3.10) and (3.15) as

V̂1ij :=

[
V1ij 0

0 0

]
, V̂2ij :=

[
V2ij 0

0 0

]
, V̂ij :=

[
Vij 0
0 0

]
, (3.23)

respectively. The above equality constraint on V̂ij can simplify the conditions of Theorem 3.1
and allow the bilinear term KPj to be easily decoupled. However, this constraint has re-
stricted some block submatrices of V̂ij to be zero, which introduces conservatism in general.
In this section, based on the work of Chapter 2, we propose a modified update computation
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without imposing the constraint (3.23) on V̂ij .

First, we notice that the parameter-dependent H2-norm and H∞-norm conditions of Lemma 3.1
can also be formulated as a generalized robust design problem given in Section 2.1.2.

Problem 3.3. Let F ∈ Rm,n and for all i ∈ N , let Ai ∈ Rm×n ,Bi ∈ Rm×nu and Ti ∈ Sm

be given and, for any α ∈ ΩN let

[
A(α) B(α) T (α)

]
:=

N∑
i=1

αi

[
Ai Bi Ti

]
.

Find a state feedback controller K ∈ Rnu×n and a parameter-dependent Lyapunov matrix
P(α) ∈ Sn

+ such that for all α ∈ ΩN ,

T (α) + H
(
(A(α) + B(α)K )P(α)FT

)
≺ 0, (3.24)

where

• For the H2 case

– For the first condition in (3.2):

T (α) =

[
-W (α) 0

0 -P(α)

]
, A(α) =

[
C (α)

0

]
, B(α) =

[
D(α)

0

]
, F =

[
0
In

]
·

– For the second condition in (3.3): T (α) =

 -P(α) Bw (α) 0
Bw (α)T -Inw 0

0 0 -P(α)

,

A(α) =

A(α)
0
0

, B(α) =

B(α)
0
0

, F =

 0
0
In

·

• For the H∞ case in (3.4): T (α) =


-P(α) Bw (α) 0 0

Bw (α)T -γ2Inw Dw (α)T 0
0 Dw (α) -Inz 0
0 0 0 -P(α)

 ,

A(α) =


A(α)

0
C (α)

0

 , B(α) =


B(α)

0
D(α)

0

 , F =


0
0
0
In

 ·
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Next problem gives a finite set of sufficient conditions for the solution of Problem 3.3.

Problem 3.4. Let all variables be as given in Problem 3.3. Find K ∈ Rnu×n and for all
i , j ∈ N , find Pj ∈ Sn

+ and V̂ij ∈ Sm satisfying (3.5), such that

Ti + H
(
AiPjFT + BiKPjFT

)
≺ V̂ij . (3.25)

As discussed in section 2.3.2, Corollary 2.1 gives sufficient LMI conditions for the solution
of Problem 3.4, and it includes any known solution to Problem 3.4 as a particular case.
Notice that Corollary 2.1 does not require imposing the constraint (3.23) on V̂ij . Hence, it
follows that H2 and H∞ state feedback control for discrete-time polytopic systems can now
be formulated by the following modified algorithm.

Algorithm 3.3. Given tolerance level tol and itmax (maximum number of iterations)

1. Initial solution: Apply Theorem 3.2 and Theorem 3.3 with Ỹj = In to compute an
feasible initial solution to Problem 3.4. Set µ̃ = µ (or γ̃ = γ), K̃ = K , P̃j = Pj for
all j ∈ N , and k = 0.

2. Update: Minimize µ (or γ) over the related variables in Corollary 2.1 of Section 2.3.2.
Record K , Pj , µ (or γ).

3. Stopping condition: If (µ̃ - µ)/µ̃ ≤ tol (or (γ̃ - γ)/γ̃ ≤ tol ) or k > itmax stop. Else
set K̃ = K , P̃j = Pj , µ̃ = µ (or γ̃ = γ), k = k + 1, and go to step 2.

3.6 Numerical examples

3.6.1 Example 1

The benefit of Algorithm 3.1 for H2 and H∞ state feedback control design is demonstrated by
the following example. We consider the satellite system presented in [13]. Its discrete-time
equivalent system dynamics is obtained via first-order Euler approximation with a sampling
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time of 0.1s , and are given as

x (k + 1)=


1 0 0.1 0
0 1 0 0.1

-0.1f1 0.1f1 1 - 0.1f2 0.1f2
0.1f1 -0.1f1 0.1f2 1 - 0.1f2

 x (k) +


0
0

0.1
0

 u(t) +


0
0
0

0.1

w(t),

z (k)=

[
0 1 0 0
0 0 0 0

]
x (k) +

[
0

0.01

]
u(k).

The torque constant and viscous damping are given by f1 and f2, which are uncertain in
the ranges of [0.09, 0.4] and [0.0038, 0.04], respectively. The values of the H2 and H∞
guaranteed costs and the associated computation time obtained by Algorithm 3.1 and the
methods of [11] and [23] are displayed in Table 3.1 and Table 3.2 below. Note that 199
linearly equally spaced points between -0.99 and 0.99 is considered as the search domain for
the scalar ξ of [23], giving a total of 199 tests to search for the minimum values.

Method µ Scalars T : solution time
[61] 1.140 - 0.30 s
[11] 0.7537 - 0.33 s
[23] 0.7464 ξ = -0.13 65.25 s

Initial 0.7808 - 0.91 s
Algorithm 3.1 0.6232 itmax = 1 1.94 s
Algorithm 3.1 0.4954 itmax = 11 12.27 s

Table 3.1 The minimum upper bound on H2-norm achieved with some existing methods and
Algorithm 3.1, as well as the associated solution time for Example 1

Method γ Scalars T : solution time
[61] 3.1259 - 0.29 s
[11] 2.1922 - 0.33 s
[23] 2.1311 ξ = -0.34 64.13 s

Initial 2.2752 - 0.69 s
Algorithm 3.1 1.9749 itmax = 1 1.41 s
Algorithm 3.1 1.8582 itmax = 7 5.63 s

Table 3.2 The minimum upper bound on H∞-norm achieved with some existing methods
and Algorithm 3.1, as well as the associated solution time for Example 1

Indeed, [23] achieves reduction of conservatism with respect to [11] through scalar parameter
search in the computation of guaranteed costs of H2-norm and H∞-norm, but at the price
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of much more computation time. As illustrated in the above tables, the initial computation
obtained from the proposed conditions of Theorem 3.2 and Theorem 3.3 with Ỹj = In
provides better results for both the H2 and H∞ performance than [61] (quadratic). It is shown
in Table 3.1 and Table 3.2 that the H2 and H∞ performance computed by our method is
better than the one in [23] even after the first iteration. After a few iterations, our method
can achieve much better results, the final converged value for H2 performance is 0.4954 with
corresponding obtained feedback gain K = [-20.2481 - 88.7875 - 9.4603 - 172.8005], which
reveal a noticeable improvement of 26% compared to the result obtained in [23].

Moreover, Algorithm 3.1 can achieve the best value with 1.8582 for H∞ performance when
K = [-66.6520 - 407.9715 - 17.8399 - 662.9663], with a relative improvement of 19% with
respect to [23]. Regarding the computational burden, the results show that although the
proposed Algorithm 3.1 requires a larger computational effort than [61] and [11], but the
overall computation time is still acceptable and it is much shorter than the one spent by [23].

In order to demonstrate the fast convergence speed of our Algorithm 3.1, the relation between
the number of iterations and H2 and H∞ performance is shown in Figure 3.1 and Figure 3.2
below. With tol is set to be 0.1%, we notice that the H2 and H∞ performance can be
iteratively reduced, and converge to their lowest values within only 11 steps for the H2
performance and 7 steps for the H∞ performance, respectively.

As a final comparison, Algorithm 3.3 yields a converged value of 0.4938 for H2 performance
after 11 iterations and a converged value of 1.8525 for H∞ performance after 7 iterations.
The computation time spent by Algorithm 3.3 for H2 control and H∞ control are 16.56 s
and 6.92 s , respectively. Compared to the results obtained by Algorithm 3.1, it is shown that
Algorithm 3.3 provides slightly smaller H2 and H∞ guaranteed costs than Algorithm 3.1 but
at the expense of more computational burden.
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Fig. 3.1 Bound on the H2-norm against the number of iterations computed using Algo-
rithm 3.1 for Example 1.
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Fig. 3.2 Bound on the H∞-norm against the number of iterations computed using Algo-
rithm 3.1 for Example 1.
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3.6.2 Example 2

Consider a discrete-time polytopic system from [29] with the following vertex system
matrices:

A1 =

[
-0.9113 0.5904
1.2798 -1.1808

]
, A2 =

[
0.7855 -2.4260
0.8241 -1.2928

]
,B1 =

[
-2
4

]
, B2 =

[
-5
3

]
,

A3 =

[
1.2699 -0.7024
1.0372 1.2452

]
, A4 =

[
0.3685 -1.1333
-0.5527 1.5642

]
, B3 =

[
1
-1

]
, B4 =

[
2
-3

]
,

Bw1 =

[
0.1
0.1

]
, Bw2 =

[
0.1
0

]
, Bw3 =Bw4 =

[
0
0

]
,Dw1 =Dw2 =Dw3 =Dw4 =0,

CT
1 =

[
1
1

]
, CT

2 =

[
1
0

]
, CT

3 =CT
4 =

[
0
0

]
, D1 = D3 = 1, D2 = D4 = -1.

First of all, applying the proposed initial computation method gives infeasibility for comput-
ing initial H2 and H∞ solutions. Now applying the proposed Algorithm 3.2 gives a feasible
solution to the H2-norm and H∞-norm conditions of Theorem 3.1, the initial stabilizing gain
and initial Lyapunov matrices are given by K̃ = [-0.3568 0.4838] and

P̃1 =

[
1.8860 -0.1312
-0.1312 2.8370

]
, P̃2 =

[
1.0468 0.1958
0.1958 2.5472

]
,

P̃3 =

[
1.0228 0.3549
0.3549 6.5219

]
, P̃4 =

[
1.4767 -0.1305
-0.1305 4.0468

]
.

Using the given K̃ and P̃j , we next applying both the proposed iterative procedures-as
given by Algorithm 3.1 and Algorithm 3.3, giving the minimum values of the H2 and H∞
guaranteed costs shown in Table 3.3.

Method µ itmax γ itmax
Algorithm 3.1 0.5124 10 3.9977 25
Algorithm 3.3 0.2706 10 0.7705 8

Table 3.3 The minimum upper bounds on H2-norm and H∞-norm computed using Algo-
rithm 3.1 and Algorithm 3.3 for Example 2.

We note that although both Algorithm 3.1 and Algorithm 3.3 give final converged values for
H2 and H∞ guaranteed costs after a finite number of iterations, the minimum values of µ and
γ obtained by Algorithm 3.3 are much superior to those provided by Algorithm 3.1. This
example shows that the advantages of Algorithm 3.3 over Algorithm 3.1, by removing the
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equality constraint (3.23) on V̂ij as discussed in section 3.5.

For comparison, Figure 3.3 and Figure 3.4 show that the relation between the computed
results through Algorithm 3.1 and Algorithm 3.3 for H2 and H∞ cases, respectively.

1 2 3 4 5 6 7 8 9 10

Iterations
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0.55

0.6

0.65

0.7

µ

Algorithm 3.1

1 2 3 4 5 6 7 8 9 10

Iterations

0.25
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0.4

0.45

µ

Algorithm 3.3

Fig. 3.3 Bound on the H2-norm against the number of iterations computed using Algo-
rithm 3.1 and Algorithm 3.3 for Example 2.

3.7 Summary

In conclusion, this chapter has investigated the problem of robust H2 and H∞ state feedback
control of discrete-time polytopic systems. We proposed an iterative procedure (Algo-
rithm 3.1) to compute a sequence of non-increasing upper bounds for the H2-norm and
H∞-norm by utilizing the initial solution obtained by the proposed initial computation
method as a starting point. Based on the general separation results of Chapter 2, we also
proposed an improved algorithm (Algorithm 3.3) that can reduce the conservatism for the
update computation for Algorithm 3.1. Example 1 from the literature showed that the H2 and
H∞ performances derived by Algorithm 3.1 and Algorithm 3.3 were nearly the same, and
both were much superior to the results computed by other existing methods. Moreover, we
also presented Algorithm 3.2 as an alternative approach for finding a stabilizing gain when
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Fig. 3.4 Bound on the H∞-norm against the number of iterations computed using Algo-
rithm 3.1 and and Algorithm 3.3 for Example 2.

the initial computation fails. Example 2 was provided to illustrate that Algorithm 3.2 can find
a stabilizing gain when the initial computation is infeasible. Using the feasible initial solution
provided by Algorithm 3.2, then Algorithm 3.3 provided much smaller final converged values
of the H2 and H∞-norms than Algorithm 3.3. We conclude that it is advisable to implement
both Algorithm 3.1 and Algorithm 3.3 for the computation of H2 and H∞ guaranteed costs
and select the best results among them, especially when the proposed initial computation
method is infeasible, although Algorithm 3.3 requires a larger computational effort.



Chapter 4

H2 and H∞ state feedback control
by means of parameter-dependent
slack variables

New iterative procedures for H2 and H∞ state feedback control of continuous-time and
discrete-time polytopic systems have been proposed in Chapter 2 and Chapter 3, respectively.
We have shown that the proposed iterative procedures can compute less conservative up-
per bounds for H2 and H∞-norms than the existing methods through numerical examples.
However, we cannot verify that our proposed conditions can give a less conservative design
than the existing methods by rigorous theoretical proof. In this chapter, we will propose
new design conditions that can include the conditions of the existing methods as special cases.

This chapter is organized as follows. In Section 4.1, we first review the current results and
propose BMI conditions for designing H2 and H∞ controller with the introduction of the
affine parameter-dependent slack variables. Using a given controller gain provided by the
existing methods, we propose a method to compute the initial solution, which includes the
current methods as special cases. In Section 4.2, we present a novel separation result to
give sufficient LMI conditions for the BMI conditions. By theoretical proof, it is proved
that any known solution to the BMI conditions can be included by the LMI conditions as
a particular case. Therefore, an algorithm is presented to iteratively update the solutions
using the initial solution obtained from Section 4.1 as a starting point. In Section 4.3, we
show that the solutions to the proposed BMI conditions for H2 and H∞ synthesis problems
in Chapter 2 and Chapter 3 can also be iteratively updated through the separation result
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presented in Section 4.2. We illustrate the effectiveness of the proposed algorithms through
two examples from the literature in Section 4.4 and summarize this chapter in Section 4.5.

The results presented in this chapter are based on our prepared paper [63] and the associated
contributions are highlighted as below:

• Propose an initial computation method that can compute a solution, in one step,
which is proved to be no more conservative than the optimal solution obtained by the
approaches available in the literature.

