403 research outputs found

    Study of the development of an Io T-based sensor platform for e-agriculture

    Get PDF
    E-agriculture, sometimes reffered as 'ICT in agriculture' (Information and Communication technologies) or simply "smart agriculture", is a relatively recent and emerging field focused on the enhacement on agricultural and rural development through improved information and communication processes. This concept, involves the design, development, evaluation and application of innovative ways to use IoT technologies in the rural domain, with a primary focus on agriculture, in order to achieve better ways of growing food for the masses with sustainability. In IoT-based agriculture, platforms are built for monitoring the crop field with the help of sensors (light, humidity, temperature, soil moisture, etc.) and automating the irrigation system. The farmers can monitor the field conditions from anywhere and highly more efficient compared to conventional approaches

    Remote biometrical monitoring system via IoT

    Get PDF
    Os sistemas de Internet of Things (IoT) estão a experienciar um rápido crescimento devido à sua aplicabilidade em vários domínios, desde cidades inteligentes até aos cuidados de saúde. Nestes sistemas, os dispositivos comunicam entre si, ou com a infraestrutura, recorrendo a comunicações machine-to-machine (M2M). Uma vez que muitos destes dispositivos são simples, com escassa capacidade de processamento, foram desenvolvidos protocolos M2M como o Constrained Application Protocol (CoAP) e o Messaging Queue Telemetry Transport (MQTT), bem como frameworks de suporte de comunicações M2M. Apesar dos desenvolvimentos nesta tecnologia, ainda são encontrados desafios no desenvolvimento de aplicações M2M e IoT a nível da interoperabilidade, escalabilidade e padronização, por exemplo. Consequentemente, vários standards M2M foram desenvolvidos para superar estes desafios, sendo o oneM2M um deles. Atualmente, existem vários dispositivos disponíveis com uma interface WiFi embebida, o que significa que quando inseridos num sistema IoT, não necessitam de uma gateway (GW) para o acesso à Internet, uma vez que o WiFi é uma tecnologia omnipresente na sociedade atual. Esta é uma característica fundamental visto que diminui o custo global do sistema. Além disso, estes dipositivos, como o módulo ESP32, oferecem modos de poupança de energia que permitem explorar recursos de gestão de energia definidos pelo standard IEEE 802.11. As instituições de cuidados de saúde procuram oferecer os melhores serviços em termos de confiabilidade, segurança e conforto aos seus pacientes. Recentemente, tecnologias IoT foram abordadas, desenvolvidas e utilizadas para melhorar o serviço aos pacientes. O trabalho proposto nesta dissertação é um sistema de monitorização contínua via IoT capaz de monitorizar os sinais vitais de um paciente e apresentá-los aos profissionais de saúde. Para além disso, o sistema pode ser utilizado em diversos cenários desde salas de emergência, uso doméstico até à competição desportiva. O sistema possui dois componentes principais: um dispositivo wearable com uma antena WiFi e um sistema de monitorização orientado ao profissional de saúde. O wearable é composto por um sensor fotopletismográfico (PPG) MAX30100/MAX30102 para medir o ritmo cardíaco e os níveis de saturação de oxigénio no sangue, um ESP32 com uma antena WiFi incorporada para processar e enviar os dados do sensor para o sistema de monitorização e, finalmente, uma bateria de Lítio Polímero (LiPo) para fornecer energia aos dois componentes mencionados. No que refere ao sistema de monitorização, este é composto por uma base de dados orientada a eventos temporais para armazenar todos os dados necessários, um software de visualização gráfica para a visualização dos sinais vitais do paciente e, por fim, uma Interface Gráfica com o objetivo de ser um painel de controlo para todo o sistema. Para além disso, o sistema segue a norma oneM2M devido a questões de interoperabilidade relativas à arquitetura, e implementa o modelo de comunicação publisher-subscriber pois este é eficiente em termos de sensorização e monitorização remota. Por último, o objetivo desta dissertação é desenvolver um sistema de monitorização de baixo custo focado na gestão energética e que ao mesmo tempo não comprometa a sua confiabilidade e robustez.Internet of Things (IoT) systems are experiencing rapid growth due to their applicability in several domains, from smart cities to healthcare among many. In these systems, devices communicate with each other, or with infrastructure, resorting to machine-to-machine (M2M) communications. Since many of these devices are simple systems, with weak processing capacity, lightweight M2M protocols were developed such as Constrained Application Protocol (CoAP) and Messaging Queue Telemetry Transport (MQTT) as well as frameworks to support M2M communications. As expected, there are challenges when developing M2M and IoT applications: interoperability, scalability, standardisation, among others. Therefore, several M2M standards were created to overcome these issues, with oneM2M being one of them. Nowadays, there are multiple devices available that have an embedded WiFi interface, thus, when inserted in an IoT system, these devices do not need a gateway (GW) to access the Internet since WiFi is one of the most common technologies at Internet boundary. This is a key feature because it increases the system's pervasiveness as well as the overall cost of the system. Additionally, these devices, such as the ESP32 module, offer sleep modes that allow exploiting the power management features by the IEEE 802.11 standard. Healthcare institutions always strive to provide the best services concerning the reliability, safety and comfort of the patients. To do so, IoT technologies have been embraced and developed in recent years to improve these services. The work proposed in this dissertation is an end-to-end continuous monitoring system via IoT capable of monitoring a patient's vital signs and displaying them to the medical personnel. Moreover, the system can be applied to a wide range of application scenarios from emergency wards and home environment to sports training and competition. The system has two major components, a low-cost and low-power WiFi-enabled wearable device for the user and, at the upper end, a monitoring interface for the medical personnel. The wearable is composed by a MAX30100/MAX30102 PhotoPletysmoGraphy (PPG) sensor to measure the heart rate and oxygen saturation levels, an ESP32 with a built-in WiFi antenna to process and send the sensor data to the monitoring system and, finally, a Lithium Polymer (LiPo) battery to power-up the previous two components. At the upper end, the monitoring interface is composed of a time-series database to store all the data, a graphics visualisation software of patient's vital signs and a Graphic User Interface (GUI) serving as a control panel. Additionally, the system relies on the oneM2M standard for the interoperability concerning the architecture and follows a publish-subscribe communication model due to its efficiency in sensing and remote monitoring. Furthermore, the goal of this dissertation is to develop a low-cost and energy-efficient monitoring system while not compromising the reliability and robustness of traditional machines and systems

