
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Remote Biometrical Monitoring System
via IoT

Pedro de Castro Albergaria

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Dr. Luís Miguel Pinho de Almeida

Second Supervisor: Prof. Dr. Pedro Miguel Salgueiro dos Santos

July 30th, 2020

© Pedro Albergaria, 2020

Resumo

As instituições de cuidados de saúde tentam providenciar os melhores serviços no que refere
à fiabilidade, segurança e conforto dos seus pacientes. Nos últimos anos, a tecnologia Internet of
Things (IoT) tem sido adotada e desenvolvida para melhorar estes serviços.

Os sistemas IoT têm registado um rápido crescimento devido à sua aplicabilidade em diver-
sos domínios, desde de cidades inteligentes a cuidados de saúde. Nestes sistemas, os diposi-
tivos comunicam entre si, ou com a infraestrutura, através de comunicações machine-to-machine
(M2M). Devido ao facto de que muitos destes dispositivos possuem poucos recursos computa-
cionais, vários protocolos M2M foram desenvolvidos como o Constrained Application Protocol
(CoAP) e o Messaging Queue Telemetry Transport (MQTT). Existem diversos desafios no desen-
volvimento de aplicações M2M e IoT, entre eles a interoperabilidade e standardisation. Por isso,
vários standards M2M foram desenvolvidos para resolver estes problemas, sendo o oneM2M um
deles. Atualmente, há vários dispositivos presentes no mercado com uma antena WiFi embebida, o
que permite a integração destes dispositivos num sistema IoT sem a necessidade de um dispositvo
com a funcionalidade de gateway (GW) para a ligação à Internet. O módulo ESP32 da Espressif
é um dos módulos presentes no mercado que suporta a tecnologia WiFi bem como possui modos
de mecanismo de poupança de energia relacionados com esta.

O trabalho proposto nesta dissertação consiste num sistema IoT ponta-a-ponta baseado num
dispositivo de baixo custo e baixo consumo que suporta a tecnologia WiFi capaz de monitorizar
continuamente os parâmetros fisiológicos do usário e apresentá-los, por exemplo, a profissionais
de saúde. O sistema pode ser aplicado em diversos casos de uso como alas de emergência e
competições desportivas.

O sistema possui duas componentes principais: um dispositivo wearable baseado num mó-
dulo WiFi de baixo custo e baixo consumo para o usuário, e uma aplicação de monitorização com
uma interface gráfica direcionada aos profissionais de saúde. O primeiro componente é consti-
tuído por sensor fotopletismográfico MAX30102 para medir o batimento cardíaco e saturação de
oxigénio no sangue, um ESP32 para processar e enviar os dados do usuário para a aplicação de
monitorização e, por último, uma bateria de Lítio-polímero (LiPo) para fornecer energia aos outros
dois componentes. A aplicação de monitorização é composta por uma base de dados desenhada
para eventos temporais (InfluxDB) com a funcionalidade de armazenar os dados do sistema, uma
ferramenta de visualização de dados (Chronograf) e uma aplicação de monitorização com uma
interface gráfica que serve como painel de controlo.

Adicionalmente, o sistema assenta no standard oneM2M e segue o modelo de comunicação
publicador-subscritor devido à eficiência deste na monitorização remota. Foram implementados
e comparados três protocolos M2M: CoAP, HTTP e MQTT. De modo a avaliar a performance
do sistema, foram conduzidas experiências de latência ponta-a-ponta (E2E), com transmissão de
dados a diferentes frequências, diferentes modos de poupança de energia do ESP32 e diferentes
protocolos de comunicação para dois canais de WiFi com qualidade de sinal diferente. Os resul-
tados demonstram que a latência E2E para o canal de WiFi com má qualidade de sinal aumenta

i

ii

30.2% e 38.2% para mensagens publicadas com um período de 1 e 10 segundos com tamanhos de
mensagem de 85B e 850B, respetivamente, quando comparado à latência E2E experienciada por
um canal de WiFi com boa qualidade de sinal. É possível concluir que os protocolos baseados em
TCP, como o HTTP e MQTT, experenciam um aumento da latência E2E quando comparados ao
CoAP, que é um protocolo baseado em UDP. Adicionalmente, para as medidas com tamanho de
mensagem de 850B, há uma aumento da latência E2E de 26.3% quando comparada às medidas
de 85B entre os dois canais de WiFi. Por fim, relativamente ao Packet Delivery Ratio (PDR),
concluímos que este é de 100% para o canal WiFi de boa qualidade de sinal, mas para o canal de
WiFi de má qualidade, o valor do PDR diminui quando ESP32 publica as mensagens em modos
de poupança de energia mais eficientes.

Nesta dissertação, foi desenvolvido um sistema de monitorização focado no baixo custo e
eficiência energética. No entanto, não compromente a fiabilidade e robustez de sistemas de moni-
torização tradicionais.

Palavras-chave: Monitorização Biométrica, CoAP, HTTP, IoT, M2M, MQTT.

Abstract

Healthcare institutions always strive to provide the best services concerning the reliability,
safety and comfort of the patients. To do so, Internet of Things (IoT) technologies have been
embraced and developed in recent years to improve these services.

IoT systems are experiencing rapid growth due to their applicability in several domains, from
smart cities to healthcare, among many. In these systems, devices communicate with each other,
or with infrastructure, resorting to machine-to-machine (M2M) communications. Since many of
these devices are resource-constrained and have limited computing capabilities, lightweight M2M
protocols were developed such as Constrained Application Protocol (CoAP) and Messaging Queue
Telemetry Transport (MQTT) and accompanying frameworks to support the operation of the pro-
tocols, and promote integration with the target systems. There are challenges when developing
M2M and IoT applications: interoperability, scalability, standardisation, among others. Several
M2M standards were designed to address these issues, with oneM2M being one of them. Nowa-
days, there are multiple devices available that have an embedded WiFi interface, thus eschewing
the need for a GW in order to be integrated in a IoT architecture to access the Internet since WiFi
is one of the most common technologies at Internet boundary. This is a key feature because it
increases the system’s pervasiveness while decreasing the overall cost of the system. Additionally,
these devices, such as the Espressif ESP32 module, offer power management modes that allow
exploiting the power management features by the IEEE 802.11 standard.

The work proposed in this dissertation is an end-to-end IoT-inspired system based on small
form-factor, ultra-low power and WiFi enabled embedded devices capable of continuously mon-
itoring a user’s vital signs and displaying them, e.g., to medical personnel. Such system can be
applied to a wide range of application scenarios from emergency wards and home environment to
sports training and competition.

The system has two major components, a low-cost low-power WiFi-enabled wearable device
for the user and a monitoring application for the medical personnel. The wearable is composed by
a MAX30102 PhotoPletysmoGraphy (PPG) sensor to measure the heart rate and oxygen saturation
levels, an ESP32 with a built-in WiFi antenna to process and send the sensor data to the monitoring
system and, finally, a Lithium Polymer (LiPo) battery to power the previous two components. The
monitoring application is composed of a time-series database (InfluxDB) to store all the data, a
graphics visualisation software (Chronograf) for displaying user’s vital signs and a monitoring
application with a Graphical User Interface (GUI) serving as a control panel.

Additionally, the system relies on the oneM2M standard for the interoperability concerning
the architecture and follows a publish-subscribe communication model due to its efficiency in
sensing and remote monitoring. Also, we implement and compare three M2M protocols, namely
CoAP, HTTP and MQTT. To evaluate the system’s performance, we conducted end-to-end (E2E)
latency experiments, with data transmissions at different frequencies, using the different power
modes offered by the ESP32 module and different communication protocols for two WiFi channel
quality experiments regarding signal strength. The results show that the E2E latency for a bad

iii

iv

WiFi channel quality increases 30.2% and 38.2% for messages published with 1 second and 10
seconds periods with 85B and 850B of payload, respectively, when compared to a good WiFi
channel quality. We also conclude that scenarios with TCP-based protocols, such as the HTTP
and MQTT, experience more E2E delay than UDP-based protocols, i.e. CoAP. Moreover, for the
850B of payload measures, there is an increase of 26.3% when comparing to 85B of payload for
the two channels experiments. Moreover, we conclude that the PDR is 100% in the good channel
experiment while in the bad experiment there is a decrease of the PDR when the ESP32 is using
more energy-efficient power modes.

Furthermore, in this dissertation we developed a low-cost and energy-efficient monitoring sys-
tem while not compromising the reliability and robustness of traditional machines and systems.

Keywords: Biometrical Monitoring, CoAP, HTTP, IoT, M2M, MQTT.

Acknowledgements

First, I would like show my gratitude towards my supervisors, Professor Luís Almeida and
Professor Pedro Santos, for continuously giving me support throughout the all dissertation process.

I would also like to thank my family, namely my parents, sisters and grandmother for all the
love and support.

To all my friends, a sincere thank you for always being there for me. Specially, I want thank
to my colleague and dear friend Daniel Silva, for his direct involvement at the early stages of the
dissertation.

Pedro de Castro Albergaria

v

vi

“Life can only be understood backwards;
but it must be lived forwards”

Soren Kierkegaard

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Architecture . 2
1.4 Document Structure . 3

2 IoT Implementations on WiFi Nodes 5
2.1 M2M and IoT Applications Development . 5

2.1.1 Middleware Frameworks . 5
2.1.2 Open-Source Development Frameworks 11
2.1.3 Application Layer Protocols . 12
2.1.4 Wireless Communication Technologies 18

2.2 Low-Power WiFi Nodes . 19
2.2.1 ESP32 Module . 19
2.2.2 W600-PICO Module . 20
2.2.3 WiFi Nodes Comparison . 21

2.3 Time Series Databases and Data Visualization Tools 21
2.3.1 InfluxDB and Chronograf . 21
2.3.2 Prometheus and Grafana . 22
2.3.3 Thinger.io . 23

2.4 Related Work . 24
2.4.1 IoT Implementations . 24
2.4.2 Wrist-Worn Wearable Devices in the Sports Domain 25

2.5 Summary . 26

3 Components of the IoT Monitoring System 27
3.1 OM2M . 27
3.2 Wearable . 28

3.2.1 ESP32 Module . 29
3.2.2 MAX30102 Sensor . 32

3.3 Monitoring Application with GUI . 32
3.4 InfluxDB . 34
3.5 Chronograf . 36
3.6 Summary . 37

4 Implementation and Operation of the IoT Monitoring System 39
4.1 Implementation and Connecting Components 39

4.1.1 Process Data from the MAX30102 Sensor 39

ix

x CONTENTS

4.1.2 LiPo Battery Power Supply . 41
4.1.3 M2M Communications Between the AEs and the IN-CSE 43

4.2 System Operation . 46
4.2.1 Setup Stage . 46
4.2.2 Device & Data Management During Operation 48
4.2.3 Data Visualisation . 49
4.2.4 System with multiple wearables . 50

4.3 Summary . 51

5 Performance Results 55
5.1 Setup and Methodology . 55
5.2 End-to-end Latency Experiments . 56

5.2.1 CoAP . 56
5.2.2 HTTP . 57
5.2.3 MQTT . 60
5.2.4 Protocols Comparison . 66

5.3 Summary . 70

6 Conclusion 71
6.1 Future Work . 72

References 73

List of Figures

1.1 Application scenario in an emergency ward. Physiological parameters (heart rate
and oxygen saturation levels) are collected by the wearables from patients and
forwarded to he monitoring system, where can be accessed by the medical personnel. 2

1.2 System architecture . 3

2.1 AllJoyn framework’s network topologies . 6
2.2 AllJoyn framework’s network components . 6
2.3 General solution with a FIWARE platform . 7
2.4 IoTivity-Lite core . 8
2.5 Open IoT logical planes . 9
2.6 oneM2M functional architecture . 10
2.7 oneM2M layered model . 11
2.8 Legato application framework . 12
2.9 OpenMTC framework’s architecture . 12
2.10 TICK stack . 22
2.11 Prometheus architecture . 23
2.12 Thinger.io architecture . 23

3.1 System architecture with oneM2M standard entities 29
3.2 ESP32 module’s high-level block diagram . 29
3.3 Sample data stored in FIFO data structure . 33
3.4 FIFO data structure . 34
3.5 GUI’s "Start Page" . 34
3.6 GUI’s "Main Page" . 35
3.7 Real-time data visualisation of the patient "John Doe" 37

4.1 Schematic of the connections between the MAX30102 and ESP32 39
4.2 MAX30102 FIFO Configuration register . 40
4.3 Schematic of the connections between the wearable’s components 42
4.4 Schematic of the connections with the voltage divider to acquire battery voltage

through the analog pin . 42
4.5 MQTT’s message payload with oneM2M parameters 44
4.6 IN-CSE data structure . 45
4.7 Sequence diagram for the actions performed by the monitoring application after

pressing the "START" button . 46
4.8 GUI’s "Main Page" with the wearable waiting to be added to the system 47
4.9 GUI’s "Main Page" with the wearable transmitting data 48
4.10 Sequence diagram to add a wearable to the system 49
4.11 GUI’s "Main Page" with the paused wearable 50

xi

xii LIST OF FIGURES

4.12 Sequence diagram to pause and resume a wearable 51
4.13 Sequence diagram to delete a wearable from the system 52
4.14 Chronograf’s patient dashboard . 52
4.15 Dashboard cell’s area to submit a query to InfluxDB 53
4.16 Dashboard cell’s visualization area . 53
4.17 Real-time data visualization of the patient "John Doe" 54

5.1 E2E latency results for the good signal strength channel with CoAP Non-confirmable
with 85B (left) and 850B (right) of message payload for each power mode 57

5.2 E2E latency results for the bad signal strength channel with CoAP Non-confirmable
with 85B (left) and 850B (right) of message payload for each power mode 57

5.3 Packets Non-delivered for the bad signal strength channel with CoAP Non-confirmable
with 85B (left) and 850B (right) of message payload for each power mode 58

5.4 E2E latency results for the good signal strength channel with HTTP with 85B
(left) and 850B (right) of message payload for each power mode 59

5.5 E2E latency results for the bad signal strength channel with HTTP with 85B (left)
and 850B (right) of message payload for each power mode 59

5.6 Packets Non-delivered for the bad signal strength channel with HTTP with 85B
(left) and 850B (right) of message payload for each power mode 60

5.7 E2E latency results for the good signal strength channel with MQTT QoS0 with
85B (left) and 850B (right) of message payload for each power mode 60

5.8 E2E latency results for the bad signal strength channel with MQTT QoS0 with
85B (left) and 850B (right) of message payload for each power mode 61

5.9 Packets Non-delivered for the bad signal strength channel with MQTT QoS0 with
85B (left) and 850B (right) of message payload for each power mode 62

5.10 E2E latency results for the good signal strength channel with MQTT QoS1 with
85B (left) and 850B (right) of message payload for each power mode 62

5.11 E2E latency results for the bad signal strength channel with MQTT QoS1 with
85B (left) and 850B (right) of message payload for each power mode 63

5.12 Packets Non-delivered for the bad signal strength channel with MQTT QoS1 with
85B (left) and 850B (right) of message payload for each power mode 64

5.13 E2E latency results for the good signal strength channel with MQTT QoS2 with
85B (left) and 850B (right) of message payload for each power mode 64

5.14 E2E latency results for the bad signal strength channel with MQTT QoS2 with
85B (left) and 850B (right) of message payload for each power mode 65

5.15 Packets Non-delivered for the bad signal strength channel with MQTT QoS2 with
85B (left) and 850B (right) of message payload for each power mode 65

5.16 E2E latency results with 85B of payload for the good signal strength channel ex-
periment . 66

5.17 E2E latency results with 850B of payload for the good signal strength channel
experiment . 67

5.18 E2E latency results with 85B of payload for the bad signal strength channel ex-
periment . 67

5.19 E2E latency results with 850B of payload for the bad signal strength channel ex-
periment . 68

5.20 Packets non-delivered with 85B of payload for the bad signal strength channel
experiment . 68

5.21 Packets non-delivered with 850B of payload for the bad signal strength channel
experiment . 69

List of Tables

2.1 Comparative analysis of application protocols in IoT systems 15
2.2 Comparison study about ALPs in previous works 15
2.3 Main features of the ESP32 and W600-PICO modules 21
2.4 Innovative use of wearable technology for monitoring physiological parameters . 25

3.1 ESP32 power modes’ hardware level distinction 31
3.2 ESP32 power modes’ typical current consumption stated in the datasheet 32
3.3 Overview of the MAX30102’s registers . 33
3.4 InfluxDB’s instance "WearableDB" for wearable data (illustrative values shown) . 36
3.5 InfluxDB’s instance "GuiLogDB" for monitoring application and GUI log infor-

mation . 36

4.1 MAX30102 configuration parameters . 40
4.2 Number of samples averaged per FIFO sample in the FIFO Configuration register 41

5.1 Mean values for the good signal strength channel experiment with CoAP Non-
confirmable . 57

5.2 Mean values for the bad signal strength channel experiment with CoAP Non-
confirmable . 58

5.3 Packets Non-delivered for the bad signal strength channel experiment with CoAP
Non-confirmable . 58

5.4 Mean values for the good signal strength channel experiment with HTTP 58
5.5 Mean values for the bad signal strength channel experiment with HTTP 59
5.6 Packets Non-delivered for the bad signal strength channel experiment with HTTP 60
5.7 Mean values for the good signal strength channel experiment with MQTT QoS0 . 61
5.8 Mean values for the bad signal strength channel experiment with MQTT QoS0 . 61
5.9 Packets Non-delivered for the bad signal strength channel experiment with MQTT

QoS0 . 62
5.10 Mean values for the good signal strength channel experiment with MQTT QoS1 . 63
5.11 Mean values for the bad signal strength channel experiment with MQTT QoS1 . 63
5.12 Packets Non-delivered for the bad signal strength channel experiment with MQTT

QoS1 . 63
5.13 Mean values for the good signal strength channel experiment with MQTT QoS2 . 64
5.14 Mean values for the bad signal strength channel experiment with MQTT QoS2 . 65
5.15 Packets Non-delivered for the bad signal strength channel experiment with MQTT

QoS2 . 66

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

ADC Analog-to-Digital Converter
ADN Application Dedicated Node
AE Application Entity
ALP Application Layer Protocol
AP Access Point
API Application Programming Interface
AQMP Advanced Queuing Message Protocol
BPM Beats Per Minute
CoAP Constrained Application Protocol
CVD Cardiovascular disease
CSE Common Service Entity
DDS Data Distribution Service
DTIM Delivery Traffic Indication Message
E2E End-to-end
GUI Graphical User Interface
HR Heart-rate
HTTP Hypertext Transfer Protocol
I2C Inter-Integrated Circuit protocol
ID Identifier
IETF Internet Engineering Task Force
IoT Internet Of Things
LiPo Lithium-ion Polymer
Mbps Mega bits per seconds
MIPS Million Instructions Per Second
MQTT Message Queuing Telemetry Transport
N/A Not Admitted
NSE Network Services Entity
OCF Open Connectivity Foundation
OS Operating System
PDR Packet Delivery Ratio
PPG PhotoPletysmoGraphy
QSPI Quad Serial Peripheral Interface
QoS Quality of Service
TCP Transport Control Protocol
UDP User Datagram Protocol
ULP Ultra-Low-Power
URI Universal Resource Identifier
RSSI Received Signal Strenght Indication

xv

RTC Real-Time Clock
RTOS Real-Time Operating System
SCADA Supervisory Control And Data Acquisition
SCL Serial Clock Line
SDA Serial Data Line
SDK Software Development Kit
SoC State of Charge
SpO2 Blood’s Oxigen Level
STA Station
SHF Super High Frequency
WHO World Health Organization
XMPP Extensible Messaging and Presence Protocol

Chapter 1

Introduction

1.1 Context and Motivation

According to the World Health Organization (WHO), the global life expectancy increased all

over the world in the past two decades, from 67.5 years in 2000 to 72 years in 2016 [1]. This

increase stems from better healthcare services offered to the mass population. On the other hand,

cardiovascular diseases (CVDs), such as strokes and heart attacks, are the main cause of death

today, taking an estimate of 17.9 million lives per year (which represent 31% of the worldwide

death toll) [2]. The individuals at risk of a CVD need continuous care and monitoring of their

physiological parameters.