• Propose a new separation result that is more general than the separation result proposed
in Chapter 2. It is shown that this new separation result can iteratively solve the BMI
design conditions presented in Chapter 2 and Chapter 3.

4.1 Summary of current results and initial computation

In this section, we give a summary of the existing methods based on parameter-dependent
Lyapunov matrices for designing H2 and H∞ state feedback controller for both continuous-
time and discrete-time systems and highlight the associated conservatism. We also derive
new unified BMI based conditions for this design problem. It is proved that the conservatism
of conditions from previous studies has been avoided in our results and the proposed BMI
conditions contain the existing methods as special cases.

4.1.1 Current results based on the Elimination Lemma

The quadratic stability based method is generally very conservative since it uses a parameter-
independent Lyapunov function in the entire uncertainty polytope. Therefore, many recent
works have widely introduced slack variables to separate the system matrices from the
Lyapunov matrix through an application of the Elimination Lemma, thus allowing the
Lyapunov matrix to be parameter-dependent and rendering a less conservative design. We
next reproduce the conditions of the existing methods in a unified form involving a parameter-
independent slack variable.
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Lemma 4.1. The continuous-time closed-loop system in (2.1) with Dw (α) = 0 is Hurwitz
stable and its H2-norm is less than µ

1. [24] if there exist P(α) ∈ Sn
+, W (α) ∈ Snw , and G ∈ Rn×n , such that[

-W (α) Bw (α)T

Bw (α) - P(α)

]
≺0, Trace

(
W (α)

)
<µ2, (4.1)


0 P(α) 0 0

P(α) -P(α) 0 0
0 0 Inz 0
0 0 0 -P(α)


︸ ︷︷ ︸

T (α)

+H





A(α)︷ ︸︸ ︷
-In

A(α)
C (α)
In

+

B(α)︷ ︸︸ ︷
0

B(α)
D(α)

0

K


︸ ︷︷ ︸

Acl (α)

G
[
In 0 0 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.2)
are satisfied for all α ∈ Ω.

2. [25] if there exist P(α) ∈ Sn
+, W (α) ∈ Snw , G ∈ Rn×n , and an arbitrarily pre-

scribed scalar r > 0, such that (4.1) and

 0 -P(α) 0
-P(α) 0 0

0 0 -Inz


︸ ︷︷ ︸

T (α)

+H





A(α)︷ ︸︸ ︷A(α)
In

C (α)

+

B(α)︷ ︸︸ ︷B(α)
0

D(α)

K


︸ ︷︷ ︸

Acl (α)

G
[
In -rIn 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.3)
are satisfied for all α ∈ Ω.
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3. [29] if there exist P(α) ∈ Sn
+, W (α) ∈ Snw , G ∈ Rn×n , an arbitrarily prescribed

scalar ξ ∈ (-1, 1) and a nonzero scalar ϵ, such that (4.1) and

P(α) 0 0
0 -P(α) 0
0 0 -Inz


︸ ︷︷ ︸

T (α)

+H





A(α)︷ ︸︸ ︷ ϵA(α) - I
2ϵ

-ϵA(α) - I
2ϵ

C (α)

+

B(α)︷ ︸︸ ︷ ϵB(α)
-ϵB(α)
D(α)

K


︸ ︷︷ ︸

Acl (α)

G
[
In ξIn 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.4)
are satisfied for all α ∈ Ω.

Lemma 4.2. The continuous-time closed-loop system in (2.1) is Hurwitz stable and its
H∞-norm is less than γ

1. [13] if there exist P(α) ∈ Sn
+, G ∈ Rn×n , and an arbitrarily prescribed scalar r > 0,

for all α ∈ Ω, such that
0 P(α) 0 Bw (α)

P(α) 0 0 0
0 0 -Inz Dw (α)

Bw (α)T 0 Dw (α)T -γ2Inw


︸ ︷︷ ︸

T (α)

+

H





A(α)︷ ︸︸ ︷
A(α)
-In

C (α)
0

+

B(α)︷ ︸︸ ︷
B(α)

0
D(α)

0

K


︸ ︷︷ ︸

Acl (α)

G
[
In rIn 0 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.5)
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2. [29] if there exist P(α) ∈ Sn
+, G ∈ Rn×n , an arbitrarily prescribed scalar ξ ∈ (-1, 1)

and a nonzero scalar ϵ, for all α ∈ Ω, such that
P(α) 0 ϵBw (α) 0

0 -P(α) -ϵBw (α) 0
ϵBw (α)T -ϵBw (α)T -γ2Inw Dw (α)T

0 0 Dw (α) -Inz


︸ ︷︷ ︸

T (α)

+

H





A(α)︷ ︸︸ ︷
ϵA(α)- I

2ϵ
-ϵA(α)- I

2ϵ
0

C (α)

+

B(α)︷ ︸︸ ︷
ϵB(α)
-ϵB(α)

0
D(α)

K


︸ ︷︷ ︸

Acl (α)

G
[
In ξIn 0 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.6)

Remark 4.1. The H2-norm design conditions of Lemma 4.1 follow from the observability
gramian. Note that the H2-norm synthesis problem discussed in Chapter 2 relies on the
controllability gramian. These two characterizations for the H2 performance are directly
related through the concept of duality, and they generally provide different upper bounds
(better or worse) for H2-norm.

Remark 4.2. Although condition (4.2) of [24] is a true LMI (without any scalar parame-
ter), it does not necessarily reduce to quadratic stability based conditions. To overcome
this weakness, [25], [13], and [29] introduce scalar parameters to allow their proposed
conditions include quadratic conditions as special cases, by means of a special choice for
the slack variable such that P(α)=P =G =GT . However, a line search procedure over the
scalar parameters has to be performed to search less conservative results, which increases
the computational effort.

Lemma 4.3. The discrete-time closed-loop system in (3.1) (assuming that Dw (α) = 0) is
Schur stable and its H2-norm is less than µ
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1. [11] if there exist P(α) ∈ Sn
+, W (α) ∈ Snz , and G ∈ Rn×n , such that

Trace
(
W (α)

)
<µ2, (4.7)

[
-W (α) 0

0 P(α)

]
︸ ︷︷ ︸

T (α)

+H




A(α)︷ ︸︸ ︷[
C (α)
-In

]
+

B(α)︷ ︸︸ ︷[
D(α)

0

]
K


︸ ︷︷ ︸

Acl (α)

G
[
0 In

]
︸ ︷︷ ︸

FT


≺ 0, (4.8)

 -P(α) 0 Bw (α)
0 P(α) 0

Bw (α)T 0 -Inw


︸ ︷︷ ︸

T (α)

+H





A(α)︷ ︸︸ ︷A(α)
-In
0

+

B(α)︷ ︸︸ ︷B(α)
0
0

K


︸ ︷︷ ︸

Acl (α)

G
[
0 In 0

]
︸ ︷︷ ︸

FT


≺ 0,

(4.9)

are satisfied for all α ∈ Ω.

2. [23] if there exist P(α) ∈ Sn
+, W (α) ∈ Snz , G ∈ Rn×n , and an arbitrarily prescribed

scalar ξ ∈ (-1, 1), such that (4.7), (4.8), and

 -P(α) 0 Bw (α)
0 P(α) 0

Bw (α)T 0 -Inw


︸ ︷︷ ︸

T (α)

+H





A(α)︷ ︸︸ ︷A(α)
-In
0

+

B(α)︷ ︸︸ ︷B(α)
0
0

K


︸ ︷︷ ︸

Acl (α)

G
[
ξIn In 0

]
︸ ︷︷ ︸

FT


≺ 0,

(4.10)
are satisfied for all α ∈ Ω.
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Lemma 4.4. The discrete-time closed-loop system in (3.1) is Schur stable and its H∞-norm
is less than γ

1. [11] if there exist P(α) ∈ Sn
+, and G ∈ Rn×n , such that


-P(α) 0 0 Bw (α)

0 P(α) 0 0
0 0 -Inz Dw (α)

Bw (α)T 0 Dw (α)T -γ2Inw


︸ ︷︷ ︸

T (α)

+H





A(α)︷ ︸︸ ︷
A(α)
-In

C (α)
0

+
B(α)︷ ︸︸ ︷
B(α)

0
D(α)

0

K


︸ ︷︷ ︸

Acl (α)

G
[
0 In 0 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.11)
are satisfied for all α ∈ Ω.

2. [23] if there exist P(α) ∈ Sn
+, G ∈ Rn×n , and an arbitrarily prescribed scalar

ξ ∈ (-1, 1), such that
-P(α) 0 0 Bw (α)

0 P(α) 0 0
0 0 -Inz Dw (α)

Bw (α)T 0 Dw (α)T -γ2Inw


︸ ︷︷ ︸

T (α)

+

H





A(α)︷ ︸︸ ︷
A(α)
-In

C (α)
0

+

B(α)︷ ︸︸ ︷
B(α)

0
D(α)

0

K


︸ ︷︷ ︸

Acl (α)

G
[
ξIn In 0 0

]
︸ ︷︷ ︸

FT


≺ 0

(4.12)

are satisfied for all α ∈ Ω.
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Remark 4.3. Although [11] does not incorporate any scalar parameter, it contains the
quadratic stability conditions for discrete-time systems, by fixing P(α) = P = G = GT .
The parameterized LMI conditions of [23] recover the conditions given in [11] when the
scalar ξ is set to zero, so [23] can provide better results than [11] but at the expense of more
computational burden due to scalar parameter searches.

As shown in lemmas above, the design conditions of H2 and H∞ state feedback controller
from the previous studies for both continuous-time and discrete-time systems can be repre-
sented as the following unified parameter-dependent LMI conditions:

∃ G ∈ Rn×n : T (α) + H
(
(A(α) + B(α)K )GFT

)
≺ 0, (4.13)

where only T (α) ∈ Sm depends on the Lyapunov matrix P(α), while A(α) ∈ Rm×n

and B(α) ∈ Rm×nu are augmented parameter-dependent matrices consisting of system
matrices, G ∈ Rn×n is a additional parameter-independent slack variable, and F ∈ Rm×n

is a constant matrix consisting of identity and zero matrices that may also depend on a
scalar parameter. Note that inequality (4.13) can be rewritten as inequality (2.1) of the
Elimination Lemma with Q = T (α), R = Acl (α), H = G , and S = F . The common idea
of the existing methods is to apply the Elimination Lemma to inequality (4.13) that implies
Acl (α)T⊥T (α)Acl (α)⊥≺ 0, which is the the standard synthesis conditions of H2 and H∞
state feedback control for uncertain systems, see proof of the references for more details.
By considering affine parameter-dependency for P(α) and W (α), the augmented parameter-
dependent matrices T (α),A(α), and B(α) can be rewritten as:

[
T (α) A(α) B(α)

]
=

N∑
i=1

αi

[
Ti Ai Bi

]
. (4.14)

Then the parameter-dependent condition (4.13) can be converted into the following a finite
set of sufficient LMI conditions:

∃ G ∈ Rn×n : Ti + H
(
(AiG + BiM )FT

)
≺ 0, (4.15)

where M := KG and G are considered to be decision variables.

Remark 4.4. It is important to emphasize that (4.13) is only sufficient for H2 and H∞
synthesis conditions due to the fixed structure of the introduced slack variable G , this
restriction is applied to obtain linearity in (4.13) but is not required by the Elimination Lemma.
Additionally, according to the Elimination Lemma, (4.13) also imply FT

⊥ T (α)F⊥≺ 0, which
introduces conservatism in general.
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4.1.2 Initial computation for H2 and H∞ performance

To overcome the conservatism of the existing methods that use a parameter-independent slack
variable G in (4.13), we now propose the following generalized condition that introduces a
parameter-dependent slack variable to design the robust H2 and H∞ state feedback controller

∃ X (α)∈ Rn×p : T (α)+H
(
(A(α) + B(α)K )X (α)ST

)
≺ 0. (4.16)

Remark 4.5. In contrast to condition (4.13) from previous studies, the additional slack
variable X (α) of (4.16) is not restricted to be parameter-independent and square, whose
column dimension is determined by the column dimension of S . S ∈ Rm×p is a designed
constant matrix that can be constructed in four strategies such that ST

⊥ T (α)S⊥≺ 0 does not
introduce conservatism. The simplest and least conservative design of S is to set S = Im
and in this way ST

⊥ T (α)S⊥≺ 0 vanishes since the nullspace of S does not exist, see [8] for
details. In this note, we opt to design S = Im for (4.16), and therefore S will be omitted in
the sequel.

The next theorem presents a finite set of BMI based sufficient conditions based on affine
parameter-dependent Lyapunov matrix for (4.16).

Theorem 4.1. For all i ∈ N , let Ti ∈ Sm , Ai ∈ Rm×n , and Bi ∈ Rm×nu be given as in
(4.14). For all i , j ∈ N , let Vij ∈ Sm satisfying the following linear inequalities:

Vij + Vji ≽ 0, 1 ≤ i < j ≤ N ,
N∑

i=1
(Vij + Vji ) ≼ 0, j = 1, · · · ,N . (4.17)

Then (4.16) is satisfied if there exist K ∈ Rnu×n and for all i , j ∈ N , there exist Xj ∈ Rn×m

and Vij ∈ Sm such that (4.17) and

Ti + H
(
AiXj + BiKXj

)
≺ Vij . (4.18)

are satisfied.

Proof. First, when (4.17) is satisfied, it yields that
∑N

i ,j=1αiαj Vij ≼ 0,∀α ∈ Ω (see
Lemma 1.3 for details). Then multiplying (4.18) by αiαj , for all i , j ∈ N and taking the
sum, we have T (α)+H

(
(A(α) + B(α)K )X (α)

)
≺

∑N
i ,j=1 αiαj Vij ≼ 0, which implies

(4.16) for S = Im .

Remark 4.6. The nonlinearity of condition (4.18) only occurs in the bilinear term KXj and
inequality (4.17) is linear in Vij , thus the conditions of Theorem 4.1 become LMIs for a
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given K . Note also that when we set Xj = GFT and Vij = 0 for all i , j ∈ N , (4.18)
reduces to (4.15). This property shows that the solutions to (4.15) are also feasible for
(4.18). Hence, the initial computation for the upper bounds on H2-norm and H∞ can be
characterized by solving Theorem 4.1 with a given controller gain K provided by any of the
existing methods. Due to the extra degrees of freedom provided by Xj and Vij , the obtained
H2/H∞ performance by the initial computation is no more conservative than the ones from
the previous studies.

