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Abstract

Brian J. Lee

Department of Computer Science and Engineering

College of Engineering | Seoul National University

Evidence-based medicine, "the conscientious, explicit, and judicious use of cur-

rent best evidence in healthcare and medical research" [98], is one of the most
widely accepted medical paradigms of modern times. Searching, review-
ing, and synthesizing reliable and high-quality scientific evidence is the key
step for the paradigm. However, despite the widespread use of the EBM
paradigm, challenges remain in applying Evidence-based medicine proto-
cols to medical research. One of the barriers to applying the best scientific
evidence to medical research is the severe literature and clinical data over-
load that causes the evidence-based tasks to be tremendous time-consuming
tasks that require vast human effort. In this dissertation, we aim to employ
visual analytics approaches to address the challenges of searching and re-
viewing massive scientific evidence in medical research. To overcome the
burden and facilitate handling scientific evidence in medical research, we
conducted three design studies and implemented novel visual analytics sys-
tems for laborious evidence-based tasks.
First, we designed PLOEM, a novel visual analytics system to aid evidence
synthesis, an essential step in Evidence-Basedmedicine, and generate an Ev-
idence Map in a standardized method. We conducted a case study with an
oncologist with years of evidence-based medicine experience. In the second
study, we conducted a preliminary survey with 76 medical doctors to derive

i



the design requirements for a biomedical literature search. Based on the re-
sults, We designed EEEVis, an interactive visual analytic system for biomed-
ical literature search tasks. The system enhances the PubMed search result
with several bibliographic visualizations and PubTator annotations. We per-
formed a user study to evaluate the designs with 24 medical doctors and
presented the design guidelines and challenges for a biomedical literature
search system design. The third study presents GeneVis, a visual analytics
system to identify and analyze gene expression signatures across major can-
cer types. A task that cancer researchers utilize to discover biomarkers in
precision medicine. We conducted four case studies with domain experts in
oncology and genomics. The study results show that the system can facilitate
the task and provide new insights from the data. Based on the three stud-
ies of this dissertation, we conclude that carefully designed visual analytics
approaches can provide an enhanced understanding and support medical
researchers for laborious evidence-based tasks in medical research.

Keywords: InformationVisualization; VisualAnalytics; Evidence-BasedMedicine;
Precision Medicine; Evidence Mapping; Literature Search; Gene Signatures
Student Number: 2013-30969
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Chapter 1

Introduction

1.1 Background and Motivation

The Evidence-based medicine (EBM) paradigm is "the conscientious, explicit,
and judicious use of current best evidence in making decisions about the care of in-

dividual patients" [98]. It has arisen from the call for greater objectivity in
clinical decision-making and has had a positive impact and significant in-
fluence on healthcare and medicine for the last few decades [37, 101]. One
of the most significant assets of the Evidence-based medicine paradigm is
that it provides a robust systematic approach to translating the findings of
high-quality medical research into other medical research and clinical prac-
tice [93]. The practical process of Evidence-based medicine involves the fol-
lowing five essential steps [93]:

1. Searching for an answer to a clinical question.

2. Searching for the evidence.

3. Critically appraising and reviewing the existing evidence.
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4. Combining credible evidence with clinical experience and the patients’ view-

points.

5. Evaluating the process.

Each step of the Evidence-based medicine paradigm follows strict pro-
tocols and principles [1]. In addition, various literature (scientific evidence)
applications and databases (PubMed, Cochrane Library, JAMA Evidence, Etc.)
helpmedical researchers with these tasks. However, some challenges remain
despite thewidespread use of the EBMparadigm and the various efforts and
applications to support EBM practice over the last thirty years [70, 86, 101,
112, 125]. In this dissertation, we aim to employ visual analytics approaches
to address the challenges of searching and reviewing massive scientific evi-
dence.

We interviewed several domain experts, such as medical oncologists and
biomedical researchers, to identify the difficulties and challenges of Evidence-
based medical paradigms in real life. After a series of interviews, we con-
firmed that there are still many obstacles that require a tremendous human
effort to interpret the data insights for the medical models, and this hinders
the practice of EBM.

First, searching for the proper reliable evidence is still a challenging task.
The evidence in systematic reviews is derived from systematic literature searches
as new research builds on previous discoveries.Without a systematically rig-
orous search strategy, the results or findings of the systematic review and
meta-analyses should be suspect. Therefore, with the tremendous amount
of new evidence in these days, rapidly finding relevant and reliable evidence
has become evenmore critical [2].However, formulating optimal search queries

2



for a given topic is a challenging task for a novice user. While searching with
a query-based system such as PubMed, novice users often miss some pub-
lications or retrieve irrelevant results [24, 90]. Therefore, some guidelines
even advise having a professional medical librarian or information special-
ist conduct the search task [47]. This task brings about a massive amount of
person-hours that can be critical for the practice of Evidenced-based princi-
ples in medical research.

Second, users require broader support for various evidence synthesis ap-
proaches. Conventional evidence synthesis systems usually focus on system-
atic reviews and meta-analyses. Systematic reviews and meta-analyses are
well-developed methods for precisely focused questions. For example, to re-
view the accuracy of a novel diagnostic test method or the effectiveness of
a new treatment. On the other hand, when it comes to much broader ques-
tions such as "the relative effectiveness of various treatment options available for a

particular condition" [17], the systematic review methods face challenges in
evidence synthesis [17]. Many other evidence synthesis models have been
developed to meet various user requirements, and there are demands for
systems that support these models.

However, critics have suggested that Evidence-based medicine has sev-
eral limitations [15]. Evidence-basedmedicine collects evidence fromgroups
of patients and summarizes the evidence. The response is for an average
patient rather than an individual patient [28], so it often fails to provide
an appropriate solution for outlier patients [27, 110]. Therefore, medical re-
searchers also utilize scientific evidence from Precision medicine as comple-
mentary.
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Precisionmedicine is another widely usedmedical paradigm that adapts
the diagnosis and treatment to individual patients. The diagnosis and treat-
ment are based on genetics, biomarkers, environment, and clinical informa-
tion [27]. Furthermore, with the advance in patient characterizing technol-
ogy with omics science (proteomics, metabolomics, genomics, etc.) [27], the
amount and impact of the omics data are also rapidly growing. Therefore,
the request formethods to search and appraise scientific evidence of biomed-
ical data is also increasing. So, to continue the objective of using the current
best evidence for medical research, we believe medical research frameworks
should integrate genomic evidence with conventional literature and clinical
evidence as complementary approaches in medical research.

We evaluate this approach by aiding taskswith genomic sequencingdata.
With the help of the projects such as The Cancer Genome Atlas (TCGA), En-
cyclopedia of DNA Element (ENCODE), and Genotype-Tissue Expression
(GTEx), the research community now has an extensive dataset of transcrip-
tomic profiles from RNA-seq experiments [109]. The community is now fac-
ing the challenge of understanding this big data. Reflecting this need with
the tremendous big data, the appearance of sophisticated RNA-seq analy-
sis tools in a visual analytics approach is increasing. However, only limited
types of tasks have standardized tools that organize, visualize, and analyze
the resulting big data, and there aremany tasks that researchers still conduct
in non-standard methods.

In this dissertation, we conducted three design studies to design and
implement novel visual analytics systems for laborious scientific evidence
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based tasks in medical research. The following questions are the research
questions that motivated this dissertation:

RQ1. What analytic tasks in Evidence-based medical research can benefit
from visual analytics systems?

RQ2. How should we design a visual analytics system to facilitate the sci-
entific evidence search task?

RQ3. How should we design a visual analytics system to facilitate the sci-
entific evidence review task?

RQ4. How should we design a visual analytics system to facilitate integrat-
ing genomic evidence into evidence-based medical research?

Thesis Statement Carefully designed visual analytics systems can provide
a better understanding of biomedical scientific evidence and facilitate evidence-
based tasks for medical research.

1.2 Dissertation Outline

This dissertation is divided into six chapters. Chapter 2 discusses previous
relevant studies of this dissertation, including studies on evidence mapping,
literature visualizations, and genomics visualizations. Chapter 3 introduces
PLOEM (PLOting Evidence Mapping), a visual analytics system to present
an evidence map in a standardized method. Chapter 4 proposes EEEVIs,
a novel interactive visual analytics system for biomedical literature search
tasks. Chapter 5 presents GeneVis, a visual analytics system that visualizes

5



a user-configured batch of gene signatures across major cancer types. Lastly,
Chapter 6 concludes this dissertation and proposes our future work.
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Chapter 2

Related Work

2.1 Evidence Mapping: Graphical Representation for a
Scientific Evidence Landscape

During scientific research, it is a standard procedure for researchers to ex-
plore scientific publications to obtain up-to-date knowledge of a research
topic [53]. Furthermore, with the exponentially growing number of scien-
tific literature, reviews that summarize facts and insights are becomingmore
valuable [81]. Systematic reviews andmeta-analyses are systematicmethods
that can extract and synthesize quantitative information from scientific pub-
lications, and it is an essential procedure for Evidence-basedmedicine [5, 41,
46, 57, 80, 102, 114]. However, these methods are appropriate for focused re-
search questions and not practical for broader topics or synthesizing hetero-
geneous literature [81]. Therefore, the Evidence mapping method emerged
to overcome these limitations.

Evidence mapping is a tool to "systematically and comprehensively identify,

organize and summarize the distribution of scientific evidence on a broad field" [4,
51]. The difference against systematic review is that the risk-of-bias appraisal
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of the included studies is not required [4, 31], so it applies to much broader
research questions than systematic reviews. Evidence mapping summarizes
the insights and characteristics of scientific publications in tree forms or tab-
ular forms [104]. The summary clarifies the research gaps (or evidence gaps)
[22], representing differences among the research areas where missing evi-
dence and the research areas with sufficient evidence. Researchers can iden-
tify research fields with enough evidence to conduct a systematic review [4,
17, 31, 44, 104], or determine the research fields that need focused studies in
the future [4, 17, 22, 31, 51, 104].