In recent years, new technology solutions have been developed for a more convenient way of

monitoring patient’s vital signs in hospital environment and at home, while offering the same qual-

ity of service. Namely, the Internet of Things (IoT) technological paradigm has evolved rapidly

to accommodate this use case. Throughout the years, numerous IoT architectures have been pro-

posed to this domain, with small and comfortable wearable devices to acquire vital signs from

the patient and display them to the medical personnel. Moreover, these implementations allow

the patient to be monitored from home through the Internet, without having the need to go to the

hospital or other healthcare facility. However, most monitoring applications in the market with

wearables devices capable of continuous monitoring of physiological rely on short-range commu-

nication technologies, typically Bluetooth. This entails the need of an extra device an extra device

(for example, a smartphone) serving as a gateway (GW) for sustained Internet connection through

another technology, e.g., WiFi or cellular. Although the smartphones present enhanced connec-

tivity, the additional GW implementation increases the power consumption of the device which

decreases its autonomy and poses an additional load burden to the user.

The main motivation to carry out of this dissertation is the implementation and assessment

of an open IoT architecture for continuous monitoring applied to the real-time tracking of the

physiological parameters of the users, such as the heart rate, and displaying the data to medical

personnel. We follow the approach proposed in [3] relying on the ESP32 module that includes

WiFi connectivity and runs a full TCP/IP, allowing to bypass the referred GW.

1

2 Introduction

Figure 1.1 illustrates an application scenario in an emergency ward.

Heart-Rate
Oxygen Level Saturation

Wireless Link

WiFi-capable
Wearable Interface

Database

Medical Personnel

Figure 1.1: Application scenario in an emergency ward. Physiological parameters (heart rate
and oxygen saturation levels) are collected by the wearables from patients and forwarded to he
monitoring system, where can be accessed by the medical personnel.

1.2 Objectives

The main objective of the work covered by this dissertation is to implement a real-time open

IoT architecture for continuous monitoring of physiological parameters of the users with low-cost

components and test the system in a sports competition game as well as home monitoring. In

particular, develop a WiFi-enabled wearable sensor device based on the Espressif ESP32 mod-

ule. The wearable device also contains a MAX30102 PhotoPlethymosgraphy sensor for acquiring

heart-rate (HR) and blood’s oxygen level (SpO2), and a LiPo to power the former components.

Additionally, the system must present the patient data to the medical personnel, thus developing

a monitoring application with real-time data is required. Lastly, we conducted end-to-end (E2E)

latency experiments to compare the ESP32’s performance in different power modes by publishing

different message payloads for two WiFi channel qualities regarding it’s Received Signal Strength

Indication (RSSI), good signal strength channel and bad signal strength channel. Moreover, we

also assessed the Packet Delivery Ratio (PDR) for the different channel experiments.

1.3 Architecture

Figure 1.2 presents the architecture of system hereby proposed. A WiFi-enabled wearable de-

vice publishes user data to the system’s broker. Then, the broker forwards the data to the subscriber

1.4 Document Structure 3

which is a monitoring application with GUI. After receiving the data, the monitoring application

stores the data in a database. Finally, to visualise the data, we use a data visualisation tool.

IN

System's
broker

Wearable Device WiFi Access Point

Monitoring
Application

with GUI

Database

CoAP, HTTP or MQTT

HTTP

HTTP

HTTP

Data
Visualisation

Figure 1.2: System architecture

1.4 Document Structure

This report is arranged in six chapters with the following content:

• Chapter 1 presents the context and motivation, objectives and system’s architecture for this

dissertation.

• Chapter 2 focus on areas-of-interest in developing an IoT system such as M2M and IoT

applications development, low-power WiFi and related work to the dissertation, among oth-

ers.

• Chapter 3 discusses the architecture of the IoT monitoring system as well as each compo-

nent, giving an insight of its characteristics and function on the system.

• Chapter 4 discusses the system’s implementation and operation.

• Chapter 5 presents performance results referred to E2E and PDR in the M2M communica-

tions.

• Chapter 6 discusses the project’s final conclusions and future work.

4 Introduction

Chapter 2

IoT Implementations on WiFi Nodes

This chapter covers four areas of interest for this dissertation. First, Section 2.1 reviews M2M

and IoT applications development, in particular, middleware frameworks, open-source develop-

ment frameworks, applications protocols and wireless communication technologies. Section 2.2

investigates the features of several embedded platforms with WiFi connectivity for IoT applica-

tions such as ESP32 and W600-PICO modules. Several options regarding time-series databases

and data visualisation tools are discussed in Section 2.3. Finally, we conclude this chapter with

related work to this dissertation from IoT applications with the implementation of the aforemen-

tioned standards, frameworks and ALPs in Section 2.4.1 and the innovative use of wrist-worn

wearable devices in the sports domain in Section 2.4.2.

2.1 M2M and IoT Applications Development

As stressed earlier, IoT technologies and M2M have evolved rapidly in recent years. To re-

spond to this growth, frameworks and M2M ALPs, as well as standards, were developed to provide

solutions and improvements in this area. In this section, we will discuss several solutions regard-

ing middleware frameworks, M2M frameworks and platforms (focusing on open-source products),

ALPs and wireless communication technologies in M2M and IoT applications development.

2.1.1 Middleware Frameworks

This section presents several open-source middleware frameworks. It gives an overview of the

main features and architecture.

2.1.1.1 AllJoyn

AllJoyn [4] is an open-source middleware framework supported by Open Connectivity Foun-

dation (OCF) that follows the client-server cooperation model. Microsoft, Linux Foundation,

Sony, Qualcomm are some of the members of the organization which support the framework.

AllJoyn uses an object-oriented architecture to create its data models and offers bindings in Java,

5

6 IoT Implementations on WiFi Nodes

Objective-C, C++ and C [5]. Also, it is compatible with multiple operating systems, e.g., Win-

dows, Linux, OS X, Android.

The AllJoyn framework architecture is divided into network architecture and software archi-

tecture. AllJoyn framework functions on the local network which allows device and apps discov-

ery. There two components: AllJoyn Apps (Apps for short) and AllJoyn Routers (Routers for

short). There are three common topologies, as illustrated in Figure 2.1 [6]:

Mobile App

App

App

Router

Router

App

Embedded
Device

App

Embedded
Device

Router

Router App

App

Figure 2.1: AllJoyn framework’s network topologies

The software architecture details the different components in the Apps and Routers (refer to

Figure 2.2). Apps contain the following components [6]:

• Core Library: Lower level APIs for interaction with AllJoyn network;

• Service Framework Libraries: implements common service like configuration, notifica-

tions and control panel;

• App Code: store the application logic.

Apps

App Code

Service
Framework

Libraries

Core Library

Router

Figure 2.2: AllJoyn framework’s network components

A Router can run as standalone device or is bundled with the AllJoyn Core Library.

2.1 M2M and IoT Applications Development 7

Finally, the AllJoyn framework defines two variants. The Standard version is for non-embedded

devices (e.g., Android and Linux) and the Thin version for resource-constrained devices (e.g., Ar-

duino and Linux with limited memory).

2.1.1.2 FIWARE

FIMWARE [7] is an open-source framework developed to improve and accelerate the develop-

ment of IoT solutions, and it was actively promoted by the European Community. It is supported

by an independent Open Community whose members and contributors aim for a standard that is

sustainable and easy to implement in order to build Smart Solutions in a faster, easier and cheaper

way [8]. Also, FIWARE has an API called FIMWARE NGSI which uses the Next Generation

Services Interface (NGSI) with the goal to unify the information’s representation [9]. Further-

more, this framework enables the integration of components and offers the basis for the replication

(portability) and interoperability for this field solutions. It is a RESTful API that provides an intu-

itive Graphic Users Interface (GUI), supports subscription/notification and many other features.

The main and only mandatory component of any platform based on FIWARE is the FIWARE

Orion Context Broker Generic Enabler, providing several functions such as managing context in-

formation, performing updates and bringing access to context (refer to Figure 2.3) [10]. Moreover,

there are complementary FIWARE components available with regards to IoT, API management

and processing context information, among others [10]:

Context
Processing, Analysis,

Visualisation

Core Context Management
(Context Broker)

Interface to
IoT, Robotics and third party

systems

D
at

a/
A

PI
 M

an
ag

em
en

t
Pu

bl
ic

at
io

n
M

on
et

is
at

io
n

D
ep

lo
ym

en
t

to
ol

s

Figure 2.3: General solution with a FIWARE platform

2.1.1.3 IoTivity

IoTivity [11] is an open-source and resource-oriented architecture framework supported by

OCF which connects IoT devices, enabling and providing functions of discovery, connection and

messaging among them [12]. M2M communications are supported through CoAP. Moreover, the

subjective framework supports a connectivity abstraction layer. As a result, the API is available in

multiple network technologies such as WiFi, Ethernet and Bluetooth and it is available for Linux,

Windows, Android, Arduino, among others. Moreover, the API is available Java, C and C++

APIs. IoTivity framework contains three layers for different purposes: the service layer oversees

device management, notification and Resource Container, among others; the base layer is in charge

8 IoT Implementations on WiFi Nodes

of messaging and discovery; and a cloud interface. Moreover, OCF developed a lightweighted

platform called IoTivity-Lite for environments where resource management and energy efficiency

are required.

Figure 2.4 illustrates the core of the IoTivity-Lite framework:

Application APIs

OCF Server
Role

Event
Queue

Memory
Management

OCF Client
Role

Resource
Model

Security

Messaging

Figure 2.4: IoTivity-Lite core

2.1.1.4 OpenIoT

OpenIoT [13] is a joint effort from open-source contributors, funded by the European Union,

to create large-scale intelligent IoT applications. This middleware was designed to manage and

analyse data [5]. It is worth noticing that it can process every kind of data from almost any device,

unlike other related solutions. Additionally, it runs on Linux, Windows and MAC OS operating

systems.

The OpenIoT architecture is composed by three different logical planes which have different

elements, as shown in Figure 2.5. These planes are the Utility/Application Plane, the Virtualized

Plane and the Physical Plane [14].

It is worth noticing that the OpenIoT architecture is an instantiation of the reference architec-

ture of the European Research on the Internet of Things (IERC) [15].

2.1.1.5 oneM2M

The oneM2M standard [16] is a global partnership project founded in 2012 by eight organi-

sations including European Telecommunications Standards Institute (ESTI), Telecommunications

Industry Association (TIA) and China Communications Standards Association (CCSA). The pri-

mary purpose is to address the lack of standardisation in M2M application, creating a single stan-

dard to resolve some of the issues associated with this field. As of now, oneM2M involves nearly

200 members and partners in which they have the possibility to test their solutions for the M2M

market [17]. oneM2M functional architecture defines the following entities [18]:

2.1 M2M and IoT Applications Development 9

Figure 2.5: Open IoT logical planes [14]

• Application Entity (AE): entity that represents M2M application service logic. An AE is an

execution instance of an application service logic and has a unique identification (AE-ID).

For instance, an application that monitors the HR is an AE.

• Common Service Entity (CSE): entity that contains a set of functions that the AEs can use.

Some of the services include data storage and group communication. Similarly to the AEs,

a CSE has a unique CSE-ID;

• Network Services Entity (NSE): is an entity that provides services to the CSE. The NSEs

offer, for example, data transport services.

The communication between entities is achieved through reference points defined by the stan-

dard [18]:

• Mca: reference point for the communication between an AE and CSE;

• Mcc: reference point for the communication between two CSEs;

• Mcc’: reference point for the communication between two CSEs in Infrastructered Nodes

(IN) but in different M2M Service Provider Domains;

• Mcn: reference point for the communication flows between a CSE and a NSE.

Finally, oneM2M standard defines a set of Nodes which contain CSEs and/or AEs. The types

of Nodes in the system are distinguished between Nodes in the "Field Domain" - i.e, the domain

10 IoT Implementations on WiFi Nodes

Field Domain Infrastructure Domain

CSE

AE

NSE

AE

CSE

NSE

Mca

Mcn

Mca

Mcc

Mca

Mcn

To Infrastructure
Domain of other
Service Provider

Mcc'

Figure 2.6: oneM2M functional architecture

where sensors, actuators, etc, are present - and "Infrastructured Domain" - i.e, applications and

servers [18]. The oneM2M Node types are the following [18]:

• Application Dedicated Node (ADN): a Node that is located in the Field Domain and con-

tains at least one AE and does not have an CSE. Usually, these nodes are implemented in

resource constraint devices that may not have processing and/or data storage resources. For

instance, a simple sensor would be a ADN.

• Application Service Node (ASN): a Node that is located in the Field Domain and contains

one CSE and at least one AE. This Node can be implemented in resource constraint devices

as well as more capable devices.

• Middle Node (MN): a Node that is located in the Field Domain and contains one CSE and

could contain AEs. Typically and MN would reside in a M2M Gateway.

• Infrastructure Node (IN): a Node that is located in the Infrastructure Domain and contains

one CSE and could contain AEs.

• Non-oneM2M Node (NoDN): a Node that does not contain any oneM2M Entities, therefore

implements non-oneM2M IoT applications. These nodes can be integrated in a oneM2M

architecture by internetworking proxies.

Figure 2.7 shows the oneM2M layered model with the three layered models as well as the

different nodes, entities and reference points:

The main objective of oneM2M standard are is to standardize M2M globally for the service

layer as well as solve common IoT key problems. The main problems are listed below [19]:

• Application Area: oneM2M enables Application portability;

• Data Interoperability: oneM2M provides services towards the Application (Secure Com-

munication, Device Management, etc) and enables Device portability (a Device can be con-

nected to any Infrastructure solution);

2.1 M2M and IoT Applications Development 11

Figure 2.7: oneM2M layered model [18]

• Connectivity: oneM2M stores data in case of lack of connectivity and controls the devices

usage of connectivity (When, how often communication happens).

2.1.2 Open-Source Development Frameworks

In Reference [5], the authors present the following open-source frameworks:

• The Eclipse OM2M [20] is an open-source platform, and implementation of the oneM2M

and smartM2M standards, developed by the Eclipse Foundation based on the ETSI speci-

fication [21, 22, 23]. The project’s software is plugin-driven which allows the integration

of external plugins for additional ALPs and device management mechanisms, for exam-

ple [24]. OM2M implements a RESTful API which exchanges Extensible Markup Lan-

guage (XML) even through highly unreliable network conditions [24]. All framework’s

modules are organised in a service layer that offers resource discovery, device authentica-

tion, asynchronous and synchronous communications, along with other features [24, 5].

• Sierra Wireless Legato [25] is a framework which offers a set of APIs for network services,

cloud and database accessing services [5]. The programming languages of the API are C

and C++ [5]. The Legato Application Framework, illustrated in Figure 2.8, is a Runtime

Environment which enables the system to run and monitor applications as well as sending

and receiving data from other sources [26].

• OpenMTC [27] is a framework offering M2M services being a reference implementation

of the oneM2M standard. OpenMTC consists of a gateway and network layers which are

service capable [5]. The framework supports RESTful architecture and follows client and

server communication [5]. Also, information is exchanged between the two aforementioned

layers. This framework supports HTTP(S) and MQTT bindings, TLS-based security, data

storage (in-memory), among others. Figure 2.9 illustrates the framework’s architecture:

Finaly, the OpenMTC software is written in Python and can be supported in multiple hard-

ware platforms such as x86 and ARM [27].

12 IoT Implementations on WiFi Nodes

Figure 2.8: Legato application framework [26]

Legato
Runtime

Enviroment

OS and
Firmware

SDK

Application

Core

Backend

Cloud

Fog

Routing

Gateway

AuthorizationManagementStorage

Send/Receive

Figure 2.9: OpenMTC framework’s architecture

2.1.3 Application Layer Protocols

The ALP define how information is exchanged between devices connected to a network, allow-

ing devices with different resources or software communicate with each other. In particular, IoT

technologies have devices with limited resources, thus the choice of a ALP is important because

it affects communication efficiency, for example. In this Section, we present the most relevant as-

pects of protocols that are adequate to IoT technologies, namely the AQMP, CoAP, HTTP, MQTT

and XMPP.

2.1.3.1 Advanced Queuing Message Protocol

Advanced Queuing Message Protocol (AQMP) is a M2M protocol designed with the focus

for interoperability between multiple manufacturers, reliability, security and provisioning [28].

The protocol supports publish/subscribe and request/response cooperation models [29]. As the

2.1 M2M and IoT Applications Development 13

protocol’s name implies, it offers various features regarding messaging such as publish-subscribe

topic-based messaging, reliable queuing, flexible routing and transactions [28]. AQMP uses Trans-

mission Control Protocol (TCP) as its transport protocol. Adding to the reliability inherent to TCP

connections, AQMP provides three QoS levels known by at-most-once, at-least-once and exactly-

once [30].

2.1.3.2 CoAP

CoAP is a lightweight M2M protocol developed by the Internet Engineering Task Force (IETF)

for resource and network constrained devices [5, 31, 32]. Therefore, CoAP was designed to re-

place HTTP in resource-constrained devices [31] and uses Universal Resource Identifiers (URI)

instead of topics. The protocol is based in a RESTful architecture style [33] and uses User Data-

gram Protocol (UDP) as its transport layer protocol. As a result, CoAP possesses a request/reply

structure, low overhead and unreliability regarding message delivery. Due to its connection-less

communication, two protocol variants are defined regarding QoS. CoAP Confirmable messages

are acknowledged by the receiver as opposed to CoAP Non-confirmable, wherein the sender does

not receive an acknowledge message by the receiver.

