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ABSTRACT 

 Gene expression profiling can produce effective biomarkers that can provide 

additional information beyond other approaches for characterizing disease. While these 

approaches are typically performed on standard bulk RNA sequencing data, new methods 

for RNA sequencing of individual cells have allowed these approaches to be applied at 

the resolution of a single cell. As these methods enter the mainstream, there is an 

increased need for user-friendly software that allows researchers without experience in 

bioinformatics to apply these techniques. In this thesis, I have developed new, user-

friendly data resources and software tools to allow researchers to use gene expression 

signatures in their own datasets. Specifically, I created the Single Cell Toolkit, a user-

friendly and interactive toolkit for analyzing single-cell RNA sequencing data and used 

this toolkit to analyze the pathway activity levels in breast cancer cells before and after 

cancer therapy. Next, I created and validated a set of activated oncogenic growth factor 

receptor signatures in breast cancer, which revealed additional heterogeneity within 

public breast cancer cell line and patient sample RNA sequencing datasets. Finally, I 

created an R package for rapidly profiling TB samples using a set of 30 existing 

tuberculosis gene signatures. I applied this tool to look at pathway differences in a dataset 
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of tuberculosis treatment failure samples. Taken together, the results of these studies 

serve as a set of user-friendly software tools and data sets that allow researchers to 

rapidly and consistently apply pathway activity methods across RNA sequencing 

samples.  
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Chapter 1. Introduction 

Transcriptional Regulation and Disease 

 It is well established that cell signaling plays an important role in disease (Nahta, 

Hortobágyi & Esteva, 2003). The cell is a highly regulated and carefully controlled 

machine, with many signaling pathways working together to address the needs of each 

cell (Schlessinger, 2000). When these pathways are disrupted, there can be devastating 

effects. When attempting to quantify these changes in pathway activity there are several 

levels to probe. Alterations in DNA (DNA mutations) can cause changes in pathway 

activity, deactivating or activating a specific transcription factor, but redundancy in 

transcription factor pathways means that not every mutational event will have a strong, if 

any, effect (Spitz, Furlong, 2012). Further, many DNA mutations occur in positions in the 

genome that have no effect, so sifting through many mutations to identify the causal 

change is often difficult. An alternative approach is to quantify RNA expression. 

Messenger RNA (mRNA) is the transcriptional language that converts the instructions 

coded in DNA into protein products. By quantifying the level of RNA expression for 

each gene in a specific sample, a picture of the cellular activity of these genes can be 

identified. Differences in the levels of gene expression across samples can point to the 

causes of disease phenotypes or be used as a biomarker of a specific disease state. Often 

these biomarkers are not a single value, but a set of coordinately expressed genes that 

form a signature that can represent the activity of a cellular component, such as a 

pathway. By identifying biomarkers of disease, we can stratify patients into groups with 

similar cellular activity, which can often respond to disease treatments in similar ways 

(Groenendijk, Bernards, 2014, McCubrey et al., 2012). 
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Transcriptional Pathways in Cancer 

 In cancer, activating or inactivating mutations can disrupt the cell signaling 

cascades that control how cells grow, divide, and undergo apoptosis (McCubrey et al., 

2012). These changes in cell signaling networks have become an important part of the set 

of ‘hallmarks of cancer,’ causing cells to grow uncontrollably, form tumors, and 

metastasize (Hanahan, Weinberg, 2011). Cancer is one of the leading causes of death 

globally with an estimated 18.1 million new cases in 2018 (The International Agency for 

Research on Cancer, 2018). Fortunately, targeted cancer drugs to address specific 

abnormalities in cancer signaling pathways have been developed (Gustafson et al., 2010). 

These targeted drugs can inhibit certain signaling pathways driven by key oncogenic 

growth factor receptors, such as EGFR and HER2 (Nahta, Hortobágyi & Esteva, 2003). 

Importantly, by identifying the signaling cascade that is driving a specific tumor, drugs 

that target components of that pathway can be administered. The ultimate goal of 

pathway analysis in cancer is to identify a set of biomarkers that can precisely 

characterize the drivers of a specific tumor and identify the drugs that would best target 

the exact combination of aberrations in a specific patient’s tumor, an approach commonly 

known as personalized medicine. 

Tuberculosis 

 Tuberculosis (TB) infection is a leading cause of death worldwide (World Health 

Organization, 2016). The majority of patients infected with TB will not progress to active 

TB disease (World Health Organization, 2016). Of those that do get infected, some will 

fail their treatment. In TB, many gene signatures have been produced that can accurately 

predict the likelihood of TB progression or predict active TB disease (Zak et al., 2016, 
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Sambarey et al., 2017, Leong et al., 2018). These pathways typically contain genes 

involved in the immune and inflammatory responses (Scriba et al., 2017). Similar to their 

use in cancer, gene signatures of TB can help stratify patients into groups that are likely 

to progress to disease and those that are unlikely to get disease, monitor patient adherence 

to drug regimens, and ensure that infections are being successfully treated. This could be 

particularly important in situations where TB drugs are scarce, or resources for TB 

treatment are reduced, and help improve outcomes for TB treatment. 

RNA Sequencing 

RNA sequencing leverages high throughput sequencing technologies to quantify 

the gene expression levels in a sample. Standard sequencing pipelines involve aligning 

reads to a reference genome and counting the number of genes that overlap with each 

gene or transcript annotation. These raw counts can then be normalized to correct for 

differences in sequencing depth between samples or corrected for unwanted experimental 

variations called batch effects (Johnson, Li & Rabinovic, 2007) . The normalized counts 

can then be merged into a matrix of counts per sample for downstream analysis, which 

often involves identifying significantly differentially expressed pathways or gene 

signatures. Within the R programming language, several software tools have been created 

to make the storage of gene expression data easier. The SummarizedExperiment object 

allows for storage of multiple matrices which can be used to store sample and gene 

annotation data along with raw and normalized count data (Huber et al., 2015) . The 

object can be subset, automatically subsetting the annotation data along with the count 

data to make sure everything remains in sync. 
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Single-Cell RNA Sequencing 

 Typical bulk RNA sequencing combines the expression of genes from all cells in 

a sample. Recently, new techniques for performing single-cell RNA-Seq have been 

developed. These techniques involve either physically separating cells into individual 

wells in a plate or performing highly multiplexed bead-based library preparation for 

higher throughput results (Picelli et al., 2013, Macosko et al., 2015). The end result is 

expression data for an individual cell, allowing researchers to probe differences in gene 

expression across cell types or tumor subgroups. Due to the low amount of starting 

material for each individual cell, scRNA-Seq shows lower gene expression levels than 

typical bulk RNA-Seq datasets and some genes display a bimodal pattern of expression. 

To address these concerns, additional filtering and normalization steps are needed before 

standard RNA-Seq analysis techniques can be performed on scRNA-Seq datasets 

(Brennecke et al., 2013). Further, novel analysis methodologies that take into account the 

missingness that typically arises in scRNA-Seq data have been developed (Finak et al., 

2015, Trapnell et al., 2014, Satija et al., 2015). Choosing which analysis methods to use 

can be dataset specific, and often involves iterating through several analysis techniques 

before settling on the best approach for a given dataset. 

Dissertation Aims 

 The aims in this dissertation seek to develop novel software frameworks and 

pathway signatures to aid in the analysis of bulk and single-cell RNA-Seq datasets in the 

context of disease, specifically breast cancer and tuberculosis. Together, these aims will 

show that by creating interactive and intuitive tools for data processing, users can 

perform sophisticated analysis on RNA-Seq datasets without needing to write code or 
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have a deep understanding of how to run the standard underlying algorithms for RNA-

Seq analysis. 

Aim 1: Create a user-friendly interface and a full-featured analysis toolkit for single-cell 

RNA-Seq datasets 

Many tools for performing single-cell RNA-Seq (scRNA-Seq) analysis exist, but 

these tools are often only available on the command line and require significant 

bioinformatics expertise to use. While other software tools for analysis and visualization 

exist, there has yet to be a full scRNA-Seq analysis tool to help users take raw data 

through a standard pipeline to produce downstream analysis including quality control and 

filtering, visualization with dimensionality reduction methods, differential expression 

analysis, and pathway activity and gene enrichment approaches. In this aim, I present the 

Single Cell Toolkit (SCTK), the first fully interactive scRNA-Seq analysis tool written in 

R and Shiny. This tool allows users to perform a full scRNA-Seq analysis pipeline 

through an intuitive point-and-click interface, allowing improved access to scRNA-Seq 

analysis tools. 

Aim 2: Create and apply oncogenic growth factor receptor network signatures across 

breast cancer cell lines and breast cancer patient tumor samples 

 Cell line derived gene expression signatures have been used to identify signatures 

of pathway activity in cancer samples (Bild et al., 2006). These signatures can then be 

used to stratify samples by cellular activity and predict the effectiveness of drugs that 

target activated oncogenic pathways. In this aim, I describe a new set of pathway activity 

signatures of breast cancer oncogenes in growth factor receptor networks. Pathway 
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activity predictions were performed using Adaptive Signature Selection and Integration 

(ASSIGN) and can be run automatically through extensions of the ASSIGN R package 

(Shen et al., 2015). This set of signatures was applied to cancer cell line panels and 

patient breast cancer tumor samples, revealing additional heterogeneity within the cohorts 

and significant correlations to differences in drug response. 

Aim 3: Collect available biomarkers of tuberculosis disease and progression, create an 

analysis framework to apply these signatures, and profile the pathway activity in a cohort 

of tuberculosis treatment failure samples 

 Several signatures of TB have been previously published and can accurately 

predict several aspects of TB progression into active disease or predict the effectiveness 

of TB treatment. Since numerous unique signatures have been developed, it is worthwhile 

to explore differences in pathway activity across several signatures rather than looking at 

them individually. In this aim, a set of 30 previously published gene signatures of TB 

were collected. To rapidly profile this set of 30 gene signatures we created the TB 

Signature Profiler, a software framework to easily profile a set of samples with a set of 

user defined signatures using common pathway activity prediction algorithms. With this 

tool, users can profile and visualize the pathway activity predictions easily, leveraging the 

SummarizedExperiment object within R to store raw data and pathway activity scores 

together. We used the TB Signature Profiler on a set of TB samples from treatment 

failure patients and identified heterogeneity that showed the published signatures can 

accurately show TB treatment response and highlight issues with adherence to drug 

treatment.
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Chapter 2. An analysis toolkit for single-cell RNA-Seq data 

Adapted from the following manuscript: 

David F. Jenkins, Tyler Faits, Mohammed Muzamil Khan, Emma Briars, Sebastian 

Carrasco Pro, Steve Cunningham, Joshua D. Campbell, Masanao Yajima, and W. Evan 

Johnson. (Manuscript submitted) 

Introduction 

 Single-cell RNA sequencing (scRNA-Seq) techniques allow researchers to 

explore the transcriptional landscape of a sample at the resolution of the individual cell. 

In the context of cancer, scRNA-Seq can identify the subclonality of a tumor sample to 

improve our ability to identify the cell-specific mechanisms that drive tumor growth and 

can characterize different cellular populations within the tumor microenvironment 

(Tirosh et al., 2016, Brady et al., 2017). However, different optimizations of parameters 

and algorithms are required for filtration, normalization, clustering, and differential 

expression of scRNA-Seq data compared to bulk RNA-Seq due to the low amount of 

starting material and technical bias introduced in the common scRNA-Seq library 

preparation techniques (Brennecke et al., 2013). Tools for normalization and analysis of 

scRNA-Seq data exist to overcome these technical biases, but these tools are not 

integrated and require command line processing of samples and knowledge of the many 

options available for each tool, which makes them difficult to use, especially for 

scientists without training in bioinformatics (McCarthy et al., 2017, Nakamura et al., 

2015, Satija et al., 2015, Kharchenko, Silberstein & Scadden, 2014, Fan et al., 2016, 

Trapnell et al., 2014). Even for more advanced users, there is still a need to interactively 
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explore scRNA-Seq results during processing to help make dataset specific decisions that 

can affect downstream analysis. 

 Shiny is an R package and toolkit developed by RStudio 

(https://www.rstudio.com) that allows for the creation of web based graphical user 

interfaces (GUIs) over R packages, allowing for interactive data exploration and analysis 

through familiar drop down menus and buttons (Chang et al., 2017). Users can load a 

Shiny app locally on their computer or the Shiny app can be hosted in the cloud and can 

be accessed through a web browser. 

Package SCATER SC3 SEURAT SCDE PAGODA MONOCLE SCTK 
Filtering and Data 

Summary ü  ü    ü 

Dimensionality 
Reduction ü  ü   ü ü 

Clustering  ü ü  ü ü ü 
Batch Correction   ü ü  ü ü 

Differential 
Expression  ü ü ü  ü ü 

Pathway Enrichment   ü  ü  ü 
Experimental Design       ü 

GUI ü ü   ü  ü 
SingleCellExperiment 

Support ü ü     ü 

Table 2.1. Comparison of SCTK and other popular scRNA-Seq analysis tools. While SCATER (McCarthy et al., 
2017), SC3 (Nakamura et al., 2015), SEURAT (Satija et al., 2015), SCDE (Kharchenko, Silberstein & Scadden, 2014) , 
PAGODA (Fan et al., 2016), and MONOCLE (Trapnell et al., 2014) accomplish some steps in the scRNA-Seq analysis 
pipeline, the SCTK supports a full interactive scRNA-Seq analysis workflow and supports the SingleCellExperiment 
object for data storage. 

 Here, we present the Single Cell Toolkit (SCTK), an R/Shiny based package for 

both command line and interactive scRNA-Seq processing. While other tools can perform 

specific scRNA-Seq analysis steps, the SCTK is the first fully interactive scRNA-Seq 

analysis workflow available within the R language (Table 2.1). We applied the SCTK 

and our workflow on multiple data examples, including stimulated and unstimulated 

mucosal-associated invariant T cells, induced pluripotent stem cells from Yoruba male 
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reference samples to identify batch effects, and tumor cells from breast cancer patients to 

identify pathway activity in response to treatment (Tung et al., 2017, Finak et al., 2015, 

Brady et al., 2017). 

Methods 

 The SCTK is organized into several analysis modules. All modules can be run 

interactively through the Shiny web interface or through the R console. Below we 

describe the datasets available in the SCTK, the underlying architecture of the SCTK, and 

the analysis modules available through the interactive SCTK package and GUI. 

Mucosal-associated Invariant T (MAIT) Cells 

To demonstrate how interactive analysis can be performed in the SCTK, an 

example dataset of mucosal-associated invariant T (MAIT) cells was used 

(Finak et al., 2015). A set of 96 CD8+ MAIT cells were sorted, 47 cells were stimulated 

with cytokines, and the cells were processed and sequenced using the Fluidigm C1 

system. The data was aligned to the human genome, quantified, and included with the 

MAST package. Cytokine stimulation of MAIT cells results in increased cytokine gene 

expression and pathway activity changes that can be identified with differential 

expression analysis and pathway activity analysis, which can serve as an effective control 

for our toolkit methods if cytokine genes and cytokine containing pathways are identified 

through analysis. 

Pluripotent Stem Cells 

A dataset demonstrating batch effects in single-cell data was created by Tung, et. 

al (Tung et al., 2017). Three induced pluripotent stem cell lines were sequenced in 
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triplicate on the Fluidigm C1 platform using a total of 9 plates. The resulting data has a 

clear plate effect that represents an experimental batch effect that could affect 

downstream analysis if it is not corrected. After removing the batch effect, the 

experimental replicates should not separate during analysis, allowing the data to be used 

to identify biological differences between the individuals. 

Data Structure 

Steps in the analysis pipeline are performed on a SCTKExperiment object, an 

extension of the SingleCellExperiment and RangedSummarizedExperiment objects 

developed by the Bioconductor project (Huber et al., 2015). This object is organized into 

identically sized matrices designed to store counts, normalized counts, or batch corrected 

data; a data frame for sample annotation information; and a data frame for feature 

annotation information. These objects allow users to keep their scRNA-Seq data 

organized in a single object that automatically resizes all matrices and annotation 

information if the data is modified, ensuring annotation information and count data is 

always in sync. Additionally, data from dimensionality reduction approaches such as 

principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-

SNE) can be stored in the object’s reducedDims slot. The SingleCellExperiment object 

has been optimized to store large datasets by using sparse matrices and an efficient API 

to support data that would otherwise not fit into memory using a standard matrix (Lun, 

Pagès & Smith, 2018). Depending on the size of the data stored in the object, the matrices 

used in the object are automatically stored as either standard R matrices, sparse matrices, 

or on disk as a HDF5 file backed matrix. This allows users to take advantage of these 

memory saving strategies automatically without needing to specify which type of matrix 
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that should be used on their dataset. The SingleCellExperiment can also store information 

about spike-in transcripts and sample specific size factors for normalization. By utilizing 

an object that can efficiently store both raw data and downstream analysis results, 

analysis can be performed within the SCTK, saved into the object, and loaded into R for 

additional analysis on the command line. 

The SCTKExperiment is implemented as an S4 object, an object-oriented system 

available within R. This allows users to inherit methods and structure that exists in other 

S4 objects and add additional functionality while still being backwards compatible. The 

SCTKExperiment object also stores the percent variation explained by each principal 

component. This is accomplished by adding an additional slot named pcaVariances to the 

SCTKExperiment object that stores the percent variation explained by each principal 

component (PC) as a DataFrame. The getPCA() function available in the SCTK saves 

the PCs into the reducedDims slot and additionally stores the percent variation explained 

in the pcaVariances slot. This data can be accessed using the pcaVariances() function. 

The SCTKExperiment object can be further extended and will continue to be expanded in 

future versions of the SCTK to store additional single-cell data, annotations, and results. 

Data Upload 

After installing the SCTK, users can start the Shiny app by running the 

singleCellToolkit() function with a SCTKExperiment object as an input to 

automatically load the data into the app. Alternatively, a user can choose to upload a data 

matrix of raw count or normalized data directly through the Shiny app by uploading a 

text file, along with optional sample and feature annotation files. The SCTK will create a 
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SCTKExperiment object to store the toolkit analysis results. This object can be exported 

after analysis has been completed. 

Data Summary and Filtering 

After scRNA-Seq data has been loaded into the SCTK, a table of data summary 

metrics is presented. Because scRNA-Seq data is very sparse, dataset specific filtration 

and normalization can affect downstream analysis (Stegle, Teichmann & Marioni, 2015). 

In the data summary and filtering tab, the SCTK provides users with several summary 

statistics and options for manipulating their data and annotation information. First, within 

the Data Summary subtab, the SCTK displays a table of summary metrics including the 

number of samples, number or genes, average number of reads per cell, average number 

of genes per cell, and the number of genes with few or no counts across all samples. 

Additionally, histograms of the number of counts per sample and the number of 

expressed genes per sample are displayed. If the dataset is small, containing less than 50 

cells, the entire data matrix is also displayed. Using this information, the user can make 

decisions about how best to filter their data for downstream analysis. Users can filter 

genes and samples with low or no expression, delete outlier samples, filter the dataset 

based on annotation information, and modify the annotation information by uploading a 

replacement annotation matrix. For larger datasets, users can also randomly subset their 

data on this tab, allowing the user to perform exploratory analysis on a reduced dataset 

within the SCTK. The filtering applied while using this tab modifies the underlying data 

that is used throughout the app. A snapshot of the original uploaded data is preserved so a 

user can always return to the original uploaded data to restart the analysis or try a 

different filtration protocol. 
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The SCTK doesn’t require users to import their data with a specific set of gene 

annotation information, but some tools within the SCTK are only available if the data 

uses specific gene annotations. Depending on the reference genome that is used during 

sequence alignment and quantification, users may have data that describes their genes 

using gene symbols (e.g. BRCA1), Entrez gene numeric IDs from the NCBI database 

(e.g. 672 for BRCA1), Ensembl gene IDs from the EBI (e.g. ENSG00000012048 for 

BRCA1), or from another source. The SCTK has the ability to convert gene ids to various 

formats using the org.*.eg.db Bioconductor annotation packages. These packages are not 

installed by default, so these must be manually installed before this function will work. 

After these packages have been installed, users can convert between the available gene 

annotations on the Data Summary and Filtering tab. 

Additional modifications to the underlying data object are available in the Assay 

Details subtab. Lists of the available data matrices and reduced dimension data are 

displayed in the Assay Details tab. Users can add additional data matrices to their data 

object. Any existing matrix can be log-transformed, or if raw count data is available, a 

counts per million (CPM) normalization can be applied. Unwanted data matrices or 

reduced dimensionality can be deleted in this tab. 

Finally, in the Visualize subtab, users can visualize gene expression data versus 

annotation data for genes of interest using a boxplot, scatterplot, barplot, or heatmap 

depending on the type of annotation data information that is available. This can be 

helpful for visualizing housekeeping genes for sample quality control, quantifying 

artificial spike-in controls for sequencing quality control, or visualizing individual genes 

of interest. 
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Dimensionality Reduction and Clustering 

Visualization of scRNA-Seq data is crucial to identifying subclusters of cells 

present in the data. Dimensionality reduction techniques allow a user to visualize scRNA-

Seq data by summarizing the observed variation into lower dimension space. PCA 

transforms the matrix into components that describe the variation observed in the data. 

