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Abstract 

Randomized controlled trials (RCT) are the gold 
standards for evaluating the efficacy and safety of 
therapeutic interventions in human subjects. In 
addition to the pre-specified endpoints, trial 
participants’ experience reveals the time course of the 
intervention. Few analytical tools exist to summarize 
and visualize the individual experience of trial 
participants. Visual analytics allows integrative 
examination of temporal event patterns of patient 
experience, thus generating insights for better care 
decisions. Towards this end, we introduce TrialView, 
an information system that combines graph artificial 
intelligence (AI) and visual analytics to enhance the 
dissemination of trial data. TrialView offers four 
distinct yet interconnected views: Individual, Cohort, 
Progression, and Statistics, enabling an interactive 
exploration of individual and group-level data. The 
TrialView system is a general-purpose analytical tool 
for a broad class of clinical trials. The system is 
powered by graph AI, knowledge-guided clustering, 
explanatory modeling, and graph-based 
agglomeration algorithms. We demonstrate the 
system’s effectiveness in analyzing temporal event 
data through a case study.  
Keywords: Clinical trial, Visual analytics, Cluster 
model, Graph AI 

1. Introduction  

Randomized controlled trials (RCT) are designed 
experiments of human subjects for evaluation of the 
efficacy and safety of therapeutic interventions. Trials 
are designed to generate actionable, reliable, and 
reproducible evidence in support of specific treatment 
strategies, usually in comparison to standard care. 
RCTs are the gold standard for therapeutic evaluation 
and the foundation of evidence-based medicine. 

RCTs generate a plethora of information, 
including outcomes, detailed treatment processes, 
participant characteristics, laboratory measures, and 
adverse events. Trial data are typically collected as 

longitudinal occurrences of events of individual 
participants. Aggregating and summarizing individual 
sequences of these individual events, however, pose 
great analytical challenges because of the inherent 
heterogeneity and the complexity of temporal patterns. 
Traditional statistical methods are often limited in 
their capacity to deal with heterogeneous high-
dimensional and sequential event data.  

Various analytical approaches have been 
developed to address these challenges, including 
permutation tests and trend-based analysis, agent-
based simulation techniques, and artificial intelligence 
(AI) models such as recurrent neural networks and 
convolutional neural networks. However, current 
approaches cannot intuitively depict the event 
transition trajectories for care providers and clinical 
investigators who rarely possess knowledge of data 
science. To the best of our knowledge, there are no 
general-purpose and user-friendly tools for 
summarizing and visualizing the longitudinal patterns 
of participants’ event sequences in RCTs.  

Herein, we attempt to bridge this gap by 
developing TrialView, an interactive visualization 
system based on the practical needs of clinical trialists, 
care providers, and medical investigators. The main 
features of the system are designed with their input. 
The goal is to provide a clear and concise display of 
the trial events data and enable users to explore and 
recognize discernable patterns and communicate the 
findings with stakeholders.  

TrialView provides a comprehensive solution that 
combines explainable AI techniques and visual 
analytics to effectively analyze and interpret event 
sequences in RCTs. The system was developed as part 
of the research infrastructure of the Alcoholic 
Hepatitis Network (AlcHepNet), which is a national 
consortium consisting of eight clinical sites and ten 
translational laboratories. AlcHepNet is a perfect 
platform for such development as it conducts 
multicenter RCT and observational studies. The 
network personnel include clinical trialists, data 
managers and analysts, research staff, care providers, 
and medical investigators, thus presenting a broad user 
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base for developing and testing the system as their 
needs and expectations are often different.  

This work makes three key contributions: 
1) Through hierarchical task analysis, we identify a set 
of tasks and requirements to fulfill the requirements of 
caregivers and researchers on trial data analysis. 2) We 
develop an explainable graph AI method that 
incorporates baseline lab test results and temporal 
event sequences to cluster the cohort, resulting in a 
comprehensive grouping of patients based on their 
clinical characteristics and disease progression 
patterns. 3) We present a multi-view visualization 
system for insights into individual and group patterns 
in the RCT data. These intuitive representations 
support effective exploration, clustering, and 
summarization of the data.  We validate the practical 
utility of our system through a case study. By 
demonstrating its effectiveness in real-world 
scenarios, we establish the system's value in 
supporting clinical researchers, care providers, and 
other stakeholders in their decision-making processes. 