To achieve a publish/subscribe cooperation model, which is desirable for a monitoring system

with resource constrained devices, the protocol offers a feature to receive resource information

asynchronously [34]. With the OBSERVE option in a GET request, the client notifies the server

to send resource updates whenever the resource information changes.

2.1.3.3 HTTP

HTTP is a standard developed by the IETF and a published standard since 1997 being glob-

ally used as web messaging protocol [29]. This protocol supports a request/response RESTful

architecture and, analogous to CoAP, uses URI [29]. HTTP uses TCP as its transport layer proto-

col [29]. Therefore, the communication between the client and server is reliable. Unlike previous

protocols, it does not offer nor define QoS levels.

Moreover, the communications between the client and the server start when the client makes

a request. There are four types of client requests:

• DELETE: Removes an existing resource.

• GET: Get information about a resource or resources that already exist;

• POST: Creates a new resource;

• PUT: Updates the information of an existing resource;

Thus, there is an inherent abstraction on the client-side of how the server processes the requests

which enable a stateless approach because the server doesn’t need to maintain the client’s state

after a response to a request.

14 IoT Implementations on WiFi Nodes

2.1.3.4 MQTT

MQTT is a lightweight and one of the oldest M2M communication protocols developed by

IBM and introduced in 1999 [31, 32, 29]. The protocol follows a topic-based publish-subscribe

architecture designed and optimised for high-latency and constrained network [35, 36]. Analogous

to HTTP, MQTT uses TCP as its transport layer protocol.

As stressed earlier, the protocol follows a topic-based publish-subscribe model which means

that each message is associated with a topic. The publisher entity sends the messages to a broker,

which acts as an intermediary and forwards the messages to the entities that subscribed to the

message’s topics.

MQTT offers three different levels of QoS regarding message delivery [37]:

• QoS 0 (at most once delivery): This offers the inherent message delivery reliability of the

TCP protocol. In this level, the message arrives at the receiver or does not arrive at all. The

sender does not retry to send the message and there is no response message by the receiver;

• QoS 1 (at least once delivery): This QoS level ensures that the message is delivered at least

once to the receiving entity. The receiver has to send a confirmation message to the sender to

inform that the message was delivered. If the sender doesn’t receive a confirmation message

after a timeout, the message is resent;

• QoS 2 (exactly once delivery): This QoS level ensures that there are no duplicate messages

or message loss. Both entities send confirmation messages to ensure that the message is

delivered exactly once to the receiver entity.

As expected, communication reliability increases with the levels of QoS. However, there is

more latency and bandwidth consumption associated with higher QoS levels.

2.1.3.5 Extensible Messaging and Presence Protocol

Extensible Messaging and Presence Protocol (XMPP) is a protocol based on extensible markup

language (XML) developed by IETF. Analogous to AQMP and MQTT, it is designed for message-

oriented middleware [5]. XMPP is based on TCP protocol with XML Stanzas and supports real-

time communication between a server and a client. The protocol follows both publisher/subscriber

and request/response patterns [31].

2.1.3.6 Protocol’s Comparison and Evaluation

In the following table, a comparative analysis between the previously mentioned protocols is

presented:

2.1 M2M and IoT Applications Development 15

Table 2.1: Comparative analysis of application protocols in IoT systems

Protocol Abstraction Architecture Quality of Service Transport Protocol

AQMP
Publish/Subscribe

Request/Response

Client/Broker

Client/Server

Settle Format

Unsettle Format
TCP

CoAP
Publish/Subscribe

Request/Response

Client/Broker

Client/Server

Confirmable

Non-confirmable
UDP

HTTP Request/Response Client/Server N/A TCP

MQTT Publish/Subscribe Client/Broker QoS0, QoS1, QoS2 TCP

XMPP
Publish/Subscribe

Request/Response
Client/Server N/A TCP

During the last decade, due to the growth of M2M communications and IoT applications, there

has been intensive research and study of M2M communication protocols performance in different

applications scenarios with different technologies and network conditions, for example. Therefore,

Table 2.2 shows relevant studies regarding the protocols previously mentioned, among others. It

is worth noticing that the table follows the structure presented in Reference [32].

Table 2.2: Comparison study about ALPs in previous works

Authors Protocols Metrics Purpose Results

Bandyopadhyay

et al. [35] (2013)

CoAP,

MQTT

Power con-

sumption by

increasing pay-

load size and

changing the

conditions for

packet loss re-

garding payload

size

Study protocol’s

performance

regarding energy

efficiency using

Constrained

Gateway Devices

CoAP is the

most efficient in

terms of energy

comsuption and

bandwidth

Fysarakis et

al. [36] (2016)

CoAP,

DPWS,

MQTT

Client response

time to a request,

Average CPU

Load and Av-

erage Memory

Utilisation

Evaluate the

protocols in the

same testbed to

extract conclu-

sions concerning

performance

DPWS showed

the worst results

in two categories

(client response

time and memory

utilisation), fol-

lowed by MQTT

(CPU load).

16 IoT Implementations on WiFi Nodes

Chen et al. [31]

(2016)

CoAP,

Custom

UDP, DDS,

MQTT

Bandwidth

consumption, la-

tency and packet

loss

Conduct a study

to illustrate

how protocols

function how

protocols func-

tion under a

constrained, low

quality wireless

networks

TCP-based pro-

tocols are more

reliable and have

more latency

experienced

than UDP-based

protocols

Kayal et al. [38]

(2017)

CoAP,

MQTT,

XMPP,

WebSocket

Response time by

varying the traffic

load on the net-

work

Measures pro-

tocols’ per-

formance in

constrained de-

vices to ensure

efficiency

CoAP performs

better than other

protocols for

higher server

utilisation.

XMPP performs

better than others

at lower server

utilisation

Hedi et al. [39]

(2017)

CoAP,

MQTT

Bytes sent and

time needed to

receive them

Evaluate perfor-

mance and com-

pare the proto-

cols in different

scenarios

Concludes that

CoAP is a good

choice where

real-time per-

formance and

latency are not

requirements

2.1 M2M and IoT Applications Development 17

Naik [29]

(2017)

AMQP,

CoAP,

HTTP,

MQTT

Message Size

vs Message

Overhead, Power

Consumption

vs Resource

Requirement,

among others

In-depth and rel-

ative analysis of

the protocols to

gain insight into

their strengths

and limitations

HTTP is the first

(i.e, with high-

est) in message

size, message

overhead, power

consumption and

latency while

CoAP is the

lowest. MQTT

is the highest in

reliability and

AQMP is highest

in security and

provisioning, for

example.

Pohl et al. [40]

(2018)

AMQP,

MQTT,

XMPP

Latency,

Throughput,

Bandwidth Us-

age, Reliability

and Energy

Consumption

Measures pro-

tocols’ perfor-

mances regarding

variable latency

and Packet-Loss-

Rate (PLR)

MQTT performs

best regarding

the characteris-

tics bandwidth

usage, relia-

bility, latency

and through-

put. AMQP

performs worse

than MQTT

comparing the

bandwidth usage

and through-

put. In contrast,

XMPP has the

worst values in

all categories

18 IoT Implementations on WiFi Nodes

Pavelic et

al. [41] (2018)

CoAP,

HTTP,

MQTT

Measuring en-

ergy and power

Consumption

sending data and

standby

Measuring

protocols’ per-

formance by

sending data

and bring in a

standby position

regarding en-

ergy and power

consumption

CoAP and

MQTT pre-

formed signifi-

cantly better than

HTTP. CoAP and

MQTT consume

almost equal

amounts of en-

ergy for sending

data

Çorak et al. [32]

(2018)

CoAP,

MQTT,

XMPP

Measure packet

creation time

and packet

transmission

time

Collect real-time

environmen-

tal data with

a real-world

testbed

XMPP is worse

than other pro-

tocols in both

metrics and

MQTT and

CoAP perform

almost equally

2.1.4 Wireless Communication Technologies

In recent years, wireless communication technologies have emerged to respond to M2M com-

munications requirements. Some technologies allow long-range communications and high data

transmission rates, while others aim to short-range M2M communications with low data transmis-

sion rates. In this work, we focus and give an overview of short-range wireless communication

technologies because these technologies are the most relevant for an online monitoring system.

2.1.4.1 Bluetooth

Bluetooth, standardised as IEEE 802.15.1, is a wireless communication technology developed

as an alternative to wire-based communication technologies. Since the first consumer Bluetooth

device launch in 1999, the standard is continuously evolving to adapt to the increasing technology

requirements, playing a major role in M2M communications nowadays.

Bluetooth devices operate in the 2.4GHz ISM spectrum band and use 79 of its channels. As

of now, the standard defines four device classes differentiating transmission power and range.

Regarding architecture, Bluetooth follows a master/slave architecture, and each master can connect

at the same time to seven slaves devices at most in a piconet network.

Although several online monitoring systems implementations are using Bluetooth has its short-

range M2M communications technology, the standard allows networks with few devices, which

makes it unsuitable for more ambitious monitoring systems in terms of scale. Moreover, the high

startup times to connect to a new device and its high energy consumption are not adequate for this

2.2 Low-Power WiFi Nodes 19

use case. The introduction of the low-energy consumption version, Bluetooth Low Energy [42],

makes the standard more suitable for this type of systems. Finally, a Bluetooth-based system

normally needs a GW device (p.e., a Smartphone) to connect to the Internet, which typically uses

WiFi at its border.

2.1.4.2 Zigbee

ZigBee is a low-power communication protocol for personal area networks with small and

low-power devices such as home automation, data collection for medical personnel and other

small projects. Zigbee operates in 2.4GHz, which can be an issue due to its overlap with WiFi

and other technologies. Additionally, the standard offers low data transmission rates and limited

support to QoS. The connection to the Internet is normally achieved through a GW node.

2.1.4.3 WiFi

The IEEE 802.11 protocol, more commonly known as WiFi, allows the creation of a Wireless

Local Area Network and provides Internet access. The technology offers secure, reliable and fast

wireless connectivity between devices. WiFi is present in the various scenarios in today’s society,

such as office spaces, commercial areas and homes.

The network operates in 5GHz or Super High Frequency (SHF) and 2.4GHz ISM spectrum

bands while providing Internet connectivity through APs.

In recent years, with the emergence of small WiFi-enabled low-power devices, more moni-

toring systems use this technology as its M2M communication protocol. Moreover, the standard

offers power management features which makes it suitable for systems with low-power require-

ments. As opposed to Bluetooth, systems with WiFi technology does not need a GW device for

an Internet connection.

2.2 Low-Power WiFi Nodes

Nowadays, there is a vast choice regarding embedded platforms with WiFi connectivity [43].

Although multiple devices are available in the market, there are discrepancies concerning wireless

communication interfaces (e.g, Bluetooth, WiFi and Zigbee), computational power, cost and en-

ergy consumption as well as physical footprint [43]. The ESP32 and the W600-PICO are some

of the modules available on the market with WiFi connectivity which can be easily applied to IoT

applications [44, 45]. In the following sections we cover the main features of these modules that

are particularly interesting to IoT applications.

2.2.1 ESP32 Module

ESP32 is an ultra-low-power solution designed for mobile, wearable devices and, more im-

portantly, for IoT applications [44]. The module contains the following features that make it a

highly-integrated solution for IoT applications [44]:

20 IoT Implementations on WiFi Nodes

• Standard IEEE 802.11 b/g/n and IEEE 802.11 n (2.4 GHz, up to 150 Mbps) compliance

with on-board antenna;

• WPA/WPA2 security protocols;

• Xtensa® single-/dual-core 32-bit LX6 microprocessors(s), up to 600 MIPS;

• 520kB internal SRAM and 16MB external QSPI flash;

• Five built-in power modes supported;

• 25x18 mm;

• Low-cost device, when compared to other WiFi modules.

Concerning the 32-bit processor, it provides computing power enabling the following features,

which eases the development of IoT application [43]:

• Real-Time Operating System (RTOS);

• Infrastructure station, SoftAP and Promiscuous modes [44];

• Complete TCP/IP protocol stack.

2.2.2 W600-PICO Module

W600-PICO module is a device with an WiFi connectivity that can be easily applied to IoT

applications such as smart appliances, smart homes and healthcare [45]. This device has the

following features [45]:

• Standard IEE 802.11 b/g/n/e/i/d/k/r/s/w compliance with on-board antenna;

• WPA/WPA2/WPS security protocols;

• Supports WiFi WMM/WMM-PS;

• Arm® Cortex M-3 32-bit processor with 80 MHz operating frequency;

• 288 KB internal RAM and 1MB/2MB internal flash;

• 33x20.3 mm;

Similar to the ESP32 module, the W600-PICO 32-bit processor provides computing power

enabling the following feature:

• Real-Time Operating System;

• Supports AP and STA modes;

Regarding power management, W600-PICO supports PS-Poll and U-APSD defined by the

IEEE 802.11 standard [45]. It is worth noticing when in standby, W600-PICO power consumption

is less than 10 µA [45].

2.3 Time Series Databases and Data Visualization Tools 21

2.2.3 WiFi Nodes Comparison

Table 2.3 presents the main features of the ESP32 and W600-PICO modules that ease the

development of IoT applications.

Table 2.3: Main features of the ESP32 and W600-PICO modules

Feature ESP32 W600-PICO

WiFi

Standard IEEE 802.11 b/g/n and
IEEE 802.11 n (2.4 GHz, up to
150 Mbps) compliance with on-
board antenna

Standard IEEE 802.11
b/g/n/e/i/d/k/r/s/w compliance
with on-board antenna

Security Protocols WPA/WPA2 security protocols
WPA/WPA2/WPS security pro-
tocols

Processors Xtensa® single-/dual-core 32-bit
LX6 microprocessors(s)

Arm® Cortex M-3 32-bit proces-
sor with 80 MHz operating fre-
quency

Memory 520kB internal SRAM and
16MB external QSPI flash

288 KB internal RAM and
1MB/2MB internal flash

Power Management
Four built-in sleep modes sup-
ported with minimum current
consumption of 10 µA

PS-Poll and U-APSD defined by
the IEEE 802.11 standard. In
standby the power consumption
is less than 10 µA

Dimensions 25x18 mm 33x20.3 mm

2.3 Time Series Databases and Data Visualization Tools

An IoT monitoring system can collect and store thousands or even millions of data instances

over a short period. Therefore, data processing, management and visualisation are key aspects of

an IoT monitoring system. In this section, we present three alternatives that accomplish the former

aspects: InfluxDB and Chronograf, Prometheus and Grafana and, finally, Thinger.io.

2.3.1 InfluxDB and Chronograf

InfluxDB [46] is an open-source time-series database built to handle high write and query

loads. The database is one of the four components that form the TICK (Telegraf, InfluxDB,

Chronograf, Kapacitor) stack. InfluxDB is a database for use cases that involve large amounts

of timestamped data such as IoT sensor data monitoring and real-time analytics [47]. It currently

supports several key features that are useful and important timestamped data-centred system [47]:

• Custom designed datastore for time series data;

• Written exclusively in Go and compiles into a single binary file without external dependen-

cies;

• Offers high performing write and query HTTP APIs;

22 IoT Implementations on WiFi Nodes

• Developed to query aggregated data with an SQL-like language;

• Data retention policies.

Chronograf [48] is the user interface for the InfluxDB 1.x platform with the purpose to allow

the users to see data stored in the database with ease. The software includes templates and libraries

to build dashboards with real-time visualisations of data. Together with Kapacitor [49], it is pos-

sible to create different types of alerts for detecting anomalies in the stored data and see the alerts

history in the Chronograf user interface. Figure 2.10 illustrates the TICK stack and its behaviour

model:

Figure 2.10: TICK stack [46]

2.3.2 Prometheus and Grafana

Prometheus [50] is an open-source database designed for systems that rely on timestamped

data created SoundCloud. Prometheus main features are the following [51]:

• Does not rely on distributed storage, single server nodes are autonomous;

• Data collection via HTTP pull model;

• Multiples modes of graphic visualisation and support;

• A flexible query language, PromQL, to query aggregate data;

• Written primarily in Go.

Figure 2.11 illustrates the Prometheus architecture and some of its primary components, many

of which can be replaced by other tools:

Grafana [52] is the tool for real-time data visualisation stored in Prometheus, analogous to

what Chronograf is to InfluxDB. Grafana offers templates and libraries to built custom dashboards

as well as an alert management system [53].

2.3 Time Series Databases and Data Visualization Tools 23

Figure 2.11: Prometheus architecture [51]

2.3.3 Thinger.io

Thinger.io [54] is an open-source cloud platform specially designed for IoT architectures.

The platform consists of a Backend (which is the IoT server) and a web-based Frontend for both

computer and smartphone to manage all the available features. Thinger.io has the following key

features [55]:

• Hardware agnostic, which means that any product, independent of the manufacturer, is eas-

ily deployable and integrated;

• Efficient, efficient and affordable ways to store device data as well as real-time data aggre-

gation;

• Real-time data visualisation through dashboards;

• Alert management system.

Figure 2.12 shows the main components of a Thinger.io ecosystem:

Figure 2.12: Thinger.io architecture [55]

24 IoT Implementations on WiFi Nodes

2.4 Related Work

In this section we show some works that are specifically related to our objectives. First, in

Section 2.4.1, we discuss IoT applications that implement the standards and frameworks referred

previously. Then, in Section 2.4.2, we present a study of innovative uses of wrist-worn wearable

devices in the sports domain.

2.4.1 IoT Implementations

Akasiadis et al. [24] implement an IoT framework with open-source frameworks that supports

multiple ALPs intending to develop a unified solution by designing a system that is easily de-

ployable and reusable on various application domains. The authors present an IoT platform with

seamless interconnections between services and datastreams, support for multiple ALPs among

other features. The platform supports MQTT, AMQP, WebSockets, CoAP and REST HTTP which

are five of the most used ALPs. Moreover, it is based in open-source frameworks that are inter-

connected and provide support for the oneM2M standard (with the Eclipse OM2M framework),

semantic descriptions that can be used for service discoverability and reasoning, and authentica-

tion/authorization (AuthN/AuthZ) procedures for services and datastream access and sharing. An

instance of the SYNAISTHISI platform as a dockerized container is set up to integrate all the

functionalities described.

Pereira et al. [3] develop an open IoT for continuous monitoring for emergency wards. The

authors propose an architecture to monitor patients’ physiological parameters, fully integrated with

Internet from the wearable sensors to the monitoring system. At the lower end, the authors use low-

cost and low-power WiFi-enabled wearable physiological sensors based on the ESP8266 module

that connects directly to the Internet infrastructure avoiding the use of a GW device. Additionally,

the architecture is based on the oneM2M standard. Finally, at the upper level, the architecture

relies on the openEHR framework for storage, monitoring and data semantics.