    Open Government Architecture: The evolution of De Jure Standards, Consortium Standards, and Open Source Software

    Get PDF
    Conducted for the Treasury Board of Québec, this study seeks to present recent contributions to the evolution, within an enterprise architecture context, of de jure and de facto standards by various actors in the milieu, industrial consortia, and international standardization committees active in open source software. In order to be able to achieve its goals of delivering services to citizens and society, the Government of Québec must integrate its computer systems to create a service oriented open architecture. Following in the footsteps of various other governments and the European Community, such an integration will require elaboration of an interoperability framework, i.e. a structured set of de jure standards, de facto standards, specifications, and policies allowing computer systems to interoperate. Thus, we recommend that the Government of Québec: Pursue its endeavours to elaborate an interoperability framework for its computer systems that is based on open de jure and de facto standards. This framework should not only reflect the criteria enumerated in this study and apply to internal computer systems, but it should also extend to Web services supplied to organizations outside of the government. This framework should explicitly prioritize open source de jure and de facto standards and include a policy covering free software. The interoperability framework should initially draw on that of the state of Massachusetts. In the medium term, is should be as comprehensive as that of the British government. Integrate this interoperability framework into its enterprise architecture. Publish this interoperability framework with its enterprise architecture. Specify this interoperability framework in its calls for tenders. Elaborate a policy of compliance with this framework for all new applications.

