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In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear
discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies.
The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance
rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing
a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are
provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we
can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance,
and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and
uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed
method.

1. Introduction

Time-delay systems have drawn a considerable amount of
attention in the last few decades due to the fact that these
systems represent the behaviour of processes more close
to real world situations. The primary effects of delay in
the behaviour of physical systems are on deterioration of
performance and exhibition of an unstable respond.There are
many sources of delay in a system which can be exemplified
such as long transmission lines or intensive communication
channels, approximations in the identification or modelling
of real systems, and finite rate or capability of computing
power for control and communication purposes in remote
systems. In the literature, a great deal of studies have compre-
hensively investigated the time delayed systems in terms of
their negative effects on the stability [1–3] and performance
[4–6] of feedback systems.

H
∞

control mainly deals with the synthesis of feedback
or feed-forward controller for dynamical systems to establish
a stable behaviour or respond in a robust sense when the con-
trolled system is subjected to an external disturbance effect.

Particularly, in the last 2 decades, H
∞

control problem of
time-delay systems received a considerable amount of inter-
est, which might be constant or even time-varying.The main
reason arises from the fact that the so-called bounded real
lemma (BRL) signifying the H

∞
performance of a given

plant or system devoid of any delay effect proves to yield a
necessary condition while its counterpart given for the case
of an existence of time-delay can afford to achieve only a
sufficient condition. This observation implies that the H

∞

results concerning time-delay systems inherently involve
potential conservativeness which lead the researchers in the
time-delay community to construct further investigation to
achieve better H

∞
performance. Therefore, for continuous

time case, one can refer to [7–11] and the references therein
for theH

∞
control of time-delay systems (TDSs) having zero

lower delay bound and [10, 12–16] for theH
∞
control of TDSs

with interval time-delays. For the discrete-time counterpart,
the reader can refer to [17–19] and the references therein.

Moving horizon control (MHC), also called receding
horizon control (RHC) or model predictive control (MPC)
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in the literature, is a widely used method of control of
industrial processes, especially having large number of vari-
ables and constraints, due to its superior capabilities in
handling constraints on control and states, operating with
less human intervention and reacting dynamically to system
changes easily. The main approach in MPC is to solve a
constraint optimization problem on-line at each time instant
by utilizing the past and current feedback information and
apply only the very recent control solution to the system. For
a good survey and recent approaches on the concept, one
can refer to [20–26] and the references therein. The general
classification and areas of application of these systems have
been comprehensively investigated in references [27, 28].

It is well known that uncertainties and time-delays cannot
be avoided in real life, especially, in many processes such as
chemical, biological, and network problems where the MPCs
have been widely used. However, it is apparently seen from
the literature that only very few results exist concerning the
MPC of time-delay systems. Based on the 𝐿-𝐾 functional
approach and the use of some relaxation matrices [29] has
considered the problem of receding horizon control for state-
delayed systems where the delay is fixed. Also, they have
presented an eigenvalue search algorithm to check the closed-
loop stability of the system. However their control strategy is
delay-independent, therefore highly conservative. Reference
[30] introduced a novel optimization method for MPC of
uncertain time-delay systems having constant state delays
and constraint input. But, again, their method does not
depend on the size of delay. A robust one-step LMI based
MPC scheme is developed for discrete time-delay systems
having fixed delay with polytopic-type uncertainty in [31].
Their proposed MPC method is obtained by minimizing
a new cost function that includes multiterminal weighting
terms, subject to constraints on input.

The deficiency of MPC systems in disturbance attenua-
tion has drawn the attention towards the moving horizon
H
∞

control (MHHC) scheme in recent years, [26, 32, 33].
In this perspective, a Riccati-based MHHC algorithm was
developed for a nominal time-delay system by [29, 34].Then,
a similar approachwas proposed in [35] based onLMIs.How-
ever, all the abovementioned approaches are based on criteria
which do not depend on the size of delay and therefore
provide more conservative results. While taking the time-
delay bounds into consideration, a delay-dependent MPC
is proposed by [31] which guarantees only the closed-loop
stability. Reference [35] has dealt with the receding horizon
H
∞

control for constraint time-delay systems having fixed
delays. However, their method is delay-independent as the
ones indicated above. Finally, proposing a new cost function
for a finite horizon dynamic game problem which includes
two terminal weighting terms and a delay-independent LMI
condition, [36] has studied the receding horizonH

∞
control

problem for time-delay systems with fixed state delays.
Among these aforementioned work, it is apparently seen

that only very few results exist concerning the MPC of
TDSs which gives us a motivation to study this problem.
Furthermore, to the best of author’s knowledge, there does
not exist any other reference in literature which deals with
the robustH

∞
MPC of uncertain time-delay systems having

time-varying delays in delay-dependent fashion. Therefore,
combining these two sources of inspiration leads us to study
that particular subject thoroughly.

In this paper, we investigate the design of a stabilizing
H
∞
state-feedback controller for linear state-delayed interval

TDS having norm-bounded uncertainties and constrained
inputs. First, based on the selection of an 𝐿-𝐾 functional, a
stabilizing delay-dependentH

∞
controller is introduced for

nominal TDS having delay in the state, similar to the previous
study of authors [37]. Then, the existing result is extended
to cover TDS having norm-bounded uncertainties. Finally,
the proposed approach is adapted to the so-called moving
horizon scheme introduced in [26], to obtain a robust, de-
lay-dependent moving horizonH

∞
control technique which

ensures a dissipative closed-loop system. The proposed
technique is practically implementable since it takes the
input constraints into consideration and it does not employ
any linearization techniques such as cone-complementary
method which is widely used in delay-dependent control ap-
proaches such as those used in [11].

The rest of this paper is organized as follows: Section 2
states the problem formulation. Mathematical background
is given in Section 3 in order to provide a priori knowledge
about the methodology followed. Section 4 is devoted to the
proposed method. Two different illustrative examples are
presented in Section 5 to demonstrate the effectiveness of the
approach. Finally, Section 6 concludes the paper.