Pereira et al. [23] compare the FIWARE and oneM2M middleware platforms in a publish-

subscribe architecture. The authors implement CoAP, HTTP and MQTT to obtain a quantitative

analysis for both middleware platforms regarding publish and subscribe times and goodput and

publish/subscribe sizes.

Aghenta et al. [56] develop a Supervisory Control And Data Acquisition (SCADA) based,

low-cost and open-source IoT system wherein current and voltage sensors acquire data while an

ESP32 microcontroller receives, processes and sends the data to Thinger.IO local server (hosted in

a Raspberry Pi microcontroller) which stores, monitors and controls the data. The authors present

two configurations regarding the connection between the hardware components. The authors pro-

pose two scenarios: the user can access the data over the Internet or just when connected to a local

WiFi. For the first, the Raspberry Pi has to be connected to the network via Ethernet cable while

in the second scenario, the Raspberry Pi is connected to one of the LAN ports of the local WiFi

router.

2.4 Related Work 25

Yadav et al. [57] present an IoT application for a healthcare system scenario with monitoring

the heart rate being the use case. In particular, the authors implement an IoTivity-based architec-

ture for a heartbeat sensor application. The heartbeat sensor is connected to a smart thing server

and use CoAP as the ALP to communicate with data management blocks.

2.4.2 Wrist-Worn Wearable Devices in the Sports Domain

Santos-Gago et al. [58] conducts a study in which the authors present innovative proposals on

the use of wrist-worn wearable devices in the sports domain. This study was oriented to the use

of wearable devices for monitoring of athletes behaviour in activities not supported by the ven-

dors, identifying specific types of movement or actions in specific sports and preventing injuries.

Table 2.4 only shows the works that used online monitoring of physiological parameters for their

final purpose.

Table 2.4: Innovative use of wearable technology for monitoring physiological parameters

Reference Use Device Sport

Walker et al. [59]

(2016)

Estimate energy expen-

diture duting training

and competition. The

product aims to im-

prove the physical per-

formance of the players

Only commercial wear-

ables were used to mon-

itor oxygen consump-

tion: SenseWear Arm-

band (Model MF-SW)

to estimate energy ex-

penditure; and Mini-

Max4.0 (Scoresby Aus-

tralia)

Australian

football

Kos and Kram-

berger [60] (2017)

Use wearables to esti-

mate the type of shot

made by detecting the

impact of the racket

against the ball

Ad-hoc wearable device

that includes 3D gyro-

scope, 3D accelerome-

ter (±16 g), a heart rate

sensor, and temperature

sensor

Tennis

Parak et al. [61]

(2017)

Commercial wearable

with an embedded

optical heart rate sensor

that estimates heart

rate, energy expenditure

and maximal oxygen

outtake (VO2 max)

while running

Commercial wearables

for running practice. To

estimate heart rate, the

PulsOn was used and

the Samsung Galaxy S3

smarthphone was used

for geolocation

Running

26 IoT Implementations on WiFi Nodes

Enomoto et al. [62]

(2018)

System developed to

monitor lactic acid

secretion on the surface

of the skin. Sen-

sor monitors lactic

acid secretions while

exercising

Ad-hoc device com-

bining a biosensor

using LOD and osmium

wired HRP (Os-HRP)

reaction system with a

microflow-cell

Generic

Soltani et al. [63]

(2019)

Estimate gait speed

during outdoor exercise

(walking and running)

using a energy-efficient

wearable device

Commercial wearables

for running practices:

wrist-worn inertial

sensors (Physilog®IV,

GaitUp, CH), and a

head-worn Global Navi-

gation Satellite System

(GNSS) device as a

location reference

Running

2.5 Summary

As shown in Section 2.1, there are multiple options available regarding middleware frame-

works, open-source frameworks, ALPs and wireless communication technologies. In particular,

multiple ALPs were developed with the growth of IoT systems and with different characteristics.

For example, Reference [35] shows that CoAP is the most efficient in terms of energy consump-

tion and bandwitdh and Reference [31] concludes that TCP-based protocols are reliable, but have

more latency than UDP-based protocols, as expected. Section 2.2 showed that the ESP32 and

W600-PICO modules are capable devices for IoT applications. We present time-series databases

and visualisation tools in Section 2.3 and concluded this Chapter with work that is specially related

to this dissertation in Section 2.4. In particular, we presented IoT architectures that implement one

of the middleware frameworks and/or open-source frameworks and then we showed a study about

innovative use of wrist-worn devices where there exist no online monitoring systems yet, using

ESP32 modules exploiting direct Internet connection via WiFi.

Chapter 3

Components of the IoT Monitoring
System

This chapter introduces the proposed architecture of the IoT system focusing on its main com-

ponents that envision to satisfy the requirements for remote health monitoring. For each com-

ponent, we give a description and insight into each component’s function in the system as well

as a detailed architecture with the oneM2M standard entities. At first, in Section 3.1, we detail

the Eclipse OM2M project because it is the central element of the system. Section 3.2 investi-

gates the system wearable, which comprises an ESP32 module, a MAX30102 PPG module and a

Lithium-ion Polymer (LiPo) battery. The following section presents and describes the monitoring

application with GUI. We conclude the chapter with a description of InfluxDB and Chronograf,

which are for data storage, management and visualisation, in Section 3.4 and 3.5, respectively.

3.1 OM2M

Eclipse OM2M [20], or simply OM2M, is an open-source platform that implements the oneM2M

standard. The central element of the architecture is a Common Service Entity (CSE), which pro-

vides important features to an IoT system such as device management, device, internetworking,

security and notification [20].

OM2M relies on a RESTful API for creating and managing M2M resources, including primi-

tive procedures to enable applications registration, containers management, synchronous and asyn-

chronous communications, among others [64]. The platform is a Java implementation running on

top of a plugin-based software [64].

To support the oneM2M standard, OM2M’s API handles the following primary resource

types [64]:

• CseBase: defines the hosting CSE and is the root for all system’s resources;

• remoteCse: stores information related remote M2M CSEs residing on other M2M ma-

chines;

27

28 Components of the IoT Monitoring System

• AE: stores information about the AE;

• Container: enables data exchange between applications and CSEs;

• AccessControlPolicies: manages permissions and permissions holders;

• Group: enables an issuer to send one request to a set of receivers instead of sending requests

one by one;

• Subscription: stores information related to subscriptions for resources and allows sub-

scribers to receive a notification when an event happens;

The platform follows a publish-subscribe architecture which makes it a good choice for a

monitoring system, with the CseBase functioning as the system’s broker.

Finally, the platform offers plugins to support ALPs bindings such as CoAP and HTTP. Al-

though the OM2M offers MQTT binding, it does not include an MQTT broker, thus the need an

external MQTT broker. The Eclipse Mosquitto [65] is one of the most common choices because

the OM2M broker uses the Eclipse Paho [66] library as an MQTT Client for the MQTT binding.

Figure 3.1 revisits the architecture presented in Figure 1.2 but with the oneM2M standard

entities. The system comprehends two domains, Infrastructure Domain and Field Domain. Re-

garding the Field Domain, it only was entity referred as ADN-AE, which represents all the logic

behind the wearable. On the other hand, the Infrastructure Domain retain an IN-CSE entity and

one IN-AE entity. The logic behind the IN-CSE entity is the OM2M platform that supports CoAP,

MQTT and HTTP protocols. The IN-AE entity represent the monitoring application. InfluxDB

and Chronograf are not entities defined on the standard.

In this scenario, both the ADN-AE and IN-AE publish and subscribe data from the IN-CSE.

The communication between the ADN-AE and the IN-CSE is via CoAP, HTTP or MQTT. How-

ever, HTTP is utilised for the IN-CSE and IN-AE communication as well as for the communication

between the IN-AE and the InfluxDB and Chronograf.

3.2 Wearable

The wearable proposed in this system includes an ESP32 module, a MAX30102 module, or

simply ESP32 and MAX30102, and a LiPo battery. The device has the purpose to acquire and send

to a broker, the physiological parameters from the users as well as the device’s battery percentage

via the WiFi infrastructure.

The LiPo battery is a rechargeable battery used in applications where weight and overall

size are requirements, such as a wearable device. This battery powers both the ESP32 and the

MAX30102. Chapter 4 gives a description on how the components are connected.

In Section 3.2.1, we present the key features and characteristics, power modes configura-

tions and the development framework used. We conclude this section with a description of the

MAX30102, in Section 3.2.2, including the primary registers and FIFO data structure. It is worth

3.2 Wearable 29

Field Domain Infrastructure Domain

IN

Elipse OM2M

Wearable Device

WiFi Access PointADN-AE

IN-CSE IN-AE

Monitoring
Application

with GUI

InfluxDB

CoAP, HTTP or MQTT

HTTP

HTTP

HTTP

Chronograf

Figure 3.1: System architecture with oneM2M standard entities

noticing that we present the connection between the ESP32 and MAX30102 and, consequently,

data processing in Chapter 4.

3.2.1 ESP32 Module

The ESP32 WiFi module, developed by Espressif Systems and released in 2016, is the suc-

cessor to the ESP8266 WiFi module. It offers a System-on-Chip (SoC) solution to meet the re-

quirements of M2M communications and IoT applications due to its built-in power management

mechanism associated with the WiFi technology. Figure 3.2 presents a high-level block diagram

of the ESP32 module.

Figure 3.2: ESP32 module’s high-level block diagram [44]

30 Components of the IoT Monitoring System

There are five variations of the ESP32 chip, which primarily differentiate with the number of

CPU cores (one or two), MIPS value and whether there is embedded flash memory or not:

• ESP32-DOWDQ6;

• ESP32-D0WD;

• ESP32-D2WD;

• ESP32-S0WD;

• ESP32-PICO-D4.

For this project, we chose ESP32-D2WD chip because it has a dual-core CPU processor with

600 MIPS and a 16 MB embedded flash memory. This particular chip offers several features that

make it highly integrable with IoT applications [44]:

• Small size (25 x 18 mm), ideal for wearable devices, for example;

• Supports IEEE 802.11 b/g/n and IEEE 802.11 n (2.4 GHz, up to 150 Mbps) compliance with

on-board antenna, which enables sensing applications with an Internet connection without

a GW device;

• Support WPA/WPA2 security protocols for a secure WiFi connection;

• Power management features such as multiples power modes and dynamic power scaling;

• Two 32-bit processors, with low-power consumption and with a maximum operating fre-

quency of 240 MHz (Xtensa® dual-core 32-bit LX6 microprocessors(s)).

• Supports a real-time operating system (FreeRTOS);

• Offers three WiFi operating modes: Infrastructure Station, SoftAP and Promiscuous;

• Full TCP/IP stack implementation;

• Integrates 520kB internal SRAM and 16MB external QSPI flash;

• Low-cost device, when compared to other WiFi modules.

The Espressif IoT Development Framework, also know as ESP-IDF, is the official SDK for

the ESP32 family series. It has support for Windows, Linux and Mac OS. ESP-IDF provides

the developers with a FreeRTOS-based API [67], written in C, to help them do develop applica-

tions with ease. Furthermore, Espressif System provides up-to-date API documentation [68] and

practical examples of the different API functionalities.

We chose the ESP32 as the wearable’s microcontroller due to its characteristics that make it a

easily deployable module for IoT application, namely a 32-bit dual-core microprocessor, support

for five built-in power modes and RTOS, and a complete TCP/IP protocol stack.

3.2 Wearable 31

3.2.1.1 Low-power Management

As stressed earlier, this module offers five power modes which enable the CPU, the WiFi

interface and other peripherals to shutdown for inactivity periods [44].

The Active mode is the default mode where the CPU, WiFi interface and other peripherals are

enabled. Thus, it is not ideal to use this mode if the application requires low-power consumption.

In Modem-sleep mode, the CPU is operational and the clock frequency is configurable. The

WiFi circuit is shutdown although the association to network AP is maintained, thus avoiding

the need to reconnect upon waking and the respective high latency [43]. Additionally, Espressif

defines two variants for the Modem-sleep, Minimum Modem sleep and Maximum Modem sleep,

only if the module works in station mode [69]:

• Minimum Modem sleep: the device wakes up every Delivery Traffic Indication Message

(DTIM) to receive a beacon. Broadcast data will not be lost because it transmitted after

DTIM. However, if the DTIM is short, there is not that much power saving;

• Maximum Modem sleep: the device wakes up every beacon listen interval. Broadcast data

can be lost because the device can be in a sleep state at DTIM time. In this mode, there is

less power consumption if the beacon listen interval is longer, although the broadcast data

can be easily lost.

The Light-sleep mode pauses the CPU while keeping the RTC memory, the RTC peripherals

and the ultra-low-power (ULP) co-processor are running. The WiFi interface is shut down and the

association to the network AP is preserved because the module preserves its internal state. This

is not ideal for applications that send WiFi data periodically because the wake time duration, thus

data can be lost.

The Deep-sleep mode is similar to the Light-sleep mode. The main difference is that the CPU

is inactive and WiFi connection data is stored in the RTC memory.

Finally, in the Hibernation mode, all components are shut down, including the internal 8MHz

oscillator and ULP processor, except one RTC timer and some RTC GPIOs. Therefore, the device

cannot preserve any kind of memory.

Table 3.1 and 3.2 contains the properties of the multiple power modes and the typical current

consumption concerning each power mode for ESP32 chip used in this work, respectively.

Table 3.1: ESP32 power modes’ hardware level distinction

Item Modem-sleep Light-sleep Deep-sleep Hibernation
WiFi Interface OFF OFF OFF OFF
AP Association Connected Connected Disconnected Disconnected
System Clock ON OFF OFF OFF
RTC ON ON ON Most OFF
CPU ON Pending OFF OFF

32 Components of the IoT Monitoring System

Table 3.2: Sleep-modes’ typical current consumption stated in the datasheet [44]

Power Mode Description Power Consumption

Active

Transmit 802.11b 240 µA @ 50% duty
Transmit 802.11g 190 µA @ 50% duty
Transmit 802.11n 180 µA @ 50% duty

Receive 802.11b/g/n 95 mA ∼ 100 mA @ 50% duty

Modem-sleep CPU is powered on
240 MHz 30 mA ∼ 68 mA
160 MHz 27 mA ∼ 44 mA
80 MHz 20 mA ∼ 31 mA

Light-sleep - 0.8 mA

Deep-Sleep
The ULP co-processor is powered on 150 µA

ULP sensor-monitored pattern 100 µA @ 1% duty
RTC Timer + RTC memory 10 µA

Hibernation RTC Timer only 5 µA

3.2.2 MAX30102 Sensor

The MAX30102, the successor of the MAX30100 and MAX30101, is an highly integrated

HR monitor and pulse oximeter sensor in a LED reflective solution suitable for wearable devices

developed by Maxim Integrated. It has the purpose to acquire HR and SpO2.

The sensor contains two LEDs (red and infrared with 660nm and 880nm of wavelength, re-

spectively), photodetectors, cover glass for optimal performance and low-noise electronics for can-

celling ambient light. The module operates on a 3.3V power supply. It provides ultra-low-power

options with programmable sample rate and LED current as well as a standby mode that has an in-

significant current consumption. Communication between the MAX30102 and a microcontroller

is via Inter-Integrated Circuit protocol (I2C). Additionally, the sensor includes a discrete-time filter

to reject 50Hz/60Hz noise.

3.2.2.1 Registers

The MAX30102 is fully customised by writing the 8-bits internal registers. Table 3.3 gives an

overview of the primary registers.

The FIFO is circular and can store up to 32 samples, which is equivalent to 196 bytes (6 bytes

per sample). As shown in Figure 3.3, the FIFO data is left-justified, therefore the bit 17 always

holds the most significant bit. Figure 3.4 shows the structure of each triplet of bytes (containing

the 18-bit ADC data of each LED channel) and visual presentation of how the samples are stored

in the FIFO data structure.

3.3 Monitoring Application with GUI

The monitoring application controls the data flow between the main components of the system.

Thus, receiving and sending data to the ESP32 through OM2M broker, and updating the InfluxDB

with ESP32 data and log activity.

3.3 Monitoring Application with GUI 33

Table 3.3: Overview of the MAX30102’s registers

Registers (Address) Description

FIFO Write Pointer (0x04)
Points to the location where the sensor writes the
next sample

Overflow Counter (0x05)
Counts the number of lost samples. When the
FIFO is full, samples are not pushed into the
FIFO, samples are lost

FIFO Read Pointer (0x06)
Points to the location where the processor gets
the next sample from the FIFO through I2C

FIFO Data Register (0x07) Stores 8 bits of sample data

FIFO Configuration (0x08)
Set sample averaging and other FIFO be-
havioural configurations

Mode Configuration (0x09)
Configure operating modes of the sensor: Heart
Rate mode (Red LED only), SpO2 mode and
Multi-LED mode (RED and IR)

SpO2 Configuration (0x0A)
Configure SpO2 ADC range control, sample rate
and LED pulse width

LED Pulse Amplitude (0x0C - 0x0D)
Set current level for Red LED (0x0C) and IR
LED (0x0D)

Multi-LED Mode Control (0x11 - 0x12)
In multi-LED mode, each sample is split into
four time slots. These registers determine which
LED is active in each time slot

Figure 3.3: Sample data stored in FIFO data structure [70]

Along with the monitoring application, there is a GUI that allows the user to control the system.

Both the monitoring application and GUI were developed in Java due to compatibility with the

OM2M broker (also a Java implementation).

The GUI interface comprises two pages entitled "Start Page" and "Main Page". The "Start

Page", shown in Figure 3.5 is an introductory page with the project’s title and a single "Start" but-

ton. This button, when clicked, starts the system by initialising communication with the InfluxDB

and the OM2M broker, thus enabling the connection with wearables.

The "Main Page" offers real-time information and buttons to control the system. The user

can add, pause, remove and delete a single wearable or add and remove all wearables at the same

time. The tables "Transmitting Wearables Table" and "Paused Wearables Table" give information

on whether a wearable is sending data (active wearables) or not (paused wearable). Finally, the

34 Components of the IoT Monitoring System

Figure 3.4: FIFO data structure [70]

Figure 3.5: GUI’s "Start Page"

button "Chronograf" opens a browser page where the user can visually see all the data regarding a

wearable, and the "Restart" restarts the program. Figure 3.6 presents the "Main Page".

3.4 InfluxDB

IoT monitoring systems can generate large amounts of timestamped data in short periods of

time, thus using a database specifically built for time-series data is an advantage. From the solu-

3.4 InfluxDB 35

Figure 3.6: GUI’s "Main Page"

tions proposed in Section 2.3, InfluxDB [46] is the standout due to its easy to find and available

documentation. Therefore, we use this solution to store all the data generated by the system due

to its capability to handle timestamped data with high performance, its specific design for an IoT

sensor data, write and querying Java HTTP APIs (Java is the programming language for the upper-

level end of the system) and SQL-like query language, InfluxQL, developed to query aggregated

data. system [47].

