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ABSTRACT 

 

Lopez, Viviana G., Developing Executable Digital Models with Model-Based Systems 

Engineering – An Unmanned Aerial Vehicle Surveillance Scenario Example. Master of Science 

Engineering (MSE), May, 2023, 88 pp., 3 tables, 33 figures, references, 58 titles. 

 There is an increase in complexity in modern systems that causes inconsistencies in the 

iterative exchange loops of the system design process and in turn, demands greater quality of 

system organization and optimization techniques. A recent transition from document-centric 

systems engineering to Model-Based Systems Engineering (MBSE) is being documented in 

literature from various industries to address these issues. This study aims to investigate how 

MBSE can be used as a starting point in developing digital twins (DT). Specifically, the adoption 

of MBSE for realizing DT has been investigated, resulting in various literature reviews that 

indicate the most prevalent methodologies and tools used to enhance and validate existing and 

future systems. An MBSE-enabled template for virtual model development was executed for the 

creation of executable models, which can serve as a research testbed for DT and system and 

system-of-systems optimization. This study explores the feasibility of this MBSE-enabled 

template by creating and simulating a surveillance system that monitors and reports on the health 

status and performance of an armored fighting vehicle via an Unmanned Aerial Vehicle (UAV). 

The objective of this template is to demonstrate how executable SysML diagrams are used to 

establish a collaborative working environment between multiple platforms to better convey 

system behavior, modifications, and analytics for various system stakeholders. 
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CHAPTER I 

INTRODUCTION 

The demand for greater flexibility and competitiveness in today's manufacturing and 

production sectors has resulted in an increase in complexity that is causing inconsistencies in the 

iterative exchange loops of the system design process. To address such issues and complexities, 

there is a growing industry movement for organizations to migrate from document-centric 

concepts and applications to model-centric principles and solutions. In this chapter, an 

introduction to systems engineering (SE), model-based systems engineering (MBSE), and digital 

twins (DT) is explored on how these concepts and approaches are being applied to complex 

systems and system of systems (SoS). Complex systems are the center of systems engineering, a 

field that addresses their design, construction, and maintenance. Aircraft systems, defense 

systems, and production facilities can all benefit from a methodical approach to organizing, 

building, and maintaining a system (Liu, 2021); (Lee, 2021); (Glatt, 2021). In model-based 

systems engineering, models are used to describe a system's components, activities, and 

interconnections. By simulating, testing, and optimizing the system in advance of development, 

MBSE helps engineers handle the intricacy of large-scale systems. Digital twins are virtual 

representations of physical systems that emulate the physical system's behavior and properties 

(Grieves, 2017). DTs utilize data from sensors, simulations, and other sources to provide a real-

time view of the system's performance, thereby enabling engineers to monitor and optimize the 

system in real-time. There has been a coordinated attempt, across literature, to use SE, MBSE,



2 
 

and DT for complex systems and systems of systems for improved design, operation, and 

maintenance (Grieves, 2017). In the aerospace industry, for instance, MBSE and DTs are being 

used to improve the efficiency and safety of aviation systems before development even begins 

(Bachelor, 2019); (Li et al., 2019). The industrial sector is making use of SE, MBSE, and DTs to 

enhance the effectiveness of their operations (Liu et al., 2021); (Tschimer, 2015). Engineers can 

test and model production processes using MBSE and DTs to foresee and eliminate delays or 

errors, thus maximizing output and minimizing costs. For developing and managing complex 

systems and systems of systems, SE, MBSE, and DTs are all extremely useful approaches. 

Engineers can optimize the performance, safety, and effectiveness of these systems by 

employing these methods. The first chapter examines the various terms, definitions, tools, and 

languages pertinent to MBSE and Digital Twins.  

Systems Engineering 

 Systems engineering is a methodical and comprehensive strategy for addressing system 

complications, taking into account every stage of the system's life cycle from design and 

development to retirement. INCOSE defines systems engineering as “…a transdisciplinary and 

integrative approach to enable the successful realization, use, and retirement of engineered 

systems, using systems principles and concepts, and scientific, technological, and management 

methods” (Sillitto et al., 2019). Defining system requirements, evaluating and improving system 

performance, identifying and reducing risks, and ensuring the system is reliable, manageable, 

and viable are all part of this approach. The advancement of powerful military technologies like 

radar and missile defense during the middle of the 20th century is considered to be the starting 

point of systems engineering (Sage & Rouse, 2014). The practice of planning and executing the 
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development of such complex systems was given the name "systems engineering" around the 

1950s. 

 In Principles of Complex Systems for Systems Engineering, Sheard and Mostashari define 

complex systems as “systems that do not have a centralizing authority and are not designed from 

a known specification, but instead involve disparate stakeholders creating systems that are 

functional for other purposes…” (Sheard & Mostashari, 2009) There are complications that may 

develop when system stakeholders are unfamiliar with all of the technological aspects of a 

system. Primarily, it can make it challenging to communicate technical information to non-

technical stakeholders, which can lead to misunderstandings or misinterpretations of system 

information or performance. This can lead to overblown expectations, confusion, or premature 

decisions. Non-technical stakeholders may also not completely comprehend the trade-offs and 

limitations that exist within a system. They may request modifications or improvements that are 

not technically feasible or that compromise the system's overall performance or dependability. 

These stakeholders may have different priorities and objectives than the engineers who are 

developing the system. This can result in conflicts and disagreements regarding the project's 

direction, which can cause delays, budget overruns, or even project failure. Overall, effective 

communication and collaboration between technical and non-technical stakeholders is essential 

for ensuring the success of a complex system. This requires clear and concise communication of 

technical information, a shared understanding of goals and priorities, and a willingness to work 

collaboratively to navigate obstacles, which systems engineering begins to address (Sillitto et al., 

2019); (Henderson, 2021); (Bretz et al., 2016). 

 Across literature, Systems Engineering has been used in the development of complex 

systems with the aim of enhancing system performance (Hause, 2019). As previously mentioned, 
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a Systems Engineering approach provides a structured method for system design and 

development that takes into account all aspects of a system, from its conception to its eventual 

retirement or disposal (Sillitto et al., 2019). This approach can enhance system performance, 

dependability, and efficiency. Systems Engineering also provides a comprehensive approach to 

risk management that includes identifying, analyzing, and mitigating risks throughout the life 

cycle of a system. As a result, there will be fewer system failures and lowered costs. Throughout 

the life cycle of a system, systems engineering necessitates the collaboration of multiple 

disciplines and stakeholders (Bajaj et al., 2011). This approach can lead to enhanced 

communication and comprehension, resulting in more informed decisions and more efficient 

problem-solving. The primary goal is to deliver a high-quality solution that satisfies the 

customer's and stakeholders' requirements (Sage & Rouse, 2014). 

Model-Based Systems Engineering 

As defined in the 2007 INCOSE Model-Based Systems Engineering Initiative, Model-

based Systems Engineering (MBSE) is the formalized application of modeling to support system 

requirements, design, analysis, verification, and validation, beginning in the conceptual design 

phase and continuing throughout development and later life cycle phases (Friedenthal et al., 

2007). The adoption of MBSE has proven successful in various industries by providing a clear 

and comprehensive system model that can be examined for stability and reliability (Phanden et 

al., 2021). Several studies have demonstrated that using MBSE techniques can enhance 

interconnectivity among system stakeholders (Bretz et al., 2016). By creating a comprehensive 

system model that can be viewed from multiple perspectives, alternative solutions can be 

assessed, and their implications understood. This improved understanding of the system and its 

architecture leads to increased dependability. Identifying potential issues before they arise allows 
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for timely corrective actions, reducing the risk of system failures. As a result, MBSE is 

increasingly being embraced by organizations seeking to optimize their systems engineering 

processes and enhance the quality of their products or services. 

Three key components are the foundation for Model-Based Systems Engineering 

(MBSE): a modeling technique, tool, and language (Delligatti, 2013). A modeling technique is a 

collection of procedures and rules to build a system model in a virtual environment. This 

involves the procedures and techniques for generating system requirements, designing the 

system, analyzing its performance, verifying and validating it, and managing the system's data. A 

well-defined modeling technique is essential for achieving consistency in system interoperability 

and model development. 

Modeling Tools 

A modeling tool is a software application that aids system model creation, analysis, and 

visualization (Delligatti, 2013). These tools are meant to adhere to various modeling language 

standards, enabling the production of reliable models in the respective modeling language. 

Modeling tools come in various formats, including independent desktop programs and browser-

based web apps. They offer a graphical user interface that enables users to construct and edit 

models utilizing symbols, diagrams, and other visual representations.  

