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ABSTRACT 

QUANTITATIVE PHENOTYPE ANALYSIS TO IDENTIFY, VALIDATE AND 
COMPARE RAT DISEASE MODELS 

 

by 

Yiqing Zhao 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Mary Shimoyama 

 

 

Introduction 

The laboratory rat has been widely used as an animal model in biomedical research. There 

are many strains exhibiting a wide variety of phenotypes. Capturing these phenotypes in a 

centralized database provides researchers with an easy method for choosing the 

appropriate strains for their studies. Current resources such as NBRP and PhysGen provided 

some preliminary work in rat phenotype databases. However, there are drawbacks in both 

projects: (1) small number of animals (6 rats) used by NBRP; (2) NBRP project is a one-time 

effort for each strain; (3) PhysGen web interface only enables queries within a single study – 

data comparison and integration not possible; (4) PhysGen lacks a data standardization 

process so that the measurement method, experimental condition, and age of rats used are 

hidden. Therefore, there is a need for a better data integration and visualization method in 

order to provide users with more insights about phenotype differences across rat strains. 

The Rat Genome Database (RGD) PhenoMiner tool has provided the first step in this effort 

by standardizing and integrating data from individual studies as well as NBRP and PhysGen.  
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Methods 

Our work involved the following key steps: (1) we developed a meta-analysis pipeline to 

automatically integrate data from heterogeneous sources and to produce expected ranges 

(standardized phenotype ranges) for different strains, and different phenotypes under 

different experimental conditions; (2) we created tools to visualize expected ranges for 

individual strains and strain groups; (3) we clustered substrains into different sub-

populations according to phenotype correlations.  

Results 

We developed a meta-analysis pipeline and an interactive web interface that summarizes 

and visualizes expected ranges produced from the meta-analysis pipeline. Automation of 

the pipeline allows for updates as additional data becomes available. The interactive web 

interface provides the researchers with a platform for identifying and validating expected 

ranges for a variety of quantitative phenotypes. In addition, we performed a preliminary 

cluster analysis that enables researchers to examine similarities of strains, substrains, and 

different sex or age groups of strains on a multi-dimensional scale by using multiple 

phenotype features.  

Conclusion 

The data resources and the data mining and visualization tools will promote an 

understanding of rat disease models, guide researchers to choose optimal strains for their 

research needs, and encourage data sharing from different research hubs. Such resources 

also help to promote research reproducibility. Data produced and interactive platforms 

created in this project will continue to provide a valuable resource for Translational 

Research efforts.   
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1. Introduction 

1. 1 Model Organisms 

Model organisms are important tools in biomedical research. Studies using model organisms 

have the potential to reveal the molecular mechanisms underlying disease (1-5) in human. 

The large-scale comparative analysis of phenotype and genotype data in model organisms 

can further reveal novel associations between genotypes and diseases (6-10). Such analysis 

traditionally has not been done as extensively in human.  

Rattus norvegicus, or the laboratory rat has been widely used as an animal model for 

physiology, immunology, neoplasia, pharmacology, toxicology, nutrition and behavior 

research for over 160 years (11). The rat genome sequence project completed in 2004 (12) 

has greatly transformed the research paradigm, creating exceptional opportunities for 

identifying genes and pathways contributing to disease phenotypes in rats. Results 

generated from rat studies can then be translated to human. With the integrated use of 

genetic mapping, gene expression and computational analysis, researchers were able to 

expand their focus from monogenic rat traits to polygenic traits, including left ventricular 

mass (13), heart failure (14), mammary cancer (15), neuroinflammation (16), and 

glomerulonephritis (17, 18). A large number of rat strains have been bred to exhibit the 

phenotypes of common diseases, either spontaneously, or through the application of 

dietary, environmental or other conditions.  

In order to leverage the power of the rat for such studies, a clear understanding of the 

phenotypic profiles of individual rat strains and commonly used control strains is needed. 

Phenotype refers to the observable morphological, physiological and behavioral 

characteristics of an individual under certain contexts of a study environment (19). Many 
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phenotypic characteristics can appear or disappear, or increase or decrease in severity 

throughout the lifespan of an individual. Phenotypic variation is an expression of genotype, 

or the sum of an individual’s genetic makeup and environmental exposure. Thousands of 

human diseases are associated with phenotypic and genetic variations. Phenotypes 

observed in rats are often similar to those observed for particular human diseases and 

researchers will choose particular strains as models of the disease based on these 

observations. However, these choices are often based on a single previous experiment, the 

researchers’ familiarity with or accessibility of the strain, or the fact that it is commonly seen 

by the community as a model for a particular disease. In addition, due to constraints in 

resources, individual investigators often focus on a limited number of phenotypes in a given 

strain, recording values for these few without recording a comprehensive phenotype profile 

of that strain.  

Statistical analysis comparing phenotype values between strains is also commonly done in a 

single experiment. Unlike physicians in the clinic, rat researchers have not had the benefit of 

comprehensive expected (normal or abnormal) ranges for quantitative phenotype 

measurements for individual strains or for commonly used control strains based on multiple 

studies. The availability of statistically determined quantitative phenotype profiles for a 

wide range of rat strains would provide researchers with the data necessary for selecting 

optimal strains for their studies and help identify strains with profiles that closely mimic that 

of humans with particular diseases. The use of diverse panels of strains, both in phenotype 

and genotype, is increasing as a means to represent the diversity of human populations. 

Access to comprehensive quantitative phenotype profiles and comparisons with expected 

ranges, will facilitate the assembly of such strain panels.  
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1. 2 Current Resources 

There have been several attempts to integrate quantitative phenotype data for model 

organisms such as mouse and rat to provide researchers with a view of data across 

experiments. Current resources include: 1) the Rat Phenome Project of the National 

BioResource Project for Rat in Japan (NBRP); 2) the PhysGen and PhysGen knockout 

program; 3) the Mouse Phenome Database; 4) the Rat Genome Database PhenoMiner 

Project. The Rat Phenome Project by NBRP in Japan, and the PhysGen program and PhysGen 

Knockout program are some of the most comprehensive rat phenotype measurement 

studies that have been conducted. However, both projects have some limitations (will be 

discussed in the following paragraphs). The Mouse Phenome Database is a good example in 

terms of data curation and visualization. Their tools provide different visualizations to view 

phenotype measurements in one dataset. However, the tools don’t allow comparing or 

integrating different phenotype measurements across different studies. The PhenoMiner 

project is the forerunner of our current project. It integrates quantitative phenotype records 

from multiple experiments using standardized data formats and vocabularies for the sample 

used, the phenotype measured, how it was measured and under what experimental 

conditions, making it easier to query and compare data from multiple studies. Standardizing 

these four components using the Rat Strain Ontology (RSO), Clinical Measurement Ontology 

(CMO), Measurement Method Ontology (MMO) and Experimental Condition Ontology (XCO) 

was an important step in providing comprehensive phenotype profiles for individual strains 

and across strains and to create a foundation on which expected ranges for particular 

phenotypes could be determined.  
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1) The Rat Phenome Project by NBRP in Japan 

The NBRP Rat Phenome Project in Japan (http://www. anim. med. kyoto-u. ac. 

jp/nbr/phenome. aspx) (20) has comprehensively phenotyped more than 250 rat strains on 

109 parameters in 7 categories: locomotor activity, neurobehavior, blood pressure, blood 

chemistry, hematology, urology, and anatomy. The measurements for each phenotype were 

conducted on a group of 6 rats - male or female, aged 5 to 10 weeks, for each strain and 

results presented as sample means. For some phenotypes, such as body weight, 

measurements were taken at three different time points (5, 6, and 10 weeks) and for others 

at a single time point. The NBRP website provides tables which show measurements for a 

single strain or tables and bar charts that show measurements across strains for a single 

phenotype. They also indicate the research category in which the strain is commonly used (e. 

g. diabetes, immunology, cardio-hypertension).  

The benefit of using the NBRP Rat Phenome Project methodology is that by constructing 

measurement groups with the same number of animals (6 rats), and on both sexes, 

researchers could compare the same phenotype across strains (between study variance can 

be controlled by using the same number of animals). In addition, conclusions about sex 

differences in phenotypes will be easier to draw since the measurements were done under 

the same conditions and at the same age.  

However, there are some drawbacks to this project: 1) the number of animals (6 rats) they 

used was small, resulting in relatively large within study variance; 2) the measurement 

method used by NBRP may not be available in other labs. As a result, NBRP phenotype 

measurements may be biased and make it hard for researchers to compare their own 

results with NBRP measurements; 3) their project is a one-time effort for each strain. 

However, even inbred rat strains can drift in their genetic make-up or physiological 
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characteristics. This again makes it hard for researchers to compare their own results with 

NBRP measurements. Thus, it is essential to continuously measure rat phenotypes and then 

compare or combine old measurement values with new ones.  

2) The PhysGen and PhysGen Knockout Program 

The PhysGen (http://pga. mcw. edu/) Program for Genomic Application at the Medical 

College of Wisconsin has produced large-scale phenotype data using a variety of inbred, 

consomic and knockout rat strains. The PhysGen Program developed two panels of 

consomic rats using the SS/JrHsdMcwi, the FHH/EurMcwi and the BN/NHsdMcwi strains (21). 

Comprehensive characterization (434, 845 physiological data points) of these consomic 

strains, each carrying a chromosome from the sequenced Brown Norway strain, allowed for 

immediate mapping of traits to a particular chromosome without the need for genetic 

crosses (22). The PhysGen Knockout Program collaborated with several labs to generate 

mutant rats through different mutagenesis protocols (23). Inbred, mutant and consomic rat 

strains were characterized on 213 mainly cardiovascular phenotypes (24). Utilizing 

comparative genomic tools and the available PhysGen rat models, in vivo studies have been 

conducted to investigate the role of mutant genes in cardiovascular and metabolic diseases.  

The advantage of The PhysGen Program is that it created a federated database with curated 

measurements on rats from different laboratories and studies on different rat strains 

(inbred, mutant and consomic). The PhysGen Program developed web tools (Figure 1) that 

enable querying of experiments for a specific phenotype. The PhysGen website provides 

visualization of individual phenotype results across multiple strains with statistical analysis. 

It also provides strain profiles which summarize both general and phenotype data for 

individual strains (Figure 2) (25).  
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Figure 1 The PhysGen Web Interface for Querying Experiments of a Phenotype (selected “CARDIAC 

PROTOCOL”) 
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However, there are several drawbacks to the data as presented: 1) the web interface only 

enables queries within a certain protocol or experiment e. g. BIOCHEMISTRY, CARDIAC, 

RENAL, RESPIRATORY. However, some phenotypes were measured in multiple protocols. For 

example, “heart rate” was measured in both CARDIAC and RENAL which make phenotype-

based comparison and integration difficult; 2) it lacks a data standardization process so that 

the measurement method, experimental condition and age of rats used remains hidden 

 

Figure 2 The PhysGen PGA website provides access to strain and phenotype data for more than 70 

strains. Users can query by phenotype or strain. Phenotype queries (lower left) return data for all 

strains for a single phenotype. Strain profile data for a particular strain across all phenotypes (lower 

right) (25) 
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behind those data points. A user needs to refer to the protocol to gain this information. This 

again makes it difficult to truly compare data from various sources and across experiments.  