4.2 Update computation algorithm

In this section, we propose a novel separation result to provide new LMI based sufficient
conditions for (4.18) by decoupling K and Xj with the introduction of new additional slack
variables. We will show that the new LMI conditions contain any known solution to (4.18)
as a particular case by imposing a constraint on the slack variables. Finally, an algorithm
based on LMIs is presented to iteratively update the solutions to Theorem 4.1 by using the
solutions provided by the existing methods as a starting point.

4.2.1 A general separation result

First, we need the following general separation theorem.

Theorem 4.2. Let T ∈ Sm , E ∈ Rm×n , X ∈ Rn×p , and F ∈ Rm×p be general matrix
variables. Then the following two statements are equivalent:

i) T +H
(
EXFT

)
≺0. (4.19)

ii) ∃ Y ∈ Rn×p ,Z ∈ Rn×n :

[
T +H(EY ) ⋆

XFT +ZTET -Y - H(Z )

]
≺ 0. (4.20)

Proof. (4.20)→(4.19): Effecting the congruence

[
Im 0
ET In

]
on (4.20), then we have the

following condition that is equivalent to (4.20) T +H
(
EXFT

)
⋆

XFT -ZET -Y - H(Z )

≺0. (4.21)

This shows that T +EXFT+FXTET≺0 if (4.20)/(4.21) is satisfied.
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(4.19)→(4.20): If (4.19) is satisfied, it is readily to see (4.21) is satisfied by defining Y =
XFT - ZET where Z is any matrix that satisfies H(Z ) ≻ 0. This completes the proof since
(4.21) ↔ (4.20).

Remark 4.7. Note that provided that F is constant matrix, then both (4.19) and (4.20)
are bilinear. Note also that (4.20) separates the bilinear term EX in (4.19) without any
conservatism but using two slack variables Y and Z with the bilinear terms EY and EZ
instead. However, (4.20) becomes linear provided that we impose further restrictions on these
two slack variables, e.g. Y =WY0 and Z =WZ0, where W is a variable but Y0 ∈ Rm×n

and Z0 ∈ Rn×n are not variables. This restriction leads to (4.20) being linear, although it
will be a sufficient condition for (4.19) only.

Remark 4.8. Notice that the variable X in (4.19) is a full general matrix without imposing
any structural constraint, e.g. square, symmetry or definiteness. Theorem 2.2 in Section 2.3.1
also allows us to separate the variables E and X without any conservatism. However,
Theorem 2.2 requires X (in (2.15)) to be positive definite. Therefore, the separation result in
Theorem 4.2 in more general than the one proposed in Theorem 2.2. It will be shown later
that Theorem 4.2 can deal with the BMI conditions in (4.18) while Theorem 2.2 cannot do it
since Xj is not positive definite.

4.2.2 Application

The next result is a direct application of Theorem 4.2 on (4.18) to give sufficient LMI
conditions for Theorem 4.1.

Theorem 4.3. Let all variables be as defined in Theorem 4.1. For all i , j ∈ N , given constant
matrices Ỹij ∈Rn×p and Z̃ij ∈ Rn×n , suppose there exist Y ∈ Rn×n and M ∈ Rnu×n

and, for all i , j ∈ N , there exist, Xj ∈ Rn×m , and Vij ∈ Sm such that (4.17) and the
following LMIs hold:Ti +H

(
AiXj + BiMỸij

)
-Vij ⋆

Xj +(BiMZ̃ij )T -Y Ỹij - H
(
Y Z̃ij

)
 ≺ 0. (4.22)

Then with K = MY -1, and for all i , j ∈ N , Ti , Xj and Vij are feasible for Theorem 4.1.

Proof. (4.18) can be reformulated as (4.19) with[
T E
X F

]
=

 Ti +H
(
AiXj

)
- Vij BiK

Xj Im
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It follows from Theorem 4.2 that (4.18) is satisfied if and only if there exist Yij and Zij , for
all i , j ∈ N , satisfying the following inequalities:Ti +H

(
AiXj + BiKYij

)
-Vij ⋆

Xj +(BiKZij )T -Yij - H
(
Zij

)
 ≺ 0. (4.23)

Then setting Yij = Y Ỹij and Zij = Y Z̃ij gives (4.22).

Remark 4.9. Note that (4.23) is a sufficient and necessary condition to (4.18), but (4.23) is
bilinear due to the term KYij and KZij . In order to obtain convex conditions, we impose
the additional equality constrains Yij = Y Ỹij and Yij = Y Z̃ij where Y is a parameter-
independent variable while Ỹij and Z̃ij are parameter-dependent matrices but given, so
that the corresponding condition (4.22) become linear by considering M := KY and Y
as decision variables, although (4.22) is only sufficient to (4.18) because of the equality
constraints. Note also that Ai contained in (4.18) and (4.22) depends on a scalar parameter
ϵ when Ai is defined as the conditions of [29], ϵ is optimized in [29] but it is fixed in (4.18)
and (4.22), so our proposed conditions do not include any scalar parameter.

The following result uses the proof of Theorem 4.2 to show that Ỹij and Z̃ij can be chosen
so that the solution provided by Theorem 4.3 includes at least one feasible solution to
Theorem 4.1.

Theorem 4.4. Suppose that K̃ ∈ Rnu×n and for all i , j ∈ N , T̃i ∈ Sm , X̃j ∈ Rn×m and
Ṽij ∈ Sm solve Theorem 4.1 so that

Ṽij + Ṽji ≽ 0, 1 ≤ i < j ≤ N ,
N∑

i=1
(Ṽij + Ṽji ) ≼ 0, j = 1, · · · ,N ,

T̃i + H
(
Ai X̃j + Bi K̃ X̃j

)
≺ Ṽij .

If Ỹij and Z̃ij are set to be

Ỹij = X̃j - Z̃ij (Bi K̃ )T , Z̃ij = P̃i , (4.24)

then Theorem 4.3 also has a feasible solution.
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Proof. Using the congruence

[
Im 0

(BiK )T In

]
on the matrix inequality in (4.22) yields the

following equivalent condition:Ti + H
(
AiXj + BiKXj

)
-Vij ⋆

Xj -Y Z̃ij (BiK )T -Y Ỹij - H
(
Y Z̃ij

)
 ≺ 0.

When Y = In , Ti = T̃i , K = K̃ , Xj = X̃j , Vij = Ṽij , Ỹij and Z̃ij are defined as (4.24),
the above condition reduces toT̃i + H

(
Ai X̃j + Bi K̃ X̃j

)
-Ṽij ⋆

0 - 2P̃i

 ≺ 0

and proves the result.

Remark 4.10. Theorem 4.4 ensures recursive feasibility since it shows that the initial/previous
solutions to Theorem 4.1 are also feasible for Theorem 4.3 by setting Y = In and the other
variables equal to previous solutions if Ỹij and Z̃ij are defined as (4.24). Therefore, the
current solution obtained by Theorem 4.3 would be at least as good as the previous solution.
Note also that when (4.22) is satisfied with Z̃ij = P̃i , it implies Y is non-singular since
H(Y P̃i ) ≻ 0 and together with P̃i is positive definite, so the feedback gain K can always
be recovered from K = MY -1. Finally, Z̃ij can be designed in various ways as long as
H(Z̃ij ) ≻ 0. In this note, we opt to set Z̃ij = P̃i , where P̃i is implicitly included in T̃i , other
possible choices of Z̃ij are left to future work.

The overall algorithm to iteratively compute less conservative upper bounds for H2-norm and
H∞-norm of the continuous-time closed-loop system in (2.1) or the discrete-time closed-loop
system in (3.1) can now be summarized as follows.

Algorithm 4.1. Given tolerance level tol and itmax (maximum number of iterations)

1. Initial data: Choose one of the existing methods from Lemma 4.1-Lemma 4.4 and give
the corresponding formulation of Ti , Ai , and Bi defined as (4.14). Solve (4.15) and
record the obtained stabilizing gain as K0.

2. Initial solution: Given K = K0, compute the initial solution by solving Theorem 4.1.
Set µ̃ = µ (or γ̃ = γ), K̃ = K , P̃i = Pi , X̃j = Xj , and set k = 0.
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3. Update solution: Given K̃ , P̃i , X̃j = Xj , and substitute them into the expression of
Ỹij and Z̃ij defined as (4.24). Then compute K , Pi , Xj , µ (or γ) by solving (4.22) as
given in Theorem 4.3.

4. Stopping condition Stop the loop if (µ̃ - µ)/µ̃ ≤ tol (or (γ̃ - γ)/γ̃ ≤ tol ) or k > itmax .
Else set µ̃ = µ (or γ̃ = γ), K̃ = K , P̃i = Pi , X̃j = Xj , k = k + 1, and go to step 3).

4.3 Alternative way of update computation

Getting an initial stabilizing gain is an essential step since the iterative procedure proposed in
Algorithm 4.1 requires a feasible initial solution as a starting point. Due to the conservatism
of the current approaches, their feasibility cannot be guaranteed for some uncertain systems
even when the system is known to be robustly stabilizable by a robust state feedback gain.
Hence, we next propose a method as an alternative way to compute a sequence of solutions
for the H2/H∞ performance when all the current approaches in Lemma 4.1-Lemma 4.4 fail
to compute a stabilizing gain.

Based on our preliminary works of Chapter 2 and Chapter 3, we first recall the following
lemmas that give a finite set of BMI conditions for H2 and H∞ state feedback control for
continuous-time and discrete-time polytopic systems, respectively.

Lemma 4.5. Consider the continuous-time closed-loop system in (2.1).

1. (H2-norm) System (2.1) with Dw (α) = 0 is Hurwitz stable and its H2-norm is less
than µ if, for all i , j ∈ N , there exist Wi ∈ Snw , Pj ∈ Sn

+, and Vij ∈ S(n+nz ) such
that (4.17) and [

-Wi BT
wi

Bwi - Pj

]
≺0, Trace (Wi )<µ2, (4.25)

[
0 0
0 -Inz

]
︸ ︷︷ ︸

Ti

+H




[
Ai
Ci

]
︸ ︷︷ ︸
Ai

+

[
Bi
Di

]
︸ ︷︷ ︸
Bi

K

Pj

[
In 0

]
︸ ︷︷ ︸

FT

 ≺ Vij . (4.26)
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2. (H∞-norm) System (2.1) is Hurwitz stable and its H∞-norm is less than γ if, for all
i , j ∈ N , there exist Pj ∈ Sn

+ and Vij ∈ S(n+nz+nw ) such that (4.17) and

 0 0 Bwi
0 -Inz Dwi

BT
wi DT

wi -γ2Inw


︸ ︷︷ ︸

Ti

+H





Ai
Ci
0


︸ ︷︷ ︸
Ai

+

Bi
Di
0


︸ ︷︷ ︸
Bi

K


Pj

[
In 0 0

]
︸ ︷︷ ︸

FT


≺ Vij .

(4.27)

Lemma 4.6. Consider the discrete-time closed-loop system in (3.1).

1. (H2-norm) System (3.1) (assuming that Dw (α) = 0) is Schur stable and its H2-norm
is less than µ if, for all i , j ∈ N , there exist Wi ∈ Snz , Pj ∈ Sn

+, V1ij ∈ S(n+nz )

satisfying (4.17), and V2ij ∈ S(2n+nw ) satisfying (4.17), such that Trace (Wi )<µ2

and

[
-Wi 0
0 -Pj

]
︸ ︷︷ ︸

Ti

+H




[
Ci
0

]
︸ ︷︷ ︸
Ai

+

[
Di
0

]
︸ ︷︷ ︸
Bi

K

Pj

[
0 In

]
︸ ︷︷ ︸

FT

 ≺ V1ij , (4.28)

 -Pj Bwi 0
BT

wi -γ2Inw 0
0 0 -Pj


︸ ︷︷ ︸

Ti

+H





Ai
0
0


︸ ︷︷ ︸
Ai

+

Bi
0
0


︸ ︷︷ ︸
Bi

K


Pj

[
0 0 In

]
︸ ︷︷ ︸

FT


≺ V2ij .

(4.29)
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2. (H∞-norm) System (3.1) is Schur stable and its H∞-norm is less than γ if, for all
i , j ∈ N , there exist Pj ∈ Sn

+ and Vij ∈ S(2n+nz+nw ) such that (4.17) and
-Pj Bwi 0 0
BT

wi -γ2Inw DT
wi 0

0 Dwi -Inz 0
0 0 0 -Pj


︸ ︷︷ ︸

Ti

+

H






Ai
0
Ci
0


︸ ︷︷ ︸
Ai

+


Bi
0
Di
0


︸ ︷︷ ︸
Bi

K


Pj

[
0 0 0 In

]
︸ ︷︷ ︸

FT


≺ Vij .

(4.30)

The BMI conditions of Lemma 4.5 and Lemma 4.6 are presented in a unified form as follows:

Ti + H
(
AiPjFT + BiKPjFT

)
≺ Vij . (4.31)

It can readily be seen that (4.31) is included in (4.18) as a special case by imposing an
extra equality constraint Xj = PjFT on (4.18). Hence, once a feasible initial solution
to (4.31) is found by the proposed initial computation methods (see Section 2.2.2 for the
continuous-time case or Section 3.2 for the discrete-time case), then the upper bounds on
H2-norm and H∞-norm can be iteratively updated through Algorithm 4.1 with Xj = PjFT .
In the case of no feasible solution found by these initial computation methods, we have
provided iterative procedures to present the possibility of finding a stabilizing gain; see more
details in Algorithm 2.2 and Algorithm 3.2 for continuous-time and discrete-time systems,
respectively.

4.4 Numerical examples

In this section, two examples are given to illustrate the effectiveness of the proposed Algo-
rithm 4.1. The comparisons between our results and the existing methods are presented for
both continuous-time and discrete-time polytopic systems, respectively.
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4.4.1 Example 1

Consider a continuous-time uncertain spring-mass system presented in Section 2.5.2.

Robust H2 control

The comparison of the minimum upper bound on H2-norm achieved by Theorem 4.1 and the
conditions given in Lemma 4.1 is given by the following Table 4.1.

Method [24] T1A [25] T1EH [29] T1R
µ 2.6871 1.5074 0.7073 0.5107 0.7073 0.5107

Table 4.1 The minimum upper bound on H2-norm obtained by some existing methods and
Theorem 4.1 for Example 1.

As shown in Table 4.1, Apakarian et al. [24] yields a minimum value of 2.6871 for the
H2-norm performance µ. Exhaustive searches on the scalar parameters are performed for the
parameterized LMI conditions of Ebihara and Hagiwara [25] and Rodrigues et al. [29] to
attain less conservative results. [25] gives a minimum value of 0.7073 with the optimized
r = 2.5 while [29] yields the same value of µ as [25] with the optimized values of ϵ = 1
and ξ = 0.11. Moreover, T1A, T1EH , and T1R represents the upper bound µ obtained by
our Theorem 4.1 using the given stabilizing controller gain provided by [24], [25], and [29],
respectively. Table 4.1 indicates Theorem 4.1 using parameter-dependent slack variables is
more relaxed than the current methods using the fixed slack variable for the computation of
the upper bound on H2-norm.