However, there are disparities among the terminologies and methods of
the evidencemapping techniques (e.g., evidencemap, systematicmap, scop-
ingmap, and scoping review), and still, nomethodological standards [32, 44,
51, 100, 104]. Nonetheless, by Wang et al., there are common steps that all
evidence mapping variances generally follow [117]:

1. Identifying a broad research area of interest and defining the key variables and
framework for descriptive analysis

2. Developing a thorough, clear and reproducible literature search strategy

3. Establishing the a priori inclusion and exclusion criteria

4. Systematically extracting, coding, sorting and reporting the findings in a tab-

ular evidence map

In Chapter 3, based on the common key steps of evidence mapping, we
designed PLOEM (PLOting Evidence Mapping), a visual analytic system
to present an evidence map in a standardized method. Providing a stan-
dardized method for evidence mapping and a standard representation for
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evidence maps should aid the usage and improve the interpretability of ev-
idence mapping for clinicians and biomedical domain experts.

2.2 Scientific Literature Visualizations and
Bibliography Visualizations

Searching for literature evidence is essential for evidence-based medicine
and clinical decision-making.Millions of clinicians andbiomedical researchers
search literature repositories, such as PubMed (https://pubmed.gov), and
explore the vast search results to find reliable literature evidence.Many users
use literature management tools to manage literature collections, such as
Mendeley, EndNote, Zotero, CochraneRevMan, andEtc.However, these tools
are focused on managing citation and user annotation rather than literature
discovery.

Various studies support bottom-up literature discovery, a strategy to search
target papers from a set of source papers [7, 58, 65, 122]. SenseMaker [7]
supports iterative searching and expansion in topics of interest with a rich
graphical user interface. CiteSense [122] provides features for users to ex-
plore the publications that cite a text snippet of a paper or the publications
cited by a paper. Wivi [65] reflects the reading history and visualizes the
connections among visited papers as a graph form. LitSense [107] focuses on
research questions an build topic graphs. Organizing and visualizing bibli-
ographic aspects is one of the most conventional methodologies in literature
visualizations [13, 35, 50, 82, 96]. Many studies present the citation network
as a node-link diagram, or an adjacency matrix [23, 26, 34, 48, 50, 56, 68, 75,
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82, 89, 105]. Several research employ the author-paper network or co-author
relationship [60, 62, 123]

In Chapter 4, we present EEEVIs, a novel interactive visual analytic sys-
tem for biomedical literature search tasks. EEEvis provides enhanced litera-
ture data analysis functions, including (1) an overview of the bibliographic
features, (2) an overview of the co-authorship network, (3) interactive sort-
ing, filtering, and highlighting, and (4) a named entity recognition (NER)
annotated literature visualizations that employ bio-entities asNER tags from
PubTator.

2.3 Visual Anlytics Systems for Genomics Data sets and
Research Tasks

With the initiatives of large genomic data sets gathered from clinical and
population studies, such as TCGA, GTEx, and ENCODE, the bioinformat-
ics community has put its effort into developing various tools to ease the
task of data assembling and analyzing [39, 42, 61, 77, 83, 94, 118, 124]. Data
portals, such as CBioPortal [21], GDC Data Portal [45], and ICGC Data Por-
tal [121] are widely used effective tools for browsing centrally maintained
datasets and featuring a backend API server. With advanced sequencing
technology, such as whole-genome sequencing, new genomic datasets are
increasing rapidly. Therefore, analyzing and exploring complex datasets is
getting more challenging, and the role of visual analytics is becoming more
important.

Representing dysregulated genes in a cohort with a matrix form is bioin-
formatics’s most conventional visualization technique, and it supports iden-
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tifying the primary driver genes and discovering recurrent patterns [6, 52,
54, 76, 108]. However, this representation frequently leaves out the global
structure of the cohort [76, 83, 85, 92].

In Chapter 5, we designed and implemented a web-based novel visual
analytics system, GeneVis. A system that users can visualize the gene ex-
pression signature of a user-defined gene set and analyze the patterns and
insights across multiple major cancer types.
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Chapter 3

PLOEM: An Interactive
Visualization Tool for Effective
Evidence Mapping with
Biomedical literature

This chapter introduces a visual analytic system that supports biomedical
researchers, clinical doctors, and medical scientists to produce an evidence
map in a standardized method1.

3.1 Introduction

Conducting a clinical trial that can control all variables for diseases or treat-
ments at once on a statistically significant scale is a challenging task in the
biomedical and healthcare context. Therefore clinical researchers collect and
analyze secondarydata onprevious studies through systematic reviews (SR),
an evidence synthesismethod to performand informevidence-basedmedicine.

1The preliminary version of Chapter 3 was published as a journal article in KIISE Transactions
on Computing Practices.
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If the amount and quality of the secondary data are sufficient, researchers
can conduct a meta-analysis (MA) under standardized procedures to inte-
grate the results of independent studies to derive conclusions of the research.
Meta-analysis is awidely used tool that plays a central role in evidence-based
medicine. However, it is not appropriate to conduct a meta-analysis when
the data sources have too much uncertainty, nor the heterogeneity among
studies is too significant. Accordingly, in recent years, a methodology based
on evidence mapping (EM) that applies to more diverse treatment methods
and fewer samples has been introduced and spread[63].

The purpose of evidence mapping is to provide an overview of existing
studies rather than quantitative result synthesis and identify gaps in each
category by classifying existing studies according to one or more criteria.
To this end, existing evidence mapping studies have used various visualiza-
tions to collect the number of related studies, sample size, evidence level,
and effect size for each category. For example, presenting the classification
of studies in a table-based[36] or tree-based[4] figure was the conventional
approach. However, visualization techniques used in most existing studies
could represent only the number of papers corresponding to a specific cate-
gory. There was a limitation in that it was difficult to recognize changes over
time or the relationship between papers. In addition, although the need and
interest in the evidence mapping technique are increasing, a standardized
procedure has not yet been established, so each study presents the evidence
map in various ways.
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In this chapter, we present PLOEM, a visual analytic system that supports
biomedical researchers, clinical doctors, andmedical scientists to produce an
evidence map in a standardized method and the usage scenarios.

3.2 Visual Representations and Interactions of PLOEM

This study proposes PLOEM, a novel visual analytics system for evidence
mapping. To derive the features that clinicians and biomedical researchers
require from an evidence map, we conducted a literature survey over evi-
dence mapping studies and a series of interviews with biomedical, clinical,
and healthcare researchers. As a result, we derived the following five essen-
tial characteristics of evidencemapping that a visual analytics system should
present.

• Study design

• Sample population

• Intervention of interest and comparator intervention

• Outcome of interest

• Trend over time

The system comprises four coordinated views: the overview, the timeline
view, the relation view, and the study detail view.

3.2.1 Overview of the PICO Criteria

In the case of evidence mapping, it is essential to follow up the sample pop-
ulation of each study design that has been conducted on the intervention of
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Figure 3.1: Overview. Studies are categorized with study design and intervention types.
Each chart is color coded with sample size.

interest. Therefore we present the number of studies in the overview as a 2 x
2 matrix of interventions and study designs. As can be seen from Figure 3.1,
the screen is divided mainly into four zones, each clockwise from the top
right: 1) a color scheme legend for the sample population; 2) a stacked bar
chart showing the number of each study design and the sample population
of each study; 3) a heatmap tablewhere the rows represent the study designs
and the columns represent the interventions; 4) a stacked bar chart showing
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the number of studies for each intervention and the sample population of
each study.

Every visualmark(rectangles andpoints) of the stacked bar chart and the
heatmap is color-coded by the study’s sample population, and the discrete
color legend is located at the top right corner. Both bar charts encode stud-
ies as a rectangle and stack them to place the study with the most sample
population at the bottom. For example, in Figure 3.1 we can identify there
are only two cases of Retrospective 2-arm studies, but both studies have a
relatively large sample population. The heatmap table at the bottom left fol-
lows a similar visual metaphor. The table is a 2-dimensional heatmap with a
study design axis(row axis) and an intervention axis(column axis).We place
the studies at each coordinate as concentric circles, while the innermost cir-
cle has the largest sample population. Therefore, users can briefly overview
the number of studies and the sample population. Initially, we designed the
study design bar chart as a horizontal bar. However, during our studies with
clinical and biomedical researchers, many of them reported difficulty at in-
terpreting a horizontal bar chart, so, as shown in Figure 3.1, we altered the
design to a vertical bar chart.

Users can confirm the details of the studies with a specialized tooltip
(Figure 3.2). The tooltip contains a list of studies and presents the sample
population and the evidence level of each study with a sparkline[111]. This
tooltip is also used in the system’s other views(timeline and relation views).
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Figure 3.2: Detailed information tooltip for four papers. Titles, sample sizes, and evi-
dence levels inferred from study design are visualized.

3.2.2 Trend Visualization with the Timeline view

The previous evidence mapping visualization techniques could not present
the trend over time, a significant limitation. Therefore, one of the goals of this
study was to present the temporal trends of the evidence-based medicine
characteristics: sample population, medical intervention, study designs, and
the number of studies.

We present a glyph-based timeline view(Figure 3.3) that places glyphs
designed to represent the above features on a horizontal time axis to ful-
fill this goal. The view is a focus-plus-context visualization, while the top-
most timeline is an overall timeline(Context), and the following timelines
are the intervention timelines(Focus). The overall timeline shows the trend
of all data through the entire time range. On the other hand, the interven-
tion timelines show the study trends of each intervention for a selected time
range. Users can select a range of interest in time by brushing a region of the
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overall timeline, and the intervention timelines will reflect the selection by
zooming into the selected temporal region. Other coordinated views, such as
the relation view and the study detail view, also reflect this time range selec-
tion and visualize studies onlywithin the range of interest. In addition, when
users brush a region of the intervention timelines, the coordinated views vi-
sualize studies that include the intervention and within the time range.

Figure 3.4: Glyph for timeline visualization. (a) Background color, radius of a circle, length
of radial shape is mapped to sample size, number of whole papers, and number of papers
categorized by study type, respectively, (b) Larger number of studies with all six study
types, and smaller sample size, (c) Smaller number of studies with three study types, and
larger sample size.