All InfluxDB’s data have an associated timestamp, therefore there is a column time for every

InfluxDB instance. This column stores the timestamp aggregated with the data up to nanosecond

precision. Data content such as HR values in beats per minute (bpm), is stored in field values,

which can be strings, floats, integers or booleans. A field value is always associated with a times-

tamp. Field keys are strings that field values are associated to. For example, an integer field value

that contains the HR values in bpm is associated with the field key "Heart-rate in BPM". In a

monitoring system, several users can transmit the same type of data at the same time. Tag keys

and tag values are strings and record metadata. In the example, a tag key could be "Username"

and, naturally, a tag values could be "John Doe". Finally, the fields, tags and time compose a

measurement.

Tags are optional in the data structure, although the use of tags is advisable because tags are

indexed, unlike fields. Therefore, query tags are faster, making tags ideal for storing commonly-

queried metadata [71].

In this dissertation, we monitor the user’s HR and SpO2 values and the wearable’s battery

percentage while differentiating the user. To achieve this requirements, we have an InfluxDB in-

stance named "WearableDB" which has a measurement called "measured_data" with three field

keys: "heart_rate", "oxygen_level", "battery

_percentage", to store for data for HR values in BPM, SpO2 values and battery percentage, re-

spectively; and two tag keys: "wearable_id" store the wearable identifier (ID) corresponding to the

36 Components of the IoT Monitoring System

data transmitted (there is one ID per wearable) and "wearable_username" to store the wearable’s

username. Table 3.4 presents a visually representation of how the data is stored in the database.

Table 3.4: InfluxDB’s instance "WearableDB" for wearable data (illustrative values shown)

measured_data

time heart
_rate

oxygen
_level

battery
_percentage

wearable
_id

wearable
_username

19:04:32.456 65 95 97 1 John Doe
19:04:32.567 70 96 60 2 Jane Doe

...

Furthermore, we also store the log information of the monitoring application and GUI. These

information is connected to GUI buttons. Therefore, we have an InfluxDB instance named "GuiLogDB"

that comprehends a measurement called "monitoring_application_gui_log" with one field key "op-

eration" to store information related to the pressed buttons, and two tag keys: "button" and "page"

to indicate the button and the GUI page it belongs, respectively. The "operation" field key can

inform that the system started when the "Start" button was pressed in the "Start Page" or which

wearable (with username and ID) connected to the system, for example. Table 3.5 illustrates the

instance to store monitoring and GUI log information.

Table 3.5: InfluxDB’s instance "GuiLogDB" for monitoring application and GUI log information

monitoring_application_gui_log
time operation button page

19:04:33.456 Start System Start Start Page

19:04:35.567
Added wearable with username John Doe
and ID 1

Add Wearable Main Page

...

3.5 Chronograf

Chronograph is the visualisation tool for InfluxDB data. Its simple interface, embedded li-

braries and dashboard templates allow the users to see and analyse data in real-time without need-

ing any knowledge about InfluxDB, which makes it a clear choice for the system.

The dashboards are the centrepieces in Chronograf, which are composed of cells. A cell is a

customizable component with different types of graphics, from a line-plot graphics to histograms,

allowing the user to choose line colour, legend and notes, among others.

To extract data and visualise from the InfluxDB, the user creates a query. Chronograf has an

easy-to-use interface for query creation where the user only has to select an InfluxDB instance,

measurements, tags and fields keys for the desired data. We consider this to be a key feature as the

user does not need to know the InfluxQL language.

3.6 Summary 37

Figure 3.7: Real-time data visualisation of the patient "John Doe"

3.6 Summary

In this chapter, we presented the system’s architecture with oneM2M entities and the compo-

nents that integrate the proposed IoT monitoring system. Moreover, we also presented an overview

of each component, namely a description and its function. This system has its central piece in the

OM2M broker that ensures device management and data flow between devices. A wearable de-

vice, comprising a LiPo battery, an ESP32 and a MAX30102, is used for acquiring the user’s

physiological parameters and the wearable’s battery percentage. On the system’s upper-level, we

propose a monitoring application with a GUI to give the user the ability to control the system with

real-time information display. The wearable data is stored in the time-series database InfluxDB

and analysed via Chronograf.

38 Components of the IoT Monitoring System

Chapter 4

Implementation and Operation of the
IoT Monitoring System

This chapter describes the system’s implementation and operation. First, we give an insight on

the connection between the MAX30102 and the ESP32 modules in Section 4.1.1. Section 4.1.2

describes the LiPo battery as a power supply. In the Section 4.1.3, we discuss the M2M com-

munications between both the ADN-AE (wearable), the IN-CSE and the IN-AE (monitoring ap-

plication). We conclude the chapter by describing the system’s operation with one and multiple

wearables in Section 4.2. For this, we assume a emergency ward scenario where the patient is

the user that wears the wearable and the medical personnel is entity that controls the system and

analyses data.

4.1 Implementation and Connecting Components

4.1.1 Process Data from the MAX30102 Sensor

The MAX30102 sensor has the purpose of acquiring HR and SpO2 data from the user. The

data is collected from the sensor and is sent to the ESP32 via I2C. Figure 4.1 shows the schematic

of the connections between the MAX30102 and ESP32.

ESP32

3.3V GPIO26GND GPIO25

MAX30102

3.3V SDAGND SCL

Figure 4.1: Schematic of the connections between the MAX30102 and ESP32

39

40 Implementation and Operation of the IoT Monitoring System

4.1.1.1 Sensor Configuration

The code used for sensor configuration, reading samples and data processing is based on

the code developed by the author in [72]. The author proposed a system with an ESP32 and a

MAX3010 [73] and conducts an study on power consumption with different sensor configurations

with the purpose to minimise power consumption. The author utilises the MAX30100, therefore

the code used for this dissertation had to be modified to support the MAX30102 sensor, namely

in the register’s configuration code. However, both modules are very similar in terms of char-

acteristics, being the Analog-to-Digital Converter (ADC) resolution the only major difference.

The MAX30102 has a 18-bit resolution ADC whereas the MAX30100’s ADC has a maximum

resolution of 15 bits. In this project we use the most-energy efficient configuration, without com-

promising data accuracy, shown in the Table 4.1.

Table 4.1: MAX30102 configuration parameters

Parameter Value
Nº of samples average per FIFO sample* 32

Mode Configuration HR and SpO2

SpO2 ADC range control* 2048 nA
SpO2 sample rate control 50 samples per second

LED pulse width control (ADC resolution)* 15 bits
Red LED current 27.2 mA
IR LED current 43.6 mA

The parameters marked with the "*" symbol represent parameters adapted for the MAX30102

or do not exist in the MAX30100. The number of samples average per FIFO sample is set in

the three most significant bits (MSB) of the FIFO configuration register, shown in Figure 4.2,

which does not exist in the MAX30100. Table 4.2 presents the minimum and maximum values for

number of samples averaged per FIFO sample. For this project, the bits are set to 32 to reduce the

throughput data. For a description of the MAX30102’s registers refer to Section 3.2.2.1.

Figure 4.2: MAX30102 FIFO Configuration register [70]

The ADC is set to the lowest resolution possible, i.e. 15 bits, because the most-energy efficient

configuration for the MAX30100 has a 13-bit ADC resolution, which is the lowest resolution for

the module. For the same reason, SpO2 ADC range control has the lowest value, although this

parameter does not exist in the MAX30100.

Additionally, the MAX30102 allows the developer to configure the FIFO behaviour when

completely full whereas this feature is not configurable on the MAX30100. The bit FIFO_ROLLOVER_EN,

in the FIFO Configuration register, controls whether the FIFO holds the data until FIFO Data is

4.1 Implementation and Connecting Components 41

Table 4.2: Number of samples averaged per FIFO sample in the FIFO Configuration register

SMP_AVG[2:0] Nº of samples averaged per FIFO sample
000 1 (no averaging)
001 2
010 4
011 8
100 16
101 32
110 32
111 32

read or the FIFO Write/Read pointer positions are changed by setting the bit to 0 (zero), or stores

new data by changing the FIFO address to zero by setting the bit to 1 (one). For this project, it is

important to analyse the newest data from the patients, thus setting the bit is set to 1 (one).

4.1.1.2 Sensor Data Handling in the ESP Code

There is only one function in the ESP’s programming to handle the secondary functions to ac-

quire sensor data. This task configures the ESP32 I2C driver and communication with sensor, and

reads and processes the data from the sensor. Moreover, after a new HR and SpO2 measurement,

the task publishes the new data to the IN-CSE. Lastly, this task has a period of one second and has

the highest priority when compared to other system’s tasks.

4.1.2 LiPo Battery Power Supply

For powering the wearable we use a single-cell LiPo battery with 3.7V, with 4.2V of peak

voltage. Figure 4.3 demonstrates the wearable’s power schematic. Both the ESP32 module and

MAX30102 operate on 3.3V, hence an MCP1702-3302ET Low-dropout regulator (LDO) with a

fixed output voltage of 3.3V. This LDO has 1.6 µA typical quiescent current and 250 mA output

current. The electrolytic and ceramic capacitors smooth the voltage peaks.

4.1.2.1 Battery Percentage

When using battery-powered devices, it is useful to monitor the battery level. Reading the

output voltage of the battery from an analog pin of the ESP32. However, the ESP32 GPIO’s work

at 3.3V, thus the need for a voltage divider, as shown in Figure 4.4.

LiPo batteries have a well-known State of Charge (SoC), which is linear function with ADC

read voltage as a function of battery percentage. The LiPo battery is completely charged at 4.2V,

therefore one-hundred (100) percent, and completely empty, zero (0) percent, at 3.5V.

To convert the voltage into a percentage value, we perform two linear conversions.

First, we scale the values read by the ADC analog pin to the real voltage values at the bat-

tery terminals. The values read in the ADC are 12 (twelve) bits wide, therefore with a 0 to 4095

42 Implementation and Operation of the IoT Monitoring System

ESP32

3.3V GPIO26GND GPIO25

MAX30102

3.3V SDAGND SCL

MCP1702-3302ET

LiPo
Battery

Figure 4.3: Schematic of the connections between the wearable’s components

ESP32

3.3V GPIO32GND

LiPo
Battery

Figure 4.4: Schematic of the connections with the voltage divider to acquire battery voltage
through the analog pin

range values, which represent the "adc_min_value" and "adc_max_value", respectively. The vari-

able "adc_value_read" represents the value read from the analog pin. The real battery voltage

value is between 3.5V and 4.2V, thus 3.5V equals "battery_min_value" and 4.2V equals "bat-

tery_max_value". The variable "battery_value" is the actual voltage value at the battery’s termi-

nals. Equation 4.3 presents the formula to transform the voltage value read by the ADC in the

actual voltage at the battery terminals.

adc_range = adc_min_value−adc_max_value (4.1)

battery_range = battery_min_value−battery_max_value (4.2)

4.1 Implementation and Connecting Components 43

battery_value =
(adc_value_read −adc_min_value)∗battery_range

adc_range
+battery_min_value

=
(adc_value_read −0)∗ (4.2−3.5)

4095−0
+3.5

(4.3)

The second and final linear conversion, transforms the "battery_value" in battery percentage

with the Equation 4.5.

percent_range = percent_min_value− percent_max_value (4.4)

battery_percent =
(battery_value−battery_min_value)∗ percent_range

battery_range
+ percent_min_value

=
(battery_value−3.5)∗ (100−0)

4.2−3.5
+0

=
(battery_value−3.5)∗ (100)

0.7
(4.5)

Regarding code implementation, the program defines a periodic task that reads the output

voltage from the ADC pin every second. After converting the ADC value to percentage, this

new battery percentage value is compared to the previous one acquired, thus publishing battery

percentage value only if the values are different, reducing network traffic and power consumption.

4.1.3 M2M Communications Between the AEs and the IN-CSE

4.1.3.1 ADN-AE and IN-CSE

The IN-CSE supports CoAP, HTTP and MQTT protocols. In this project, the ADN-AE, i.e.

the wearable’s software, publishes the data collected at the IN-CSE using the MQTT protocol. We

use MQTT due to the advantage of its communication model, publisher-subscriber, in terms of

communication efficiency in sensing and remote monitoring applications. Although, the IN-CSE

supports MQTT communications, an MQTT server is needed to act as a broker for communica-

tions between the two entities. The system utilises the Eclipse Mosquitto MQTT server. This

server was installed and configured in the machine where the IN-CSE is running.

An oneM2M standard request requires obligatory parameters that need to be included in the

MQTT message payload (Figure 4.5), namely:

44 Implementation and Operation of the IoT Monitoring System

• To (to): Contains receiver’s URI;

• From (fr): Contains sender’s ID;

• Operation (op): Indicates operation’s request type. There are six different types of opera-

tion: Create(1), Retrieve(2), Update(3), Delete(4), Notify(5) and Discovery(6);

Figure 4.5: MQTT’s message payload with oneM2M parameters [74]

Besides the previous parameters, there are other additional parameters depending on the type

of operation. In order to publish the data to the IN-CSE, we use generic functions, developed by

the author in [75], to create the MQTT’s message payload depending on the type of operation. This

functions allow the register AEs, containers where the information is stored, content instances in

a existing containers and, finally, subscriber entities in the IN-CSE.

Additionally, the software implemented in the ADN-AE uses the Eclipse Paho library [76] for

MQTT communication with the broker.

4.1.3.2 IN-AE and IN-CSE

The communication between the IN-AE, i.e. the monitoring application, and the IN-CSE

goes through HTTP protocol. The software implementation for create AE, containers, content

instances and subscriber entities as well as receiving data from the IN-CSE was based and adapted

from software presented on the Eclipse OM2M official website [77].

4.1.3.3 IN-CSE Data Structure

For the ADN-AE, an AE is registered in the IN-CSE with name "Wearable_IP", where the "IP"

represents the device’s IP in the network, thus never having wearable device’s registered with the

same AE name, which allows multiple wearable connected to the system and active at the same

time. Associated to "Wearable_IP" are the following containers, mainly to store acquired data and

published by the wearable to the IN-CSE:

• Heart_Rate: Stores every content instance associated to the patient’s HR;

• Oxygen_Level: Stores every content instance associated to the patient’s SpO2;

4.1 Implementation and Connecting Components 45

• Battery_Percentage: Stores every content instance associated with the wearable’s battery

percentage;

• Actuation: Receives "START" and "STOP" signals for start and stop publishing data to the

IN-CSE from the monitoring application;

Additionally, the ADN-AE registers a subscriber entity "Wearable_IP_Monitor" to subscribe

that from the "Actuation" container. For this, an entity "Actuation_Subscriber", associated with

the "Wearable_IP_Monitor", is created in the "Actuation" container to subscribe the data published

in that container.

Lastly, the IN-AE registers an AE in the IN-CSE with the name "MonitorApp" with a asso-

ciated container, "Number_of_Wearable", to store information about the wearables connected to

the system, although this information is sent by the wearable, which means that the monitoring

application subscribes to the container by creating a subscriber entity name "SubscriberEntity"

with an entity "SubNumberOfWearables" associated to the container. Moreover, the monitoring

application has to subscribe to the wearable’s data containers to receive data, therefore creating

content instances "SubContainerBattery", "SubContainerHR" and "SubContainerOxygenLevel",

associated to "SubscriberEntity".

Figure 4.6 shows the data registered in the IN-CSE for the one wearable connected to the

system.

Figure 4.6: IN-CSE data structure

46 Implementation and Operation of the IoT Monitoring System

4.2 System Operation

4.2.1 Setup Stage

In this section, we describe the system operating with a single wearable connecting and trans-

mitting data to the monitoring application, although the system can handle multiple wearable

devices at the same time.

First, the medical personnel has to start the monitoring application and, consequently, the GUI

before turning on any wearable. This is a system requirement. After initialising the application,

the "Start Page" of the GUI (Figure 3.5) appears. Now, the medical personnel has to press the

"START" button to allow the wearable to connect to the system. The pressing of the button triggers

multiple actions, as illustrated in Figure 4.7:

• Registers, in the IN-CSE, the entities for the monitoring application discussed in Sec-

tion 4.1.3.3;

• Initiates communication, through HTTP, with InfluxDB;

• Registers in the database instance "GuiLogDB" the start of the system;

• Opens the GUI’s "Main Page".

ADN-AE

Wearable Monitoring Application with GUI

IN-AEIN-CSE
Ethernet InfluxDB

AP

WiFi Ethernet

"MonitorApp",
"Number_of_Wearables",

"SubscriberEntity",
"SubNumberOfWearables",

"SubContainerBattery",
"SubContainerHr",

"SubContainerSpO2"

Register entities

Start
communication

with "GuiLogDB" and
"WearableDB"

instances

Write in "GuiLogDB"

System started

"START"
button

Close "Start
Page", Open "Main

Page"

Figure 4.7: Sequence diagram for the actions performed by the monitoring application after press-
ing the "START" button

4.2 System Operation 47

Only now the wearable can be initiated. After its initialisation, it creates the corresponding

entities referred in the Section 4.1.3.3. The wearable creates a content instance in the "Num-

ber_of_Wearables" with the wearable’s username and IP, and then waits for a "START" signal

from the monitoring application to start transmitting, which is a content instance in the "Actua-

tion" container. After the monitoring application receives the content instance published in the

"Number_of_Wearables", the application creates a wearable object with the wearable’s username

and IP as well as an ID and other status variables. Although the wearable IP is already an unique

identifier, most medical personnel don’t have knowledge about IP addresses, thus creating an ID

number as it is more visually appealing. In the combinational box below the "Add Wearable"

button, a new option appears with the wearable’s ID and username, as shown in Figure 4.8.

Figure 4.8: GUI’s "Main Page" with the wearable waiting to be added to the system

At this moment, the medical personnel can decide to add the wearable to the monitoring the

system or not. If they decide not to add the wearable, they have the option to add it at a later time

through the interface. On the other hand, to add the wearable to the system, the medical personnel

has to select the wearable in the combinational box and press the "Add Wearable" button. This

action sends a "START" signal to the wearable, which enables it to start publishing data, and

adds a line in the table "Transmitting Wearables" with the wearable’s ID, username and battery

percentage (Figure 4.9). This last value is updated whenever the wearable publishes a new content

instance with a new battery percentage value. Additionally, a new data point with the wearable’s

information, namely the ID, IP and username, and the button pressed is inserted in the database

instance "GUILogDB".

The wearable is now publishing data to the respective containers and, consequently, the mon-

itoring application is receiving the data. After receiving a content instance of any data, the moni-

toring application inserts a data point in the database instance "WearablesDB" with the new data

value. Figure 4.10 illustrates the actions performed between the moments where the wearable is

initialised and transmits data.