If less conservative results are required, Algorithm 4.1 is carried out to iteratively update the
solutions by utilizing the solution of Theorem 4.1 as a starting point.

Method Alg1-T1A Alg1-T1EH Alg-T1R
µ 0.4993 0.4999 0.4964

Table 4.2 The minimum upper bound on H2-norm obtained by Algorithm 4.1 for Example 1.

In Table 4.2, Alg1-T1A, Alg1-T1EH , and Alg-T1R denote the final converged values of
µ achieved by Algorithm 4.1 for different initial solutions given by T1A, T1EH , and T1R,
respectively, where itmax = 10. It can be noted that although the initial solution of T1A is
more conservative than the ones of Alg1-T1EH and Alg-T1R, Algorithm 4.1 converges to
nearly the same final values for different initial solutions. The final resulting state feedback
gain for Alg1-T1A, , Alg1-T1EH , and Alg-T1R are K = [-8.3780 - 1.7243 - 24.9122 -
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13.4383], K = [-10.0862 - 2.2877 - 26.6148 - 14.3759], and K = [-9.3917 - 2.1988 -
25.0670 - 13.5264], respectively.

Robust H∞ control

To avoid excessive computational burden for the parameterized LMI based conditions given
in Lemma 4.2, we follow the work of [29] to select the constrained set: ϵ ∈

{
10-1, 100

}
and

ξ ∈ {-0.9, -0.54, -0.18, 0.18, 0.54, 0.9} (total of 12 searches) for [29] and thirteen logarithmi-
cally spaced values: r ∈

{
10-6, 10-5, · · · , 100, 101, · · · 106

}
(total of 13 searches) for [13].

Table 4.3 shows the minimum upper bound γ on H∞-norm and the associated solution time
obtained by the methods from previous studies, Theorem 4.1, and Algorithm 4.1.

Method γ Scalars T : solution time
[13] 2.3847 r = 10 2.65 s
T1X 1.4982 - 2.90 s

Alg1-T1X 0.9870 itmax = 5 4.57 s
[29] 1.9745 ϵ = 1, ξ = 0.18 2.33 s
T1R 1.1390 - 2.58 s

Alg1-T1R 0.9801 itmax = 5 4.26 s
Table 4.3 The minimum upper bound on H∞-norm obtained some existing methods, Theo-
rem 4.1, and Algorithm 4.1, as well as the associated solution time for Example 1.

As can be observed in Table 4.3, Xie [13] gives a minimum value of 2.3747 for H∞ per-
formance with r = 10 while Rodrigues et al. [29] yields a minimum of 1.9745 by using
ϵ = 1 and ξ = 0.18. The mean total solution time spent by [13] and [29] are 2.65 s and 2.33
s , respectively. Using the initial stabilizing gain K computed by [13], Theorem 4.1 (T1X )
gives an initial value of 1.4982 for γ in 2.90 s . Then starting with the initial solution of T1X ,
Algorithm 4.1 (Alg1-T1X ) yields a final converged value of γ = 0.9870 in 4.57 s after 5 iter-
ations, where the final resulting gain is given by K = [-8.5635 - 0.9270 - 29.7820 - 16.1670].
Table 4.3 also shows that the results obtained with Theorem 4.1 and Algorithm 4.1 by con-
sidering the state feedback gain of [29] as initial data. Theorem 4.1 (T1R) yields an initial
value of 1.1390 and Algorithm 4.1 (Alg1-T1R) yields a final converged value of 0.9801 with
K = [-9.9176 - 1.3292 - 31.4827 - 17.1449] after 5 iterations, the total solution time of
T1R and Alg1-T1R are 2.58 s and 4.26 s , respectively. Note that the total solution time of
Theorem 4.1 and Algorithm 4.1 have included the computation efforts spent by [13] or [29]
to obtain the initial value for the state feedback gain.
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In summary, it should be noted that both T1X and T1R can provide less conservative H∞
bounds than those obtained with [13] and [29] after only one-step computation. Note also
that Alg1-T1X and Alg1-T1R obtain nearly the same final converged values that are much
superior to [13] and [29] at the expense of more computational time. It is also important to
emphasize that even if exhaustive searches on scalar parameters are implemented for [13] and
[29], the minimum value of γ obtained by [13] is 1.9116 with optimized r = 3.99, whereas
[29] yields the same value of γ as [13] by using the optimized values of ϵ = 1 and ξ = 0.33.
Finally, the relation between H∞ performance and the number of iterations for both Alg1-
T1X and Alg1-T1R can be observed from the following Figure 4.1.

0 1 2 3 4 5

Iterations

0.9

1

1.1

1.2

1.3

1.4

1.5

γ

Alg1-T1R

Alg1-T1X

Fig. 4.1 Bound on the H∞-norm against the number of iterations obtained by Algorithm 4.1
for Example 1.

4.4.2 Example 2

Consider the discrete-time version of the satellite system given in Section 3.6.1.

While [11] gives less conservative results than [23] in general, we next use [11] to compute
the initial stabilizing gain as the starting point of Theorem 4.1 and Algorithm 4.1 since
[23] requires much greater computational effort due to exhaustive searches on the scalar
parameter. We consider 199 linearly equally spaced points between -0.99 and 0.99 as the
search domain for the scalar ξ of [23]. By applying those approaches, the minimum values
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of the H2 performance µ and the H∞ performance γ and the associated computational time
are given in the following tables.

Method µ Scalars T
[11] 0.7537 - 0.33 s
[23] 0.7464 ξ = -0.13 65.25 s

Theorem 4.1 0.6020 - 1.40 s
Algorithm 4.1 0.5063 itmax = 10 17.19 s

Table 4.4 The minimum upper bound on H2-norm obtained some existing methods, Theo-
rem 4.1, and Algorithm 4.1, as well as the associated solution time for Example 2.

Method γ Scalars T
[11] 2.1922 - 0.33 s
[23] 2.1311 ξ = -0.34 64.13 s

Theorem 4.1 1.9328 - 1.39 s
Algorithm 4.1 1.8061 itmax = 6 10.89 s

Table 4.5 The minimum upper bound on H∞-norm obtained some existing methods, Theo-
rem 4.1, and Algorithm 4.1, as well as the associated solution time for Example 2.

The computation results in Table 4.4 and Table 4.5 show that [23] can reduce the conservatism
for computation of the upper bounds on H2-norm and H∞-norm with respect to [11], at the
price of greatly increasing the computation time. Theorem 4.1 yields less conservative bounds
and requires much shorter computation time compared with [23] for both H2 and H∞ cases.
The final converged minimum values of µ and γ obtained with Algorithm 4.1 are 0.5063 and
1.8061, respectively, with the corresponding H2 controller gain K = [-21.8501 - 71.8163 -
10.6147 -211.5043] and H∞ controller gain K = [-70.0308 -404.5961 -18.6397 -724.8660].
Figure 4.2 and Figure 4.3 displays the relation of H2 and H∞ performance against the number
of iterations.
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Fig. 4.2 Bound on the H2-norm against the number of iterations obtained by Algorithm 4.1
for Example 2.
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Fig. 4.3 Bound on the H∞-norm against the number of iterations obtained by Algorithm 4.1
for Example 2.
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4.5 Summary

In conclusion, this chapter has investigated the problem of robust H2 and H∞ state feed-
back control of linear systems with polytopic uncertainties in both the continuous-time and
discrete-time cases. We proposed Theorem 4.1 to compute the initial solution, which has
been proved to include the existing methods as special cases. Then an iterative procedure
(Algorithm 4.1) was proposed to compute a sequence of non-increasing upper bounds for
the H2-norm and H∞-norm by utilizing the obtained initial solution as a starting point.
Example 1 and Example 2 from the literature were presented to show that the proposed
Theorem 4.1 can provide less conservative upper bounds on the H2 and H∞ norms than those
obtained by the existing methods, and the bounds can be further reduced by Algorithm 4.1
after a few iterations.

Moreover, compared with the results obtained by the algorithms (Algorithm 2.1, Algo-
rithm 3.1, Algorithm 3.3) proposed in previous chapters, Algorithm 4.1 does not show clear
advantages on minimization of the upper bound µ or γ. However, it is worth mentioning that
Algorithm 4.1 can utilize the optimal solution of any of the existing methods as a starting
point while previous proposed algorithms cannot. Therefore, with one step computation only,
Algorithm 4.1 can be guaranteed to give no more conservative results than any of the existing
methods.



Chapter 5

H∞-norm guaranteed cost
computation by means of
S -procedure

The novel results proposed in previous chapters follow the idea of [35] to deal with the poly-
topic uncertainty, which is to convert the original parameter-dependent (infinite-dimensional)
conditions into a finite set of conditions. In this chapter, we will pursue a novel approach
based on S procedure to lift the uncertainty.

This chapter is organized as follows. Section 5.1 details a description of the problem, formu-
lates the conditions for H∞-norm guaranteed cost computation and highlights the associated
difficulties. In Section 5.2, we review and extend some available approaches in the literature.
We propose a novel result based on the S -procedure to compute H∞-norm guaranteed cost
in Section 5.3. We give numerical examples in Section 5.4 to compare our proposed results
with existing approaches and summarize this chapter in Section 5.5.

The results presented in this chapter are based on our paper [64] and the associated contribu-
tions are highlighted as below:

• Extend the approach of [35] from the robust stabilization to H∞ performance analysis.

• Develop a relaxation approach in terms of one LMI to compute H∞-norm guaranteed
cost.
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5.1 Problem description

Consider the following uncertain linear continuous-time system[
ẋ (t)
z (t)

]
=

[
A(α) B(α)
C (α) D(α)

][
x (t)
w(t)

]
, (5.1)

and also the discrete-time system[
x (k + 1)

z (k)

]
=

[
A(α) B(α)
C (α) D(α)

][
x (k)
w(k)

]
, (5.2)

where x (·) ∈ Rn ,w(·) ∈ Rnw and z (·) ∈ Rnz are the system state vector, exogenous
disturbance signal, objective function signal, respectively. The symbol (·) denotes (t) for
continuous-time systems and (k) for discrete-time systems. All system matrices of appropri-
ate dimensions are not precisely known, but depend affinely on uncertain parameter α, that is
represented by the convex combination of the vertices of system matrices (Ai ,Bi ,Ci ,Di ):[

A(α) B(α)
C (α) D(α)

]
=

N∑
i=1

αi

[
Ai Bi
Ci Di

]
,

where α belongs to the unit simplex given by

Ω =

α ∈ RN : αi ≥ 0,∀i ∈ N ;
N∑

i=1
αi = 1

 .

For any possible value of α, A(α) is assumed to be Hurwitz stable for the continuous-time
case (that is, all its eigenvalues have strictly negative real parts), and Schur stable for the
discrete-time case (that is, all its eigenvalues have modulus less than one).
We next present an extension of the BRL representation in [1] to polytopic systems (5.1) and
(5.2) involving the existence of a parameter-dependent Lyapunov function.

Lemma 5.1. [29]: System (5.1) is Hurwitz stable and its H∞-norm is less than γ if and only
if, there exist a parameter-dependent Laypunov matrix P(α) ∈ Sn

+, for all α ∈ Ω, such that
the following inequality holds:A(α)P(α) + P(α)A(α)T ⋆ ⋆

C (α)P(α) -Inz ⋆

B(α)T D(α)T -γ2Inw

≺ 0. (5.3)
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Lemma 5.2. [11]: System (5.2) is Schur stable and its H∞-norm is less than γ if and only if,
there exist a parameter-dependent Laypunov matrix P(α) ∈ Sn

+, for all α ∈ Ω, such that the
following inequality holds:

-P(α) B(α) 0 A(α)P(α)
⋆ -γ2Inw D(α)T 0
⋆ ⋆ -Inz C (α)P(α)
⋆ ⋆ ⋆ -P(α)

 ≺ 0. (5.4)

Note that minimizing γ (guaranteed cost for the H∞-norm) subject to condition (5.3)/(5.4)
is numerically intractable since (5.3)/(5.4) is parameter-dependent which results in infinite
number of conditions. It follows from [1], a simple procedure to deal with the aforementioned
difficulty, that is when the Lyapunov matrix P(α) is restricted to be independent of α, i.e.
when P(α) = P for all α ∈ Ω. This idea is the well-known quadratic stability based
results [5]. However, the use of a parameter-independent Lyapunov function generally gives
conservative bounds. Therefore, LMI based approaches in terms of parameter-dependent
Lyapunov functions to obtain less conservative guaranteed costs to H∞-norm are proposed
in the sequel.

5.2 Reviews and extensions

In this section, we outline and extend some existing methods in the literature to state a
finite set of sufficient LMI conditions for Lemma 5.1 and Lemma 5.2 by using a parameter-
dependent Lyapunov function matrix given by P(α) =

∑N
i=1 αiPi .

5.2.1 Reviews

The mainstream of existing methods is to decouple the Lyapunov matrix from the system
matrices and allow a product term between the system matrices and slack variables instead.
The following result, presented in Lemma 3 of [15], includes both Lemma 1 and Lemma 2
of [15] and some other existing methods as particular cases, and gives less conservative
sufficient LMI conditions than those available in the literature for Lemma 5.1.

Lemma 5.3. Consider system (5.1), for all i , j ∈ N , if there exist Pi ∈ Sn
+, and matrices

Yj ∈ Rn×n , Zj ∈ Rn×n , such that the following inequalities hold:

Γij + Γji ≺ 0, 1≤ i≤ j ≤N , (5.5)
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where

Γij =


AiYj + Y T

j AT
i ⋆ ⋆ ⋆

Pi - Yj + ZT
j AT

i -(Zj + ZT
j ) ⋆ ⋆

CiYj CiZj -Inz ⋆

BT
i 0 DT

i -γ2Inw

,

then system (5.1) is Hurwitz stable and its H∞-norm is less than γ.

Remark 5.1. Lemma 5.3 introduces slack variables Yj and Zj to separate Lyapunov and
system matrices and replace it with the terms AiYj (CiYj ) and AiZj (CiZj ) which are
linear for robust analysis of H∞-norm performance. Note that Lemma 5.3 contains quadratic
stability based conditions and some other existing results as special cases. For example,
Theorem 2 of [14] and Lemma 3.3 of [13] can be viewed as derived from Lemma 5.3 by
imposing the restriction (Yj ,Zj ) → (Y ,Z ) and (Yj ,Zj ) → (Y , rY ), respectively, where r
is a scalar parameter.