We designed the glyph to aggregate and encode the following informa-
tion of a period: the sample population, the number of studies, and the num-
ber of each study design. The glyph has three main parts, and each part en-
codes the above three study characters. The outer rectangular figure (Figure
3.4 (a) A) represents the time period and the summation of the sample pop-
ulations. The box’s width encodes the length of the period the glyph aggre-
gates, and the color saturation encodes the size of the sample population.
The radius of the white center circle (Figure 3.4 (a) B) encodes the number
of studies in the period, so a larger circle indicatesmore studies in the period.
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Finally, each petal of the flower-petal glyph (Figure 3.4 (a) C) represents the
number of each study design. A unique color and direction are assigned to
each study design petal so users can notice the rise and fall of each study
design through various timestamps.

3.2.3 Representing the PICO Co-occurrence with the Relation view

Most clinical trials are single-arm or two-arm studies, so each study con-
firms only a subset of the target interventions when a researcher conducts
a systematic review of multiple interventions. Therefore, there is inevitably
an imbalance between the number of studies for each intervention, and in-
terpreting the relationships between the imbalanced study sets of each in-
tervention is an important analysis task. However, with the conventional
evidence-mapping visualization techniques, such as tables and trees, this is
a challenging task.

We encode this set relationship among interventions in a node-link di-
agram and two coordinated list views (Figure 3.5). Nodes represent each
intervention, and the node size indicates the sample population. Edges con-
nect the interventions studied together, and the edge width represents the
number of studies. For example, in Figure 3.5.a, we can identify there are
five interventions, and Vincristine and Paclitaxel are the two treatments that
have the most extensive sample population. However, the thick edge be-
tween Paclitaxel and Everolimus indicates that a study between Paclitaxel
and Everolimus was the most common combination in the two-arm stud-
ies. These combinations among interventions are listed in a juxtaposed view
with a bar chart of the number of studies (Figure 3.5.c). The edges and list
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items are linked, highlighting the corresponding list itemwhen a user hovers
an edge and vice versa.

Another juxtaposed list is a study-outcome list (Figure 3.5.b) that lists
the studies of a mouse selected intervention(node) or combination(edge).
The corresponding studies are listed with the outcome of each study in a
sparkline bar chart[111], and the outcomemetric can be changed by selecting
an option from the dropdown list. For example, The height of the orange
bars in Figure 3.5.b indicates that Paclitaxel’s overall survival rate(median
OS) was usually better than Everolimus.

Figure 3.6: Detail view with entire information about all papers. Filtering and sorting can
be activated on each column header.

3.2.4 Study detail view

The study detail view(Figure 3.6) is a table that users confirm the raw data
of the studies when the additional information from the tooltips is insuf-
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ficient. The table presents the publication data, study title, publication au-
thors, study design, evidence level, intervention, comparator intervention,
the sample population, and the outcome of each arm. The view is coordi-
nated with other views and reflects the selection in the overview, timeline
view, and relation view. In addition, users can sort and filter the rows by
using the sort/filter controls in the column headers.

3.3 Usage Scenarios: Visualizing Various Study Sizes
with PLOEM

This section reports the results from three usage scenarios to demonstrate
how PLOEM can aid users in conducting evidence mapping and interactive
visual analysis. We used three datasets about pancreatic cancer and the out-
come of multiple treatments with a variant number of studies(14, 504, and
3,271), and each dataset was generated under the supervision of a domain
expert in clinical research and the systematic review procedure.

The first scenario is an evidencemapwith 14 studies, andwith the overview
(Figure 3.1), researchers identified the gap of the number of studies and
the imbalance of the sample population among interventions. For example,
Everolimus is the runner-up treatment in the number of studies, but all five
studies have a small sample size,which can conclude that these studies should
have a low evidence level. On the other hand, there were only two studies
of Actinomycin D, but one of the two studies showed a significant sample
population.

The timeline view reveals the study trend change between the early and
recent studies. For example, in Figure 3.3, we can find that the number of
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studies increased over time, especially after the year 2009 and that many
studieswere conducted about Everolimus after that year.However, the glyph’s
background color difference indicates that the studies after 2009 showa smaller
population than the studies before. This population change might be related
to the change of study designs because we can also identify the rise of the
blue petals in the glyphs after 2012, which indicates the increase of random-
ized control trials(RCT), and RCTs usually have a smaller population than
other study designs.

The researchers who used PLOEM in all three scenarios reported that
it was much easier to generate a map with PLOEM than other conventional
methods, and itwas effective in displaying the gaps among studydesigns, in-
terventions, and sample populations. They also commented that the timeline
view presentedmany insights that they did not catch with a conventional ta-
ble view or a tree view, such as the trend changes and the breaks(the periods
with no significant studies).

3.4 Conclusion

This study presents PLOEM, a novel visual analytic system for evidence
mapping. Evidencemapping is a novel systematic reviewmethod spotlighted
in the clinical and healthcare community, yet does not have a standardized
procedure or generation tool. To this end, we interviewed domain experts
in clinical research, healthcare, and systematic review. Based on the prelimi-
nary survey and interviews, we derived the main characteristics of evidence
mapping and the features for a visual analytic system for it.
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However, the system is still a novel approach, and several limitations
should be improved. One of the limitations was the scalability of the flower
glyph design in the timeline view. It was not difficult to identify the glyphs
until a few hundred studies, but the visibility of the glyph decreased when
the number of studies was more than thousands.

The learning curve of the systemwas another limitation. The participants
of the usage scenarios are not experts in visualization or visual analytic sys-
tems, and the visual representations and the interactions can be an obstacle
for users of a different domain[64]. The participants were not familiar with
the concepts of glyphs, coordinated views, or brushing and linking interac-
tions and needed some guidance to interpret the visualizations or utilize the
interactions. We believe we can overcome this limitation by with a detailed
interactive tutorial.

Finally, we plan to expand our research into more requirements of the
systematic review procedure, especially the method to search and retrieve
the studies for evidence mapping or other systematic reviews.
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Chapter 4

EEEvis: Efficacy improvement in
searching MEDLINE database
using a novel PubMed visual
analytic system

4.1 Introduction

4.1.1 Motivation

Literature searching is a crucial step in conducting scientific research, prepar-
ing presentation material, and selecting study topics. PubMed (https://
pubmed.ncbi.nlm.nih.gov/), which has been developed and is adminis-
tered by the National Center for Biotechnology Information (NCBI) at the
United States National Library of Medicine (NLM) [38], has become the
most widely used search engine and free database in the biomedical field.
PubMed covers most of the published biomedical literature and more than
three million of its cases receive clicks by 2.5 million users per day [38].

The advantages of PubMed can generally be described as follows:
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• An enormous amount of biomedical records including Index Medicus and

Non-Index Medicus [30]

• Expandability to related databases such as BioProject (formerly known as the

Genome Project), other genetics, proteomics, and the Medical Subject Head-

ings (MeSH) database [11, 88, 95]

• An easy and intuitive user interface (UI) [88]

• Free accessibility to the advanced search mode [88]

• Individual optimization using a My NCBI account [88]

• Multiple filters displayed on the left side of the browser [103]

• A continuously evolving search algorithm [38]

• Various additional functions that provide user friendliness [55]

The PubMed database provides a simple search interface. However, the
search interface supports only a limited set of data analysismethods, and it is
difficult to interpret and explore through a massive literature dataset. Users
can narrow the overwhelming search space to the most relevant matches
by successive text-based queries with a multi-bibliographic criteria syntax.
Nevertheless, this task requires a highly skilled query construction ability
and the domain knowledge of the search field [88]. Therefore, conducting a
massive literature search task only with a text-based query language can be
time-consuming and inefficient.

Within this context, we conducted a three-phased study, as follows:

1. A preliminary user survey regarding the current usability and the lit-
erature search task requirements of PubMed
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2. An implementation of a novel interactive visual analytic system for
biomedical literature search in the PubMed database

3. A randomized controlled prospective user survey comparing the us-
ability of PubMed and the proposed implementation (Figure 4.1).

Figure 4.1: Study scheme

4.1.2 Preliminary Survey: A Questionnaire on conventional
literature search methods

We conducted an online questionnaire between January and May 2019 with
76 medical doctors (MDs) who held professional qualifications in various
clinical departments and had experience in medical research to derive the
requirements of the biomedical literature search task. The survey questions
were categorized into three sections, as follows: (1) baseline information for
the research career, (2) questions for current use patterns of PubMed or other
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literature search interfaces, and (3) additional requirements for a literature
search task. The survey questions are summarized in Table 4.1 and the base-
line demographic findings of the participants are summarized in Table 4.2.

Section 1. Research experience

Q1. What is your area of expertise? (e.g. gastroenterology, neurology,
radiology, pathology, preventive medicine, medical statistics, etc.)
_______________________

Q2. What is your age?
1) Less than 30
2) 30 ∼34
3) 35 ∼39
4) 40 ∼44
5) 45 ∼50
6) 50 ∼54
7) 55 ∼59
8) 60 or more

Q3. What is your year of graduation from medical school? (e.g. 2008)
____________

Q4. How many research articles have you been significantly involved as the
first author, the corresponding author, or co-author having invested 3 work-
days or more? The papers may include unpublished research.
1) 0
2) 1
3) 2
4) 3∼5
5) 6∼10
6) 11∼20
7) 21 or more
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Section 2. Literature search engine use experience

Q1. On what purpose do you mainly use PubMed? (Multiple choices allowed)
1) Writing Article
2) Searching materials for seminar
3) Searching for knowledges (e.g. research updates, drug information)
4) Routine updates of literatures on subjects of interest (including My NCBI sub-
scription)
5) Meta-analysis
6) Others (__________)

Q2. What search engines do you use for medical literature search? (Multiple
choices allowed)
1) PubMed
2) Embase
3) Google or Google Scholar
4) Scopus
5) Web of Science
6) Dbpia (in Korean database)
6) Others (__________)

Q3. When using PubMed, how frequently do you use Boolean operators? (e.g.
AND, OR, TI, TA, AU, AD, DP)
1) Almost always
2) Often
3) Sometimes
4) Rarely or never
5) I rarely use PubMed, so this question is not applicable to me.