48 Implementation and Operation of the IoT Monitoring System

Figure 4.9: GUI’s "Main Page" with the wearable transmitting data

4.2.2 Device & Data Management During Operation

The medical personnel has two options regarding the wearable status: pause/resume the wear-

able or delete it from the system. First, we focus on the pause/resume wearable.

After pressing the "Add Wearable" button, a new option appears in the combinational box

on the right of the "Pause Wearable" button. If the medical personnel selects the wearable and

presses button, the monitoring application sends a "STOP" signal, i.e, a content instance in the

"Actuation" container, to inform the wearable to stop publishing data. Now the wearable is paused,

therefore the monitoring application inserts a new line in the "Paused Wearables" table with the

wearable’s information and deletes the corresponding line in the "Transmitting Wearables" table

(Figure 4.11). Similarly to the previous buttons, a new data point is stored in the "GUILogDB".

When the wearable is paused, the medical personnel can resume its previous state. To do this, the

medical personnel has to select the wearable in the combinational box at the right of the "Resume

Button" and, when selected, press the button. The monitoring application sends a new "START"

signal to the wearable, deletes the respective line from the table "Paused Wearables" and adds that

line to the "Transmitting Wearables" table, as shown in Figure 4.9, and writes a new data point in

the "GuiLogDB" instance that the respective wearable has resumed activity.

Figure 4.12 presents the actions performed for pausing and resuming wearable activity.

After adding the wearable to the system, the medical personnel can delete the wearable from

the system, even if the wearable is paused. Analogous the other actions, the medical personnel

has to select the desired wearable in the combinational box below the "Delete Wearable" button

and press the button. After the button is pressed, the monitoring application sends a new "STOP"

signal and deletes all the entities in the IN-CSE related to the wearable as well as deletes the line

from one of the GUI tables, depending the wearable’s status. Figure 4.13 shows the actions after

pressing "Delete Wearable".

4.2 System Operation 49

ADN-AE

Wearable Monitoring Application with GUI

IN-AEIN-CSE
Ethernet

Publishes content instance

InfluxDB

AP

WiFi Ethernet

Processes
received content

insttance

Register entities

"Wearable_IP",
"Wearable_IP_Monitor",

"Heart_Rate",
"Oxygen_Level",

"Battery_Percentage",
"Actuation",

"Actuation_Subscriber"

on the container
"Number_of_Wearables",
with wearable username

and IP

Forwards the
content instance

Adds option in
combinational box

below "Add Wearable"
button

"Add Wearable"
button pressed

Sends "START" signal

which is a content
instance associated to

the "Actuation"
container

Forwards the "START" signal

Adds line to the "Transmitting
Wearables" table, creates a
wearable object and add options in
the cominational boxes below the
"Delete Wearable" and at the right
of the "Pause Wearable" button

Write in "GuiLogDB"

Wearable connected to
the systemPublishes content instance (data)

on the respective
container Forwards the

content instance

Processes
received content

instance

Write in "WearablesDB"

the respective
subscribed data

Figure 4.10: Sequence diagram to add a wearable to the system

Lastly, the medical personnel can restart the system by clicking the "RESTART" button at any

time. The monitoring application deletes the all the entities registered in the IN-CSE and creates

again the entities referred to the monitoring application discussed in the Section 4.1.3.3

4.2.3 Data Visualisation

The data published from the wearable and subscribed by the monitoring application are stored

in the database instance "WearablesDB" associated with the wearable’s username and ID. The data

stored can be visualised by the medical personnel by pressing the button "Chronograf".

50 Implementation and Operation of the IoT Monitoring System

Figure 4.11: GUI’s "Main Page" with the paused wearable

After pressing the button, a browser page opens up with a page to create a dashboard for a user.

The medical personnel needs to clone the template dashboard, with the name "Wearable - Patient",

for each patient. By clicking in the created dashboard, the medical personnel is redirected to a new

page with two empty cells with the name "Patient - Heart-Rate (beats per minute)" and "Patient -

Blood’s Oxygen Level (Percentage)", as shown in Figure 4.14. In this page, the medical personnel

can choose the data refresh rate among other functionalities.

A type of data is associated to each cell. Therefore, by editing the cell, the medical personnel

can now associate the data from the database and create graphics. It is the cell configure page

that a graphic with a type of data is created. For example, in Figure 4.15 the cell presents the HR

data from the wearable with the username "John Doe". In the same page, the data graphic is fully

customizable on the banner "Visualization" (Figure 4.16).

Figure 4.17 shows the dashboard real-time data of the patient "John Doe".

4.2.4 System with multiple wearables

As stressed earlier, the system proposed can have multiple wearables connected and transmit-

ting at the same time. Therefore, the system has functionality to add all the wearables at the same

time, which is embedded in the "Add All Wearables" button in the "Main Page". The process to

add all the wearables to the system is the same presented in Figure 4.10 repeated the number of

active wearables. However, the medical personnel can add a wearable individually.

Additionally, the medical personnel can delete all system’s wearables at the same time by

clicking the "Delete All Wearables" in the "Main Page". Analogous to adding all wearables at the

same time, the process to delete all wearables is the process presented in Figure 4.13 repeated the

number of active wearables.

4.3 Summary 51

ADN-AE

Wearable Monitoring Application with GUI

IN-AEIN-CSE
Ethernet

Stops
publishing

data

InfluxDB

AP

WiFi Ethernet

Sends "STOP" signal

"Pause
Wearable"

button

Write in "GuiLogDB"

Wearable paused

Forwards the "STOP" signal

Adds line to the "Paused
Wearables" table and adds an
option in the cominational box at
the right of the "Resume Wearable"
button

"Resume
Wearable"

button

Sends "START" signal

Forwards the "START" signal Adds line to the "Transmitting
Wearables" table and adds an
option in the cominational box at
the right of the "Pause Wearable"
button

Write in "GuiLogDB"

Wearable resumed
activity

Publishes content instance (data)

on the respective
container Forwards the

content instance

Processes
received content

instance

Write in "WearablesDB"

the respective
subscribed data

Figure 4.12: Sequence diagram to pause and resume a wearable

4.3 Summary

In this chapter, we presented the most efficient configuration for the MAX30102, energy wise,

based on the study in [72] as well as the adaptations needed for this specific. We also discussed

the the power schematic for a LiPo battery powered device as well as the schematic and formulas

to calculate battery percentage. The architecture includes a set of entities and containers registered

to the IN-CSE needed for the system operation. Lastly, we discussed the application of our system

to an emergency ward scenario with only one wearable first and then with multiple wearables.

52 Implementation and Operation of the IoT Monitoring System

ADN-AE

Wearable Monitoring Application with GUI

IN-AEIN-CSE
Ethernet

Stops
publishing

data

InfluxDB

AP

WiFi Ethernet

Deletes all ADN-AE entities

"Delete"
button

Write in "GuiLogDB"

Wearable deleted

Forwards the "STOP" signal

Sends "STOP" signal

Deletes "Wearable_IP"
and its associated
containers, and,

"Wearable_IP_Monitor",

Deletes line from the
GUI table (depending

on the preivous
wearable status)

Figure 4.13: Sequence diagram to delete a wearable from the system

Figure 4.14: Chronograf’s patient dashboard

4.3 Summary 53

Figure 4.15: Dashboard cell’s area to submit a query to InfluxDB

Figure 4.16: Dashboard cell’s visualization area

54 Implementation and Operation of the IoT Monitoring System

Figure 4.17: Real-time data visualization of the patient "John Doe"

Chapter 5

Performance Results

The use of M2M middlewares as the oneM2M are major steps forward in the development

of in developing M2M and IoT application and promoting interoperability and standardisation.

However, this brings additional overhead and delay on the communications between the devices.

The additional amount of information that has to be added in each transmission and, consequently,

for the additional time that each transmission needs to be completed reflects the problem at hand.

Therefore, in the chapter we evaluate the ESP32 in this scenario with E2E latency and PDR for

each protocol (CoAP, HTTP and MQTT) and ESP32’s power mode.

5.1 Setup and Methodology

We conducted the performance experiments for the ESP32 module in an indoor environment.

The IN-CSE and the MQTT server were installed in a dedicated machine with Ubuntu 18.04LTS

OS and an Intel® Core™i5-3337U CPU @ 1.80GHz quadcore processor and 4GB of RAM. The

IN-AE (subscriber), installed in a computer with the same OS as the server but with an Intel®

Core™i7-7700HQ CPU @ 2.80GHz octacore processor and 16GB of RAM, was connected to

the server machine with a 100Mb/s Ethernet connection. The ADN-AE (ESP32 module) was

connected an infrastructured local WiFi network with a TP-Link TL-WR940N multi-mode router

as an AP configured to transmit a Beacon every 100ms and a DTIM message every 3 Beacons.

Lastly, the AP was connected to the IN-CSE machine with a 100Mb/s Ethernet connection.

The ADN-AE and the IN-AE are not installed in the same machine, therefore we used a

Network Time Protocol (NTP) server, installed on the IN-CSE machine, to synchronise the AEs

clocks. Both applications re-synchronise with the server every 10 minutes. This re-sycnhronize

time interval value is the minimum value allowed by the ESP-IDF framework.

We conducted the experiments regarding the WiFi communication channel quality. At first, the

ADN-AE publishes data very close to the AP with a Received Signal Strength Indication (RSSI)

value of -30, which we denominate as good signal strength channel experiment. For the bad signal

strength channel experiment, the ADN-AE published the data further away from the AP with a

RSSI value of -85. For each channel quality experiment, the ADN-AE publishes data with different

55

56 Performance Results

payload and different frequency. We assume that one HR sample has 85B of payload, therefore we

study the scenarios where the ADN-AE publishes 85B of payload samples every second and 850B

of payload (corresponding to 10 samples) every 10 seconds. Moreover, we evaluate the impact

of three protocols, CoAP, HTTP and MQTT, for both channel quality experiments. Moreover, for

the CoAP experiments, we utilised its non-confirmable version (CoAP non-confirmable), and for

MQTT experiments we evaluate its three QoS of service oriented variants: MQTT QoS0, MQTT

QoS1 and MQTT QoS2. Also, we measure the impact of the ESP32 module’s available power

modes, Active-sleep mode, Minimum Modem sleep mode and Max Modem sleep mode. For the

Modem mode variants, the ESP-IDF framework offers power management feature that allows

the ESP32 module to automatically go to Light-sleep mode. For each scenario, we conducted

experiments until the ADN-AE publishes 100 messages.

Finally, the timestamps are registered before the ADN-AE publishes the message and after the

IN-AE receives and processes the message.

5.2 End-to-end Latency Experiments

In Sections 5.2.1, 5.2.2 and 5.2.3 we present E2E latency and PDR results on the considered

scenarios for CoAP non-confirmable, HTTP and the three MQTT variants, respectively. In the

Section 5.2.4, we discuss and compare the results.

Finally, the graphic legends to distinct the power modes have the following meaning:

• Active: Active-sleep mode;

• MinModem: Minimum Modem sleep mode;

• MaxModem: Maximum Modem sleep mode;

• MinModemAL: Minimum Modem sleep mode with automatic Light-sleep mode;

• MaxModemAL: Maximum Modem sleep mode with automatic Light-sleep mode.

5.2.1 CoAP

Figure 5.1 presents the E2E latency results for the good signal strength channel for 85B and

850B of message payloads for each power mode and Table 5.1 indicates the mean values of the

previous results. There are no packets lost in the good signal strength channel experiment.

Regarding the bad signal strength channel experiment, Figure 5.2 presents the E2E latency

results for 85B and 850B of message payloads for each power mode and Table 5.2 indicates the

mean values of the previous results.

For the PDR, Figure 5.3 presents the E2E latency results for 85B and 850B of message pay-

loads for each power mode and Table 5.3 indicates the mean values of the previous results.

5.2 End-to-end Latency Experiments 57

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.1: E2E latency results for the good signal strength channel with CoAP Non-confirmable
with 85B (left) and 850B (right) of message payload for each power mode

Table 5.1: Mean values for the good signal strength channel experiment with CoAP Non-
confirmable

Power Mode 85B payload (ms) 850B payload (ms)
Active 22.5 24.6

MinModem 26.2 28.6
MaxModem 25.9 27.1

MinModemAL 24.0 25.7
MaxModemAL 24.1 25.9

Average 24.5 26.4

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.2: E2E latency results for the bad signal strength channel with CoAP Non-confirmable
with 85B (left) and 850B (right) of message payload for each power mode

5.2.2 HTTP

Figure 5.4 presents the E2E latency results for the good signal strength channel for 85B and

850B of message payloads for each power mode and Table 5.4 indicates the mean values of the

previous results. There are no packets lost for this experiment.

Regarding the bad signal strength channel experiment, Figure 5.5 presents the E2E latency

58 Performance Results

Table 5.2: Mean values for the bad signal strength channel experiment with CoAP Non-
confirmable

Power Mode 85B payload (ms) 850B payload (ms)
Active 31.9 33.0

MinModem 31.6 34.0
MaxModem 30.7 33.7

MinModemAL 33.1 37.6
MaxModemAL 26.2 28.7

Average 30.7 33.4

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

Figure 5.3: Packets Non-delivered for the bad signal strength channel with CoAP Non-confirmable
with 85B (left) and 850B (right) of message payload for each power mode

Table 5.3: Packets Non-delivered for the bad signal strength channel experiment with CoAP Non-
confirmable

Power Mode 85B payload (%) 850B payload (%)
Active 90 90

MinModem 90 90
MaxModem 89 80

MinModemAL 70 70
MaxModemAL 69 70

Average 81.6 80

Table 5.4: Mean values for the good signal strength channel experiment with HTTP

Power Mode 85B payload (ms) 850B payload (ms)
Active 22.9 24.8

MinModem 24.9 27.1
MaxModem 24.7 27.0

MinModemAL 23.1 25.3
MaxModemAL 23.2 25.4

Average 23.7 25.9

5.2 End-to-end Latency Experiments 59

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.4: E2E latency results for the good signal strength channel with HTTP with 85B (left)
and 850B (right) of message payload for each power mode

results for 85B and 850B of message payloads for each power mode and Table 5.5 indicates the

mean values of the previous results.

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.5: E2E latency results for the bad signal strength channel with HTTP with 85B (left) and
850B (right) of message payload for each power mode

Table 5.5: Mean values for the bad signal strength channel experiment with HTTP

Power Mode 85B payload (ms) 850B payload (ms)
Active 32.8 32.4

MinModem 30.0 33.2
MaxModem 30.1 33.8

MinModemAL 34.3 38.9
MaxModemAL 25.9 33.1

Average 30.6 34.3

For the PDR, Figure 5.6 presents the E2E latency results for 85B and 850B of message pay-

loads for each power mode and Table 5.6 indicates the mean values of the previous results.

60 Performance Results

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

Figure 5.6: Packets Non-delivered for the bad signal strength channel with HTTP with 85B (left)
and 850B (right) of message payload for each power mode

Table 5.6: Packets Non-delivered for the bad signal strength channel experiment with HTTP

Power Mode 85B payload (%) 850B payload (%)
Active 90 90

MinModem 90 90
MaxModem 80 80

MinModemAL 70 70
MaxModemAL 70 68

Average 80 79.6

5.2.3 MQTT

5.2.3.1 MQTT QoS0

Figure 5.7 presents the E2E latency results for the good signal strength channel for 85B and

850B of message payloads for each power mode and Table 5.7 indicates the mean values of the

previous results.

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.7: E2E latency results for the good signal strength channel with MQTT QoS0 with 85B
(left) and 850B (right) of message payload for each power mode

5.2 End-to-end Latency Experiments 61

Table 5.7: Mean values for the good signal strength channel experiment with MQTT QoS0

Power Mode 85B payload (ms) 850B payload (ms)
Active 24.0 25.9

MinModem 26.0 28.3
MaxModem 25.9 27.9

MinModemAL 24.9 27.5
MaxModemAL 24.1 26.1

Average 25.0 27.1

Regarding the bad signal strength channel experiment, Figure 5.8 presents the E2E latency

results for 85B and 850B of message payloads for each power mode and Table 5.8 indicates the

mean values of the previous results.

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.8: E2E latency results for the bad signal strength channel with MQTT QoS0 with 85B
(left) and 850B (right) of message payload for each power mode

Table 5.8: Mean values for the bad signal strength channel experiment with MQTT QoS0

Power Mode 85B payload (ms) 850B payload (ms)
Active 31.9 34.9

MinModem 32.1 34.5
MaxModem 33.7 35.2

MinModemAL 34.6 37.7
MaxModemAL 32.9 38.2

Average 33.0 36.1

For the PDR, Figure 5.9 presents the E2E latency results for 85B and 850B of message pay-

loads for each power mode and Table 5.9 indicates the mean values of the previous results.

5.2.3.2 MQTT QoS1

Figure 5.10 presents the E2E latency results for the good signal strength channel for 85B and

850B of message payloads for each power mode and Table 5.10 indicates the mean values of the

previous results.

62 Performance Results

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

Figure 5.9: Packets Non-delivered for the bad signal strength channel with MQTT QoS0 with 85B
(left) and 850B (right) of message payload for each power mode

Table 5.9: Packets Non-delivered for the bad signal strength channel experiment with MQTT
QoS0

Power Mode 85B payload (%) 850B payload (%)
Active 90 90

MinModem 90 90
MaxModem 79 80

MinModemAL 70 70
MaxModemAL 70 70

Average 79.8 80

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.10: E2E latency results for the good signal strength channel with MQTT QoS1 with 85B
(left) and 850B (right) of message payload for each power mode

Regarding the bad signal strength channel experiment, Figure 5.11 presents the E2E latency

results for 85B and 850B of message payloads for each power mode and Table 5.11 indicates the

mean values of the previous results.

For the PDR, Figure 5.12 presents the E2E latency results for 85B and 850B of message

payloads for each power mode and Table 5.12 indicates the mean values of the previous results.

5.2 End-to-end Latency Experiments 63

Table 5.10: Mean values for the good signal strength channel experiment with MQTT QoS1

Power Mode 85B payload (ms) 850B payload (ms)
Active 24.2 26.1

MinModem 25.6 28.1
MaxModem 25.2 27.1

MinModemAL 26.0 26.7
MaxModemAL 26.9 26.3

Average 25.6 26.7

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.11: E2E latency results for the bad signal strength channel with MQTT QoS1 with 85B
(left) and 850B (right) of message payload for each power mode

Table 5.11: Mean values for the bad signal strength channel experiment with MQTT QoS1

Power Mode 85B payload (ms) 850B payload (ms)
Active 30.1 31.8

MinModem 32.2 33.6
MaxModem 35.4 36.0

MinModemAL 29.4 31.1
MaxModemAL 34.1 36.8

Average 32.2 33.9

Table 5.12: Packets Non-delivered for the bad signal strength channel experiment with MQTT
QoS1

Power Mode 85B payload (%) 850B payload (%)
Active 90 90

MinModem 90 90
MaxModem 80 80

MinModemAL 70 70
MaxModemAL 70 70

Average 80 80

64 Performance Results

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

Figure 5.12: Packets Non-delivered for the bad signal strength channel with MQTT QoS1 with
85B (left) and 850B (right) of message payload for each power mode

5.2.3.3 MQTT QoS2

Figure 5.13 presents the E2E latency results for the good signal strength channel for 85B and

850B of message payloads for each power mode and Table 5.13 indicates the mean values of the

previous results.