3) Mouse Phenome Database 

The mouse phenome project offers another example of a coordinated effort in phenotyping, 

data standardization as well as data federation. In 2001, the Mouse Phenome Project was 

launched to complement mouse genome sequencing efforts by promoting new phenotyping 

initiatives under standardized conditions and to integrate the data in a central public 

database, the Mouse Phenome Database (MPD) (https://phenome. jax. org).  

The advantage of MPD is that it has huge collection of mouse research dataset, most of 

them contributed from the mouse research community. All phenotype related data were 

organized and displayed by dataset (Figure 3). The visualization of each dataset is by default 

shown as scatter plot with error bar as mean and standard deviation range (Figure 4). In 

addition, it also shows the Measurement Summary, ANOVA, and Q-Q Plot (Figure 5).  

 

Figure 3 Mouse Phenome Database Browse by Phenotype (Systolic Blood Pressure) 

https://phenome.jax.org/
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Figure 4 Visualization of Phenotype Measurement in one MPD Dataset 
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Figure 5 Visualization of Phenotype Measurement in on MPD Dataset (continued) 



11 

 

Currently more analysis tools are available for comparing measurement results within study 

(Figure 6). Correlation analysis (Figure 7) is available is phenotype measurement was 

conducted multiple times with at different time point (or with some other condition 

variation criteria). Various ways to compare measurements within a single dataset is also 

available (Figure 8). A pivot table (Figure 9) shows the quantitative results in a more concise 

manner.  

 

Figure 6 More Analysis Tools in MPD 

 

Figure 7 Scatter Plot and Correlation Analysis  
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Figure 8 Side-by-Side (up) and Overlapped (bottom) Comparison 
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Figure 9 Strain Pivot Table 

In addition to MPD’s own analysis tool, Figure 10 shows another tool developed by 

International Mouse Phenotype Consortium using MPD data (26). Compared to previous 

tools that aim to facilitate candidate gene select for GWAS studies, this tool displays an 

informative summary chart of gene-phenotype relationships. There are also labels of 

phenodeviance, homozygosity/heterozygosity, and sexual dimorphism available. Again, 

those labels are assigned by curators and cannot be fully explored or validated by 

researchers.  
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Figure 10 “Phenoview”: a Tool that Shows Gene-Phenotype Relationships (26) 

However, existing problem with analysis tools provided by MPD is that users can only query 

by free text keywords (Figure 11). This might be an obstacle for users not familiar with their 

database and ontology to start exploring the database.  

 

Figure 11 Landing Page of MPD for Viewing Phenotype Data 

In addition, it only allows users to view records within one study at a time. This limits the 

ability to compare and further integrate phenotype measurements across different studies 
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for the same phenotype. MPD have not attempted to integrate phenotype data statistically. 

Hence no summary or expected range of phenotype data for a specific strain is available for 

reference. This hinders users’ ability to fully explore phenotype differences across mouse 

strains. Therefore, there is an urgent need to: 1) develop a more user friendly query 

interface for users to browse data in the database (by providing ontologies for query, 

showing summaries of data entry counts, etc. ); 2) develop a pipeline or protocol for 

evidence-based phenotype assignment utilizing quantitative phenotype data; 3) develop a 

tool that supports visualization of integrated quantitative phenotype data in a systematic 

manner; 4) increase research reproducibility by enhance data transparency and interactive 

data exploration by researchers.  

4) Rat Genome Database and PhenoMiner 

The Rat Genome Database (rgd. mcw. edu) is the most comprehensive data repository and 

informatics platform for the laboratory rat (27). RGD maintains and updates data about 

genes, transcripts, variants and provides functional annotations for disease, pathways, 

drug/chemical-gene interactions, gene function and biological processes. In addition to 

genomic data, RGD also curates and integrates data on strains, QTLs and experimental 

phenotype measurements across hundreds of strains. Data is curated from various sources: 

published literature, submitted by individual researchers, and acquired through bulk data 

pipelines from other public repositories (27, 28).  

As an initial step in developing phenotype profiles for individual strains, RGD created the 

PhenoMiner project (29) to integrate quantitative phenotype data from individual research 

projects as well as the PhysGen Program for Genomic Application (24), and the NBRP Rat 

Phenome Project in Japan (http://www. anim. med. kyoto-u. ac. jp/nbr/phenome. aspx) (20). 
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Each of these large-scale projects were created to present their own quantitative phenotype 

data while PhenoMiner was created to integrate data from all of these large scale projects 

as well as published results from the literature and data directly submitted from 

investigators.  
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RGD uses multiple ontologies to standardize and integrate data from many resources 

including the rat strain ontology (RSO) (31), clinical measurement ontology (CMO), 

measurement method ontology (MMO) and experimental condition ontology (XCO) (32, 33). 

The database structure (Figure 12) includes 11 tables to standardize and link information on 

sample measured, type of phenotype measurement and value, measurement method and 

the experimental conditions under which the measurement was made. The database 

structure provides the ability to record study information, link multiple experiments to a 

single study and link multiple phenotype records to a single experiment. The 

EXPERIMENT_RECORD table includes information about the quantitative data for a 

particular record (value, standard deviation, standard error and measurement units) as well 

as the Sample ID, Clinical Measurement Ontology ID, Measurement Method Ontology ID, 

and Experimental Conditions Group ID. From EXPERIMENT_RECORD table and links to the 

SAMPLE (rat strain, age, sex, number of animals in the experiment), 

CLINICAL_MEASUREMENT (Clinical Measurement Ontology table), 

MEASUREMENT_METHOD (Measurement Method Ontology Term, measurement site, 

apparatuses and measurement duration), CONDITION_GROUP (data on the diet and special 

treatment of rats and ordinality and duration of each condition, e. g. “controlled sodium 

content drinking water (1 %) (between 9 and 12 days)”, “controlled sodium content diet (0. 

3 %) (for 12 days) then controlled sodium content diet (2 %) (for 24 days)”).  
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Figure 12 Database Structure of PhenoMiner 

The creation of this structure and the use of multiple ontologies to standardize four 

components of a quantitative phenotype record has resulted 60, 000 entries (28). A 

summary of quantitative phenotype records in RGD is listed in Table 1.  

Table 1 Summary of PhenoMiner Data in RGD 

Phenotype Category Number of Records Number of Strains 

alimentary/gastrointestinal measurement 8 5 

blood measurement 19491 472 

body morphological measurement 10503 777 

body movement/balance measurement 98 13 

body temperature 349 63 

cardiovascular measurement 18334 951 

cell measurement 6318 316 

chemical response/sensitivity measurement 2285 98 
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consumption measurement 339 19 

disease population measurement 426 163 

disease process measurement 502 85 

endocrine/exocrine system measurement 64 20 

exudate measurement 216 4 

growth measurement 23 9 

immune system measurement 3408 311 

liver/biliary measurement 739 236 

mortality/survival measurement 52 21 

musculoskeletal system measurement 202 14 

nervous system measurement 697 242 

organ measurement 12037 790 

renal/urinary measurement 4883 634 

reproduction measurement 62 6 

respiratory system measurement 4923 241 

tissue composition measurement 139 24 

tumor measurement 220 77 
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The advantages of PhenoMiner are: 1) it standardizes quantitative phenotype records for rat 

strains, clinical measurements, measurement methods and experimental conditions using 

ontologies; 2) this standardization allowed for the integration of data from large scale and 

small scale phenotype projects, 3) users can query and retrieve data from multiple 

experiments and visualize results, 4) users can also download retrieved data. In this paper 

(29), authors demonstrated the use of RGD visualization to compare cardiovascular and 

renal phenotypes of SS, SS congenics and SS mutants under salt-induce hypertension model. 

In a similar manner, we did a query and the results are display as below (Figure 13).  

 

Figure 13 RGD PhenoMiner Visualization of Individual Records for Query={Strain=”BN”&”WKY”, 

Phenotype=”diastolic blood pressure”} 

While systematic data integration and visualization in PhenoMiner enabled qualitative 

comparisons across experiments and conclusions to be drawn, the drawback of the current 

PhenoMiner portal is its limited ability for statistical integration of data. Further quantitative 

analysis using a standardized statistical tool would provide more insights in understanding 
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rat strains in terms of disease models. Moreover, an integrated analysis of overall strain 

phenotype measurement is desirable for researchers to better understand cross strain 

differences. Currently researchers often choose strains for use as disease models using data 

points from a limited number of experiments or based on availability, prior use or familiarity. 

The availability of statistically determined expected ranges for quantitative phenotypes for 

multiple individual strains, for those often used as controls and for rat in general would 

improve the ability of investigators to choose appropriate strains for their studies. One 

example of the need for statistically determined expected ranges was illustrated with the 

commonly used outbred CD-SD rats often seen to be less responsive to estrogenic 

substances than F344 inbred rat strains for various estrogen-sensitive endpoints (34, 35). 

The authors showed that the commonly held view of the distinct phenotype characteristics 

of two strains did not hold true when the results from a collection of experiments were 

aggregated. This case illustrates why it would be desirable to have a statistically determined 

expected range as a quantitative reference for analyzing measurement data across different 

experiments. Such references would help researchers choose better strain models for their 

research objective and assist them in examining potential factors that might cause 

measurement variation. The expected range would also provide a standard interpretation of 

experimental results from different laboratories.  

1. 3 Motivation and Aims 

Expected ranges for different phenotypes for individual rat strains as well as across multiple 

strains are currently not available. Nor is there a tool to help researchers to select an 

optimal strain as a disease model. Therefore, the motivation for our work is to take 

advantage of the huge volume of quantitative phenotype data in the Rat Genome Database 
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to establish expected ranges for different rat strains. By comparing expected ranges for 

different rat strains, researchers will be able to choose the optimal disease model and 

control for their investigations. To achieve this goal, our work involve the following key 

steps: (1) establish a standardized phenotype range for different rat strains using the meta-

analysis method, (2) create tools to mine and visualize data for individual strains and across 

strains, (3) cluster substrains into different sub-populations according to phenotype 

correlations.  

In the first step, we conducted a meta-analysis to effectively synthesize archived phenotype 

data in the PhenoMiner database, stratify each population based on strain 

(inbred/outbred/congenic/transgenic/mutant), gender, age, . and produce comparable 

expected ranges of important physiological phenotypes (such as heart weight, systolic blood 

pressure). Statistical tests will also be performed to assess differences between different 

strains of certain phenotypes. The result from this work will greatly benefit researchers 

using rat models in determining a proper strain, age, gender and all relevant parameters for 

their studies.  

Tools was developed to allow users to search, retrieve and visualize expected ranges for a 

variety of phenotypes for a single strain or across strains for a single or multiple phenotypes.  