2. Related work 

2.1. Visual analytics in clinical trial 

Visual analytics plays a crucial role in trial 
management and decision-making by integrating 
diverse data sources to enable interactive exploration 
of patterns, trends, outliers, and relationships. Prior 
studies have emphasized the significance of effective 
data analysis in identifying potential adverse events 
related to investigational drugs (Wang et al., 2020). 
Visualization serves as a valuable bridge between data 
scientists and clinical researchers, facilitating 
seamless communication and knowledge exchange. 

In their study, Wang et al. (2020) propose analysis 
approaches for general safety review and specific 
safety topics of interest. In contrast, our approach 
focuses on a comprehensive temporal summary of the 
data, capturing broad data patterns and temporal 
transitions. Lamy et al. (2017) employ dynamic tables 
and rainbow boxes to present comparative drug 
information, while ClinOmicsTrail (Schneider et al., 
2019) integrates clinical and omics data using visual 
analysis tools such as radar plots, sunburst plots, and 
tables for breast cancer treatment stratification. 
TabuVis (Nguyen et al., 2012) offers a high-
dimensional solution for visualizing metadata, subject 
information, and flow cytometry files through 
scatterplots and filtering. Lamy (2020) compares four 
visual analysis techniques for adverse event rates in 
clinical trials, namely horizontal stacked bar graphs, 
vertically stacked bar graphs, area proportional flower 
glyphs, and star glyphs, and concludes that horizontal 

bar graphs and flower glyphs are more effective. 
However, these studies do not fully address the 
comprehensive analysis of broad data patterns and 
temporal progression during treatment, which is a key 
aspect addressed by our approach.  

2.2. Event sequence and progression 
visualization 

Our clinical trial data for Alcoholic Hepatitis (AH) 
encompasses a wide range of events with different 
types, orders, and durations throughout the trial. To aid 
users in comprehending and uncovering patterns 
within this extensive dataset, visualization plays a 
crucial role. Guo et al. (2022) comprehensively 
surveyed event sequence visualization works spanning 
across timeline-based, Sankey-based, hierarchy-based, 
matrix-based, and graph-based visualizations. 
Moreover, Ledesma et al. (2019) have demonstrated 
the usability and effectiveness of health timeline 
visualization in understanding patient health 
trajectories. Inspired by this, we incorporate timeline 
visualization into our information system to enhance 
the exploration and analysis of AH clinical trial data. 

Pathway visualization includes sequence 
alignment (Li & Homer, 2010), progression analysis, 
and interactive exploration. IDMVis (Zhang et al., 
2019) enables users to fold and align records to extract 
event sequence patterns. However, it is designed for 
individual patient data, whereas our view extends this 
capability to explore patterns across entire cohorts. 
DPVis (Kwon et al., 2021) applies Pathway Waterfall 
to display state transition paths using parallel beeswax 
plots and trajectory lines connected by force edge 
bundling. EventFlow (Monroe et al., 2013) supports 
searching, summarizing, cohort selection, 
simplification, and analysis of population-level 
patterns, but it lacks a clear summary of the transition 
between events. ThreadStates (Wang et al., 2021) 
utilizes Sankey-based visualization, scatterplots, and 
glyph matrices to identify disease progression states 
through human-in-the-loop learning. Yet, its 
visualization of states is not time specific. These 
previous visualizations are absent of temporal aspects. 
In contrast, our approach offers a population-level 
perspective, highlighting event transition patterns.  