An alternative to PCA, t-distributed stochastic neighbor embedding (t-SNE), is also 

frequently used when analyzing scRNA-Seq data because it is able to embed a large 

amount of variation into a small number of dimensions (Van, Hinton, 2008). When users 

open the dimensionality reduction and clustering tab in the SCTK, a list of available 

reduced dimension datasets and algorithms is provided. Because these algorithms can 

take a long time to compute on large datasets, users can precompute the reduced 

dimension data and store it in a SCTKExperiment object before uploading the data into 

the SCTK. For smaller datasets, users can perform PCA and t-SNE directly through the 

SCTK app. The resulting reduced matrices will be stored in the underlying object that can 

be downloaded when analysis is complete. The resulting data can be displayed in the 

dimensionality reduction and clustering tab. Annotation information can be added to the 

plot by selecting annotations with which to color or shape the points in the scatterplot. 

After visualization of the data, users may want to stratify the scRNA-Seq data into 

clusters that appear during dimensionality reduction. Users can choose to cluster their 

data using k-means clustering, hierarchical clustering, or CLARA (Clustering for Large 

Applications). Clustering is typically performed on the PCA data, because t-SNE data 

does not retain the distance between clusters in its results. After the clustering algorithm 

is complete, the plot is automatically updated to display the resulting clusters. If the user 
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wants to save the cluster results, the cluster assignments can be stored in the annotation 

data frame of the SCTKExperiment object and visualized on other reduced dimension 

data. Additionally, other clustering algorithms can be run on the command line, saved as 

annotation information in the SCTKExperiment object, and visualized in this tab. 

ComBat Batch Correction 

Because of the complexities of the library preparation and the low starting 

material in scRNA-Seq experiments, non-biological variation (batch effects) are present 

and can be a major source of variation present in single-cell experiments (Hicks et al., 

2017). ComBat is a widely used method for adjusting for batch effects in microarray and 

RNA-Seq data (Johnson, Li & Rabinovic, 2007). If users identify variation associated 

with a technical effect, ComBat can be run within the SCTK to remove this variation 

before further downstream analysis. Users can choose an annotation present in the 

annotation data frame and add additional covariates to the ComBat model before 

performing batch correction. After batch correction, the ComBat results are stored as an 

additional assay in the SCTKExperiment object, which can then be used in the other 

analysis tabs within the SCTK. 

Differential Expression and Biomarker Creation 

Differential expression analysis can identify genes that are significantly up or 

down regulated between conditions. While many differential expression algorithms exist, 

their performance may vary on scRNA-Seq datasets. Users can apply common 

differential expression algorithms limma (Ritchie et al., 2015), DESeq2 (Love, Huber & 

Anders, 2014), or perform an ANOVA to identify differentially expressed genes by 
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selecting one or multiple condition variables present in the annotation information. Users 

can customize the differential expression results by changing the number of genes to 

return, the p-value significance cutoff, and the p-value correction method applied to the 

results. The resulting gene list is displayed as a table and also in a heatmap which can 

also be customized. Users can download the gene list directly or create a biomarker list 

for a specific cell type or cell cluster, which can be stored in the gene annotation 

information in the SCTKExperiment object. 

Single-cell RNA-Seq specific tools for differential expression have been 

developed that can adjust for some of the characteristics of scRNA-Seq data. MAST, 

Model-based Analysis of Single-cell Transcriptomics, has been developed to address 

these issues by using a hurdle model (Finak et al., 2015). A hurdle model allows for 

separate accounting of the processes that produce zero count values, and the ones that 

produce the positive count values. MAST allows users to identify this cutoff by using an 

adaptive threshold model that bins genes based on gene expression and identifies a cutoff 

for zero expression. This allows the dropout rate typical of scRNA-Seq data to be 

modelled. Additionally, MAST models the cellular detection rate (CDR), a measure of 

the percent of genes that are expressed in a given sample. Adding the CDR to the model 

can correct for biological and technical covariates when identifying differences in the 

condition of interest. MAST has been implemented within the SCTK. Users can choose 

whether to use MAST’s adaptive thresholding model, choose fold change and expression 

thresholds, and identify significant genes based on conditions present in the annotation 

information provided. The results are presented in a table, violin plots, or visualized in a 
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heatmap and can be saved as a biomarker in the SCTKExperiment object or downloaded 

directly. 

Subsampling and Differential Power Analysis 

The relative complexity of scRNA-Seq experimental designs makes it difficult for 

investigators to ensure that an experiment will have sufficient power while operating on a 

finite budget. Whereas there are tools for optimizing bulk RNA-Seq designs (Busby et 

al., 2013, Guo et al., 2014), these fail to account for the tiered nature of scRNA-Seq 

experiments, where each biological replicate may contribute any number of cells to be 

sequenced, each of which may belong to one of many cell types or subpopulations. Users 

of the SCTK can project estimated power metrics based on their dataset with variable 

simulated parameters including sequencing depth, number of sequenced cells, and 

number of biological replicates. To produce results within a reasonable timespan, the 

Shiny interface only allows users to vary one parameter at a time while keeping the 

others fixed. The command line allows users to probe all parameters at once, producing 

multidimensional power estimates which will help investigators optimize their scRNA-

Seq experimental designs. 

Pathway Activity Analysis 

Gene expression measurements can be summarized into a signature or set of 

genes to create a score that represents the activity of that set of genes in a sample. By 

summarizing genes in known signaling pathways, cells with active signaling pathways or 

specific cellular functions can be identified. Gene Set Variation Analysis (GSVA) uses 

gene sets to create these signatures (Hänzelmann, Castelo & Guinney, 2013). The 
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molecular signature database (MSigDb) is a database of molecular signatures that can be 

used in GSVA (Liberzon et al., 2011). GSVA has been implemented in the SCTK. Users 

can select their input data, gene set(s), and GSVA parameters interactively through the 

app. GSVA can be run across all MSigDB signatures, a user selected subset of MSigDB 

signatures, or a set of custom gene signatures saved as annotation columns in the 

rowData slot of the SCTKExperiment object. After GSVA is complete, scores will be 

displayed in either violin plots or a heatmap on the Pathway Activity tab of the SCTK. 

Users can save the pathway activity scores into the annotation data columns of the 

SCTKExperiment object or download the scores directly. 

Results 

The SCTK allows users to analyze data interactively through the Shiny web 

interface, or perform command line analysis and visualize the results when the analysis is 

complete. Interactive analysis works best for smaller studies of several hundred cells, 

which typically come from plate-based technologies such as SMART-Seq or CEL-Seq 

where cells are physically sorted into 96-well plates (Picelli et al., 2013, Hashimshony et 

al., 2016). For larger datasets, such as those created through commercially available tools 

such as the 10x Chromium Single Cell Solution and other droplet-based high throughput 

methods, analysis modules in the SCTK can be run on the command line, saved in the 

SCTKExperiment object, and loaded into the toolkit for efficient visualization (Macosko 

et al., 2015). To demonstrate a standard analysis workflow in the SCTK, two example 

datasets will be used. Equivalent analysis will be shown through the interactive modules 

and through the functions available on the R console. 
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Data Upload 

To demonstrate how interactive analysis can be performed in the SCTK, we will 

begin using the MAIT cell example. The MAIT cell example should separate by 

experimental condition (cytokine stimulated vs unstimulated) and genes identified 

through differential expression and pathways identified through pathway activity analysis 

should be associated with cytokine stimulation. 

To upload data into the toolkit for interactive analysis, data was extracted from 

the MAST package and the TPM matrix, sample annotations, and gene annotations were 

saved as tab separated text files. After starting the SCTK, the data can be uploaded on the 

“Upload” tab by selecting the text files and clicking upload (Figure 2.1). Optionally, the 

user can select “Create log(counts) assay” to store both the originally uploaded counts 

and a log transformed matrix. 
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Figure 2.1. Single Cell Toolkit upload tab. Users can choose between uploading data through file upload boxes or 
preloaded example datasets. When the user clicks the ‘Upload’ button, the app creates a SCTKExperiment object to 
store raw data and analysis. 

To perform analysis using the R functions available in the SCTK, the MAST data 

first must be loaded into a SCTKExperiment object. This can be accomplished with the 

createSCE() function. 

R> library(MAST) 

R> library(singleCellTK) 

R> library(xtable) 

R> data(maits, package="MAST") 

R> maits_sce <- createSCE(assayFile = t(maits$expressionmat), 

 +                        annotFile = maits$cdat, 
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 +                        featureFile = maits$fdat, 

 +                        assayName = "logtpm", 

 +                        inputDataFrames = TRUE, 

 +                        createLogCounts = FALSE) 

Data Summary and Filtering 

On the second tab in the interactive toolkit, a table of summary metrics is 

rendered. Additionally, the user is provided with several options for filtering data and 

modifying the underlying SCTKExperiment object. The MAIT dataset contains an 

annotation column called “ourfilter.” The “Filter samples by annotation” filter was used 

to subset the original dataset of 96 cells to remove all cells that do not pass the filter, 

leaving 74 cells (Figure 2.2). This filter subsets all data assays, cell annotation data, and 

gene annotation data present in the SCTKExperiment object. The singleCellTK has the 

ability to convert gene ids to various formats in the “Convert Gene Annotation” section 

of the data summary and filtering page by selecting the organism, the source annotation 

type, and the annotation type to convert the gene annotations to. 
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Figure 2.2. Single Cell Toolkit Data Summary and Filtering tab. In the right panel, a table of data summary metrics 
and a heatmap of counts per sample is displayed. The original 96 cells in the MAIT data are filtered to remove all 
samples that do not pass the “ourfilter” annotation column in the dataset using the “Filter samples by annotation” filter. 
74 pass filter cells remain. Additional tools for data filtering are available in the left column. 

In the R console, the summarizeTable() function produces summary metrics 

from a SCTKExperiment object. The user selects the assay to summarize and the table of 

summary metrics is produced (Table 2.2). Typically, these summary statistics would be 

run on a "counts" matrix, but the MAIT SCTKExperiment object only contains log(tpm) 

values so the average number of reads per cell is calculated from the normalized values 

instead of raw counts. 

R> summarizeTable(maits_sce, useAssay = "logtpm") 

Metric Value 
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Number of Samples 96 
Number of Genes 16302 

Average number of reads per cell 17867 
Average number of genes per cell 6833 

Samples with <1700 detected genes 5 
Genes with no expression across all samples 0 

Table 2.2. Table of summary metrics produced by the summarizeTable() function. Five of the 96 cells in the 
MAIT dataset have fewer than 1,700 detected genes, indicating that these cells may have failed sequencing and should 
be removed for downstream analysis. 

Sample annotation information is available in the colData data frame in the 

SCTKExperiment object. The “ourfilter” annotation can be used to subset the data within 

the SCTKExperiment object. 

R> summarizeTable(maits_sce, useAssay = "logtpm") 

R> colnames(colData(maits_sce)) 

 [1] "wellKey"          "condition"        "nGeneOn" 

 [4] "libSize"          "PercentToHuman"   "MedianCVCoverage" 

 [7] "PCRDuplicate"     "exonRate"         "pastFastqc" 

[10] "ncells"           "ngeneson"         "cngeneson" 

[13] "TRAV1"            "TRBV6"            "TRBV4" 

[16] "TRBV20"           "alpha"            "beta" 

[19] "ac"               "bc"               "ourfilter" 

R> table(colData(maits_sce)$ourfilter) 

FALSE  TRUE  

   22    74  

R> maits_subset <- maits_sce[, colData(maits_sce)$ourfilter] 
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To convert gene annotations in the R console, the convertGeneIDs() function 

can be used. Annotations can be converted between various formats available within the 

org.*.eg.db Bioconductor annotation packages which must be installed separately. 

R> library(org.Hs.eg.db) 

R> maits_entrez <- maits_subset 

R> maits_subset <- convertGeneIDs(maits_subset, inSymbol = "ENTREZID", 

 +                                outSymbol = "SYMBOL", 

 +                                database = "org.Hs.eg.db") 

Dimensionality Reduction 

Next, the data is visualized in the Dimensionality Reduction and filtering tab. 

First, the ‘logcounts’ assay was selected. Since the PCA was not precalculated for this 

assay, PCA is performed, stored in the SCTKExperiment object, and then used for 

visualization in the scatter plot. The ‘condition’ variable in the colData annotation assay 

describes whether or not the cell was stimulated. There is a clear separation in the first 

principal component between stimulated and unstimulated cells, indicating a biological 

difference between the two cell conditions (Figure 2.3). 
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Figure 2.3. Single Cell Toolkit Dimensionality Reduction and Clustering tab. Since no PCA values were present in 
the object, they are calculated, stored in the reducedDim slot in the object, and the first two principal components are 
displayed in the scatterplot. By selecting ‘condition,’ the points are colored by the condition column of the colData 
annotation assay in the SCTKExperiment object. 

Dimensionality reduced data is stored in the reducedDims slot of the 

SCTKExperiment object, which can be accessed with the reducedDims() function. PCA 

and t-SNE data can be added to the object with the getPCA() and getTSNE() functions. 

In addition to storing the principal components in the reducedDims slot, the getPCA() 

function stores the percent variation explained by each principal component in the 

pcaVariances slot. 

R> maits_subset <- getPCA(maits_subset, useAssay = "logtpm", 

 +                        reducedDimName = "PCA_logtpm") 

R> maits_subset <- getTSNE(maits_subset, useAssay = "logtpm", 

 +                         reducedDimName = "TSNE_logtpm") 

R> reducedDims(maits_subset) 
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 List of length 2 

 names(2): PCA_logtpm TSNE_logtpm 

PCA and t-SNE data can be visualized with the plotPCA() and plotTSNE() 

functions, respectively. 

R> plotPCA(maits_subset, reducedDimName = "PCA_logtpm", 

 +         colorBy = "condition") 

R> plotTSNE(maits_subset, reducedDimName = "TSNE_logtpm", 

 +          colorBy = "condition") 

Similar to the PCA visualization, there is a clear separation between the 

stimulated and control cells in the t-SNE visualization (Figure 2.4). 

 
Figure 2.4. Result of plotTSNE() on the MAIT dataset. There is a clear separation between the stimulated and 
unstimulated MAIT cells. One sample marked as stimulated clusters with the other unstimulated cells. This could 
indicate a mislabeled sample. 

Differential Expression with MAST 

Differential expression analysis can identify the genes associated with the 

biological difference induced by cytokine stimulation that was identified during 
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visualization with PCA. The MAST differential expression tab was used on the logcounts 

assay. The default options (Use adaptive thresholding, minimum fold change of 0.6, 0.1 

expression threshold of 0.1, and an FDR cutoff of 0.05) were used in accordance with the 

MAST package example vignette (Finak et al., 2015). 

 
Figure 2.5. Single Cell Toolkit MAST tab. One available visualization of the MAST differential expression results is 
a plot of expression values vs standardized cellular detection rate for the top significantly expressed genes. 

MAST analysis can be run by selecting the analysis options on the MAST page 

and clicking the “Run DE Using Hurdle” button. After MAST analysis completed, the 

953 significant genes could be visualized as a result gene table, a set of violin plots, a 

heatmap, or a set of linear models of logtpm values vs cellular detection rate (Figure 2.5). 

Among the top differentially expressed genes was interferon gamma, a cytokine that is 

known to be produced in response to stimulation. The resulting significant gene list can 

be downloaded at the bottom of the tab. 
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To run MAST analysis through the R console on a SCTKExperiment object, first 

run adaptive thresholding on the object. After adaptive thresholding is complete, the 

MAST() function in the SCTK can be used. After MAST analysis is complete, the 

MASTviolin(), MASTregression(), and plotDiffEx() functions can be used to 

visualize the results (Figure 2.6). 

R> thresholds <- thresholdGenes(maits_subset, useAssay = "logtpm") 

R> mast_results <- MAST(maits_subset, condition = "condition", 

 +                      useThresh = TRUE, useAssay = "logtpm") 

R> MASTviolin(maits_subset, useAssay = "logtpm", 

 +            fcHurdleSig = mast_results, threshP = TRUE, 

 +            condition = "condition", samplesize = 16) 

R> MASTregression(maits_subset, useAssay = "logtpm", 

 +                fcHurdleSig = mast_results, threshP = TRUE, 

 +                condition = "condition", samplesize = 16) 

R> plotDiffEx(maits_subset, useAssay = "logtpm", 

 +            condition = "condition", 

 +            geneList = mast_results$Gene[1:100], 

 +            annotationColors = "auto", 

 +            displayRowLabels = FALSE, displayColumnLabels = FALSE) 
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Figure 2.6. MAST result visualizations available in the SCTK. a. The thresholdGenes() function bins genes 
based on expression profile and displays a density plot for each bin. The red line indicates the cutoff for zero 
expression. b. The MASTviolin() function displays the top differentially expressed genes using a violin plot. c. The 
MASTregression() function displays the top differentially expressed genes and the CDR used in the model d. The 
plotDiffEx() function can be used to display a heatmap of a set of differentially expressed genes. 

Pathway Activity Analysis with GSVA 

To identify gene lists that show differences in pathway activity level between 

unstimulated and stimulated cells, the GSVA tab was used. GSVA was used to calculate 

pathway activity levels for all pathways in MSigDB c2. The 50 top significantly different 

pathway gene lists when comparing stimulated vs unstimulated cells were displayed as 

violin plots (Figure 2.7). Among the top pathways that showed increased activity in the 

stimulated cells was KEGG_PROTEASOME, indicating proteasome related genes 
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showed increased activity in the stimulated T cells. This pathway includes interferon 

gamma. The pathway results can be downloaded at the bottom of the pathway activity 

analysis tab. 

 
Figure 2.7. Single Cell Toolkit Pathway Activity Analysis tab. Currently GSVA is supported. Users can choose to 
manually input a gene list or use a subset or all of the gene lists in MSigDB c2. After clicking ‘Run’ users can visualize 
a heatmap or violin plot of results if a condition of interest is given. Results can be downloaded or saved into the 
SCTKExperiment object. 

The gsvaSCE() function can be used to run GSVA on an SCTKExperiment 

object using signatures from MSigDB. Currently, the SCTKExperiment object must use 

Entrez Gene IDs. Users can run GSVA using the full set of MSigDB signatures or a 

subset of signatures. The signatures run below are known to separate the stimulated and 

unstimulated cells: 

R> gsvaRes <- gsvaSCE(maits_entrez, useAssay = "logtpm", 

 +              "MSigDB c2 (Human, Entrez ID only)", 
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 +              c("KEGG_PROTEASOME", 

 +              "REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G", 

 +              "REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE", 

 +              "BIOCARTA_PROTEASOME_PATHWAY", 

 +              "REACTOME_METABOLISM_OF_AMINO_ACIDS", 

 +              "REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE", 

 +              "REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION", 

 +              "REACTOME_STABILIZATION_OF_P53", 

 +              "REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1"), 

 +              parallel.sz=1) 

R> gsvaPlot(maits_subset, gsvaRes, "Violin", "condition", text_size=5) 

R> gsvaPlot(maits_subset, gsvaRes, "Heatmap", "condition", 

 +          show_column_names = FALSE, text_size = 5) 

After performing GSVA, the gsvaPlot() function can be used to produce a set of 

violin plots or a heatmap of the GSVA results (Figure 2.8). 

 
Figure 2.8. Pathway activity heatmap from the gsvaPlot() function. The results of GSVA pathway activity 
analysis can be visualized using a heatmap. If a condition of interest is chosen, a color bar is displayed on the top of the 
heatmap indicating the condition. 
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Single-Cell Batch Effects 

We used the induced pluripotent stem cell line data to demonstrate the SCTK’s 

ability to detect and correct for batch effects (Tung et al., 2017). In this dataset, three 

reference samples were prepared and sequenced in triplicate separately in order to 

introduce an experimental batch effect. Because these initial samples were identical, any 

difference between the replicates of the same sample represent an unwanted technical 

effect that could affect downstream analysis to identify biological differences between 

the samples. 

 
Figure 2.9. PCA before and after ComBat batch correction. The three replicates show a clear separation in the 
log(counts) data (left), which is corrected after running ComBat (right). 

The dataset was downloaded and loaded into the SCTK. In order to reduce the 

effect of genes with low or no expression, cells with less than 1,700 detected genes and 

genes with average expression in the bottom 50 percent of the dataset were removed 

using the filtering tab. The three replicates from the NA19239 sample were used for 

downstream analysis. The resulting filtered data was visualized on the Dimensionality 

Reduction and Clustering tab. The batch effect resulting from the plate effect was clearly 

seen in the data from the log(molecules) assay (Figure 2.9, left). ComBat was run on the 
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log(molecules) assay using default parameters (replicate as batch condition, no additional 

covariates, parametric combat) and saved in an assay named “combat”. The 

Dimensionality Reduction and clustering tab was then used to visualize a PCA of the 

combat assay (Figure 2.9, right). After ComBat, the plates display no signs of batch 

effects in the first two principal components, indicating that the technical plate artifact 

has been removed. 

The ComBatSCE() function can be used to perform ComBat batch correction on a 

SCTKExperiment object. Batch effects can be visualized using reduced dimension data, 

using functions such as plotPCA() and plotTSNE(). To perform this analysis on the R 

console, first the data must be loaded and subset to contain the NA19239 samples only. 