Notation. R and R𝑛 represent the set of real numbers and of
𝑛-dimensional real vectors, respectively. Identity matrix with
an appropriate dimension is denoted by 𝐼. 𝑋 > 0 (≥, < 0)
implies that 𝑋 is a positive-definite (positive semidefinite,
negative-definite)matrix. Likewise,𝑋 > 𝑌means that𝑋−𝑌 is
positive definite. (⋅𝑇) indicates transpose of a real matrix. To
avoid repetition, “∗” denotes off-diagonal block completion
of a symmetric matrix. 𝑥

𝑘
and 𝑥(𝑘) are used interchangeably

to simplify the notation especially in long mathematical
expressions. Again, in order to make the notation easy,
we drop the time-dependence of functions when it does
not make any trouble. Finally, ‖𝑥‖ stands for the standard
Euclidean 2-norm of the vector 𝑥. ‖𝑥‖max is the absolute value
of the entry of a vector 𝑥 having the largest magnitude.

2. Problem Formulation

Let us consider a class of uncertain linear discrete-time, time-
delay system of the form

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐴
𝑑

(𝑘) 𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝐵
𝑤

𝑤 (𝑘) + 𝐵
𝑢

(𝑘) 𝑢 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) + 𝐶
𝑑
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑤
𝑤 (𝑘) + 𝐷

𝑢
𝑢 (𝑘) ,

𝑥 (𝑘) = 𝜙 (𝑘) , 𝑘 ∈ [−𝑑max, 0]

(1)

subject to control constraints




𝑢
𝑖
(𝑘)




max ≤ 𝑢

2

𝑖,max, ∀𝑘 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, (2)

where 𝑘 stands for the 𝑘th sample-time, 𝑥(𝑘) ∈ R𝑛 is the
state vector, 𝑢(𝑘) ∈ R𝑚 represents the control input, 𝑢

𝑖,max
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is a known magnitude bound on the control effort in the 𝑖th
channel,𝜙(𝑘) is a given initial condition sequence, and𝑤(𝑘) ∈

R𝑞 is a disturbance signal in 𝑙
2
, which satisfies

∞

∑

𝑖=0

‖𝑤 (𝑖)‖
2

≤ 𝛼
2

. (3)

𝑧(𝑘) ∈ R𝑝 is the controlled output and 𝑑(𝑘) ∈ R represents a
time-varying delay which satisfies

𝑑min ≤ 𝑑 (𝑘) ≤ 𝑑max ∀𝑘 ≥ 0, (4)

where the nonnegative integers 𝑑min and 𝑑max stand for the
lower and upper bounds of the delay 𝑑(𝑘), respectively, and
all are assumed to be known. The time-varying delay 𝑑(𝑘)

reduces to a constant delay 𝑑 when 𝑑min = 𝑑max = 𝑑. On the
other hand, the uncertain system matrices are assumed to be
in the form of 𝐴(𝑘) = 𝐴 + Δ𝐴(𝑘), 𝐴

𝑑
(𝑘) = 𝐴

𝑑
+ Δ𝐴

𝑑
(𝑘),

and 𝐵
𝑢
(𝑘) = 𝐵

𝑢
+ Δ𝐵
𝑢
(𝑘). Here, the unknown matrices

Δ𝐴(𝑘), Δ𝐴
𝑑
(𝑘), and Δ𝐵

𝑢
(𝑘) are real-valued time-varying

matrix functions representing the parameter uncertainties of
the system and are in the form of

[Δ𝐴 (𝑘) Δ𝐴
𝑑

(𝑘) Δ𝐵
𝑢

(𝑘)] = 𝐺𝐹 (𝑘) [𝐸
1

𝐸
2

𝐸
3
] , (5)

where 𝐺, 𝐸
1
, 𝐸
2
are known time-invariant matrices and 𝐹(𝑘)

is an unknown time-varying matrix function with Lebesgue
measurable elements satisfying

𝐹(𝑘)
𝑇

𝐹 (𝑘) ≤ 𝐼, ∀𝑘 ≥ 0. (6)

The objective of infinitive horizon MHHC problem is to ob-
tain the state-feedback control law in the form of 𝑢(𝑘) =

𝐾
𝑘
𝑥(𝑘) at each instant 𝑘, so that the following conditions hold

for the closed-loop system.

(I) The closed-loop system

𝑥 (𝑘 + 1) = 𝐴cl (𝑘) 𝑥 (𝑘) + 𝐴
𝑑

(𝑘) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵
𝑤

𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶cl𝑥 (𝑘) + 𝐶
𝑑
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑤
𝑤 (𝑘) ,

𝑥 (𝑘) = 0, 𝑘 ∈ [−𝑑max, 0] ,

(7)

where 𝐴cl(𝑘) ≜ 𝐴(𝑘) + 𝐵
𝑢
(𝑘)𝐾
𝑘
and 𝐶cl ≜ 𝐶(𝑘) +

𝐷
𝑢
(𝑘)𝐾
𝑘
is globally uniformly asymptotically stable

under the conditions 𝑤(𝑘) = 0 for all 𝑘 ≥ 0.
(II) Consider

‖𝑧 (𝑘)‖
2

≤ 𝛾
2

‖𝑤 (𝑘)‖
2

∀𝑘 ≥ 0 (8)

and for all nonzero disturbance signal𝑤(𝑘) ∈ 𝑙
2
[0, ∞)

and a given scalar 𝛾 > 0 under the condition 𝑥(𝑘) = 0

for all 𝑘 ∈ [−𝑑max, 0].
(III) Let us define two nested ellipsoids as follows:

𝜀
1

(𝑃, 𝑄, 𝑟) := 𝑥 ∈ R𝑛 : 𝑉 (𝑘) ≤ 𝑟 ∀𝑘 ≥ 0

𝜀
2

(𝑃, 𝑄, 𝑟, 𝛼) := 𝑥 ∈ R𝑛 : 𝛾
2

𝛼
2

+ 𝑉 (𝑘) ≤ 𝑟 ∀𝑘 ≥ 0,

(9)

where 𝑉(𝑘) is the Lyapunov function. If the initial
state𝑥(0) satisfies 𝛾

2

𝛼
2

+𝑉(0) ≤ 𝑟, that is,𝑥(0) belongs
to 𝜀
2
, then all perturbed state trajectories remain in

the ellipsoid 𝜀
1
.

(IV) The constraint on the size of control effort (2) is satis-
fied for all 𝑘 ≥ 0.

In order to avoid complexity of the main result section,
some related and required background material are provided
next.

3. Preliminaries

We start with the definition of dissipativitywhich plays an im-
portant role during the implementation of moving horizon
control.