Magic System of Systems Architect (SoS-A) is a No Magic, Inc. developed software 

application used for designing and analyzing complex systems of systems (“Magic Systems of 

Systems Architect Documentation,” n.d.). The term "system of systems" (SoS) refers to a 

network of interconnected systems that perform a specific task. SoS-A supports multiple 

modeling languages and notations, including Systems Modeling Language (SysML), Unified 
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Modeling Language (UML), and others, allowing users to describe and test a wide range of 

system-of-systems configurations. The program provides a full setting for building and 

evaluating intricate SoS systems, including the means to specify system interfaces, handle 

relationships, and identify issues before they occur. SoS-A's ability to integrate with other 

modeling and simulation tools, such as MATLAB and Simulink, enables users to construct a 

more comprehensive view of their SoS. Additionally, the software includes collaboration tools, 

allowing multiple users to simultaneously work on the same SoS model. Magic System of 

Systems Architect has been designed to assist organizations in designing, simulating, and 

managing complex systems of systems by providing an all-inclusive environment for modeling, 

analyzing, and optimizing SoS architectures (“Magic Systems of Systems Architect 

Documentation,” n.d.). 

IBM Rational Rhapsody, also known as IBM Rhapsody, is another software development 

tool used for modeling, designing, and implementing real-time and embedded systems 

(“Engineering systems design rhapsody – overview,” n.d.). It is developed and maintained by 

International Business Machines Corporation (IBM). Rhapsody uses UML and SysML to create 

graphical models of systems and processes. These models can include various types of diagrams, 

such as class diagrams, sequence diagrams, and activity diagrams, among others. The software 

provides a comprehensive environment for designing, testing, and deploying software 

applications, including the ability to generate code in various programming languages, such as 

C++, Java, and Ada. It also includes features for testing and debugging software, as well as for 

managing version control and project collaboration. IBM Rhapsody is designed to help 

organizations improve the efficiency and quality of their software development processes by 
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providing a comprehensive modeling and development environment for creating complex real-

time and embedded systems (“Engineering systems design rhapsody – overview,” n.d.). 

Organizations can also benefit from using Capella, a free and open-source modeling and 

simulation program that was developed by the PolarSys Industry Working Group of the Eclipse 

Foundation (“Features and benefits,” n.d.). It is intended to assist engineers and developers in 

creating complex systems and models using the graphical modeling language and 

approach Arcadia, a specific implementation of the OMG SysML standard. Block diagrams, 

sequence diagrams, and state diagrams are just some of the diagram types that can be created 

with Capella. It also features tools for simulation and verification, allowing users to test and 

analyze the behavior of their models/systems. Capella's support for joint development is a crucial 

element that enables numerous people to work on the same model concurrently. In order to 

guarantee that models are well-documented and in accordance with project objectives and 

specifications, the software also includes features for traceability and monitoring. Capella's 

primary goal is to aid organizations in enhancing their systems engineering procedures by giving 

them an all-encompassing setting in which to model and simulate complicated systems and 

models (“Features and benefits,” n.d.). It is particularly useful for systems that are safety-critical 

or that have intricate component interactions and communications. 

Modeling Languages 

A modeling language is a formalized language that describes the rules and standards for 

building system models (Delligatti, 2013). It provides a standardized language and syntax for 

communicating system requirements, design specifications, and other system-related 

information. Modeling languages may be graphical, like the Unified Modeling Language (UML), 

Systems Modeling Language (SysML), and Arcadia, or textual, like Architecture Analysis and 
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Design Language (AADL) (Feiler et al., 2006). Since each modeling language has its own rules 

and conventions, selecting the appropriate language for the modeled system is essential. 

UML is a standardized visual modeling language used in software engineering to 

represent software systems and processes (“What is UML,” n.d.). SysML is a specialized version 

of UML designed for modeling complex systems and processes (“ABOUT THE OMG SYSTEM 

MODELING LANGUAGE SPECIFICATION VERSION 1.7 BETA,” n.d.). It extends UML 

with additional constructs and notations that are specific to MBSE. A more extensive definition 

of SysML will be explored later on. Arcadia is a systems engineering method that uses the 

Arcadia language to describe and analyze complex systems. Arcadia is based on SysML and 

extends it with additional notations and constructs, making it more suited to various specific 

domains (“Let yourself be guided with Arcadia” n.d.). AADL (Architecture Analysis and Design 

Language) is a modeling language designed for describing the architecture of real-time and 

embedded systems (“Architecture analysis and Design Language (Aadl),” n.d.). It is used to 

represent the structure and behavior of the system at various levels of abstraction and provides a 

way to formally analyze the system's properties, such as timing and resource utilization. These 

modeling languages and methods are used to represent complex systems and processes, helping 

engineers and developers to better understand, analyze, and design software and systems. They 

are only some of the widely used modeling languages in industry and academia and are essential 

resources for software engineering, systems engineering, and MBSE practitioners and 

professionals.  

In this thesis, the Magic Systems of Systems Architect (SoS-A), a modeling tool that 

actively supports system development architectural frameworks, is used. The software allows for 

the execution of SysML models through the Magic Model Analyst, an execution framework 
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plugin (“MagicDraw - CATIA - Dassault Systèmes®,” n.d.). There are several modeling 

languages available, each with its strengths and weaknesses. SysML is chosen as the primary 

modeling language in this study due to its more flexible and all-encompassing semantics. It is 

well-suited for expressing performance and quantitative metrics. Through the use of SysML 

diagrams, the complex architecture of a system can be better understood and communicated 

among stakeholders. 

Systems Modeling Language 

As priorly mentioned, SysML stands for Systems Modeling Language, a graphical 

modeling language used for designing, analyzing, and specifying complex systems. SysML 

provides a set of notations and diagrams to enable a more comprehensive and organized 

representation of system architecture. There are nine diagram types in SysML, each with a 

specific purpose (Delligatti, 2013): 

1. Block Definition Diagrams (BDDs) - displays blocks and value types and their 

relationships, such as system hierarchy and classification trees. 

2. Internal Block Diagrams (IBDs) - indicate the internal structure of a single block by 

showing the connections between the internal parts of a block and the interfaces between 

them. 

3. Use Case Diagrams - to model the interaction between the system and its users or 

external systems. 

4. Activity Diagrams - specify a behavior, focusing on the flow of control and the 

transformation of inputs into outputs through a sequence of actions. 
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5. Sequence Diagrams - used to model the behavior of a system over time, depicting the 

interactions between different system components or actors. 

6. State Machine Diagrams - Identify a behavior by showing the set of states of a block 

and the possible transitions between those states in response to event occurrences. 

7. Parametric Diagrams - expresses how constraints are bound to the properties of a 

system, supporting engineering analyses and trade studies of candidate physical 

architectures. 

8. Package Diagrams - used to organize the system models into groups or packages, 

allowing for more straightforward navigation and management. 

9. Requirements diagrams - display text-based requirements and the relationships 

between requirements and the other model elements that satisfy, verify, and refine them. 

Each diagram type in SysML plays a unique role in modeling the architecture and behavior of a 

system, and they can be used together to create a comprehensive model of a complex system 

(Delligatti, 2013). SysML is the primary language that is utilized throughout this research work.  

Digital Twins 

A digital twin (DT) is an interactive, real-time digital representation of a system or 

service utilizing onboard sensor data and Internet of Things technology. Data from the physical 

system is used to develop and enhance the digital twin by providing an accurate and consistent, 

real-time model of a physical system. The concept of a digital twin, initially introduced by 

Michael Grieves in 2002, is gaining traction in the MBSE community (Grieves, 2017). A digital 

twin is continuously updated with the corresponding physical system and performance data 
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throughout its system life cycle (Kritzinger et al., 2018). However, a review of scientific articles 

proved that a precise definition of a DT has yet to be developed as definitions vary across 

different domains. According to Kritzinger et al., there are three virtual representation levels of a 

digital twin. Each level has a distinct purpose and scope throughout the system's lifecycle, 

helping with decision-making and addressing challenges. Depending on the level of data 

integration, some virtual models are created manually and have no physical data from the 

product/systems, while others are extensively interconnected with real-time data exchange 

(Kritzinger et al., 2018). It is observed that the terms digital model (DM), digital shadow (DS), 

and digital twin (DT) are used interchangeably across literature based on the level of 

interoperability among a virtual model created and its corresponding physical system. Figure 1 

attempts to illustrate the core differences between a DM, DS, and DT (Lopez & Akundi, 2022). 

 

Figure 1. Data Flow from Physical System to Virtual Model Type 

A DM is a digital depiction of a physical system that does not utilize any computerized 

data exchange between the physical system and the virtual model (Kritzinger et al., 2018). Data 

from the physical system is manually input, negating the real-time exchange of data between the 
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physical system and DM. The level of complexity can only pertain to the detail of physical 

system components and environment. Any information gained from a DM will not directly affect 

the physical system. As seen in Figure 1 information about the state of the physical system is 

manually input by a user to the digital model (Lopez & Akundi, 2022). This manual exchange of 

information is represented in the figure as a dotted line. 

A DS is all that a DM is with an addition of an integrated one-way data flow between the 

state of an existing physical system and the state of a virtual model (Kritzinger et al., 2018). Any 

modification made to the physical system will result in an automated update to the DS, which is 

accomplished via an information exchange that is processed by a database. This automatic one-

way exchange of information is represented as a solid line in Figure 1 (Lopez & Akundi, 2022). 