R> library(GEOquery) 

R> #download data from GEO 

R> GSE77288 <- getGEO('GSE77288', GSEMatrix=TRUE) 

R> con <- gzcon(url(paste( 

 +   "ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE77nnn", 

 +   "GSE77288/suppl", 

 +   "GSE77288_molecules-raw-single-per-sample.txt.gz", sep="/"))) 

R> txt <- readLines(con) 

R> dat <- read.table(textConnection(txt), sep = "\t", header=T) 

R> #extract annotation data from the GSE record 

R> pdatasub <- pData(GSE77288$GSE77288_series_matrix.txt.gz)[ 

 +   pData(GSE77288$GSE77288_series_matrix.txt.gz)$title %in%  

 +     paste(as.character(dat[,1]), as.character(dat[,2]), 
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 +           as.character(dat[,3]), sep="-"),] 

R> rownames(pdatasub) <- pdatasub$title 

R> #transform the count matrix 

R> datsub <- t(dat[, 4:ncol(dat)]) 

R> colnames(datsub) <- paste(as.character(dat[,1]), 

 +                           as.character(dat[,2]), 

 +                           as.character(dat[,3]), sep="-") 

R> #create SCtkExperiment object 

R> GSE77288_sce <- createSCE(assayFile = datsub, 

 +                           annotFile = pdatasub, 

 +                           inputDataFrames = T) 

R> #subset data to NA19239 only 

R> GSE77288_sce <- GSE77288_sce[ , 

 +   colData(GSE77288_sce)[,"individual:ch1"] == "NA19239"] 

R> #remove genes with no expression across all cellss 

R> GSE77288_sce <- GSE77288_sce[ 

 +   rowSums(assay(GSE77288_sce, "counts")) != 0, ] 

R> #log transform the count matrix 

R> assay(GSE77288_sce, "logcounts") <- log2(assay(GSE77288_sce) + 1) 

R> #plot before combat 

R> plotPCA(GSE77288_sce, useAssay = "logcounts", runPCA = T, 

 +         colorBy = 'replicate:ch1') 

R> #run combat 

R> assay(GSE77288_sce, "combat") <- ComBatSCE(GSE77288_sce, 
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 +                                            batch = "replicate:ch1") 

R> #plot after combat 

R> plotPCA(GSE77288_sce, useAssay = "combat", runPCA = T, 

 +         colorBy = 'replicate:ch1') 

Discussion 

We have developed the Single Cell Toolkit (SCTK), a framework for analyzing 

and visualizing scRNA-Seq data interactively in R. With this toolkit users can process 

data, visualize the results, and save the data into a convenient object for further 

downstream analysis. Because the SCTK uses the SCTKExperiment object, the resulting 

data object is compatible with other tools that accept SummarizedExperiment or 

SingleCellExperiment objects. The toolkit supports various use cases from a user who 

just wants to visualize preprocessed analysis stored in a data object to a user who wants 

to perform a full scRNA-Seq pipeline from filtering to pathway activity analysis. The 

SCTK is the first fully interactive toolkit that allows a user to perform a standard scRNA-

Seq workflow from uploading a count matrix to differential expression and pathway 

activity analysis without writing any code. 

Additionally, we have used the analysis workflow available in the SCTK to 

identify pathway activity differences between breast cancer cells before and after drug 

treatment. By performing pathway activity analysis on this dataset, we found significant 

increases in receptor tyrosine kinase (RTK) and epithelial to mesenchymal transition 

(EMT) pathways, indicating the SCTK can be used to identify biologically meaningful 

results. (Brady et al., 2017). 



 

 

36 

We demonstrated the SCTK is an effective analysis tool by presenting a 

differential expression analysis and pathway activity prediction workflow for MAIT 

cells, and batch correction with ComBat on a set of three technical replicates of a Yoruba 

male reference sample. These workflows show the flexibility and interactive capability of 

the SCTK, which is not possible in any other currently available R package. 

The SCTK is flexible and additional analysis modules will be added over time. 

Future improvements include additional ways to normalize input data including using 

ERCC spike in information, scRNA-Seq specific methods for pathway activity analysis 

and ComBat batch correction, additional analysis modules, and additional updates to the 

SCTKExperiment object to store additional results and downstream analysis and support 

nested study designs where cells in an experiment come from various donors or tissues. 

Software Availability 

The SCTK is freely available through Bioconductor 

(https://bioconductor.org/packages/devel/bioc/html/singleCellTK.html) and GitHub 

(https://github.com/compbiomed/singleCellTK). Detailed installation instructions are 

available on the SCTK help website (https://compbiomed.github.io/sctk_docs/). 
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Introduction 

 Breast cancer remains one of the leading causes of cancer-related death in women 

(DeSantis et al., 2014). It is well established that growth factor receptors and their 

downstream signaling pathways, contribute to breast cancer proliferation, survival, and 

metastasis (Lemmon, Schlessinger, 2010, Mosesson, Yarden, 2004). Molecular 

aberrations can occur in various growth factor receptor network (GFRN) members and 

have been described in breast cancer (Nahta, Hortobágyi & Esteva, 2003, Hynes, 2000, 

Masuda et al., 2012). These findings have paved the way for GFRN-targeted treatments 

which are currently approved for use and being evaluated in various stages of clinical 

development and in clinical trials (De Abreu et al., 2014, Davis et al., 2014). Although 

these treatments do hold promise, relatively few data are available on the cooperativity 

and diversity of complicated GFRN signaling in actual breast tumors. Additionally, 

assessing GFRN activity in patient tumors is extremely challenging due to the lack of 

methods capable of measuring signaling events in tumors. Drug selection is often guided 
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by expression of protein biomarkers, and drug resistance often develops due to 

compensation by interacting pathways within the GFRN (Groenendijk, Bernards, 2014, 

McCubrey et al., 2012). Therefore, there is a strong need to develop better methods for 

measuring and understanding GFRN signaling events in breast tumors in order to deliver 

the most effective treatment regimens and combat drug resistance (Lemmon, 

Schlessinger, 2010, Groenendijk, Bernards, 2014, Perona, 2006). 

 Growth factor receptors, such as epidermal growth factor receptor 1 (EGFR), 

human epidermal growth factor receptor 2 (HER2), and insulin-like growth factor 1 

receptor (IGF1R), are key regulatory nodes of the GFRN and are often aberrantly 

activated across breast cancer subtypes (Masuda et al., 2012, Iqbal, Iqbal, 2014, 

Farabaugh, Boone & Lee, 2015). Approximately 15–30% of breast cancer patients are 

diagnosed with HER2-positive breast cancer, which is characterized by amplification of 

HER2 (Iqbal, Iqbal, 2014). EGFR amplifications occur in 25% of all triple-negative 

breast cancer (TNBC) patients and are often associated with poor outcomes (Masuda et 

al., 2012, Davis et al., 2014, Perou, Charles M., 2010). High IGF1R activity occurs in up 

to 50% of breast tumors and is seen across all breast cancer subtypes (Farabaugh, Boone 

& Lee, 2015). These receptors can activate downstream oncogenic growth cascades such 

as the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) 

pathways, forming a complex, interconnected, and dynamic signaling network (Lemmon, 

Schlessinger, 2010, Davis et al., 2014). Activation of PI3K by growth factor receptors 

triggers the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway, leading to cell 

proliferation, metabolic changes, and cell survival (Baselga, 2011, Paplomata, O'Regan, 

2014, Saini et al., 2013). In the MAPK pathway, following growth factor receptor 
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activation, RAS becomes activated followed by activation of RAF1, MEK, and ERK, 

leading to transcriptional changes that impact cellular proliferation, motility, and evasion 

of apoptosis (Masuda et al., 2012, Davis et al., 2014, Santen et al., 2002, Roberts, Der, 

2007). Both the PI3K and MAPK pathways contribute to tumor progression by disrupting 

the balance of pro- and anti-apoptotic proteins of the BCL-2 protein family in the 

mitochondrial (also known as intrinsic) pathway of apoptosis (Czabotar et al., 2014, Vo, 

Letai, 2010). Particular GFRN members can upregulate anti-apoptotic proteins such as 

BCL-2, BCL-XL, and MCL-1 and downregulate pro-apoptotic proteins such as BAD, 

BAX, and BIM, all of which contribute to apoptosis evasion and resistance to cancer 

treatments in patients (Letai, 2008, Datta et al., 1997, Franke et al., 2003, Townsend et 

al., 1998, Carpenter, Lo, 2013, Weston et al., 2003, Ley et al., 2003, Deng et al., 2007). 

ERBB receptor tyrosine kinases, such as EGFR and HER2, have a great deal of overlap 

in the downstream pathways they activate; however, individual ERBB receptors have the 

capability to preferentially bind particular downstream signaling molecules (Arteaga, 

Engelman, 2014, Yarden, Sliwkowski, 2001). Furthermore, preclinical studies have 

shown that EGFR- and HER2-driven cancers show differential response to targeted 

therapies. EGFR mutant cancers are less responsive to single-agent PI3K/AKT inhibitors 

in comparison to HER2-amplified cancers and require the inhibition of both the PI3K and 

MEK pathways (Faber et al., 2009). These suggest that ERBB proteins can couple to 

distinct signaling pathways and invoke non-redundant physiological effects, which 

warrants for specificity for the different GFRN components. Therefore, an accurate 

assessment of global GFRN activity is pivotal for selecting targeted treatment strategies 
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that consider the diversity of growth and cell survival mechanisms in breast cancer 

patients. 

 Despite advances in the cellular and molecular characterization of breast cancer, 

effective personalized breast cancer treatment remains elusive. Immunohistochemical and 

gene expression profiling-defined breast cancer molecular classification has advanced our 

understanding of breast cancer prognosis, treatment, and improved survival. Currently, 

breast cancers are stratified into different clinical subtypes in order to determine specific 

treatments, and several breast cancer subtyping approaches are currently available. For 

example, fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC) 

techniques are often used to determine clinical subtypes based on common receptor 

protein alterations such as estrogen (ER), progesterone (PR), and HER2 receptor 

amplification (De Abreu et al., 2014, Weigel, Dowsett, 2010). Additionally, Ki-67 

(proliferation marker), CK 5/6 (cytokeratin marker), EGFR, androgen receptor (AR), and 

p53 (apoptosis marker) are used as biomarkers to further classify breast cancer using IHC 

methods. Although helpful, IHC methods are often subjected to bias due to tissue 

handling, fixation, antibody sources, and need for physical evaluation by pathologists 

(Hammond et al., 2010, Wolff et al., 2013). More recently, Perou and Sørlie et al. 

proposed five “intrinsic subtypes” that have shown utility in guiding therapy by 

leveraging gene expression data, differences in clinical outcomes, and responses to 

neoadjuvant chemotherapy (Perou, 2010, Parker et al., 2009, Sørlie et al., 2001, De 

Abreu et al., 2014, Patani, Martin & Dowsett, 2013). Further, evaluation of gene 

expression has led to the proposition of several additional subtypes, including claudin-

low, molecular apocrine, and a novel luminal-like subtype (Herschkowitz et al., 2007, 



 

 

41 

Prat et al., 2010, Vera-Badillo et al., 2014, Farmer et al., 2005, Guedj et al., 2012, 

Dvorkin-Gheva, Hassell, 2014). While molecular subtypes continue to emerge, routine 

use of such subtypes in clinical settings is not sensitive and specific due to some critical 

limitations. For example, tumors of the same clinical or intrinsic subtype can show 

differences in growth, survival, and response to therapies, and clinical and intrinsic 

subtypes are sometimes discrepant (Marusyk, Polyak, 2010, Huang et al., 2012). 

Approximately one-third of HER2+ tumors are not classified as the HER2-enriched 

intrinsic subtype and up to 25% of clinically characterized ER+ tumors are not classified 

as the luminal intrinsic subtype (Parker et al., 2009). While IHC methods are single 

protein based, intrinsic subtypes are fundamentally empirical and do not focus on distinct 

biological properties. Thus, both IHC and intrinsic subtypes fail to recapitulate the 

biological heterogeneity within each subtype (Cheang et al., 2015). Recent studies 

highlight the discordance between the IHC and intrinsic subtypes, which calls for 

additional work (Cheang et al., 2015, Tang, Tse, 2016). To address these challenges, 

pathway-level subtyping may provide complementary information for determining 

therapeutic targets. For example, identification of specific aberrant pathways within the 

triple negative and basal-like subtypes may help to explain additional heterogeneity and 

better target these subtypes pharmacologically (Badve et al., 2011). Here, breast cancer 

inter-tumor heterogeneity was explored in terms of GFRN activity for its well-known role 

in growth, evasion of apoptosis, and drug response. 
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Figure 3.1. High-level overview for probing growth factor receptor networks in breast cancer. a. Overexpression 
of growth factor receptor network (GFRN) genes in human mammary epithelial cells (HMECs): AKT, BAD, EGFR, 
HER2, IGF1R, RAF1, and KRAS (G12V). b. Generation of RNA sequencing data from HMECs overexpressing GFRN 
genes and signature generation using ASSIGN. c. Determination of GFRN pathways activation across TCGA breast 
tumors and ICBP breast cancer cell lines and identification of novel phenotypes based on GFRN activity. d. Linking 
novel phenotypes to survival and drug response mechanisms in biochemical and drug response assay. 
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 While biochemical measurement of pathway activity is challenging in human 

tumors due to limited tissue availability and instability of specific proteins, patterns of 

activity across multiple genes—or gene expression signatures—can be used as surrogates 

for pathway activation in tumors and to model biological phenotypes (Bild et al., 2006, 

Watters, Roberts, 2006, Cohen et al., 2011, Soldi et al., 2013, El-Chaar et al., 2014). 

Pathway activation has been used to predict drug response to targeted therapies in cell 

lines (Cohen et al., 2011, El-Chaar et al., 2014, Gustafson et al., 2010), but to the best of 

our knowledge, this is the first study which measures activity of seven GFRN members 

concurrently at the pathway level in patient samples. In this study, 1,119 breast tumors 

were profiled for GFRN activity across The Cancer Genome Atlas (TCGA) and across 55 

breast cancer cell lines from the Integrative Cancer Biology Program (ICBP43) (Figure 

3.1) (Cancer Genome, 2012, Daemen et al., 2013). Pathway activity was estimated in 

samples using novel GFRN gene expression signatures for the HER2, IGF1R, AKT, 

EGFR, KRAS (G12V mutation), RAF1, and BAD pathways. These GFRN signatures 

were generated by performing sequencing on RNA collected from primary human 

mammary epithelial cells (HMECs) overexpressing HER2, IGF1R, AKT1, EGFR, KRAS 

(G12V), RAF1, or BAD for 18–36 h. These signatures capture early transcriptional 

events, which occur shortly after oncogene activation, and represent the transcriptional 

profile of pathway activation, and not of a transformed cell. 

 Using the pathway analysis toolkit Adaptive Signature Selection and InteGratioN 

(ASSIGN), the signatures were projected onto each breast cancer data set and uncovered 

two discrete patterns of GFRN activity (Shen et al., 2015). One pattern was characterized 

by concurrent activation of the HER2, IGF1R, and AKT pathways, and another was 
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characterized by concurrent activation of the EGFR, KRAS, RAF1, and BAD pathways. 

Typically, when one set of pathways was active, the other set was inactive, indicating that 

each sample tends to have a dominant GFRN phenotype. Pathways activation of HER2, 

IGF1R, and AKT was nicknamed the “survival phenotype” and activation of EGFR, 

KRAS, RAF1, and BAD as the “growth phenotype”. These names were chosen for 

simplicity and based on the known role of AKT signaling in cancer cell survival and the 

known role of EGFR/RAS signaling in cellular growth (Zhang, Liu, 2002, McCubrey et 

al., 2007). Importantly, genomic pathway activity corresponded to apoptotic phenotypes. 

The growth phenotype showed upregulation of anti-apoptotic protein MCL-1 and 

downregulation of pro-apoptotic protein BIM as a mechanism of escaping apoptosis. 

Additional subgroups were also identified within each phenotype, including HER2 high 

and HER2 low activity groups within the survival phenotype and BAD high and BAD 

low activity groups within the growth phenotype. These discrete subgroups displayed 

differences in response to targeted therapies and chemotherapies. Therefore, these 

phenotypes can serve as surrogates for GFRN activity that capture significant variability 

in the gene expression data, differentiate survival mechanisms, and correlate to drug 

response significantly. A major component of the heterogeneity found across tumor 

expression data was contributed by GFRN signaling and was independent of ER, PR, and 

HER2 status compared to intrinsic subtypes. Additionally, a unique aspect is that GFRN 

activity explained the data in a biologically meaningful way. For example, while intrinsic 

subtyping approaches are based on empirical patterns of gene expression and do not 

necessarily represent a biological process, the subgrouping approach represents aberrant 

activity in specific GFRN pathway signaling. Therefore, pathway-based phenotypes and 
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subgroups have the potential to complement existing methods and identify biologically 

and clinically relevant patterns in tumors. Taken together, pathway signatures not only 

aid in assessing general pathway activity patterns in a biologically relevant way, but also 

show promise to select better treatment targets for breast cancer patients. 

Methods 

Overexpression of genes of interest in human mammary epithelial cells 

 
Figure 3.2. Validation of protein overexpression for each GFRN signature. Protein lysates from human primary 
mammary epithelial cells (HMECs) overexpressing GFRN genes were compared to GFP control protein lysates using 
Western blotting. a. HMECs overexpressing AKT1 compared to GFP (GAPDH loading control) b. HMECs 
overexpressing BAD, compared to GFP (βtubulin loading control) c. HMECs overexpressing EGFR and pEGFR 
compared to GFP (GAPDH loading control) d. HMECs overexpressing HER2 and pHER2 compared to GFP (GAPDH 
and β-tubulin loading controls) e. HMECs overexpressing IGF1R and pIGF1R (GAPDH and β-tubulin loading 
controls) f. HMECs overexpressing pMEK compared to GFP (β-tubulin and GAPDH loading controls) g. HMECs 
overexpressing RAF1 compared to GFP controls (β-tubulin loading controls). 

In order to create gene expression signatures representative of pathway activation, 

GFRN oncogenes were overexpressed in HMECs. HMECs from a non-cancer-related 

breast reduction surgery performed at the University of Utah were isolated and cultured 
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according to previously published protocols (Ian Freshney, Freshney, 2004). Cells were 

grown in serum-free mammary epithelial basal medium (MEBM) plus the addition of a 

“bullet kit” (Lonza) and supplemented with 5 mg/ml transferrin and 10-5 M isoproterenol 

at 5% CO2. Cells were brought to quiescence by growth in low serum conditions (0.25% 

MEBM + bullet kit, no EGF) for 36 hours. Cells were infected with recombinant 

adenovirus (at 500 MOI) expressing either human oncogenes AKT1, IGF1R, BAD, 

HER2, KRAS (G12V), and RAF1 or GFP control (Figure 3.2). Cells were incubated with 

virus for 18 hours except for KRAS (G12V), which was incubated for 36 hours. The 

adenoviral expression systems invoke transient gene expression changes, which allow us 

to capture the early transcriptional events of each oncogene, as opposed to the 

transcriptional profile of a transformed cell. Recombinant adenoviruses were amplified 

and concentrations were determined using previously published protocols (Luo et al., 

2007). All viruses were obtained from Vector Biolabs, except RAF1 (Cell Biolabs) and 

EGFR (gift from Duke University). 

Western blot analysis for expression of growth factor proteins in HMECs and apoptotic 

proteins in breast cancer cell lines 

Proteins from HMECs and the following cell lines were extracted: HCC3153, 

HCC1395, ZR75B, HCC1569, HCC2218, SKBR3, LY2, SUM52PE, ZR7530, 

MDAMB361, AU565, BT474, BT483, CAMA1, HCC1419, HCC1428, MCF7, 

MDAMB175, T47D, ZR751, HCC1954, JIMT1, BT549, HCC1143, HCC1806, 

HCC1937, HCC38, HCC70, HS578T, and MDAMB213 (Appendix A). To collect 

protein, cells were washed with PBS, scraped on ice into PBS, pelleted by centrifugation, 

lysed in lysis buffer for 15 minutes (50 mM Tris (pH 8.0), 140 mM NaCl, 5 mM EDTA, 
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1% TritionX-100, 0.1% SDS, protease cocktail (Sigma), phosphatase inhibitors cocktails 

2 and 3 (Sigma), and centrifuged at 13,000 × g for 15 minutes. Protein quantification of 

lysates was determined using a BCA assay (Pierce). Electrophoresis was performed on a 

8–12% Tris-HCl polyacrylamide gel (BioRad) for HMEC Western blots and 18% 

Criterion TGX Tris/Glycine gels (BioRad) for apoptotic protein western blots. Proteins 

were then transferred to a PVDF membrane using the iBlot® 2 Dry Blotting System 

(Thermo Fisher Scientific). Membranes were blocked for 1 hour with SuperBlock™ 

(Thermo Fisher Scientific) and probed with the following primary antibodies: AKT 

(#9272), pAKT (#13038), BAD (#9292), EGFR (#4267), pEGFR (#2234), HER2 

(#2165), pHER2 (#2244), IGF1R (#3027), pIGF1R (#3021), KRAS (sc-30), pMEK 

(#9154), p-cRAF (#9427), GAPDH (#5174), and β-tubulin (#2146). Of note, pAKT ran 

higher than expected due to AKT myristoylation. Breast cancer cell line lysates were 

probed with the following: MCL-1 (#5453), BIM (#2933), and B-actin (#3700). All 

antibodies were obtained from Cell Signaling Technology, besides KRAS, which was 

obtained from Santa Cruz. 