Definition 1 (dissipativity). The system (7) with supply rate
𝑠(𝑤(𝑘), 𝑧(𝑘)) ≜ 𝛾

2

‖𝑤(𝑘)‖
2

− ‖𝑧(𝑘)‖
2 is said to be dissipative if

there exists a quadratic storage function 𝑉(𝑥(𝑘)) such that
𝑉 (𝑘) + 𝑠 (𝑤 (𝑘) , 𝑧 (𝑘)) ≥ 𝑉 (𝑘 + 1) ∀𝑘 ≥ 0. (10)

This implies that the change of storage function from step 𝑘 to
step (𝑘 + 1) is always less than the supplied rate to the system.
Therefore, inequality (10) is named as dissipation inequality.
If the dissipation inequality (10) holds true for any system
trajectory of (1) and (4), then for any disturbance signal
satisfying (3), the energy of the controlled output satisfies

∞

∑

𝑖=0

‖𝑧 (𝑖)‖
2

≤ 𝑟, (11)

where 𝑟 is an upper bound for output energy and 𝑙
2
gain of

the closed-loop system (7) from the disturbance 𝑤(𝑘) to the
performance output 𝑧(𝑘) is bounded by 𝛾.

4. Main Results

Taking 𝐴(𝑘) = 𝐴, 𝐴
𝑑
(𝑘) = 𝐴

𝑑
, and 𝐵

𝑢
(𝑘) = 𝐵

𝑢
in (1), the

following theorem describes a criterion for constructing an
H
∞
state-feedback controller in the form 𝑢(𝑘) = 𝐾𝑥(𝑘), such

that the closed-loop nominal system (7) with (4) is globally
asymptotically stable.

Theorem 2. Given the scalar constants 𝑑min, 𝑑max, and 𝛾,
the state-feedback control law 𝑢(𝑘) = 𝐿𝑌

−1

𝑥(𝑘) globally
asymptotically stabilizes the time-delayed system (1) with (4)
with an H

∞
disturbance attenuation level, 𝛾, if there exist

matrices 𝑌 = 𝑌
𝑇

> 0, 𝑊 = 𝑊
𝑇

> 0, and 𝐿 with appropriate
dimensions satisfying

[

[

[

[

[

[

[

[

𝑌 ∗ ∗ ∗ ∗ ∗

0 𝑊 ∗ ∗ ∗ ∗

0 0 𝛾
2

𝐼 ∗ ∗ ∗

𝐴𝑌 + 𝐵
𝑢
𝐿 𝐴
𝑑
𝑊 𝐵

𝑤
𝑌 ∗ ∗

𝐶𝑌 + 𝐷
𝑢
𝐿 𝐶
𝑑
𝑊 𝐷

𝑤
0 𝐼 ∗

𝑌 0 0 0 0 𝑑
−1

𝑚
𝑊

]

]

]

]

]

]

]

]

> 0,

(12)

where 𝑑
𝑚

≜ 𝑑max − 𝑑min + 1.
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Proof. Let us choose a candidate 𝐿-𝐾 functional as follows:

𝑉 (𝑘) = 𝑉
1

(𝑘) + 𝑉
2

(𝑘) + 𝑉
3

(𝑘) , (13)

where

𝑉
1

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2

(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) ,

𝑉
3

(𝑘) =

−𝑑min+1

∑

𝑖=−𝑑max+2

𝑘−1

∑

𝑠=𝑘+𝑖−1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) .

(14)

In view of the closed-loop system trajectory (7), one can
define a first difference of the energy function𝑉(𝑘) as follows:

Δ𝑉 (𝑘) ≜ 𝑉 (𝑘 + 1) − 𝑉 (𝑘) = Δ𝑉
1

(𝑘) + Δ𝑉
2

(𝑘) + Δ𝑉
3

(𝑘) ,

(15)

where

Δ𝑉
1

(𝑘) = 𝑥
𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)

= 𝑥
𝑇

(𝑘) (𝐴
𝑇

cl𝑃𝐴cl − 𝑃) 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) 𝐴
𝑇

cl𝑃𝐴
𝑑
𝑥 (𝑘 − 𝑑 (𝑘))

+ 2𝑥
𝑇

(𝑘) 𝐴
𝑇

cl𝑃𝐵
𝑤

𝑤 (𝑘)

+ 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐴
𝑇

𝑑
𝑃𝐴
𝑑
𝑥 (𝑘 − 𝑑 (𝑘))

+ 2𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐴
𝑇

𝑑
𝑃𝐵
𝑤

𝑤 (𝑘)

+ 𝑤
𝑇

(𝑘) 𝐵
𝑇

𝑤
𝑃𝐵
𝑤

𝑤 (𝑘) ,

(16)

Δ𝑉
2

(𝑘) =

𝑘

∑

𝑠=𝑘−𝑑(𝑘+1)+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) −

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

= 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) − 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘+1)+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) −

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) .

(17)

Since
𝑘

∑

𝑠=𝑘−𝑑(𝑘+1)+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

=

𝑘

∑

𝑠=𝑘−𝑑min+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) +

𝑘−𝑑min

∑

𝑠=𝑘−𝑑(𝑘+1)+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

≤

𝑘

∑

𝑠=𝑘−𝑑(𝑘)+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) +

𝑘−𝑑min

∑

𝑠=𝑘−𝑑max+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

(18)

we can write

Δ𝑉
2

(𝑘) ≤ 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) − 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑘−𝑑min

∑

𝑠=𝑘−𝑑max+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) .

(19)

Finally,

Δ𝑉
3

(𝑘)

=

−𝑑min+1

∑

𝑖=−𝑑max+2

(

𝑘

∑

𝑠=𝑘+𝑖

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) −

𝑘−1

∑

𝑠=𝑘+𝑖−1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠))

=

−𝑑min+1

∑

𝑖=−𝑑max+2

(𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) − 𝑥
𝑇

(𝑘 + 𝑖 − 1) 𝑄𝑥 (𝑘 + 𝑖 − 1))

= (𝑑max − 𝑑min) 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) −

𝑘−𝑑min

∑

𝑖=𝑘−𝑑max+1

𝑥
𝑇

(𝑖) 𝑄𝑥 (𝑖) .

(20)

Then, in the light of (16), (19), and (20), a bound on Δ𝑉(𝑘)

can be obtained as follows:

Δ𝑉 (𝑘) ≤ 𝑥
𝑇

(𝑘) (𝐴
𝑇

cl𝑃𝐴cl − 𝑃) 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) 𝐴
𝑇

cl𝑃𝐴
𝑑
𝑥 (𝑘 − 𝑑 (𝑘))

+ 2𝑥
𝑇

(𝑘) 𝐴
𝑇

cl𝑃𝐵
𝑤

𝑤 (𝑘)

+ 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐴
𝑇

𝑑
𝑃𝐴
𝑑
𝑥 (𝑘 − 𝑑 (𝑘))

+ 2𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐴
𝑇

𝑑
𝑃𝐵
𝑤

𝑤 (𝑘)

+ 𝑤
𝑇

(𝑘) 𝐵
𝑇

𝑤
𝑃𝐵
𝑤

𝑤 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) − 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑘−𝑑min

∑

𝑠=𝑘−𝑑max+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

+ (𝑑max − 𝑑min) 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘)

−

𝑘−𝑑min

∑

𝑠=𝑘−𝑑max+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) .

(21)

Then, if we define the right-hand side of (21) with Δ𝑉(𝑘), it is
obvious that

Δ𝑉 (𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤ Δ𝑉 (𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) .

(22)

Therefore, if

Δ𝑉 (𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) < 0 (23)
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is satisfied for all 𝑘 ≥ 0, then the nominal closed-loop
system (7) with (4) is guaranteed to be globally, uniformly,
and asymptotically stable when 𝑤(𝑘) = 0 for all 𝑘 ≥ 0, and
we get ‖𝑧‖

2

2
≤ 𝛾
2

‖𝑤‖
2

2
for all 𝑤(𝑘) ∈ 𝑙

2
[0, ∞). Equivalently,

a straightforward application of the Schur complement for-
mula on (23) allows us to write

[

[

[

[

[

[

[

[

𝑑
𝑚

𝑄 − 𝑃 ∗ ∗ ∗ ∗

0 −𝑄 ∗ ∗ ∗

0 0 −𝛾
2

𝐼 ∗ ∗

𝐴cl 𝐴
𝑑

𝐵
𝑤

−𝑃
−1

∗

𝐶cl 𝐶
𝑑

𝐷
𝑤

0 −𝐼

]

]

]

]

]

]

]

]

< 0, (24)

where 𝑑
𝑚

:= 𝑑max−𝑑min+1.Then, substituting𝐴cl = 𝐴+𝐵
𝑢
𝐾

and 𝐶cl = 𝐶 + 𝐷
𝑢
𝐾 into (24), pre- and postmultiplying (24)

by diag {𝑃
−1

, 𝑄
−1

, 𝐼, 𝐼, 𝐼}, and applying the Schur complement
which is followed by defining 𝑌 := 𝑃

−1, 𝑊 := 𝑄
−1

immediately lead to the LMI condition given in (12). This
concludes our proof.

Now, let us consider (1) with uncertainties. The following
corollary considers the robust state-feedback H

∞
controller

design problem for the uncertain linear time-delay system
given in (1), (4) with (5).

Corollary 3. The control law 𝑢(𝑘) = 𝐿𝑌
−1

𝑥(𝑘) robustly
asymptotically stabilizes the uncertain system (1) and guaran-
tees theH

∞
performance index, 𝛾, for any time-varying delay,

𝑑(𝑘), satisfying (4), if there exist matrices 𝑌 = 𝑌
𝑇

> 0,
𝑊 = 𝑊

𝑇

> 0, and 𝐿 in appropriate dimensions and a scalar
𝜖 > 0 which satisfy the following LMI condition:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑌 ∗ ∗ ∗ ∗ ∗ ∗

0 𝑊 ∗ ∗ ∗ ∗ ∗

0 0 𝛾
2

𝐼 ∗ ∗ ∗ ∗

𝐴𝑌 + 𝐵
𝑢
𝐿 𝐴
𝑑
𝑊 𝐵

𝑤
𝑌 − 𝜖𝐺𝐺

𝑇

∗ ∗ ∗

𝐶𝑌 + 𝐷
𝑢
𝐿 𝐶
𝑑
𝑊 𝐷

𝑤
0 𝐼 ∗ ∗

𝑌 0 0 0 0 𝑑
−1

𝑚
𝑊 ∗

𝐸
2
𝐿 + 𝐸
1
𝑌 𝐸
3
𝑊 0 0 0 0 𝜖𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0. (25)

Proof. Replacing𝐴,𝐴
𝑑
, and 𝐵

𝑢
with𝐴(𝑘) = 𝐴+Δ𝐴,𝐴

𝑑
(𝑘) =

𝐴
𝑑

+ Δ𝐴
𝑑
, and 𝐵

𝑢
(𝑘) = 𝐵

𝑢
+ Δ𝐵
𝑢
in (12) and utilizing the

definitions given in (5) and (6) together with the definitions

Π ≜ [𝐸
2
𝐿 + 𝐸
1
𝑌 𝐸
3
𝑊 0 0 0 0] ,

Θ ≜ [0 0 0 𝐺
𝑇

0 0]

𝑇

(26)

yield

[

[

[

[

[

[

[

[

[

[

−𝑌 ∗ ∗ ∗ ∗ ∗

0 −𝑊 ∗ ∗ ∗ ∗

0 0 −𝛾
2

𝐼 ∗ ∗ ∗

𝐴𝑌 + 𝐵
𝑢
𝐿 𝐴
𝑑
𝑊 𝐵

𝑤
−𝑌 ∗ ∗

𝐶𝑌 + 𝐷
𝑢
𝐿 𝐶
𝑑
𝑊 𝐷

𝑤
0 −𝐼 ∗

𝑌 0 0 0 0 −𝑑
−1

𝑚
𝑊

]

]

]

]

]

]

]

]

]

]

+ Π
𝑇

𝐹 (𝑘) Θ
𝑇

+ Θ𝐹(𝑘)
𝑇

Π < 0.

(27)

Note that for any matrices Σ
1
and Σ

2
of appropriate dimen-

sions, there always exists an 𝜖 > 0 such that

Σ
𝑇

1
Σ
2

+ Σ
𝑇

2
Σ
1

<

1

𝜖

Σ
𝑇

1
Σ
1

+ 𝜖Σ
𝑇

2
Σ
2
. (28)

Therefore

Π
𝑇

𝐹 (𝑘) Θ
𝑇

+ Θ𝐹(𝑘)
𝑇

Π ≤

1

𝜖

Π
𝑇

Π + 𝜖ΘΘ
𝑇

. (29)

Then, if

[

[

[

[

[

[

[

[

[

[

−𝑌 ∗ ∗ ∗ ∗ ∗

0 −𝑊 ∗ ∗ ∗ ∗

0 0 −𝛾
2

𝐼 ∗ ∗ ∗

𝐴𝑌 + 𝐵
𝑢
𝐿 𝐴
𝑑
𝑊 𝐵

𝑤
−𝑌 ∗ ∗

𝐶𝑌 + 𝐷
𝑢
𝐿 𝐶
𝑑
𝑊 𝐷

𝑤
0 −𝐼 ∗

𝑌 0 0 0 0 −𝑑
−1

𝑚
𝑊

]

]

]

]

]

]

]

]

]

]

+

1

𝜖

Π
𝑇

Π + 𝜖ΘΘ
𝑇

< 0

(30)

is satisfied, (27) is also satisfied. Finally, applying Schur
complement formula to (30) yields (25). This completes the
proof.