Q4. When using PubMed, which part of the window do you usually look?
(Please refer to the images for the letter indications)
1) I mostly look at B part, and rarely at A and C parts.
2) I mainly look at B part, but I often use the filter function of A part.
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3) I mainly look at B part, but I often use the MeSH term or related article links of
C part.
4) I mainly look at A or C parts, and rarely look at B part.
5) I mainly look at B parts, and look at other parts as needed.
6) I rarely use PubMed, so this question is not applicable to me.

Q5. When using PubMed, how do you use “Sort by” function located below
the search bar?
1) I rarely use it.
2) I use it depending on the search results. (e.g. 50 abstracts per page)
3) I have the preset settings which I prefer and use frequently.
4) I rarely use PubMed, so this question is not applicable to me.

Q6. When using PubMed, which features of part B do you usually look at first?
(Please refer to the images for the letter indications)
1) I skim at the article titles to look for the suitable article for the purpose of my
search.
2) I look at the author names and look for the leading expertise on the subject of
interest.
3) I look at the journal names and look for that with high impact factor.
4) I sort the results by “Best Match” and skim the results.
5) I let abstracts appear and search for the keywords by using control + F.
6) I rarely use PubMed, so this question is not applicable to me.

Q7. When using PubMed, do you use “Related Article” function?
1) I don’t know about the function.
2) I ignore the function and instead look for the results by using current keywords.
3) I use the function after I found the appropriate article.
4) I use it simultaneously with the current keywords.
5) I use it case by case.
6) I rarely use PubMed, so this question is not applicable to me.

Q8. How do you manage literature PDF files?
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1) I download the reference PDF files when necessary and save them in computer
folders.
2) I download the reference PDF files when necessary and save them in EndNote.
3) I download the reference PDF files when necessary but do not save them.
4) I routinely download the reference PDF files and save them in computer folders.
5) I routinely download the reference PDF files and save them in EndNote.
6) I do not download PDF files but organize the PMID or keywords in excel or word
files.
7) There is no definite management pattern for me.
8) Others (__________)

Section 3. Functions for new search engine

Q1. Do you feel any shortcomings when using PubMed? You may write
“None” if there aren’t any, and you may write multiple opinions.
(______________________________)

Q2. What functions do you think need to be included in a new search engine?
(Upto 3 choices possible)
1) Visualization of interaction between articles by keywords
2) Sorting the articles by journal impact factor
3) Sorting the articles by citation counts
4) Searching by the leading expertise of the subject
5) Visualization of articles on the subject by timeline
6) Automatic word completion function (e.g. AND, OR)

Q3. Is there any other function would you want a new search engine to in-
clude that is not included in the above question? You may write “None” if
there aren’t any, and you may write multiple opinions.
(______________________________)

Table 4.1: Preliminary Google survery
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Variables Count (n=76)

Age
30-34 28
35-39 34
40-44 11
45 or more 3

Specialty
Gastroenterology 50
Neuropsychiatry 6
Internal medicine 3
Cardiology 2
Emergency medicine 2
Family medicine 2
General surgery 2
Pulmonology 1
Orthopedic surgery 1
Radiology 1
Pathology 1
Rheumatology 1
Plastic surgery 1
Neurosurgery 1
Thoracic surgery 1
Laboratory medicine 1
Year of obtainment of medical license
2000 or before 2
2001-2005 8
2006-2010 43
2011-2015 23
Duration of exposure to PubMed (year)
0–4 5
5–9 36
10–15 28
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Table 4.2 continued from previous page

Variables Count (n=76)

16 or more 7
Number of involved research articles as an author
0 2
1∼2 23
3∼5 27
6∼10 10
11∼15 9
16 or more 5

Table 4.2: Demographic findings of preliminary survey

Among the 76 participants, 34 (45%)were between the ages of 35 and 39,
and 28 (37%) were aged 30 to 34. Gastroenterologists constituted 50 (66%)
of the participants. Amajor portion (93%) of the participants had been using
PubMed for at least 5 years, and over 97% of the participants had published
at least one medical article as a lead author.

As illustrated in Figure 4.2, the questionnaire consisted of the follow-
ing five questions: (a) Which search tools do you use? (multiple possible
responses); (b) How often do you use Boolean operators in PubMed?; (c)
Which part do you see first (in the PubMed results view)?; (d) What are
your urgent needs for PubMed?; and (e) Which function would you like in
a new search engine? (multiple possible responses).

In question (a), the most commonly used medical literature search tools
were PubMed (93%), followed by Google or Google Scholar (83%). In ques-
tion (b), Boolean operators such as AND, OR, and NOT were used by 74%
of participants. In the primary screening process for the result window of
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Figure 4.2: Results of preliminary survey.
∗ Multiple choice was possible up to three answers.
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PubMed, in question (c), 47% of participants selected the “body” section
only. Users who screened all parts of the body and both sidebars constituted
14% of all participants.

In question (d), 28% of the participants reported the demands and re-
quests to enhance the results of PubMed. The most submitted reply was to
reduce the discrepancy between the search purpose and results. Finally, in
open-ended question (e), the answers were submitted in the order: sorting
by impact factor (82%), searching by author network (49%), sorting by ci-
tation count (47%), intuitive mapping of articles (47%), auto-completion of
search words (41%), and article network by keywords (22%).

4.1.3 Design Requirements for Biomedical Literature Search
Systems

The preliminary survey aided in providing an understanding of the design
requirements for a biomedical literature search system. Based on the results,
we determined the following requirements that should be supported by a
biomedical literature search system:

R1. Construct advanced search queries through direct manipulation.

R2. Present an overview for the bibliographic information.

R3. Present the trend and importance of the articles.

R4. Present the bibliographic relationship with the co-author network.

R5. Provide filtering and sorting functions to narrow the search.
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Figure 4.3: System architecture for EEEvis.

4.2 System and Interface Implementation of EEEVis

4.2.1 System Overview

We designed and implemented visual analytic system known as EEEVis to
assess and enhance the biomedical literature search results from the PubMed
database. Through EEEVis, users can create a search query through direct
manipulation that supports the PubMed search query syntax and visualize
the results.

EEEVis is a web-based system that employs a client–server architecture
(Figure 4.3).With the client users input PubMed syntax-based search queries
(https://pubmed.ncbi.nlm.nih.gov/help/) and the results are fetched from
the server. The web application is implemented using Angular (https://
angular.io/), whereas the charts are implemented using Plotly.js (https:
//plotly.com/javascript/) andVega (https://vega.github.io/vega/).
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The server is a RESTful web service implemented in Python that fetches
the PubMed search results of the query using PubMed Entrez Programming
Utilities API [99]. After retrieving the search results, the server annotates
the results with PubTator Central biomedical concept annotations [119], ci-
tation counts from the OpenCitations (https://opencitations.net/) and
NIH MeSH databases (https://www.nlm.nih.gov/mesh/meshhome.html),
and impact factors from Journal CitationReports (https://jcr.clarivate.
com/jcr/home).

However, while the PubMed web search interface presents the results in
a page-based list and fetches only a limited number (10 200) of articles on
each page, EEEVis fetches the complete article dataset (up to 10,000 results)
of the search query to hand out an overview. Larger search results lead to
a longer fetch time and slower user response. EEEVis splits the fetch pro-
cess into a series of tasks of fetching partial mini batches to overcome the
fetch time delay and progressively updates the interface on each batch. This
approach is similar to the progressive visual analytics (PVA) method that
allows users to explore partial data analysis results in integrated and inter-
active visualizations during the execution [106].

Users can interactively explore the PubMed search results that are anno-
tated with citation data and biomedical concept tags in an interface consist-
ing of four coordinated views: (1) Bibliography Filters, (2) a Timeline View,
(3) a Co-authorship Network View, and (4) an Article List & Detail View
(Figure 4.4).
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Figure 4.5: a) Filtering: the documents in the range of interest are filtered by dragging
the mouse horizontally on each metadata histogram. Each histogram is coordinated and
EEEVis supports a cross-filter function, so that the filter result (blue histogram) will be an
intersection of each filter. b) Focusing: focusing is a bushing and linking interaction. The
interaction is similar to filtering; however, it is an independent filter function that does
not alter the document subset of the filtering. This mouse interaction highlights the doc-
uments between the two coordinated views, the Timeline View, and the Author Network
View.

4.2.2 Bibliography Filters

This viewprovides an overviewof the bibliographic features: the article type,
year of publication, citation count, and impact factor. Each feature ismapped
to a visual representation based on its data type. The visualizations are coor-
dinated using the brushing and linking [14, 20] technique so that users can
filter a user-interest subset of the search query result with specific values or
ranges of the feature in a visualization and all other linked visualizations
also immediately reflect the filtering result (Figure 4.5).

The article types, which are categorical values, are listedwith the number
of corresponding articles. The list supportsmultiple selections using a check-
box interface. A bar chart is employed to represent discrete values, such as
the publication year, whereas histograms are used to represent continuous
values, such as the citation count and impact factor. The continuous values
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are binned into 20 bins, which are calculated to have similar physical widths
on the x-scale. As the citation count and impact factor usually exhibit skew-
ness towards small values in a vast range, the x-axes are implemented on a
logarithmic scale. The bar charts and histograms support interactive x-axis
range selection (brushing) by dragging an area on the chart or inserting spe-
cific values into the text boxes below the x-axis. The gray bars represent the
number of articles in the search query result and the blue bars represent the
intersection of all filters (linking), thereby constituting the user-interest sub-
set. Every filter is displayed with chip buttons in the filter status bar (Figure
4.4). The other three coordinated views display the user-interest subset.

4.2.3 Timeline View

Figure 4.6: Timeline view. A series of box plots on an ordinal timeline x-axis. The box plots
are a standard Tukey box plot (the median, the 1st quartile, and the 3rd quartile). The y-
axis represents the citation counts with a logarithmic scale.
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Users can already assess the annual trend of the number of articles per
year using the year of publication histogram in the bibliography filters. How-
ever, as the citation count is also an important metric in literature searches,
several tasks require the identification of the temporal trends of citation counts.
Thus, we plot a series of boxplots according to the year of publication to re-
veal the annual trends (Figure 4.6).

