4,262 research outputs found

    Quantitative Phenotype Analysis to Identify, Validate and Compare Rat Disease Models

    Get PDF
    Introduction The laboratory rat has been widely used as an animal model in biomedical research. There are many strains exhibiting a wide variety of phenotypes. Capturing these phenotypes in a centralized database provides researchers with an easy method for choosing the appropriate strains for their studies. Current resources such as NBRP and PhysGen provided some preliminary work in rat phenotype databases. However, there are drawbacks in both projects: (1) small number of animals (6 rats) used by NBRP; (2) NBRP project is a one-time effort for each strain; (3) PhysGen web interface only enables queries within a single study โ€“ data comparison and integration not possible; (4) PhysGen lacks a data standardization process so that the measurement method, experimental condition, and age of rats used are hidden. Therefore, there is a need for a better data integration and visualization method in order to provide users with more insights about phenotype differences across rat strains. The Rat Genome Database (RGD) PhenoMiner tool has provided the first step in this effort by standardizing and integrating data from individual studies as well as NBRP and PhysGen. Methods Our work involved the following key steps: (1) we developed a meta-analysis pipeline to automatically integrate data from heterogeneous sources and to produce expected ranges (standardized phenotype ranges) for different strains, and different phenotypes under different experimental conditions; (2) we created tools to visualize expected ranges for individual strains and strain groups; (3) we clustered substrains into different sub-populations according to phenotype correlations. Results We developed a meta-analysis pipeline and an interactive web interface that summarizes and visualizes expected ranges produced from the meta-analysis pipeline. Automation of the pipeline allows for updates as additional data becomes available. The interactive web interface provides the researchers with a platform for identifying and validating expected ranges for a variety of quantitative phenotypes. In addition, we performed a preliminary cluster analysis that enables researchers to examine similarities of strains, substrains, and different sex or age groups of strains on a multi-dimensional scale by using multiple phenotype features. Conclusion The data resources and the data mining and visualization tools will promote an understanding of rat disease models, guide researchers to choose optimal strains for their research needs, and encourage data sharing from different research hubs. Such resources also help to promote research reproducibility. Data produced and interactive platforms created in this project will continue to provide a valuable resource for Translational Research efforts

    Scale Stain: Multi-Resolution Feature Enhancement in Pathology Visualization

    Full text link
    Digital whole-slide images of pathological tissue samples have recently become feasible for use within routine diagnostic practice. These gigapixel sized images enable pathologists to perform reviews using computer workstations instead of microscopes. Existing workstations visualize scanned images by providing a zoomable image space that reproduces the capabilities of the microscope. This paper presents a novel visualization approach that enables filtering of the scale-space according to color preference. The visualization method reveals diagnostically important patterns that are otherwise not visible. The paper demonstrates how this approach has been implemented into a fully functional prototype that lets the user navigate the visualization parameter space in real time. The prototype was evaluated for two common clinical tasks with eight pathologists in a within-subjects study. The data reveal that task efficiency increased by 15% using the prototype, with maintained accuracy. By analyzing behavioral strategies, it was possible to conclude that efficiency gain was caused by a reduction of the panning needed to perform systematic search of the images. The prototype system was well received by the pathologists who did not detect any risks that would hinder use in clinical routine

    Pathway activity analysis of bulk and single-cell RNA-Seq data

    Get PDF
    Gene expression profiling can produce effective biomarkers that can provide additional information beyond other approaches for characterizing disease. While these approaches are typically performed on standard bulk RNA sequencing data, new methods for RNA sequencing of individual cells have allowed these approaches to be applied at the resolution of a single cell. As these methods enter the mainstream, there is an increased need for user-friendly software that allows researchers without experience in bioinformatics to apply these techniques. In this thesis, I have developed new, user-friendly data resources and software tools to allow researchers to use gene expression signatures in their own datasets. Specifically, I created the Single Cell Toolkit, a user-friendly and interactive toolkit for analyzing single-cell RNA sequencing data and used this toolkit to analyze the pathway activity levels in breast cancer cells before and after cancer therapy. Next, I created and validated a set of activated oncogenic growth factor receptor signatures in breast cancer, which revealed additional heterogeneity within public breast cancer cell line and patient sample RNA sequencing datasets. Finally, I created an R package for rapidly profiling TB samples using a set of 30 existing tuberculosis gene signatures. I applied this tool to look at pathway differences in a dataset of tuberculosis treatment failure samples. Taken together, the results of these studies serve as a set of user-friendly software tools and data sets that allow researchers to rapidly and consistently apply pathway activity methods across RNA sequencing samples