Next we will introduce some LMI conditions which fulfill
the requirement given in item (III).

Lemma 4. Suppose that there exists a solution (𝛾, 𝑌, 𝑊, 𝑋)

that meets the stability condition (25) with input constraint (2)
for system (1) and (4), then state trajectory starting from 𝑥(0)

remains in 𝜀
1
(𝑃, 𝑟), if there exist matrices 𝑃 = 𝑃

𝑇

> 0 and
𝑄 = 𝑄

𝑇

> 0 for given positive scalar constants 𝛼 and 𝑟, such
that
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑟 − 𝛾
2

𝛼
2

∗ ∗ ⋅ ⋅ ⋅ ∗ ⋅ ⋅ ⋅ ∗ ∗ ∗

𝑥 (𝑘) 𝑌 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0 0

𝑥 (𝑘 − 1) 0 𝑑
−1

𝑚
𝑊 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0 0

...
...

... d
... d

...
...

...
𝑥 (𝑘 − 𝑑min) 0 0 ⋅ ⋅ ⋅ 𝑑

−1

𝑚
𝑊 ⋅ ⋅ ⋅ 0 0 0

...
...

... d
... d

...
...

...
𝑥 (𝑘 − 𝑑max + 2) 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 3

−1

𝑊 0 0

𝑥 (𝑘 − 𝑑max + 1) 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 2
−1

𝑊 0

𝑥 (𝑘 − 𝑑max) 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0 𝑊

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≥ 0, (31)

where 𝑑
𝑚

= (𝑑max − 𝑑min + 1).

Proof. The LMI condition (31) corresponds to the state
constraint that is defined in (9). Utilizing the energy bound
of disturbance given in (3), the dissipation inequality (10)
implies

𝑉 (𝑥 (𝑘)) +

𝑘−1

∑

𝑖=0

‖𝑧 (𝑖)‖
2

≤ 𝑉 (𝑥 (0)) + 𝛾
2

𝛼
2

∀𝑘 ≥ 0. (32)

Therefore, the output energy is bounded as (11). As explained
in [27],

(i) if 𝑟 > 0, 𝑥(𝑘) ∈ 𝜀
1
(𝑃, 𝑄, 𝑟) for all 𝑘 ≥ 0;

(ii) if 𝑟 > 𝛾
2

𝛼
2, 𝑥(𝑘) ∈ 𝜀

1
(𝑃, 𝑄, 𝑟) for 𝑥(0) ∈ 𝜀

2
(𝑃, 𝑟, 𝛼).

Here, by choosing 𝑟 > 𝛾
2

𝛼
2, the state trajectory starting from

𝑥(0) meets ∑
∞

𝑖=0
‖𝑧(𝑖)‖

2

≤ 𝑟 and 𝑉(𝑥(𝑘)) ≤ 𝑟 if 𝑉(𝑥(𝑘)) ≤

𝑟 − 𝛾
2

𝛼
2 with respect to (32) as mentioned in (8). Note that it

is easy to see that the LMI condition (31) is congruent to

𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

+

−𝑑min+1

∑

𝑖=−𝑑max+2

𝑘−1

∑

𝑠=𝑘+𝑖−1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) ≤ 𝑟 − 𝛾
2

𝛼
2

(33)

in view of the variable changes𝑌 := 𝑃
−1 and𝑊 := 𝑄

−1 and the
successive implementations of Schur complement formulae
together with the bounding

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) ≤

𝑘−1

∑

𝑠=𝑘−𝑑min

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

+

𝑘−𝑑min−1

∑

𝑠=𝑘−𝑑max+1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) ,

(34)

which has been used to eliminate the requirement on the
knowledge of 𝑑(𝑘).

On the other hand, we need to take the constrained input
into consideration to fulfill the requirement given in item
(IV) of the problem statement. Therefore, regarding the state
trajectories belonging to 𝜀

1
, the control constraint condition

given in (2) is satisfied as follows [38]:

max
𝑘≥0





𝑢
𝑖
(𝑘)






2

= max
𝑘≥0






(𝐿𝑌
−1

)
𝑖

𝑥 (𝑘)







2

≤ max
𝑥∈𝜀
1(𝑃,𝑟)






(𝐿𝑌
−1

)
𝑖

𝑥







2

≤ 𝑟






(𝐿𝑌
−1/2

)
𝑖

𝑥







2

= 𝑟(𝐿𝑌
−1

𝐿
𝑇

)
𝑖𝑖

.

(35)

Hence, taking the Schur complement of (35) allows us to
obtain the following LMI conditionwhich is equivalent to the
constraint (2):

[

[

[

1

𝑟𝑋

𝐿

𝐿
𝑇

𝑌

]

]

]

≥ 0, 𝑋
𝑖𝑖

≤ 𝑢
2

𝑖,max (36)

for some 𝑋 = 𝑋
𝑇

> 0.
Therefore, for given scalar constants 𝛼 > 0 and 𝑟 > 0, the

optimization problem can be stated as follows:

min
𝐿,𝑌,𝑊,𝑋

𝛾
2

subject to (22) (26) , (31) .

(37)

Next, we will extend the H
∞

controller design approach to
the moving horizon scheme. Exploiting the moving horizon
strategy, one could solve the optimization problem given in
(37) by utilizing the actual state measurements provided at
each time instant 𝑘. Unfortunately, this simple implementa-
tion of the moving horizon strategy might fail to guarantee
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the dissipation requirement given in the statement of the
problem (see [39] for details). For that reason, in order to
extend the idea of H

∞
control approach provided for the

TDSs to themoving horizon platform, one needs to introduce
some additional convex requirement so that the dissipativity
of the closed-loop system is ensured. Next theorem provides
an LMI condition for the optimization problem so that the
closed-loop system is guaranteed to be dissipative.

Theorem 5. Suppose that there exists an optimal solution
(𝛾
0
, 𝑌
0
, 𝑊
0
, 𝑋
0
) that meets the LMIs (25), (31), and (36) for

system (1) that is controlled with 𝑢 = 𝐾
0
𝑥, where 𝐾

0
= 𝐿
0
𝑌
−1

0
.