Next, we integrated quantitative expected ranges from the previous steps as essential 

phenotype features for rat disease models and use those features to cluster strains into 

subtype clusters. The clustering result will provide in-depth insight of the substrain variation 

in rats. It can be useful for researchers when they are designing experiments and trying to 

pick a substrain suitable for their specific research objective.  
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2 Generating Phenotype Expected Ranges  

2. 1 Background 

A meta-analysis approach is a powerful tool for determining expected ranges for particular 

phenotype measurements across multiple experiments. This approach involves statistical 

techniques for combining measurements or findings from independent studies to draw 

insights on a specific research question. It is often used to assess the effectiveness of clinical 

treatments by combining data from several randomized control trials. It provides a precise 

estimate of treatment effect, overcoming biases that could occur when examining a single 

study and it offers a systematic synthesis of the experimental data. A recent research study 

revealed that single-laboratory studies with large sample size produce results that are more 

precise but less accurate and therefore less reproducible (36). By contrast, multi-laboratory 

designs including as few as 2 to 4 laboratories increased coverage probability by up to 42 

percentage points without a need for larger sample sizes. They also demonstrated that 

within-study standardization is a major cause of poor reproducibility (36).  

A systematic review methodology is essential as the first step of meta-analysis. The 

objective of a systematic review is to present a balanced and impartial summary of the 

existing research, enabling synthesis of all relevant studies of adequate quality (37). This 

stresses the need to take great effort and care to find all the relevant studies (published and 

unpublished), and to assess the methodological quality of the design and execution of each 

study (38). The standardized and integrated data at RGD is a good resource of systematically 

managed experimental phenotype measurements. It includes both data from published 

studies from current biomedical literature as well as large scale data from rat community 
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repositories such as PhysGen (24), PhysGen Knockout Project (30) and the Rat Phenome 

Project (20).  

Meta-analysis is not just a single statistical analysis; it involves a pipeline of preliminary 

stratification, exploratory decision making (publication bias and sensitivity analysis) before 

the final statistical meta-analysis can be performed. The pipeline for analyzing RGD 

PhenoMiner data consists of four major components (Figure 14). In the following sections, I 

will introduce the methods for each step in the pipeline followed by its corresponding 

results since results from each step are useful in deciding the method used in the next step. 

In addition to developing the algorithms for each component, a user interface was created 

to facilitate determination of appropriate parameters, and to dynamically implement the 

workflow needed for the analyses (described in further detail below).  

 

Figure 14 System Pipeline for Meta-Analysis 
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2. 2 Preliminary Stratification 

First it was necessary to choose a subset of phenotype measurements based on preliminary 

stratification, which included strain, sex, age group, and phenotype measurement methods. 

Figure 15 show the interface created to dynamically conduct the preliminary stratification 

step. Options for strain and phenotype measurement methods depend on the major 

phenotype under analysis. Age group divisions were decided by expert heuristic definitions 

of young, adult and old rats. However, for different phenotypes, young and adult divisions 

can vary in order to achieve a low heterogeneity score. As a result, age group division is a 

data-driven heuristic score with expert provided prior definition.  

 

Figure 15 PhenoMiner Preliminary Stratification for Body Weight 

2. 3 Publication Bias with Funnel Plot 

Because much of the data included in this study arises from published research, one key 

concern is publication bias which arises because experiments with negative findings are less 

likely to be published than those that highlight results which support hypotheses (39). 

Funnel plots can be used to assess the presence of publication bias (40) by displaying the 

studies included in the meta-analysis in a plot of measurement value or effect size 

(explained in detail in the statistical analysis section) against sample size or another measure 
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of precision (41, 42). The expected picture should be a symmetrical inverted funnel (43). 

This is in accordance with the assumption that smaller studies have more chance of 

variability than larger studies. An asymmetric plot suggests: (1) smaller studies showing no 

effect might be missing or (2) small studies tend to have larger effect sizes (44). The first 

reveals a true publication bias while the second does not. There are also controversies over 

the use of funnel plots due to disputes over appropriate interpretation of asymmetry (45-

47). For example, true heterogeneity in study population (due to subgroups with a different 

intervention effect) will lead to funnel plot asymmetry (47). In addition, chance is also 

critical for interpretation of funnel plot asymmetry since most meta-analyses in the 

biomedical field contain few studies (48). Therefore we need to examine closely before 

reaching a conclusion of publication bias (49).  

There are two estimators (Macaskill (50) and Egger (40)) for detecting publication bias. In 

our pipeline, we provided two different bias detection methods: funnel plot and funnel 

regression test using the Egger estimator.  

In 1997, Egger et al. proposed an estimator for visualizing asymmetry in the funnel plot (40). 

In addition to the simple visualization of asymmetry, they also used a regression test to 

measuring asymmetry quantitatively. The regression test is a linear regression of normalized 

effect size estimate (value/SD) against precision(1/SD). The assumption of the regression 

test is that a homogeneous set of trials (without publication bias), will regress toward a line 

that runs through the origin (intercept = 0), with the slope indicating the size and direction 

of effect (51). When the regression line runs through the origin, it indicates a symmetrical 

funnel plot. However, the Egger test has a relatively high false positive rate (higher type I 

error rate).  
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The Macaskill estimator was found to have a lower false-positive rate in simulations (50) 

than the Egger estimator, though at the expense of lower power (higher type II error rate). 

The Macaskill estimator is similar to the Egger estimator but it used total sample size as a 

measure of precision. Use of sample size reduces the correlation between the effect size 

and its SD thus avoids violating an assumption of regression models that an independent 

variable is subject to random error. A minor modification of Macaskill’s test, with the 

inverse of the total sample size as a measure of precision, produces more balanced type I 

error rates (42).  

In 2005, Harbord et al. developed a test that maintains the power of the Egger test while 

reducing the false positive rate, which is especially significant with the Egger test when 

there is a large measurement value, small number of observations per trial or all trials are of 

similar sizes (52). However, the original Egger test should be used instead of the Harbord 

method if there is a large imbalance in size between studies.  

Since the number of animals in our studies varies from 1 to 220 (see Figure 29), and also 

considering the trade-off between power and type I error rates, we finally chose the original 

Egger test for our analysis. An asymmetry score is calculated as the ratio of intercept for the 

regression line to average value for the measurements in the group under analysis.  

Asy =  
intercept

average_value
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Figure 16 Publication Bias Examination Demonstrations for Body Weight 

2. 4 Optimal Number of Experiments for Meta-Analysis Quality Control 

To assure the quality of meta-analysis, we need to assign a confidence level to our meta-

analysis model (here we used a binary parameter with value “confident” and 

“low_confidence”) and results given a specific set of phenotype measurement data (in a 

single meta-analysis). While each meta-analysis is based on a unique phenotype-strain pair, 

for different phenotype-strain pairs, the total number of experiments can vary significantly. 
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Hence, we examined the relationship between Asymmetry score (Asy) from publication bias 

analysis and total number of experiments (in a single meta-analysis) to identify potential 

biases in our analysis. The example below used Body Weight data (Figure 17, Figure 18). The 

result shows that the Asymmetry score (Asy) was reduced significantly with four or more 

experiments in one meta-analysis.  

 

Figure 17 Relationship between Asymmetry Score and Total Number of Experiments for Body Weight 
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Figure 18 Relationship between Range and Total Number of Experiments for Body Weight 

We also examined range distribution and its relationship with the total number of 

experiments (in a single meta-analysis). Figure 17 shows that data range for different meta-

analysis datasets also varies with total number of experiments for each meta-analysis. The 

range is defined as the difference between maximum value among all studies and minimum 

value among all studies. For a meta-analysis with fewer experiments, the range between 

studies can be falsely small. This indicates that meta-analysis without enough experiments 

might have false negative heterogeneity representations (heterogeneity not revealed) and 

thus the meta-analysis model choice might be wrong (fixed-effect or random-effect).  
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2. 5 Sensitivity Analyses with Forest Plot 

Data with poor quality for non-systematic reasons is often an issue in meta-analysis so 

selection, inclusion and integration (or population stratification) of data is an important 

factor for consideration. Those decisions may affect major findings, so researchers usually 

carry out some sensitivity analysis prior to integration of data. The usual way of displaying 

data for sensitivity analysis is by a forest plot. This displays the findings from each individual 

study using a blob or square (53), the x-axis is the value of measurement or effect size. The 

size of the blob or square is proportional to the sample size. A horizontal line representing 

95% confidence interval is drawn around each of the studies’ squares to represent the 

uncertainty of the measurement. The meta-analysis result is displayed as a diamond.  

After exploring the forest plot of the study cohort, the main findings can be changed by 

varying the approach to integration (or population stratification). An effective sensitivity 

analysis will explore the effect of excluding various categories of studies, such as outlier data 

(outliers need to be excluded for justifiable reasons), data without specified sex information, 

or data from unpublished studies. It may also examine how consistent the results are across 

various subgroups (perhaps defined by subject population stratification, type of 

measurement method or condition).  

A useful sensitivity analysis is a series of repeated meta-analyses, usually omitting one study 

at a time. A heterogeneity score is calculated and the meta-analysis model (fixed-effect or 

random-effect) is also chosen based on the heterogeneity score. Such an ‘exclusion 

sensitivity plot’ by Bax et al. (54) reveals any study/observation that has a particularly large 

influence (outlier) on the result of the meta-analysis. An interactive interface in our tool 

provides users with the ability to decide on inclusion/exclusion of any study/observation in 

the meta-analysis before proceeding with the next step in the analysis. Additionally, users of 
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the pipeline may identify subgroups in their data and may decide to adopt a modified 

sensitivity analysis by excluding a group of studies/observations and creating new 

stratification criteria. For example, users may find substrain A/X and A/Y to have different 

measurements for phenotype T. Instead of analyzing phenotype T using all data for strain A, 

users may want to further stratify the population using substrain characteristics. Figure 19 

shows an example of sensitivity analysis that identified the study result (in red circle) to be 

an outlier. The example is for the F344 strain Body Weight phenotype. After initial analysis, 

we found that the large value of the outlier is due to sample age. 65 days might not be a 

homogenous group member for young rat group in terms of Body Weight although it might 

be acceptable for another phenotype. 



 

 

 

3
2

 

 
Figure 19 Sensitivity Analysis Example Before Outlier Removal (Left) and After Outlier Removal (Right) 
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2. 6 Statistical Meta-Analysis 

1) Heterogeneity and Meta-regression 

In the meta-analysis, we needed to evaluate whether the results from different studies can 

be “combinable”. This involved examining heterogeneity. Statistics commonly used for 

testing heterogeneity include Cochrane’s Q (
  




 


w

ESw
ESwQ

2

2)( ), a statistic 

based on the chi-squared test and the I2 statistic (𝐼2 = {

𝑄−(𝑘−1)

𝑄
× 100% 𝑓𝑜𝑟 𝑄 > (𝑘 − 1)

   0  𝑓𝑜𝑟 𝑄 ≤ (𝑘 − 1)
) 

(55, 56). The Weight for each study is 𝑤𝑖 =
1

si
2, where si is the standard deviation of that study. ES 

represents effect size, which is a key concept in meta-analysis when assessing heterogeneity. 