However, a change in the virtual model will not directly affect a change in the physical system. 

Changes determined by the DS must be manually implemented in the physical system by the 

user. 

A DT has real-time interconnectivity between an existing physical system and the virtual 

model (Kritzinger et al., 2018). Changes in the virtual model can directly affect the physical 

system. The DT can also make decisions that change the performance, functionality, or status of 

the physical system. Other physical elements, such as the environment of a physical system, may 

affect the status of the DT as information is automatically transmitted through a database. A 

change in the physical system causes a change in the DT state and vice versa as represented by 

Figure 1. 

Digital Twins (DT) have had a significant impact on the design and optimization of 

physical systems (Delbrügger & Rossmann, 2019). The three pillars of Model-Based Systems 

Engineering (MBSE) can and have been used to initiate DT development. MBSE techniques can 
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be used to streamline workflows, resulting in effective system development. Throughout each 

phase of a system's lifecycle, MBSE users can use modeling and simulation data to create a 

Digital Twin of the physical system(s) (Liu et al., 2021). Depending on the functional, 

operational, and other system requirements, the method used to generate the DT via MBSE may 

vary. The outcome is a DT that accurately reflects the functionality and behavior of the system. 

MBSE can aid in establishing synchronization between structural, technical, inspection, 

software, and other engineering disciplines and elements of a physical system. 

Over the years, the analysis of system requirements, behavior, structure, and parameters, 

as well as their representation in a modeling language such as SysML, were used to construct a 

DT using MBSE (Lopez & Akundi, 2022). The integration of MBSE makes the creation of DTs 

organized and more efficient. The process of developing a DT can be divided into multiple 

phases using MBSE (Pang et al., 2021). These phases contribute to the systematic development 

of the DT and guarantee that the functionality and behavior of the DT consistently reflect the 

physical system. Thus, engineers can gain accurate insights into the performance and behavior of 

a physical system throughout its lifecycle (Bajaj et al., 2011). The implementation of MBSE 

techniques in the construction of DTs has played a crucial role in attaining synchronization 

across various engineering disciplines. Using MBSE techniques facilitates the identification and 

resolution of system complications that may arise during the physical system’s development. 

This strategy has also led to the development of efficient and dependable optimized systems. By 

employing MBSE techniques and tools, engineers are able to construct DTs that aid in the 

simulation of various scenarios, resulting in the creation of efficient solutions that meet system 

and stakeholder requirements (Schluse et al., 2017).  
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The sections and chapters that follow are expanded versions of previously published 

articles by the author for this research. Through a literature review, Chapter II investigates the 

intersection of MBSE and Digital Twins. Following is a summary of the observed challenges and 

benefits found in the literature regarding the use of MBSE for the development of digital twins. 

The development of an MBSE-enabled template for creating varying virtual models and how it 

can be used to generate executable models is described in Chapter III. Chapter IV then goes on to 

describe how this template was used in a case study of MBSE for UAV surveillance. This 

chapter is divided into three major sections that correspond to the operational, conceptual, and 

executable scenarios of the UAV surveillance scenario. Then, in Chapter V, the most pertinent 

observed gaps and limitations in both the literature and this research will be discussed. Finally, 

Chapter VI will include concluding thoughts and future work. 

  



15 
 

CHAPTER II 

 

INTERSECTION OF MODEL-BASED SYSTEMS ENGINEERING AND DIGITAL TWINS 

 

 A digital twin (DT) is an interactive, real-time digital representation of a system or a 

service utilizing onboard sensor data and Internet of Things (IoT) technology to gain a better 

insight into the physical world (Lopez & Akundi, 2022). With the increasing complexity of 

systems and products across many sectors, there is an increasing demand for complex systems 

optimization. Digital twins vary in complexity and are used for managing the performance, 

health, and status of a physical system by virtualizing it. The creation of digital twins enabled by 

Model-based Systems Engineering (MBSE) has aided in increasing system interconnectivity and 

simplifying the system optimization process. More specifically, the combination of MBSE 

languages, tools, and methods has served as a starting point in developing digital twins (Lopez & 

Akundi, 2022). This chapter discusses how MBSE has previously facilitated and used in the 

development of digital twins across various domains, emphasizing both the benefits and 

disadvantages of adopting an MBSE-enabled digital twin creation.  

Application of MBSE In the Context of Digital Twins 

The information and data acquired through the use of digital twins have significantly 

influenced the design and optimization of physical systems. Current research shows that the three 

pillars of MBSE have been employed as a foundation for developing digital twins. By employing 

MBSE techniques, processes can be streamlined for greater efficiency. MBSE languages, 
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methods, and tools such as SysML, Cameo Systems Modeler, and MagicGrid have been utilized 

to develop system models gradually (Liu et al., 2021). SysML has been previously translated into 

a programming language like Java and utilized to mimic the system model in a simulation engine 

(Liu et al., 2021). Cameo Systems Modeler is a cross-platform MBSE environment that allows 

users to create, track, and digitize system characteristics using SysML model diagrams (Liu et 

al., 2021); (Wang et al., 2021); (Tsui et al., 2018). System stakeholders and contributors can then 

easily track system models and those models are then saved as XMI files, or distributed to 

documents, graphics, and web interfaces. MagicGrid enables separating the process of creating a 

system model into three domains: problem, solution, and implementation (Liu et al., 2021); 

(Wang et al., 2021); (Tsui et al., 2018). Comparing simulation outputs to actual results can reveal 

vital information about the physical system’s performance, health, and status. Engineers can 

create event-driven or agent-based simulations to investigate the behavior and interactions of the 

DT using an appropriate MBSE tool and language (Madni et al., 2019). MBSE provides a 

standard guideline for system management, system-to-system architecture, and operational 

scenarios to promote synchronous model creation and enhance the re-usability of model data. 

With MBSE, users can gather model data from various engineering and manufacturing products 

and processes. Users of MBSE have utilized modeling and simulation data to generate a DT of a 

physical system at each stage of its correspondent lifecycle phase (Pang et al., 2021).  

The MBSE approach used to create a digital twin is dependent on functional, operational, 

and other system requirements. This method results in a digital twin that accurately reflects the 

system's behavior and functionality. Previous instances of using MBSE to generate a digital twin 

involved analyzing a system's requirements, behavior, structure, and parameters and representing 

them using a modeling language like SysML. Integrating MBSE aids in the establishment of 
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synchronization across different engineering disciplines such as structural, technical, inspection, 

software, and other various elements of a physical system (Phanden et al., 2021). 

A Brief Review on the Use of MBSE for Digital Twin Development 

A thorough review of literature revealed that employing MBSE in developing digital 

twins has numerous benefits, such as enhancing system comprehension, improving system 

efficiency, and reducing development costs. MBSE can provide a comprehensive view of the 

system under development, allowing for an improved understanding of the system's behavior, 

requirements, and limitations. This information can be leveraged to optimize the system's design, 

reducing development time and costs. However, the review also highlighted several practical 

issues that must be addressed to successfully employ MBSE in digital twin creation. One such 

issue is the requirement for specific knowledge and skills, including expertise in systems 

engineering, modeling, and simulation. To create an effective digital twin, the user must have a 

thorough understanding of the system's behavior, structure, and operation, as well as the relevant 

modeling techniques and tools. Another significant issue is the complexity of integrating data 

from numerous sources, which can result in a lack of consistency and accuracy in the digital twin 

model. Additionally, the need for data validation and verification can further complicate the 

process. Despite these challenges, the benefits of employing MBSE in digital twin creation are 

significant, and efforts are being made to address these issues through the development of more 

advanced modeling techniques and tools. 

Aerospace 

By allowing for real-time monitoring and control, Digital Twin technology has enhanced 

quality control throughout the machining process for aerospace component production (Liu et al., 
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2021). The machining process is modeled using a biomimicry-based technique. The resulting 

multi-physics digital twin model includes a model display module, a data monitoring module, 

and a process display module (Liu et al., 2021). An adaptive digital twin model can be built for 

the entire product life cycle, starting from the planning of the manufacturing process and 

continuing with real-time monitoring of the machining state. 

Biological mimicry is a phenomenon in which one species has evolved to closely 

resemble another species to gain an advantage, such as protection from predators or access to 

food. This can occur through physical resemblance, as seen in the case of a harmless snake that 

mimics a poisonous species, or through behavioral mimicry, as when a predator imitates the 

sound of a distressed animal to lure its prey. Changes in geometry, behavior, and context during 

machining may be reflected and considered by using digital twin mimic models (DTMM) (Liu et 

al., 2021). Using the process path as a guide, the digital twin mimic model incorporates detailed 

information on the product's geometry, physics, and production procedure. The geometry, 

behavior, and context model are kept in the DTMM, and represented using UML. Data objects 

are stored in a tree structure in XML for cross-platform compatibility with the DTMM, with 

properties of the data objects represented in the XML tree nodes (Liu et al., 2021). Because of 

this, data included inside the digital twin model may be efficiently organized, managed, and 

optimized over its entire lifecycle. 