The x-axis is an ordinal timeline of each year of publication and the y-
axis is the logarithmic scale of the citation counts. Every box plot represents
the statistical data of the articles that are published each year. The box plots
are in the form of a standard Tukey boxplot that displays the median, first
quartile, and third quartile. The whisker ranges from the smallest to largest
data within the range [Q1 – 1.5 * IQR, Q3 + 1.5 * IQR], where Q1 and Q3
are the first and third quartiles, and IQR is the interquartile range (Q3 - Q1).
Every article is encoded as a circular data point and jittered over the box plot
to display the actual citation counts and distribution.

As the citation count is also correlated with the age of the article, the
use of a single global range filter may lead to the omission of recent impor-
tant articles or noise frommany uninteresting old research papers. Thus, we
implement a secondary filter function known as “Focus” in this view to dy-
namically explore a particular subspace of the time by citation count space.
Users can focus on any timespan or citation count range by dragging a rect-
angular area on the chart. (Figure 4.5.b) The data points that correspond
to the focus subset are color-coded in orange, but the complementary ones
are in gray. These secondary filters are also displayed in the filter status bar
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with the prefix “Focus.” As a secondary brushing and linking technique, the
Author Network View and Article List View also reflect this focused subset.

4.2.4 Co-authorship Network View

Figure 4.7: Co-authorship Network View. a) the view represents the co-authorship net-
work among the most publishing authors of the targeted subset with a force-directed
node-link graph. The number of authorships and co-authorships are visually encoded
into the node color and the link strength. b) users can adjust the graph properties with
the controls in the optional configuration side panel.

The analysis of bibliometric networks [12, 40, 78, 91], such as co-authorship
or co-citation networks, has always been of major interest in the literature
analysis domain.We implement an interactive force-directed node-link graph
to reveal the co-authorship network, and to identify the hubs and authorities
of the user-filtered subset (Figure 4.7).

The node-link graph is constructed using the top-k publishing authors.
The default value of the k-value, which is the number of nodes, is 40. The
number of articles by each author is color-coded into the color of each node
using a sequential orange color scheme. The links between the author nodes
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indicate co-authorship between the authors, whereas the width and satura-
tion of each link represent the strength of the link. In this view, users can
identify the leading authorities of the user-interest subset, highly connected
subgroups, hub nodes of the subgroups, and bridge authors among the sub-
groups.

However, the graph properties, namely the number of nodes, node ra-
dius, node charge strength, and link distance, may need to be adjusted to
reveal the network topology efficiently. Users can configure these properties
in real time using the Graph Settings panel to monitor the network topol-
ogy. Users can select each node and link to focus on the articles by an author
and the articles to which authors contributed together. As the Co-authorship
Network View, Timeline View, and Article List View are coordinated views,
they all reflect this focused subset.

4.2.5 Article List and Detail View

The articles of the search result are presented (Figure 4.4.d). The list re-
sponds to the filter and focus interactions, and displays the user-interested
subset of the articles. Users can sort the list according to several options:
PubMed relevance [69], publication date, and citation count. Each list item
includes the title, citation count, publication journal, impact factor, publi-
cation year, and authors. In an item, a circular glyph is placed ahead of the
title, which is color-coded using an orange color scheme. The glyph color en-
codes the citation count of the article, which serves as an indicator of popular
articles. Users can bookmark specific articles of interest by toggling the star-
shaped button that follows each item. The list can be switched between dis-
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playing all articles or bookmarked articles by toggling the star-shaped button
in the list toolbar.

The title is annotated with biomedical concepts using the PubTator Cen-
tral application programming interface (API) [119]. PubTator Central parses
natural language and recognizes biomedical named entities [120]. A total of
six biomedical concept categories are annotated using different colors: genes,
diseases, chemicals, mutations, species, and cell lines.

Figure 4.8: Article List & Detail View. The Detail View displays the title, authors, citation
counts, publishing source and data, external links to PubMed and PubTator, the abstract,
and the PubTator annotations. Users can click on each annotation, which provides exter-
nal links to the information of the biomedical entity.

When a user selects an article from the list or clicks on an article point
from the Timeline View, the List View is transformed into the Detail View
(Figure 4.8), which displays the annotated title, abstract, and more detailed
information of the biomedical concept tags. A list of the concepts that appear
in the title and abstract text is placed above the title so that users can com-

45



prehend the main keywords without reading the entire text. Users can also
click on a tag and identify the ID of each biomedical term, such as MeSH
term or NCBI Taxonomy IDs. The detailed information of each biomedical
concept is provided, with a link to an external database.

4.3 User Study

4.3.1 Participants

Weconducted a randomized controlled user survey of 24MDsbetweenNovem-
ber to December 2020. This population was completely different from that of
the preliminary user survey. All participants were first randomly assigned
to one of two groups and a crossover randomization method (1:1) using a
random number table was adopted for random allocation.

As indicated in Table 4.3, all of the participants were in the first or second
year of their fellowship and were specialists who were actively conducting
medical research. The mean age was 36 years, and 33% of the participants
were female. The participants had obtained a doctor’s license and had writ-
ten an average of three papers as a first author. The participants had amedian
of four years of experience using PubMed; however, they had no exposure
to EEEvis prior to the randomized controlled study. The population of this
randomized controlled study (n = 24) was completely different from that of
the preliminary survey (n = 76).

Variables Values (n=24)

Age (year) 36 (33–38)*

Gender
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Table 4.3 continued from previous page

Variables Values (n=24)

Female 8
Male 1

Research career
Years after medical college graduate 7 (5–9)*
Published articles as a main author 3 (1–6)*

Exposure to search browser
Previous exposure to PubMed 100 (100.0)
Duration of exposure to PubMed (years) 4 (2–6)*

Subspecialty of fellowship
Gastroenterology (non-HBP) 3
Gastroenterology (pancreatobiliary) 3
Gastroenterology (hepatology) 4
Oncology 2
Hematology 2
Cardiology 1
Pulmonology 1
Nephrology 1
Surgery, HBP 1
Surgery, gastric 1
Surgery, orthostatic 1
Surgery, thoracic 1
Pediatrics 1
Obstetrics 1
Anesthesiology 1

Table 4.3: Demographics findings of randomized controlled user test
∗ Data are demonstrated as median (range)
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4.3.2 Procedures

The two groups were as follows: (1) the E-P group, which performed the
same query in the sequence of EEEvis and PubMed, and (2) the P-E group,
which performed the same query in the sequence of PubMed and EEEvis.
Once the participants had signed the consent form, the actual study was
conducted as a 1:1 online Zoom meeting between the interviewer and in-
terviewee. The interviewwas conducted for a total of 60 minutes, and it con-
sisted of 10minutes of orientation and free use, 40minutes of actual literature
searching, and 10 minutes of user feedback (Figure 4.9).

Figure 4.9: Schematic flow for randomized controlled user study.
∗ The E-P group performed the same query in the sequence of EEEvis and PubMed, and
the P-E group performed the query in the sequence of PubMed and EEEvis.

In the first 10 minutes, as the participants had not been exposed to EEE-
vis before, the interviewer taught them how to use EEEvis for 5 minutes,
following which they could freely use the system and test it for the remain-
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ing 5minutes. If any question arose during use, the interviewer immediately
provided an answer.

For the 40 minutes of literature searching, two optimized queries were
provided according to the subspecialty of the interviewee. The first query
was presented on the assumption that when participants prepare for a pre-
sentation at a conference or seminar, they find main reference articles on the
subject. The interviewee could select up to 5 suitable papers for their require-
ments and performed a paper search using EEEvis or PubMed for a maxi-
mum time of 10 minutes. For the following10 minutes, the same query was
executed using another search program that was not previously used. If the
same process was repeated twice, the previous 10 minutes could be consid-
ered as learning about the corresponding query, which could lead to a bias
(i.e., practice effect) whereby the results appeared to be better in the later
10 minutes. We randomly assigned the entire group to either the E-P or P-E
group to correct this bias.

The second query was also optimized according to the subspecialty of
the interviewee. In this case, when an academic thesis is written and a spe-
cific sentence is used, the researcher is searching for a reference article that
can serve as a citation for that sentence. EEEvis and PubMed were assigned
the same time of 10 minutes each and the order of the search interfaces was
equally assigned according to the E-P or P-E group. The two queries that
were presented for each field were provided blindly by assistant or associate
professors in the corresponding subspecialty.

In the final 10 minutes, user feedback was provided based on open ques-
tions, and the results were qualitatively analyzed and summarized.
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4.3.3 Results and Observations

Methodologies

Once all 24 participants had been interviewed, two researchers analyzed the
video according to the standardized format, whereas two other researchers
cross-checked the video. The overall analysis results were divided into two
parts. The first part was related to the phase of entering search keywords,
during which the time to achieve the optimal search strategy and loading
time were measured as specific variables. The second part was the stage af-
ter the search results were presented, whereby the size of the search results,
the number of selected articles, time to reach the first article, and time to com-
plete the article selectionweremeasured and analyzed. The existing assistant
and associate professors who submitted the query evaluated how effectively
the finally determined papers met the requirements and fit the topic. The
papers were graded into three categories: (1) appropriate, (2) sub-optimal,
and (3) inappropriate; subsequently, the results were aggregated and ana-
lyzed. Finally, the results of the user feedback were classified as advantages
in comparison to PubMed and suggestions for further improvement in the
subsequent version according to their frequency.

Task Results

Following the randomization in the sequence of PubMed and EEEvis, two
queries were provided to each participant (Table 4.6), the search efficiency
of which is compared in Table 4.4. None of the participants had experienced
EEEvis prior to this trial, which means that this was the first exposure to
EEEvis for every participant. However, the participants had an average of 4
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years of experience in using PubMed. The median numbers of articles that
were listed as query results were 1,423 (EEEvis) and 1,446 (PubMed). The
median times to reach the first targeted article were 93 (36 to 125) and 90
(35 to 119) seconds, respectively. The median times to complete the search
were 298 (140 to 415) and 306 (102 to 397) seconds, respectively (P = 0.771).
A comparison of the results of the subjects to those of experts demonstrated
that the relevance was 87.9% vs. 90.5% (P = 0.637), respectively.