It aims to offer a standardized heterogeneity comparison among different measurements, 

similar to the idea behind the t-test. It can be calculated as 
s

X
ES   when the original 

measurement value is used for meta-analysis. In our analysis, the Q statistic was unsatisfactory 

as it depends heavily on the scale of measurement and has no absolute interpretation for 

comparison. Thus the I2statistic was more attractive because it scores heterogeneity 

between 0% and 100%, with 25% corresponding to low heterogeneity, 50% to moderate 

and 75% to high (57). It interprets the percent of the total variance that is due to between 

study heterogeneity. However, both methods may sometimes fail to detect heterogeneity 

when it is actually present (58).  

If the study results for a sub-population are relatively homogenous, we can integrate the 

results using a general meta-analysis method (fixed-effect model). If heterogeneity exists, 

we can further stratify the current sub-population based on a conceptual stratification 

method (e. g. stratify based on age and sex) or use random-effect model meta-analysis. At 



 

34 

 

this point, it is important to investigate what may have caused the heterogeneity. Meta-

regression is a technique which allows researchers to explore factors contributing to the 

heterogeneity (59, 60). The simplest type of meta-regression uses summary data from each 

entry, such as the average effect size, age, sex, experimental condition, and experimental 

method. The result from the meta-regression provides us with useful insights on how to 

further stratify sub-populations. This approach is valuable, but it has only limited ability to 

identify significant factors (61). If no factors were identified, that means there might be 

systematic differences between studies, leading to heterogeneity. Then we would need to 

define special statistical parameters (inter-study variance used in random-effect model) to 

interpret the systematic heterogeneity of the results.  

2) I2 Statistics Cut-off Threshold 

In the previous step, we decided to exclude or take a lower confidence in meta-analysis 

when the total number of experiments was below four. In this step, we needed to decide 

the cut-off threshold for the I2 statistic to decide the model choice for each meta-analysis. In 

the example in Figure 17, we can see that I2=0. 85 is an optimal cut-off threshold to separate 

high and low heterogeneity datasets. The four quadrants in Figure 17 represent different 

characteristics of datasets for each meta-analysis task. Quadrant one represents a high 

asymmetry score and high heterogeneity, which may be caused by publication bias or true 

heterogeneity (e. g. extreme outliers). Quadrant two represents a high asymmetry score and 

low heterogeneity, which may indicate true publication bias. Quadrant three represents a 

low asymmetry score and low heterogeneity, which indicates that we should choose the 

fixed-effect model. Quadrant four represents a low asymmetry score and high 

heterogeneity, which indicates that we should choose the random-effect model. From this 
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summary plot, we can determine model choice for data in Quadrant three and four. For 

data in Quadrant one and two, we need to further confirm the existence of publication bias 

before any conclusions can be made. 
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Figure 20 Scatter Plot of Asymmetry Score and I2 statistics for Different Meta-Analysis Results for Body Weight Data (x: Asymmetry Score; y: I2 statistics) 
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3) Fixed-Effect Model vs Random-Effect Model 

The presence or absence of heterogeneity influences the subsequent method of analysis. If 

heterogeneity is absent, then the analysis employs a fixed-effect model. This assumes the 

size of the system effect is fixed across all studies and the variation seen between studies is 

completely random. However, as studies generally vary in size and variance, each study is 

considered to have different precision. In meta-analysis, the key concept is to assign a 

weight to each study while synthesizing results. Generally believed by statisticians, a study 

based on 100 subjects is assumed to provide a more “precise” estimate than a study based 

on 10 subjects. Therefore, larger studies should carry more “weight” in the analyses than 

smaller studies. This sample size based approach is a simple one. A better approach is to 

assign weight by the inverse variance (𝑤𝑖 =
1

si
2). Thus, the meta-analysis mean is mw = 

∑ wiyii
∑ wii

⁄  and variance var(mw) =  1
√∑ wii

⁄ .  

Ideally, population stratification should be sufficient for removing heterogeneity, and we 

should be able to construct our meta-analysis model with the fixed-effect model only. This 

should hold true in many cases as long as k (number of studies) and the within study sample 

sizes are large. In practice, k and sample size are usually not very large, so the estimate of 

variance may be too small, because when calculating variance var(mw), we ignore the 

variability in the weights, assuming weights to be fixed and known. However, in some cases, 

there may be latent factors contributing to the variance between studies. Thus, 

heterogeneity cannot be removed through further stratification. Several alternative 

approaches have been proposed to address this issue, including the weighted least squares 

approach (62) and the robust variance estimator (63). Both estimators perform better than 
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the original model, with the robust variance estimator a little better overall (63, 64). The 

robust variance estimator estimates the variance as var(mw) =
∑wi(yi−mw)2

∑wi(k−1)
 .  

Another more commonly used way is to adopt a random-effect model. Random-effect 

models assume that the treatment effect varies between studies. The observed 

measurement yi, from the i-th study is made up of two additive components: the true 

measurement, θi, and the sampling error, ei. That is, yi=θi+ei for i=1, …, k. The variance of 

ei, can be estimated by si
2. Additionally, inter-study variance has to be considered in the 

formula. The first and most widely adopted random-effects models for meta-analysis was 

proposed by DerSimonian and Laird in 1986 (65). This method is now considered the 

“standard approach” for meta-analysis in medical and clinical research. In their model, they 

also adopted inverse variance weight. The total variance, however, is the sum of within-

study variance (si
2) and inter-study variance (τ2), leading to weight as 𝑤i =

1

τ2+si
2 . τ2which 

can be obtained using three methods: maximum likelihood (ML), restricted maximum 

likelihood (REML), and method-of-moments (MOM). The author compared the three 

methods and concluded that ML was biased downward, and that there was little difference 

between REML and MOM (66). They used MOM because it is non-iterative and easy to 

implement (ML and REML requires iteration to estimate τ2). A general method-of-moments 

estimate t2 for τ2 is: 

t2 =

[∑ aii (yi − yw)2 ] − [∑ aisi
2

i −
∑ ai

2si
2

i
∑ aii

⁄ ]

[∑ aii −
∑ ai

2
i

∑ aii
⁄ ]
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where a1, … , ak are positive constants reflecting weights assigned to the k studies. Each set 

of a1, … , akvalues will yield an alternative estimate for τ2. In DerSimonian and Laird's (65) 

non-iterative estimate, t2(DL), ai= 
1

si
2 .  

Further studies have compared DerSimonian and Laird’s method with several more 

computer intensive methods (67-69). These estimators include Cochran's (70) analysis-of-

variance (ANOVA) non-iterative estimate, t2(CA), where ai= 
1

k
 ; Paule and Mandel's (71) 

iterative estimate, t2(PM), where ai= 
1

t2(PM)+si
2 ; two-step estimate starting with Cochran's 

estimate of τ2, t2(CA2), where ai = 
1

t2(CA2)+si
2 ; and two-step estimate starting with the 

DerSimonian and Laird estimate of τ2, t2(DL2),where ai =
1

t2(DL2)+si
2. They found that 

DerSimonian and Laird’s method is sufficient in most cases. Actually several more 

sophisticated estimators for both iterative and non-iterative methods can be considered as 

special cases of a general DerSimonian and Laird’s method with a slightly different formula 

to calculate weights assigned to the individual studies (67). To achieve both efficiency and 

performance, in this study, we used the original non-iterative DerSimonian and Laird 

estimator for τ2.  

2. 7 Meta-Analysis Workflow and Example 

The previous sections described the analysis methods we used to determine parameters in 

the meta-analysis workflow. A decision tree of the workflow is shown in Figure 21.  
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Figure 21 Meta-Analysis Workflow 

In summary, our workflow is composed of the following key steps: 

1. Perform exploratory analysis (Figure 21 (b)) to examine publication bias and total 

number of experiments. For examination of publication bias, we used the original Egger 

test considering the trade-off between power and type I error rates. |Asymmetry 

score| > 1. 5 or total number of experiments <4 is a sign of a potentially biased sample. 

Thus, conclusions from the meta-analysis might not be trustworthy. We will need to 

acquire more data in order to proceed with the analysis. In Figure 22, we showed an 

example of publication bias. The |Asymmetry score| is > 1. 5 from Egger Galbraith plot. 

In the Egger funnel plot, there is a clear bias towards publication of heavier rats.  
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Figure 22 Publication Bias Exist for BN Body Weight Measurement 

2. Perform exploratory analysis (Figure 21 (c)) to determine inclusion/exclusion of 

individual study/observation in the meta-analysis. An example is provided in Figure 19.  

3. Examination of heterogeneity (Figure 21 (d)) using Cochrane’s Q 

(
  




 


w
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ESwQ

2

2)( ), a statistic based on the chi-squared test and the I2 
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statistic (𝐼2 = {

𝑄−(𝑘−1)

𝑄
× 100% 𝑓𝑜𝑟 𝑄 > (𝑘 − 1)

   0  𝑓𝑜𝑟 𝑄 ≤ (𝑘 − 1)
). For each set of experiments 

qualified for meta-analysis, we calculated Q and I2, which were used to determine 

model selection in the next step.  

4. Choosing meta-analysis model (fixed-effect or random-effect). The fixed-effect and 

random-effect model choice threshold is set to I2=0. 85, which is considered the 

optimal threshold to distinguish heterogeneity caused by a limited number of records 

or true inter-study variance.  

For the fixed-effect model, meta-analysis mean is mw = 
∑ wiyii

∑ wii
⁄  and variance 

var(mw) =  1
√∑ wii

⁄  (𝑤i =
1

si
2).  

For the random-effect model, since results show that DerSimonian and Laird’s method 

is sufficient in most cases, in this study, we used the original non-iterative DerSimonian 

and Laird estimator for τ2. Thus 𝑤i =
1

τ2+si
2 and τ2 =

[∑ aii (yi−yw)2 ]−

[
 
 
 
 

∑ aisi
2

i −
∑ ai

2si
2

i
∑ aii

⁄

]
 
 
 
 

[
 
 
 
 

∑ aii −
∑ ai

2
i

∑ aii
⁄

]
 
 
 
 

. 

Based on the original model estimator, the meta-analysis mean is mw = 
∑ wiyii

∑ wii
⁄  

and variance var(mw) =  1
√∑ wii

⁄  .  

An example of random effect model is shown in Figure 23. It shows that the I2=0. 871>0. 

85. Using fixed-effect model, the meta-analysis value will be 121. 17. However, using 

the random-effect model, the meta-analysis value will be 128. 57.  
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Figure 23 Random-Effect Model for BN "Systolic Blood Pressure" 

5. All the summary values for the phenotype under analysis are displayed in a summary 

forest plot (shown in Figure 24). The center of the box represents the meta-analysis 

mean and the range determined by one standard deviation above and below the meta-

analysis value. The color of the boxes showed the total number of experiments that 

made up of the meta-analysis range. It is a sign of confidence for the resulting 

phenotype range. On the right side, the legend shows the strain and sex of which the 
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range is representing. In the bracket, we also noted the confidence level of analysis 

considering the total number of experiments (<4 low_confidence, >=4 confident).  