Defense  

A process for creating a digital twin of an Unmanned Aircraft System (UAS) that can 

provide route selection capabilities from the perspective of Mission Engineering (ME) has been 

developed (Lee, 2021). This case study illustrates the methodology, including employing a UAS 

for a Last Mile Delivery (LMD) mission and recommending an appropriate path to the user using 
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a route optimization module. Lee provides a framework for developing a digital twin of the 

UAS, which includes defining stakeholder requirements and use cases, quantifying system 

parameters and mathematical expressions, and organizing the data with CAMEO Enterprise 

Architecture software and SysML to produce a simplified architecture of the UAS for the LMD 

mission (Lee, 2021). Multi-Attribute Utility Theory (MAUT) is the foundation of the used 

optimization module, which evaluates user-determined success requirements for the UAS 

mission. Time to target, remaining battery power, and hazard likelihood are considered to 

determine the optimal route. The success rate of the LMD mission's case study can either 

increase or decrease based on the identified threats. To model the physics of the UAS, parametric 

equations are utilized. The sorted information is then sent to ModelCenter for simulation of the 

case study. During the simulation, ModelCenter will highlight the necessary inputs and display 

the computed results visually (Lee, 2021). The computed paths will assist the UAS user in 

making informed decisions. This MBSE approach, along with decision-support technologies, 

improved the efficiency of the system and its interactions with the environment. 

Healthcare and Medical Industries 

The advancement in creating digital twins extends beyond the optimization of individual 

or multiple systems. Researchers are exploring the potential of utilizing DT technology to 

virtualize humans and human organs. An ongoing study, funded by the Air Force Institute of 

Technology, demonstrated that a digital twin of a human individual could be developed using 

SysML to organize data and information (Pirnstill et al., 2022). Mathematical modeling was 

carried out using parametric diagrams, and data was organized through package diagrams. The 

human body was initially represented using block definition diagrams. To interpret the use cases, 

the DoD product development technique was utilized. The implementation of this technique 
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highlights the numerous ways in which MBSE techniques can be used to structure and define a 

system, such as the human body, in a digital environment. The objective of this study was to create 

a digital twin by establishing a two-way information exchange between the real world and its 

digital representation. The digital twin of a human can be further enhanced by utilizing sensors to 

provide real-time data. In a given scenario involving one or multiple individuals, eye movements, 

injuries, heart rate, brain electrophysiologic signals, blink rates, and timing can all be monitored 

to collect information that can depict or predict human attributes and actions (Pirnstill et al., 2022). 

Real-time visualization of a person's health status could be highly beneficial to the medical 

community. 

Manufacturing  

Cyber-physical production systems are highly versatile and adaptable, allowing for the 

production of individualized goods in low-quantity production runs (Glatt, 2021). However, due 

to the complex material fluxes within these systems, physically caused disruptions can lead to 

breakdowns, decreased throughput, and higher costs. One solution to this issue is to use a physics 

engine to model the frictional forces exerted by workpieces on material handling equipment. 

Researchers were able to model and simulate an experimental material handling system using 

UML diagrams and a Python script (Glatt, 2021). Modeling the system not only provided a 

visual representation but also allowed for simulation-based decision assistance, network 

connection, and control inputs to the physical system. The simulation environment is built using 

input/output data that the user loads into the digital twin. The digital twin was enhanced with 

diagnostic features to capture the actual material flow process, constraints, and moving 

components of the system. During the simulation, UML sequence diagrams depict the 

interactions that occur, and calculated data from the simulation can inform the user whether their 
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input into the existing system is optimal (Glatt, 2021). This procedure generates data that can be 

used for future simulations, particularly for predictions. By simulating the physics of the system, 

users can test and evaluate various material handling characteristics, such as the speed at which a 

material/component is moved or the restrictions of a mechanical load. For example, greater 

accelerations allow for quicker material handling but also increase the mechanical load on the 

carried workpiece(s). A collision detection algorithm in a physics simulation can continuously 

calculate the horizontal position of a workpiece with the transport mechanism, enabling either a 

human supervisor or the simulation itself to detect disturbances. The program records the three-

dimensional coordinates of the material and the transport mechanism in every simulation frame 

(Glatt, 2021). With the integrated prediction function, faster material handling without 

sacrificing safety is now possible, which may enhance throughput and reduce disruptions. 

A Brief Review of the Use of MBSE Tools & Languages 

There are many different configurations in which modeling via MBSE can take place, 

depending on the system's demands or the stakeholders' objectives. Modeling a system may be 

essential in visualizing and organizing its architecture, or it may be necessary to assess and 

validate system behavior. Even the simulation of a physical or theoretical system is possible 

through modeling. There are several tools available that were either developed specifically for 

MBSE methods or adapted for use in MBSE, and they utilize a respective modeling language. 

According to INCOSE's description of MBSE, the following are examples of tools and 

languages previously used in literature to address system requirements, design, analysis, 

verification, and validation. A summary of the specified tools and languages is provided in Table 

I. 
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In any system's design and development process, system requirements are critical as they 

define the constraints within which a system or product must operate. Meeting or surpassing 

these requirements is essential for the system's success, and it ensures that the end product 

satisfies the demands of the stakeholders. By designing, developing, and testing a system with 

requirements, it becomes easier to verify that it is feasible for production, meets the user's needs, 

and is cost-effective. Moreover, system requirements help identify potential system challenges or 

limitations, allowing designers to address these issues before they become major bottlenecks in 

the development process. 

Table I. Tools Utilized for MBSE Approaches 

Lifecycle Phase Tool Language Author(s) 

System 

Requirements 

Xtext Eclipse DSML Lemazurier et 

al. 

Design Rhapsody UML, SysML Sakairi et al. 

Analysis Simulink SysML Sakairi et al. 

Verification nuXmv SysML Staskal et al. 

Validation nuXmv SysML Staskal et al. 

 

The development of a system necessitates a clear understanding of stakeholder needs and 

system requirements. Stakeholder needs are based on customer expectations, while system 

requirements are based on the system's design specifications (Anyanhun & Edmonson, 2018). 

Therefore, it is necessary to translate stakeholder needs into system requirements to influence a 

system's design effectively. MBSE provides methodologies to develop traceable requirements 

that can be accessed throughout a system's lifecycle phases. Traceable requirements ensure that 
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each requirement can be traced back to a specific stakeholder need, thereby establishing a clear 

link between the two. This link allows designers and engineers to develop a system that meets 

stakeholder needs while still adhering to design specifications. In addition, traceable 

requirements aid in managing the system's complexity by breaking down the requirements into 

smaller, more manageable chunks that can be implemented incrementally (Anyanhun & 

Edmonson, 2018). By utilizing MBSE to develop traceable requirements, organizations can 

ensure that the developed system meets stakeholder needs, adheres to design specifications, and 

is developed efficiently. 

The Xtext Eclipse platform is a tool that allows developers to construct domain-specific 

modeling languages (DSML) and programming languages that enhance the clarity and structure 

of the requirements definition process (Lemazurier et al., 2017). The DSML tool enables users to 

describe and place a system within its context, operating modes, and transitions and 

communicate the expected input/output behavior in compliance with the specifications. 

Additionally, it enables users to specify the required operating situations. System design is 

complex, and it can be challenging to manage numerous components and subsystems with their 

own requirements, interconnections, and limitations. IBM Rhapsody, a modeling and simulation 

tool, can help address these factors 

As mentioned in Chapter I, IBM Rhapsody enables users to design, develop, and test 

complex systems, such as real-time and embedded systems (Sakairi, 2013). To do so, it aids 

users in constructing models of a system using UML or SysML to simulate the system's behavior 

to identify possible issues and ensure it satisfies the specified requirements. IBM Rhapsody also 

offers code generation, testing, and visualization capabilities, which can save time and resources 

necessary to design and implement sophisticated systems. MBSE approaches often include the 
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integration of multiple tools/platforms. A shared workspace between Rhapsody and Simulink has 

previously been developed (Sakairi, 2013). Rhapsody can design a system using SysML 

diagrams that contain references to Simulink models, which are later used for simulation in 

Simulink. Verification and validation (V&V) activities ensure that the system operates as 

intended and may aid in identifying and resolving any faults or flaws before putting the system 

into operation. 

nuXmv is a new symbolic model checker for synchronous finite-state and infinite-state 

systems analysis (Staskal et al., 2022). Specifications for successful system operations may be 

developed during the requirements identification phase. These needs are then organized using 

SysML models and translated into nuXmv. Using Linear Temporal Logic (LTL), nuXmv can 

determine if a system meets requirements ranging from safety-critical to high-level convenience. 

After importing validation criteria, nuXmv will check whether the system performs as expected 

(Staskal et al., 2022). MBSE provides methodologies and tools for developing traceable 

requirements and managing complex systems. Xtext Eclipse, Rhapsody, Simulink, and nuXmv 

are examples of tools that can be integrated into an MBSE approach to enhance the clarity and 

structure of the requirements definition process, design and develop complex systems, and verify 

and validate their operation. 