2.3. Clustering the patient events pattern 

Clustering similar sequences and extracting 
concise representations of data play a crucial role in 
understanding complex temporal clinical patterns 
from longitudinal RCT data. Participant clustering 
helps identify sequences that share similar progression 
paths. Current clustering algorithms are based on 
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similarity and dissimilarity like k-means (Hartigan & 
Wong, 1979), and hierarchical clustering (Johnson, 
1967). Wongsuphasawat et al. (2009) measure the 
similarity between patient histories based on aligning 
temporal categorical data. Guo et al. (2019) propose 
an unsupervised status analysis technique to discover 
semantically relevant progression status as well as 
characteristic events. DPVis (Kwon et al., 2021) 
employs hidden Markov models to capture the 
dynamics of disease progression. These methods show 
limited performance when multiple data domains such 
as patient demographics, baseline lab test biomarkers, 
and temporal events are used. Graph artificial 
intelligence models such as graph convolutional 
networks (Fang et al., 2021) and graph transformers 
(Tang et al., 2023) have demonstrated superior 
capacity over these methods when incorporating 
multimodality data for clustering. Explainable AI 
approaches such as Grad-CAM (Selvaraju et al., 2017) 
further gain insight into AI models.  

3. Task analysis 

Inspired by IDMVis (Zhang et al., 2019) and 
Salmon et al. (2020), we utilize hierarchical task 
analysis (HTA) to enhance our framework for specific 
users. HTA breaks down complex tasks into smaller 
sub-tasks, providing a systematic understanding of 
workflow steps, decision-making, and interactions. 
The task analysis approach aligns well to categorize 
and comprehend the diverse range of activities that 
users engage in when interacting with visualizations. 
HTA comprehensively examines tasks, ensuring that 
the information system accommodates a broad range 
of user requirements and objectives. We use HTA to 
design a user-centered system aligned with their needs, 
workflows, and goals. Through collaboration with 
care providers (U1) and clinical researchers (U2), we 

optimize the framework to address pain points and 
enhance patient care and research outcomes. As a 
result, we determined the following three goals: 

The first goal is to present the patient’s medical 
history and events (G1) including laboratory test 
results and occurrences of adverse events to care 
providers (U1). Such information is crucial for 
understanding the patient's baseline health status, pre-
existing conditions that may influence their response 
to treatment, and the events during the trial.  

Longitudinal data from clinical trials will provide 
clinical researchers (U2) clinically meaningful 
insights into disease progression patterns. The second 
goal is to reveal the distribution of population 
characteristics and outcomes (G2). Such visualization 
helps identify demographic factors, comorbidities, or 
genetic variations that may impact the efficacy of 
certain treatments, and better tailors interventions to 
specific subgroups and improve overall patient care.  

The third goal is to know the course of the 
population progression pattern (G3). This information 
is essential for predicting disease trajectories, 
identifying potential risk factors, and developing 
targeted interventions. By tracking the progression 
pattern of the population over time, healthcare 
providers can gain insights into disease progression 
rates, treatment response, and the effectiveness of 
interventions. Such knowledge allows them to make 
informed decisions about resource allocation, 
preventive measures, and early interventions. 

Each of these goals is associated with specific 
target user groups. G1 primarily targets care providers 
(U1) who need a comprehensive understanding of the 
patient's medical history to guide their treatment 
decisions. G2 is relevant to clinical researchers (U2) 
who aim to analyze population-level data to identify 
trends, disparities, and potential areas of improvement 
in healthcare delivery. G3 caters to clinical researchers 

 
 

Figure 1. Task analysis.  G: Goals; U: Users; R: Requirements; and T: Tasks. 
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(U2) who require population-level progression 
patterns to develop strategies for disease prevention, 
resource allocation, and public health interventions. 

We discussed these three goals with care 
providers and clinical researchers and summarized 
five critical requirements as follows:  

(R1): Provide an overview of the individual's 
clinical history, laboratory test results, and events. 

(R2): Summarize cohort statistics. Researchers 
want to know the distribution of demographic and lab 
test values and compare the two treatment outcomes. 

(R3): Cluster the common group. Aggregate the 
patient history and intend to find trajectory clusters 
and compare the patient experience clusters. 

(R4): Provide interpretation in the context of 
treatment, demographics, and lab values. Once the 
patients have been clustered by disease progression, 
researchers would wonder about the relationship 
between lab test results, demographics and specific 
trajectories. The system should provide an explanation 
to show the contribution of important baseline 
biomarkers to the trajectory. 

(R5): Summarize each cluster as a state transition 
pattern. Each of the states should have a clinical 
meaning, and the visualization should show the order, 
the time of the state transition, and the number of 
patients in that transition.  