Dose response assay 

Cell lines were plated at 2000 cells per well in 384 well plates for 24 hours at 

37°C. Detailed information on the cell lines and their growth conditions is provided in 

(Appendix A). All cell lines were obtained from American Type Culture Collection 

(ATCC). Drugs were diluted to six doses in media containing 5% FBS (Gibco/Life 

technologies) and 1% anti–anti (Gibco/Life technologies). Erlotinib, trametinib, UMI-77, 

obatoclax, doxorubicin, and neratinib were purchased from Selleckchem, and 

bafilomycin and AKT1/2 inhibitor were from Sigma-Aldrich. Drugs were dissolved in 
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100% DMSO and stored at -80°C. Detailed information on drug doses is provided in 

Table 3.1. Cell viability and growth was measured using CellTiter-Glo (Promega) 72 

hours post-treatment. All treatment doses were performed in four replicates. The Drug 

Discovery Core Facility, a part of the Health Sciences Cores at the University of Utah, 

performed the dose response assay. EC50s (concentration of each drug that provides half 

of the maximum response) were determined and converted to drug sensitivity values 

defined as the negative log of the EC50s (-logEC50) (Table 3.2). EC50 values were 

calculated from dose response data by plotting in GraphPad Prism 4 and using the 

equation Y = 1/(1 + 10ˆ((logEC50 − X) × HillSlope)) with a variable slope (Y min = 0 and 

Y max = 1). 

Drug Company Stock 
Conc. Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 

Erlotinib Selleck 30 mM 100 um 30 uM 10 uM 3 uM 1 uM 0.3 uM 
Neratinib Selleck 1 mM 1 uM 0.1 uM 0.05 uM 0.01 uM 0.005 uM 0.001 uM 
UMI-77 Selleck 30 mM 30 uM 10 uM 3 uM 1 uM 0.3 uM 0.1 uM 

Bafilomycin Sigma-Aldrich 1 mM 5 uM 1 uM 0.5 uM 0.1 uM 0.05 uM 0.01 uM 
Doxorubicin Selleck 10 mM 3 uM 1 uM 0.3 uM 0.1 uM 0.03 uM 0.01 uM 
SigmaAKT Sigma-Alrich 10 mM 10 uM 3 uM 1 uM 0.3 uM 0.1 uM 0.03 uM 
Tramatinib Selleck 100 mM 30 uM 10 uM 3 uM 1 uM 0.3 uM 0.1 uM 
Obatoclax Selleck 5 mM 2.5 uM 1 uM 0.5 uM 0.2 uM 0.1 uM 0.05 uM 

Table 3.1. Drug dose information for the drug response assay. 

Cell Line 
Bafilomycin Doxorubicin Erlotinib Neratinib UMI.77 Obatoclax Sigma 

AKT 
Inhibitor 

Tramatinib 

HCC1143 6.940 5.993 6.113 4.461 5.390 5.951 4.365 4.181 
HCC1806 8.534 6.457 6.212 5.769 4.412 6.408 4.508 4.522 
HCC1937 5.042 5.751 4.553 3.901 4.866 5.910 4.654 3.102 

BT549 7.487 6.460 NA NA 5.220 5.796 4.413 NA 
HCC38 7.896 6.213 3.692 NA 3.018 6.404 3.192 2.051 
HS578T 6.275 6.026 3.853 1.410 5.298 6.389 4.579 NA 
AU565 8.411 6.965 6.426 8.410 5.769 6.828 6.257 4.694 

HCC1569 NA 5.287 4.408 NA 5.336 5.889 4.876 2.627 
MDAMB361 8.508 6.234 4.862 5.816 5.345 6.527 7.133 5.098 

SKBR3 7.796 5.716 4.538 6.897 NA 6.047 5.000 -10.117 
BT483 7.774 6.137 3.242 NA 5.289 6.980 NA 4.200 
MCF7 8.018 5.529 NA NA NA 6.271 4.976 NA 
T47D 8.362 6.116 4.846 3.997 5.632 6.829 5.572 NA 
ZR751 6.837 4.590 NA 5.677 2.412 6.093 4.687 6.770 
BT474 8.425 5.741 NA 7.317 0.381 5.669 4.802 3.537 

CAMA1 8.178 5.848 NA 2.451 4.740 6.507 4.985 -1.851 
HCC1395 7.593 6.375 5.083 3.059 5.914 7.391 6.616 6.324 
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HCC1419 7.904 5.523 4.524 7.210 4.002 5.849 4.906 NA 
ZR7530 7.504 5.443 5.953 7.943 5.830 6.306 4.790 4.185 

HCC1954 7.527 7.308 6.422 7.594 6.127 7.041 6.313 6.838 
HCC2218 10.000 NA 4.442 10.000 4.974 6.164 4.814 10.000 

HCC70 7.529 6.440 5.503 4.709 5.188 6.229 6.257 10.000 
JIMT1 8.569 6.261 5.206 4.822 4.981 6.145 4.201 4.852 

Table 3.2. -log(EC50) drug sensitivity values from the dose response assay. All concentration are in M. NA 
indicates that an EC50 value could not be determined. 

RNA preparation and RNA sequencing 

After transfection with adenovirus and Western blot validation, cells were 

pelleted, washed in PBS, and stored in RNAlater (Ambion). Cells were then DNase 

treated, and RNA was extracted using the RNeasy kit (Qiagen). RNA replicates were 

generated for each overexpressed gene: six each for AKT, BAD, IGF1R, and RAF1; five 

for HER2; and 12 for GFP control (Gene Expression Omnibus (GEO) accession 

GSE83083). Additionally, 9 replicates of each of KRAS and GFP control were generated 

(GEO accession GSE83083). The EGFR signature and its corresponding GFP control 

were previously generated with six replicates of each (GEO accession GSE59765). RNA 

concentration was determined with a Nanodrop (ND-1000). cDNA libraries were 

prepared from extracted RNA using the Illumina Stranded TruSeq protocol (Illumina). 

cDNA libraries were sequenced at Oregon Health and Sciences University using the 

Illumina HiSeq 2000 sequencing platform with six samples per lane. Single-end reads of 

101 base pairs were generated. 

Gene expression data processing, normalization, and datasets 

The Rsubread R package (version 1.14.2) was used to align and summarize RNA-

Seq reads to the UCSC hg19 reference genome and annotations (Liao, Smyth & Shi, 

2014, Liao, Smyth & Shi, 2013). All RNA-Seq data in this study, including HMEC 

overexpression data (GSE83083, GSE59765), TCGA breast cancer data (GSE62944), 
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and ICBP breast cancer RNA-Seq dataset (GSE48213), were processed and normalized 

using a pipeline that can be found at https://github.com/srp33/TCGA_RNASeq_Clinical 

(McCubrey et al., 2007, Johnson, Li & Rabinovic, 2007). 

Generation of gene expression signatures 

 
Figure 3.3. Gene expression signatures for key GFRN pathways generated by ASSIGN. a. AKT 20 gene signature, 
b. BAD 250 gene signature, c. EGFR 50 gene signature, d. HER2 10 gene signature, e. IGF1R 100 gene signature, f. 
KRAS (G12V) 200 gene signature, and g. RAF1 350 gene signature. The horizontal black bar indicates green 
fluorescent protein (GFP) overexpressing control samples, and the red bar indicates the overexpressed genes of interest 
(i.e., AKT1, BAD, EGFR, ERBB2 (HER2), IGF1R, KRAS (G12V), and RAF1, respectively) signature samples. 

Adaptive Signature Selection and InteGratioN (ASSIGN; version 1.9.1), a semi-

supervised pathway profiling toolkit, was used to generate gene expression signatures. A 

formal definition of the ASSIGN model and software implementation was reported 

previously (Shen et al., 2015). RNA-Seq data from HMECs overexpressing GFP control 

were compared to HMECs overexpressing AKT1, IGF1R, BAD, HER2, KRAS (G12V), 

RAF1, and EGFR. ASSIGN uses a Bayesian variable approach to select genes with the 
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highest weights and signal strengths, indicating differential expression. These genes 

represent oncogenic signatures (Figure 3.3). 

Gene set enrichment analysis on RNA-Seq signatures 

The R package Gene Set Variation Analysis for microarray and RNA-Seq data 

(GSVA; version 1.22.0), a non-parametric, unsupervised method for estimating variation 

of gene set enrichments in gene expression data, was used to perform this gene set 

enrichment analysis (Hänzelmann, Castelo & Guinney, 2013). GSVA was downloaded 

from Bioconductor (3.4) (Huber et al., 2015). RNA-Seq data from HMECs 

overexpressing GFP (control), AKT1, IGF1R, BAD, HER2, KRAS (G12V), RAF1, and 

EGFR was used as input for the GSVA algorithm. The following gene sets were used and 

downloaded from the Molecular Signatures Database (Liberzon et al., 2011). 1,320 gene 

sets from the C2: canonical pathways collection (c2.cp.v5.2.symbols.gmt) and 50 gene 

sets from the hallmarks collection (h.all.v5.2.symbols.gmt). The following GSVA 

parameters were used: minimum gene set size = 10, maximum gene set size = 500, 

verbose = TRUE, rnaseq = TRUE, and method = “ssgsea”. GSVA returns a matrix 

containing enrichment scores for each sample and gene. The R package limma (version 

3.30.2) was used to perform a differential expression analysis between each 

overexpressed gene sample and its respective GFP control sample (Ritchie et al., 2015). 

The full results from the gene set enrichment analysis can be found in (Rahman et al., 

2017). 
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Batch adjustment and estimation of pathway activity in ICBP and TCGA BRCA patient 

samples 

HMEC oncogenic signatures (training data) were applied to 55 ICBP breast 

cancer cells and 1,119 TCGA breast cancer patient gene expression datasets (test data) to 

estimate pathway activation status. To avoid confounding batch effects within and 

between the training and test data, the data were adjusted for batch effects. First, in order 

to visualize batch effects in the data a principal component analysis (PCA) was 

performed on the training (HMEC overexpression RNA-Seq) data. The training data were 

sequenced separately in three batches, and significant batch effects were observed. Batch 

effects were adjusted using the ComBat function from the R package sva (version 3.21.1) 

(Johnson, Li & Rabinovic, 2007, Leek et al., 2012). ComBat was run using the reference-

batch option, which adjusts the data to match an indicated batch. The sequencing batch 

containing AKT1, IGF1R, BAD, HER2, and RAF1 was selected as the reference batch. A 

model-matrix indicating which pathway was associated with each training replicate was 

also included. After the first batch adjustment, PCA was performed on the adjusted 

training data and the test data (ICBP breast cancer cell lines or TCGA breast tumors). 

Significant batch effects were identified between the training and test data and performed 

a second round of ComBat adjustment, using the training data as the reference batch. 

After the second batch adjustment, PCA was performed to confirm the resolution of the 

batch effect. Additionally, background baseline gene expression differences were 

adjusted between oncogenic signatures and test samples (ICBP cell lines and TCGA 

patient data) using ASSIGN’s adaptive background parameter. The variation in 

magnitude and direction of signature-relevant gene expression between oncogenic 
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signature training samples and test samples was adjusted using ASSIGN’s adaptive 

signature parameter. The model specification options for all analyses are listed in Table 

3.3. Default ASSIGN settings were used for all other parameters. 

Parameter Value 
adaptive_B TRUE 
adaptive_S TRUE 

mixture_beta FALSE 
S_zeroPrior FALSE 
sigma_sZero 0.05 

sigma_sNonZero 0.5 
iter 100,000 

burn_in 50,000 
Table 3.3. ASSIGN parameters used for all analyses. The default values were used for all other parameters. 

Optimization of single-pathway estimates in ICBP cell line and TCGA BRCA patient data 

To determine the optimum number of genes for each oncogenic signature, 

signatures with gene list lengths from 25 to 500 genes, in 25 gene increments, were 

generated using ASSIGN’s single pathway settings. By default, ASSIGN chooses gene 

lists that contain an equal number of genes that have increased or decreased expression 

with pathway activation. ASSIGN also allows a specific gene to be anchored in the 

signature, making sure that the gene is always included in the signature, even if it is not 

chosen during gene selection or if it is removed from the signature after Monte Carlo 

simulation. Anchor genes were chosen based on the oncogene overexpressed in each 

signature. Pathway predictions generated by ASSIGN are represented as values from zero 

to one. Values of zero represent no pathway activity and values of one represent high 

pathway activity. For all the signatures that passed internal leave-one-out cross-

validation, pathway estimates were included for further validation in proteomics, 

mutation, and gene expression. To determine optimal signature gene list lengths and 
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evaluate the robustness of the generated signatures, pathway activation estimates from 

ICBP and TCGA were correlated with proteins that reflect downstream pathway 

activation from corresponding ICBP and TCGA RPPA data as a measurement of protein 

quantity (Hennessy et al., 2010, Paweletz et al., 2001).  

 
Figure 3.4. GFRN gene expression signature validations in TCGA breast cancer data. Pathway activity estimate 
boxplots between the a. AKT pathway and b. BAD pathway between PI3KCA mutated and PI3KCA wild-type TCGA 
breast cancer samples (n=787). Any mutation in PI3KCA was considered pathogenic in this mutation analysis. c. HER2 
pathway activation estimates between HER+ and HER- patient TCGA samples (n=708). Pathway activation estimates 
for d. IGF1R, e. AKT, f. EGFR, and g. RAF1 between ‘high’, ‘intermediate’, and ‘low’ expressing samples in 1,119 
BRCA TCGA samples. Samples with 90 percentile or higher expression were considered ‘high’, 10 percentile or lower 
were considered ‘low’, and 10 to 90 percentile were considered ‘Intermediate’ expressing samples for AKT1, EGFR 
and RAF1. For IGF1R validation, samples with 80 percentile or higher IGF1R expression were considered ‘high’, 20 
percentile or lower was considered ‘low’, and 20 to 80 percentile expression were considered ‘Intermediate’ expressing 
samples. 
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Significant correlations were found between pathway activation estimates for all GFRN 

signatures and appropriate downstream pathway proteins (Farabaugh, Boone & Lee, 

2015, Corbit et al., 2003, Kolch et al., 1993, Matallanas et al., 2011) (Table 3.4). 

Mutation-based analysis was performed using t-tests between patient groups based on 

mutation status in oncogenic proteins. For example, TCGA mutation data were analyzed 

and higher AKT activation and lower BAD activation estimates were found in patients 

with PI3KCA mutations (Figure 3.4a, b) and higher HER2 pathway activation estimates 

were found in HER2-positive tumors (Figure 3.4c). In gene expression data, higher 

pathway activity for AKT, EGFR, IGF1R, and RAF1 in TCGA samples classified as 

“high” expressing using percentiles from TCGA RNA-Seq dataset for their respective 

genes AKT1, EGFR, IGF1R, and RAF1 were found (Figure 3.4d–g). Samples with 90th 

percentile or higher expression were considered “high”, 10th percentile or lower “low”, 

and 10th to 90th percentile “intermediate” expressing samples for AKT1, EGFR, and 

RAF1. For IGF1R validation, samples with 80th percentile or higher IGF1R expression 

were considered “high”, 20th percentile or lower “low”, and 20th to 80th percentile 

“intermediate” expressing samples. Finally, pairwise Spearman correlation values and 

calculated p-values between pathway predictions and corresponding TCGA reverse phase 

protein array (RPPA) data were used to determine which gene numbers gave the best 

correlations. The HER2 and AKT signatures performed better with fewer genes. 

Therefore, 5, 10, 15, and 20 gene signatures for HER2 and AKT were generated. 

Significant correlations were seen between pathway estimates and RPPA protein scores. 

For example, AKT pathway activation estimates were significantly correlated with AKT, 

PDK1, and phosphorylated-PDK1 protein levels in both ICBP and TCGA (p-values < 
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0.0001) samples. Due to the lack of proteins available to validate the BAD signature, 

negative correlations between BAD pathway estimates and AKT protein based on the 

knowledge that activation of AKT leads to BAD inhibition were used (Datta et al., 1997). 

The optimized gene list was the list that gave the best average correlation in the expected 

direction for the RPPA data correlated with each pathway in TCGA data and was 

significant both in ICBP and TCGA data, with an ICBP correlation of at least 0.3 and a 

maximum gene list length of 300 genes. Appendix B includes a gene list of optimum 

gene numbers determined for each signature. Scaled ASSIGN pathway activity 

predictions for each of the seven optimized pathways in TCGA and ICBP are available in 

(Rahman et al., 2017). 

Pathway Number 
of Genes Protein 

ICBP TCGA 
Cor. p-value Cor. p-value 

ATK 20 
Akt 0.576 2.03E-04 0.192 1.54E-07 

PDK1 0.574 2.14E-04 0.239 5.93E-11 
PDK1_pS241 0.535 6.50E-04 0.339 5.74E-21 

BAD 250 
Akt -0.456 4.33E-03 -0.150 4.43E-05 

PDK1 -0.605 8.14E-05 -0.313 4.37E-18 
PDK1_pS241 -0.518 1.02E-03 -0.232 2.23E-10 

EGFR 50 
EGFR 0.470 0.050 0.357 2.09E-23 

EGFR_pY1068 0.397 0.028 0.129 4.50E-04 
EGFR_pY1173 NA NA 0.155 2.44E-05 

HER2 10 
HER2 0.923 0.00E+00 0.376 1.61E-05 

HER2_pY1248 0.953 0.00E+00 0.356 1.37E-04 

IGF1R 100 

IRS1 NA NA 0.324 2.37E-19 
IGF1R 0.086 0.608 NA NA 
PDK1 0.569 2.45E-04 0.371 2.68E-25 

PDK1_pS241 0.509 1.26E-03 0.403 5.33E-30 

KRAS 
(G12V) 

200 

EGFR 0.423 8.57E-03 0.493 4.05E-46 
EGFR_pY1068 0.296 7.17E-02 0.089 1.60E-02 
EGFR_pY1173 NA NA 0.090 1.47E-02 

MEK1 NA NA 0.116 1.69E-03 

RAF 350 
MEK1 0.285 0.084 0.245 1.72E-11 

PKC.alpha 0.467 3.46E-03 0.396 6.36E-29 
PKC.alpha_pS657 0.462 3.83E-03 0.415 0.00E+00 

Table 3.4. Spearman correlations for protein correlations. Spearman correlations between pathway activation 
estimates and proteomics data for optimum selection in ICBP cell line and TCGA proteomics data. NA indicates that 
the value is not available. 
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Software implementation of pathway activity prediction with generated signatures 

The signatures presented here have been included in the latest version of the 

ASSIGN package (version 1.11.3) so that pathway activity prediction can be easily 

performed on other datasets. Because the gene list length can affect the results of 

ASSIGN analysis, the signatures can be used in their original form, or the gene list 

lengths can be optimized based on maximizing correlations between ASSIGN activity 

predictions and a set of variables, such as RPPA data. 

Determination of growth factor phenotypes in ICBP and TCGA 

Cell lines from ICBP, patient tumors from TCGA, and breast cancer cell lines for 

in vitro experiments were classified as either the survival or growth phenotype by 

calculating the mean of scaled pathway activation values for HER, IGF1R, and AKT for 

the survival phenotype and the mean of scaled pathway activation values for BAD, 

EGFR, KRAS, and RAF1 for the growth phenotype. Each sample was classified as either 

survival or growth phenotype based on which phenotype had the highest mean. 

Identification of additional drug response heterogeneity within growth factor phenotypes 

To classify samples into subgroups within the growth factor phenotypes that 

corresponded to high and low HER2 activity within the survival phenotype and high and 

low BAD activity within the growth phenotype, the R function kmeans was used to 

perform k-means clustering on the scaled pathway activity data for AKT, HER2, BAD, 

and EGFR pathways with four means and 100 random starts. After classifying samples, t-

tests were performed using the R function t.test on known HER2/AKT/PI3k/mTOR 

targeting drugs and EGFR/MEK targeting drugs from the drug response assay described 
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above between the cell lines identified as AKT/HER2 high and AKT/HER2 low, and 

between the cell lines identified as EGFR/BAD high and EGFR/BAD low. P-values were 

corrected using an FDR correction and identified drugs that showed a significantly 

different drug response among the growth factor subgroups. When determining how 

growth phenotypes and ER, PR, and HER2 status performed in assessing drug response, 

mean drug response across all available cell lines as the cutoff were used. Cell line drug 

sensitivity value above this cutoff was considered as “sensitive” and otherwise 

“resistant”. 

Statistical analyses 

The prcomp function from the stats R package was used to compute the principal 

components in TCGA breast cancer patient RNA-Seq data. The Spearman rank-based 

pairwise correlation method was used for all principal component-based correlations, 

pathway predictions, and protein correlations. The cor.test function from the stats R 

package was used to calculate p-values for each correlation (Hollander, Wolfe & 

Chicken, 2013, Best, Roberts, 1975). Student’s t-tests were used to find the differences in 

principal component values based on IHC-based subtypes and mutation status within 

GFRN phenotypes; pathway activity based on mutation status and drug; sensitivity 

differences based on pathway activity, and gene expression boxplots. The heatmap.2 

function from the ggplots R package and the Heatmap function from the 

ComplexHeatmap R package were used for generating pathway activity and pathway 

activity–drug response correlation heatmaps (Wickham, 2010, Gu, Eils & Schlesner, 

2016). The lm function from the stats R package was used to model principal component 

values in TCGA using clinical subtypes, intrinsic subtypes, and GFRN subgroups to 



 

 

59 

determine R2 values. Models were compared using the anova function from the stats 

package to determine significance of adding additional features to the models. All 

analyses were conducted in R and the code is available at 

https://github.com/mumtahena/GFRN_signatures (The R Core Team, 2014). 