Benefits and Challenges of MBSE Utilization for Digital Twin Development 

MBSE methodologies for creating Digital Twins will vary depending on the industry and 

organization, as a standardized approach has yet to be established. Various modeling languages 

and tools are available to facilitate different forms of modeling. In the absence of a standardized 

MBSE approach, practitioners typically adopt specific modeling tools and languages as their 

preferred modeling methods. These methodologies or techniques differ across domains because 
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each domain has its own set of requirements and limitations for its systems. When designing an 

MBSE methodology, the system and its stakeholders must be taken into account. MBSE-enabled 

digital twin technology has the potential to provide numerous benefits for various industries. 

Below are some of the challenges and benefits of using and developing an MBSE-enabled digital 

twin. 

Benefits 

Considering that digital twins are digital copies of real-world objects or systems that can 

be used for modeling and training, MBSE practitioners can adjust model parameters and conduct 

experiments to improve decision support if a closed-loop modeling method is achieved (Madni, 

2021). In this way, numerous use cases and scenarios can be evaluated before the actions and 

behaviors of the real-world components are finalized, which saves time and 

money. MBSE enables digital twins to be used for t   visualization and simulation of not only 

systems and products but also people and groups. Using this approach, complicated socio-

technical experiments can be conducted at a lower cost and in less time than if humans were 

involved (Madni, 2021).  

Efficiency, collaboration, quality, maintenance, and modifications are just some of the 

areas where digital twins can truly excel. Designers and engineers can save time and money by 

fixing problems in the digital twin model through simulation and testing before the system is 

physically constructed. MBSE enables all parties involved in the system development 

process access to the digital twin and can make and view modifications in real-time, thereby 

fostering improved collaboration and communication. Through extensive testing and analysis of 

the system architecture, digital twin technology enabled by MBSE can guarantee higher-

quality products. The digital twin can then be used for maintenance and modifications after the 
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system has been put into production, cutting down on downtime and maximizing 

efficiency. Since Digital Twins and the formalization of MBSE methods are both in their 

preliminary stages, many different industries have begun investigating how these tools can 

enhance their processes and capabilities. Users, stakeholders and organizations can gain insight 

into how their systems and processes function and where they can be enhanced by employing 

digital twins. Data visualization allows multiple people to better understand the system's 

complexity, which in turn leads to better decisions.  

Digital twins enabled by MBSE are gaining popularity in various industries and for 

legitimate reasons. When it comes to improving productivity and output, businesses are 

constantly looking for new tools and techniques. Using MBSE and digital twins, systems have 

successfully been organized and optimized more efficiently. As the study of these areas expands, 

so will the associated advantages and difficulties. A more standardized approach is required for 

MBSE and digital twins to reach their full potential. 

Challenges  

Implementing MBSE-enabled digital twins requires careful consideration of several 

factors, including the reliability of data sources, the complexity of the model, and the accuracy of 

the model's representation of the real system. Addressing challenges such as data integration, 

validation and verification, and privacy and security will be critical for successful 

implementation. The validation and verification of an MBSE-enabled digital twin heavily rely on 

the availability of reliable and consistent data. To achieve real-time data exchange between a 

physical object and its digital counterpart, extensive preparation, testing, and maintenance are 

required. Data must be transmitted to both the modeling and simulation tool. The data used to 

create the digital twin must be collected from various sources and integrated into a coherent 
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model(s) in the respective MBSE modeling tool. Creating an accurate and comprehensive digital 

twin model requires considerable time and expertise, and the model can become quite complex. 

Ensuring the accuracy and validity of the digital twin model is crucial, and it can be challenging 

to verify that the model is representative of the real system. While physical tests may be more 

expensive overall, they offer immediate feedback. Whereas, the speed and accuracy of 

complicated model simulations still require further study, as simulations may encounter delays 

due to insufficient processing power or connectivity issues with the digital twin's physical 

counterpart. In addition, the term "digital twin" lacks a standardized definition, and its 

interpretation varies depending on the context. Some researchers have referred to their models as 

digital twins, even if they have not been tested or validated and do not engage in real-time data 

exchange. In contrast, researchers whose work involves a more sophisticated data interchange 

tend to avoid using the term. Given that digital twins are developed and managed across multiple 

platforms, models may contain sensitive data, and securing the model and controlling access to it 

can be challenging.  

In addition to the absence of a standard definition for digital twins, there is also no 

formalized MBSE approach for developing digital twins. In a paper titled, "Model-Based 

Systems Engineering for AI-Based Systems," Sprockhoff et al. describe an AI-based threat 

localization system. They propose a framework for systematic development that enables the 

design and modeling of AI-based systems (Sprockhoff et al., 2023). Despite the fact that their 

work concentrates on a subject other than digital twins, the MBSE framework they develop is 

relevant to this thesis. The authors acknowledge the scarcity of research on the use of MBSE for 

developing AI-based systems, just as there is a shortage of formalized MBSE approaches for 

digital twin development. In chapter V, this correlation will be examined in greater detail. 
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Identified Research Gap and Contributions 

Currently, there is no standardized MBSE methodology for developing system 

architectures that can be executed toward creating true digital twins. This lack of formalization 

also extends to the absence of continuity between different tools and platforms required to 

model, simulate, and visualize physical systems in a virtual environment. Real-time physical 

system data, system architectural modeling, model simulation, and 3D visualization are all 

beyond the scope of any single tool. On the other hand, there are dedicated tools that can carry 

out the tasks mentioned above and can be linked to one another. In the following chapter, an 

MBSE-enabled template for developing varying virtual models is explored. The primary goal of 

this template is to demonstrate how executable SysML diagrams can be utilized to generate 

virtual models and a collaborative workspace across several platforms. 
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CHAPTER III 

 

TEMPLATE USED FOR CREATING AN EXECUTABLE DIGITAL  

MODEL USING MODEL-BASED SYSTEMS ENGINEERING 

 

 This section presents a mapping of an MBSE-enabled template for developing an 

executable model based on observations of the use of MBSE across various domains as outlined 

in Chapter II. It is important to first understand the key differences between a digital model, 

digital shadow, and digital twin to understand their context within MBSE. 

Understanding the Differences between Digital Model, Digital Shadow, and Digital Twin 

Digital models, digital shadows, and digital twins are all virtual representations of 

physical systems, each with its own unique characteristics and capabilities (Kritzinger et al., 

2018). While a digital model is a simplified representation of a physical system that can be 

created using a modeling language such as SysML and 3D modeling software, a digital shadow 

incorporates real-time data from onboard sensors to provide more detailed insights into the 

system's behavior. A digital twin, on the other hand, is a real-time virtual replica of a physical 

system that is interconnected with it, allowing for the exchange of data and influencing each 

other.  

Developing a digital model facilitated by MBSE is a cost-effective method of creating a 

simplified representation of a physical system that provides stakeholders with an efficient 

comprehension of its structure and behavior. The initial steps for developing a digital model are 
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to define the system's requirements, establish its design and architecture, and choose the 

appropriate modeling language and tool to represent it, as seen in Figure 2.  

 

Figure 2. A Template for Developing a Digital Model Using MBSE 

Developing a digital shadow requires a more comprehensive process than a digital model, 

including the incorporation of real-time data from onboard sensors and more dynamic modeling 

and simulation tools (Figure 3). The analytical information obtained from a digital shadow can 

provide stakeholders with invaluable insights for making informed decisions regarding the 

physical system.  
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Figure 3. A Template for Developing a Digital Shadow Using MBSE 

Developing a digital twin is the most complex of the three, requiring real-time data from 

sensors to be uploaded into the respective tool, a model library or cloud to hold all the 

information, and a cross-disciplinary understanding of the tools used to create it (Figure 4). It is 

essential to comprehend the distinctions between a digital twin, a digital shadow, and a digital 

model to avoid confusion and ensure that each virtual representation is used appropriately. 
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Figure 4. A Template for Developing a Digital Twin Using MBSE 

MBSE-Enabled Template for Varying Virtual Models 

Designing, developing, and implementing a physical system requires the definition of 

system requirements, which are then visualized and modeled using various MBSE modeling 

languages. The identification of these requirements is crucial for the development of a DT. To 

create complex model diagrams, modeling tools conforming to the standards of a specified 

modeling language can be implemented. Every change made to a feature on a diagram by a user 

is reflected in the specific diagram itself as well as other connected model diagrams, allowing for 

an organized and streamlined system design and implementation process. The most widely 

utilized modeling language observed in literature for developing digital twins is SysML, an 

extension of UML, which represents system structure, behavior, requirements, and restrictions. 

SysML diagrams can be categorized into nine types: block definition diagram (BDD), internal 
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block diagram (IBD), use case diagram, activity diagram, sequence diagram, state machine 

diagram, parametric diagram, package diagram, and requirements diagram. Additional 

information on how these SysML diagrams were observed to be used in creating digital twins 

and their implementation can be found in the sources listed in Table II. 