Based on the identified goal and requirements, we 
decompose the tasks as shown in Figure 1. 

4. Approach 

4.1. Data processing 

The data (Table 1) used in this work is composed 
of baseline features and follow-up events of AH 

patients (𝑁 = 147 ) who participated in the RCT 
(ClincialTrials.gov Identifier: NCT04072822) carried 
out by AlcHepNet. Patients were randomly assigned 
to two treatment arms for 90 days, with 73 and 74 
patients receiving Treatment A and Treatment B, 
respectively. Demographic, vital, behavioral features, 
and laboratory tests were obtained at baseline (𝑡 = 0). 
Patients were followed up for 180 days for events 
including death, liver transplantation off study, early 
stop of treatment, as well as the episodes of acute 
kidney injury (AKI, defined in a general sense, 
including kidney injuries that persisted up to 180 
days), infection, and other adverse events (OAE).  

Since multiple events may occur at the same time, 
clinical events are further merged into 9 mutually 
exclusive event statuses denoted as 𝐸!	and 𝑘 = 1,… ,9 
with the following cascade trump rule: Liver 
transplant/Death > Off study > AKI + Infection > 
AKI > Infection > OAE > Treatment + OAE > 
Treatment > No event. For example, on a specific day, 
if a patient suffers from both infection and OAE, the 
summarized event status will be “Infection”.  

The definition of event sequence and its 
mathematical notation are based on the 9 summarized 
event status. For a patient 𝑖 ∈ {1,⋯𝑁}, the baseline 
features 𝑟 are denoted as 𝑏",$. The event sequence of 
this patient is represented as a sequence 𝝉𝒊 = 6𝑠",&8, 
where 𝑡 = 0,1,⋯ , 180  denotes a specific follow-up 
day, and 𝑠",& represents one of the 9 event statuses.  

4.2. Clustering analysis 

Patients are clustered into subgroups according to 
their baseline features and trajectories and cluster-
specific commonalities and patterns are visualized. 
Our system provides two options: data-driven 
clustering using graph artificial intelligence and 
knowledge-guided clustering.  
4.2.1. Data-driven clustering with graph AI. A 
graph transformer autoencoder (Figure 2) is used to 
cluster patients according to the similarity of both 

Table 1. Data elements used in this study. 

 
 

Figure 2. Graph transformer clustering. 

Page 1172



baseline features and status sequences. The original 
data is first represented as a patient similarity graph 
𝐺 = (𝑉, 𝐸). The graph is constructed according to the 
baseline features, with each node 𝑣" ∈ 𝑉 represents a 
patient, and an edge 𝑒",' represents two patients with 
similar baseline features, i.e., @6𝑏",$8, 6𝑏',$8@ ≤ 𝜎. The 
event status sequence 𝝉𝒊 is used as the node property. 
Then a latent representation of patients’ baseline and 
follow-up data is learned. Briefly, for a patient 𝑣", the 
propagation of the graph transformer from the 𝑙 layer 
to the 𝑙 + 1 layer is defined as:  

𝒉"
()*+) = ReLUF𝑊"

())𝒉"
()) +H 𝛼",'𝑉'

())

-!∈𝒩(-")	
J 

, where the rectified linear unit (ReLU) is used as the 
nonlinear gated activation function, 𝒩(𝑣") represents 
the neighbor nodes of 𝑣", and 𝒉"

(1) = 𝝉𝒊. The attention 
module is defined as:  

𝛼",' = softmaxL
〈𝑄"

()), 𝐾'
())〉

∑ 〈𝑄"
()), 𝐾2

())〉2∈𝒩(")
R 

, where: 
query:	𝑄"

()) = 𝑊3
())𝒉"

()) + 𝑏3
()) 

key:	𝐾'
()) = 𝑊4

())𝒉'
()) + 𝑏4

()) 
value:	𝑉'

()) = 𝑊5
())𝒉'

()) + 𝑏5
()) 

and 〈𝑄, 𝐾〉 ≡ expF𝑄6𝐾 TdimU𝒉"
())VW J.   