Interview Observations

During the last 10 minutes of online interview, the participants were asked
open questions regarding the advantages and disadvantages of EEEvis and
for suggestions for further improvement in the future version (Table 4.54). A
total of 21 (87.5%) participants mentioned the sorting and filtering by the ci-
tation count and impact factor as an advantage. Increasing the accuracy and
granularity of the filtering interaction (58.3%) and reducing the search load-
ing time (45.8%) were the most frequent suggestions for further improve-
ment in the future version. Finally, 22 of 24 participants (91.7%) responded
that they are willing to use EEEVis as their first choice for a biomedical liter-
ature search task.
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Advantages compared to PubMed No (%)

Sorting and filtering by citation count and impact factor 21 (87.5)
Clean and intuitive interface 13 (54.2)
Article bookmark function 9 (37.5)
Co-authorship Network View 4 (16.6)
Accurate search output of important and target articles 3 (12.5)
PubTator Central word annotation 1 (4.2)
Quick access to abstract 1 (4.2)

Suggestion for further improvement in next version No (%)

Mouse dragging sensitivity in filter section 14 (58.3)
Loading time of whole demonstration of time 11 (45.8)
Save and export bookmarked articles 8 (33.3)
Not suitable interface for mobile screen 3 (12.5)
Messy PubTator Central word annotation 3 (12.5)
No advanced search function, thereby, impossible to apply to meta-analysis 2 (8.3)
Misspellings even a little results in wrong results 2 (8.3)
No exclude option 1 (4.2)
Difficult to modulate Co-authorship Network View 1 (4.2)
Abstracts are not visible in the first place 1 (4.2)
No related or cited by articles 1 (4.2)
No direct full text link 1 (4.2)
Unable to save search options 1 (4.2)

Willingness to use EEEvis as the first choice for literature search No (%)

Yes 22 (91.7)
No 2 (8.3)

Table 4.5: Feedback for EEEvis
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4.4 Discussion

We have presented the literature searching tool called EEEVis, a novel in-
teractive visual analytic system for the biomedical literature search task. We
compared the search performance of EEEVis and PubMed with medical re-
searchers and evaluated their usability. The search performance measured
as the time to obtain the appropriate search results was comparable between
the two systems, despite EEEVis being new to the subjects. Also, in the qual-
itative questionnaire after user study, the feedback of participants showed
considerably favorable trends toward EEEVis.

With the developments in biomedical science, computer science, and in-
formation technology, the number of scientific papers published annually
has increased by 8% to 9% each year, which is equivalent to over one million
papers being entered into the PubMed database per year in the biomedi-
cal field alone [59]. Such number of papers cannot be handled by libraries,
which has led to the development ofwebsites formanaging literature databases.
These sites include PubMed, Web of Science (https://www.webofscience.
com/), Scopus (https://www.scopus.com/), and Google Scholar (https:
//scholar.google.com/).Medical researchersmayuse one ormore of these
websites according to their purposes and preferences. Among these sites,
PubMed is a free resource that is supported by the NIH, United States, and
it covers most medical articles that are published. Furthermore, PubMed
provides Boolean operators and a multi-criteria query syntax for detailed
searching of the appropriate literature. These characteristics of broadness
and specificities have resulted in the fact that almost all meta-analysis re-
search includes PubMed as a search strategy.
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However, the recent flooding of article publication has made it difficult
for medical researchers to conduct accurate searches for key articles or to
learn about a subject effectively. There are at least two reasons for this: First,
the credibility of articles and journals varies. As an articlewithwell-designed
methodology and that with low reliable data is counted as one, it is becom-
ingmore time consuming and difficult for themedical researchers to identify
“good” articles. Moreover, so-called predator journals do not employ suffi-
ciently credible review processes, such as the careful selection of editors and
thorough peer-review. The list of such journals may not be familiar to many
researchers, which may cause other difficulties in medical research. Second,
as the number of articles continues to increase exponentially, it is difficult to
explore and narrow the massive set of biomedical literates with the current
search interface. To narrow the search result and retrieve the most relevant
target articles, the multi-criteria bibliographic query syntax is non-intuitive
and comes with a steep learning curve.

We reflected the design requirements from the preliminary survey into
EEEVis. The responses to the post-user-study questionnaire show the users
found the best strength of EEEVis is to be the sorting and filtering functions
(R5) of the impact factor and citation counts (R2). The runner-up response
was the intuitive interface (R1), so we believe users found the system easy to
use. Despite there being no significant difference between the task comple-
tion time of PubMed and EEEVis, users answered a preference for EEEVis
over PubMed as a biomedical literature search tool (91.7%). We believe this
shows that EEEVis fulfills the design requirements as a literature search tool
and improves the user experience.
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EEEVis follows a progressive visual analytic approach to reduce the time
delay during a large-scale query search and provide interactivity to the sys-
tem. However, despite the users being informed that the search results of
EEEVis are updated progressively and users can explore the results during
the fetch process, most users waited until the fetch process was completed.
There was no explicit feedback on why users hesitated to explore the results
during the fetch process. We suppose that the search query results during
the user study tasks were not big enough(684 2205 articles) to invoke a
severe fetching delay, and users did not have the necessity of exploring the
approximate partial batch results.

4.4.1 Design Implications

According to our findings, we present two implications for improving the
design of visual analytics systems for biomedical literature search.

Provide Overview for Bibliographic Features

While searching for optimal articles using EEEVis, every participant used the
citation count and impact factor as key indicators for their search strategy.
Novices may find it difficult to establish a search strategy when the search
space is too wide and noisy. Conventional importance metrics, such as the
citation counts and impact factor, may provide a cornerstone to explore the
literature search space. Most of the participants identified the appropriate
range of the values in which they were not interested with the bibliographic
feature overviews and reduced the information noise of the search space by
filtering out articles in which they were not interested. A total of 21 out of
24 participants pointed out that “Sorting and filtering by citation count and
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impact factor” was the main advantageous feature of EEEVis compared to
PubMed.

Represent Features in Multiple Coordinated Views

As novices often experience interpretation problems [43], presenting the
search dataset with a single bibliographic feature at a time is not sufficient
to provide a clear understanding. Presenting multiple bibliographic features
in multiple coordinated views helped the users to understand the dataset
more precisely. Users utilized the brushing and linking techniques to find
specific regions of interest, and to reveal the connections among different
bibliographic representations. Our findings suggest that biomedical litera-
ture search tools should provide different viewpoints of the data with mul-
tiple coordinated views.

4.4.2 Limitations and Future Work

EEEVis is still a work in progress, which means that several features require
improvement. These include improving the range selection accuracy and
granularity of the rangefilters and enabling to save the user bookmarked(stared)
articles. Furthermore, the information on the impact factors and citation counts
should be updated from an external database periodically, as these are not
provided by the PubMed API.

Artificial intelligence-based models can enhance the quality of the user
experience in literature search systems. Conventional search systems like
PubMed or EEEVis provide search results with ranking algorithms that rank
the relevance of the documents from the search keyword [38]. However,
content-based ranking results are usually not self-explanatory, and userswill
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still need to seek through the text and bibliographic information to deter-
mine whether the documents are an appropriate match for them. With the
attention mechanism-based language models and progress in the explain-
able AI field [67, 87, 113, 116], it is possible to visualize which part of the
text is responsible for the relevance rankings. We believe that making search
results more explainable will provide intuitive visual cues, and users will be
able to develop more efficient search strategies.

The pilot study exhibits several limitations. First, the pre-development
surveywas conductedusing a relatively small number ofmedical researchers
with a limited background. Various additional opinions on PubMed or other
search tools could be obtained with greater numbers andmore diverse back-
grounds, such as countries, mother languages, and ethnicities of medical re-
searchers.

Second, the results of the user study should be interpreted with caution.
The number of subjects was small, the participants had various fields of ex-
pertise and areas of interest, and the queries that were presented to the sub-
jects were individualized. This resulted in heterogeneity, which may have
masked the true difference in performance between the two systems. Fur-
thermore, the methods that were used to measure the performance of the
systems represented only a part of the overall performance, as the perfor-
mance of search systems can be measured by many other means. The opti-
mal methods for measuring the search performance remains a controversial
subject.

Third, the task size might have been too small to observe different user
behaviors between EEEVis and PubMed. In the case of PubMed, the median
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number of query resultswas 1,446, and themedian task completion timewas
306 seconds. As we supposed that the task size might be why users did not
explore the dataset between progressive updates, different task sizes might
affect user behaviors. So, conducting case studies with real-world scenarios
that usually have more extensive search results and longer task time might
reveal significant insights between systems.

Finally, comparing behaviors among populations with different biomed-
ical literature search experiences might be an interesting approach. In the
user study, we recruited participants with a similar amount of experience in
biomedical literature searching to control the effect of the expert level. How-
ever, several participants commented that EEEVis would be more effective
for novice users than expert users who have already established an optimal
search strategy.

4.5 Conclusions

In this study, we propose EEEVis, which is a novel interactive visual analytic
system for a biomedical literature search task and a design guideline for the
task. We demonstrated that the proposed system could improve the user ex-
perience in searching the appropriate literature by conducting a controlled
user study. With the application of more future work, we expect EEEVis to
become a system that can efficiently aidmedical researchers in searching im-
portant articles of interest in the era of information overload.
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Table 4.6 Two optimized queries for each participant

∗ All the participants were randomly allocated into two groups: E-P means
the sequence of EEEvis to Pubmed, and P-E means the sequence of PubMed
to EEEvis.
†Query 1 assumes a situationwhere the participantmakes a presentation on
the ‘topic (A)’ at a specific conference. If you are unfamiliar with the topic
(A), what key article would you find in that field to prepare for a presenta-
tion? For the same query, perform a literature search in the order of E-P or
P-E. The time limit for each search engine is 10 minutes.
§ Query 2 assumes a situation where the participant writes an introduc-
tion or discussion part of a certain paper. If you were to select and use ei-
ther ‘sentence (B)’ or ‘sentence (C)’ in a particular paragraph, which article
would you cite (except participants 14)? For the same query, perform a liter-
ature search in the order of E-P or P-E. The time limit for each search engine
is 10 minutes.
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Chapter 5

GeneVis: A Visual Analytics
System for Gene Signature
Analysis in Cancers

This chapter introduces GeneVis, a novel web-based visual analytics system
for gene signature analysis from RNA-Seq data in cancers genomics.