 

Figure 24 Meta-Analysis Final Summary for “Systolic Blood Pressure” (Male) 

2. 8 Applications of Meta-Analysis in the Biomedical Field  

Since the publication of DerSimonian and Laird’s paper (65), the paper has been cited 19, 

145 times according to Google Scholar with more than 50% of those citations occurring in 

the last few years. Their approach to integrate the findings across related clinical trials has 
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become increasingly popular in medical research. According to a recent survey done by 

DerSimonian (66), the top five research topics constituting about half of the total 7, 342 

citations during 2010–2014 are in oncology (17%), internal medicine (12%), science & 

technology (8%), cardiology (7%) and surgery (7%). For example, Ruff et al. compared the 

efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation 

using DerSimonian and Laird’s method (72). Beelen et al. examined the effects of long-term 

exposure to air pollution on natural-cause mortality by performing meta-analysis on 22 

European cohorts within the multicentre ESCAPE project (73). Recently, meta-analysis was 

even used to combine multiple different genome-wide association (GWAS) studies in a 

single integrated analysis in order to identify associations with very small effect sizes (74). 

The list of meta-analysis applications in the biomedical field is exhaustive showing that 

applying the meta-analysis method to generate standard phenotype measurement ranges is 

justified and may provide significant insights from rat phenotype data.  

2. 9 Limitations of Meta-Analysis 

Meta-analysis is an effective method to integrate data from heterogeneous data sources, 

with different sample sizes or even different sub-populations/substrains. Such cases include 

clinical treatment effectiveness test, drug safety evaluation, and effect of diet and exercise 

on physiological representations, etc. However, it has some limitations: 

1. If publication bias is identified, in a preliminary stage, there currently are no statistical 

methods to overcome this bias and its affects. The existence of publication bias means 

that any conclusions made might be biased so that meta-analysis results might not reach 

sufficient levels of confidence. Therefore, researchers who would like to conduct meta-
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analysis with a biased dataset need to be aware of and fully disclose the existing 

publication bias when they make conclusions.  

2. Meta-analysis quality and confidence are fundamentally limited by the quality of the 

underlying studies, so it is necessary for the researchers to evaluate the quality of data 

by examining the sample size of each experiment, the institutes’ credibility, the 

protocols they used to perform analysis, and other details before meta-analysis can be 

conducted.  

3. Random-effects models tend to increase the variance of the summary measure, making 

it more difficult to obtain significant results. When the amount of heterogeneity is large, 

it may even be inappropriate to calculate an overall summary measure of effect size.  

4. The results of several meta-analysis studies were later compared to large-scale, well-

conducted, randomized controlled trials (so-called ‘mega trials’). Some showed good 

agreement between meta-analysis results and mega trial results while others showed 

discrepancies (75, 76).  

In conclusion, it is extremely important to be diligent at every step while conducting meta-

analysis, to examine data patterns to make sure no publication bias exists, to carefully 

examine the cause of heterogeneity if there is any, and finally to choose a model based on 

data patterns.  

2. 7 Data Source Overview 

RGD implemented the PhenoMiner project (29) to integrate quantitative phenotype data 

from the PhysGen Program for Genomic Application (24), the PhysGen Knockout Project (30) 

and the Rat Phenome Project (20) under National Bio Resource Project (NBRP) (77) in Japan 

as well as data from publications or submitted by researchers. This combined data includes 
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56,710 active entries in the PhenoMiner tool (28). PhenoMiner includes data for 1,218 

strains (including substrains), and 678 phenotype parameters (248 under naïve control 

conditions) across neurobehavioral, cardiovascular, biochemical, hematological and 

morphological categories (78). Entries are grouped by experiment within a study. For some 

studies, such as NBRP or PhysGen, numerous experiments make up the study while in 

others, such as those from a publication, a study may only be comprised of two or three 

experiments. Figure 25 provides some insight on the wide spread use of some strains, such 

as SHR, SS, FHH, as disease models and WKY as a control model. Figure 26 shows that a 

majority of entries in PhenoMiner comes from Study 41 (NBRP Organ Weight). Figure 27 

further illustrates the large number of quantitative phenotype records available for strains 

used as cardiovascular disease. Organ weight records are also numerous in PhenoMiner and 

are mostly from Study 41 (NBRP Organ Weight) and Study 21 (NBRP Body Weight) in which 

morphological measurements were a primary focus.  

 

 

Figure 25 Number of Entries per Strain Group in PhenoMiner Database 
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Figure 26 Number of Entries per Study in PhenoMiner Database 

 

 

Figure 27 Number of Entries about Organ Weight by Study in PhenoMiner Database 

 

From Figure 28 we can see that the majority of phenotype records in PhenoMiner are for 

organ weights and cardiovascular phenotypes. This is in accordance with the fact that rats 

are widely used in cardiovascular research.  
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Figure 28 Number of Entries per Phenotype in PhenoMiner Database
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Figure 29 shows the number of experiments utilizing particular sample sizes. As might be 

expected, a sample size of 6 was the most numerous since every experiment in NBRP has 

used 6 animals. As we mentioned previously, the number of animals in each study range 

from 1 to 220. Overall, there are more small-scale studies than large ones.  

 

Figure 29 Number of Experiments with Particular Sample Sizes in PhenoMiner 
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based on their wide usage as disease models or controls. The availability of the sequence 

would provide additional resources to link phenotypes to genotypes. The table also provides 

us with insight on what phenotypes to acquire from research labs in the future to fill in gaps 

and provide sufficient data for analysis and what strains to sequence given the abundance 

of phenotype data that already exists. Such efforts would expand the resources available for 

researchers to investigate the impact of genotype on phenotype. Our analysis shows that 

the strains ACI, BUF, DA, and SHRSP are lacking some data on blood chemistries related to 

cardiovascular physiology which could supplement their extensive data for heart and blood 

pressure characterization including data on serum triglyceride level, plasma total cholesterol 

level, plasma triglyceride level, and serum free fatty acids level which are important 

metabolites in cardiovascular physiology (Table 2). Compared to systolic blood pressure and 

mean arterial blood pressure, diastolic blood pressure data were less frequently available 

for the PhenoMiner project. Such findings could help the PhenoMiner project group to focus 

on acquiring data from targeted publications or individual researchers in order to fill out 

comprehensive phenotype profiles for strains. Among non-sequenced strains, we found 

MWF has a considerable amount of data related to renal function and blood chemistry 

phenotypes. Findings such as these could also help to focus on acquisition of data from 

other phenotype areas and to promote strains such as MWF as a candidate worthy of being 

sequenced. 
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Table 2 Summary of Cardiovascular Phenotypes for Sequenced Strains 

Phenotype ACI BN WKY BUF DA F344 FHH GH LE LEW SHR SHRSP SS 

heart rate ACI BN WKY BUF DA F344 FHH GH LE LEW SHR SHRSP SS 

systolic blood pressure ACI BN WKY BUF DA F344   GH LE LEW SHR SHRSP SS 

heart wet weight ACI BN WKY BUF DA F344 FHH GH LE LEW SHR SHRSP SS 

heart weight as percentage of body weight ACI BN WKY BUF DA F344 FHH   LE LEW SHR SHRSP SS 

mean arterial blood pressure   BN WKY     F344 FHH GH LE LEW SHR SHRSP SS 

diastolic blood pressure   BN WKY         GH   LEW SHR SHRSP   

heart right ventricle weight to left ventricle weight ratio   BN WKY     F344 FHH GH LE LEW SHR   SS 

heart weight to body weight ratio ACI BN WKY BUF DA F344         SHR SHRSP   

heart left ventricle wet weight   BN WKY   DA F344   GH   LEW SHR     

heart left ventricle weight to body weight ratio     WKY   DA F344       LEW SHR     

heart right ventricle wet weight     WKY     F344               

hematocrit ACI BN WKY BUF DA F344 FHH GH LE LEW SHR SHRSP SS 

serum total cholesterol level   BN WKY   DA F344 FHH GH LE LEW SHR SHRSP SS 

blood hemoglobin level ACI BN WKY BUF DA F344 FHH GH LE LEW SHR   SS 

red blood cell count ACI BN WKY BUF DA F344 FHH GH LE LEW SHR   SS 

mean corpuscular volume ACI BN WKY BUF DA F344 FHH GH LE LEW SHR   SS 

serum calcium level   BN WKY     F344 FHH GH LE LEW SHR   SS 

serum aspartate aminotransferase activity level   BN WKY     F344 FHH GH LE LEW SHR   SS 

serum potassium level   BN WKY     F344 FHH GH LE LEW SHR   SS 

serum chloride level   BN WKY     F344 FHH GH LE LEW SHR   SS 

serum triglyceride level   BN     DA F344         SHR     

plasma total cholesterol level                   LEW       

plasma triglyceride level                   LEW       

serum free fatty acids level           F344               
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Figure 30 Average Number of Phenotype Measurements for Sequenced Strains and Non-Sequenced 

Strains 

 

To evaluate potential heterogeneity in phenotype measurements, we also investigated the 

methods used to measure each phenotype. We found 191 phenotypes with only one 
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was commonly known among researchers but had not been quantified. We found that 
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example, it is hard to measure younger rats with the intra-vascular method for blood 

pressure; hence younger rats are usually measured using tail cuff methods. Because of the 

impact of measurement method on the value of the measurement, it is one of the 

parameters used to group and stratify records within phenotype areas.  
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Figure 31 Number of Phenotypes Measured by One or More Than One Method 

 

 

Figure 32 Percentage of Phenotype Records for Systolic Blood Pressure by Measurement Type 

2. 8 Meta-Analysis Result and Evaluation 

Our meta-analysis analysis provided expected ranges for 24 cardiovascular related 

phenotypes. We analyzed all the available sequenced strains for each phenotype. For non-
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available for these phenotype areas.  
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In the first step, our meta-analysis used only experiment records under control conditions 

for inbred stains. In this way, the meta-analysis range can be regarded as an “Expected 

Range” for a specific strain or strain group. One type of strain group was created by 

grouping all substrains under a certain parent strain name according to the Rat Strain 

Ontology. In accordance with official standards, a strain is given a substrain designation 

when it is bred for 20 generations or more in a different facility or laboratory. For example, 

strain group “ACI” include all substrains “ACI/Eur”, “ACI/Kun”, “ACI/N”, “ACI/SegHsd”, 

“ACI/Ti”, “ACI/Ztm”. Control strain groups were also created based on their widespread use 

as control animals and acceptance as exhibiting “normal” measurements. For example, the 

“Normal Systolic Blood Pressure Strain Group” consists of strains that are considered 

commonly used as controls in blood pressure experiments and to exhibit “normal systolic 

blood pressure”. The “Normal Systolic Blood Pressure Strain Group” was created in an 

iterative process using a domain expert with extensive experience in large scale 

phenotyping projects: 1. Strains commonly used as controls were identified based on 

experience and prior knowledge and designated as “founder control strains” e. g. BN and 

WKY which have long been used as control models. 2. An initial “Expected Range” was 

constructed based on phenotype ranges of those “founder” strains using the highest and 

lowest values of the previously determined expected ranges for each strain. 3. The overlap 

of previously determined expected ranges of other strains with this initial “Control 

Expected Range” was examined to determine whether additional strains could be included 

in the normal phenotype strain group. 4. An updated “Control Expected Range” was 

constructed using all strains added to the normal phenotype strain group.  