Results 

Two dominant phenotypes in breast cancer patients and cell lines 

 Gene expression signatures were developed and validated for the following 

GFRN pathways: AKT, BAD, EGFR, HER2, IGF1R, KRAS (G12V mutation), and 

RAF1. Signatures were generated in normal human mammary epithelial cells (HMECs) 

by expressing these genes using recombinant adenoviruses. The control samples received 

green fluorescent protein (GFP) adenovirus. The overall goal of this approach was to 

capture the downstream transcriptional events specific for each expressed GFRN gene, or 

the gene expression signatures, and to use these signatures to estimate pathway activity in 

cell lines and patient samples. To determine if adenovirus infection led to pathway 

activation for each overexpressed gene, protein levels of gene products and their 

downstream targets were measured the using western blotting (Figure 3.2). Next, RNA-

Seq was performed on multiple replicates of HMECs overexpressing GFRN genes and 

GFP controls. These data were used to generate pathway-based gene expression 

signatures for each overexpressed gene using the previously published ASSIGN pathway 

profiling approach (Figure 3.3) (Shen et al., 2015). Briefly, ASSIGN prioritized genes 

that best discriminated GFP control samples from samples overexpressing GFRN genes 

to generate gene expression signatures. Next, ASSIGN was used to estimate the 

activation of each GFRN member (AKT, BAD, EGFR, HER2, IGF1R, KRAS (G12V), 
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and RAF1) in 1,119 breast cancer patient samples from TCGA and 55 samples from the 

ICBP panel of breast cancer cell lines. ASSIGN was used to measure highly correlated 

GFRN pathway activity more accurately in patient samples with signatures generated in 

HMECs since ASSIGN estimates correlated pathway activities robustly by adapting 

pathway signatures into specific disease context. The robustness of each pathway 

signature was validated with (1) leave-one-out cross-validation (LOOCV), (2) relevant 

reverse phase protein array (RPPA) scores, (3) gene expression data for the 

overexpressed oncogenes, and (4) mutation data (Figure 3.4). After validating the GFRN 

signatures, gene set enrichment analysis was performed to identify enriched signaling 

patterns within each signature (Rahman et al., 2017). 
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Figure 3.5. Analysis of pathway activity and intrinsic subtypes. in a. 1,119 TCGA breast cancer samples and b. 55 
ICBP breast cancer cell lines. HER2, IGF1R, and AKT and BAD, EGFR, KRAS (G12V), and RAF1 pathway activities 
reveal two distinct clusters that were negatively associated. GFRN characterization reveals a dichotomy in TCGA 
breast cancer patients, high BAD/EGFR/KRAS/RAF1 (growth phenotype; column color label shown in aquamarine) 
and high HER2/IGF1R/AKT (survival phenotype; column color label shown in coral). Subtypes determined by 
immunohistochemistry and intrinsic subtyping are shown on the right side row color labels. c. K-means clustering of 
TCGA samples identifies subsets of samples within the survival phenotype that have high HER2 activation and low 
HER2 activation, and subsets of samples within the growth phenotype that have high BAD activation and low BAD 
activation (shown in the left side row color labels). d. These clusters are also seen in ICBP 
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Figure 3.6. Pathway activity estimates between ER+ and ER- samples in breast cancer cell lines and patient 
data. a. 19 ER- breast cancer cell lines from ICBP, b. 32 ER+ breast cancer cell lines from ICBP. c. 230 ER- breast 
cancer patient samples from TCGA, and d. 785 ER+ breast cancer patient samples from TCGA. The growth phenotype 
is represented in aquamarine above the heat map, and the survival phenotype in coral. Subtypes determined by 
immunohistochemistry (ER, PR, and HER2), intrinsic subtyping, and PAM50, are label in the right side of the 
heatmap. 

Finally, unsupervised hierarchical clustering of the pathway activity estimates for 

all GFRN signatures in both ICBP cell lines and TCGA patient data resulted in a 
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dichotomous pattern (Figure 3.5a, b). The HER2, IGF1R, and AKT pathways formed a 

cluster, as did the remaining BAD, EGFR, KRAS, and RAF1 pathways (Figure 3.5a, b). 

There was some overlap between the two clusters, likely due to the known crosstalk and 

compensation that occurs between the PI3K and MAPK pathways (Mendoza, Er & 

Blenis, 2011). In general, however, when one set of pathways was high, the other set was 

low, which shows that samples expressed a dominant phenotype of GFRN activity. These 

results strongly suggest a pathway-level dichotomization of the GFRN, which is 

represented by two primary phenotypes: (1) activation of the HER2/IGF1R/AKT 

pathways or “survival phenotype”; (2) activation of the BAD/EGFR/KRAS/RAF1 

pathways or “growth phenotype.” 

 
Figure 3.7. Pathway activation estimates across clinical subtypes. (IHC-based, N=1012) in TCGA breast cancer 
data for a. the AKT pathway b. the BAD pathway c. the HER2 pathway d. the IGF1R pathway e. the EGFR pathway f. 
the RAF1 pathway g. the KRAS pathway. 
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Figure 3.8. Pathway activation estimates across intrinsic subtypes. (PAM50 based, N=510) in TCGA breast cancer 
data for a. the AKT pathway b. the BAD pathway c. the EGFR pathway d. the HER2 pathway e. the IGF1R pathway f. 
the KRAS pathway g. the RAF1 pathway estimates. 

After identifying the two main dichotomous GFRN phenotypes, these phenotypes 

were investigated for how they related to classic IHC-based subtypes, intrinsic subtypes, 

and additional heterogeneity present within each phenotype (Figure 3.5). To investigate if 

these phenotypes were independent of ER status, pathway activity estimates were 

clustered for ER+ and ER- samples separately for both ICBP and TCGA samples. The 

pathway activity bifurcation pattern, as represented by GFRN phenotypes, was consistent 

within ER+ and ER- samples, indicating GFRN phenotypes are partially independent of 

ER status (Figure 3.6). The variability between histological and intrinsic subtypes can 

also been seen in the heatmap sidebars for TCGA and ICBP data (Figure 3.5a–d), and in 
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boxplots of pathway activity estimates across clinical and intrinsic subtypes in TCGA 

(Figure 3.7 and Figure 3.8). Samples classified as the survival phenotype included 

samples from all histological and intrinsic subtypes. Of the 596 TCGA tumors from the 

survival phenotype, 84.74% were ER+, 72.99% were PR+, 18.12% were HER2+, and 

26.51%, 17.79%, 6.88%, and 0.34% were of luminal A, luminal B, HER2-enriched, and 

basal subtypes, respectively. For the growth phenotype (n = 523), even more 

heterogeneity in ER, PR, and HER2 status was observed (ER+, 53.54%; ER-, 37.67%; 

PR+, 46.85%; PR-, 43.98%; HER2+, 10.33%; HER2-, 56.41%; basal, 17.78%; Her2 

enriched, 3.06%; luminal A, 13.96%; and luminal B, 4.02%). Hence, clinical and intrinsic 

subtypes varied in each phenotype cluster, and the GFRN phenotypes provide additional 

information which complements existing breast cancer clinical and intrinsic subtypes in 

both patient and cell line data (Perou, 2010, Sørlie et al., 2001, Sotiriou et al., 2003, 

Perou, C. M. et al., 2000). 

HER2 activity differences were also observed within the survival phenotype, and 

differences in BAD activity within the growth phenotype. To further classify samples 

specifically on these differences, k-means clustering was performed on the AKT, BAD, 

EGFR, and HER2 pathway activity predictions in ICBP and TCGA. The four resulting 

clusters separated the survival phenotype into two subsets of samples that had either high 

or low HER2 activity, and the growth phenotype into two subsets of samples that had 

either high or low BAD activity. These patterns were observed in both TCGA and ICBP 

datasets (Figure 3.5c, d). Again, subtype plotted against these four subgroups as 

presented in the sidebars reveal there is additional heterogeneity within ER and PR status 

that is captured using GFRN subgroups. Of note, a survival analysis of the four 



 

 

66 

subgroups in TCGA did not show significant differences in survival (λ2 = 5.5, p-

value = 0.141; Figure 3.9). This indicates that these subgroups may not relate to survival 

directly. Instead, these subgroups discriminate aberrant pathway activity that may help 

select patient subgroups likely to respond to specific drugs targeting those pathways. 

GFRN phenotypes complement ER status and current subtyping methods, but are more 

biologically focused than current intrinsic subtypes and are useful in addition to current 

IHC-based subtypes. 

 
Figure 3.9. Survival analysis of the four subgroups in TCGA BRCA samples (N=1,119). (Kaplan-Meier survival 
analysis for the four identified subgroups using the Peto and Peto modification of Gehan-Wilcoxon test did not show 
significant differences across the subgroups (λ2=5.5, p=0.141). 

GFRN phenotypes and subgroups contribute to variation found in TCGA breast cancer 

gene expression data 

In order to determine if the GFRN phenotypes and subgroups contributed to 

heterogeneity in the breast cancer data using an unbiased approach, an unsupervised PCA 

was performed on 1,119 breast cancer RNA-Seq samples from TCGA. PCA is a 

dimension reduction method capable of identifying uncorrelated sources of variation 

within a dataset as principal components (PCs) (Pearson, 1901, Hotelling, 1933). The 
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first five PCs identified in this dataset represented the most significant amount of 

variability explaining 34.3% of the total variance. The remaining components, each 

accounting for less than 4% of the total variation, were not investigated due to their minor 

contribution to total variance. Of note, PC 1 was significantly associated with average 

gene expression of the samples (Spearman’s correlation -0.786, p-value < 0.0001), 

potentially reflecting technical and non-disease-related sample variation (Figure 3.10). 

However, PC 1 was included in analyses to demonstrate its performance. To explain 

variability as presented by PC values, currently used histological (ER, PR, and HER2) 

and intrinsic subtypes were compared to GFRN-based approaches. First, each 

classification approach was investigated if it explained variability in each PC. When 

comparing PC values, significant differences were found between ER+ and ER- samples 

and PR+ and PR- samples for PCs 1 through 5, between HER2+ and HER2- samples for 

PCs 3, 4, and 5, across intrinsic subtypes for PCs 1 through 5 (ANOVA, p-value < 

0.0001), between growth and survival phenotypes for PCs 2 through 5, and across four 

GFRN subgroups for PCs 1 through 5 (ANOVA p-value < 0.0001). These results indicate 

that significant variation underlying TCGA breast cancer data may be contributed from 

multiple sources, including GFRN phenotypes, subgroups, and histological and intrinsic 

subtypes. 
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Figure 3.10. Correlation between mean gene expression values for all samples and PC 1 values from breast cancer 
(BRCA) TCGA RNA sequencing samples (Spearman’s correlations: -0.786, p-value < 0.0001. 

Second, a linear modeling approach was used to model the first five PCs with 

GFRN subgroups, intrinsic subtypes (PAM50), and histological (ER, PR, and HER2) 

subtypes. Variance explained by each model was compared in terms of R2 values. We 

included 355 TCGA tumor samples for which all of these variables were available. ER 

(R2 = 0.56) and PR (R2 = 0.407) status explained a significant proportion of PC 2 but 

explained less than 10% of the total variability in the other PCs. HER2 status alone 

explained less than 4% of the variability for any of the PCs. Both GFRN subgroups, and 

intrinsic subtypes, explained additional variability in PCs 1–5. For all five PCs, adding 

the GFRN subgroups or intrinsic subtypes to clinical subtypes increased the R2 values of 

the model (p-value < 0.01 for all models tested). Specifically, adding GFRN subtypes to a 

model of PCs explained an additional 10–35% (p-value < 0.00001) of the variation when 

compared to a model of ER status alone while PAM50 explained only 4–20% of the 

variation. 

On a more granular level, GFRN subgroups explained an additional 13.5% (p-

value < 0.00001) of the variability for PC 2, which was not explained by ER status alone. 
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For PC 3, GFRN subtypes explained an additional 35% of the variation when compared 

to a model of ER status alone (ER R2, 0.052; ER+ GFRN subtype R2, 0.398; p-value < 

0.00001) and intrinsic subtypes only explained an additional 20% of the variation 

compared to the same model of ER status alone (ER+ intrinsic subtype R2, 0.254; p-value 

< 0.00001). Overall, the models that contained GFRN subgroups explained a larger 

percentage of the variance of PC 1, 3, and 4, and models that contained intrinsic 

subgroups explained a larger percentage of the variance of PCs 2 and 5. These significant 

R2 and p-values confirm the non-redundancy of GFRN subgroups in relation to 

commonly used clinical features in breast cancer. Additionally, GFRN subgroups explain 

additional variance in models of PCs 1, 3, and 4 compared to models containing intrinsic 

subgroups. 

 
Figure 3.11. Principal component analysis across TCGA breast tumors. Correlation heatmap between principal 
component (PC) values from PCs 1 through 5 and ASSIGN GFRN pathway estimates from TCGA breast cancer RNA-
Seq data. Red colors represent a positive correlation and blue colors represent a negative correlation. 

Next, the variability contributed by GFRN subgroups was investigated in relation 

to biological signals, or pathway activity in this case. PC values for PCs 1 through 5 were 

correlated with the GFRN pathway activation estimates from TCGA (Figure 3.11). 

Again, a striking bifurcated pattern was found in the correlations between pathway 
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activity and PCs in this independent variability analysis. PC 2 was positively correlated 

with EGFR, KRAS, RAF1, and BAD activation and negatively correlated with HER2, 

IGF1R, and AKT activation. Therefore, PC 2 is demonstrating characters of the growth 

phenotype. PCs 3 and 4 were positively correlated with HER2, IGF1R, and AKT 

activation and negatively correlated with EGFR, KRAS, RAF1, and BAD activation, thus 

representing growth phenotype characteristics (Figure 3.11). Both PC 1 and PC 5 were 

negatively correlated with EGFR and RAF1 activation but positively correlated with 

BAD activation. Since intrinsic subtypes are derived empirically without pointing to any 

specific biological phenomenon, a correlation to intrinsic subtypes could not be 

performed. 

In summary, these novel GFRN subgroups explained a significant amount of 

variability in TCGA RNA-Seq data. The GFRN subgroups described variation beyond 

ER, PR, and HER2 status in all cases, and beyond intrinsic subtypes for three out of five 

cases. These results suggest that variability in breast cancer data can be further explained 

in terms of the GFRN pathway activity. Therefore, GFRN subgroups can augment current 

breast cancer subtyping methods by encompassing additional heterogeneity not captured 

by traditional approaches. This pathway-based approach may further explain specific 

variation in terms of pathway activity, which may point to identifying therapeutic targets. 

Breast cancer growth phenotypes bifurcate in expression of mitochondrial apoptotic 

proteins 

Next, differences between the survival and growth phenotypes were examined at 

the biological level, specifically in terms of mitochondrial-mediated intrinsic apoptosis 

mechanisms. Although cytotoxic anticancer agents induce cell death through various 
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mechanisms, including intrinsic or extrinsic apoptosis, necrosis, autophagy, or mitotic 

catastrophe (Ricci, Zong, 2006, Fulda, Debatin, 2006), we focused on mitochondrial-

mediated intrinsic apoptosis mediated by BCL-2 family proteins for the following 

reasons. First, BCL-2 family members, which regulate the commitment to mitochondrial 

apoptosis by balancing pro-apoptotic proteins such as BAD and BIM, and anti-apoptotic 

proteins such as BCL-2 or MCL-1 (Czabotar et al., 2014), have been shown to contribute 

to the formation, progression, and therapeutic response in breast and other cancers (Vo, 

Letai, 2010, Williams, Cook, 2015). 

Second, particular GFRN signaling pathways, such as those found in the survival 

and growth phenotypes, have the potential to induce apoptosis resistance by 

dysregulating BCL-2 family proteins, suggesting that targeting GFRN members may lead 

to increased apoptosis (Datta et al., 1997, Franke et al., 2003, Townsend et al., 1998, 

Carpenter, Lo, 2013, Weston et al., 2003, Ley et al., 2003, Deng et al., 2007, Nalluri et 

al., 2015, Boucher et al., 2000, Booy, Henson & Gibson, 2011). Third, several 

therapeutic strategies targeting anti-apoptotic BCL-2 family members are currently under 

investigation; therefore, understanding which BCL-2 proteins each phenotype is 

expressing may provide insight into additional treatment strategies for breast cancer 

(Letai, 2008, Montero et al., 2015, Vogler, 2014, Hassan et al., 2014). 
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Figure 3.12. Survival and growth phenotypes differ in cell survival mechanisms. a. The heatmap represents scaled 
activation values across 20 breast cancer cell lines used in this analysis for each GFRN pathway. b. Western blot 
analysis for MCL-1, BIM, and B-actin control across 20 breast cancer cell lines of either the survival phenotype or 
growth phenotype. c., d. Boxplots between samples classified as the survival phenotype or growth phenotype for c 
MCL-1 gene expression (log2 (Transcript per million)) in TCGA data, d BIM gene expression (log2 (Transcript per 
million)) in TCGA and ICBP data, and protein expression (RPPA score) in TCGA data. Student t-tests were performed 
to determine significance. 

Here, Western blotting was used to investigate whether protein expression of 

particular BCL-2 family members differed in breast cancer cell lines classified as the 

survival or growth phenotypes (Figure 3.12). The pro-apoptotic protein BIM and anti-

apoptotic protein MCL-1 were probed across ten breast cancer cell lines of the survival 

phenotype (eight ER+, two ER-), and ten cell lines of the growth phenotype (ten ER-) 

(Appendix A). Higher levels of MCL-1 were found in cell lines of the growth phenotype, 

and higher levels of BIM were found in the survival phenotype (Figure 3.12b). To 

(A) (B)
Survival Phenotype
Growth Phenotype

(C) (D)
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determine if differences in MCL-1 and BIM protein expression between the survival and 

growth phenotypes were due to other properties, such as ER status, a Western blot assay 

was performed using cell lines with additional heterogeneity in ER status. Although 

limited by the number of ER+ cell lines of the growth phenotype, 12 cell lines belonging 

to the survival phenotype (five novel ER+, three ER+ repeats from previous assay, and 

four novel ER-) and seven cell lines from the growth phenotype (one novel ER+, two 

novel ER-, and four ER- repeats) were included. The protein expression of MCL-1 and 

BIM were not strictly dependent on the ER status (Figure 3.13). 

 
Figure 3.13. Independent western blot assay for MCL-1 and BIM proteins between breast cancer cell lines from 
the survival and growth phenotypes. Lysates from 12 cell lines from the survival phenotype (8 ER+ and 4 ER-) and 7 
cell lines from the growth phenotype (1 ER+ and 6 ER-) were probed for anti- and pro-apoptotic proteins, MCL-1 and 
BIM, and compared to β-actin (loading control). 

To understand if similar results could be found in patient tumors, the expression 

of BCL-2 family member genes was examined, and MCL-1 gene expression was found to 

be higher in the growth phenotype of TCGA patient tumors (n = 523) versus the survival 

phenotype (n = 596, p < 0.0001) (Figure 3.12c). These results were consistent with 
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previous studies showing that EGFR signaling can upregulate gene expression of MCL-1 

(Townsend et al., 1998, Nalluri et al., 2015, Boucher et al., 2000, Booy, Henson & 

Gibson, 2011). In addition to MCL-1 dysregulation, breast cancer cell lines of the growth 

phenotype expressed lower levels of the pro-apoptotic protein BIM (Figure 3.12d). In 

support of this assessment, lower levels of BIM (BCL2L11) gene expression were found 

in ICBP breast cancer cell lines (p = 0.0004) and TCGA tumors (p = 0.0002), and RPPA 

protein expression was lower in TCGA tumors (p < 0.0001) (Figure 3.12d). These results 

concur with literature showing that EGFR signaling through ERK activation can lead to 

repression of BIM (Weston et al., 2003, Ley et al., 2003, Deng et al., 2007). Also, the co-

occurrence of high MCL-1 levels and low BIM levels in the growth phenotype are likely 

due to MCL-1’s known ability to bind and neutralize BIM, which leads to prevention of 

apoptosis death effector activation (Vo, Letai, 2010, Wuillème-Toumi et al., 2007). In 

summary, these results show an interesting mitochondrial apoptotic pathway induction 

that is dependent on GFRN activity. Specifically, breast tumors classified as the growth 

phenotype may overexpress MCL-1 and inhibit BIM expression to achieve cell survival. 

These findings illustrate that breast cancer phenotypes, defined by activation of specific 

growth factor receptor pathways, express different apoptotic proteins and may resist 

apoptosis differently. 

GFRNs predict drug response in breast cancer 

Since there was a clear dichotomy in the GFRN signaling mechanisms between 

the survival and growth phenotypes, these phenotypes were investigated in relation to 

drug response in breast cancer cell lines. Pathway activation estimates were correlated 

with drug response data for 90 drugs from the ICBP breast cancer cell line panel. 