5.2.2 Extensions

Another type of existing approaches using parameter-dependent Lyapunov function is based
on the idea of converting the infinite-dimensional matrix inequalities (5.3)-(5.4) into a finite
set of LMIs with the help of N 2 additional symmetric matrix variables, without the need
of separation between system and Lyapunov matrices. The following result is a simple
extension of robust stability LMI conditions for continuous-time and discrete-time polytopic
systems that appeared in the work of [18].

Theorem 5.1. Let Vij be symmetric matrices satisfying

Vij + Vji ≽ 0, 1 ≤ i < j ≤ N ,
N∑

i=1
(Vij + Vji ) ≼ 0, j = 1, . . . ,N , (5.6)

Consider system (5.1), for all i , j ∈ N , if there exist Pj ∈ Sn
+ and Vij ∈ S(nz+nw ) satisfying

(5.6), such that the following LMIs hold:

Λii ≺ 0, 1≤ i≤N , (5.7)

Λij + Λji ≺ 0, 1≤ i < j ≤N , (5.8)
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where

Λij =

AiPj + Pj AT
i ⋆ ⋆

CiPj -Inz ⋆

BT
i DT

i -γ2Inw

 - Vij ,

then system (5.1) is Hurwitz stable and its H∞-norm is less than γ.

Proof. First, when inequality (5.6) is satisfied, it yields that
∑N

i ,j=1αiαj Vij ≼ 0,∀α ∈ Ω

(see Lemma 1.3). Then multiplying (5.7) by α2
i for all i ∈ N and (5.8) by αiαj for

1≤ i < j ≤N and taking the sum gives

N∑
i=1

α2
i Λii +

N -1∑
i=1

N∑
j=i+1

αiαj (Λij + Λji ) =
N∑

i ,j=1
αiαjΛij

=

H
(
A(α)P(α)

)
⋆ ⋆

C (α)P(α) -Inz ⋆

B(α)T D(α)T -γ2Inw

 -
N∑

i ,j=1
αiαj Vij ≺0,

which implies (5.3) since
∑N

i ,j=1αiαj Vij ≼0.

Remark 5.2. It can be noted that Theorem 5.1 reduces to Lemma 1 of [15] when Vij = 0 for
all i , j ∈ N , so the extra degree of freedom provided by Vij can guarantee that the results
obtained by Theorem 5.1 are no more conservative than Lemma 1 of [15].

The corresponding results for discrete-time systems are also presented below.

Theorem 5.2. Consider system (5.2), for all i , j ∈ N , if there exist Pj ∈ Sn
+ and Vij ∈

S(2n+nz+nw ) satisfying (5.6), such that the following LMIs hold:

Φii ≺ 0, 1≤ i≤N , (5.9)

Φij + Φji ≺ 0, 1≤ i < j ≤N , (5.10)

where

Φij =


-Pj Bi 0 AiPj
⋆ -γ2Inw DT

i 0
⋆ ⋆ -Inz CiPj
⋆ ⋆ ⋆ -Pj

 - Vij ,

then system (5.2) is Schur stable and its H∞-norm is less than γ.
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Proof. The discrete-time case follows from a similar procedure on (5.9) and (5.10) which
yields 

-P(α) B(α) 0 A(α)P(α)
⋆ -γ2Inw D(α)T 0
⋆ ⋆ -Inz C (α)P(α)
⋆ ⋆ ⋆ -P(α)

-
N∑

i ,j=1
αiαj Vij ≺0,

which implies (5.4) since
∑N

i ,j=1αiαj Vij ≼0.

5.3 Main results

In this section, we develop the S -Procedure for lifting α by introducing slack variables to
derive sufficient conditions for BRL of continuous-time and discrete-time polytopic systems
in terms of one LMI.

5.3.1 A generalized form of BRL

First, we pose the BRL for continuous-time and discrete-time cases in an equivalent uni-
fied generalized problem by adding constant and linear terms in α and generalizing the
dimensions.

Problem 5.1. For all i ∈N , let T1,Li ∈Rm×m ,F ,Ei ∈Rm×n be given and, for any α∈Ω

define

L(α)=
N∑

i=1
αiLi , E (α)=

N∑
i=1

αiEi .

Find a parameter–dependent Lyapunov matrix P(α) ∈ Sn
+ such that

T1 + H
(
L(α)+E (α)P(α)FT

)
≺0 ∀α∈Ω. (5.11)

Remark 5.3. Note that T1 is typically a general augmented parameter–independent matrix
variable, L(α) and E (α) are linear in general augmented system matrices and may also
depend on other matrix variables, while F is a constant matrix. It can be verified that the
BRL conditions (5.3) and (5.4) are special cases of (5.11):
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For continuous-time case,

T1 =

0 0 0
0 -Inz 0
0 0 -γ2Inw

, L(α)=

0 0 B(α)
0 0 D(α)
0 0 0

,E (α)=

A(α)
C (α)

0

,F =

In
0
0

·
For discrete-time case,

L(α)=


-12P(α) B(α) 0 0

0 0 D(α)T 0
0 0 0 0
0 0 0 -12P(α)

,

T1=


0 0 0 0
0 -γ2Inw 0 0
0 0 -Inz 0
0 0 0 0

,E (α)=


A(α)

0
C (α)

0

,F =


0
0
0
In

·

Note also that Problem 5.1 includes robust stabilization and H2-norm performance analysis
as special cases, this will not be discussed here.

We next pose Problem 5.1 in terms of an uncertainty description reminiscent of norm-bounded
structured uncertainty and the Lyapunov function matrix given by P(α) =

∑N
i=1 αiPi .

Problem 5.2. Let all variables be as described in Problem 5.1. Define

∆ = {diag(α1Im , . . . ,αN Im):α∈Ω} ⊂ RNm×Nm , (5.12)

F̂ = diag(F , . . . ,F ) ∈ RNm×Nn ,

T2 =
[

Im · · · Im
]
∈ Rm×Nm ,

T3 =


L1
...

LN

 ∈ RNm×m, E =


E1
...

EN

 ∈ RNm×n.
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Find X =


P1
...

PN

 ∈ RNn×n , with Pi ∈ Sn
+ for all i ∈ N such that

T1+ H
(
(T2∆)T3+(T2∆)EXT F̂T (T2∆)T

)
︸ ︷︷ ︸

T (∆)

≺0 ∀∆∈∆.

5.3.2 A relaxation of the uncertainty set

The following result uses the definition of Ω to give a relaxation of the uncertainty set ∆ in
(5.12).

Theorem 5.3. Let all variables be as defined in Problem 5.2 and define the sets S,G ⊂
RNm×Nm respectively, as

S = {diag(S1, . . . , SN ):Si =ST
i ≽0∀i ∈N },

G = {diag(G1, . . . ,GN ):H(Gi )=0∀i ∈N }.

Then

∆⊂{∆∈RNm×Nm : T2H(-∆G)TT
2 = 0∀G ∈ G;

T2H
(
∆S∆T -∆S

)
TT

2 ≼0∀S ∈S;

H
(
T2∆TT

2 R - R
)

= 0∀R ∈ Rm×m ;

H
(
T2∆M̂∆TTT

2 -M
)
=0∀M ∈Rm×m},

where M̂ = 1N ,N ⊗ M , where 1N ,N is the N × N matrix of ones and ⊗ denotes the
Kronecker product.

Proof. Let ∆ = diag(α1I , . . . ,αN I ) ∈ ∆ so that 0 ≤ αi ≤ 1∀i ∈ N and
∑N

i=1 αi = 1.
Then T2H(-∆G)TT

2 = 0 for all G ∈ G from the structure of ∆. Next, H
(
T2∆TT

2 R - R
)

=

0 for all R ∈ Rm×m since
∑N

i=1 αi = 1. Furthermore, T2H
(
∆S∆T - ∆S

)
TT

2 ≼ 0∀S ∈
S since αi (1 - αi ) ≥ 0 for all i ∈ N which follows from the fact that 0 ≤ αi ≤ 1∀i ∈ N .
Finally, T2∆M̂∆TTT

2 = M for all M ∈Rm×m since (
∑N

i=1 αi )2 = 1. This proves the
result.
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5.3.3 The S -Procedure for lifting polytopic uncertainty

Since the polytopic uncertainty in Problem 5.2 is non-convex, we develop a relaxation
approach based on the S -Procedure to lift uncertainty as this has proved successful for the
norm-bounded structured uncertainty problem.

Theorem 5.4. Let all variables be as defined in Theorem 5.3. Suppose there exist G ∈G,

S ∈S, R∈Rm×m , M ∈Rm×m and X =
[

P1 . . . PN

]T
with Pi ≻ 0 for all i ∈ N such

that

L :=

T1- H(R-M ) (T3+(S +G)TT
2 +TT

2 R)T

⋆ H
(
EXT F̂T-S - M̂

) ≺0. (5.13)

Then X is feasible for Problem 5.2.

Proof. For any G ∈ G, S ∈ S,R ∈ Rm×m ,M ∈ Rm×m , it can be verified that

T (∆) = T1+ H
(
(T2∆)T3+(T2∆)EXT F̂T (T2∆)T

)
= -

(
(T2∆)GTT

2 + T2GT (T2∆)T
)

+
(
(T2∆)2S (T2∆)T-(T2∆)STT

2 -T2S (T2∆)T
)

-
(
(T2∆)TT

2 R+RTT2(T2∆)T-(R+RT )
)

+(T2∆)(M̂ + M̂T )(T2∆)T - (M + MT )

+
[

I (T2∆)
]
L

[
I

(T2∆)T

]
· (5.14)

where L is the matrix in (5.13). Furthermore, it follows from the characterization of ∆ in
(5.12) and Theorem 5.3 that each of the first four terms on the right-hand-side of the second
equality in (5.14) are negative semidefinite or zero for all ∆ ∈ ∆, G ∈ G, S ∈ S,R ∈
Rm×m and M ∈ Rm×m . This shows that T (∆) ≺ 0 if L ≺ 0 and proves the result.

Remark 5.4. Note that in Theorem 5.4:

• the slack variable G captures the structure constraint that ∆i = αi I .

• the slack variable R captures the constraint
N∑

i=1
αi =1.

• the slack variable S captures the constraint α2
i ≤ αi .

• the slack variable M captures the redundant constraint (
∑N

i=1 αi )2 =
∑N

i ,j=1 αiαj =
1.
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Remark 5.5. Since α has been lifted, Theorem 5.4 gives LMI sufficient conditions for
Problem 5.2, and therefore Problem 5.1 because T2, E , and F̂ are not variables. We can
also add more slack variables to capture other redundant properties. This would generally
give a less conservative sufficient condition at the expense of introducing more variables in
the problem; however, this will not be pursued here.

5.4 Numerical examples

In this section, we give examples to demonstrate the effectiveness of our proposed results
for the computation of the guaranteed cost on the H∞-norm for both continuous-time and
discrete-time systems.

5.4.1 Example 1

Consider a continuous-time uncertain spring-mass system presented in Section 2.5.2.

With a computed stabilizing state feedback law u(t) = Kx (t), where K = [-9.9420 -0.9935 -
29.5539 - 16.0522] from [29], the closed-loop system is Hurwitz stable. The comparison
of the guaranteed cost γ on the closed-loop H∞-norm obtained with different methods are
given in Table 5.1

Method γ

Quadratic method [5] infeasible
[14] 1.2739

Lemma 1 of [15] 1.2251
Lemma 5.3 [15] 1.1390

Theorem 5.1 1.2210
Theorem 5.4 1.1390

Table 5.1 The minimum guaranteed cost on H∞-norm comparisons for Example 1.

The computation results show that Theorem 5.1 provides a relative improvement with respect
to Lemma 1 of [15], and Theorem 5.4 gives the same γ as Lemma 5.3 of [15], which is better
than the ones obtained by other methods.

5.4.2 Example 2

We consider a randomly generated Hurwitz stable uncertain continuous-time system with
a larger dimension of the state (n = 6) and all system matrices parameter-varying with the
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corresponding vertex matrices given by

A1 =



-1.05 -0.63 -9.96 -3.44 -1.57 3.28
-1.48 -5.51 11.68 5.05 9.08 -7.54
2.56 -2.06 -17.35 -5.21 -4.34 5.72
-6.14 3.32 2.89 -3.00 3.88 -5.21
7.52 3.05 -6.85 -1.51 -6.71 -0.35
3.46 -0.12 -6.18 -1.79 3.42 -7.99


,

A2 =



-4.73 5.55 25.93 -9.37 -19.70 -17.93
3.64 -4.42 4.95 0.32 -14.06 -2.36
-1.06 2.74 8.18 -2.20 -9.53 -7.60
-2.62 5.21 11.29 -6.25 -8.46 -9.20
-1.40 2.58 7.39 -3.23 -7.88 -5.26
-0.81 2.29 12.85 -1.14 -12.78 -10.73


,

B1 =
[
0.51 -1.53 0.36 1.65 0.27 0.38

]T
,

B2 =
[
0.26 -1.35 -0.73 -2.24 0.03 0.11

]T
,

C1 =

[
1.69 -1.13 -0.27 -0.92 0.60 -0.89
-1.15 -0.26 0.31 1.05 -1.14 -0.39

]
,

C2 =

[
0.28 -0.89 -1.65 0.95 -0.45 -0.51
1.06 0.51 0.69 -0.44 -1.48 -0.85

]
,

D1 =

[
0.46
0.78

]
, D2 =

[
0.17
0.36

]
·

Method γ

Quadratic method [5] infeasible
[14] 32.6566

Lemma 1 of [15] 16.0967
Lemma 5.3 [15] 12.8433

Theorem 5.1 14.1262
Theorem 5.4 9.6864

Table 5.2 The minimum guaranteed cost on H∞-norm comparisons for Example 2.
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Again, the quadratic method fails to compute a feasible solution due to its conservatism. [14]
give the minimum γ of 32.6566. Theorem 5.1 clearly present a reduction of conservatism
with respect to Lemma 1 of [15]. Moreover, Lemma 5.3 [15] provides the second minimum
γ of 12.8433 in this example, but the best value of 9.6864 is obtained by Theorem 5.4, which
reveals a noticeable improvement compared to all other available methods.