 

Figure 5. Developing Varying Virtual Models from a Physical System using an MBSE-Enabled 

Template (Lopez & Akundi, 2022).  

The quantity and combination of model diagrams used to develop a virtual model type 

are proportional to its complexity, and the appropriate MBSE tool must be employed for optimal 

results. The level of MBSE integration varies across different domains, necessitating 

consideration of tools and data exchange components when developing the desired virtual model 



34 
 

type. For instance, a DM may be robust in its representation of various system components and 

suggest improvements, but it may not transmit data in real-time. 

The defining characteristic of a digital twin (DT), regardless of the complexity of the 

virtual models, is its ability to transfer data in real-time to and from the physical system and 

virtual model, as defined by different virtual model types (Kritzinger et al., 2018). While it is 

possible to create digital twins without using an MBSE template, the benefits of MBSE lie in the 

ability to structure complicated systems and streamline the system design and implementation 

process. As mentioned, Table II provides an outline of the types of SysML diagrams that can be 

utilized to facilitate the development of virtual models, whether it be a Digital Model (DM), 

Digital Shadow (DS), or DT (Lopez & Akundi, 2022). MBSE tools enable the creation of virtual 

models with varying configurations and degrees of complexity and using SysML diagrams in 

combination with MBSE allows for the seamless integration of different virtual model types. 

Table II. Virtual Model Types and The Corresponding SysML Model Diagram(s) Required 

Digital Model State Machine Diagram, BDD, IBD, Parametric Diagram Use Case 

Diagram, Activity Diagram, Requirement Diagram, and Sequence 

Diagram 

Digital Shadow BDD, IBD, Package Diagram, Parametric Diagram, and 

Requirements Diagram, Sequence Diagram, Activity 

diagram, Use Case Diagram, and State Machine Diagram 

Digital Twin BDD, IBD, Use Case Diagram, Activity Diagram, Sequence 

Diagram, State Machine Diagram, Package Diagram, and 

Requirements Diagram 
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By utilizing MBSE and SysML diagrams to develop virtual models, it is possible to 

enhance system performance, reduce costs, and improve the overall efficiency of the system. The 

ability to simulate different operating scenarios and to test various designs in a virtual 

environment can help to identify potential issues before they arise in the physical system, leading 

to improved system reliability and reduced downtime. 

The subsequent step in the process involves establishing data connectivity between the 

physical system and the virtual model through executable program files stored in a database or 

model library and written in an appropriate programming language (Liu et al., 2021); (Wang et 

al., 2021); (Tsui et al., 2018). By reading and writing files, the system model data is processed, 

and the necessary information is transformed into a simulated virtual model. One way to 

accomplish this is by generating a SQL configuration file, retrieving database connection 

information from the file, and then establishing the connection when the DT starts operating. The 

SQL instructions are then sent to a database, and the results are stored on an MBSE 

modeling/simulation tool. Real-time information exchange between the physical system and 

virtual model is established once the query results are obtained. The type of program files created 

depends on the tools and system communication devices and databases utilized. 

Changes in the physical system or virtual model data may be implemented manually or 

automatically, depending on the desired virtual model type. Figure 1 illustrates the three levels of 

a virtual model, which are also depicted in Figure 5. The type of virtual model generated depends 

on the amount and combination of model diagrams used and the method of data transfer between 

the physical system and virtual model. Figure 5 represents the type of data exchange through 

dotted or solid lines, just as in Figure 1. A colored dotted line represents manual data exchange, 
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where a user must manually make changes in either the physical system or virtual model, and 

those changes will not be reflected until the user makes the necessary adjustments manually. 

On the other hand, automatic (real-time) data exchange is depicted by a colored solid 

line. In the case of a DS and DT, information is supplied into the virtual model type in real-time. 

The most significant difference between a DS and a DT is that a DT can make real-time 

modifications to the physical system, while a DS does not possess this capability. A more 

sophisticated virtual model can be created by using more advanced model diagrams and 

increasing the complexity of a physical system's information transmission (Lopez & Akundi, 

2022). 

In conclusion, to design, develop, and implement a virtual model for a physical system, a 

systematic approach is essential. The template specified starts with the development of system 

requirements before system design or employment. This approach ensures that the virtual model 

aligns with the needs and requirements of the physical system. System requirements can be 

represented using several MBSE modeling languages, with SysML identified as the most 

commonly used language. Once the system requirements are established, modeling tools should 

be used to build interconnected complex model diagrams that allow for an organized system 

design and implementation process. The next stage in the process is to establish data connectivity 

through executable program files written in a suitable programming language. These program 

files are stored in a database or model library and facilitate the transformation of information into 

a simulated virtual model once the system model data has been processed. The type of program 

files generated will vary depending on the tool(s) utilized, as well as the system communication 

devices and database(s) used. Depending on the desired virtual model type (Digital Model, 

Digital Shadow, or Digital Twin), information gathered from changes in the physical system or 
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virtual model is implemented manually or automatically. The final virtual model type is 

determined by the amount and combination of model diagrams utilized and the method by which 

data is transferred between the physical system and the virtual model. The template emphasizes 

the interconnectivity between different model diagrams, which allows for more coordinated and 

efficient system design and execution (Lopez & Akundi, 2022). 
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CHAPTER IV 

 

TEMPLATE APPLICATION – A CASE STUDY ON THE  

APPLICATION OF MBSE FOR A UAV  

SURVEILLANCE SCENARIO 

 

Scenario-Based Testing 

Scenario-based testing is a powerful technique that systems engineers can use to validate 

the functionality of a system or product. This approach involves the creation of test scenarios that 

simulate different system behaviors and environments, allowing engineers to evaluate how the 

system performs under various circumstances (Meyer et al., 2022). Using scenario-based testing, 

engineers can identify potential issues and defects in the system and ensure that it meets its 

functional requirements. The complexity of the scenarios used in scenario-based testing will 

depend on the system being tested and the range of scenarios that must be evaluated. These 

scenarios may be simple, such as testing how the system operates under different user inputs. 

They may also be complex, such as evaluating the system's response to a complex set of events 

or environmental conditions. 

The following section is divided into three distinct areas: conceptual scenario, operational 

scenario, and executable scenario (Figure 6). Each category has a specific purpose in 

characterizing the system being described (Sprockhoff et al., 2023). The operational scenario 

describes the system's intended use in straightforward, easy-to-understand terms. This is crucial 
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because it allows stakeholders who may not be familiar with technical jargon to comprehend 

how the system should work and its goals.  

 

Figure 6. Breakdown of Surveillance Scenario 

In contrast, the conceptual scenario formally models scenarios employing numerous 

aspects and their relationships. This modeling is more complicated than the operational scenario 

since it tries to provide a more detailed and structured knowledge of how the system will 

perform. This can be important for technical professionals who must comprehend the system's 

inner workings. Finally, the executable scenario is defined in a machine-readable format and 
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may be executed in a simulator. This scenario helps stakeholders observe how the system will 

genuinely function in practice. This tool is helpful for testing and refining the system before it is 

implemented. Ultimately, these three categories of scenario classification work together to 

provide a thorough picture of the system being described. By offering multiple viewpoints on 

how the system will work, stakeholders can better grasp its intended purpose and functionality. 

Operational Scenario 

In recent years, model-based systems engineering (MBSE) has emerged as a powerful 

tool for engineers to develop and validate complex systems. SysML (Systems Modeling 

Language) is a popular language used in MBSE, allowing engineers to model complex systems 

and their behaviors using a standardized notation. The Magic System of Systems Architect tool 

also supports MBSE by providing a collaborative platform for systems engineering teams to 

work together (“MagicDraw - CATIA - Dassault Systèmes®,” n.d.).  

The US Army maintains a fleet of ground combat vehicles designed to undertake combat 

operations against opposing troops. The Congressional Budget Office has estimated the cost of 

such vehicles until the year 2050. The total acquisition expenditures for the Army's ground 

combat vehicles are estimated to average about $5 billion annually until 2050 (Congressional 

Budget Office. "Projected Acquisition Costs for the Army's Ground Combat Vehicles | 

Congressional Budget Office," n.d.). Traditionally, the Army's armored combat vehicle 

maintenance standards rely heavily on lengthy manual diagnostic processes (U.S. Marine Corps, 

2005). Instead of using automated diagnostic paradigms, current practice only monitors if 

operational conditions are within the range of acceptability. There is a need for automated real-

time monitoring of armored combat vehicles to evaluate ongoing vehicle health and better 

anticipate vehicle conditions to save both resources and lives. 
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Any tactical mission's objective is to defend and protect at all costs. However, 

maintaining and repairing tank units may be expensive and dangerous if not managed carefully 

and timely. To minimize servicing time and implement additional safety measures, UAV tracks 

and monitors a combat vehicle to detect potential changes in the tank's overall physical and 

structural health status and performance. The UAV will record/capture image data via an 

onboard camera. It will maintain a maximum altitude of two hundred meters and a minimum 

altitude of sixty meters from its target to maintain optimal surveillance parameters. The UAV 

will communicate to and from a ground control unit, as seen in Figure 7, where a flight operator 

can make informed decisions about the target's structural health and status from the UAV's 

imaging data. 