Then the dissipation inequality

𝑘

∑

𝑖=0

(‖𝑧 (𝑖)‖
2

− 𝛾
2

‖𝑤 (𝑖)‖
2

)

≤ 𝑥(0)
𝑇

𝑃
0
𝑥 (0) +

−1

∑

𝑠=−𝑑
0

𝑥(𝑠)
𝑇

𝑄
0
𝑥 (𝑠)

+

−𝑑min+1

∑

𝑗=−𝑑max+2

−1

∑

𝑠=𝑗−1

𝑥(𝑠)
𝑇

𝑄
0
𝑥 (𝑠)

(38)

also holds if the LMI condition

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω ∗ ∗ ⋅ ⋅ ⋅ ∗ ⋅ ⋅ ⋅ ∗ ∗

𝑥 (𝑘) 𝑌
𝑘

0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0

𝑥 (𝑘 − 1) 0 𝑑
−1

𝑚
𝑊
𝑘

⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0

...
...

... d
... d

...
...

𝑥 (𝑘 − 𝑑min) 0 0 ⋅ ⋅ ⋅ 𝑑
−1

𝑚
𝑊
𝑘

⋅ ⋅ ⋅ 0 0

...
...

... d
... d

...
...

𝑥 (𝑘 − 𝑑max + 2) 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 2
−1

𝑊
𝑘

0

𝑥 (𝑘 − 𝑑max + 1) 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 𝑊
𝑘

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≥ 0, (39)

where 𝑑
𝑚

= (𝑑max − 𝑑min + 1) and

Ω = 𝑝
0

+ 𝑞
0

− 𝑝
𝑘−1

− 𝑞
𝑘−1

+ 𝑥
𝑇

(𝑘) 𝑃
𝑘−1

𝑥 (𝑘)

+

𝑘−1

∑

𝑠=𝑘−𝑑max

𝑥
𝑇

(𝑠) 𝑄
𝑘−1

𝑥 (𝑠)

+

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑘−1

∑

𝑠=𝑗+𝑘−1

𝑥
𝑇

(𝑠) 𝑄
𝑘−1

𝑥 (𝑠) .

(40)

with

𝑝
𝑘

= 𝑝
𝑘−1

− 𝑥(𝑘)
𝑇

[𝑃
𝑘−1

− 𝑃
𝑘
] 𝑥 (𝑘)

𝑞
𝑘

= 𝑞
𝑘−1

−

𝑘−1

∑

𝑠=𝑘−𝑑min

𝑥(𝑠)
𝑇

𝑄
𝑘−1

𝑥 (𝑠) −

𝑘−1

∑

𝑘−𝑑min

𝑥(𝑠)
𝑇

𝑄
𝑘
𝑥 (𝑠)

−

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑘−1

∑

𝑠=𝑗+𝑘−1

𝑥(𝑠)
𝑇

[𝑄
𝑘−1

− 𝑄
𝑘
] 𝑥 (𝑠)

(41)

holds true when 𝑌
𝑘
and 𝑊

𝑘
are replaced with 𝑌

0
= 𝑌
𝑇

0
and

𝑊
0

= 𝑊
𝑇

0
, respectively.

Proof. Assume there exists a feasible solution set which holds
(39). Let us consider the predetermined Lyapunov-Krasovskii

candidate functional for the 𝑖th energy level as follows:

𝑉
𝑖
= 𝑥
𝑇

(𝑖) 𝑃𝑥 (𝑖) +

𝑖−1

∑

𝑠=𝑖−𝑑(𝑖)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠)

+

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑖−1

∑

𝑠=𝑖+𝑗−1

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) .

(42)

By rearranging inequality (10) at each step 𝑖 and assuming that
the applied control at 𝑖th instant is kept constant up to the
(𝑖 + 1)th instant, one can write the dissipation inequality as

𝑉
𝑖+1

+ ‖𝑧 (𝑖)‖
2

≤ 𝛾
2

‖𝑤 (𝑖)‖
2

+ 𝑉
𝑖

(43)

for 𝑖 = 0, 1, . . . , 𝑘, where 𝑉
𝑖+1

is the energy of the closed-loop
system attained by using the Lyapunov matrices obtained at
the 𝑖th step. Then we get

𝑘

∑

𝑖=0

(‖𝑧 (𝑖)‖
2

− 𝛾
2

‖𝑤 (𝑖)‖
2

)

≤ 𝑥(0)
𝑇

𝑃
0
𝑥 (0) − 𝑥(𝑘 + 1)

𝑇

𝑃
𝑘
𝑥 (𝑘 + 1)

−

𝑘

∑

𝑖=1

𝑥(𝑖)
𝑇

[𝑃
𝑖−1

− 𝑃
𝑖
] 𝑥 (𝑖) +

−1

∑

𝑠=−𝑑
0

𝑥(𝑠)
𝑇

𝑄
0
𝑥 (𝑠)
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−

𝑘

∑

𝑠=−𝑑
𝑘+1
+𝑘+1

𝑥(𝑠)
𝑇

𝑄
𝑘
𝑥 (𝑠)

−

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠)

+

−𝑑min+1

∑

𝑗=−𝑑max+2

−1

∑

𝑠=𝑗−1

𝑥(𝑠)
𝑇

𝑄
0
𝑥 (𝑠)

−

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑘

∑

𝑠=𝑗+𝑘

𝑥(𝑠)
𝑇

𝑄
𝑘
𝑥 (𝑠)

−

𝑘

∑

𝑖=1

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑖−1

∑

𝑠=𝑗+𝑖−1

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) .

(44)

Assuming that 𝑃
𝑘

≥ 0, 𝑄
𝑘

≥ 0 for all 𝑘 ≥ 0, one can write

𝑘

∑

𝑖=0

(‖𝑧 (𝑖)‖
2

− 𝛾
2

‖𝑤 (𝑖)‖
2

)

≤ 𝑥(0)
𝑇

𝑃
0
𝑥 (0) −

𝑘

∑

𝑖=1

𝑥(𝑖)
𝑇

[𝑃
𝑖−1

− 𝑃
𝑖
] 𝑥 (𝑖)

+

−1

∑

𝑠=−𝑑
0

𝑥(𝑠)
𝑇

𝑄
0
𝑥 (𝑠)

−

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠)

+

−𝑑min+1

∑

𝑗=−𝑑max+2

−1

∑

𝑠=𝑗−1

𝑥(𝑠)
𝑇

𝑄
0
𝑥 (𝑠)

−

𝑘

∑

𝑖=1

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑖−1

∑

𝑠=𝑗+𝑖−1

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) .