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.13: E2E latency results for the good signal strength channel with MQTT QoS2 with 85B
(left) and 850B (right) of message payload for each power mode

Table 5.13: Mean values for the good signal strength channel experiment with MQTT QoS2

Power Mode 85B payload (ms) 850B payload (ms)
Active 31.4 33.4

MinModem 33.2 35.7
MaxModem 33.0 34.6

MinModemAL 32.4 37.4
MaxModemAL 33.8 39.6

Average 32.8 36.1

5.2 End-to-end Latency Experiments 65

Regarding the bad signal strength channel experiment, Figure 5.14 presents the E2E latency

results for 85B and 850B of message payloads for each power mode and Table 5.14 indicates the

mean values of the previous results.

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

E
n
d
-t

o-
E
n
d
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Figure 5.14: E2E latency results for the bad signal strength channel with MQTT QoS2 with 85B
(left) and 850B (right) of message payload for each power mode

Table 5.14: Mean values for the bad signal strength channel experiment with MQTT QoS2

Power Mode 85B payload (ms) 850B payload (ms)
Active 43.8 56.8

MinModem 44.0 43.8
MaxModem 41.4 66.4

MinModemAL 49.2 55.4
MaxModemAL 45.9 72.7

Average 44.9 59.0

For the PDR, Figure 5.15 presents the E2E latency results for 85B and 850B of message

payloads for each power mode and Table 5.15 indicates the mean values of the previous results.

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

ESP32 Power Modes
Active MinModem MaxModem MinModemALMaxModemAL

N
u
m

b
er

 o
f
N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50

Figure 5.15: Packets Non-delivered for the bad signal strength channel with MQTT QoS2 with
85B (left) and 850B (right) of message payload for each power mode

66 Performance Results

Table 5.15: Packets Non-delivered for the bad signal strength channel experiment with MQTT
QoS2

Power Mode 85B payload (%) 850B payload (%)
Active 90 90

MinModem 90 90
MaxModem 80 80

MinModemAL 70 70
MaxModemAL 70 70

Average 80 80

5.2.4 Protocols Comparison

Figure 5.16 provides an overview the impact of all the protocols and ESP32 module’s power

modes on E2E latency with 85B of payload for the good signal strength channel experiments.

Additionally, Figure 5.17 presents the E2E latency results with 850B of payload for the good signal

strength channel experiment. As stressed earlier, there are no packets lost for this experiment

ESP32 Power Modes
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

En
d-

to
-E

nd
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Active MinModem MaxModem MinModemAL MaxModemAL

Figure 5.16: E2E latency results with 85B of payload for the good signal strength channel experi-
ment

Regarding the bad signal strength channel experiment, Figures 5.18 and 5.19 present the E2E

latency results with 85B and 850B of payload, respectively.

For the PDR, Figure 5.20 and Figure 5.21 show the packets non-delivered for messages with

85B and 850B for the "bad" channel, respectively.

These graphics are composed by blocks of five measurements. The first measurements, 1-5,

correspond to the Active mode. Measurements 6-10 correspond to Minimum Modem mode and

5.2 End-to-end Latency Experiments 67

ESP32 Power Modes
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

En
d-

to
-E

nd
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Active MinModem MaxModem MinModemAL MaxModemAL

Figure 5.17: E2E latency results with 850B of payload for the good signal strength channel exper-
iment

ESP32 Power Modes
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

En
d-

to
-E

nd
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Active MinModem MaxModem MinModemAL MaxModemAL

Figure 5.18: E2E latency results with 85B of payload for the bad signal strength channel experi-
ment

measurements 11-15 correspond to Maximum Modem. The last two blocks are associated the

Minimum Modem and Maximum Modem modes with automatic Light sleep, respectively. Inside

the block, the positions are organised by protocols:

68 Performance Results

ESP32 Power Modes
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

En
d-

to
-E

nd
 L

at
en

cy
 (

m
s)

20

30

40

50

60

70

80

90

Active MinModem MaxModem MinModemAL MaxModemAL

Figure 5.19: E2E latency results with 850B of payload for the bad signal strength channel experi-
ment

ESP32 Power Modes
0 5 10 15 20 25

N
um

be
r

of
 N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50
Active MinModem MaxModem MinModemAL MaxModemAL

Figure 5.20: Packets non-delivered with 85B of payload for the bad signal strength channel ex-
periment

• Position 1: CoAP Non-confirmable;

• Position 2: HTTP;

5.2 End-to-end Latency Experiments 69

ESP32 Power Modes
0 5 10 15 20 25

N
um

be
r

of
 N

on
-d

el
iv

er
ed

 P
ac

ke
ts

0

5

10

15

20

25

30

35

40

45

50
Active MinModem MaxModem MinModemAL MaxModemAL

Figure 5.21: Packets non-delivered with 850B of payload for the bad signal strength channel
experiment

• Position 3: MQTT QoS0;

• Position 4: MQTT QoS1;

• Position 5: MQTT QoS2.

As expected, the E2E latency results for the bad signal strength channel experiment are greater

than the results for the good signal strength channel as it has an average increase of 30.24% for

85B and 38.20% for 850B.

The different message payload also has an impact on the E2E latency results as the results for

the 850B of payload increase when compared to the 85B of payload results. For the good signal

strength channel experiment, there is an increase of 7.42% for CoAP Non-confirmable, 9.18%

for HTTP, 8.56% for MQTT QoS0, 5.00% for MQTT QoS1 and 10.25% for MQTT QoS2 for

850B of payload. Thus, for the good signal strength channel, there’s is an average increase of

8.08%. Regarding the bad signal strength channel there is also an increase on E2E latency when

comparing the results 850B to 85B of payload for all protocols. The average latency increases

8.82% for CoAP Non-confirmable, 12.05% for HTTP, 9.39% for MQTT QoS0, 5.03% for MQTT

QoS1 and 31.58% for MQTT QoS2. Moreover, there is an average increase of 38.14% for 850B

when comparing the two channels experiments.

For the good signal strength channel, the E2E latency experienced is within 20-28ms for mes-

sages with 85B of payload for all protcols except MQTT QoS2, which experience E2E latency

between 29-35ms.

70 Performance Results

The protocols that use TCP as its transport layer protocol, i.e. MQTT and HTTP, shown an

increased latency relatively to CoAP uses the UDP, although this differences are negligible for the

good signal strength channel experiment, except for MQTT QoS2 (Table 5.13).

Regarding the ESP32 module’s power modes, a greater latency is experienced when comparing

more energy-efficient power modes with the less energy-efficient power modes, although it is not

significant and in some cases the latency is bigger in less energy-efficient power modes. For

example, the E2E latency decreases 26.26% for Maximum Modem mode with Automatic Light

Sleep when compared to Active mode for CoAP Non-confirmable with 85B payload for the bad

signal strength channel experiment.

For the good signal strength channel, the PDR is 100% although that is not the case for the bad

signal strength channel, as expected. We conclude that the value is higher in less energy-efficient

power modes when comparing with more energy-efficient power modes for the bad signal strength

channel, regardless of message payload and ALP. As shown in Figure 5.20 and Figure 5.21, the

differences in the PDR between messages with 85B and 850B and protocols are negligible. When

comparing the ESP32 power modes, we conclude that there is decrease of 10% for the Maximum

Modem sleep and 20% for both Minimum Modem sleep and Maximum Modem sleep with auto-

matic Light-sleep on the PDR when comparing to the Active-sleep and Minimum Modem sleep.

To conclude, the WiFi channel quality has a great impact on the experienced E2E latency. The

TCP-based protocols also experience a greater latency when compared to CoAP. MQTT QoS2

is the protocol that experiences a greater E2E latency due to the fact that exchanges four mes-

sages to publish one message. Finally, scenarios where using more energy-efficient power modes

experience more E2E latency and less PDR.

5.3 Summary

In this chapter, we present the methodology and the results for system’s performance evalua-

tion. The results validate the use of the ESP32 module on applications similar to the one proposed

in this project, by publishing messages with 85B and 850B of payload with 1 second and 10 sec-

onds period for different WiFi quality channels. The results show that the latency experience when

comparing the channel qualities is significant, however when comparing the latency experienced

with different power modes in the same channel quality scenario is not significant. Finally, the

PDR is higher when the ESP32 is using a less energy-efficient power mode when comparing to a

more energy-efficient power mode.

Chapter 6

Conclusion

IoT technologies have experienced a rapid growth in recent years in their applicability in sev-

eral domains, such as the healthcare. Therefore, several standards and protocols were developed

specifically for this new technology. In today’s society, WiFi is an omnipresent technology, thus

small embedded systems start supporting WiFi technology. This is a key feature due to avoidance

of a GW device connect the system to the Internet.

In this work, we proposed and implemented an IoT system that envisions to satisfy the re-

quirements of remote health monitoring while using a low-cost low-cost WiFi-enabled device. To

guarantee the interoperability between devices, we used the oneM2M standard. Regarding M2M

communications between devices, we implemented CoAP, HTTP and MQTT protocols.

The system proposed is based on the oneM2M, which allows a publisher-subscriber commu-

nication model, a great model for sensing and remote monitoring application such as this. The

system proposed comprises a wearable based on an Espressif ESP32 module, a MAX30102 PPG

module and a LiPo battery, and a monitoring application with GUI as well as a database. InfluxDB,

and a data visualisation tool. The ESP32 module is the central piece of the wearable because pro-

cesses the data acquired in the MAX30102 module, i.e. HR and SpO2, and calculates battery

percentage and publishes to the OM2M broker, IN-CSE. The monitoring application controls the

data flow between the main components of the system, thus communicating with the InfluxDB and

subscribing data from the IN-CSE. We also developed a GUI to give a visually aid of the real-time

status of the system as well as controlling it.

Through the GUI, the medical personnel can add a wearable(s) to the system which allows

the wearable(s) to start publishing data. At any moment, the medical personnel can delete the

wearable(s) from the system as well as pause the wearable. Additionally, the GUI offers a button

to open the Chronograf application which enables the medical personnel to analyse data stored on

the database.

Regarding the system’s performance, we conducted E2E latency experiments, with data trans-

missions at different frequencies, using different power modes offered by the ESP32 module for

two WiFi channel quality experiments regarding signal strength. The results show that the E2E

latency for a bad WiFi channel quality increases 30.24% and 38.20% for messages published with

71

72 Conclusion

1 second and 10 seconds periods, respectively, when compared to a good WiFi channel. We also

conclude that scenarios with TCP-based protocols,such as the HTTP and MQTT, experience more

E2E delay than UDP-based protocols, i.e. CoAP. Furthermore, for the 850B of payload mea-

sures, there is an increase of 26.26% when comparing to 85B of payload for the two channels

experiments. Moreover, we conclude that the PDR is 100% in the good signal strength channel

experiment while in the bad signal strength experiment there is a decrease of the PDR when the

ESP32 is using the more energy-efficient power modes.

6.1 Future Work

The work done can be continued and improved in different facets. Namely, conduct experi-

ments to determine current consumption for different scenarios, and consequently, battery life for

the proposed architecture. Also regarding the battery, conduct an in-depth study of the various

options.

Wearable design and, consequently, build would be an important task as in this dissertation we

prototype the device in a breadboard. Moreover, testing the system in real-life environment, e.g.

in an sports competition game, would also be an important task.

Lastly, improve the GUI to display the real-time data graphics, connected to the Chronograf if

possible, so that the medical personnel would not need to open a browser page and configure the

Chronograf dashboard.

References

[1] World Health Organization. Life expectancy, 2020. https://www.who.int/gho/
mortality_burden_disease/life_tables/situation_trends_text/en/,
Last accessed on 2020-06-25.

[2] World Health Organization. Cardiovascular diseases, 2020. https://www.who.
int/health-topics/cardiovascular-diseases/#tab=tab_1, Last accessed on
2020-06-25.

[3] Carlos Pereira, João Mesquita, Diana Guimarães, Frederico Santos, Luis Almeida, and Ana
Aguiar. Open IoT Architecture for Continuous Patient Monitoring in Emergency Wards.
Electronics (Switzerland), 8(10):1–15, 2019. doi:10.3390/electronics8101074.

[4] Open Connectivity Foundation. Alljoyn, 2020. https://openconnectivity.org/
technology/reference-implementation/alljoyn/, Last accessed on 2020-06-
14.

[5] Anum Ali, Ghalib A. Shah, Muhammad Omer Farooq, and Usman Ghani. Technologies and
challenges in developing Machine-to-Machine applications: A survey. Journal of Network
and Computer Applications, 83(September 2016):124–139, 2017. URL: http://dx.doi.
org/10.1016/j.jnca.2017.02.002, doi:10.1016/j.jnca.2017.02.002.

[6] AllJoyn. Architecture, 2015. https://github.com/alljoyn/extras-webdocs/
blob/master/docs/learn/architecture.md, Last accessed on 2020-02-10.

[7] FIWARE. Fiware: The open source platform for our smart digital future, 2020. https:
//www.fiware.org, Last accessed on 2020-01-30.

[8] FIWARE. What is fiware?, 2020. https://www.fiware.org, Last accessed on 2020-
01-30.

[9] Jahoon Koo, Se Ra Oh, and Young Gab Kim. Device identification interoperability in hetero-
geneous iot platforms †. Sensors (Switzerland), 19(6), 2019. doi:10.3390/s19061433.

[10] FIWARE. Fiware catalogue, 2020. https://www.fiware.org/developers/
catalogue/, Last accessed on 2020-02-10.

[11] IoTivity. Home | iotivity, 2020. https://iotivity.org, Last accessed on 2020-01-30.

[12] Jaehong Jo, Jaehyun Cho, Rami Jung, and Hanna Cha. IoTivity-Lite: Comprehensive IoT
Solution in A Constrained Memory Device. 9th International Conference on Information and
Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence,
ICTC 2018, pages 1367–1369, 2018. doi:10.1109/ICTC.2018.8539598.

73

https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/
https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/
https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
http://dx.doi.org/10.3390/electronics8101074
https://openconnectivity.org/technology/reference-implementation/alljoyn/
https://openconnectivity.org/technology/reference-implementation/alljoyn/
http://dx.doi.org/10.1016/j.jnca.2017.02.002
http://dx.doi.org/10.1016/j.jnca.2017.02.002
http://dx.doi.org/10.1016/j.jnca.2017.02.002
https://github.com/alljoyn/extras-webdocs/blob/master/docs/learn/architecture.md
https://github.com/alljoyn/extras-webdocs/blob/master/docs/learn/architecture.md
https://www.fiware.org
https://www.fiware.org
https://www.fiware.org
http://dx.doi.org/10.3390/s19061433
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://iotivity.org
http://dx.doi.org/10.1109/ICTC.2018.8539598

74 REFERENCES

[13] OpenIoT. Open source cloud solution for the internet of things, 2020. http://www.
openiot.eu, Last accessed on 2020-01-30.

[14] OpenIoT. Openiot architecture, 2013. https://github.com/OpenIotOrg/
openiot/wiki/OpenIoT-Architecture, Last accessed on 2020-02-10.

[15] IERC. Ierc - european research cluster on the internet of things, 2020. http://www.
internet-of-things-research.eu, Last accessed on 2020-02-09.

[16] oneM2M. Standards for m2m and the internet of things, 2020. http://www.onem2m.
org, Last accessed on 2020-01-30.

[17] Jörg Swetina, Guang Lu, Philip Jacobs, Francois Ennesser, and Jaeseung Song. Toward a
standardized common M2M service layer platform: Introduction to oneM2M. IEEE Wireless
Communications, 21(3):20–26, 2014. doi:10.1109/MWC.2014.6845045.

[18] oneM2M. Functional architecture description, 2020. http://www.
onem2m.org/getting-started/onem2m-overview/introduction/
functional-architecture, Last accessed on 2020-01-30.

[19] oneM2M. onem2m service layer, 2020. http://www.onem2m.org/
getting-started/onem2m-overview/introduction/service-layer, Last
accessed on 2020-01-30.

[20] Eclipse Foundation. What is om2m?, 2020. https://www.eclipse.org/om2m/, Last
accessed on 2020-01-30.

[21] L. Zilhao, Ricardo Morla, and Ana Aguiar. A Modular Tool for Benchmarking loT Publish-
Subscribe Middleware. 19th IEEE International Symposium on a World of Wireless, Mo-
bile and Multimedia Networks, WoWMoM 2018, 2018. doi:10.1109/WoWMoM.2018.
8449774.

[22] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira. OM2M: Extensible ETSI-
compliant M2M service platform with self-configuration capability. Procedia Computer Sci-
ence, 32:1079–1086, 2014. URL: http://dx.doi.org/10.1016/j.procs.2014.
05.536, doi:10.1016/j.procs.2014.05.536.

[23] Carlos Pereira, João Cardoso, Ana Aguiar, and Ricardo Morla. Benchmarking Pub/Sub
IoT middleware platforms for smart services. Journal of Reliable Intelligent Environments,
4(1):25–37, 2018. URL: https://doi.org/10.1007/s40860-018-0056-3, doi:
10.1007/s40860-018-0056-3.

[24] Charilaos Akasiadis, Vassilis Pitsilis, and Constantine D. Spyropoulos. A multi-protocol
IoT platform based on open-source frameworks. Sensors (Switzerland), 19(19):1–25, 2019.
doi:10.3390/s19194217.

[25] Sierra Wireless. Welcome to the source, 2020. https://source.sierrawireless.
com/#sthash.yjBWRUsl.DhXX9D8Z.dpbs, Last accessed on 2020-01-30.

[26] Sierra Wireless Legato. Build platform, 2020. https://docs.legato.io/latest/
buildPlatformMain.html, Last accessed on 2020-02-10.