The UAV will also transmit data regarding its health/battery status and performance to 

the operator. In the event of an abnormality in the tank's operations, the tank operator and the 

maintenance personnel will be notified and then equipped for unscheduled maintenance. In case 

of a loss of communication between the UAV and the Ground Control Unit (GCU), the UAV 

will continue to track and store imaging data independently, as seen in Figure 8. When a 

connection is lost, the GCU will alert the operator. Once the link is re-established, all stored 

imaging and flight data and real-time data are transmitted to the GCU. If the UAV's link is lost, it 

will continue to monitor and capture data from its target until the battery is down to 25% 

capacity and then returns to its home base. 
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Figure 7. Surveillance Scenario 

Figure 8. Lost Connection between UAV and GCU. 
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The modeling of the scenario will be utilized to demonstrate the feasibility of the MBSE-

enabled template (Figure 5) by developing and simulating the scenario using SysML. The 

scenario will be modeled and simulated utilizing pre-determined optimal UAV flying parameters 

and weather conditions; no physical experiments were performed. It is assumed that the 

operator's only engagement with the surveillance systems will be assigning flight operations and 

analyzing incoming data. 

The SysML diagrams representing the UAV surveillance scenario were created using 

Saulius Pavalkis' "Aircraft Radar Display SysML MagicGrid Sample with Simulation and 

Analysis" tutorial as a reference (Pavalkis, 2021). The tutorial provided a solid foundation and 

valuable insights into the use of SysML modeling techniques in the context of an aircraft radar 

display system. By building on this foundation, the diagrams were developed to depict the 

complex interactions and relationships involved in the UAV surveillance scenario. 

The use of a well-established tutorial like Pavalkis' provides numerous benefits, including 

time-saving and increased accuracy. It allows for a more efficient development process by 

providing a structured approach to creating the diagrams and reducing the need for trial and 

error. Additionally, it ensures that the diagrams are created in accordance with established 

SysML standards and best practices, which helps to ensure their quality and reliability. 

Furthermore, the use of a tutorial like Pavalkis' allows for the incorporation of simulation 

and analysis techniques in the development process. This enables the diagrams to be thoroughly 

tested and validated, improving their accuracy and reliability. Ultimately, the resulting diagrams 

provide a comprehensive representation of the UAV surveillance scenario, enabling potential 

stakeholders to better understand and analyze the system's behavior and functionality. 
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Conceptual Scenario 

The UAV Surveillance Mission was divided into four categories: the problem domain, 

the solution domain, the UAV subsystem, and the GCU. The initial stage is to break down 

system information and categorize it according to what information influences each subsystem, 

the environment, or the mission. This is essential for simulating the transfer of imaging data, 

UAV health, and flight data among system elements. 

Problem Domain  

The UAV's health and flight data are essential system elements that need to be carefully 

analyzed and deconstructed into individual requirements. This allows for effective 

communication of information from the UAV to the GCU and human operator. To achieve this, 

two types of “boxes” were created, namely the Black Box and the White Box. 

The Black Box is an external perspective that aims to develop a comprehensive set of 

requirements to prevent future revisions caused by poor specifications. It is essential for 

providing external insights into the system. The White Box, on the other hand, is an internal 

perspective that gradually identifies the system's architecture. Critical performance needs can be 

recorded as value attributes or flow properties in the Black Box. For instance, the system's 

reaction time can be described as a value property item of the Black Box that flows in or out of 

the system. The Black Box comprises Stakeholder requirements, Use Cases, System Context, 

and Performance Metrics (MoEs), as illustrated in Figure 9. On the other hand, the White Box 

consists of Functional Analysis, Logical architecture, and system analysis. 
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Figure 9. Functions and MoEs to Stakeholder Needs 

Table III displays the requirements included in the Black Box for employing 

communications between the UAV and GCU. Overall, it is crucial to break down system 

elements into individual requirements and create both a Black Box and a White Box to achieve 

effective communication and avoid future revisions. 

Table III. Mission Communication Requirements 

1.1 Imaging data shall display in less than 1s and refresh in less than 0.5s 

1.2 GCU shall support the following operation modes: pre-flight, post-flight, UAV 

surveillance, and warning mode. 

1.3 The in-flight mode system shall display the planned trajectory of the UAV on 

the GCU screen. 

1.4 GCU screen shall provide visual and acoustic warning in case of UAV 

malfunction in less than 2s 
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1.5 GCU screen shall provide visual and acoustic warning in case of lost 

connection from UAV to GCU in less than 2s 

1.6 GCU screen shall provide visual and acoustic warning in case of lost 

connection from GCU to combat tank in less than 2s 

Table III. Mission Communication Requirements Cont. 

Figure 10 illustrates a comprehensive package diagram that has been employed in the 

development of the use case for the Ground Control Unit (GCU) operator. This diagram serves as 

a visual representation of the various systems and personnel involved in the operation of the GCU 

system. The GCU system is designed to provide critical support to the combat tank by enabling 

remote control of unmanned aerial vehicles (UAV) in the area of conflict. The GCU system 

provides a number of crucial capabilities, all of which contribute to its ability to accomplish its 

primary functions. This includes the ability to display all pertinent data on a screen, receive 

imaging data and flight data from the UAV, control the operation mode of the UAVs, and provide 

warnings to both the operator and the combat tank. The presentation of any significant information 

on a screen is critical since it gives the operator an overview of the current situation. 

The GCU system can manage the flight mode of the UAVs in addition to collecting 

imaging and flight data from it. This gives the tank's operator the flexibility to switch between 

modes of operation as needed during surveillance. In addition, the operator and the combat tank 

may get alerts via the GCU system. This function is vital because it notifies appropriate individuals 

of any dangers or hazards that may develop while the UAV is in use. 

Table III, cont.
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Figure 10. Operator Use Case 

In order to facilitate effective communication between the subsystems, a block definition 

diagram (BDD) was created to define the connections between each subsystem. The BDD 

included ports that were referenced across multiple models, as shown in Figure 11. With these 

connections in place, signals such as 'location data' or 'warning' could be transmitted between 

subsystems (Pavalkis, 2021). To ensure that the system operated as intended, activity diagrams 

were constructed to represent the operator's response to information received via the GCU for 

each port. These diagrams, depicted in Figures 12 and 13, allowed for a clear understanding of 

how the operator would interact with the system in response to various inputs. The 

characteristics of the system's problem domain varied significantly, necessitating a 

comprehensive approach to problem-solving. As such, the problem domain was broken down 

into its various components, which were then incorporated into the solution domain (Pavalkis, 
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2021). This allowed for the creation of a solution that met the requirements of each individual 

subsystem while still functioning as a cohesive whole. 

 

Figure 11. BDD for System Port Connection 

 

Figure 12. GCU Operation Mode Activity Diagram 
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Figure 13. GCU Display Screen Activity Diagram 

Solution Domain 

Each activity or procedure, as well as any requirements for it, must be meticulously 

recorded to guarantee the system functions as planned. This documentation serves as a guide for 

the implementation of each subsystem, allowing for consistent and reliable operation of the 

overall system. The purpose of the model is to quantitatively characterize the information 

provided to the operator via the GCU, as depicted in Figure 14. Depending on the capabilities of 

the system, various amounts of data representing quantitative information, such as the duration 

between delivered messages or imaging data, can be transmitted. 

In the subsequent phase of the project, the system's behavior is modeled within the 

context of the surveillance scenario. This phase employs both state and activity diagrams, 

allowing for greater customization and adaptability. The mission is subdivided into several states 

corresponding to distinct event parts, and the system states and activities are modeled to reflect 
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what is happening with the UAV during the operation. For example, one system state might 

involve ensuring that the UAV has sufficient battery life for the mission and providing a warning 

if it does not. For each subsystem component, an IBD was developed to characterize the 

relationship between the GCU, the operator, and the UAV. This diagram illustrates the 

transmission and reception of data between each subsystem (Pavalkis, 2021). Due to the scope of 

this research phase, the information was limited to the transmission and reception of imaging and 

flight data between subsystems. To simulate the performance of the system, data was collected 

on the number of milliseconds required for the UAV to transmit image data to the GCU, which 

the operator then uses to assess the combat tank's health. This data provides valuable insights 

into the system's performance and allows for the optimization of its operations. 

 

Figure 14. System Requirements 
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Executable Scenario 

SoS-A Simulation 

The scope of this research was to simulate communication between the operator, GCU, 

and UAV, and a duration analysis was conducted to measure the time taken (in milliseconds) for 

each message to be sent and displayed on the GCU, as shown in Figure 15 (Pavalkis, 2021). 

These results can be referenced when analyzing the previously developed GCU Display Screen 

Activity Diagram (Figure 13), and an example of the GCU interface and imaging data that can be 

sent from the UAV can be seen in Figure 16. 