Hyperparameters are determined by finetuning. 
The patient similarity graph was constructed as a k-
nearest neighbor network (𝑘	 = 	10). The dimensions 
of the decoder layers are 78 and 36, and the encoder is 
symmetric to the encoder. The data is split into the 
training, test, and validation subsets at an 8:1:1 ratio. 
The model is trained using the mean squared error loss, 
with the batch size of 512, 300 epochs, and the Adam 
optimizer at a learning rate of 1𝑒 − 5.  
4.2.2. Knowledge-guided clustering. Patient event 
statuses are encoded based on clinical domain 
knowledge obtained through interviews with clinical 
researchers. Specifically, we categorized the four 
major endpoints of the clinical trial into distinct 
groups: death or liver transplantation (coded as 20), 
off-study (coded as 15), adverse events (coded as 2 – 
5), and no event (coded as -5). Subsequently, patients 
were clustered using weighted Ward’s agglomerative 
hierarchical clustering, chosen for its robustness with 
coded data (Murtagh & Legendre, 2011). 

4.3. Learning contributing baseline features 
with a graph Grad-CAM model 

To reveal baseline features that contribute to each 
identified cluster, we use a graph gradient weighted 

class activation map (graph Grad-CAM) model on the 
graph transformer autoencoder, as its performance has 
been proved in various applications (Selvaraju et al., 
2017). Briefly, a 2-layer multi-layer perceptron (MLP) 
neural network is used to predict the patient’s cluster 
membership, with the latent representation learned 
from the graph autoencoder as input, the identified 
clusters as ground truth, and the cross-entropy loss 
function. For each identified cluster 𝑐, the predicted 
possibility of patient 𝑖 belonging to this cluster is 𝑦",7. 
The importance of baseline feature 𝑏",$ for this patient 
is:  

𝛼",$7 = ReLUF
𝜕𝑦",7
𝜕𝑏",$

∙ 𝑏",$J 

, and the overall importance of baseline feature 𝑏",$ for 
cluster 𝑐 is:  

𝛼",$7 = 2 ∙ softmaxF
𝛼",$7

𝑁 J− 1 

. The patient-level importance scores delineate the 
contribution of each baseline feature of each patient 
for his or her cluster membership. The cluster-specific 
importance scores describe the cluster-level important 
baseline features. We employed these importance 
scores to create a heatmap, as depicted in Section 5.2, 
to assist the user in identifying crucial features. 

4.4. Status agglomeration 

Having established the representation of 
individual trajectories as mentioned earlier, our focus 
now shifts to examining event transition patterns from 
a population perspective over 180 days. For a specific 
cluster 𝑐 and the 𝑛 patients belonging to this cluster, 
the corresponding event sequences are 𝝉𝟏, ⋯ , 𝝉𝒏	. An 
event status agglomeration algorithm is developed to 
reveal the transition patterns.  

Firstly, the status transition of an event status 
across the time series can be represented with a one-
directional chain model, with each node denoting a 
specific time block, and a directional edge linking two 
neighbor time slots. As shown in Figure 3, we first 
construct a 9 × 180  status matrix, with each row 
representing a distinct event status 𝐸!  and each 

 
 

Figure 3. Agglomeration of neighbor time blocks. 
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column denotes a specific day 𝑡 in the duration of the 
study period. The transitions during the whole trial can 
be denoted as a chain of 180 time blocks (i.e., nodes). 
Specifically, for the day 𝑡 and a given event status 𝐸!, 
the relevance of this day to 𝐸!, the transition statuses 
from the previous day and to the next day can be 
represented as a triplet (Num& , In& , Out&	)  that 
encapsulates the state transition information, where 
Num& is the number of patients with event status 	𝐸! 
at time 𝑡, In& is a 9 × 1 vector representing the status 
transition from the previous time block to the current 
one, and Out& is the transition vector to the next time 
block. For example, the transition from the event 
status 𝐸: at time block 𝑡 − 1 to 𝐸! at time block 𝑡 is 
represented as In&[𝑚] = ∑ (𝑠",&;+ = 𝐸:	, 𝑠",& = 𝐸!)<

" . 
The flow of patients into and out of the event status 𝐸! 
at time block 𝑡  remain balanced, that is, 
∑ In&[𝑚] =: ∑ Out&: [𝑚] = Num&.  