    ์˜ํ•™ ์—ฐ๊ตฌ์—์„œ์˜ ๊ณผํ•™์  ์ฆ๊ฑฐ์˜ ํ™œ์šฉ์„ ์œ„ํ•œ ์‹œ๊ฐ์  ๋ถ„์„ ์‹œ์Šคํ…œ ๋””์ž์ธ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2022. 8. ์„œ์ง„์šฑ.Evidence-based medicine, "the conscientious, explicit, and judicious use of current best evidence in healthcare and medical research" [98], is one of the most widely accepted medical paradigms of modern times. Searching, reviewing, and synthesizing reliable and high-quality scientific evidence is the key step for the paradigm. However, despite the widespread use of the EBM paradigm, challenges remain in applying Evidence-based medicine protocols to medical research. One of the barriers to applying the best scientific evidence to medical research is the severe literature and clinical data overload that causes the evidence-based tasks to be tremendous time-consuming tasks that require vast human effort. In this dissertation, we aim to employ visual analytics approaches to address the challenges of searching and reviewing massive scientific evidence in medical research. To overcome the burden and facilitate handling scientific evidence in medical research, we conducted three design studies and implemented novel visual analytics systems for laborious evidence-based tasks. First, we designed PLOEM, a novel visual analytics system to aid evidence synthesis, an essential step in Evidence-Based medicine, and generate an Evidence Map in a standardized method. We conducted a case study with an oncologist with years of evidence-based medicine experience. In the second study, we conducted a preliminary survey with 76 medical doctors to derive the design requirements for a biomedical literature search. Based on the results, We designed EEEVis, an interactive visual analytic system for biomedical literature search tasks. The system enhances the PubMed search result with several bibliographic visualizations and PubTator annotations. We performed a user study to evaluate the designs with 24 medical doctors and presented the design guidelines and challenges for a biomedical literature search system design. The third study presents GeneVis, a visual analytics system to identify and analyze gene expression signatures across major cancer types. A task that cancer researchers utilize to discover biomarkers in precision medicine. We conducted four case studies with domain experts in oncology and genomics. The study results show that the system can facilitate the task and provide new insights from the data. Based on the three studies of this dissertation, we conclude that carefully designed visual analytics approaches can provide an enhanced understanding and support medical researchers for laborious evidence-based tasks in medical research.๊ทผ๊ฑฐ์ค‘์‹ฌ์˜ํ•™(Evidence-Based Medicine)์ด๋ž€ "์ž„์ƒ ์น˜๋ฃŒ ๋ฐ ์˜ํ•™ ์—ฐ๊ตฌ์—์„œ ํ˜„์žฌ ์กด์žฌํ•˜๋Š” ์ตœ๊ณ ์˜ ์ฆ๊ฑฐ๋ฅผ ์–‘์‹ฌ์ ์ด๊ณ , ๋ช…๋ฐฑํ•˜๋ฉฐ, ๋ถ„๋ณ„ ์žˆ๊ฒŒ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก "์ด๋ฉฐ [98], ํ˜„๋Œ€ ์˜ํ•™์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ๋ฐ›์•„๋“ค์—ฌ์ง€๋Š” ์˜ํ•™ ํŒจ๋Ÿฌ๋‹ค์ž„์ด๋‹ค. ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ณ ์ˆ˜์ค€์˜ ๊ณผํ•™์  ๊ทผ๊ฑฐ๋ฅผ ๊ฒ€์ƒ‰, ๊ฒ€ํ† , ํ•ฉ์„ฑํ•˜๋Š” ๊ฒƒ์ด์•ผ ๋ง๋กœ ๊ทผ๊ฑฐ์ค‘์‹ฌ์˜ํ•™์˜ ํ•ต์‹ฌ์ด๋‹ค. ํ•˜์ง€๋งŒ, ๊ทผ๊ฑฐ์ค‘์‹ฌ์˜ํ•™์ด ์ด๋ฏธ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์˜ํ•™ ์—ฐ๊ตฌ์— ๊ทผ๊ฑฐ์ค‘์‹ฌ์˜ํ•™์˜ ํ”„๋กœํ† ์ฝœ์„ ์‹ค์ฒœํ•˜๋Š” ๋ฐ์—๋Š” ์—ฌ์ „ํžˆ ๋งŽ์€ ์–ด๋ ค์›€์ด ๋”ฐ๋ฅธ๋‹ค. ์˜๋ฃŒ ๋ฌธํ—Œ ์ •๋ณด, ์ž„์ƒ ์ •๋ณด ๋ฐ ์œ ์ „์ฒดํ•™ ์ •๋ณด๊นŒ์ง€ ์—ฐ๊ตฌ์ž๊ฐ€ ๊ฒ€ํ† ํ•ด์•ผ ํ•  ๊ทผ๊ฑฐ์˜ ์–‘์€ ๋ฐฉ๋Œ€ํ•˜๋ฉฐ ๊ด‘๋ฒ”์œ„ํ•˜๋‹ค. ๋˜ํ•œ ์˜ํ•™๊ณผ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ์ ์ฐจ ๋” ๋น ๋ฅธ ์†๋„๋กœ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๊ธฐ์—, ์ด๋ฅผ ๋ชจ๋‘ ์—„๋ฐ€ํžˆ ๊ฒ€ํ† ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ง‰๋Œ€ํ•œ ์–‘์˜ ์‹œ๊ฐ„๊ณผ ์ธ๋ ฅ์ด ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‹œ๊ฐ์  ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ ‘๋ชฉํ•˜์—ฌ ์˜ํ•™ ์—ฐ๊ตฌ์—์„œ ๋ฐฉ๋Œ€ํ•œ ๊ณผํ•™์  ์ฆ๊ฑฐ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ๊ฒ€ํ† ํ•  ์‹œ ๋ฐœ์ƒํ•˜๋Š” ๋ง‰๋Œ€ํ•œ ์ธ์  ์ž์›์˜ ๊ณผ๋ถ€ํ•˜ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๊ทผ๊ฑฐ์ค‘์‹ฌ์˜ํ•™์˜ ์ ˆ์ฐจ ์ค‘ ํŠนํžˆ ์ธ๋ ฅ ์†Œ๋ชจ๊ฐ€ ๋ง‰์‹ฌํ•œ ์ ˆ์ฐจ๋“ค์„ ์„ ์ •ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋‚œ๊ด€์„ ๊ทน๋ณตํ•˜๊ณ  ๋ณด๋‹ค ํšจ์œจ์ ์ด๊ณ  ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ์ดํ„ฐ์—์„œ ์œ ์˜๋ฏธํ•œ ์ •๋ณด๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ๋” ๋ณด์กฐํ•˜๋Š” ์„ธ ๊ฐ€์ง€ ์‹œ๊ฐ์  ๋ถ„์„ ์‹œ์Šคํ…œ๋“ค์„ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ๊ฐ๊ฐ์˜ ์‹œ์Šคํ…œ์— ๊ด€ํ•œ ๋””์ž์ธ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์šฐ์„  ์ฒซ ๋””์ž์ธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทผ๊ฑฐ์ค‘์‹ฌ์˜ํ•™ ์—ฐ๊ตฌ์— ์žˆ์–ด ํ•„์ˆ˜์  ๋‹จ๊ณ„์ธ ๊ทผ๊ฑฐ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•๋ก ์˜ ํ•˜๋‚˜์ธ ๊ทผ๊ฑฐ ๋งคํ•‘(Evidence Mapping) ๊ณผ์ •์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์‹œ๊ฐ์  ๋ถ„์„ ์‹œ์Šคํ…œ PLOEM์„ ์„ค๊ณ„ํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค๋…„๊ฐ„์˜ ๊ทผ๊ฑฐ ๊ธฐ๋ฐ˜ ์˜๋ฃŒ ๊ฒฝํ—˜์ด ์žˆ๋Š” ์ข…์–‘ํ•™์ž์™€ ํ•จ๊ป˜ ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋””์ž์ธ ์—ฐ๊ตฌ์—์„œ๋Š” ์˜ํ•™ ๋ฌธํ—Œ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ์š”๊ตฌ์‚ฌํ•ญ ๋ถ„์„์„ ์œ„ํ•ด ์ด 76๋ช…์˜ ์˜์‚ฌ๋ฅผ ์ƒ๋Œ€๋กœ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ์ด๋Ÿฌํ•œ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ ๋Œ€ํ™”ํ˜• ์‹œ๊ฐ์  ๋ถ„์„ ์‹œ์Šคํ…œ์ธ EEEVis๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์—ฌ๋Ÿฌ ์ข…์˜ ์„œ์ง€ ์ •๋ณด ์‹œ๊ฐํ™” ์ธํ„ฐํŽ˜์ด์Šค์™€ PubTator์˜ ์ฃผ์„ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ PubMed ๊ฒ€์ƒ‰ ์—”์ง„์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ฆ๊ฐ•ํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋ฉฐ, ์ด๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ด 24๋ช…์˜ ์˜์‚ฌ์™€ ํ•จ๊ป˜ ์‚ฌ์šฉ์ž ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์˜ํ•™ ๋ฌธํ—Œ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์„ค๊ณ„ ์ง€์นจ๊ณผ ๊ณผ์ œ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์„ธ ๋ฒˆ์งธ ๋””์ž์ธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„์˜์˜ ์œ ์ „์ž๊ตฐ์˜ ์œ ์ „์ž ๋ฐœํ˜„ ํŒจํ„ด์„ ์ฃผ์š” ์•” ์œ ํ˜•์— ๋”ฐ๋ผ ์‹œ๊ฐํ™”ํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์ธ GeneVis๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์•” ์œ ํ˜•์— ๋”ฐ๋ฅธ ์œ ์ „์ž ๋ฐœํ˜„ ํŒจํ„ด์˜ ๋ถ„์„๊ณผ ๋น„๊ต๋Š” ์•” ์—ฐ๊ตฌ์ž๋“ค์ด ์ •๋ฐ€ ์˜ํ•™์—์„œ ์ƒ์ฒด ์ง€ํ‘œ(Biomarker)๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์œ„ํ•ด ๋นˆ๋ฒˆํžˆ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ์ข…์–‘ํ•™ ์ „๋ฌธ๊ฐ€ ๋ฐ ์œ ์ „์ฒดํ•™ ์ „๋ฌธ๊ฐ€ ์ด 4์ธ์„ ๋Œ€์ƒ์œผ๋กœ ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ๊ทธ ๊ฒฐ๊ณผ GeneVis๊ฐ€ ํ•ด๋‹น ์ž‘์—…์„ ๋” ์ˆ˜์›”ํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ธฐ์กด์˜ ๋ฐ์ดํ„ฐ์—์„œ ์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ๋„์ถœํ•˜๋Š” ๊ฒƒ์— ๋„์›€์ด ๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์œ„์˜ ์„ธ ๋””์ž์ธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์šฉ์ž ๋ถ„์„๊ณผ ์ž‘์—… ๋ถ„์„์„ ๋™๋ฐ˜ํ•œ ์‹œ๊ฐ์  ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์ด ์˜ํ•™ ์—ฐ๊ตฌ์˜ ๊ทผ๊ฑฐ ๊ด€๋ จ ์ž‘์—…์˜ ์–ด๋ ค์›€์„ ํ•ด์†Œํ•˜๊ณ , ๋ถ„์„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ณด๋‹ค ๋‚˜์€ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๊ฒฐ๋ก  ๋‚ด๋ฆฐ๋‹ค.CHAPTER1 Introduction 1 1.1 Background and Motivation 1 1.2 Dissertation Outline 5 CHAPTER2 Related Work 7 2.1 Evidence Mapping: Graphical Representation for a Scientific Evidence Landscape 7 2.2 Scientific Literature Visualizations and Bibliography Visualizations 9 2.3 Visual Anlytics Systems for Genomics Data sets and Research Tasks 10 CHAPTER3 PLOEM: An Interactive Visualization Tool for Effective Evidence Mapping with Biomedical literature 12 3.1 Introduction 12 3.2 Visual Representations and Interactions of PLOEM 14 3.2.1 Overview of the PICO Criteria 14 3.2.2 Trend Visualization with the Timeline view 17 3.2.3 Representing the PICO Co-occurrence with the Relation view 20 3.2.4 Study detail view 22 3.3 Usage Scenarios: Visualizing Various Study Sizes with PLOEM 23 3.4 Conclusion 24 CHAPTER4 EEEvis: Efficacy improvement in searching MEDLINE database using a novel PubMed visual analytic system 26 4.1 Introduction 26 4.1.1 Motivation 26 4.1.2 Preliminary Survey: A Questionnaire on conventional literature search methods 28 4.1.3 Design Requirements for Biomedical Literature Search Systems 36 4.2 System and Interface Implementation of EEEVis 37 4.2.1 System Overview 37 4.2.2 Bibliography Filters 40 4.2.3 Timeline View 41 4.2.4 Co-authorship Network View 43 4.2.5 Article List and Detail View 44 4.3 User Study 46 4.3.1 Participants 46 4.3.2 Procedures 48 4.3.3 Results and Observations 50 4.4 Discussion 54 4.4.1 Design Implications 56 4.4.2 Limitations and Future Work 57 4.5 Conclusions 59 CHAPTER5 GeneVis: A Visual Analytics Systemfor Gene Signature Analysis in Cancers 68 5.1 Motivation 68 5.2 System and Interface Implementation 69 5.2.1 System Overview 69 5.2.2 Gene Expression Detail View 71 5.2.3 Gene Vector Projection View 72 5.2.4 Gene x Cancer Type Heatmap view 74 5.2.5 User Interaction in Multiple Coordinated Views 76 5.3 Case Studies 76 5.3.1 Participants 76 5.3.2 Task and Procedures 76 5.3.3 Case1: Identifying SimilarGeneSignatures with TGFB1in Hallmark Gene Sets 80 5.3.4 Case2: Identifying Cluster Patterns in the HRD data set 81 5.3.5 Results 82 5.4 Summary 85 CHAPTER6 Conclusion and future work 86 6.1 Conclusion 86 6.2 Future Work 87 Abstract (Korean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102๋ฐ•