5.1 Motivation

A gene signature is "a single or a group of genes in a cell having a unique gene

expression pattern that is the consequence of either changed biological process or

altered pathogenic medical terms" [73]. Identifying gene signatures from RNA-
Seq data is one of the most commonly used biomedicine techniques and has
often beenused to group samples in clinical research or treatment [73].Many
statistical analysis methods are already developed and utilized to determine
differentially expressed transcripts among groups of samples [3, 8, 9, 16, 49,
66, 71, 72, 74, 79, 97, 115].However, detecting themost informative signatures
from this complex data is still challenging.
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Identifying gene signatures and signature scores across multiple major
cancer types is a commonly used technique in cancer genomics. However,
this task is usually done by plotting and interpreting the gene expressions
values across cancer types for a single gene and repeating it over multiple
target genes. Because of the massive size of the gene candidates, this process
requires tremendous human effort and burden to complete. An appealing
way to make sense of this big data is to project it into a two-dimensional do-
main, where a single point represents each gene signature. Such represen-
tations can provide a perspective to interpret the patterns and similarities
among the biomarker candidates. To aid in analyzing and interpreting gene
signatures from RNA-Seq data, we introduce GeneVis, a web-based visual
analytics system that visualizes a user-configured batch of gene signatures
across major cancer types.

5.2 System and Interface Implementation

5.2.1 System Overview

We designed and implemented GeneVis, a novel web-based RNA-Seq gene
expression visual analytic system. The system’s objective is to visualize RNA-
Seq gene expression data and aid cancer genomics studies. The system uses
TheCancerGenomeAtlas(TCGA)RNA-Seqdata, a tabular data of 10,327 rows(10,327
tissue samples) and 20,527 columns(20,502 genes + 25 sample clinical vari-
ables). Each sample is one of the three tissue types(Tumor, Normal adja-
cent to the tumor, and blood) and one of the 32 cancer types. We design the
user interface as a primary gene expression box-plot view surrounded by
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two coordinated views that present the contextual information of a gene set
overview (Figure 5.1).

When users input the genes of interest, a subset of the 20,502 genes, the
system will fetch the expression data of the input genes from the server and
visualize the results. The tabular expression data of the input genes can be
exported as a CSV file. Users can search a gene name and add one by one
(5.2.A) or input a list of gene names at once(5.2.B). The input gene list ap-
pears at the left sidebar(Figure 5.1.A) with an additional list item, ’Over-
all Average’, the arithmetic mean of all input genes. Users can confirm the
RNA-Seq gene expression data of each gene(or the overall average) with the
expression detail view(Figure 5.1.F,G).

Figure 5.2: Input dialog for genes of interest

5.2.2 Gene Expression Detail View

The expression detail view presents the dispersion of the gene expression
data(or the average). It contains two group of box plots, the per tissue type
box plots(Figure 5.1.F) and the per cancer type box plots(Figure 5.1.F). The
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box encodes the lower quartile(Q1), median, upper quartile(Q3), and the
whiskers represent the extent values within the range [Q1 – 1.5 * IQR, Q3
+ 1.5 * IQR] where IQR is the interquartile range (Q3 - Q1). Users can sort
the plots alphabetically or numerically, zoom the plot to full screen, export
the plot image, and export the plot data. In addition, users can plot the ex-
pression values with a jitter option(Figure 5.3. A) or group the per cancer
type box plot by tissue types to see the subgroups of each cancer type(Figure
5.3.B).

5.2.3 Gene Vector Projection View

The expression detail view can only present the data of a single gene. There-
fore, the two coordinated views, The projection view and the gene x cancer
type heatmap, visualize the overview of the input gene list. The projection
view shows a 2D UMAP scatter plot(Figure 5.1.D) of the gene expression
vectors. The clusters reveal the expression pattern similarity among genes
and indicate possible predictive biomarkers or relationships among genes.
The scatter plot supports pan & zoom interaction and brushing & linking
interactions with the mouse behavior.

The color of a point represents the central value(median, mean) and
its variation(IQR, standard deviation) using the Value-Suppressing Uncer-
tainty Palettes(VSUPs) [29]. The VSUP encodes the central value of the gene
expressions using the hue of the Viridis colormap and the variation of the
value using the saturation of the color [29]. In Figure 5.1.B, users can con-
firm the color legend and select the central value and variation metric to en-
code. In addition, users can always deselect the variation value and encode
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the points with a simple 1D discrete color scheme. With the 2D projection
coordinates and VSUP color scheme, Users can explore the gene expression
space and discover patterns such as gene clusters, genes with an anomaly or
dispersed expression values.

5.2.4 Gene x Cancer Type Heatmap view

The gene-cancer heatmap(Figure 5.1. E) is a heatmap table where the rows
represent each gene and the columns represent the cancer types. The color of
each cell represents the expression value of the samples that match the cor-
responding gene and cancer type, a color from the global VSUP color legend.
The cells can be shrunken to fit the table into the window and present the
overview of the whole gene set or enlarged to increase the visibility of each
row(Figure 5.4).With the heatmap, users can skim through cells and quickly
capture the genes or cancer types with insight expression values. For exam-
ple, users can identify a gene that has a very high expression value with a
particular cancer type at a glance.

We applied hierarchical clustering on the gene vectors and placed a den-
drogram on the right side of the table. The height of the dendrogram in-
dicates the distance among the gene expression vectors, and the distance is
calculated with the same distance function we used in the UMAP projection.
We provide three distance options(Pearson correlation, cosine distance, and
euclidean distance) from a dropdown list in the toolbar(Figure 5.5.C). Once
a user changes the distance metric, the UMAP projection and dendrogram
hierarchical clusters are recalculated, and the views are updated.
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Figure 5.4: Heatmap + Dendrogram. A cancer type (columns) x gene (rows) heatmap of
the expression values.

Figure 5.5: Toolbar
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5.2.5 User Interaction in Multiple Coordinated Views

The filter controls in the toolbar(Figure 5.1.C) filter the samples and affect
the other coordinated views. Once a user applies a filter on a tissue type or
cancer type(Figure 5.5.A,B), the system recalculates the VSUP color legend,
UMAP projection, and the hierarchical clustering. After the recalculation,
the views and boxplots are redrawn.

The projection view supports brushing & linking, and once a user drags
a region of interest on the scatter plot, the points within the region and the
heatmap cells of those genes will be highlighted, and the others will be fade
out(Figure 5.6). The expression cutofffilter in the toolbar fades out the points
of the projection views and the cells of the heatmap that have the central
value under the cutoff value.

5.3 Case Studies

5.3.1 Participants

We recruited experts with years of experience in cancer genomics and were
familiar with the TCGA data set. We asked four experts to use GeneVis and
share their experience with the system. The four experts were a bioinformat-
ics system designer(P1), one clinical oncologist(P2), one cancer biomedical
researcher with a clinical oncology background(P3), and a cancer bioinfor-
matics researcher(P4).

5.3.2 Task and Procedures

The experts used GeneVis in their own work for a range of 1-3 days, and we
conducted semi-structured interviews with each in a teleconference. Each
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Figure 5.6: Brushing and Linking
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session lasted for about 40-60 minutes, and each participant freely described
what kind of data they used GeneVis for and demonstrated how they used
GeneVis. Participants demonstrated one or more gene signature analyses.
The participants were instructed to follow a think-aloud protocol and report
anything they found interesting or felt like a barrier during the demonstra-
tion.After the demonstration,we conducted an openquestion semi-structured
interview, and while the interview, we asked the following common ques-
tions.

Q1. For which tasks have you used GeneVis?

Q2. How many genes did you explore? What were those genes?

Q3. What did you goal to accomplish with GeneVis?

Q4. Before using GeneVis, how did you perform the tasks?

Q5. What is the advantages and disadvantages of the conventional meth-
ods?

Q6. Which feature or interface did you use most? How did it support your
work?

Q7. What obstacles did you encounter? How did you address them?

Q8. How has your usage changed over time?

Q9. What features do you wish to add to GeneVis?

While we took notes during the sessions, all think-aloud demos and in-
terview conversations were recorded for further analysis. Participants re-
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sponded to a SUS (System Usability Scale) questionnaire After completing
the interview.

Figure 5.7: Case study P1: Data Validation based on prior knowledge
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5.3.3 Case1: Identifying Similar Gene Signatures with TGFB1 in
Hallmark Gene Sets

P3 is a Bio-informatics researcherworking onvarious cancer precisionmedicine
projects. P3 is also a medical doctor who has practiced as a clinical oncolo-
gist. P3’s goal in this studywas to identify 54 gene signatures acrossmultiple
cancer types of the hallmark gene sets up-regulated in response to the TGF-β
cytokine.

After the gene set was loaded, P3 first checked the overall average op-
tion’s cancer type box plots in the ’Gene Expression Detail View’ to validate
the data. With the expression data per tissue type plots, P3 confirmed the
overall expression data showed a higher value in the ’Normal Adjacent to
Tumor (NAT)’ tissue types than the tumor tissue types (Figure 5.7). More-
over, with the per cancer type plots, P1 identified that expression values
were higher in lung cancers (LUSC, LUAD) and pancreatic cancers (PAAD).
These insights match the already known facts of the TGF-β cytokine, so P1
was assured that GeneVis could present the expression patterns in the RNA-
Seq data.

From there on, P3 performed analysis using the ’Gene x Cancer type
Heatmap’ and found the essential genes (SMAD6, SMAD7, TGFB1) that he
already knewas important regulators of TGF-β showahigh expression value
across most of the cancer types. By investigating the genes clustered with
the essential genes in the dendrogram and those located near the Projection
view, P3 found a gene of interest ’SERPINE1’ (Figure 5.8). The SERPINE1
gene shows a similar gene signature as the TGFB1, and P3 now hypothe-
sizes that SERPINE1 might also be an important regulator of TGF-β. After

80



Figure 5.8: Case study P1: gene signature of SERPINE1

all, P3 downloaded the raw data and performed further analyses on SER-
PINE1 with R, such as gene expression correlation analysis or overall sur-
vival comparison analysis.