Then the chain model can be simplified by 
agglomerating neighbor time blocks that show similar 
transition patterns. We develop an agglomeration 
algorithm to merge time blocks with similar state 
transition patterns from a cohort view. Algorithm 1 
describes the merging process. The overall transition 
pattern at a time slot 𝑡  is represented by a 19 ×
1vector 𝑄&|=# ≡ [Num& , In& , Out&]6  The similarity 
of transition patterns between two neighbor time slots 
𝑡  and 𝑚 for an event status 𝐸!  can be measured by 

Jaccard similarity 𝐽U𝑄&|=# , 𝑄:|=#V . The Jaccard 
similarity of each time block to the next time block is 
first calculated. Then, similar neighbor nodes, defined 
as that similarity exceeds a threshold 𝛿, are merged. 
This process is repeated till no more time blocks are 
similar enough. This process is performed for every 
event status, as described in Algorithm 2. By merging 
states with similar transit patterns using a single-linked 
list data structure and employing the Jaccard 
Similarity metric, the algorithm effectively condenses 
the information and facilitates the analysis of common 
patterns within the population.  

Finally, the transitions across different event 
statuses are determined by matching the 
corresponding transition patterns. Briefly, the strength 
of a transition from an agglomerated time slot 
𝑛𝑜𝑑𝑒&|=#  to a neighbor time slot 𝑛𝑜𝑑𝑒:|=$  is 
measured by Jaccard similarity defined as: 
𝐽 p𝑛𝑜𝑑𝑒&|=# , 𝑛𝑜𝑑𝑒:|=$q ≡

Out%[B]*In&[!]
Num%*Num&

. If the 
Jaccard similarity exceeds a threshold 𝜎, a transition 
from is 𝐸! to 𝐸B determined.  

The final transition trajectory is visualized as the 
transitions between agglomerated time slots, which are 
described in detail in section 5.3.   

5. Visual analytics system development 

We develop an interactive visual analytics system 
of TrialView after processing and clustering data with 
the above algorithms. The system's backend is 
developed using Python, Flask, and PyTorch, while 
the frontend is built on React and D3.js. The 
architecture and workflow are depicted in Figure 4, 
illustrating the components involved in the 
information system's backend. These components 

 
 

Figure 4. System Architecture. 
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include data processing, AI/ML models, explanation, 
and agglomeration. The React-based frontend 
interface and the backend components communicate 
through a RESTful API interface. Figure 5 showcases 
the prototype interface of our system, providing a 
visual representation of its design and functionality. 

Expanding upon hierarchical task analysis to 
identify information design requirements, the four 
views are tailored to support these tasks. Our interface 
design adheres to Gestalt principles (Graham, 2008), 
facilitating pattern recognition for users. Additionally, 
colors are selected based on cultural meanings, as 
informed by medical experts; for example, we use red 
to denote death. Furthermore, we use preattentive 
visual perception techniques to enhance usability. 

5.1. Individual view 

In the individual view (Figure 5 A), when the user 
selects a participant from the queryable drop-down, 
the patient's demographic and pathological 
information is presented in the adjacent table. 
Figure 5(a1) highlights abnormalities in the lab tests, 
denoted by red dots for abnormal results and green 
dots for values within normal ranges. When the user 
hovers the mouse over a line, a context tooltip further 
displays the minimum and maximum values, the 
normal range, and the patient's specific value. 
Figure 5(a2) presents a ridge plot that effectively 
visualizes the patient’s lab values in the context of the 

distribution within the study cohort. Additionally, the 
Timeline graph (Figure 5(a3)) provides a 
chronological overview of the patient's events, 
allowing the user to access information about an 
individual patient's baseline lab test values and track 
outcomes and adverse events throughout the timeline. 

5.2. Cohort view 

The cohort view (Figure 5 B) provides a 
comprehensive perspective on the study cohort. The 
timeline chart (Figure 5(b1)) displays the event 
trajectories of the cohort with color coding and 
organizes the cohort into clusters. Users can select 
between two clustering methods, namely Ward 
Hierarchy Clustering and Graph Transformer. 
Considering that most events occur within the initial 
90 days, potentially leading to overcrowding of visual 
symbols in the left region, we offer a rescaled 
visualization so that events are evenly distributed.  