(45)

Note that if

𝑘

∑

𝑖=1

𝑥(𝑖)
𝑇

(𝑃
𝑖−1

− 𝑃
𝑖
) 𝑥 (𝑖) +

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠)

+

𝑘

∑

𝑖=1

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑖−1

∑

𝑠=𝑗+𝑖−1

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) ≥ 0

(46)

then the closed-loop system behaves dissipatively. However,
inequality (46) involves the term

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) (47)

which is dependent on the knowledge of 𝑑(𝑖). Therefore, if
one can find a lower bound, 𝐵, such that

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) ≥ 𝐵 ≥ 0 (48)

then we guarantee the dissipativity of the overall closed-loop
system. Note that

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠)

≥

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑min

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) .

(49)

Hence, we need to satisfy
𝑘

∑

𝑖=1

𝑥(𝑖)
𝑇

(𝑃
𝑖−1

− 𝑃
𝑖
) 𝑥 (𝑖) +

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑min

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠)

+

𝑘

∑

𝑖=1

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑖−1

∑

𝑠=𝑗+𝑖−1

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) ≥ 0.

(50)

We infer from (41) that

𝑝
𝑘−1

= 𝑝
0

−

𝑘−1

∑

𝑖=1

𝑥(𝑖)
𝑇

[𝑃
𝑖−1

− 𝑃
𝑖
] 𝑥 (𝑖)

𝑞
𝑘−1

= 𝑞
0

−

𝑘

∑

𝑖=1

𝑖−1

∑

𝑠=𝑖−𝑑
𝑖

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠)

−

𝑘

∑

𝑖=1

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑖−1

∑

𝑠=𝑗+𝑖−1

𝑥(𝑠)
𝑇

[𝑄
𝑖−1

− 𝑄
𝑖
] 𝑥 (𝑠) .

(51)

Applying Schur complement formula to LMI (39) yields

𝑝
0

− 𝑝
𝑘−1

+ 𝑥(𝑘)
𝑇

[𝑃
𝑘−1

− 𝑃
𝑘
] 𝑥 (𝑘) + 𝑞

0
− 𝑞
𝑘−1

+

𝑘−1

∑

𝑠=𝑘−𝑑min

𝑥(𝑠)
𝑇

[𝑄
𝑘−1

− 𝑄
𝑘
] 𝑥 (𝑠)

+

−𝑑min+1

∑

𝑗=−𝑑max+2

𝑘−1

∑

𝑠=𝑗+𝑘−1

𝑥(𝑠)
𝑇

[𝑄
𝑘−1

− 𝑄
𝑘
] 𝑥 (𝑠) ≥ 0.

(52)

Then, using the definitions given in (51) and in (52) yields
(50). This concludes the proof.

Therefore, in view of (36) together with Corollary 3,
Lemma 4, andTheorem 5,we present a new convex optimiza-
tion problem as follows.

Theorem 6. Given scalar constants 𝛼
0

> 0 and 𝑟
0

> 0, at
each step 𝑘, if one can find a common feasible solution set
{𝛾
𝑘
, 𝐿
𝑘
, 𝑌
𝑘
, 𝑊
𝑘
, 𝑋
𝑘
} to the convex optimization problem

min
𝐿,𝑌,𝑊,𝑋

𝛾
2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (25) , (31) , (36) , (39)

(53)
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then system (1) controlled with state-feedback control law
𝑢(𝑘) = 𝐾

𝑘
𝑥(𝑘), where 𝐾

𝑘
= 𝐿
𝑘
𝑌
−1

𝑘
, has the following prop-

erties.
(i) The closed-loop system isH

∞
stable.

(ii) TheH
∞
gain 𝛾 from disturbance input 𝑤 to controlled

output 𝑧 is minimum.
(iii) The control input constraint is satisfied.
(iv) The closed-loop system is dissipative.

The following receding-horizon H
∞

algorithm can be
used to find the optimal control law for system (1) with (4)
which repeats at each time instant 𝑘.

Algorithm 7.
Step 1. Defining the step size for 𝛾 as 𝑑𝛾; first, fix 𝛾 to a
sufficiently large value and solve the optimization problem
(37) for given 𝛼

0
, 𝑟
0
, 𝑑max, and 𝑑min. If there exists a feasible

solution to the problem, set 𝛾 = 𝛾 − 𝑑𝛾 until infeasibility.
Then, assign 𝛾opt = 𝛾 + 𝑑𝛾. Compute 𝑃

0
, 𝑄
0
and 𝐾

0
= 𝐿
0
𝑌
−1

0

and the initial dissipation level is 𝑝(0) = 𝑥(0)
𝑇

𝑃
0
𝑥(0) and

𝑞(0) = ∑
−1

𝑠=−𝑑min
𝑥
𝑇

(𝑠)𝑄
0
𝑥(𝑠) + ∑

−𝑑min+1
𝑠=−𝑑max+2

∑
−1

𝑠=𝑗−1
𝑥
𝑇

(𝑠)𝑄
0
𝑥(𝑠).

Go to Step 3.
Step 2. According to given 𝛼

0
, 𝑟
0
, 𝑑max, and 𝑑min and obtained

dissipation level with 𝑝(𝑘) and 𝑞(𝑘), solve the optimization
problem (53). If there exists a feasible solution, set 𝛾(𝑘) =

𝛾(𝑘) − 𝑑𝛾, solve (53) until infeasibility. Then, assign 𝛾(𝑘) ≜

𝛾(𝑘) + 𝑑𝛾. If there is no possible solution increase 𝑟 until
a feasible solution is found and repeat the minimization
procedure for 𝛾(𝑘). Then, for 𝛾min, compute 𝑃

𝑘
, 𝑄
𝑘
and 𝐾

𝑘
=

𝐿
𝑘
𝑌
−1

𝑘
and the dissipation level 𝑝

𝑘
and 𝑞
𝑘
. Go to Step 3.

Step 3. Apply the control signal 𝑢(𝑘) = 𝐾
𝑘
𝑥(𝑘) to the system.

Change the step from 𝑘 to 𝑘 + 1 and continue with Step 2.

5. Numerical Examples

In this section we give two numerical examples to demon-
strate the efficiency of the proposed method for time-varying
state delayed systems with and without norm-bounded para-
metric uncertainties, respectively. Note that the results are
obtained by using SeDuMi and YALMIP toolboxes operated
under MATLAB.