5.3.4 Case2: Identifying Cluster Patterns in the HRD data set

P2 is a clinical oncologist working at a hospital. P2’s goal in this study was to
explore the gene expression patternswithin the 566 gene sets ofHomologous
recombination deficiency (HRD). HRD is a frequently observed common
characteristic ofmany tumor samples, especially in breast and ovarian cancer
[84].

At first, P2 also followed a path similar to P1 and checked the expres-
sion patterns of the tissue types and cancer types in the overall average item.
However, P2 performed his analysis mainly using the Gene Projection view
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Figure 5.9: Case study P2: Positive correlation gene set and negative correlation gene set

after that step. P2 focused on identifying clusters and subgroups in the data
set. However, therewere no explicit, clear clusters at the beginning, P2 identi-
fied two significant clusters that divide the projection space when he filtered
out other cancer types and focused on the visualization of ovarian cancer
and breast cancer. P2 was interested in this result because each group’s size
and genes seemed similar to the gene sets in this group that have a posi-
tive/negative correlation with ovarian cancer and breast cancer incidence.
P2 was also curious that the average expression value of each gene in the left
group showed significantly different expression values, even though they
were grouped as similar patterns.

5.3.5 Results

Usability

We used the System Usability Score (SUS) [18], a highly valuable and ro-
bust tool in helping assess the quality of system interfaces [10]. At the end
of the interview, we asked the participants to answer a standard SUS ques-
tionnaire. The overall SUS score of GeneVis is 76.25 5.10), which is placed
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Figure 5.10: The SUS survey results of the four case studies.

in the acceptable range and the good–excellent range based on the study of
Bangor et al. [10].

All four participants replied that GeneVis’s user interface was intuitive
and easy to learn. They found that the visualization features, except theVSUP
color scheme, were familiar, easy to interpret, and tightly integrated. In addi-
tion, every participant responded thatGeneVis reduces the vast human effort
and time for the gene signature analysis in the cancer domain andwould like
to continue using the system with other real-life data sets.

Expert Feedback

During the semi-structured interview, we received various feedback from
the participants. Most comments were about the VSUP color scheme in the
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gene-cancer heatmap and new feature suggestions for an improved version
of GeneVis. We address the following common comments.

• All four participants answered the common question Q4 (Before using
GeneVis, how did you perform the tasks?) that they usually write a
series of their own Python or R codes for an analysis task to process
and visualize gene signature data. In addition, P3 and P4 answered
that they usually repeat to conduct similar analysis tasks one by one
for each gene of interest or each target cancer type by writing similar
Python or R codes for each analysis. P2 answered similarly, but he also
mentioned that he occasionally uses UCSC Xena [42].

• The participants commented that GeneVis was easy to learn and use to
explore the gene signature patterns amongmultiple cancer types. They
also commonlymentioned that compared to the conventional methods
from (Q4), GeneVis reduced the burden of the vast human effort and
shortened the task completion time (Q5).

• One common answer of P2 and P3 (whom both have a background
as clinical oncologists) for Q9 (What features do you wish to add to
GeneVis?)was amethod to explore and seek the clinical outcomes (sex,
age, overall survival rate Etc.) of the samples. P1 and P2 both wanted
to plot and confirm the clinical outcome of the samples, and they also
wanted to select a group of samples on-demand to compare the clinical
outcomes of the groups.

• The most common suggestion for a future version of GeneVis (Q9)
was adding a subgroup analysis feature. All four participants said they
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wanted to continue the gene signature analysis with subgroups di-
vided by the genes, cancer types, or clinical outcomes. While the case
study, the participants commonly asked if they could select a group of
samples by selecting the elements or selecting a region of interest in
the projection view or the gene-caner heatmap view.

• Participant P2 suggested a statistical evaluationmethod (ANOVA,MANOVA,
Etc.).

5.4 Summary

This chapter implemented GeneVis, a novel web-based interactive gene sig-
nature visual analytics system that visualizes the gene expression patterns
from RNA-Seq data across major cancer types. We conducted four case stud-
ies with experienced clinical oncologists and biomedical researchers, andwe
asked themabout their use ofGeneVis. Based on the interview responses and
the SUS survey results, the case studies showed that GeneVis facilitates the
multi-cancer type gene signature analysis and provides a better understand-
ing of the gene set RNA-Seq data.
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Chapter 6

Conclusion and future work

6.1 Conclusion

This dissertation presents the results of three design studies on visual analyt-
ics systems for laborious evidence-based tasks in medical research. In chap-
ter 3, we introduce PLOEM, a visual analytics system to synthesize broad
evidence and generate an evidence map in a standardized procedure and
visual representation. The use cases show how the system can facilitate the
task and how the users can better understand the evidence gaps and the
trends. In chapter 4, we conducted a preliminary survey with 76 medical
doctors to derive the requirements for a biomedical literature search. Based
on the results, We designed and implemented EEEVis, an interactive visual
analytic system for biomedical literature search tasks. A system enhances the
PubMed search result with several bibliographic visualizations and PubTa-
tor annotations. We performed a user study with 24 medical doctors to eval-
uate the system and presented the design guidelines and challenges for a
biomedical literature search system design. In chapter 5, we implemented
GeneVis, a novel web-based interactive gene signature visual analytics sys-
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tem that visualizes the gene expression patterns from RNA-Seq data across
major cancer types. Case studieswith oncologymedical doctors and biomed-
ical researchers showed that GeneVis facilitates the multi-cancer type gene
signature analysis and provides a better understanding of the gene set RNA-
Seq data.

6.2 Future Work

We use machine learning techniques with GeneVis in chapter 5. We employ
the UMAP algorithm for a gene vector 2D projection view and the hierar-
chical clustering algorithms for the dendrogram. However, there are more
evidence-based tasks that state-of-the-art machine learning models can fa-
cilitate in medical research.

For example, visualizing the similarity among literature abstract sections
with the state-of-the-art language models, such as BERT [33] or GPT-3 [19],
can provide the researchers with a better visual landscape of the literature
evidence space. In addition, researchers could utilize this feature in cluster-
ing evidence or facilitating the literature search task by drilling down the
evidence space into the target literature.

Another interesting approach would be utilizing the biological entities
we displayed in EEEVis (chapter 4). Chen et al. [25] trained and developed
a concept embedding model, BioConceptVec, that captures the semantics of
biological concepts by training the model with 30 million PubMed abstracts.
We hypothesize with projecting the biological concept embeddings that be-
long to the literature of an evidence search task, a researcher can have a brief
overview of the semantics of the evidence literature. Therefore we are im-
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Figure 6.1: A new EEEVis version with SOTA machine learning based document similarity
visualizations and BioC entity projections

plementing and integrating these visualizations into EEEVis and planning
to study the impacts on medical researchers in the future (Figure 6.1).
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국문초록

근거중심의학(Evidence-Based Medicine)이란 "임상 치료 및 의학 연구에서
현재존재하는최고의증거를양심적이고,명백하며,분별있게이용하는방법론"
이며 [98],현대의학에서가장널리받아들여지는의학패러다임이다.신뢰할수
있는고수준의과학적근거를검색,검토,합성하는것이야말로근거중심의학의
핵심이다. 하지만, 근거중심의학이 이미 광범위하게 사용되고 있음에도 불구하
고, 의학 연구에 근거중심의학의 프로토콜을 실천하는 데에는 여전히 많은 어려
움이따른다.의료문헌정보,임상정보및유전체학정보까지연구자가검토해야
할근거의양은방대하며광범위하다.또한의학과기술의발전으로인해점차더
빠른속도로늘어나고있기에,이를모두엄밀히검토하기위해서는막대한양의
시간과인력이있어야한다.
본논문은시각적분석방법론을접목하여의학연구에서방대한과학적증거를

검색하고 검토할 시 발생하는 막대한 인적 자원의 과부하 문제를 완화하고자 한

다.이를위하여근거중심의학의절차중특히인력소모가막심한절차들을선정
하고,이러한난관을극복하고보다효율적이고효과적으로데이터에서유의미한
정보를 도출할 수 있게끔 보조하는 세 가지 시각적 분석 시스템들을 구현하였으

며,각각의시스템에관한디자인연구를수행하였다.
우선첫디자인연구에서는근거중심의학연구에있어필수적단계인근거합

성방법론의하나인근거매핑(Evidence Mapping)과정을지원하기위한시각
적 분석 시스템 PLOEM을 설계했다. 그리고 이를 검증하기 위해 다년간의 근거
기반 의료 경험이 있는 종양학자와 함께 사례 연구를 수행했다. 두 번째 디자인
연구에서는의학문헌검색시스템의요구사항분석을위해총 76명의의사를상
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대로 설문조사를 진행하였고, 이러한 분석을 바탕으로 대화형 시각적 분석 시스
템인 EEEVis를설계했다.이시스템은여러종의서지정보시각화인터페이스와
PubTator의 주석 정보를 활용하여 PubMed 검색 엔진의 검색 결과를 증강하는
시스템이며,이를평가하기위해총 24명의의사와함께사용자연구를수행하였
다. 이 연구 결과를 바탕으로 의학 문헌 검색 시스템에 대한 설계 지침과 과제를
제시한다. 마지막으로 세 번째 디자인 연구에서는 임의의 유전자군의 유전자 발
현패턴을주요암유형에따라시각화하고분석할수있는시스템인 GeneVis를
설계하였다. 암 유형에 따른 유전자 발현 패턴의 분석과 비교는 암 연구자들이
정밀의학에서생체지표(Biomarker)를발견하기위해빈번히수행하는작업이
다. 우리는 종양학 전문가 및 유전체학 전문가 총 4인을 대상으로 사례 연구를
진행하였고,그결과 GeneVis가해당작업을더수월하게수행하는것과기존의
데이터에서새로운정보를도출하는것에도움이되었음을확인하였다.
위의세디자인연구의결과를바탕으로,본논문은사용자분석과작업분석을

동반한시각적분석방법론이의학연구의근거관련작업의어려움을해소하고,
분석데이터에대한보다나은이해를제공하는것이가능하다고결론내린다.

주요어:정보시각화;시각적분석;근거기반의료;정밀의료;근거매핑;문헌검
색;유전자시그니처
학번: 2013-30969
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