5.4.3 Example 3

A discrete-time system with four states and two vertices is investigated in this example. An
uncertain system state matrix A(α) is given by the convex hull of (ϵA1, ϵA2), where ϵ is a
scalar parameter and A1, A2 are randomly generated with the spectral radius of each equal
to 0.8, that is

A1 =


0.0732 -0.3980 0.6317 0.1239
0.9868 -0.4464 0.2246 0.0055
0.1627 -0.3778 -0.0022 0.8056
-0.5713 0.4413 0.3572 0.3896

 ,

A2 =


0.3636 0.4750 -0.5380 -0.3809
0.3228 -0.4738 0.3318 -0.0934
0.5862 0.3416 0.1713 0.0476
1.0538 0.2286 0.2414 -0.2216

 ,

and other system matrices are given by B1 =B2 =
[
1 0 0 0

]T
, C1 =C2 =

[
0 0 0 1

]
,

D1 = D2 = 0. Firstly, we determine the maximum value of ϵ such that H∞-norm guaranteed
cost computation is feasible by quadratic method [5], Oliveira et al. [11], Theorem 5.2, and
Theorem 5.4 for discrete-time case.

Method Quadratic [5] [11] Theorem 5.2 Theorem 5.4
ϵmax 1.02 1.20 1.23 1.24

Table 5.3 The maximum value of ϵ for which feasibility is achieved for Example 3.

From Table 5.3, we can find that quadratic method gives the most conservative robust stability
margin with ϵmax = 1.02, the best result is provided by Theorem 5.4 with ϵmax = 1.24.
Note that the exact value of the robust stability margin is ϵ = 1.25 since the spectral radius
of A1 and A2 is exactly one in that case.
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We next compare the H∞-norm guaranteed cost obtained by these four methods for each
0.01 ≤ ϵ ≤ 1.24 with steps of 0.01. The results for a few values of ϵ are displayed in
Table 5.4, where the symbol - denotes no feasible solution. Through exhaustive testings, it

ϵ Quadratic [5] [11] Theorem 5.2 Theorem 5.4
0.19 0.2103 0.2103 0.2103 0.2103
0.71 1.3393 1.1066 1.1066 1.1066
1.15 – 11.5136 7.6799 7.6799
1.20 – 195.6283 18.0938 15.6493
1.23 – – 111.0862 39.5474
1.24 – – – 79.4004

Table 5.4 The minimum guaranteed cost on H∞-norm comparisons for each ϵ of Example 3.

can be verified that all four methods give the same γ for 0.01 ≤ ϵ ≤ 0.19, e.g. γ = 0.2103 for
ϵ = 0.19. For 0.20 ≤ ϵ ≤ 0.71, [11], Theorem 5.2, and Theorem 5.4 yields the same γ that
is less conservative than quadratic results. Theorem 5.2 and Theorem 5.4 start to outperform
[11] for ϵ ≥ 0.72, and they still give the same results until ϵ = 1.15. Finally, when ϵ belongs
to the interval [1.16 1.24], Theorem 5.4 provides the best results with guaranteed cost always
smaller than all other three methods, and it can also find feasible solutions when other
methods fail to do so.

5.5 Summary

In conclusion, this chapter has investigated the problem of H∞-norm guaranteed cost com-
putation for linear time-invariant polytopic systems. We proposed a generalized problem
(Problem 5.1) based on a unified parameter-dependent inequality to compute H∞-norm
guaranteed cost for both continuous-time and discrete-time systems. We then developed the
S -Procedure to lift the uncertainties and presented Theorem 5.4 that gives sufficient LMI
conditions for the solution of Problem 5.1. Numerical examples have demonstrated that
Theorem 5.4 can provide no more conservative results than the ones obtained by the previous
methods from the literature.



Chapter 6

Computation of invariant tubes
for robust output feedback Model
Predictive Control

Model predictive control (MPC) has been widely used in the process industry due mainly to
its ability for handling hard constraints compared to other conventional control algorithms.
MPC is a form of control scheme which solves an on-line optimization problem to yield a
sequence of control inputs at each sampling instant, and only the first control element is im-
plemented. At the next sampling instant, a new sequence of control inputs is computed again.
However, in real life, processes often involve additive disturbances and/or model dynamics
uncertainties. MPC algorithms that deal with such disturbances/uncertainties within their
optimization are called Robust MPC schemes. Most of the Robust MPC algorithms available
in the literature can be classified into two categories: open-loop MPC and feedback MPC.
Open-loop MPC considers the future control inputs as a function of the current state only,
which is computationally efficient but very conservative in general. Feedback MPC gives
a less conservative design, in which the future inputs are considered as a function of the
future predicted states. However, the computational burden of feedback MPC is excessive
and therefore, it is not suitable for fast dynamic systems. Many authors mitigate this problem
by working with fast MPC algorithms, e.g., explicit MPC based on the lookup table [65], the
primal barrier method [66] [67], and the tube-based MPC algorithm [49] [68] [69].

Tube-based MPC algorithm yields a tube and an associated controller that ensure the con-
trolled state trajectories lie in a tube in the presence of uncertainty. The center of the tube is
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obtained by solving the on-line (disturbance-free) nominal MPC problem. The computational
complexity of tube MPC is linear in horizon length, rather than exponential increase as in
conventional RMPC algorithms. Accurate off-line calculation of the tube is an essential step
for implementing tube MPC, which is the main focus of this chapter. Details are given in the
sequel.

This chapter is is organized as follows. Section 6.1 details a description of the problem,
formulates the conditions for the computation of the invariant sets of the estimation and
control errors. Section 6.2 and Section 6.3 give initial computation for the invariant sets
of the estimation and control errors, respectively. We propose a novel result based on the
Newton-like update to optimize the volume of these two sets simultaneously in Section 6.4.
We give numerical examples in Section 6.5 to compare our proposed results with [52] and
summarize this chapter in Section 6.6.

The results presented in this chapter are based on our paper [70] and the associated contribu-
tions are highlighted as below:

• Propose a Newton-like approach to iteratively optimize the volume of invariant sets for
the estimation and control errors simultaneously. Our approach is less conservative
than the method from previous work that optimizes these two invariant sets separately.

6.1 Problem description

We consider the following linear discrete-time system with additive disturbance:

x+ = Ax + Bu + Bdd ,

y = Cx + Du + Dvv ,

where x , x+ ∈ Rn , u ∈ Rnu , d ∈ Rnd , v ∈ Rnv , y ∈ Rny are the current state, successor
state, control input, process noise, measurement noise and current output, respectively;
all other symbols denote the appropriate distribution matrices. We combine the input and
output noises as one augmented variable w , yielding the following dynamics with some
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redefinitions:

x+ = Ax + Bu + Bww ,

y = Cx + Du + Dww ,

Bw :=
[
Bd 0

]
, Dw :=

[
0 Dv

]
, w :=

[
d
v

]
.

(6.1)

We assume that (A,B) is controllable and (A,C ) is observable. The state and input constraint
sets are assumed to have the form:

X =
{
x ∈ Rn | x ≤ Vx x ≤ x

}
, Vx ∈ Rm×n , x , x ∈ Rm ,

U =
{
u ∈ Rnu | u ≤ Vuu ≤ u

}
, Vu ∈ Rmu×nu , u, u ∈ Rmu .

The augmented disturbance w belongs to the bounded and symmetric polytope:

W=
{
w ∈ Rnw |-w ≤ Vww ≤ w

}
,Vw∈ Rmw×nw ,w ∈ Rmw .

Furthermore, a simple Luenberger observer is employed to estimate the state:

[
x̂+

ŷ

]
=

[
A B L
C D 0

] x̂
u

y - ŷ

 , (6.2)

where x̂ ∈ Rn is the current observer state, x̂+ ∈ Rn is the successor state of the estimated
system, ŷ ∈ Rny is the current observer output, and L ∈ Rn×ny is the Luenberger observer
gain. We define the state estimation error x̃ := x - x̂ , whose dynamics from (6.1) and (6.2)
are given by:

x̃+ = (A - LC )x̃ + (Bw - LDw )w ,

where L satisfies ρ(A - LC ) < 1 and ρ(·) denotes the spectral radius. The tube based MPC
controller is implemented on the associated nominal system ([50]), which is obtained from
(6.1) by neglecting the disturbance w :

x+ = Ax + Bu,
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where x , x+∈Rn , u ∈ Rnu are the current state, successor state, and the control input of the
nominal system, respectively. The control input is given by:

u = u + K (x̂ - x ),

where K ∈ Rnu×n is the feedback gain, which satisfies ρ(A + BK ) < 1. The error between
the observer and nominal states, called the control error, is defined as ξ := x̂ - x ; its dynamics
are given by:

ξ+ = (A + BK )ξ + LC x̃ + LDww . (6.3)

We follow the standard definitions ([71];[40]) for robust positively invariant set.

Definition 6.1. A set Ω ⊂ Rn is robust positively invariant for the system x+ = f (x ,w) and
the constraint set (X ,W) if Ω ⊆ X and x+ = f (x ,w) ∈ Ω, ∀w ∈ W , ∀x ∈ Ω.

Then the polytopic invariant sets for the estimation error P(Px̃ , bx̃ ) and the control error
P(Pξ, bξ) can be defined by:

x̃ ∈ P(Px̃ , bx̃ )
w ∈ W

}
⇒ x̃+ ∈ P(Px̃ , bx̃ ), (6.4)

ξ ∈ P(Pξ, bξ)
w ∈ W

x̃ ∈ P(Px̃ , bx̃ )

 ⇒ ξ+ ∈ P(Pξ, bξ), (6.5)

where
P(Px̃ , bx̃ ) =

{
x̃ ∈ Rn : -bx̃ ≤ Px̃ x̃ ≤ bx̃

}
, (6.6)

P(Pξ, bξ) =
{
ξ ∈ Rn : -bξ ≤ Pξξ ≤ bξ

}
, (6.7)

and Px̃ ,Pξ ∈ Rm×n and bx̃ , bξ ∈ Rm are decision variables for the structure of the invariant
set. By definition, the actual state differs from the nominal state by the estimation error x̃
and control error ξ, so that:

x = x + ξ + x̃ .

Similarly, the difference between the actual control input and nominal input is given by K ξ:

u = u + K ξ.

We assume that the initial values of estimation and control errors belong to their respective
RCI sets, ξ(0) ∈ P(Pξ, bξ) and x̃ (0) ∈ P(Px̃ , bx̃ ). The original state and control input
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constraints are satisfied for all w ∈ W if

x ∈ X := X ⊖ P(Px̃ , bx̃ ) ⊖ P(Pξ, bξ),

u ∈ U := U ⊖ KP(Pξ, bξ).

Therefore, we can choose the initial nominal state x (0) and the nominal control input u to
ensure that the actual (unknown) state and control input always satisfy the original constraints.
In this way, the original constraints X and U are tightened by P(Px̃ , bx̃ ) and P(Pξ, bξ). We
next establish the conditions such that the sets P(Px̃ , bx̃ ) and P(Pξ, bξ) are circumscribed
by outer bounding ellipsoids Q(Qx̃ ) and Q(Qξ), respectively,

∃Qx̃ ∈ Sn
+ : P(Px̃ , bx̃ ) ⊆ Q(Qx̃ ), (6.8)

∃Qξ ∈ Sn
+ : P(Pξ, bξ) ⊆ Q(Qξ). (6.9)

Since the volume of Q(Qx̃ ) is proportional to the determinant of the matrix Q
-1
2

x̃ , the
term log detQ -1

x̃ is adopted as the objective function to minimize the volume of the set
P(Px̃ , bx̃ ); similarly, we use log detQ -1

ξ as the objective function for P(Pξ, bξ). Combining
the invariance and outer bounding conditions for the invariant sets of the estimation and
control errors, respectively, we can present the following problems to optimize the volume of
P(Px̃ , bx̃ ) and P(Pξ, bξ), respectively:

min
Px̃ ,bx̃ ,L,Qx̃

log detQ -1
x̃

s .t . (6.4), (6.8).
(6.10)

min
Pξ,bξ,K ,Qξ

log detQ -1
ξ

s .t . (6.5), (6.9).
(6.11)

6.2 Initial computation for the invariant set of the estima-
tion error

In this section, we first derive necessary and sufficient conditions, in the form of nonlinear
matrix inequalities (NLMIs), for the existence of an admissible triple (Px̃ , bx̃ ,L) for problem
(6.10) by using Farkas’ Theorem ([72]). Subsequently, the corresponding sufficient condi-
tions in the form of LMIs are given by the use of the following result, which is deduced from
the Elimination Lemma.



6.2 Initial computation for the invariant set of the estimation error 100

Lemma 6.1. [47]: Let R ∈ Sn , E ∈ Rn×p , F ∈ Rp×m , and Z ∈ Sm . Consider the
following two statements:

(i)

[
R EF
⋆ Z

]
≻ 0, (6.12)

(ii) ∃Y ∈ Y :

R EY 0
⋆ Y + Y T F
⋆ ⋆ Z

 ≻ 0. (6.13)

Then (ii) ⇒ (i) if Y ⊆ Rp×p and (ii) ⇔ (i) if Y = Rp×p .

Theorem 6.1. The invariance and outer bounding conditions for the invariant set of the
estimation error are satisfied if, ∀i ∈ Nm , there exist Di ∈ Dm

+ , Wi ∈ Dmw
+ , D x̃ ∈ Dm

+
and Qx̃ ∈ Sn

+ such that

Lx̃ :=

∆
i
11 eT

i Px̃BL
w eT

i Px̃AL

⋆ V T
w WiVw 0

⋆ ⋆ PT
x̃ DiPx̃

≻0, (6.14)

PT
x̃ D x̃Px̃ - Qx̃ ≻ 0, 1 - bT

x̃ D x̃ bx̃ > 0, (6.15)

where ∆i
11 = 2eT

i bx̃ -bT
x̃ Dibx̃ -wTWiw , AL = A - LC , and BL

w = Bw - LDw .

Proof. The proof of (6.14) is an application of Farkas’ Theorem. Follow the definition of
P(Px̃ , bx̃ ) in (6.6), the invariance condition (6.4) is equivalent to

-bx̃ ≤ Px̃ x̃ ≤ bx̃
-w ≤ Vww ≤ w

}
⇒ -bx̃ ≤ Px̃ (ALx̃ + BL

ww) ≤ bx̃ . (6.16)

Considering the symmetry of the sets W and P , the last inequality in (6.16) can be written as

2eT
i (Px̃ (ALx̃ + BL

ww) - bx̃ ) ≤ 0,∀i ∈ Nm .

For any Di ∈ Dm
+ and Wi ∈ Dmw

+ , ∀i ∈ Nm , it can be verified that

2eT
i (Px̃ (ALx̃ +BL

ww)-bx̃ ) = - (Vww+w)TWi (w -Vww)

- (bx̃ -Px̃ x̃ )TDi (Px̃ x̃ +bx̃ )

- gTLx̃ g , (6.17)
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where Lx̃ is defined in (6.14) and gT :=
[
-1 wT x̃T

]
. Since the first and second terms

on the RHS of (6.17) are nonpositive for all x̃ ∈ P(Px̃ , bx̃ ) and w ∈ W , the invariance
condition is satisfied if Lx̃ ≻ 0, which gives (6.14).