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    The use of Sensor Networks to create smart environments

    Get PDF
    Internet of Things is taking the world in order to be the next big thing since the Internet, with almost every object being connected to gather data and allow control through mobile and web devices. But this revolution has some barriers with the lack of standardization in communications or sensors. In this dissertation we present a proposal of a system dedicated to creating smart environments using sensor networks, with a practical application developed to achieve automation, efficiency and versatility, allowing real-time monitoring and remote control of any object or environment improving user experience, tasks efficiency and leading to costs reduction. The developed system, that includes software and hardware, is based on adaptive and Artificial Intelligence algorithms and low cost IoT devices, taking advantage of the best communication protocols, allowing the developed system to be suited and easily adapted to any specification by any person. We evaluate the best communication and devices for the desired implementa tion and demonstrate how to create all the network nodes, including the build of a custom IoT Gateway and Sensor Node. We also demonstrate the efficiency of the developed system in real case scenarios. The main contributions of our study are the design and implementation of a novel architecture for adaptive IoT projects focus on environment efficiency, with practical demonstration, as well as comparison study for the best suited communication protocols for low cost IoT devices.A Internet of Things está a atingir o mundo de modo a tornar-se a próxima grande revolução depois da Internet, com quase todos os objectos a estarem ligados para recolher dados e permitir o controlo através de dispositivos móveis. Mas esta revolução depara-se com vários desafios devido à falta de standards no que toca a comunicações ou sensores. Nesta dissertação apresentamos uma proposta para um sistema dedicado a criar ambientes inteligentes usando redes de sensores, com uma aplicação prática desenvolvida para oferecer automação, eficiência e versatilidade, permitindo uma monitorização e controlo remoto seguro em tempo real de qualquer objecto ou ambiente, melhorando assim a experiência do utilizador e a eficiência das tarefas evando a redução de custos. O sistema desenvolvido, que inclui software e hard ware, usa algoritmos adaptáveis com Inteligência Artificial e dispositivos IoT de baixo custo, utilizando os melhores protocolos de comunicação, permitindo que o mesmo seja apropriado e facilmente adaptado para qualquer especificação por qualquer pessoa. Avaliamos os melhores métodos de comunicação e dispositivos necessários para a implementação e demonstramos como criar todos os nós da rede, incluindo a construção de IoT Gateway e Sensor Node personalizados. Demonstramos também a eficácia do sistema desenvolvido através da aplicação do mesmo em casos reais. As principais contribuições do nosso estudo passam pelo desenho e implemen tação de uma nova arquitectura para projectos adaptáveis de IoT com foco na eficiência do objecto, incluindo a demonstração pratica, tal como um estudo com parativo sobre os melhores protocolos de comunicação para dispositivos IoT de baixo custo

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Storing IOT Data Securely in a Private Ethereum Blockchain

    Full text link
    Internet of Things (IoT) is a set of technologies that enable network-connected devices to perform an action or share data among several connected devices or to a shared database. The actions can be anything from switching on an Air Conditioning device remotely to turning on the ignition of a car through a command issued from a remote location or asking Alexa or Google Assistant to search for weather conditions in an area. IoT has proved to be game-changing for many industries such as Supply Chain, Shipping and Transportation providing updates on the status of shipments in real time. This has resulted in a huge amount of data created by a lot of these devices all of which need to be processed in real time. In this thesis, we propose a method to collect sensor data from IoT devices and use blockchain to store and retrieve the collected data in a secure and decentralized fashion within a closed system, suitable for a single enterprise or a group of companies in industries like shipping where sharing data with each other is required. Much like blockchain, we envision a future where IoT devices can connect and disconnect to distributed systems without causing downtime for the data collection or storage or relying on a cloud-based storage system for synchronizing data between devices. We also look at how the performance of some of these distributed systems like Inter Planetary File System (IPFS) and Ethereum Swarm compare on low-powered devices like the raspberry pi

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. Joaquín Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of Almería, Almería, Spain. AGH University of Science and Technology, Kraków, Poland. University of Würzburg, Würzburg, Germany
    corecore