 

 

75 

Importantly, a consistent bifurcation pattern was observed for drug response in the cell 

line data that matched the observed pathway-level bifurcation. Specifically, cancer cells 

classified as expressing the survival phenotype were sensitive to therapies that target 

AKT, PI3K, HER2, and mTOR (Figure 3.14a). Additionally, these cell lines were more 

resistant to chemotherapies and targeted therapies that block EGFR and MEK. In 

contrast, cancer cells expressing the growth phenotype were sensitive to 

chemotherapeutics such as docetaxel, paclitaxel, and cisplatin. These cell lines were also 

sensitive to EGFR- and MEK-targeted therapies, but more resistant to AKT, PI3K, 

HER2, and mTOR inhibitors (Figure 3.14a). 

 
Figure 3.14. Growth factor receptor network phenotypes reflect dichotomous drug response in breast cancer cell 
lines. Colors correspond to scaled Spearman correlations between specific pathway activation estimates generated with 
ASSIGN and drug sensitivity (-logGI50) across a. 55 breast cancer cell lines from the ICBP panel and b. 23 breast 
cancer cell lines in an independent drug assay. Red represents positive correlation and blue represents negative 
correlation. Pathways cluster across the x-axis as AKT growth phenotype (coral color) and EGFR growth phenotype 
(green). Drug classes are represented along the y-axis: pink, HER2/AKT/PI3K/mTOR-targeted therapies; yellow, 
chemotherapies/BCL-2 targeting therapies; and blue, EGFR/MEK-targeted therapies. 

This dichotomy in drug response of the survival and growth phenotypes was 

further tested in an independent drug response assay. Eight drugs on a panel of 23 breast 

cancer cell lines were tested, and cell viability was tested upon drug treatment by 
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measuring ATP levels. Drugs included were obatoclax (BCL-2, BCL-XL, BCL-W, BAK 

inhibitor), UMI-77 (selective MCL-1 inhibitor), erlotinib (EGFR inhibitor), doxorubicin 

(topoisomerase II inhibitor), trametinib (MEK inhibitor), neratinib (pan-HER tyrosine 

kinase inhibitor), Sigma-Aldrich AKT1/2 inhibitor (dual AKT1/2 inhibitor), and 

bafilomycin (apoptosis inducer that inhibits PI3K/AKT signaling and autophagy 

inhibitor) at different doses (Table 3.1). Again, a discrete pattern was observed between 

the survival and growth phenotypes that translated to a bifurcated drug response pattern 

(Figure 3.14b). Responses to the chemotherapy (doxorubicin) and the EGFR pathway 

inhibitor (erlotinib) were high for the growth phenotype. In contrast, cancer cell lines 

classified as the survival phenotype responded well to drugs targeting components of the 

PI3K pathway, such as Sigma-Aldrich AKT1/2 inhibitor, neratinib, and bafilomycin. 

In addition to the bifurcation of GFRN and drug response, breast tumor cells of 

the growth phenotype showed a higher response to the specific MCL-1 inhibitor UMI-77 

(Figure 3.14b). This is consistent with the findings that samples within the growth 

phenotype have higher MCL-1 expression than the survival phenotype. Response to 

obatoclax could not be clearly distinguished based on these phenotypes, likely due to its 

nonspecific binding to pro-survival proteins, including BCL-2, BCL-XL, and MCL-1 

(Goard, Schimmer, 2013). Overall, the GFRN phenotype-based drug response predictions 

were validated in this independent drug response assay. Additionally, drug sensitivity of 

emerging therapies such as UMI-77, neratinib, and bafilomycin showed differences 

between the two phenotypes, further highlighting the close relationship between GFRN 

signaling activity and response to therapies directed at pathways in this network. 
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When GFRN phenotype subgroups were considered, several drugs in the ICBP 

drug response assay showed significantly different drug response profiles in the 

subgroups found in each GFRN phenotypic arm. For example, the PI3K and mTOR 

inhibitor GSK1059615 and HER2/EGFR-targeting drug lapatinib were more effective in 

cell lines within the survival phenotype showing higher HER2 activity (p = 0.009 and 

p < 0.000001, respectively; Figure 3.15a, b). Additionally, ICBP cell lines expressing the 

growth phenotype responded better to EGFR-targeting drugs AG1478 and gefitinib in the 

EGFR/BAD low cluster compared to the EGFR/BAD high cluster (p = 0.001 and 

p = 0.001, respectively; Figure 3.15c, d). 

 
Figure 3.15. Differential drug response identified in GFRN phenotype heterogeneity. Boxplots of –log(EC50) drug 
response data from four drugs in the drug assay that show a differential drug response within growth factor phenotypes. 
a. GSK1059615, a PI3K and mTOR inhibitor, caused an increase in response in samples within the survival phenotype 
classified as having high HER2 activity. b. Lapatinib, a HER2 inhibitor, stimulated a stronger response in samples 
within the survival phenotype with high HER2 activity. c. AG1478 and d. gefitinib, EGFR inhibitors, caused an 
increased response in samples within the growth phenotype classified as having low BAD activity. 
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To determine if this bifurcation pattern was independent of clinical and intrinsic 

subtyping approaches, the correlations between pathway activation and drug response for 

ER+ and ER- and HER+ and HER- ICBP cell lines were clustered separately. Again, cell 

lines with high AKT/IGF1R/HER activity, i.e., the survival phenotype, were more 

sensitive to HER2/AKT/PI3K-targeted drugs even within ER- and HER- cell lines 

(Figure 3.16) In ER+ and HER+ cell lines, many PI3K/AKT/HER2-targeting drugs are 

more effective in the survival phenotype, as expected. However, there was additional 

drug response heterogeneity within ER+ samples that is associated with variations in 

BAD and HER2 pathway activity. These subgroups are thus helpful to further classify 

samples for better drug response prediction. To assess drug response across ER, PR, and 

HER2 status and intrinsic subtypes, it was found that out of 90 drugs studied in ICBP 

only 13 (14.4%), 12 (13.3%), and 19 (21.1%) showed significant differences in drug 

response based on ER, PR, and HER2 status, respectively, but growth/survival 

phenotypes were significant for 27 (49%). As further evidence, while HER2 positive 

status is a biomarker for effective HER2-targeted therapy, drug sensitivity does not solely 

depend on HER2 status. For example, while HER2 status performs much better in 

differentiating lapatinib’s response than ER and PR status (p < 0.0001), some HER2- cell 

lines, such as HCC70 and 184A1, may respond to lapatinib. The subgroup analysis 

showed the survival/HER2 high subgroup to be more sensitive to lapatinib than any other 

subgroup (Figure 3.15b). In contrast, intrinsic subgroup analysis showed, in general, that 

the luminal subtype was more sensitive, but significant variability in lapatinib sensitivity 

exists within the luminal subtype. Other detailed examples describing comparisons 

between the GFRN phenotypes and other methods are included in Figure 3.15. In 
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conclusion, the GFRN phenotypes provide additional information to current approaches; 

GFRN phenotypes and subgroups could be used to further stratify samples and may help 

select more appropriate candidates for effective drug response. 

 
Figure 3.16. Correlations between pathway activation estimates and drug response values between ER+ and ER- 
and between HER+ and HER2- samples in breast cancer cell lines. Colors correspond to scaled Spearman 
correlations between specific pathway activation estimates generated with ASSIGN and drug sensitivity (-logGI50) 
across a. 18 ER+ breast cancer cell lines, b. 32 ER- breast cancer cell lines from the ICBP panel, c. 18 HER2+ breast 
cancer cell lines, and d. 32 HER2- breast cancer cell lines from the ICBP panel. Red represents positive correlation and 
blue represents negative correlation. Pathways cluster across the x-axis as (coral color) survival phenotype and (green) 
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growth phenotype. Drug classes are represented along the y-axis as pink (HER2/AKT/PI3K/mTOR targeted-therapies), 
yellow (chemotherapies/BCL-2 targeting therapies), and blue (EGFR/MEK targeted-therapies). 

Discussion 

 
Figure 3.17. Summary of the survival and growth phenotypes in breast cancer. The survival phenotype is 
characterized by high HER2, IGF1R, and AKT pathway activation, high expression of pro-apoptotic BIM, low 
expression of anti-apoptotic MCL-1, and response to HER2, AKT, PI3K, and mTOR inhibitors. The growth phenotype 
is characterized by high EGFR, KRAS, and RAF1 activation, high expression of MCL-1, low expression of BIM, and 
response to EGFR/MEK-targeted therapies and chemotherapies. 

 Targeted therapies directed against the key members of the growth factor receptor 

network (GFRN), such as EGFR, PI3K, AKT, and mTOR inhibitors, are currently in 

preclinical development, clinical trials, or approved for use in breast cancer (Paplomata, 

O'Regan, 2014). However, predicting patients’ responses to therapies is challenging due 

to difficulties in measuring complex signaling events in tumors. Here, this issue was 

addressed by investigating global GFRN activity in breast cancer using these novel 

signatures. Two discrete patterns of GFRN pathway activity, or phenotypes, were found 
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(Figure 3.17). The survival phenotype was characterized by the activation of the HER2, 

AKT, and IGF1R pathways, and the growth phenotype by the activation of the EGFR, 

KRAS, RAF1, and BAD pathways. Additional subgroups were also found within the 

survival and growth phenotypes, including HER2 high and low activity groups within the 

survival phenotype and BAD high and low activity groups within the growth phenotype. 

Although these discrete phenotypes were named the survival and growth phenotypes for 

simplicity, GFRN pathways comprising both groups can contribute to growth and 

survival. To the best of our knowledge, this is the first study to characterize GFRN 

activity using signature-based representations of activity across multiple pathways. 

 These discrete subgroups displayed differences in response to targeted therapies 

and chemotherapies in breast cancer cell lines. For example, conventional 

chemotherapies such as docetaxel, paclitaxel, and doxorubicin were more effective for 

the growth phenotype than the survival phenotype. Sensitivity to PI3K, HER2, AKT, and 

mTOR inhibitors and resistance to conventional chemotherapies were also found in the 

survival phenotype. Among the subgroups, the survival phenotype/high HER2 subgroup 

was hypersensitive to lapatinib, a HER2 and EGFR dual inhibitor. Similarly, the survival 

phenotype/high HER2 subgroup was more sensitive to GSK1059615, a PI3K/mTOR 

inhibitor than the survival phenotype/low HER2 subgroup. Cell lines of the growth 

phenotype responded better to EGFR and MEK inhibitors and to conventional 

chemotherapies. The growth phenotype/low BAD subtype was more sensitive to both 

AG1478 and gefitinib (EGFR inhibitors) than the growth phenotype/high BAD subtype. 

Overall, the GFRN pathway-based phenotyping contributed to information related to 

drug response. 
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 Analysis of these novel phenotypes in breast cancer cell lines and tumors also 

revealed interesting differences in intrinsic apoptosis. For example, breast cancer cell 

lines and tumors of the growth phenotype had higher levels of the anti-apoptotic protein 

MCL-1 and lower levels of the critical pro-apoptotic protein BIM. These results are 

consistent with the notion that the MAPK pathway can activate MCL-1 expression and 

that activation of ERK1/2 and the MAPK pathway can repress BIM (Townsend et al., 

1998, Weston et al., 2003, Ley et al., 2003, Deng et al., 2007). An independent drug 

assay also showed that the growth phenotypic cell lines responded better to a MCL-1 

inhibitor (UMI-77). These results suggest that the patients with growth phenotypic 

expression may benefit from treatments that increase BIM, i.e., MCL-1 inhibitors, in 

combination with chemotherapies, EGFR inhibitors, or other inhibitors of the MAPK 

pathway (Akiyama, Dass & Choong, 2009, Faber et al., 2011). Therefore, targeting 

GFRN members may be an effective therapeutic strategy for inhibiting GFRN pathways 

and increasing apoptosis (Letai, 2008). These results highlight that mapping phenotypes, 

such as growth networks in breast tumors, can be exploited to guide the use of targeted 

therapies. This study was limited to how GFRN activity related to drug response and 

cellular intrinsic apoptosis, but it is understood that this is not the sole mechanism by 

which cancer cells die, and other cell death mechanisms, such as necrosis, autophagy, and 

mitotic catastrophe, should also be considered. In addition, as the use of cell lines is 

limited, a larger-scale analysis of apoptotic pathways dysregulation in patient tumor cells 

of all subtypes will be informative in further detailing how these pathways signal in 

cancer. These phenotypes may correlate with other subtyping properties, and may also be 

confounded by properties of intrinsic subtyping. 
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 Importantly, these newly discovered breast cancer survival and growth 

phenotypes are biologically relevant and offer a direct method for probing and targeting 

the GFRN in breast tumors. In addition, these phenotypes complement widely used 

clinical and intrinsic subtypes, and stratification of cancers by these phenotypes leads to 

enhanced drug response predictions compared to classifying cancers by clinical subtyping 

approaches. This is most likely because oncogenic pathway activation was measured 

more comprehensively than relying on single protein measurements. In addition, this 

approach considers crosstalk between members of the GFRN and correlates with 

biological processes such as cell survival. This pathway-based approach for identifying 

phenotypes allows for exploration of additional heterogeneity occurring within the 

identified phenotypes, which can further improve the ability to stratify breast cancers by 

pathway activity, which then can be used to predict drug response. Although this method 

has added to current approaches for predicting drug response in breast cancer, most 

experiments were performed in breast cancer cell lines with particular classes of drugs; 

additional drug testing should be performed in breast cancer patient cells in order to 

confirm these phenotypes. 

 In summary, a novel genomic pathway-based approach of characterizing the 

interactive GFRN activation in breast cancer was used to discover two discrete GFRN 

phenotypes with significant differences in cell survival mechanisms and drug response in 

breast cancer. These phenotypes captured the distinct bifurcation pattern seen in gene 

expression, the GFRN pathway activity, mitochondrial apoptotic network protein 

expression, and drug response (Figure 3.17). While ER, PR, HER2 status and, more 

recently, intrinsic subtype are used to guide breast cancer treatment, these subtyping or 
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classifying approaches may not describe signaling pathway dysregulation in tumor cells. 

Pathway activity data provide additional information about tumor cells that can be 

leveraged to predict drug response. Characterizing individual tumors into these 

phenotypes can help determine which patients will benefit from a treatment and select the 

appropriate subpopulations for clinical trials. Importantly, these seven pathways did not 

capture all of the heterogeneity of the samples and inclusion of other pathways may have 

additional benefits. Although feasible, additional investigation is needed before these 

phenotypes can be used in clinical trials for patient selection, including the testing of 

these phenotypes in patient primary tumor cells. 

Conclusion 

 A discriminating bifurcation pattern of key GFRN pathways was identified in 

breast tumors that expands beyond histological and clinical subtypes. These phenotypes 

correlated with unique apoptotic and drug response mechanisms. The ability to measure 

signaling events more accurately in patient tumors advances understanding of the 

biological basis of cancer. These results may lead to more effective and individualized 

treatment selection in patients with breast cancer. 

Acknowledgments 

 We thank Laurie Jackson for generation of gene expression data and Bai Luo for 

assisting with the drug response assay. 

Funding 

 MR was funded in part by a National Library of Medicine training fellowship 

(T15LM007124). AHB, WEJ, DFJ, SMM, LH, and JG were funded by (U01CA164720). 



 

 

85 

Availability of Data and Materials 

 The datasets supporting the conclusions of this article and instructions for how to 

download them are available in the GitHub repository titled “GRFN_signatures” found at 

https://github.com/mumtahena/GFRN_signatures. Gene expression signatures can be 

found at the GEO under accessions GSE83083 and GSE59765. 

Author Contributions 

 AHB and WEJ conceived of the study; AHB, WEJ, MR, JWG, LH, and SMM 

designed the study; SRP set up the initial bioinformatics pipeline; MR, SMM, DFJ, and 

SRP performed bioinformatics and data analysis; SM, GS, SWR, and JAM performed the 

experimental work. MR, SM, DFJ, AHB, and WEJ wrote the manuscript; SRP, JAM, 

SWR, LWG, and JG provided crucial manuscript feedback and suggestions. All authors 

read and approved the final manuscript. 

Competing Interests 

 The authors declare that they have no competing interests. 

Ethics Approval and Consent to Participate 

 All research involving human samples has been approved by the University of 

Utah Institutional Review Board. All research conformed to principles of the declaration 

of Helsinki. With informed consent, breast tissue samples were collected from patients at 

the University of Utah at time of surgery for Human Mammary Epithelial Cell 

preparations.



 

 

86 

Chapter 4. Pathway signature profiling of tuberculosis RNA-Seq data 

Introduction 

 Tuberculosis (TB) is an infectious disease that is among the top ten causes of 

death worldwide (World Health Organization, 2016). Active TB disease is treated with a 

6 to 9 month course of antibiotics (Dorman, Chaisson, 2007). In India, the treatment 

success rate for new and relapse patients in 2016 was 69% (World Health Organization, 

2016). Predicting and understanding why some patients eventually fail TB treatment 

could help personalize TB treatment and improve treatment outcomes. 

Previously, gene expression biomarkers have been developed to detect patients 

with active TB disease, patients that are at risk of TB treatment failure, or patients that 

have a latent TB infection that is likely to progress to active TB disease (Zak et al., 2016, 

Bloom et al., 2013, Suliman et al., 2018, Thompson et al., 2017, Leong et al., 2018). 

Gene lists can be analyzed using tools such as Gene Set Variation Analysis (GSVA), 

Single Sample Gene Set Enrichment analysis (ssGSEA), or Adaptive Signature Selection 

and Integration (ASSIGN) to create a single score that represents the activity of the set of 

genes, which can then be used as a predictor (Hänzelmann, Castelo & Guinney, 2013, 

Shen et al., 2015, Barbie et al., 2009). These gene signature scores can also be used to 

stratify samples into groups that show similar TB signature activity. These groups can be 

used to understand the heterogeneous response to TB and help identify the pathways and 

underlying biology of TB disease progression. 

To assist researchers in applying a large set of TB signatures to available datasets, 

a set of 30 previously published signatures of TB disease was collected. This set of 

signatures has been included in the TB Signature Profiler, a novel R package that allows 
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users to quickly and easily perform pathway enrichment analysis using a set of signatures 

and multiple methods in an easy to use analysis framework for profiling and visualizing 

these pathways using simple, user friendly R functions. 

The TB Signature Profiler was applied to a novel TB dataset to understand gene 

expression differences between TB patients who successfully cleared active TB disease 

and those who failed treatment. Samples from TB patients were collected and monitored 

over time. After the course of treatment, baseline samples from patients that successfully 

treated TB and those that failed treatment were sequenced. Additionally, samples from 

treatment failure patients were also sequenced at a two-month mid-treatment timepoint. 

Decreased predicted TB pathway activity was observed in the month two treatment 

failure samples when compared to baseline samples. Additionally, treatment failure 

samples from patients that reported missed treatment doses showed higher TB signature 

activity when compared to patients that reported adherence to the prescribed treatment. 

No previously published signature was able to accurately predict treatment failure at 

baseline, and no significant differentially expressed genes that could stratify treatment 

failure samples were found. These results serve as an example of the kind of analysis that 

can be performed using the TB Signature Profiler. 

Methods 

Sample Processing and Sequencing 

Patients with active TB were monitored over the course of TB treatment. Samples 

were collected at baseline, and at two-month timepoints. After treatment, subjects were 

categorized as either control (successful TB treatment) or failure (TB treatment failure). 

RNA sequencing libraries were prepared for samples from 21 baseline control samples, 



 

 

88 

20 baseline failure samples, and 20 month two failure samples. Multiplex Illumina 

sequencing was performed on the samples using 100 base pair paired end reads to yield 

an average of 37 million read pairs per sample. 

RNA-Seq Data Analysis 

Quality control was performed on the raw sequencing FASTQ read files using 

FastQC and MultiQC (Babraham Bioinformatics, 2011, Ewels et al., 2016). Reads were 

aligned to the human reference genome (hg19) using Rsubread, version 1.30.5 (Liao, 

Smyth & Shi, 2013). Samples had an average alignment percentage of 82% (range 62-

89%). Read counts for each gene were calculated using the featureCounts() function 

from the Rsubread package and gene annotations from the UCSC refGene database 

(Karolchik et al., 2004). An average of 70% of the reads were successfully assigned to a 

gene (range 55-75%). The count matrix was normalized and scaled by calculating 

fragments per kilobase of transcript per million mapped reads (FPKM) and transcripts per 

million (TPM) values. Normalized values were log transformed for downstream analysis. 

The count matrix, normalized matrices, and annotation information were loaded into R 

and stored in a SummarizedExperiment object for downstream analysis (Huber et al., 

2015). To check for obvious outlier samples, random subsets of genes were visualized 

using a heatmap. One baseline failure sample showed consistently anomalous expression 

that could not be corrected and was excluded as an outlier. 

For additional analysis comparing the failure data to LTBI samples, the failure 

dataset was combined with the India TB vs. LTBI RNA-Seq dataset available from GEO 

at GSE101705 (Leong et al., 2018). Log normalized TPM values were combined and 
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batch correction using ComBat was performed to remove the sequencing batch effect 

between the two datasets (Johnson, Li & Rabinovic, 2007). 

Collection of Published TB Signatures 

 
Figure 4.1. Overlap of genes in the TB signature cohort listed in 5 or more signatures. Of the 1,392 unique genes 
in the 30 signatures, 37 are listed in 5 or more signatures. The majority of these signature genes are contained in the 
large Esmail 893 gene, Berry 393 gene, and Blankley 380 gene signatures. 