Similarly, the outer bounding condition (6.8) is equivalent to

- bx̃ ≤ Px̃ x̃ ≤ bx̃ ⇒ x̃Qx̃ x̃ ≤ 1. (6.18)

For any D x̃ ∈ Dm
+ and Qx̃ ∈ Sn

+, we have

x̃Qx̃ x̃ -1 = -(bx̃ - Px̃ x̃ )TD i (Px̃ x̃ + bx̃ )

-
[
-1 x̃T

] [1-bT
x̃ D x̃ bx̃ 0
0 PT

x̃ D x̃Px̃ -Qx̃

]
︸ ︷︷ ︸

Lx̃

[
-1
x̃

]
.

It is clear that since the first term on the RHS of the above equality is nonpositive for all
x̃ ∈ P(Px̃ , bx̃ ), the outer bounding condition is satisfied if Lx̃ ≻ 0, which gives (6.15).

As can be seen from (6.14) and (6.15), the nonlinearity terms include Px̃BL
w , Px̃AL,

PT
x̃ DiPx̃ , bT

x̃ Dibx̃ , PT
x̃ D x̃Px̃ , bT

x̃ D x̃ bx̃ . In order to deal with these nonlinearities, we
next propose an initial full-complexity outer approximation to the minimal RCI set, such that

P(Px̃ , bx̃ )=P(PrXx̃ , br ) =
{
x ∈ Rn : -br ≤ PrXx̃ x ≤ br

}
,

where Pr and br are given, and Xx̃ ∈ Rn×n is a variable to rotate and scale the polyhedral
set defined by Pr (see the work of [47] for details). The next result uses Lemma 6.1 and a
congruence transformation to derive sufficient conditions, in the form of LMIs, for computing
an admissible triple (Px̃ , bx̃ ,L).

Theorem 6.2. With all variables as defined in Theorem 6.1, let Px̃ = PrXx̃ and bx̃ = br
and define L̂ = Xx̃L. The NLMIs of (6.14) and (6.15) are satisfied if, ∀i ∈ Nm , there exist
D̂i ∈ Dm

+ , Ŵi ∈ Dmw
+ , D x̃ ∈ Dm

+ , Qx̃ ∈ Sn
+ and λi > 0, such that

Γi
11 eT

i Pr B̂ eT
i Pr Â 0 0

⋆ 2Inw 0 λi Inw 0
⋆ ⋆ Xx̃ + XT

x̃ 0 λi In
⋆ ⋆ ⋆ V T

w ŴiVw 0
⋆ ⋆ ⋆ ⋆ PT

r D̂iPr


≻0, (6.19)
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[
Xx̃ + XT

x̃ - Qx̃ In
⋆ PT

r D x̃Pr

]
≻ 0, 1 - bT

r D x̃ br > 0, (6.20)

where Γi
11 = 2λieT

i br - bT
r D̂ibr - wT Ŵiw , Â = Xx̃A - L̂C , and B̂ = Xx̃Bw - L̂Dw .

Proof. Substituting Px̃ = PrXx̃ and bx̃ = br shows that (6.14) can be rewritten as (6.12)
with [

R E
F Z

]
=

2eT
i br - bT

r Dibr - wTWiw eT
i PrXx̃

[
BL

w ALX -1
x̃

][
Inw 0
0 Xx̃

] [
V T

w WiVw 0
0 XT

x̃ PT
r DiPrXx̃

]
 ·

Applying Lemma 6.1 with Y = λ-1
i

[
Inw 0
0 Xx̃

]
, then effecting the congruence

diag(λ
1
2
i ,λ

1
2
i Inw ,λ

1
2
i In ,λ

1
2
i Inw ,λ

1
2
i X -T

x̃ ) implies that (6.19) is a sufficient condition of (6.14),
with the following redefinitions:

D̂i = λiDi , Ŵi = λiWi .

For the first inequality of (6.15), substituting Px̃ with PrXx̃ , followed by applying the
congruence X -T

x̃ and applying a Schur complement argument gives the following equivalent
inequality [

Xx̃Q -1
x̃ XT

x̃ In
⋆ PT

r D x̃Pr

]
≻ 0. (6.21)

Using the identity

Xx̃Q -1
x̃ XT

x̃ = Xx̃ + XT
x̃ - Qx̃ + (Xx̃ - Qx̃ )TQ -1

x̃ (Xx̃ - Qx̃ ),

the (1,1) block of (6.21) can be replaced with the first three terms on the right of the above
identity since its last term is nonnegative. This gives the first inequality of (6.20). For the
second inequality in (6.15), replacing bx̃ by br gives (6.20) directly.

Remark 6.1. While the feasibility of the LMI problem is not guaranteed by using arbitrary
Pr and br , in practice, we found that using the vector of ones for br and the regular polytope
with 2m faces for Pr can usually result in a feasible solution, although this may introduce
some conservatism to Theorem 6.2. Note also that the degree of freedom in the choice of
m provides flexibility in the shape of the RCI set, which provides additional accuracy of
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expressing the set. In general, guaranteeing the existence of an initial feasible RCI set is
difficult ([71]). However, Theorem 4 in [48] provides a choice of the initial RCI set that is
guaranteed to be feasible under certain conditions.

In conclusion, the initial computation for the invariant set of the estimation error can be
posed as the convex semidefinite program

min
Xx̃ ,L̂,D̂i ,Ŵi ,D x̃ ,Qx̃ ,λi

log detQ -1
x̃

s .t . (6.19), (6.20).
(6.22)

6.3 Initial computation for the invariant set of the control
error

In the last section, an initial admissible triple (Px̃ , bx̃ ,L) for the invariant set of the estimation
error has been obtained. For the given invariant set P(Px̃ , bx̃ ), we propose to re-parameterize
the estimation error x̃ as an artificial disturbance by augmenting the dynamics of control
error ξ in (6.3), such that

ξ+ = (A + BK )︸ ︷︷ ︸
AK

ξ +
[
LDw LC

]
︸ ︷︷ ︸

Bη

[
w
x̃

]
︸︷︷︸
η

. (6.23)

The new disturbance η belongs to be an extended polytope,

η ∈ Wη :=
{
η ∈ Rnw+n | -η ≤ Vηη ≤ η

}
,

with the following redefinitions:

Vη =

[
Vw 0
0 Px̃

]
, η =

[
w
bx̃

]
.

We next propose the corresponding conditions for the initial computation of the admissible
triple (Pξ, bξ,K ) by using Farkas’ Theorem.

Theorem 6.3. The invariance and outer bounding conditions for the invariant set of the
control error are satisfied if and only if, ∀i ∈ Nm , there exist D i

ξ ∈ Dm
+ , W i

η ∈ Dmw+m
+ ,
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Dξ ∈ Dm
+ and Qξ ∈ Sn

+, such that
2eT

i bξ -bT
ξ D i

ξbξ -η
TW i

η η eT
i PξBη eT

i PξAK

⋆ V T
η W i

ηVη 0
⋆ ⋆ PT

ξ D i
ξPξ

≻0, (6.24)

PT
ξ DξPξ - Qξ ≻ 0, 1 - bT

ξ Dξbξ > 0. (6.25)

Proof. The proof is also an application of Farkas’ Theorem that is similar to the proof in
Theorem 6.1, thus it is omitted here for brevity.

We also use an initial outer approximation to the minimal RCI set to convert the NLMIs of
(6.24) and (6.25) into LMIs using Lemma 6.1 and a congruence transformation.

Theorem 6.4. With all variables as in Theorem 6.3 let Pξ = PrXξ and bξ = br and define
X̃ = X -1

ξ and K̂ = KX -1
ξ . The NLMIs of (6.24) and (6.25) are satisfied if, ∀i ∈ Nm , there

exist D̂ i
ξ ∈ Dm

+ , Ŵ i
η ∈ Dmw+m

+ , Dξ ∈ Dm
+ , Q -1

ξ ∈ Sn
+ and γi > 0, such that

Λi
11 γieT

i Pr 0 0
⋆ X̃ + X̃T Bη AX̃ + BK̂
⋆ ⋆ V T

η Ŵ i
ηVη 0

⋆ ⋆ ⋆ PT
r D̂ i

ξPr

 ≻ 0, (6.26)

Q -1
ξ X̃
⋆ PT

r DξPr

 ≻ 0, 1 - bT
r Dξbr > 0, (6.27)

where Λi
11 = 2γieT

i br - bT
r D̂ i

ξbr - ηT Ŵ i
η η.

Proof. Substituting Pξ = PrXξ and bξ = br shows that (6.24) can be rewritten as (6.12)
with [

R E
F Z

]
=

2eT
i br -bT

r D i
ξbr -ηTW i

η η eT
i PrXξ[

Bη AK
] V T

η W i
ηVη 0

0 XT
ξ PT

r D i
ξPrXξ


.

Applying Lemma 6.1 with Y = γiX -1
ξ where 0 < γi ∈ R, then effecting the congruence

diag(γ
1
2
i , γ

-1
2

i In , γ
1
2
i Inw , γ

1
2
i X -T

ξ ) implies that (6.26) is a sufficient condition for (6.24) with
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the redefinitions:
D̂ i
ξ = γiD i

ξ , Ŵ i
η = γiW i

η .

For the first inequality in (6.25), substituting Pξ with PrXξ followed by applying the
congruence X -T

ξ and applying a Schur complement argument gives the first inequality in
(6.27). For the second inequality in (6.25), replacing bξ by br gives the second term in (6.27)
directly.

To summarize, the initial computation for the invariant set of the control error can be posed
as the convex semidefinite program

min
X̃ ,K̂ ,D̂ i

ξ ,Ŵ
i
η ,Dξ,Q -1

ξ ,γi

trace (Q -1
ξ )

s .t . (6.26), (6.27).
(6.28)

Remark 6.2. Since the function log det(Q -1
ξ ) is concave, we minimize an upper bound on

log det(Q -1
ξ ) by replacing it with trace(Q -1

ξ ).

Remark 6.3. Theorems 6.2 and 6.4 give sufficient condition only; the conservatism comes
from restricting the structure of Y in Lemma 6.1 to obtain a tractable solution. Necessary
and sufficient conditions could be obtained if the structure of Y is free, however, this will
result in an intractable solution.

6.4 Update computation algorithm

In the previous two sections, we proposed the initial computations of the invariant sets of
the estimation and control errors by considering L and K as variables separately. Since the
linearization algorithm resulting from using Lemma 6.1 gives sufficient condition only, this
conservatism leads to the RCI sets being unlikely to be minimal. Therefore, in this section,
we propose an update computation algorithm based on the following Newton-like update to
obtain approximate minimal RCI sets.

Lemma 6.2. [48]: Let L, L0 ∈ Rm×n and D , D0 ∈ Sm
+ . Denote

LL0,D0
L,D := LTD -1

0 L0 + LT
0 D -1

0 L - LT
0 D -1

0 DD -1
0 L0

NL,D := LTD -1L

Then NL,D ≽ LL0,D0
L,D and NL0,D0 = LL0,D0

L0,D0
. Therefore,



6.4 Update computation algorithm 106

{
∃L0 ∈ Rm×n ,D0 ∈ Sm

+ : NL0,D0 ≻ 0
}
⇒{

∃L ∈ Rm×n ,D ∈ Sm
+ : NL,D ≽ LL0,D0

L,D ≻ 0
}

.

Theorem 6.5. Let the initial solutions of the invariant sets of the estimation and control errors
be denoted as (P0

x̃ , b0
x̃ ,L0,D i0

x̃ ,W i0
x̃ ,Q0

x̃ ,D x̃0) and (P0
ξ , b0

ξ ,K0,D i0
ξ ,D i0

x̃ξ, W
i0
ξ ,Q0

ξ ,Dξ0),
which satisfy conditions (6.14), (6.15), (6.25) and (6.34). Then these solutions can be updated
if there exist Px̃ ∈ Rm×n , bx̃ ∈ Rm , L ∈ Rn×ny , (D i

x̃ )-1 ∈ Dm
+ , W i

x̃ ∈ Dmw
+ , Qx̃ ∈ Sn

+,
(D x̃ )-1 ∈ Dm

+ , Pξ ∈ Rm×n , bξ ∈ Rm , K ∈ Rnu×n , (D i
x̃ξ)

-1 ∈ Dm
+ , (D i

ξ)
-1 ∈ Dm

+ ,

W i
ξ ∈ Dmw

+ , Qξ ∈ Sn
+ and (Dξ)-1 ∈ Dm

+ , ∀i ∈ Nm such thatMx̃ + LLi0
x̃ ,F i0

x̃
Li

x̃ ,F i
x̃

⋆

Ex̃Li
x̃ In

 ≻ 0, (6.29)

LP0
x̃ ,D -1

x̃0

Px̃ ,D -1
x̃

- Qx̃ ≻ 0,

[
D -1

x̃ bx̃
⋆ 1

]
≻ 0, (6.30)

Mξ + L
Li0
ξ ,F i0

ξ

Li
ξ,F

i
ξ

⋆

EξLi
ξ In

 ≻ 0, (6.31)

L
P0
ξ ,D -1

ξ0

Pξ,D
-1
ξ

- Qξ ≻ 0,

[
D -1
ξ bξ
⋆ 1

]
≻ 0, (6.32)

where,
Ex̃ =

[
-In In 0

]
, F i

ξ =diag(In , In , (D i
x̃ξ)

-1, (D i
ξ)

-1),

Eξ =
[
-In In 0 0

]
,F i

x̃ =diag(In , In , (D i
x̃ )-1),

Mξ =



(D i
x̃ξ)

-1 0 bx̃ 0 0 0
⋆ (D i

ξ)
-1 bξ 0 0 0

⋆ ⋆ 2eT
i bξ -wTW i

ξ w 0 0 0
⋆ ⋆ ⋆ V T

w W i
ξ Vw 0 0

⋆ ⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ ⋆ ⋆ 0


,
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Mx̃ =


(D i

x̃ )-1 bx̃ 0 0
⋆ 2eT

i bx̃ - wTW i
x̃ w 0 0

⋆ ⋆ V T
w W i

x̃ Vw 0
⋆ ⋆ ⋆ 0

 ,

Li
x̃ =

0 PT
x̃ ei 0 0

0 0 BL
w AL

0 0 0 Px̃

,Li
ξ =


0 0 PT

ξ ei 0 0 0
0 0 0 LDw LC AK

0 0 0 0 Px̃ 0
0 0 0 0 0 Pξ

.
Proof. Applying an upper Schur complement on bT

x̃ D i
x̃ bx̃ in (6.14), the following identity

can be verified
(6.14) ⇔ Mx̃ + NLi

x̃ ,F i
x̃

- (Ex̃Li
x̃ )T (Ex̃Li

x̃ ) ≻ 0. (6.33)

A subsequent application of Lemma 6.2 on NLi
x̃ ,F i

x̃
in (6.33), followed by a Schur com-

plement on the third term gives (6.29). For the first inequality in (6.15), it can be noted
that N

Px̃ ,D -1
x̃

=PT
x̃ D x̃Px̃ . Then using Lemma 6.2 on this equality gives the first inequality

in (6.30). The second inequality in (6.15) and (6.30) are equivalent by effecting Schur
complement directly.