To gain insight into the contributions of baseline 
features for different clusters (which is explained in 
Section 4.3), an importance heatmap (Figure 5(b2)) is 
used to visualize results from the explainable AI. For 
example, the high PT values, MELD score, and 
platelet counts contribute most to patients in Cluster B. 
Additionally, two sunburst plots depict the distribution 
of treatments and sex in correlation with the outcome 
of death or alive, located at the bottom of the cohort 
view. These elements collectively offer a 

 
 

Figure 5. System Interface. 
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comprehensive visualization of the cohort, enabling 
users to explore the clustering, event distribution, and 
correlations between treatments, sex, and outcomes. 

5.3. Statistics view 

The statistics view, as depicted in Figure 5(C), 
provides users with a comprehensive statistical 
overview of the cluster under consideration. It 
includes the survival curves with confidence intervals 
using the Kaplan-Meier estimator, visually 
representing the probability of survival at a specific 
time for each cluster or RCT arm. This allows users to 
assess the mortality risk of different clusters or 
treatment groups. In this view, the survival event of 
the selected patient in Figure 5(A) is highlighted as a 
grey point, providing a direct reference to the 
individual's survival status. Moreover, a box plot is 
used to portray the baseline characteristics of each 
cluster, offering insights into their respective 
contributions. The individual value associated with the 
selected patient is highlighted as a grey point within 
the box plot, emphasizing its specific placement 
within the distribution. To further enhance 
understanding, bar charts are included to present the 
percentage of individuals within the cluster who 
experienced adverse events such as AKI or infection, 
along with the median duration of these events. 
Another bar chart displays the percentage of 
individuals within each cluster who either died or 
dropped off, accompanied by the median time. 

These visualizations within the statistics view 
effectively summarize key statistical measures, 
highlight individual data points, and provide 
comprehensive insights into survival outcomes, 
baseline characteristics, adverse events, and patient 
outcomes within the cluster under analysis. 

5.4. Cohort progression view 

The progression view, showcased in Figure 5(D), 
provides a concise summary of the transition patterns 
observed within each cluster. The plot is horizontally 
laid out according to the timeline, with the thickness 
of each line indicating the number of patients 
associated with that specific transition. This 
visualization effectively captures the collective 
movement and progression of patients throughout 
their respective timelines within the cluster, offering 
valuable insights into the overall pattern of transitions. 

5.5. Interaction 

To enable users to explore the data from various 

levels of detail and perspectives, TrialView 
incorporates interactive techniques that enhance the 
user experience. When a user selects a specific patient 
ID in the individual view, the corresponding 
individual is highlighted in both the cohort and 
statistics views, allowing for a seamless connection 
between different aspects of the data. Similarly, when 
the user chooses one of the two clustering methods in 
the cohort view, the statistics and progression views 
automatically update to reflect the new clusters, 
providing a synchronized representation of the data. 
To optimize the use of screen space, the system 
includes toggle buttons that allow users to switch 
between different display options. For example, in the 
statistics view, users can toggle between cluster and 
RCT arms to visualize KM curves. Common 
visualization interactions such as highlighting, sorting, 
dragging, and tooltips are supported throughout the 
system, enabling users to interact with the data 
intuitively. The interactive features enhance the 
usability and flexibility of TrialView. 

6. Use case 

To assess TrialView's effectiveness, we opted for 
a case study approach (Kitchenham et al., 1995) and 
engaged a hepatology researcher (H1) to employ 
TrialView in the analysis of data from a study focused 
on a novel treatment for AH. H1 aimed to gain insights 
at both individual and cohort levels. H1 selected 
participant 80036 in the Individual View (Figure 
5(A)), where H1 found demographic details and a 
history of heavy drinking. H1 observed that several 
baseline lab test values were abnormal, indicated by 
the presence of red dots, signifying deviations from the 
normal range. The abnormal ALT and AST test results 
were also significantly high within the study cohort. 
Using the timeline visualization AH, the researcher 
explored the patient's events and discovered the ALT 
increase event starting at D6, followed by the AKI 
incidence at D9, and the liver transplantation at D18, 
which indicated the treatment failed. The researcher 
gained insights into the relations between baseline 
abnormal lab values, adverse events, and outcomes 
(R1 in Section 3). These findings enable the researcher 
to better understand the new treatment's efficacy. 