In addition to constructing a general “Expected Range”, we stratified our analysis by age, 

sex, and measurement method when data was available for different ages, sexes, or 
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methods. We then constructed age, sex, method-specific “Expected Ranges” using the 

same workflow. The results of constructing phenotype “Expected Ranges” are discussed in 

the first section below.  

After the initial “Expected Ranges” for 24 phenotypes using inbred strains were 

constructed, we also performed meta-analysis for outbred and mutant strains, when 

sufficient data existed. We also evaluated the applicability of the analysis under non-

control conditions using inbred strains in which a measured salt diet was the experimental 

condition. Creating such expected ranges for particular experimental conditions will further 

assist researchers in choosing model strains for particular experiments and provide data for 

developing tools and statistical processes that would allow them to analyze their own data.  

1) Phenotype Expected Ranges 

Phenotype data was available for inbred, outbred, consomic, congenic, mutant and 

transgenic strains. However, for this study, initial development of the algorithms and 

workflows and expected ranges of phenotypes were established using only inbred strains. In 

addition, phenotype records in which the experimental conditions naïve control, were used 

and those involving experimental diets, exercise, application of drugs or chemicals or other 

manipulated conditions were not initially used in this study. Figure 33 shows an example of 

a forest plot summary produced for “systolic blood pressure” for different age groups. We 

were then able to identify strains with expected ranges within or have overlap with 

previously constructed “Control Expected Range” (ACI, BN, BUF, DA, F344, GK, LE, LEW, LN, 

M520, MNS, MR, MWF, and WKY), and strains with expected ranges outside of the 

constructed “Control Expected Range”(GH, LH, MHS, SHR, and SHRSP), strains for naïve 

control (BN, WKY) from the graph.  
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Figure 33 Forest Plot of Meta-Analysis Summary for “Systolic Blood Pressure” 

APPENDIX A includes all the meta-analysis summaries for 24 cardiovascular phenotypes 

(blood hemoglobin level, diastolic blood pressure, heart left ventricle weight to body weight 

ratio, heart left ventricle wet weight, heart rate, heart right ventricle weight to left ventricle 

weight ratio, heart right ventricle wet weight, heart weight as percentage of body weight, 

heart weight to body weight ratio, heart wet weight, hematocrit, mean arterial blood 

pressure, mean corpuscular volume, plasma total cholesterol level, plasma triglyceride level, 
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red blood cell count, serum aspartate aminotransferase activity level, serum calcium level, 

serum chloride level, serum free fatty acids level, serum potassium level, serum total 

cholesterol level, serum triglyceride level, systolic blood pressure). Information about 

abnormal, normal, naïve control strains for 24 phenotypes is available in APPENDIX B.  

We also created separate summaries for different age groups (age1: <70 days, age2: 70-99 

days, age3:100+ days) and gender groups if significant age or gender difference was 

observed in the all age analysis. For example, in Figure 33, systolic blood pressure between 

male and female differs from each other and shows an obvious pattern (usually females has 

lower blood pressure). After analysis, we decide that we should produce a separate 

summary for both gender and for each age group as well. Same situation applies to 

phenotypes such as diastolic blood pressure, heart weight as percentage of body weight, 

heart weight to body weight ratio, heart rate, heart wet weight, and mean arterial blood 

pressure. First, those phenotypes have enough data for age and gender stratification while 

still produces meaningful meta-analysis results. Phenotypes related to ventricle weight and 

blood metabolite measurement suffer from lack of data for stratification (heart right 

ventricle weight to left ventricle weight ratio, heart right ventricle wet weight, plasma total 

cholesterol level, plasma triglyceride level, serum aspartate aminotransferase activity level, 

serum calcium level, serum chloride level, serum free fatty acids level, serum potassium 

level only have data for one age group).  

Results from the meta-analysis were reviewed by a domain expert who previously had 

classified strains potentially within and outside of predicted reference ranges of “normal” 

and outside of “normal” based on wide spread use and characterization as control and non-

control strains. Disagreements between the meta-analysis results and the domain expert’s 
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classification were marked out on the graph with a red rectangle. The percentage of cases in 

which there was consistent agreement were calculated at 98% (APPENDIX C).  

We also found that for some strains considered to exhibit “normal” phenotypes, although 

the meta-analysis mean value was within the overall expected range, the upper bound or 

the lower bound of its individual range was beyond the overall expected range for “normal”, 

perhaps indicating 1) more data is needed from more institutes for more confident 

conclusions about individual expected ranges, or 2) variability for those strain groups may 

be due to potential genetic drift so that the genotypes of substrains have become more 

diverse or certain strains could be more susceptible to outside influences such as housing, 

handlers and other environmental factors on phenotypes. A good example would be 

ACI_Female, BUF_Male and WAG_Female/Male/Both in Figure 33. We also found that the 

obvious pattern between male and female (usually females has lower blood pressure) 

sometimes didn’t hold true. For example, in Figure 34, SHRSP the sex specific pattern is 

opposite of the common pattern where female rats have lower blood pressure than male 

rats. On the other hand, SHR exhibits the common pattern.  
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Figure 34 Summary for "Systolic Blood Pressure" Shows Sex Pattern Does Not Always Hold True 

Summary data which stretched beyond the overall expected ranges or exhibited odd 

patterns generally came from meta-analyses with a limited number of experiments (usually 

<5). This is evidence of low confidence for the meta-analysis result, which indicates more 

experimental data are needed to establish a trustworthy range. This is also evidence that for 

meta-analysis, the number of studies included is vital to eliminate random experimental 

error and generate trustworthy results. The number of studies in general was more 
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important than the number of animals in each study. Our analysis method demonstrated its 

potential to be used: 1) to provide expected ranges for rat phenotypes; 2) to facilitate 

research planning by visualizing current gaps and suggesting potential research directions to 

fill in the gaps.  

2) Rat Strain Model Comparison 

Initially, expected ranges for individual phenotypes were established for inbred strains 

under the naïve control condition. We then applied the analysis process calculate expected 

ranges for phenotype measurements for outbred, mutant, congenic and transgenic strains. 

Next, we calculated expected ranges for inbred, outbred, mutant, congenic and transgenic 

strains on measurements acquired under different diet conditions. As we developed the 

analysis pipeline, we created a user-friendly interface, so researchers could compare 

expected ranges for different rat models under both control and salt diet conditions. (inbred, 

outbred, mutant, congenic and transgenic; naïve control vs salt diet).  

Outbred and Mutant Strains 

Figure 35 shows expected ranges for “systolic blood pressure” under naïve control 

conditions for outbred and mutant rat strains. The dotted lines represent the expected 

range for the “Control Strain Group” based on 14 inbred strains used as controls for this 

phenotype. This presentation clearly indicates which strains have expected ranges within 

the “normal” control range and which do not.  
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Figure 35 RGD Phenotype Expected Ranges for “Systolic Blood Pressure” for Outbred and Mutant 

Strains  

2. 9 Tools to Mine and Present Expected Ranges 

While the determination of expected ranges for individual phenotypes within specific strains 

and across strains is a valuable resource, data mining and visualization tools increase the 

value of this resource for investigators. Modifications to existing database structures and 

the development of query and visualization tools make this possible.  



 

63 

 

1) Database Structure 

The existing PhenoMiner database structure (Figure 36) was modified to incorporate the 

expected range values for each strain group. The tables with alternating shaded cells are 

newly added TABLEs. EXPECTED_RANGE TABLE was created to store data for phenotype 

expected ranges. EXPECTED_RANGE_EXPERIMENT_REC TABLE links the experiment records 

that make up the phenotype expected ranges to the expected ranges. STRAIN_GROUP 

TABLE was created to link the strains that make up the phenotype expected ranges which 

may be several substrains or substrains and parent strain, or that the designated control 

strains to create the “normal” or control expected range for that phenotype.  

 

Figure 36 Data Structure for Storing Expected Range Data 
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2) Home Page and Query Tool 

To highlight the results of the meta-analysis and provide tools to mine and display data, a 

component for the Rat Genome Database has been created. The query begins with a search 

by trait area in a pulldown menu at the top right corner of the home page (Figure 37). This 

results in a listing of the quantitative phenotype measurements commonly used to assess 

aspects of that trait area. In the example provided, circulatory system trait, the phenotypes 

presented include systolic, diastolic and mean arterial blood pressure, various weight 

measurements for the heart and heart rate. For each phenotype, the normal range that was 

calculated from control strains is presented in a table. The table also includes 1) number of 

strains with available expected ranges; 2) number of strains with sex-specific expected 

ranges (at least two expected ranges for mixed, female, or male, so that expected ranges 

can be compared between sex groups); 3) number of strains with age-specific expected 

ranges (at least two expected ranges for 0-79 days, 80-99 days, or 100+ days, so that 

expected ranges can be compared between age groups).  

  

Figure 37 Summary of Number of Strains with Expected Ranges (Circulatory System Trait) 

 

1 2 3 
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The user can click on the phenotype term or the number of strains value to retrieve the 

associated data. For example, 

clicking on the term Diastolic Blood 

pressure or Circle 1 retrieves all 

expected ranges of available 

strains for diastolic blood pressure; 

clicking on Circle 2 retrieves 

expected ranges for the 7 strains 

that for which there are separate 

ranges for each sex for diastolic 

blood pressure; and clicking on 

Circle 3 Retrieves the data for the 

9 strains for which there are 

separate expected ranges for 

multiple age groups.  

We also provided a listing of 

number of expected ranges of 

(circulatory system) phenotypes 

available for each strain (Figure 38).  

3) Data Summaries and Visualization 

Retrieved data are presented in an interface that includes three major components: a 

selection panel, a visualization panel and a data panel (Figure 39).  

 

Figure 38 Summary of Number of Phenotypes with 

Expected Ranges (Circulatory System Trait) 
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The selection panel built with a bootstrap JavaScript library (https://getbootstrap. com/) 

provides the user with the information on the strains, measurement methods, experimental 

conditions, sex and age groups associated with the returned data, This allows the user to 

further customize the returned data by narrowing the results to smaller strain sets, specific 

measurement methods, ages or sex by clicking off the options not desired. As an initial 

selection is made, options for further filtering are automatically updated to present those 

available based on the initial selection. As Figure 40 shows, when the user chooses Age 

Group 0-79 Days, the panel and visualization change to show that data is only available for 

the SHR, SHRSP and WKY strain groups. Figure 41 presents the visualization when the user 

limits the results to males only in the first step and Figure 42 when the user selects specific 

strains in the first step.  
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Figure 39 Entire Interface includes a selection panel, a visualization panel and a data panel



 

 

6
8

 

 

Figure 40 Visualization of All Rat Strains’ Expected Range for Diastolic Blood Pressure (with selected age groups) 
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Figure 41 Visualization of All Rat Strains’ Expected Range for Diastolic Blood Pressure (with selected sex groups) 
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Figure 42 Visualization of All Rat Strains’ Expected Range for Diastolic Blood Pressure (with selected strains) 
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The visualization panel was created using Plotly (https://plot. ly/) and D3js (https://d3js. 

org/) libraries. Each box on the chart shows the expected range for a phenotype 

measurement based the parameters that constitute a record - strain group, sex, age, 

method and experimental condition. The red dotted line provides a reference showing the 

expected range that is considered a normal range for control groups. The user can choose to 

show the overall reference expected range or that for either sex. Currently only ranges 

under naive control condition are available in the tool with those already determined for 

salt diets to be added. This tool easily illustrates for researchers which strains have large or 

small expected ranges, which expected ranges for commonly used disease models actually 

overlap expected ranges for control groups. As shown in Figure 39 and Figure 43 it can 

easily be seen that MHS, MNS and SHR_Females have very large expected ranges that 

overlap to an extent with normal ranges while the SHRSP strain exhibits narrow ranges and 

all SHRSP expected ranges are above the normal range. Such information is useful when 

investigators are designing research projects.  