The invariant set of the estimation error is unknown if we want to update these two sets
simultaneously. Hence, the invariance condition (6.24) for the invariant set of the control
error in Theorem 6.3 needs to be modified by Farkas’ Theorem. The invariance condition in
(6.5) is equivalent to

-bx̃ ≤ Px̃ x̃ ≤ bx̃
-bξ ≤ Pξξ ≤ bξ
-w ≤ Vww ≤ w

 ⇒-bξ ≤ Pξ(A
K ξ + LC x̃ + LDww) ≤ bξ.

For any D i
x̃ξ ∈ Dm

+ , D i
ξ ∈ Dm

+ , W i
ξ ∈ Dmw

+ , ∀i ∈ Nm ,

2eT
i (Pξ(A

K ξ + LC x̃ + LDww) - bξ)

=-(Vww+w)TW i
ξ (w -Vww)-(bx̃ -Px̃ x̃ )TD i

x̃ξ(Px̃ x̃ +bx̃ )

- (bξ - Pξξ)
TD i

ξ(Pξξ + bξ)

-
[
-1 wT x̃T ξT

]
Lξ

[
-1 wT x̃T ξT

]T
≤ 0
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if

Lξ :=


Φi

11 eT
i PξLDw eT

i PξLC eT
i PξAK

⋆ V T
w W i

ξ Vw 0 0
⋆ ⋆ PT

x̃ D i
x̃ξPx̃ 0

⋆ ⋆ ⋆ PT
ξ D i

ξPξ

 ≻ 0, (6.34)

where Φi
11 =2eT

i bξ -bT
ξ D i

ξbξ -b
T
x̃ D i

x̃ξbx̃ - wTW i
ξ w . Note that (6.34) is equivalent to (6.24)

with the definition W i
η = diag(W i

ξ ,D i
x̃ξ). Subsequently, applying a Schur complement on

bT
x̃ D i

x̃ξbx̃ and bT
ξ D i

ξbξ of (6.34) successively shows that it is equivalent to the following
inequality

Mξ + NLi
ξ,F

i
ξ

- (EξL
i
ξ)

T (EξL
i
ξ) ≻ 0. (6.35)

Using similar procedures to the previous proof for (6.29)/(6.30) on (6.35)/(6.25), giving
(6.31) and (6.32), respectively.

To summarize, the problem of updating the RCI sets of the estimation and control errors
simultaneously can be posed as the convex semidefinite program

min
Px̃ ,bx̃ ,L,(D i

x̃ )-1,W i
x̃ ,Qx̃ ,D -1

x̃ ,Pξ,bξ,K ,(D i
x̃ξ)

-1,(D i
ξ)

-1,W i
ξ ,Qξ,D

-1
ξ

log detQ -1
x̃

s .t . (6.29), (6.30), (6.31), (6.32),Qx̃ = Qξ.
(6.36)

Remark 6.4. Since the identity NL0,D0 = LL0,D0
L0,D0

in Lemma 6.2 ensures that the constraints
(6.29)-(6.32) are also feasible by setting the corresponding optimized variables equal to their
initial value, then problem (6.36) results in a no more conservative solution than the initial
one, namely the volume of the RCI set defined by Qx̃ would be smaller or at least equal to
the initial set defined by Q0

x̃ .

Remark 6.5. Note that the constraints in the optimization problem (6.36) includes the
equality constraint Qx̃ = Qξ . This means that only one ellipse is used to circumscribe the
two polytopes simultaneously. This leads to some conservatism in the updating algorithm,
the best approach is to consider two ellipses circumscribing two polytopes separately, and
then to optimize the total volume of two ellipses; however, this will be a direction for future
work.

Finally, the complete computation algorithm for the RCI sets of the estimation and control
errors based on successive iterations is summarized as follows.

Algorithm 6.1. Given tolerance level tol
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1. Initial data: Given system (1) and disturbance set W , choose an initial polytope
P(Pr , br ) and tolerance level tol.

2. Initial solution: Compute the initial RCI sets of the estimation and control errors by
the optimizations in (6.22) and (6.28) separately.

3. Update: Update the two sets simultaneously by the optimization in (6.36).

4. Stopping condition: Stop if the absolute value of the difference between the current
and previous values of log detQ -1

x̃ is less than tol .

6.5 Numerical examples

6.5.1 Example 1

We consider a scalar system:
x+ = 1.1x + u + d ,

y = x + v ,

with d ∈ Wd :=
{
d ∈ R | |d | ∞ ≤ 0.5

}
and v ∈ V :=

{
v ∈ R | |v | ∞ ≤ 1

}
. The invariant

sets of the estimation and control errors obtained with the proposed Algorithm 6.1 and [52]
are shown in Table 6.1 below.

Methods P(Px̃ , bx̃ ) P(Pξ, bξ) X - X U - U
[52] 1.6000 2.8600 4.4600 3.1460

Algorithm 6.1 2.0490 2.0490 4.0980 2.2539
Table 6.1 The comparison of calculated invariant set boundaries for Example 1

Note that P(Px̃ , bx̃ ) and P(Pξ, bξ) denote the invariant sets of the estimation and control
errors, respectively. X -X = P(Px̃ , bx̃ )⊕P(Pξ, bξ) and U -U = KP(Pξ, bξ) represent the
tightened invariant tube on state and tightened constraint on input, respectively. As shown
in Table 6.1, [52] obtains a smaller invariant set of P(Px̃ , bx̃ ) with the computed K =-1.1
and L = 1.1 while the proposed Algorithm 6.1 achieves less conservative results for total
volumes of P(Px̃ , bx̃ )⊕P(Pξ, bξ) with K =-1.1 and L=0.6720, this leads to less tightened
constraints on the nominal system state by using our Algorithm 6.1. Note also that the
tightened constraint on input obtained by [52] is U -U = [-3.1460, 3.1460] while we achieve
a smaller interval of [-2.2539, 2.2539].
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The above results confirm our expectation, because [52] optimizes the two sets separately and
can make sure that the invariant set of the estimation error is minimal only, but it might lead
to a larger disturbance set for the control error P(Pξ, bξ). Our algorithm uses a common set
to optimize these two sets simultaneously, it is possible to achieve better trade-off between
P(Px̃ , bx̃ ) and P(Pξ, bξ) and therefore a smaller total volume.

6.5.2 Example 2

A double integrator system from [73] is considered in this example

x+ =

[
1 1
0 1

]
x +

[
0.2
1

]
u +

[
1 0
0 1

]
d ,

y =
[
1 1

]
x + v ,

with d ∈ Wd :=
{
d ∈ R2||d |∞ ≤ 0.1

}
and v ∈ V :=

{
v ∈ R | |v | ∞ ≤ 0.1

}
. State

and input constraints are X :=
{
x ∈ R2 |-25 ≤ xi ≤ 3

}
and U :=

{
u ∈ R | |u| ≤ 5

}
,

respectively, where xi denotes the i th element of x . We set m = 3 and produce the same
(randomly generated) initial polytope P(Pr , br ) for P(Px̃ , bx̃ ) and P(Pξ, bξ), where

Pr =

-0.5817 0.9493
-1.8301 0.7174
-0.4491 2.2878

 , br =

1
1
1

 .

Figure 6.1 shows the the invariant tube X - X obtained by Algorithm 6.1 (yellow) and [52]
(pink). We observe that our invariant tube is smaller, which could provide a larger admissible
domain on the nominal system state. The state feedback and observer gains computed by the

method in [52] are L =
[
1 1

]T
and K =

[
-1 -1.8

]
, the constraint on nominal input is

U = [-1.5230, 1.5230]. In contrast, the corresponding results obtained by our algorithm are
L = [1 0.3279]T and K =

[
-1 -1.8

]
, and U = [-2.6149, 2.6149]. Note that our obtained

U is significantly larger compared to the method in [52].

The relation between the objective value and the number of iterations for the update of
Algorithm 6.1 is shown as the following Figure 6.2. We note that the objective value are non-
increasing with the number of iterations and it converge to its final value with an observed
quadratic speed of convergence.
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Fig. 6.1 Comparisons of tube calculated using our Algorithm 6.1 and the existing approach
for Example 2
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Fig. 6.2 The objective value (-log det(Q)) against the number of iterations computed using
Algorithm 6.1 for Example 2
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6.6 Summary

In conclusion, this chapter has investigated the computation of tightened invariant tubes for
tube-based robust output MPC of discrete-time linear time-invariant systems. Nonlinear
conditions for the existence of admissible invariant sets of the estimation and control errors
were first provided, respectively. An extended Elimination Lemma was then used to derive
LMI based sufficient conditions for the nonlinear conditions, thus rendering the tractable
LMI optimizations to compute the initial invariant sets of the estimation and control errors,
respectively. An update algorithm was then proposed to reduce the volume of these two
invariant sets simultaneously. Two numerical examples were presented to illustrate the
effectiveness of the proposed Algorithm 6.1.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In Chapter 2, new LMI conditions for robust H2 and H∞ state feedback control synthesis
of continuous-time systems with polytopic uncertainty have been presented. We firstly
expressed the design conditions for H2 and H∞ state feedback controllers in terms of a
unified BMI formulation. Next, we provided new sufficient conditions in terms of LMIs to
this BMI problem using a new separation result. It was shown that any known solution to
the BMI problem could be included as a particular case for the proposed LMI conditions.
Therefore, the proposed conditions can compute a new solution that would be at least as good
as the previous known solution. We then proposed a new algorithm based on an iterative
procedure, which ensures recursive feasibility and computes non-increasing upper bounds
for both the H2-norm and H∞-norm. In addition, we also proposed another algorithm that
can potentially find a robustly stabilizing gain when all other existing methods fail.

In Chapter 3, A new LMI based framework to design robust H2 and H∞ state feedback
controllers for discrete-time polytopic systems have been proposed. A finite set of BMI
conditions for H2 and H∞ controller synthesis were first derived. The BMI conditions
were relaxed through an application of Elimination Lemma to obtain LMI based sufficient
conditions. The proposed LMI conditions can contain any known solution to the BMI con-
ditions as a particular case. Therefore, using the initial solution provided by the proposed
initial computation method, we proposed an iterative procedure to compute non-increasing
upper bounds of the H2 and H∞-norms. If the initial computation method gives infeasibility,
we also proposed another iterative procedure to offer the possibility of finding a feasible
initial solution. Moreover, based on the separation result of Chapter 2, improved update
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computation has also been discussed.

In Chapter 4, a novel method for designing robust state feedback H2 and H∞ controller
of uncertain linear continuous and discrete systems has been studied. The first step of this
method is to obtain an initial solution using a given controller provided by any of the existing
methods. It was shown that the initial solution could include the current methods as special
cases. The second step is to design the H2 and H∞ controllers based on an iterative LMI ap-
proach, which is recursively feasible for each update. This iterative procedure can iteratively
reduce the upper bounds on H2-norm and H∞-norm. Based on the BMI design condition in
Chapeter 2 and Chapter 3, we also presented an alternative way of update computation.

In Chapter 5, a novel LMI approach based on affine parameter-dependent Lyapunov functions
has been proposed to compute H∞-norm guaranteed cost of linear systems with polytopic un-
certainty. We firstly expressed the BRL conditions for both continuous-time and discrete-time
systems using a unified generalized problem. We then presented an alternative characteriza-
tion of polytopic uncertainties and developed a relaxation approach based on the S -procedure
to deal with the uncertainty.

In Chapter 6, a numerically efficient algorithm based on LMIs to compute invariant tubes for
robust output MPC of DLTI systems with additive state and output disturbances has been
presented. Instead of using pre-defined observer and control gains methods or optimizing
the invariant sets of the estimation and control errors separately as the current approaches,
we proposed an algorithm that optimizes the volumes of these two sets simultaneously.
Therefore, our algorithm considers the effect of estimation error on the dynamics of the
control error rather than treat them as decoupled problems, which can provide a more relaxed
design.

In summary, this thesis aims to develop numerically efficient algorithms for robust control
problems of uncertain systems, e.g., robust H2 and H infinity control and computation
of invariant sets. These problems considered in this thesis are nonlinear and non-convex
in general. It is generally challenging for such optimization problems to compute the
actual (global) optimal solution. In this thesis, the non-convex problem is relaxed by novel
separation results to obtain sufficient LMI conditions, which provides an approximate convex
optimization problem for the original non-convex problem. The initial solution of the
approximate convex problem is first obtained and then iteratively optimized, which provides
a sequence of solutions and non-increasing criteria. The numerical examples have shown
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that the non-increasing sequence converges to a local minimum and it appears to promote
quadratic convergence speed. The theoretical investigations of the convergence of the iterative
procedure are left to future work.

7.2 Future work

Chapter 2-4 proposed three different iterative procedures for computing less conservative
upper bounds on H2-norm and H∞-norm of continuous-time and discrete-time polytopic
systems, respectively. These proposed iterative procedures are based on three types of sepa-
ration results, which are applicable to a wider range of problems than the ones considered in
this work, such as the problem of robust (static, dynamic, observed based) output feedback
controller design for both continuous and discrete-time systems. We are currently investigat-
ing the extension of our method to handle the output feedback problem and compare with the
methods available in the literature, e.g., two-step methods[74–78] and parameterized LMI
based methods [79, 80]. Other future research directions include modifying our approaches
to allow the use of polynomial parameter-dependent Lyapunov matrices and improving the
convergence speed to reduce the computational effort.

Chapter 5 investigated the analysis of H∞ guaranteed cost computation only, we are currently
investigating the extension of the approach to the design of H2 and H∞ state feedback
controllers. Other future research directions include investigating whether the conditions of
existing methods can be proved to be special cases of the proposed approach and extending
the approach to incorporate extra slack variables to provide less conservative results than
[31] for Example 1 in Section 5.4.

Chapter 6 presented an algorithm to optimize the volumes of the invariant sets of the estima-
tion error and control error simultaneously, but we used one outer ellipse to circumscribe
these two invariant sets simultaneously to obtain linearity. However, this leads to some con-
servatism in the update computation. Considering two different outer ellipses to circumscribe
two invariant sets, respectively, and then optimizing the total volume of two ellipses will be
less conservative, which is under investigation.
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