Example 1. The following example is borrowed from [39] in
which a nominalH

∞
control problem has been considered.

Consider a state-delayed system (1) whose model parameters
are given by

𝐴 = [

0 1

−0.14 0.9
] 𝐴

𝑑
= [

0.2 0

0 0.1
] 𝐵

𝑤
= 𝐵
𝑢

= [

0

1
]

𝐶 = [0.5 1] 𝐶
𝑑

= [0 0] 𝐷
𝑤

= [0] 𝐷
𝑢

= [0.1]

𝑥 (𝑖) = [0 −1.5]

𝑇

𝑖 = 0, −1, . . . , −𝑑max

‖𝑢 (𝑘)‖ ≤ 1, ∀𝑘 ≥ 0.

(54)
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Figure 1: The time-history of the disturbance signal affecting the
system.
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𝛾
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Figure 2: The variation of disturbance attenuation level, 𝛾, for
different delay sizes.

Choosing 𝑟
0

= 0.17 and using the energy-bounded distur-
bance (𝛼 = 0.3), whose time-history is as shown in Figure 1,
we compute 𝛾opt = 1.09 for 𝑑max = 𝑑min = 2 at the initial step
of algorithm.Applying the proposed algorithmon the system,
we obtain satisfactory results in 𝛾 minimization which also
leads us to obtain a significant improvement in disturbance
rejection performance. Figure 2 shows the variations of 𝛾with
respect to various delay bounds. It can be seen in the figure
that the value of 𝛾 decreases while the bounds on the delay
are tightened. Thus, the conservatism of the approach can
be reduced by bounding the delay if the upper and lower
bounds of delay are known. For different delay bounds, 𝑑max
and 𝑑min, the variation of the controlled output, 𝑧, and the
control signal, 𝑢, are shown in Figures 3, 4, and 5, proving that
the results are satisfactory and the control input constraint is
satisfied for the system that involves time-varying delay.

Besides, the simulations are repeated for the same exam-
ple with a new 𝐴

𝑑
matrix determined in a way that 𝐴 + 𝐴

𝑑
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Figure 3: The time-history of the controlled output, 𝑧, and the
control input, 𝑢, for 𝑑max = 𝑑min = 2.
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Figure 4: The time-history of the controlled output, 𝑧, and the
control input, 𝑢, for 𝑑max = 4, 𝑑min = 1.
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Figure 5: The time-history of the controlled output, 𝑧, and the
control input, 𝑢, for 𝑑max = 7, 𝑑min = 1.
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Figure 6: Ellipsoidal bounds on state trajectories, for 𝑑max = 2,
𝑑min = 2.

has a pole outside of the unit circle when the delay 𝑑(𝑘) = 0.
Consider the following:

𝐴 = [

0 1

−0.14 0.9
] 𝐴

𝑑
= [

0.2 0

0 0.3
] . (55)

Hence, the effectiveness of the control algorithm is demon-
strated also for unstable systems. The state trajectory that
remains in the time-invariant ellipsoids is given in Figure 6.

Example 2. We utilize the example given in [40] in revised
form as follows:

𝐴 = [

0 0.1

−0.14 0.9
] 𝐴

𝑑
= [

0.2 0

0 0.1
]

𝐵
𝑤

= 𝐵
𝑢

= [

0

1
] 𝐶 = [

1 0

0 √0.1

] 𝐶
𝑑

= [

0 0

0 0
]

𝐷
𝑤

= [

0

0
] 𝐷

𝑢
= [

0

1
]

𝑥 (𝑖) = [0 0]

𝑇

𝑖 = 0, −1, . . . , −𝑑max

‖𝑢 (𝑘)‖ ≤ 1, ∀𝑘 ≥ 0,

(56)

where ‖Δ𝐴‖ = ‖Δ𝐴
𝑑
‖ = ‖Δ𝐵

𝑢
‖ ≤ 0.1. The expansion

of the proposed method to the time-delay systems having
parametric uncertainties is shown in the example. The time-
history of the disturbance applied to the system is as shown
in Figure 1. We compute 𝛾opt = 1.26 for 𝑑max = 𝑑min = 2

and we choose 𝑟
0

= 0.1. During the simulations, the best
variation of 𝑟 is obtained at each step. Figure 7 shows the
variations in 𝛾 with respect to different delay-bounds. For
various delay bounds, 𝑑max and 𝑑min, we obtain the time-
history of performance outputs and the control efforts as
shown in Figures 8, 9, and 10. Besides, Figure 11 shows the
invariant ellipsoidal bounds on the state trajectory of the
delayed system.

6. Conclusion

The MPC of a class of linear discrete-time, uncertain time-
delayed systems having time-varying interval delays was
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Figure 7: The variations of disturbance attenuation level, 𝛾, for
different delay sizes.
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Figure 8: The time-history of the controlled output, 𝑧, and the
control input, 𝑢, for 𝑑max = 2, 𝑑min = 2.
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Figure 9: The time-history of the controlled output, 𝑧, and the
control input, 𝑢, for 𝑑max = 4, 𝑑min = 1.
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Figure 10: The time-history of the controlled output, 𝑧, and the
control input, 𝑢, for 𝑑max = 7, 𝑑min = 1.
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Figure 11:The ellipsoidal bounds on state trajectory of the uncertain
system for 𝑑min = 𝑑max = 2.

considered. Utilizing a standard discrete-time Lyapunov-
Krasovskii functional, some delay-dependent, linear matrix
inequality (LMI) based conditions which need to be solved
iteratively in each step of run-time were provided. The
provided LMI based conditions guarantee the closed-loop
asymptotic stability, maximum disturbance attenuation per-
formance, and closed-loop dissipativity in consideration of
the physical limitations of the actuator. Two numerical exam-
ples which consist of nominal and uncertain system models
were considered to demonstrate the applicability of the pro-
posed approach. Both the numerical results and simulation
results validated that the proposed approach of this note
can be efficiently used for the control of discrete-time, time-
delayed systems having uncertainties and physical control
limitations. For a further study, the conservatism of the
approach can be alleviated by using complete 𝐿𝐾 functionals
and/or some delay-decomposition methods. However, it
is probable that both strategies would impose noticeable
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amount of additional computational loads to the controller
which will prohibit the use of the proposed method in real-
time. Also these types of methods cannot be solved by using
convex optimization methods and would require the use of
some linearisation techniques such as cone-complementary
methods.
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