327 research outputs found

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    From UML to SIMULINK CAAM: Formal Specification and Transformation Analysis

    Get PDF
    UML and Simulink are attractive languages for embedded systems design and modeling. An automatic mapping from UML models to Simulink would be an interesting resource in a seamless design flow, allowing designers to use UML asmodeling language for the whole system and at same time to use facilities for code generation based on Simulink. In a previous work, the UML to Simulink translation was prototyped using a Java implementation. In this paper, we present the formal definition of this translation using graph grammars, as well as its automation, which is supported by the AGG system. With the formalization of the metamodels and translation rules, we can guarantee the correctness of the translation. We also illustrate theeffectiveness of our methodology by means of a case study

    Integrating AADL and FMI to Extend Virtual Integration Capability

    Get PDF
    Virtual Integration Capability is paramount to perform early validation of Cyber Physical Systems. The objective is to guide the systems engineer so as to ensure that the system under design meets multiple criteria through high-fidelity simulation. In this paper, we present an integration scheme that leverages the FMI (Functional Mock-Up interface) standard and the AADL architecture description language. Their combination allows for validation of systems combining embedded platform captured by the AADL, and FMI components that represent physical elements, either mechanical parts, or the environment. We present one approach, and demonstrator case studies

    Developing Executable Digital Models with Model-Based Systems Engineering – An Unmanned Aerial Vehicle Surveillance Scenario Example

    Get PDF
    There is an increase in complexity in modern systems that causes inconsistencies in the iterative exchange loops of the system design process and in turn, demands greater quality of system organization and optimization techniques. A recent transition from document-centric systems engineering to Model-Based Systems Engineering (MBSE) is being documented in literature from various industries to address these issues. This study aims to investigate how MBSE can be used as a starting point in developing digital twins (DT). Specifically, the adoption of MBSE for realizing DT has been investigated, resulting in various literature reviews that indicate the most prevalent methodologies and tools used to enhance and validate existing and future systems. An MBSE-enabled template for virtual model development was executed for the creation of executable models, which can serve as a research testbed for DT and system and system-of-systems optimization. This study explores the feasibility of this MBSE-enabled template by creating and simulating a surveillance system that monitors and reports on the health status and performance of an armored fighting vehicle via an Unmanned Aerial Vehicle (UAV). The objective of this template is to demonstrate how executable SysML diagrams are used to establish a collaborative working environment between multiple platforms to better convey system behavior, modifications, and analytics for various system stakeholders

    Automated Fault Tolerance Augmentation in Model-Driven Engineering for CPS

    Get PDF
    Cyber-Physical Systems are usually subject to dependability requirements such as safety and reliability constraints. Over the last 50 years, a body of efficient fault-tolerance mechanisms has been devised to handle faults occurring at run-time. However, properly implementing those mechanisms is a time-consuming task that requires a great deal of know-how. In this paper, we propose a general framework which allows system designers to decouple functional and non-functional concerns, and express non- functional properties at design time using domain-specific languages. In the spirit of generative programming, functional models are then automatically “augmented” with dependability mechanisms. Importantly, the real-time behavior of the initial models in terms of sampling times and meeting deadlines is preserved. The practicality of the approach is demonstrated with the automated implementation of one prominent software fault-tolerance pattern, namely N-Version Programming, in the CPAL model-driven engineering workflow

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Model Continuity in Discrete Event Simulation: A Framework for Model-Driven Development of Simulation Models.

    Get PDF
    Most of the well known modeling and simulation methodologies state the importance of conceptual modeling in simulation studies and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to howto move from a conceptual model to an executable simulation model. Besides, existing modeling and simulation methodologies do not typically provide a formal method for model transformations between the models in different stages of the development process. Hence, in the current M&S practice, model continuity is usually not fulfilled. In this article, a model driven development framework for modeling and simulation is in order to bridge the gap between different stages of a simulation study and to obtain model continuity. The applicability of the framework is illustrated with a prototype modeling environment and a case study in the discrete event simulation domain

    Survey of Template-Based Code Generation

    Full text link
    L'automatisation de la génération des artefacts textuels à partir des modèles est une étape critique dans l'Ingénierie Dirigée par les Modèles (IDM). C'est une transformation de modèles utile pour générer le code source, sérialiser les modèles dans de stockages persistents, générer les rapports ou encore la documentation. Parmi les différents paradigmes de transformation de modèle-au-texte, la génération de code basée sur les templates (TBCG) est la plus utilisée en IDM. La TBCG est une technique de génération qui produit du code à partir des spécifications de haut niveau appelées templates. Compte tenu de la diversité des outils et des approches, il est nécessaire de classifier et de comparer les techniques de TBCG existantes afin d'apporter un soutien approprié aux développeurs. L'objectif de ce mémoire est de mieux comprendre les caractéristiques des techniques de TBCG, identifier les tendances dans la recherche, et éxaminer l'importance du rôle de l'IDM par rapport à cette approche. J'évalue également l'expressivité, la performance et la mise à l'échelle des outils associés selon une série de modèles. Je propose une étude systématique de cartographie de la littérature qui décrit une intéressante vue d'ensemble de la TBCG et une étude comparitive des outils de la TBCG pour mieux guider les dévloppeurs dans leur choix. Cette étude montre que les outils basés sur les modèles offrent plus d'expressivité tandis que les outils basés sur le code sont les plus performants. Enfin, Xtend2 offre le meilleur compromis entre l'expressivité et la performance.A critical step in model-driven engineering (MDE) is the automatic synthesis of a textual artifact from models. This is a very useful model transformation to generate application code, to serialize the model in persistent storage, generate documentation or reports. Among the various model-to-text transformation paradigms, Template-Based Code Generation (TBCG) is the most popular in MDE. TBCG is a synthesis technique that produces code from high-level specifications, called templates. It is a popular technique in MDE given that they both emphasize abstraction and automation. Given the diversity of tools and approaches, it is necessary to classify and compare existing TBCG techniques to provide appropriate support to developers. The goal of this thesis is to better understand the characteristics of TBCG techniques, identify research trends, and assess the importance of the role of MDE in this code synthesis approach. We also evaluate the expressiveness, performance and scalability of the associated tools based on a range of models that implement critical patterns. To this end, we conduct a systematic mapping study of the literature that paints an interesting overview of TBCG and a comparative study on TBCG tools to better guide developers in their choices. This study shows that model-based tools offer more expressiveness whereas code-based tools performed much faster. Xtend2 offers the best compromise between the expressiveness and the performance
    • …
    corecore