[27] Open MTC. Open mtc, 2020. https://www.openmtc.org, Last accessed on 2020-02-
10.

http://www.openiot.eu
http://www.openiot.eu
https://github.com/OpenIotOrg/openiot/wiki/OpenIoT-Architecture
https://github.com/OpenIotOrg/openiot/wiki/OpenIoT-Architecture
http://www.internet-of-things-research.eu
http://www.internet-of-things-research.eu
http://www.onem2m.org
http://www.onem2m.org
http://dx.doi.org/10.1109/MWC.2014.6845045
http://www.onem2m.org/getting-started/onem2m-overview/introduction/functional-architecture
http://www.onem2m.org/getting-started/onem2m-overview/introduction/functional-architecture
http://www.onem2m.org/getting-started/onem2m-overview/introduction/functional-architecture
http://www.onem2m.org/getting-started/onem2m-overview/introduction/service-layer
http://www.onem2m.org/getting-started/onem2m-overview/introduction/service-layer
https://www.eclipse.org/om2m/
http://dx.doi.org/10.1109/WoWMoM.2018.8449774
http://dx.doi.org/10.1109/WoWMoM.2018.8449774
http://dx.doi.org/10.1016/j.procs.2014.05.536
http://dx.doi.org/10.1016/j.procs.2014.05.536
http://dx.doi.org/10.1016/j.procs.2014.05.536
https://doi.org/10.1007/s40860-018-0056-3
http://dx.doi.org/10.1007/s40860-018-0056-3
http://dx.doi.org/10.1007/s40860-018-0056-3
http://dx.doi.org/10.3390/s19194217
https://source.sierrawireless.com/#sthash.yjBWRUsl.DhXX9D8Z.dpbs
https://source.sierrawireless.com/#sthash.yjBWRUsl.DhXX9D8Z.dpbs
https://docs.legato.io/latest/buildPlatformMain.html
https://docs.legato.io/latest/buildPlatformMain.html
https://www.openmtc.org

REFERENCES 75

[28] Andrew (PrismTech) Foster. Messaging Technologies for the Industrial Inter-
net and the Internet of Things Whitepaper. Prismtech, (March):1–22, 2014.
URL: http://www.prismtech.com/sites/default/files/documents/
MessagingComparsionMarch2014USROW-final.pdf.

[29] Nitin Naik. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP. 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 - Pro-
ceedings, 2017. doi:10.1109/SysEng.2017.8088251.

[30] OASIS. Advanced message queuing protocol (amqp) version 1.0, 2012. http:
//docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.
0-os.html, Last accessed on 2020-06-15.

[31] Yuang Chen and Thomas Kunz. Performance Evaluation of IoT Protocols under a Con-
strained Wireless Access Network. 2016 International Conference on Selected Topics in Mo-
bile and Wireless Networking, MoWNeT 2016, pages 1–7, 2016. doi:10.1109/MoWNet.
2016.7496622.

[32] Burak H. Çorak, Feyza Y. Okay, Metehan Güzel, Şahin Murt, and Suat Ozdemir. Compar-
ative Analysis of IoT Communication Protocols. 2018 International Symposium on Net-
works, Computers and Communications, ISNCC 2018, 2018. doi:10.1109/ISNCC.
2018.8530963.

[33] Carsten Bormann, Angelo P. Castellani, and Zach Shelby. CoAP: An application protocol
for billions of tiny internet nodes. IEEE Internet Computing, 16(2):62–67, 2012. doi:
10.1109/MIC.2012.29.

[34] IETF. The constrained application protocol (coap), 2014. https://tools.ietf.org/
html/rfc7252, Last accessed on 2020-06-15.

[35] Soma Bandyopadhyay and Abhijan Bhattacharyya. Lightweight Internet protocols for web
enablement of sensors using constrained gateway devices. 2013 International Conference
on Computing, Networking and Communications, ICNC 2013, pages 334–340, 2013. doi:
10.1109/ICCNC.2013.6504105.

[36] Konstantinos Fysarakis, Ioannis Askoxylakis, Othonas Soultatos, Ioannis Papaefstathiou,
Charalampos Manifavas, and Vasilios Katos. Which IoT Protocol? Comparing standardized
approaches over a common M2M application. 2016 IEEE Global Communications Con-
ference (GLOBECOM), 2016. URL: http://dx.doi.org/10.1109/GLOCOM.2016.
7842383VN-readcube.com, doi:10.1109/GLOCOM.2016.7842383.

[37] OASIS. Messaging queueing telemetry transport (mqtt), 2019. https://docs.
oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html, Last accessed on
2020-06-15.

[38] Paridhika Kayal and Harry Perros. A comparison of IoT application layer protocols through
a smart parking implementation. Proceedings of the 2017 20th Conference on Innovations in
Clouds, Internet and Networks, ICIN 2017, pages 331–336, 2017. doi:10.1109/ICIN.
2017.7899436.

[39] I. Hedi, I. Špeh, and A. Šarabok. IoT network protocols comparison for the purpose of
IoT constrained networks. 2017 40th International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics, MIPRO 2017 - Proceedings, pages
501–505, 2017. doi:10.23919/MIPRO.2017.7973477.

http://www.prismtech.com/sites/default/files/documents/MessagingComparsionMarch2014USROW-final.pdf
http://www.prismtech.com/sites/default/files/documents/MessagingComparsionMarch2014USROW-final.pdf
http://dx.doi.org/10.1109/SysEng.2017.8088251
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.0-os.html
http://dx.doi.org/10.1109/MoWNet.2016.7496622
http://dx.doi.org/10.1109/MoWNet.2016.7496622
http://dx.doi.org/10.1109/ISNCC.2018.8530963
http://dx.doi.org/10.1109/ISNCC.2018.8530963
http://dx.doi.org/10.1109/MIC.2012.29
http://dx.doi.org/10.1109/MIC.2012.29
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
http://dx.doi.org/10.1109/ICCNC.2013.6504105
http://dx.doi.org/10.1109/ICCNC.2013.6504105
http://dx.doi.org/10.1109/GLOCOM.2016.7842383 VN - readcube.com
http://dx.doi.org/10.1109/GLOCOM.2016.7842383 VN - readcube.com
http://dx.doi.org/10.1109/GLOCOM.2016.7842383
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://dx.doi.org/10.1109/ICIN.2017.7899436
http://dx.doi.org/10.1109/ICIN.2017.7899436
http://dx.doi.org/10.23919/MIPRO.2017.7973477

76 REFERENCES

[40] Matthias Pohl, Janick Kubela, Sascha Bosse, and Klaus Turowski. Performance evaluation of
application layer protocols for the internet-of-things. Proceedings - 2018 6th International
Conference on Enterprise Systems, ES 2018, pages 180–187, 2018. doi:10.1109/ES.
2018.00035.

[41] Marko Pavelic, Vatroslav Bajt, and Mario Kusek. Energy efficiency of machine-to-machine
protocols. 2018 41st International Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics, MIPRO 2018 - Proceedings, pages 361–366, 2018.
doi:10.23919/MIPRO.2018.8400069.

[42] Bluetooth SIG. Bluetooth low energy (ble), 2020. https://www.bluetooth.com/
learn-about-bluetooth/bluetooth-technology/radio-versions/, Last
accessed on 2020-06-15.

[43] Joao Mesquita, Diana Guimaraes, Carlos Pereira, Frederico Santos, and Luis Almeida. As-
sessing the ESP8266 WiFi module for the Internet of Things. IEEE International Confer-
ence on Emerging Technologies and Factory Automation, ETFA, 2018-Septe:784–791, 2018.
doi:10.1109/ETFA.2018.8502562.

[44] Espressif Systems. ESP32 Series Datasheet. Espressif Systems, pages 1–61, 2019.
URL: https://www.espressif.com/sites/default/files/documentation/
esp32{_}datasheet{_}en.pdf.

[45] Yindu Building and Haidian District. W600 Specification. pages 1–21, 2019. URL: http:
//www.winnermicro.com/en/html/1/156/158/497.html.

[46] InfluxData. Influxdb 1.x, 2020. https://www.influxdata.com/
time-series-platform/, Last accessed on 2020-06-15.

[47] InfluxData. Influxdb 1.8 documentation, 2020. https://docs.influxdata.com/
influxdb/v1.8/, Last accessed on 2020-06-15.

[48] InfluxData. Chronograf, 2020. https://www.influxdata.com/
time-series-platform/chronograf/, Last accessed on 2020-06-15.

[49] InfluxData. Kapacitor, 2020. https://www.influxdata.com/
time-series-platform/kapacitor/, Last accessed on 2020-06-15.

[50] The Linux Foundation. Prometheus, 2020. https://prometheus.io, Last accessed on
2020-06-15.

[51] The Linux Foundation. Prometheus overview, 2020. https://prometheus.io/docs/
introduction/overview/, Last accessed on 2020-06-15.

[52] Grafana Labs. Grafana, 2020. https://grafana.com, Last accessed on 2020-06-15.

[53] Grafana Labs. Grafana features, 2020. https://grafana.com/grafana/, Last ac-
cessed on 2020-06-15.

[54] Thinger.io. Thinger.io, 2020. https://thinger.io, Last accessed on 2020-06-15.

[55] Thinger.io. Thinger.io overview, 2020. https://docs.thinger.io, Last accessed on
2020-06-15.

http://dx.doi.org/10.1109/ES.2018.00035
http://dx.doi.org/10.1109/ES.2018.00035
http://dx.doi.org/10.23919/MIPRO.2018.8400069
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
http://dx.doi.org/10.1109/ETFA.2018.8502562
https://www.espressif.com/sites/default/files/documentation/esp32{_}datasheet{_}en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32{_}datasheet{_}en.pdf
http://www.winnermicro.com/en/html/1/156/158/497.html
http://www.winnermicro.com/en/html/1/156/158/497.html
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://docs.influxdata.com/influxdb/v1.8/
https://docs.influxdata.com/influxdb/v1.8/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/kapacitor/
https://www.influxdata.com/time-series-platform/kapacitor/
https://prometheus.io
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://grafana.com
https://grafana.com/grafana/
https://thinger.io
https://docs.thinger.io

REFERENCES 77

[56] Lawrence Oriaghe Aghenta and Mohammad Tariq Iqbal. Low-Cost, Open Source IoT-Based
SCADA System Design Using Thinger.IO and ESP32 Thing. Electronics (Switzerland),
8(8):1–24, 2019. doi:10.3390/electronics8080822.

[57] Anil Yadav, Nitin Rakesh, Sujata Pandey, and Rajat K. Singh. Development and analysis of
IoT framework for healthcare application. Advances in Intelligent Systems and Computing,
554:149–158, 2018. doi:10.1007/978-981-10-3773-3_15.

[58] Juan M. Santos-Gago, Mateo Ramos-Merino, Sonia Vallarades-Rodriguez, Luis M. Álvarez-
Sabucedo, Manuel J. Fernández-Iglesias, and Jose L. García-Soidán. Innovative Use of
Wrist-Worn Wearable Devices in the Sports Domain: A Systematic Review. Electronics
(Switzerland), 8(11):1–29, 2019. doi:10.3390/electronics8111257.

[59] Emily J. Walker, Andrew J. McAinch, Alice Sweeting, and Robert J. Aughey. Inertial sensors
to estimate the energy expenditure of team-sport athletes. Journal of Science and Medicine in
Sport, 19(2):177–181, 2016. URL: http://dx.doi.org/10.1016/j.jsams.2015.
01.013, doi:10.1016/j.jsams.2015.01.013.

[60] Marko Kos and Iztok Kramberger. A Wearable Device and System for Movement and Bio-
metric Data Acquisition for Sports Applications, 2017. doi:10.1109/ACCESS.2017.
2675538.

[61] Ilkka Parak, Jakub and Uuskoski, Maria and Machek, Jan and Korhonen. Estimating
Heart Rate, Energy Expenditure, and Physical Performance With a Wrist Photo-
plethysmographic Device During Running. JMIR Mhealth Uhealth, 5(7):e97, 2017.
URL: http://mhealth.jmir.org/2017/7/e97/https://doi.org/10.
2196/mhealth.7437http://www.ncbi.nlm.nih.gov/pubmed/28743682,
doi:10.2196/mhealth.7437.

[62] Keigo Enomoto, Ryosuke Shimizu, and Hiroyuki Kudo. Real-Time Skin Lactic Acid Moni-
toring System for Assessment of Training Intensity, 2018. doi:10.1002/ecj.12061.

[63] Abolfazl Soltani, Hooman Dejnabadi, Martin Savary, and Kamiar Aminian. Real-world
gait speed estimation using wrist sensor: A personalized approach, 2019. doi:10.1109/
jbhi.2019.2914940.

[64] Eclipse Foundation. Om2m/one, 2020. https://wiki.eclipse.org/OM2M/one, Last
accessed on 2020-02-10.

[65] Eclipse Foundation. Eclipse mosquitto, 2020. http://projects.eclipse.org/
projects/technology.mosquitto, Last accessed on 2020-06-17.

[66] Eclipse Foundation. Eclipse paho, 2020. http://projects.eclipse.org/
projects/technology.mosquitto, Last accessed on 2020-06-17.

[67] Espressif Systems. Espressif iot development framework api source, 2020. https://
github.com/espressif/esp-idf, Last accessed on 2020-06-17.

[68] Espressif Systems. Espressif iot development framework api reference, 2020. https:
//docs.espressif.com/projects/esp-idf/en/stable/api-reference/
index.html, Last accessed on 2020-06-17.

http://dx.doi.org/10.3390/electronics8080822
http://dx.doi.org/10.1007/978-981-10-3773-3_15
http://dx.doi.org/10.3390/electronics8111257
http://dx.doi.org/10.1016/j.jsams.2015.01.013
http://dx.doi.org/10.1016/j.jsams.2015.01.013
http://dx.doi.org/10.1016/j.jsams.2015.01.013
http://dx.doi.org/10.1109/ACCESS.2017.2675538
http://dx.doi.org/10.1109/ACCESS.2017.2675538
http://mhealth.jmir.org/2017/7/e97/ https://doi.org/10.2196/mhealth.7437 http://www.ncbi.nlm.nih.gov/pubmed/28743682
http://mhealth.jmir.org/2017/7/e97/ https://doi.org/10.2196/mhealth.7437 http://www.ncbi.nlm.nih.gov/pubmed/28743682
http://dx.doi.org/10.2196/mhealth.7437
http://dx.doi.org/10.1002/ecj.12061
http://dx.doi.org/10.1109/jbhi.2019.2914940
http://dx.doi.org/10.1109/jbhi.2019.2914940
https://wiki.eclipse.org/OM2M/one
http://projects.eclipse.org/projects/technology.mosquitto
http://projects.eclipse.org/projects/technology.mosquitto
http://projects.eclipse.org/projects/technology.mosquitto
http://projects.eclipse.org/projects/technology.mosquitto
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf
https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/index.html

78 REFERENCES

[69] Espressif Systems. Wifi power save example, 2020. https://github.com/
espressif/esp-idf/tree/release/v3.3/examples/wifi/power_save, Last
accessed on 2020-06-17.

[70] Maxim Integrated. High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable
Health MAX30102. Technical report, 2015. URL: https://www.maximintegrated.
com/en/products/interface/sensor-interface/MAX30102.html.

[71] InfluxData. Influxdb key concepts, 2020. https://docs.influxdata.com/
influxdb/v1.8/concepts/key_concepts/, Last accessed on 2020-06-24.

[72] Miguel Ribeiro. Wearable sensor for continuous monitoring of physiological parameters.
Master’s thesis, Faculty of Engeneering (FEUP), University Of Porto, 2020.

[73] Maxim Integrated. Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health. Tech-
nical report, 2015. URL: https://www.maximintegrated.com/en/products/
sensors/MAX30100.html.

[74] oneM2M. Mqtt protocol binding, 2018. http://www.onem2m.org/images/files/
deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.
pdf, Last accessed on 2020-07-01.

[75] João Mesquita. Comunicação WiFi para monitorização móvel de sinais fisiológicos. Master’s
thesis, Faculty of Engeneering (FEUP), University of Porto, 2018.

[76] Eclipse Foundation. Mqtt c client for posix and windows, 2020. https://www.eclipse.
org/paho/clients/c/, Last accessed on 2020-07-05.

[77] Eclipse Foundation. onem2m java applications, 2017. https://wiki.eclipse.org/
OM2M/one/App, Last accessed on 2020-07-01.

https://github.com/espressif/esp-idf/tree/release/v3.3/examples/wifi/power_save
https://github.com/espressif/esp-idf/tree/release/v3.3/examples/wifi/power_save
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html
https://docs.influxdata.com/influxdb/v1.8/concepts/key_concepts/
https://docs.influxdata.com/influxdb/v1.8/concepts/key_concepts/
https://www.maximintegrated.com/en/products/sensors/MAX30100.html
https://www.maximintegrated.com/en/products/sensors/MAX30100.html
http://www.onem2m.org/images/files/deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.pdf
http://www.onem2m.org/images/files/deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.pdf
http://www.onem2m.org/images/files/deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.pdf
https://www.eclipse.org/paho/clients/c/
https://www.eclipse.org/paho/clients/c/
https://wiki.eclipse.org/OM2M/one/App
https://wiki.eclipse.org/OM2M/one/App

	Front Page
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Architecture
	1.4 Document Structure

	2 IoT Implementations on WiFi Nodes
	2.1 M2M and IoT Applications Development
	2.1.1 Middleware Frameworks
	2.1.2 Open-Source Development Frameworks
	2.1.3 Application Layer Protocols
	2.1.4 Wireless Communication Technologies

	2.2 Low-Power WiFi Nodes
	2.2.1 ESP32 Module
	2.2.2 W600-PICO Module
	2.2.3 WiFi Nodes Comparison

	2.3 Time Series Databases and Data Visualization Tools
	2.3.1 InfluxDB and Chronograf
	2.3.2 Prometheus and Grafana
	2.3.3 Thinger.io

	2.4 Related Work
	2.4.1 IoT Implementations
	2.4.2 Wrist-Worn Wearable Devices in the Sports Domain

	2.5 Summary

	3 Components of the IoT Monitoring System
	3.1 OM2M
	3.2 Wearable
	3.2.1 ESP32 Module
	3.2.2 MAX30102 Sensor

	3.3 Monitoring Application with GUI
	3.4 InfluxDB
	3.5 Chronograf
	3.6 Summary

	4 Implementation and Operation of the IoT Monitoring System
	4.1 Implementation and Connecting Components
	4.1.1 Process Data from the MAX30102 Sensor
	4.1.2 LiPo Battery Power Supply
	4.1.3 M2M Communications Between the AEs and the IN-CSE

	4.2 System Operation
	4.2.1 Setup Stage
	4.2.2 Device & Data Management During Operation
	4.2.3 Data Visualisation
	4.2.4 System with multiple wearables

	4.3 Summary

	5 Performance Results
	5.1 Setup and Methodology
	5.2 End-to-end Latency Experiments
	5.2.1 CoAP
	5.2.2 HTTP
	5.2.3 MQTT
	5.2.4 Protocols Comparison

	5.3 Summary

	6 Conclusion
	6.1 Future Work

	References