A set of previously published gene signatures of TB disease and TB disease 

progression were collected. Signatures designed to distinguish TB disease vs LTBI or 

healthy samples include the 16 gene “ACS_COR” signature (Zak et al., 2016), the 393 

gene Berry signature (Berry et al., 2010), the 380 gene Blankley signature (Blankley et 

al., 2016), the 893 gene Esmail signature (Esmail et al., 2018), the 3 gene Jacobsen 

signature (Jacobsen et al., 2007), the 27 gene Kaforou signature (Kaforou et al., 2013), 
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the 4 gene Lee signature (Lee et al., 2016), the 4 gene Suliman “RISK4” signature 

(Suliman et al., 2018), the 51 gene Walter signature (Walter et al., 2016), and the 42 gene 

Anderson signature (Anderson et al., 2014). Signatures that distinguish TB disease vs 

LTBI or other diseases include the 51 gene Anderson signature (Anderson et al., 2014), 

the 86 gene Berry signature (Berry et al., 2010), the 140 gene Bloom signature (Bloom et 

al., 2013), the 53 gene Kaforou signature (Kaforou et al., 2013), the 44 gene Kaforou 

signature (Kaforou et al., 2013), the 100 gene Maertzdorf signature (Maertzdorf et al., 

2012), the 4 gene Maertzdorf signature (Maertzdorf et al., 2016), the 4 gene Roe 

signature (Roe et al. 2016), the 20 gene Singhania signature (Singhania et al., 2018), and 

the 3 gene Sweeney “DIAG3” signature (Sweeney et al., 2016). The Blankley 5 gene 

signature distinguishes active TB disease from healthy, LTBI, or post treatment samples 

(Blankley et al., 2016). The 9 gene “DISEASE” signature, the 13 gene “FAILURE” 

signature, and the 5 gene “RESPONSE5” signature predict treatment failure and response 

to treatment (Thompson et al., 2017). The 203 gene and 82 gene Esmail signatures were 

designed to distinguish subclinical TB disease and LTBI (Esmail et al., 2018). The 10 

gene Sambarey signature identifies TB disease from LTBI samples in the context of HIV 

infection (Sambarey et al., 2017). The 2 gene Sloot signature predicts TB disease 

progression in the context of HIV (Sloot et al., 2015). Finally, the 47 gene and 119 gene 

Walter signatures identify TB disease in the context of Pneumonia (Walter et al., 2016). 

All signature gene lists were compared to the gene annotations in the UCSC hg19 human 

reference genome. Signature genes that did not have a corresponding gene included in the 

hg19 gene annotation or genes that mapped to duplicate gene annotations in hg19 were 

removed. The 30 signatures consist of 1,392 unique TB associated genes. The majority of 
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the genes (878, 63%) are listed in a single signature and 97.3% (1,355 genes) are listed in 

four or fewer signatures, with 37 (2.7%) genes listed in five or more signatures (Figure 

4.1). Genes that occur frequently in the signatures include FCGR1A, FCGR1B, GBP5, 

and GBP4 (in 12, 10, 10, and 10 of the signatures, respectively). 

Differential Expression Analysis 

Limma was used to identify differentially expressed genes in the baseline samples 

(Ritchie et al., 2015). Log transformed TPM values and the default limma parameters 

were used. An FDR corrected p-value of 0.05 was used to determine if a gene was 

differentially expressed between baseline control and baseline failure samples. Available 

covariates were added to the limma differential expression model to see if correcting for 

other sources of variation would produce differentially expressed genes. Smoking status, 

diabetes status, cough duration before treatment, random blood sugar, number of 

alcoholic drinks per day, age, sex, time to positive diagnosis, and smear result were each 

added to a limma model along with control vs. failure (limma model ~control_vs_failure 

+ covariate). DESeq2, another method for differential expression analysis, was performed 

to try to identify differentially expressed genes (Love, Huber & Anders, 2014). Raw 

count values and the default DESeq2 parameters were used. 

Gene Set Analysis 

Several methods were used to perform gene set enrichment analysis. Single 

sample GSEA (ssGSEA) is an extension to the GSEA algorithm that provides a gene set 

enrichment score for each sample in a dataset given a gene list (Barbie et al., 2009). This 

is accomplished by ranking genes by absolute expression and calculating an enrichment 
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score for the genes in the signature based on this ranking. (Barbie et al., 2009). Gene Set 

Variation Analysis (GSVA) calculates a similar statistic, but by first calculating an 

expression-level statistic using kernel estimation (Hänzelmann, Castelo & Guinney, 

2013). Adaptive Signature Selection and Integration (ASSIGN) calculates signature 

activity scores using a Bayesian estimation framework to adapt signature genes to the 

specific context of the tested samples (Shen et al., 2015). Methods for performing 

ssGSEA and GSVA are provided in the GSVA package available on Bioconductor 

(Huber et al., 2015). ASSIGN is available as a standalone package on Bioconductor 

(Shen et al., 2015). Gene Set Enrichment Analysis (GSEA) was used to create enrichment 

score plots of signatures in a ranked list of genes based on a given phenotype 

(Subramanian et al., 2005). 

Visualization 

The ComplexHeatmap R package was used to create an annotated heatmap of 

pathway signature activities (Gu, Eils & Schlesner, 2016). Each row of the heatmap 

represents a TB signature, and each column represents a sample. Pathway activity scores 

were scaled to highlight the differences in pathway activity across samples and 

hierarchical clustering was used to identify samples that showed similar patterns of 

expression. Annotation information was added to the top of the heatmap as a color bar. 

Boxplots of signature activity were created using the ggplot2 R package 

(Wickham, 2010). Pathway activity scores for each signature were grouped based on 

annotation information. 

The ComplexHeatmap R package was used to create annotated heatmaps of 

individual signature activity (Gu, Eils & Schlesner, 2016). Each row of the heatmap 
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represents a gene in the TB signature, and each column represents a sample. Gene 

expression was scaled to highlight expression differences between samples. Annotation 

information was added to the top of the heatmap. Below the annotation information, 

pathway activity scores were added. The plotROC package was used to calculate AUC 

values, confidence intervals, and create ROC curves (Sachs, 2017). 

Software Availability 

Methods for performing gene set analysis using ssGSEA, GSVA, and ASSIGN, 

and visualizing the results using boxplots and heatmaps of pathway activity predictions 

were packaged into the TB Signature Profiler R package. The software utilizes the 

SummarizedExperiment framework to store raw expression data, annotations, and results 

within a single object. Raw expression data is stored as a set of multiple matrices called 

assays that must contain identical dimensions. Along with the assay data the user can 

provide sample annotation and gene annotation data that can be stored in the colData and 

rowData slots of the SummarizedExperiment object, respectively (Huber et al., 2015). 

Users run the gene set analysis using the runTBsigProfiler() function providing an 

input SummarizedExperiment object, the assay to use for profiling, and the algorithms to 

use for gene set analysis. The results of this analysis are per sample gene set enrichment 

scores that are stored in the colData slot of the SummarizedExperiment object that is 

returned by the runTBsigProfiler() function. The resulting gene set enrichment results 

can be visualized as described above using the signatureHeatmap(), 

signatureBoxplot(), and signatureGeneHeatmap() functions. The software is 

available on GitHub https://github.com/compbiomed/TBSignatureProfiler. 
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Results 

Previously published TB signatures show decreased TB signature activity at month two in 

TB failure samples 

 
Figure 4.2. Scaled GSVA pathway activity scores for baseline failure, baseline control, and month two failure 
samples. GSVA pathway activity scores are elevated in baseline control and failure samples and appear to decrease in 
the month two samples. Month two samples that have elevated TB signature activity tend to be from patients that 
reported missing doses during treatment. 

Using the TB Signature Profiler, GSVA scores were produced for each sample 

(Figure 4.2). Since baseline samples come from patients with active TB disease, TB 

pathway activity scores are elevated in baseline samples. At month two, pathway activity 

scores in 12 of the 30 tested pathways show significantly decreased activity levels when 
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Kaforou_TB_vs_LTBI_27, ACS_COR_16, Anderson_TB_vs_other_LTBI_51, 

Berry_393, Jacobsen_3, and Suliman_RISK4). These decreased pathway activity scores 

could indicate an initial response to TB treatment, despite the fact that these patients 

eventually progress to treatment failure. 

 
Figure 4.3. Pathway activity scores from month two failure samples. Boxplots are split into adherent and non-
adherent groups based on the total number of missed doses reported on the DOTS card. Significant pathway activity 
differences are observed in 6 of the 30 tested pathways (FDR corrected p-value < 0.05), indicating that patients that 
adhere to the treatment protocol are showing decreased TB activity when compared to those that are non-adherent. 

In some month two samples, pathway activity levels have not decreased, causing 

these samples to cluster with the baseline samples with higher pathway activity levels. 

These elevated levels of TB pathway signaling tend to occur in patients that have missed 

doses in their treatment (as reported on the DOTS card), indicating that this difference 

could be due to patients not adhering to the treatment protocol. Significant differences 

between adherent and non-adherent patients were observed in 6 of the 30 pathways 

(Figure 4.3). If the non-adherent samples are removed, 16 of the 30 pathways identify a 
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significant difference between baseline and month 2 failure samples (FDR corrected p-

value < 0.05 in ACS_COR_16, Anderson_TB_vs_other_LTBI_51, Berry_393, 

Blankley_380, Blankley_5, Bloom_140, DISEASE_9, Jacobsen_3, 

Kaforou_TB_vs_LTBI_27, Kaforou_TB_vs_LTBI_other_53, Kaforou_TB_vs_other_44, 

Roe_4, Sambarey_10, Suliman_RISK4, Sweeney_DIAG3, and 

Walter_TB_vs_LTBI_51). 

 
Figure 4.4. Boxplot of ACS_COR signature scores in combined India failure and Leong et al. India datasets. 
LTBI samples show decreased pathway activity estimates for ACS_COR when compared to baseline TB and month 2 
failure non-adherent samples, but show similar pathway activity scores when compared to the month 2 adherent 
samples. 

To compare the adherent and non-adherent samples to additional Indian TB 

samples, the failure data was combined with a previously published dataset (Leong et al., 

2018). The Leong et al. dataset contains 28 samples with active TB disease and 16 LTBI 

samples, which have previously been shown to have differences in pathway activity 
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signatures. After combining this data with the India failure dataset and adjusting for batch 

effects using ComBat, GSVA was used to profile the samples using the ACS_COR 16 

gene signature. Baseline samples with active TB disease showed elevated ACS_COR 

signature scores when compared to the LTBI samples and the non-adherent month 2 

samples (Figure 4.4). Adherent month two samples show decreased ACS_COR signature 

scores similar to those of LTBI samples. 

Existing signatures of TB fail to distinguish TB treatment failures at baseline 

Signature AUC (95% CI) 
ACS_COR (16 gene) 0.543 (0.357-0.721) 

Anderson TB vs. LTBI (42 gene) 0.610 (0.431-0.776) 
Anderson TB vs. other/LTBI (51 gene) 0.507 (0.329-0.688) 

Berry (393 gene) 0.583 (0.402-0.760) 
Berry (86 gene) 0.576 (0.395-0.752) 

Blankley (380 gene) 0.679 (0.505-0.833) 
Blankley (5 gene) 0.543 (0.276-0.643) 
Bloom (140 gene) 0.648 (0.469-0.807) 

DISEASE (9 gene) 0.562 (0.381-0.736) 
Esmail subclinical (203 gene) 0.576 (0.393-0.752) 
Esmail subclinical (82 gene) 0.510 (0.305-0.679) 

Esmail TB vs LTBI (893 gene) 0.579 (0.395-0.748) 
FAILURE (13 gene) 0.548 (0.362-0.721) 

Jacobsen (3 gene) 0.643 (0.459-0.812) 
Kaforou TB vs LTBI (27 gene) 0.576 (0.393-0.750) 

Kaforou TB vs LTBI/other (53 gene) 0.550 (0.364-0.736) 
Kaforou TB vs other (44 gene) 0.614 (0.443-0.783) 

Lee (4 gene) 0.662 (0.476-0.833) 
Maertzdorf (100 gene) 0.543 (0.360-0.721) 

Maertzdorf (4 gene) 0.600 (0.417-0.771) 
RESPONSE5 (5 gene) 0.538 (0.355-0.717) 

Roe (4 gene) 0.521 (0.290-0.664) 
Sambarey (10 gene) 0.567 (0.381-0.741) 
Singhania (20 gene) 0.657 (0.486-0.817) 

Sloot (2 gene) 0.571 (0.388-0.743) 
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Suliman RISK4 (4 gene) 0.593 (0.405-0.769) 
Sweeney DIAG3 (3 gene) 0.552 (0.371-0.731) 

Walter TB vs LTBI (51 gene) 0.505 (0.317-0.676) 
Walter TB vs Pneumonia (47 gene) 0.514 (0.333-0.700) 

Walter TB vs Pneumonia/LTBI (119 gene) 0.555 (0.362-0.738) 
Table 4.1. AUC Values and 95% confidence intervals for pathway activity predictions using GSVA scores to 
predict failure samples. All existing signatures show poor predictive power for pathway failure. All 95% confidence 
intervals contain 0.5 with the exception of the Blankley 380 gene signature. 

 
Figure 4.5. ROC Curves of ACS_COR and FAILURE signatures in baseline samples. Previously published 
signatures of TB activity and treatment failure fail to distinguish TB samples vs controls at baseline in the India data. 
Left: ACS_COR AUC=0.543 (95% CI: 0.362-0.724). Right: FAILURE_13 AUC=0.548 (95% CI: 0.364-0.721). 

None of the GSVA scores for the 30 TB signatures show a significant difference 

in pathway activity levels at baseline (FDR corrected p-value > 0.6 for all pathways). 

When visualized using a heatmap, pathway activity levels at baseline do not separate by 

treatment failure vs control (Figure 4.2). The AUC values for all thirty signatures show 

poor predictive ability to distinguish the samples at baseline (Table 4.1). Previously, a 

thirteen gene signature of treatment failure was produced and shown, along with the 

ACS_COR signature, to accurately predict treatment failure in TB samples (Thompson et 
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al., 2017). At baseline, these genes fail to separate baseline failure and baseline control 

samples in this cohort (ACS_COR: AUC=0.543 (95% CI 0.357-0.721) Figure 4.5 left, 

FAILURE: AUC=0.548 (95% CI 0.362-0.721) Figure 4.5 right, Figure 4.6). To test if 

this failure signature was enriched in our treatment failure samples at baseline, a GSEA 

analysis was performed. The genes show no enrichment when compared to all genes 

ordered by their difference between control and failure samples (FDR corrected p-value > 

0.99 Figure 4.7). 

 
Figure 4.6. Heatmap of row scaled log(TPM) gene expression data for the FAILURE 13-gene signature in 
baseline India samples. Gene expression differences in the 13 gene signature do not separate failure and control 
samples. The top color bar indicates the subject type and the second color bar indicates the predicted pathway activity 
scores from GSVA from the FAILURE signature. The separation in this heatmap is not associated with sequencing 
batch or any other annotation information available for these samples. 

To confirm the pathway activity methods employed by the TB Signature Profiler 

can be used to effectively predict pathway activity differences using this signature, a 

reanalysis of the dataset in Thopmson et al. was performed. The Thompson et al. cohort 

contains samples from patients with active TB at several time points (baseline, day seven, 
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week 4, and week 24) that are categorized into groups of “Not Cured”, “Possibly Cured”, 

“Probably Cured”, and “Definitely Cured”. Baseline “Not Cured” samples (n=7) show a 

significantly lower failure signature score when compared to baseline “Definitely Cured” 

samples (n=71). To determine if the failure signature is an effective predictor of treatment 

failure at baseline in the Thompson et al. cohort, AUC values were calculated (Figure 4.8 

right, AUC=0.938, 95% confidence interval 0.865-0.988). 

 
Figure 4.7. GSEA enrichment of 13-gene failure signature on baseline samples using gene set enrichment 
analysis. Enrichment score indicates enrichment of the gene list of interest in all genes sorted by their difference 
between control and failure samples. FAILURE genes are not significantly enriched in up- or down- regulated genes 
(FDR corrected p-value > 0.99). 
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Figure 4.8. GSVA pathway activity scores for FAILURE signature in baseline Thompson et al. samples. a. 
Boxplot of GSVA pathway activity scores at baseline for not cured and definite cure samples. b. ROC curve for GSVA 
scores to predict treatment failure at baseline in the Thompson et al. cohort AUC=0.938 (95% CI: 0.865-0.988). 

To test if the FAILURE signature is overfit to the Thompson dataset, “Not Cured” 

and “Definite Cure” labels were randomly shuffled across the 78 baseline samples used 

to create the signature. Limma was used to identify 13 genes that best separate the two 

groups of samples using the shuffled labels. The GSVA score was then calculated for the 

shuffled labels and the AUC was calculated. This process was repeated 10,000 times. The 

median AUC of the iterations was 0.843 with 23.1% of the AUC values being 0.938 or 

higher, indicating this data produces a signature that is overfit. 

No significantly differentially expressed genes separated baseline controls and TB 

treatment failures 

Since none of the existing TB signatures effectively predicted TB treatment 

failure at baseline in the India cohort, differential expression analysis was performed to 

identify genes that showed significant differences in expression at baseline between 
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control and failure samples. Using limma, no genes were found to be significantly 

differentially expressed at a corrected p-value < 0.05. To ensure no additional sources of 

variability were affecting the analysis, covariates from available sample annotations were 

added to the limma model including smoking status, diabetes status, cough duration 

before treatment, random blood sugar, number of alcoholic drinks per day, age, sex, time 

to positive diagnosis, and smear result. Again, no genes reached a significance threshold 

p < 0.05 with any of the covariates added to the model. No differentially expressed genes 

at an FDR corrected p-value < 0.05 were identified. 

 
Figure 4.9. Differentially expressed genes at baseline as identified by DESeq2. Differential expression analysis 
using DESeq2 was performed on the baseline samples to identify genes that differentiate failure and control samples. 
Fourteen genes were identified using an FDR corrected p-value < 0.05 and a minimum absolute fold change of 2. When 
clustered using hierarchical clustering, these genes do not separate the data. 

To validate this result, DESeq2, another method for differential expression 

analysis, was performed to try to identify differentially expressed genes. 1,699 

differentially expressed genes were identified (FDR corrected p-value < 0.05). Of these 

1,699 genes, only 14 genes were found to be differentially expressed with a fold change 
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greater than two in either direction. When visualized, these significant genes failed to 

separate the differentially expressed genes, indicating that these genes do not represent a 

consistent potential biomarker for disease failure in the India cohort (Figure 4.9). 

Discussion 

 We have created the TB Signature Profiler, an R package for calculating and 

visualizing pathway activity scores using currently available tools including GSVA, 

ssGSEA, and ASSIGN. Because our package leverages the SummarizedExperiment 

framework, users can easily store their raw gene expression data, annotation information, 

and pathway activity scores together in a single R object, which can then be visualized. 

The signatureHeatmap() function can be used to plot a heatmap of pathway activity 

scores along with annotations (Figure 4.2). The signatureBoxplot() function can be 

used to create a boxplot of pathway activity scores based on a sample annotation (Figure 

4.3, Figure 4.8, left). Finally, the signatureGeneHeatmap() function can create a 

heatmap of an individual signature gene displaying gene expression values, annotation 

information, and pathway activity scores in a single plot (Figure 4.6). This tool allows 

researchers to profile a large set of previously described TB signatures automatically. 

Additionally, users can modify this list to subset the list of pathways to a specific set of 

interest, or add additional signatures as they become available. By visualizing these 

pathway activity scores together, users may identify additional heterogeneity that would 

not be visible using a single pathway activity prediction. 

 Using the TB signature profiler on our cohort of TB failure samples, we have 

identified a significant difference between baseline and month two failure samples, where 

the majority of the month two samples show a decrease in TB pathway activity scores. 
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This could indicate a response to treatment at two months in these samples, despite the 

fact that they will eventually go on to fail TB treatment. For samples that showed an 

elevated level of TB signature activity, these samples tended to be ones that reported 

missed doses during their treatment, which could indicate the utility of TB pathway 

signatures to help detect study adherence in TB cohorts, which could serve as a reliable 

biological check to ensure patients take their medications and that they are showing a 

response to treatment. Further, treatment adherence can have a confounding effect on 

pathway activity measurements and controlling for it could increase the predictive ability 

of TB biomarkers. 

 Using an existing signature of TB failure on our baseline samples, we failed to 

distinguish control samples from samples that eventually fail TB treatment. The 

previously published signature did not show enrichment in genes that show a difference 

in expression in the cohort, and appeared to be overfit in the dataset that was used to 

create it. Further, no previously published signature could be used to effectively predict 

TB treatment failure at baseline. 