    Personalised interactive music systems for physical activity and exercise: a systematic review and meta-analysis

    Get PDF
    The use of Personalised Interactive Music Systems (PIMS) may provide benefits in promoting physical activity levels. This systematic review and meta-analysis was conducted to assess the overall impact of PIMS in physical activity and exercise domains. Separate random effects meta-analyses were conducted for outcomes in physical activity levels, physical exertion, rate of perceived exertion(RPE), and affect. In total, 18 studies were identified. Of these, six studies (with17 total intervention arms) reported data on at least one outcome of interest, from which an effect size could be calculated. PIMS were significantly associated with beneficial changes in physical activity levels (g = 0.49, CI [0.07, 0.91], p = 0.02,k = 4, n = 76) and affect (g = 1.68, CI [0.15, 3.20], p = 0.03, k = 4, n = 122).However, no significant benefit of PIMS use was found for RPE (g = 0.72, CI [-0.14, 1.59], p = 0.10, k = 3, n = 77) or physical exertion (g = 0.79, CI [-0.64,2.10], p = 0.28, k = 5, n = 142). Overall, results support the preliminary use of PIMS across a variety of physical activities to promote physical activity levels and positive affect

    Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments:A network meta-analysis

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the benefits and harms of each cholinesterase inhibitor in the treatment of adults with VCI. To compare cholinesterase inhibitors for efficacy and safety in people with VCI
    • โ€ฆ
    corecore