With a curiosity about the overall event patterns 
in the study cohort, researcher H1 transitions to the 
Cohort View. Opting for the Ward Clustering method 
(Figure 5(B)), H1 gained a comprehensive 
understanding of different event dynamics timeline 
charts (Figure 5(b1)): Cluster A was characterized by 
“No events” after 90 days and thus represented 
successful treatment; Cluster B indicated treatment 
failure as the main outcome was “Death/Liver 
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transplant”; Cluster C were those survived with 
sustaining adverse events; and Cluster D reflected 
those who discontinued the study early (R3). To gain 
deeper insights into Patient 80036 and Cluster B, the 
researcher turned to the importance heatmap, cross-
examined the contributing baseline features with the 
baseline lab values for Patient 80036, and concluded 
that the abnormal ALT might contribute to the 
treatment failure. The heatmap helps the researcher to 
discern the relative importance of different factors and 
their impact on the study population (R4). 

Attended by the intriguing patterns observed 
within a specific cluster from the cohort view, 
researcher H1 decided to examine the progression of 
the illness using the Progression View. H1 identified 
the trajectory of patient 80036 (Treatment to early 
OAE to early onset of AKI to Death/Liver 
Transplantation), in the context of other trajectories 
such as infections, late onset of AKI, etc. The 
researcher gained insights into the event dynamics of 
this patient and the cluster (R5).  

Subsequently, H1 navigated to the Statistics 
View, where critical information about patient 
survival is presented. Within the overall survival 
analysis, H1 quickly identifies that Patient 80036's 
survival status is censored at day 18 in Cluster B, as 
denoted by the highlighted grey dot (Figure 5(C)), 
indicating a relatively early failure of treatment among 
patients in Cluster B. Furthermore, the researcher 
leverages the box plot of lab test PT and the 
corresponding info in Figure 5 a1, a2, and b2 to gain 
deeper insights into the role of PT for the specific 
patient. H1 concluded that PT was less likely related 
to the treatment failure of this patient. Additionally, 
H1 appreciated that 74% of Cluster B patients 
experience AKI, with an average duration of 26.25 
days, and 89% of Cluster B patients face mortality, 
with a median time to death of 39 days. Patient 
80036’s case was typical in Cluster B (R2). 

By interactively utilizing the multiple views and 
models offered by the TrialView system, the 
researcher can thoroughly explore, analyze, and derive 
valuable insights from the AH clinical trial data. The 
system empowers the researcher to make informed 
decisions, identify trends, and generate hypotheses for 
further research in the AH treatment. 

7. Conclusion 

TrialView is a comprehensive visual analysis 
system designed to explore, cluster, and summarize 
the features and temporal events observed in RCTs. 
Although the system was developed as a research tool 
for AlcHepNet, the system’s functionality covers the 
needs of a diverse range of RCTs. This system offers 

four distinct views, enabling different types of users to 
dynamically explore the individual and cohort-level 
data using two clustering models. Additionally, an 
explanation model provides further insights into the 
contributions of various features to each cluster, 
enhancing the flexibility and interpretability of the 
results. The TrialView system is empowered by 
explainable graph AI models and graph-based 
agglomeration algorithms. The TrialView can also be 
adapted for other domains that involve temporal event 
sequence data, such as healthcare and business 
intelligence. By leveraging its flexible framework, 
researchers and practitioners in these fields can extract 
maximal benefits from the powerful analysis and 
visualization capabilities it offers. 

For future extensions, we aim to enhance the 
system by supporting user-defined cluster models. 
This will allow users to leverage the cluster analysis 
and presentation functionalities and tailor the system 
to their specific research or analytical needs. Overall, 
the TrialView system represents a practically useful 
tool for analyzing temporal event data, with potential 
applications in multiple domains, and future 
improvements will focus on empowering users with 
more control over the clustering models. 
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