The legend on the right side is also clickable. By clicking on individual boxes on the right-side 

legend list, one can choose to view or hide specific expected range.  

Furthermore, users can choose to compare expected ranges for different strains against a 

selected reference. We provide reference expected ranges for female rats only, male rats 

only, rats with age 0-79 days, rats with age 80-99 days, as well as rats with age 100-999 days. 

Age-specific references are not available for all phenotypes. The reference values can be 

viewed at the bottom of the graph. 
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Figure 43 Visualization of All Rat Strains’ Expected Range for Diastolic Blood Pressure (showing reference of Female Rats)
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Below the box plot graph is the data panel where we included a table with all the details 

(strains, measurement methods, sex, age, range mean, range SD, range low and range high) 

of the visualized information. Users can look up the details of a specific data entry (box) by 

searching its record ID in the table.  

3 Rat Sub-Population Identification with Multiple Phenotype Profiles 

In addition to providing access and tools to the determined expected ranges, additional 

analyses can be conducted on these results to further identify disease models and groups of 

strains appropriate for disease studies.  

As noted rats are commonly used to study complex diseases such as cardiovascular, 

endocrine and neurological diseases. Most of the disease phenotypes related to polygenic 

(complex) diseases are continuous and are only considered abnormal when the 

measurement value for the phenotype exceeds or is below a certain threshold. Moreover, a 

number of phenotypes are affected in complex diseases, and the phenotypes that represent 

a complex disease are usually correlated. However, those correlated phenotypes related to 

a specific disease might have unique representation patterns in individuals. Heterogeneous 

representations of phenotypes may indicate the existence of disease subtypes with different 

biological mechanisms and may require different treatment plans. In addition, such 

differences could indicate the influence of environmental factors on the expression of the 

phenotype patterns.  

Kim et al. showed that the 53 clinical phenotypes in the asthma dataset from the Severe 

Asthma Research Program (SARP) (86) can be represented as a network with several densely 

connected subnetworks (87). They leveraged a graph (Figure 44) of multiple asthma-related 
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quantitative traits as prior 

knowledge. From the assumption 

that the densely connected 

subgraphs over these correlated 

traits are more likely to be 

influenced by the same or heavily 

overlapping subset(s) of SNPs, 

regression analysis can be done to 

examine relationship between the 

quantitative traits in the subnetwork and causal SNPs subsets.  

Rats are frequently used as cardiovascular disease models. Identifying complex disease sub-

populations would further assist investigators in choosing appropriate models for their 

research. For example, subtypes of hypertension such as isolated systolic hypertension (ISH), 

isolated diastolic hypertension (IDH), and combined systo-diastolic hypertension (SDH) may 

represent different mechanisms and may indicate different risks for future cardiovascular 

events such as stroke and coronary heart disease (88). Furthermore, differences in organ 

damage and co-morbidities exist among different hypertension subtypes including 

hypertension accompanied by renal dysfunction, obesity, sleep apnea, or autonomic failure 

(89).  

Very limited research in the identification of disease sub-populations has been done in 

model organism domain while there has been increasing interest in the clinical domain in 

patient sub-population identification and patient similarity-based predictive modeling for 

diagnosis and prognosis (90). Currently this interest is also extending to organisms used in 

pre-clinical research, such as the rat. Developing well-defined comprehensive phenotype 

 

Figure 44 Illustration of Association Analysis using 

Phenotype Correlation Graph for Asthma Dataset (87) 
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profiles for specific rat strains will enhance the ability of researchers to choose appropriate 

models that mimic the phenotypic profiles of humans with a particular disease.  

Currently clustering-based algorithms are the most commonly used methods to identify 

disease sub-populations. Cluster-based algorithms also use distance measurement to 

retrieve a group of similar subjects. Hence new subjects can be assigned to a predefined 

cluster based on their similarity/distance to each cluster. Various types of similarity metrics 

can be used to describe similarity between subjects, most of them are distance-based. 

Distances are measured to quantify similarity between subjects to retrieve a sub-population 

of similar subjects and find the closest class to a new subject. Distance measures include: 

Absolute distances (the absolute distances between 2 and 5 is |2-5|=3), Euclidean distance 

("ordinary" straight-line distance between two points in Euclidean space; DE 

=                                                       ), Mahalanobis distance (a measure of the distance between 

a point P and a distribution D;                                                    , S is the covariance matrix).  

We employed a clustering-based method to calculate rat strain similarity with Euclidian 

distance to identify subpopulations of rat strains based on their phenotype profiles as 

determined by expected ranges. Using strain, experimental condition and multiple 

quantitative phenotypes as features, our cluster-based approach identified sub-populations 

with different profiles in a general disease category. The resulting model represents various 

rat population subtypes.  

The algorithm was implemented using Weka (91). Weka is a collection of machine learning 

algorithms for data mining tasks. The algorithms can either be applied directly to a dataset 

or called from your own Java code. Weka contains tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. Here we used a 

standalone Weka java application for data pre-processing, clustering, and visualization.  
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3.1  Material and Method 

1) Data Source 

The data used for clustering included the meta-analysis expected range values for five 

cardiovascular related phenotypes: mean arterial blood pressure, diastolic blood pressure, 

systolic blood pressure, heart rate, and heart wet weight.  

2) Model Construction 

Hierarchical clustering was conducted using a method with Euclidian distance as the 

similarity measurement method. The algorithm was implemented using Weka (91).  

3) Model Selection 

We used subsets of data with different numbers of phenotype features to construct our 

clustering model. We then compared the “Distinguish Power” of each model to select the 

best clustering model. “Distinguish Power” is defined as the ratio of number of clusters to 

wrong cluster assignments (or small clusters with only one member). The Gold standard of 

cluster membership was provided by RGD curators. The number of cluster k was also 

selected based on the “Distinguish Power” metric. Small clusters were merged into big 

clusters so that k was considered the optimal number of clusters. The results of the models 

and respective scores are listed in Table 3 (items marked with * represent wrong cluster 

assignment). Five phenotypes were numbered as mean arterial blood pressure (1), diastolic 

blood pressure (2), systolic blood pressure (3), heart rate (4), and heart wet weight (5).  

Table 3 Clustering Results and Distinguish Power for Different Models 

Model Cluster Distinguish 
Power 

1+2 WKY_Both, WKY_Female, WKY_Male, BN_Both, BN_Male,  
LEW_Both*, LEW_Female*, LEW_Male* 

3/4 

SHRSP_Both, SHRSP_Male, SHRSP_Female, SHR_Female* 

SHR_Both, SHR_Male, GH_Both, GH_Male 
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2+3 WKY_Both, WKY_Male, WKY_Female, MNS_Both, LN_Both, LEW_Both*, 
LEW_Female*, LEW_Male*, BN_Both, BN_Male 

2/5 

SHRSP_Both, SHRSP_Female, SHRSP_Male, GH_Both, GH_Male,  
SHR_Both, SHR_Male 

SHR_Female*, MHS_Both* 

1+2+3 WKY_Both, WKY_Female, WKY_Male,  
LEW_Both*, LEW_Female*, LEW_Male*, BN_Both, BN_Male 

2/4 

SHRSP_Both, SHRSP_Male, SHRSP_Female, SHR_Both, SHR_Male,  
GH_Both, GH_Male 

SHR_Female* 

1+4 WKY_Both, WKY_Female, WKY_Male, BN_Both, BN_Female, BN_Male,  
F344_Both, F344_Female, F344_Male, FHH_Both, FHH_Female,  

LE_Both, LE_Female, LE_Male, LEW_Both*, LEW_Male*, SS_Both, 
SS_Female,  

SS_Male, SHR_Female, SHRSP_Both, SHRSP_Male, SHRSP_Female, 
SHR_Both, SHR_Male, GH_Both, GH_Female, GH_Male 

2/4 

FHH_Male* 

LEW_Female* 

1+4+5 WKY_Both, WKY_Female, WKY_Male, BN_Both, BN_Female, BN_Male,  
F344_Both, F344_Female, F344_Male, LE_Both, LE_Male, LE_Female,  

LEW_Both*, LEW_Male*, FHH_Both, FHH_Female, FHH_Male,  
SS_Both, SS_Female, SS_Male, SHRSP_Both, SHRSP_Female, SHRSP_Male,  

SHR_Both*, SHR_Female* 

3/4 

SHR_Male, GH_Both, GH_Female, GH_Male 

LEW_Female 

1+2+3+
4+5 

WKY_Both, WKY_Male, WKY_Female, BN_Both, BN_Male 3/1(optimal) or 
4/2 SHR_Female* 

SHRSP_Both, SHRSP_Male, SHRSP_Female,  
SHR_Both, SHR_Male, GH_Both, GH_Male 

LEW_Both, LEW_Male, LEW_Female 

 

 

Figure 45 Distinguish Power and Number of Clusters for Different Models 

3.2  Results and Conclusion 

The Model (1+2+3+4+5) proved to be the best model and the optimal number of clusters k 

was 3 after merging “SHR_Female” into cluster “SHRSP_Both, SHRSP_Male, SHRSP_Female, 
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SHR_Both, SHR_Male, GH_Both, GH_Male”. K=3 was optimal because if we kept the 

“SHR_Female” cluster and moved “SHR_Both, SHR_Male” into the small cluster, there were 

2 wrong assignments and the “Distinguish Power” was reduced.  

 

 

Figure 46 Scatter Plot for Model (1+2+3+4+5) with Different Features as XY Axis (Three Clusters) 

Figure 46 shows the scatter plot for Model (1+2+3+4+5) with different features for the XY 

axes. There are three clusters in the graph. We can see that the dark blue and light blue 

clusters are actually very close to each other in the two dimensional scatter plot. However, 

we were able to successfully distinguish the two clusters “WKY_Both, WKY_Male, 
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WKY_Female, BN_Both, BN_Male” and “LEW_Both, LEW_Male, LEW_Female” using five 

features.  

We then included data from mutant strains and outbred strains into our analysis. We found 

that mutant strains and outbred strains only include Features 3, 4 and 5 (systolic blood 

pressure, heart rate, and heart wet weight). We were only able to identify two significant 

clusters (a small cluster with only one item was merged into the first cluster) (Table 4). 