 Differential expression analysis failed to identify a set of genes that reliably 

separate baseline control and failure samples in our dataset, despite controlling for 

various other possible sources of variation within the data. Samples appeared to cluster at 

random and any difference that was identified was minimal and not useful as a biomarker 

for TB failure. Although none of the available sample annotation information or 

sequencing batch information for these samples showed a significant association with the 

clustering, it cannot be ruled out that some unknown source of variation is masking true 

signal. 
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 To our knowledge, this is the largest set of previously published TB signatures 

that has been collected, and by using the TB Signature Profiler researchers will be able to 

leverage this set to profile their own datasets with minimum effort. Standardizing 

methods of pathway activity measurements will make the results of this analysis more 

consistent across studies and allow more direct comparisons between cohorts, leading to 

easier meta-analysis and new insights and better predictive and mechanistic insights into 

tuberculosis. 
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Chapter 5. Conclusion 

 The work presented in this dissertation represents a set of software tools and data 

resources that can be used across RNA-Seq technologies and disease areas to analyze and 

visualize RNA-Seq data. Specifically, novice users can use the SCTK to go from raw 

count data from scRNA-Seq experiments and perform common analysis and visualization 

methods interactively without writing any R code. This is the first time that a complete 

scRNA-Seq analysis workflow has been implemented in an easy to use point-and-click 

environment. The SCTK software framework is extendable and under active 

development, which will increase its utility with additional quality control visualizations, 

analysis techniques, and novel methods as they are developed. In the context of breast 

cancer, the set of novel growth factor receptor signatures that were created identify 

additional heterogeneity beyond currently available breast cancer subtyping through 

immunohistochemistry and showed differences in response to drug therapies. By directly 

profiling the biologically relevant pathways that can be targeted in breast cancer, the 

specific drivers of individual tumors can be identified, which could help stratify patients 

to give them the drugs that will target the specific oncogenic pathways driving their 

tumor. Finally, a pathway activity approach is also useful in tuberculosis, where existing 

pathway signatures can help stratify patient samples based on their pathway activity. By 

building the TB Signature Profiler, users can rapidly profile samples, compare the 

pathway predictions across multiple TB signatures, or develop new signatures to further 

stratify their samples, which could lead to a deeper understanding of the underlying 

pathway activity in latent tuberculosis infection or during active disease and improved 
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monitoring during TB treatment to ensure drug protocol adherence and ensure that drug 

therapy is working. 

 By creating software frameworks and data resources for scientists, the approaches 

developed here can be extended and expanded to address the changing needs of the RNA-

Seq analysis environment. In the case of the SCTK, additional analysis modules for cell 

type prediction, improved data handling, and support for larger and more complex 

datasets and meta-datasets can be developed within the existing SCTK framework. 

Additional pathway signatures targeting novel therapeutic targets and cell growth 

pathways will be developed using the methodologies developed to create the GFRN 

signatures. Finally, additional pathway targets can be profiled using the TB Signature 

Profiler framework, extending its utility beyond the 30 collected signatures. 

 Taken together, these tools represent a novel and widely applicable set of user-

friendly software tools and resources. These tools serve as a model of how analysis 

techniques can be packaged and be made available to users without a deep understanding 

of the underlying methodologies, but still allow users to perform sophisticated analyses 

using their own and public data resources, helping leverage these techniques across 

disease areas and address unmet diagnostic need.
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APPENDIX A: Cell lines used in the independent drug assay and the Western 

blotting experiments. 

Cell Line 
Dose 

Response 
Assay 

Western 
Blots for 
apoptotic 
proteins 

ER 
Status 

PR 
Status 

HER2 
Status 

Intrinsic 
Subtype Source Growth 

Media 

AU565 Y Y Negative Negative Positive HER2-
Luminal 

ATCC A 

BT549 Y Y Negative Negative Negative Claudin-
low 

ATCC B 

HCC1143 Y Y Negative Negative Negative Basal ATCC B 
HCC1395 N Y Negative Negative Negative Claudin-

low 
ATCC B 

HCC1419 Y Y Negative Negative Positive HER2-
Luminal 

ATCC B 

HCC1569 Y N Negative Negative Positive HER2-
Basal 

ATCC B 

HCC1806 Y Y Negative Negative Negative Basal ATCC B 
HCC1937 Y Y Negative Negative Negative Basal ATCC B 
HCC1954 Y Y Negative Negative Positive HER2-

Basal 
ATCC B 

HCC2218 Y Y Negative Negative Positive HER2-
Luminal 

ATCC B 

HCC3153 N Y Negative Negative Negative Basal Adi Gazdar 
(University 
of Texas-

Southweste
rn Medical 

Center) 

B 

HCC38 Y Y Negative Negative Negative Claudin-
low 

ATCC B 

HCC70 Y Y Negative Negative Negative Basal ATCC B 
Hs578T Y Y Negative Negative Negative Claudin-

low 
ATCC B 

JIMT1 Y Y Negative Negative Positive HER2-
Basal 

ATCC A 

MDAMB
231 

N Y Negative Negative Negative Claudin-
low 

ATCC B 

SKBR3 Y N Negative Negative Positive HER2-
Luminal 

ATCC B 

ZR75B N Y Negative Negative Negative Luminal Mark 
Lippman 
(National 
Cancer 

Institute) 

B 

21PT N Y Positive Unavaila
ble 

Unavaila
ble 

HER2-
Basal 

Ruth Sager 
(Dana–
Farber 
Cancer 

Institute) 

C 

BT474 Y Y Positive Positive Positive HER2-
Luminal 

ATCC A 

BT483 Y Y Positive Positive Negative Luminal ATCC B 
CAMA1 Y Y Positive Negative Negative Luminal ATCC A 

HCC1428 Y Y Positive Positive Negative Luminal ATCC B 
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LY2 N Y Positive Negative Negative Luminal Mark 
Lippman 
(National 
Cancer 

Institute) 

A 

MCF7 Y Y Positive Positive Negative Basal ATCC A 
MDAMB

175 
N Y Positive Negative Negative Unavailable ATCC B 

MDAMB
361 

Y N Positive Negative Positive HER2-
Luminal 

ATCC A 

SUM52P
E 

N Y Positive Negative Positive Luminal Asterand 
Bioscience 

D 

T47D Y Y Positive Positive Negative Luminal ATCC B 
ZR751 Y Y Positive Negative Negative Luminal ATCC B 

ZR7530 Y Y Positive Negative Positive HER2-
Luminal 

ATCC B 

 

Growth Media A: DMEM (Gibco), 10% FBS (Sigma), 1% Anti/Anti (Life Technologies) 
Growth Media B: RPMI (Gibco), 10% FBS (Sigma), 1% Anti/Anti (Life Technologies) 
Growth Media C: DMEM/F12 (Gibco), 5% FBS (Sigma), 10 ug/mL Insulin, 100 ng/mL Cholera Toxin, 20 ng/mL 
EGF, 500 ng/mL Hydrocortisone 
Growth Media D: F12 (Gibco), 5% FBS (Sigma), 5 μg/ml insulin, and 1 μg/ml hydrocortisone 
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APPENDIX B: Gene list of optimized gene numbers determined for each GFRN 

signature. 

20 Gene AKT Signature 

AKT1, CD248, IGFBP3, SPRR2A, CA9, BEX1, IGFBP5, EPGN, PPP1R3C, GRHL3, 

TNFAIP2, AKAP12, CTGF, ICAM1, LIF, CXCL3, DKK1, ITGB3, CXCL2, CXCL5 

250 Gene BAD Signature 

BAD, KLF2, LCE1F, RFC3, C8orf84, BOLA3, DLEU1, MRPS12, PTGES, SLC16A9, 

PIK3R3, COTL1, LINC00239, NOP16, OPCML, MPV17L2, NEK6, AIMP2, POLR3G, 

SRM, SPINK6, C19orf48, CKS2, PRMT3, SLC25A15, PAICS, PMM2, CYCS, C14orf1, 

DCTPP1, C20orf27, CDC20, NETO2, GBP6, LSM2, TFAP4, RBBP8, ISCA1, 

PRADC1, MYL9, ORC6, PYCRL, PLA2G7, C11orf82, SLC25A10, PPIF, MRPS2, 

LOC100506895, FAM216A, LOC100506844, TMEM241, CYB5B, NME4, UFSP1, 

RHOB, TIPIN, LINC00162, CHCHD8, OSR1, EGFLAM, CDK4, FLJ39051, NME1, 

NEFL, MBLAC2, FLJ42351, CMC2, ZNF593, LIX1L, SORD, RWDD2B, NIP7, RRM2, 

ALDH1B1, C3orf26, ALDH1L2, POLR3K, SSR3, PRPS1, RASSF6, RAD51AP1, 

TOMM5, PDK1, RPP40, RRS1, FAM198B, C21orf63, LOC100128881, RRP9, 

CHCHD3, FAM86EP, MRPL12, C11orf83, ZDHHC14, TMED2, SFRP1, SELRC1, 

GPATCH4, CT62, CLEC2D, PDSS1, GAPDH, THEM4, MMACHC, MT1G, 

LOC401397, MKI67IP, NPM1, TUBA1C, SNORD16, LYAR, POLR3H, LYRM4, 

RUVBL1, NCL, TOMM20, VIM, TUBA1B, CCNB1, CDT1, COQ2, DCLRE1B, PPAT, 

C11orf24, PEG10, HSPA6, HSPA7, HSPA1A, IL8, DNAJA4, HSPA1B, CCL20, 

FOXQ1, GDF15, CXCL5, CRYAB, IL17C, TNFAIP2, CFB, KRT23, CXCL2, SAA2, 



 

 

111 

ATF3, DLC1, FOS, NFKBIZ, MYO5C, PRSS22, ERRFI1, CXCL3, DUSP2, ATHL1, 

AKAP12, FOSB, LIF, INHBA, GABRE, CDRT1, CXCL6, EGR3, DUSP1, HSP90AA1, 

ZFAND2A, HMOX1, BMF, RRAD, GSDMB, BIRC3, GRB7, HSPH1, SLC34A2, LTF, 

FERMT3, SGPP2, GAB2, BAG3, KRT80, HSPB8, DNAJB4, LCN2, DEDD2, CXCL1, 

TNFRSF11B, DUSP6, MUM1L1, TIAM2, KLHL24, OLFM4, BCORL1, DFNB31, 

IFRD1, DAPK1, STARD13, ETS1, NFKBID, TLR2, PRDM1, LOC146880, IER5, IER3, 

DNER, SAA1, PNLDC1, GPRC5A, STON1, ZC3H12A, GSDMC, GM2A, PDZD2, 

MAFF, GDF6, SBSN, SEMA6C, DNAJC6, PPP1R15A, DUSP5, LIMCH1, CLDN4, 

RB1CC1, MGAT4A, NYNRIN, DNAJB1, PLEKHA6, FNIP2, ABCA1, PLA2G4C, 

ULK1, IL7R, ENGASE, C17orf103, SLC24A6, CNNM3, AGAP11, GLCCI1, CCL2, 

IL17RB, ABCG1, DDIT3, CACHD1, ABTB2, SATB1, INSR, TMEM2, TNFSF14, 

GCNT2, ARHGAP19, ZNF217, BRD3, CYLD, IL34 

50 Gene EGFR Signature 

EGR1, IFI6, MT2A, MMP3, MT1X, EGR3, DUSP6, CCNA1, GJB2, IFI27, S100A9, 

MT1G, LINC00525, IL7R, IFITM1, IL6R, OGFRL1, MT1E, DLL1, SYT12, LTF, 

WDHD1, SOCS3, MCM5, ODZ2, KRT4, KRT81, SPINK6, SAMD11, KRT86, WISP2, 

KRT85, ATOH8, HSPB3, MMP7, ALPP, IFITM10, CD24, PGF, DIO2, ID2, CRYAB, 

HSPB8, IGSF23, CLDN7, DLX3, MAOA, WNT7B, BCO2, EGFR 

10 Gene HER2 Signature 

ERBB2, PNMA2, PDGFB, EEF1A2, MIR3944, HSPA6, HSPA7, IFIT1, DNAJA4, 

CCL2 
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100 Gene IGF1R Signature 

IGF1R, BHLHA15, DDIT3, CHAC1, ZSCAN12P1, RND1, CRELD2, PDIA4, 

C12orf39, HSPA5, ZNF165, ATF3, HERPUD1, STC2, PTX3, FICD, CDC6, SLC7A11, 

C17orf28, IRF1, SDF2L1, DNAJB9, ANXA6, KLHDC7B, DDR2, ERO1LB, HYOU1, 

AGR2, CNTD2, SEL1L, HSP90B3P, ADM2, ASNS, HSP90B1, DERL3, CCL2, 

DNAJC3, PSAT1, MSTO2P, SH3BGR, ALDH1L2, TMEM50B, NUCB2, ICAM1, 

GDF15, SOCS3, PCK2, KIAA0226L, WARS, FBXO16, DNAJA4, HSPA6, HSPA1A, 

HSPA7, ACTBL2, CRYAB, HSPA1B, OXTR, CXCL6, HSP90AA1, ATHL1, HMOX1, 

DKK1, LCE1C, CDSN, ALDH1A3, OLFM4, PDK4, CLDN4, HSPB8, HSPB2, 

RAD23A, GM2A, HSPH1, C4orf26, HSPA8, DNAJA1, BMP4, BAMBI, SLIT2, 

HSD17B11, FAM101B, FKBP4, BID, GDF6, BCAS4, CACYBP, TTYH2, RASA3, 

C10orf10, MAP2K3, FLNC, FAM25A, BAG3, CCNE1, PCGF3, SRRM3, ADCK3, 

PLSCR4, ANKRD1 

200 Gene KRAS (G12V) Signature 

MAL, KRAS, LCE3D, DHRS9, LCE3E, NPTX1, IL1RL1, PRSS22, PRR9, DCLK1, 

AKAP12, S100A7, HAS2, FAM25A, PAPL, LOC100131726, DIO3, KLK6, AGPAT9, 

ARC, LY6D, NKD2, PAEP, DIRAS3, ANPEP, SPRR2D, CYB5R2, LCE1F, 

CEACAM1, STC1, HYAL1, SERPINB1, BMP6, AQP5, SPRR1A, FERMT1, TAGLN3, 

CA6, SCNN1D, LCE1C, TMEM45B, CALB2, SOX8, ANGPTL4, ASPRV1, SLC5A1, 

CEACAM6, TNFRSF11B, WNT9A, S100P, EEF1A2, ISG20, TRPV3, PLA2G4E, 

SRMS, PADI1, SH2D2A, GJB4, ADAM8, FAM83A, SULT2B1, CXCL3, CALB1, 

CNFN, EGR3, G0S2, HBEGF, SERPINB2, FOS, LCE1E, ANO1, APOBEC3A, 

KCNN4, LOC100505839, EGR1, RHCG, ODC1, RPSAP52, CYP4F22, EMP1, TGM2, 
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PNMA2, TMEM121, AGR2, SCNN1G, PAQR5, SSTR1, LOXL4, DUSP6, SYTL5, 

S100A1, ZBED2, WNT7B, ROBO4, NGEF, CCNA1, IVL, SOCS1, LIF, KRT18, 

HSPA1A, HSPA1B, HSPA7, DNAJA4, CCL26, CRYAB, BAG3, HSPB8, HSP90AA1, 

HSP90AA4P, DNAJB1, ATF3, OXTR, HSPH1, SH3BGR, DNAJB4, CCL2, ACTBL2, 

HMOX1, ZFAND2A, IL7R, CHAC1, ULBP1, DNAJA1, UBB, GLYATL2, UBC, 

CDRT1, EPSTI1, FAM49A, BST2, LOC100130238, HSPD1, HSPA8, ID4, TNFAIP2, 

MGC16121, DUSP8, MB21D1, DLC1, FILIP1L, SESN2, LAMP3, BEX1, CHORDC1, 

ZNF323, LOC285629, HSPE1, HSP90AA6P, LOC727896, GBP1, CACYBP, IFRD1, 

C21orf7, FERMT3, MORC4, TMEM27, METTL7A, ABHD3, GREM1, CFB, 

CCDC117, LIMCH1, ENGASE, LGR5, DFNB31, LCN10, SLC16A14, DIO2, CYFIP2, 

CLU, ALOXE3, ADM2, IFI44L, NECAB2, ASAP3, COL1A1, ARHGAP24, SLC34A2, 

MARVELD3, ABCB1, LHFPL2, RGS2, CSRP2, HERC5, ZNF761, MICB, FAM26E, 

GDF5, ANGPTL7, FKBP4, C4orf49, SOD2, SLC2A12, STIP1, MITF, TRIM22, GSR, 

BBOX1, DDIT3 

200 Gene RAF Signature 

RAF1, DHRS9, CA6, SPRR2D, PRSS22, S100A7, STC1, IL1RL1, PAEP, BMP6, 

LCE3D, HAS2, CEACAM1, FGFBP2, AGPAT9, SPP1, DIO3, DIRAS3, ISG20, 

TNFRSF11B, LOC100131726, DCLK1, SERPINB1, CRTAM, AQP5, ATP12A, LY6D, 

FERMT1, ASPRV1, SRMS, CEACAM6, CYB5R2, FAM83A, SLC5A1, SERPINB2, 

TMEM45B, KLK6, CALB2, SYTL5, CRHR1, GJB4, CCL24, LY6H, SERPINB3, 

LCE1F, SSTR1, KIAA1199, ENDOU, NTSR1, SCNN1D, PNMA2, EEF1A2, CXCL17, 

EMP1, TMPRSS4, CXCR1, RLBP1, WFDC3, LCE1E, TMCC3, SPRR3, SMOX, 

WNT9A, ADAM8, SHC4, HMGA2, GUCY1B3, CEACAM3, HPSE, RPSAP52, NCF2, 
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SNTB1, TAGLN3, PI3, NAV3, SOCS1, PADI1, PKIB, CD55, GPR110, NOX5, NGEF, 

LBH, FGF1, GAL, S100A4, PLAU, PAPL, SNX9, EDNRA, BPGM, SHF, PLLP, 

IL23A, FIBCD1, PPBP, B3GNT3, C15orf62, TMEM163, RORB, ANPEP, CHST6, 

KCNJ15, GLRX, MALL, RASSF8, APOA1, CCNA1, PITPNC1, IRAK2, SLC26A9, 

TMEM158, CLEC2B, RTKN2, ITGA2, ANO1, ETV5, CLDN10, KCNN4, PLAUR, 

SDR16C5, GABRA2, PGF, TGFA, LOC100505839, PMP22, RAPH1, RASA3, 

LRRC8C, FAM176A, ATG16L1, MCTP1, AKAP12, GDNF, CHRNA9, PI15, HBEGF, 

B3GNT2, MAP1B, ELK3, PTPN22, PTAFR, SPRY4, SH2D2A, STRA6, BMP2, 

KRT18, CARD11, ETV1, ITGB7, WNT7A, TTC9, SLCO4A1, ODC1, CSGALNACT2, 

SLC9A2, LY6K, SREK1IP1, GRB7, ROBO4, ARHGAP25, ZPLD1, FAM100B, DAB2, 

PAQR5, METTL7B, LRAT, SPRY2, SLC1A1, LYPD5, SLC10A6, C14orf49, PRDM8, 

RAC2, PTPRE, HSPA6, HSPA7, DNAJA4, HSPA1A, HSPA1B, TNFAIP2, ACTBL2, 

CCL2, STEAP4, ATF3, MGC16121, CRYAB, RASD2, CD248, PIK3C2B, SLC34A2, 

FILIP1L, EPHA4, ELF3, FAM46B, EPGN, HSPB8, USP2, SLC47A2, CXCR7, ETV7, 

CCL28, WNT4, CFB, C10orf81, IGFBP5, LOC285629, ANGPTL7, GPR1, EPSTI1, 

EDN1, EVPLL, SAA2, EPHA3, LIMCH1, CA2, BBOX1, USH1G, SERPINB13, 

GRAMD2, CXCL12, RARB, PAQR7, CYP1B1, DAPK1, GABRE, APCDD1, ATHL1, 

CXCL2, SLC27A2, KIT, ZDHHC8P1, KANK4, OXTR, KMO, KCNJ5, NEFM, AMOT, 

FERMT3, IFI44L, TRIM22, RECK, SYNM, C10orf67, FBXO32, NOTCH1, SEMA5B, 

DNAJC6, PROM1, CD180, MTUS1, SLC30A10, DNAJB4, SYBU, MYO18B, PLD6, 

SPINK1, ADM, PCDH19, GBP6, TRIM6, FBXW10, ST6GALNAC5, EFNA5, TMCC2, 

SYTL2, MTSS1L, FOSL2, METTL7A, TNS3, ENGASE, RASD1, SOSTDC1, ZNF488, 

FSTL4, CDRT1, ASAP3, SLC2A12, EGFL6, INPPL1, FIGN, TCF4, HS6ST1, 
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PDZK1IP1, PARP9, LRRN1, CORO6, SAA1, ZNF711, CSRP2, DACT1, NAV2, 

ARRDC4, GDF6, CCRN4L, SSBP2, NEFL, LZTS1, SESN2, FBXW7, LGR5, ESR1, 

TLR1, ABHD4, SMO, FAM198B, SCD5, MAP3K14, PPP1R3C, NAP1L2, PLK2, 

COBLL1, KLHDC7B, DLC1, BST2, SOX6, TRIM16L, SOWAHB, BBC3, VAV3, 

GDF15, TNNI2, ZNF323, TP73, BMP5, CITED2, TRAFD1, FDXR, PNLDC1, 

TSPYL2, NTN1, PCYOX1L, SOD2, LRRC56, CTH, LXN, PER3, HSPD1, RAB30, 

CES3, ZNF608, SNHG4, DNAJA1, VGLL3, GLYATL2, OTUD1, ACSL1, LOC283547, 

PER1, EGLN3
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