Figure 47 shows the scatter plot for Model (3+4+5) with different features on the XY axes. 

There are three clusters in the graph but we merged one cluster with only one item into the 

dark blue cluster (first cluster in Table 4).  

Table 4 Clustering Results for Inbred, Outbred and Mutant Strains under Naïve Control Condition 

Model Cluster 

3+4+5 

ACI-Lystbg-Kyo/Kyo, BN/KunKtsSlc, BN_Both, BN_Male, Crl:SD, Crl:WI, DMY/Kyo, DMYC/Kyo, 
F344. Cg-Du TyrCKyo+/+, F344. CVD-Unc5ccvd/Kyo, F344_Both, F344_Female, F344_Male, 

F344-Apcm1Kyo, F344-Egrm1Kyo, F344-HrKrh/Kyo, F344-Kmch/Kyo, F344-Kuru2/Kyo, F344-
Scn1am1Kyo, F344-Scn1am2Kyo, F344-Sv2am1Kyo, F344-Tbr1/Kyo, F344-Trdk/Kyo, 

FH/HamSlc, Gunn-Ugt1a1jSlc, HOB/Snk, HOB-Unc5chob/Snk, HTX/Kyo, HWY/Slc, KCI/Kyo, 
KFRS2/Kyo, KFRS2/Kyo-/+, KFRS3A/Kyo, KFRS3A/Kyo+/+, KFRS3B/Kyo, KFRS4/Kyo, KFRS6/Kyo, 

KHR/Kyo, KHR/Kyo-/-, KHR/Kyo-/+, KZ-LeprfaTky, LE_Both, LE_Male, LEC/Hok, LEW_Both, 
LEW_Female, LEW_Male, NAR/Slc, SER/Kyo, SHR_Female, SS_Both, SS_Male, TRM/Kyo, 

WKY_Both, WKY_Female, WKY_Male, WTC-swh/Kyo 

GH_Both, GH_Male, SHR_Both, SHR_Male, SHRSP/Ta, SHRSP_Both, SHRSP_Female, 
SHRSP_Male, WTC-Kcnq1dfkKyo, ZI/Kyo 

OP/Jtt 
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Figure 47 Scatter Plot for Model (3+4+5) with Different Features as XY Axis 

The result agrees with the general classification or normal (control) and abnormal 

(hypertensive) strains but the ability to further classify normal strains into sub-clusters is 

lower than the full model with five features. This result indicates that more data for outbred 

and mutant strains on diastolic blood pressure and mean arterial blood pressure will be 

needed to further cluster strains into sub-populations.  

As previously noted, researchers have often been constrained by availability of particular 

strains and familiarity or previous studies using those strains. Statistically clustering rat 

strains based on phenotypic profiles, such as what was done with the multiple 

cardiovascular phenotypes provides researchers with another tool to 1) identify the 

subpopulation of strains similar to the one in use to analyze data from these similar strains, 

2) examine if they could use an alternative strain that is more readily available to them to 

substitute for those used by other researchers (given their closeness in the cluster); 3) 

examine any sex or age specific differences that might position some strains on the border 

of being “normal” or “abnormal” and thus not ideal to be used as a control strain.  
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4 Conclusions, Discussion and Future Directions 

This project resulted in a platform consisting of 1) an analysis pipeline with user interface to 

generate expected ranges for phenotypes, and 2) a web-based data mining and visualization 

tools to provide easy access to this data for researchers. The pipeline and interface provides 

the means to 1) identify expected ranges for many types of quantitative phenotypes for 

different strains and different experimental conditions, 2) identify phenotypes without 

sufficient data to determine an expected range to prioritize these for acquisition through 

direct contact with researchers or extraction from published literature, 3) alert RGD staff of 

new phenotype data in PhenoMiner and potential changes in expected range so the pipeline 

can be run to determine expected ranges with this new additional data.  

The data mining and visualization tools created in this project provide the ability to 1) query 

by phenotype or strain to retrieve expected ranges, 2) generate a profile of multiple 

phenotypes for a single strain, 3) compare expected ranges for phenotypes across strains, 

sexes and ages, 4) compare expected ranges for particular phenotypes and strains with the 

expected range for control animals. Such resources will allow researchers with information 

necessary to design studies and choose appropriate strains for their needs. A pilot cluster 

analysis using the expected ranges for multiple phenotypes demonstrated that such data 

can be used to group strains with similar phenotype profiles, providing additional resources 

for researchers interested in comparisons among similar strains or to assist in choosing 

strains with similar profiles.  

Based on the success of this project, the Rat Genome Database will develop a Precision 

Models Portal to present these data and link to others to provide a rich resource for 

investigators. The results of this study will be used to target phenotype areas for data 
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acquisition and analysis. The goal will be to provide comprehensive profiles based on the 

expected ranges for phenotypes across all major physiological systems. The availability of 

sequence and variant data for a number of the strains will offer the opportunity to provide a 

complementary genotype profile with the phenotype profile to enhance the ability of 

researchers to choose models based on both genotype and phenotype. Continued cluster 

analysis of the strains across multiple phenotype areas and as data expands, will provide 

additional information for researchers. Expanding the analysis method into a tool will also 

allow researchers to customize the profile of phenotypes for which they want to classify 

strains. Expansion of data mining and visualization tools could include allowing users to 1) 

upload their own data for comparison, 2) choose more than one phenotype to compare 

across strains in a single view, 3) integrate genotype in a visual manner.  

Animal models used to study human diseases are developed to exhibit phenotypes similar 

to those of humans suffering from a particular disease (90-92). Researchers have a long 

history of developing such models, particularly in rat, and quantitatively measuring 

phenotypes of interest and statistically analyzing these against those measured in control 

animals. However, there has not been a comprehensive effort to statistically analyze 

quantitative phenotype measurements across multiple experiments to establish expected 

ranges for disease model rat strains and controls. The methods and statistical algorithms 

established in this project provide the platform for identifying and validating expected 

ranges for a variety of quantitative phenotypes. The development of interfaces and 

automation of the pipeline provide the ability to continuously add new expected ranges for 

particular phenotypes or strains and update existing ranges as new data becomes available. 

This data resource and the data mining and visualization tools will promote understanding 

of rat disease models, guide researchers to choose optimal strains for their research needs, 
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and encourage data sharing from different research hubs. Such resources help to promote 

research reproducibility. The value of the methods, platforms and data produced here go 

beyond the rat research community. The analysis pipeline can easily be adapted for multiple 

types of studies involving quantitative clinical or experimental results. Such methods have 

already been used to some extent with clinical trials but could be adapted for electronic 

phenotype analyses using data from Electronic Medical Records. The creation of a Precision 

Model Portal as an outgrowth of this project will provide a valuable resource for the 

Precision Medicine research efforts. It will increase the ability of those identifying variants 

that potentially impact a phenotype or set of phenotypes in a patient or human population 

to be able to identify the appropriate rat strain that mimics both the phenotype profile and 

genotype profile of that patient or population. Expanding on the analysis pipelines, data 

produced and interactive platforms created in this project will continue to provide a 

valuable resource for Translational Research. 
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APPENDIX A: META-ANALYSIS SUMMARIES FOR 24 

CARDIOVASCULAR PHENOTYPES 
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APPENDIX B: SUMMARY OF ABNORMAL AND NORMAL STRAINS 

FOR 24 CARDIOVASCULAR PHENOTYPES 
 

Phenotype Abnormal Normal Naïve 
Control 

blood hemoglobin level  all  

diastolic blood pressure GH, LH, SHR,  
SHRSP 

BN, HTG, LEW, MHS, WKY BN, WKY 

heart left ventricle weight to 
body weight ratio 

SHR COP, DA, DRY, F344, LEW, WKY WKY 

heart left ventricle wet weight GH BN, COP, DA, DRY, F344, LEW,  
SHR, WKY 

BN, WKY 

heart rate ACI, DA, GK BN, BUF, F344, FHH, GH, LE, 
LEW,  

SHR, SHRSP, SS, WAG, WKY 

BN, WKY 

heart right ventricle weight to left 
ventricle weight ratio 

F344, FHH, GH LE, LEW, SHR, SS, WKY WKY 

heart right ventricle wet weight  F344, WKY WKY 

heart weight as percentage of 
body weight 

FHH, SHR,  
SHRSP 

ACI, BN, BUF, COP, DA, F344, 
GK, LE,  

LEW, SS, WAG, WKY 

BN, WKY 

heart weight to body weight ratio SHRSP ACI, BN, BUF, COP, DA, F344, 
ISIAH, M520, MWF, SHR, WAG, 

WKY, WN 

BN, WKY 

heart wet weight BUF, FHH, GH,  
SS 

ACI, BN, COP, DA, F344, LE, LEW,  
MWK, WAG, WKY 

BN, WKY 

hematocrit  all  

mean arterial blood pressure GH, SHR,  
SHRSP 

BN, LE, LEW, SS, WKY BN, WKY 

mean corpuscular volume  all  

plasma total cholesterol level  HTG, LEW  

plasma triglyceride level  COP, HTG, LEW  

red blood cell count  all  

serum aspartate 
aminotransferase activity level 

SHR BN, F344, FHH, GH, LE, LEW, SS, 
WKY 

BN, WKY 

serum calcium level F344, GH, LE BN, FHH, LEW, SHR, SS, WKY BN, WKY 
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serum chloride level  all  

serum free fatty acids level  F344  

serum potassium level  all  

serum total cholesterol level GH, MWF,  
SHRSP 

BN, DA, EHC, F344, FHH, GH, 
LEW,  

SHR, SS, WKY, WOKW 

BN, WKY 

serum triglyceride level DA, WOKW BN, EHC, F344, MWF, SHR BN 

systolic blood pressure GH, LH, MHS,  
SHR, SHRSP 

ACI, BN, BUF, DA, F344, GK, LE, 
LEW,  

LN, M520, MNS, MR, MWF, WKY 

BN, WKY 
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APPENDIX C: AGREEMENTS BETWEEN META-ANALYSIS RESULTS 

AND DOMAIN EXPERT EMPIRICAL KNOWLEDGE 
 

Phenotype Agreement Disagreement 

blood hemoglobin level 31 0 

diastolic blood pressure 23 0 

heart left ventricle weight to body weight ratio 13 0 

heart left ventricle wet weight 15 2 

heart rate 41 1 

heart right ventricle weight to left ventricle weight ratio 24 3 

heart right ventricle wet weight 2 0 

heart weight as percentage of body weight 36 3 

heart weight to body weight ratio 20 0 

heart wet weight 44 1 

hematocrit 33 0 

mean arterial blood pressure 30 0 

mean corpuscular volume 31 0 

plasma total cholesterol level 5 0 

plasma triglyceride level 7 0 

red blood cell count 27 0 

serum aspartate aminotransferase activity level 27 0 

serum calcium level 27 0 

serum chloride level 27 0 

serum free fatty acids level 2 0 

serum potassium level 27 0 

serum total cholesterol level 35 0 

serum triglyceride level 12 0 

systolic blood pressure 27 1 
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