 

Figure 15. IBD Mission Communication Duration Times 
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Figure 16. GCU Operator Screen with Imaging Data 

Duration analysis can be a useful tool for examining several aspects of drone operations, 

such as flight time, battery life, and data transmission speed (Prentice, 2001). For instance, when 

analyzing flight time, survival analysis techniques can be used to model data on the duration of 

each flight, with the end of each flight serving as the "event" of interest and the duration of the 

flight as the "survival time". This approach can estimate the probability of a flight ending at a 

particular time, taking into account factors such as wind conditions, altitude, and payload weight. 

Similarly, duration analysis can also be applied to examine the battery life of a 

drone/UAV. Data on the battery life of the drone under various operating conditions can be 

collected, and survival analysis techniques can be used to model the data, with the event of 

interest being the battery running out of charge, and the duration of battery life being the 

"survival time". This approach can estimate the probability of the battery running out of charge 

at a particular time. 

Lastly, duration analysis can also be used to analyze the data transmission speed of a 

UAV. Data on the time it takes for the UAV to transmit distinct types of data, such as images or 
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sensor readings, can be collected, and survival analysis models can be used to estimate the 

probability of data transmission being completed at a specific time (Pavalkis, 2021). This 

information can be valuable in optimizing the UAV's communication system for faster and more 

reliable data transmission. By specifying the length of individual system behaviors in an activity 

diagram, duration analysis/simulation can be performed in SoS-A. Limits and ranges of time 

may be set, producing outcomes like maximum and random execution times (Jankevicius, 2016). 

Shared Workspace 

The Magic Systems of Systems Architect (SoS-A) offers a range of simulation 

capabilities, including four simulation engines: the Activity engine, State Machine engine, 

Interaction engine, and Parametric engine. For the current phase of the case study, the Parametric 

engine and Activity engine were utilized to model and simulate the UAV's flight sequence. 

Additionally, MATLAB® and Simulink® were employed to create simulations that illustrate the 

UAV surveillance scenario. Simulink® is a block diagram environment that supports MBSE by 

offering system-level design, simulation, code generation, and embedded system testing and 

verification. It also allows for the integration of MATLAB scripts into Simulink models 

(MathWorks, 2022). 

Using coordinate tracking, the drone follows the combat vehicle. While traveling to a 

predetermined destination, the tank transmits its GPS position to the UAV. The UAV functions 

by maintaining a fixed distance to these coordinate positions. The operator will receive incoming 

flight and image data based on a time interval to verify whether the UAV is functioning 

correctly. For the scope of this case study, the trajectory of the combat vehicle is predetermined. 

Chun-Wei Kong's 6-DOF (degrees of freedom) Quadcopter Simulation and Control 
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MATLAB/Simulink project laid the groundwork for the simulations developed for this case 

study (Ahmed et al., 2022). 

Using coordinate tracking, the drone tracks the movement of the combat vehicle as it 

travels toward a predetermined destination. The tank transmits its GPS position to the UAV, 

which uses this information to maintain a fixed distance from the vehicle by adjusting its own 

coordinates. The operator receives flight and image data at regular intervals to verify that the 

UAV is functioning properly. 

It is worth noting that, for the purposes of this case study, the trajectory of the combat 

vehicle is already determined. The simulations used in this study build upon Chun-Wei Kong's 6-

DOF Quadcopter Simulation and Control MATLAB/Simulink project, which provided a 

foundation for the development of the current simulations (Ahmed et al., 2022). 

Computational Platform – MATLAB. In MATLAB scripts, flight parameters for UAV 

simulation were generated. SoS-A facilitates collaboration and integration between MATLAB, 

providing a shared workspace. While these variables can be modified in MATLAB, visualizing 

and defining inputs expedites model development and ensures consistency across multiple 

platforms and software. SoS-A recognizes expressions in MATLAB syntax, which can be 

modified in SoS-A and simultaneously imported into saved MATLAB files. 

A block definition diagram was created to specify and visualize specific parameters in the 

previously established MATLAB code files. Figure 17 shows four blocks incorporated into this 

diagram: test, “A_SetDroneControl”, “C_XYZSignal”, and “E_animation”. The first block 'test' 

was constructed to verify that a shared workspace was established correctly. 
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Figure 17. Block Definition Diagram, Defining MATLAB Code 

As shown in Figure 18, the test block is separately chosen and simulated to verify the 

shared workspace. SOS-A will create a shared workspace with MATLAB after the simulation 

has begun, and the new mass should be represented in the corresponding file, as seen in Figure 

19. This shared workspace ensures interoperability by allowing a user to make a modification on 

one platform and have it simultaneously updated on another. Not only does this save time, but it 

also ensures that all parameters, values, and inputs stay constant throughout product and system 
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development. Once each block has been independently simulated, resulting in updated values in 

the appropriate MATLAB code, an activity diagram was created to begin the required processes 

for executing all the MATLAB scripts to provide a simulation output. 

 

Figure 18. Simulating Test Block 

 

Figure 19. Updated Test Parameter 
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UAV 6DOF Dynamics. While SoS-A includes several simulation capabilities, the types 

of simulation outputs available are limited. MATLAB and Simulink provide significantly more 

sophisticated and dynamic simulation capabilities. When it comes to simulating the flight path of 

an unmanned aerial vehicle (UAV) using MATLAB and Simulink, several essential concepts 

exist. One of the critical concepts is using Euler angles, which refer to a set of three angles that 

describe the orientation of a rigid body in three-dimensional space (“6DOF (Quaternion),” n.d.). 

These angles are commonly used in aerospace and robotics to specify the orientation of an object 

or system and are denoted as roll, pitch, and yaw. Roll is the rotation around the x-axis, the pitch 

is the rotation around the y-axis, and the yaw is the rotation around the z-axis. It is worth noting 

that Euler angles can be described using different formats, such as XYZ or ZYX. The former 

defines the rotations in terms of successive rotations around the x, y, and z axes, while the latter 

defines the rotations around the z, y, and x axes (“6DOF (Quaternion),” n.d.). 

The 6DOF (Euler Angles) block is used in MATLAB and Simulink to implement the 

Euler angle representation of six-degrees-of-freedom equations of motion (Ahmed et al., 2022). 

This block considers the rotation of a body-fixed coordinate frame (Xb, Yb, Zb) around a flat 

Earth reference frame (Xe, Ye, Ze). The block has two types of inputs, applied forces, and 

applied moments, both specified as a three-element vector in body-fixed axes (“6DOF 

(Quaternion),” n.d.). The block assumes that the applied forces act at the body's center of gravity 

and that the mass and inertia are constant. To use the block, you must specify several parameters, 

including the initial mass, body rotation rates, and Euler orientation. The primary outputs in this 

scenario are velocity, Euler rotation angles, and x, y, and z coordinates, although several other 

outputs are available. 
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It is important to note that the 6DOF (Euler Angles) block uses the concept of reference 

frames. The origin of the body-fixed coordinate frame is assumed to be the center of gravity of 

the body, and the body is considered rigid, eliminating the need to consider the forces acting 

between individual elements of mass (“6DOF (Quaternion),” n.d.). The translational motion of 

the body-fixed coordinate frame refers to the movement of an object in three-dimensional space, 

where the applied forces�𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝑧𝑧�
𝑇𝑇
 act within the body-fixed frame. In this scenario, the mass of 

the body m is assumed to be constant, simplifying the calculations required to determine the 

object's motion. 

𝐹𝐹𝑏𝑏��� = �
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�     (“6DOF (Quaternion), ” n. d. ).  

Newton's laws of motion may be used to explain an object's translational motion (Wang 

et al., 2016). The first law indicates that, without an external force, an object will stay at rest or 

in uniform motion along a straight path. The second law asserts that the rate of change of an 

object's momentum is proportional to the applied force, and the third rule states that every action 

has an equal and opposite response. In the context of the body-fixed coordinate frame, these laws 

can be used to describe the object's motion accurately.  

To understand the relationship between the body-fixed angular velocity vector, [𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇, 

and the rate of change of the Euler angles, �𝜙̇𝜙 𝜃̇𝜃 𝜓̇𝜓�
𝑇𝑇
, it is important to understand the concept of 

Euler rates and the body-fixed coordinate frame. Again, the Euler angles are a set of three angles 

that describe the orientation of a rigid body in three-dimensional space. These angles represent 
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rotations around three orthogonal axes. The body-fixed angular velocity vector, [𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇, 

describes the angular velocity of the body about these three axes. 
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(Wang et al., 2016). 

Resolving the Euler rates into the body-fixed coordinate frame is a necessity for 

analyzing the connection between these two variables. This entails translating the Euler rates, 

which are measured relative to an Earth-centered, Earth-fixed reference frame, into the 

coordinate frame of the body. After resolving the Euler rates into the body-fixed coordinate 

frame, the relationship between the body-fixed angular velocity vector and the rate of change of 

the Euler angles can be determined. This relationship can be expressed mathematically using the 

equations of motion for a rigid body, which describe how the angular velocity of a body changes 

in response to external forces and moments (“6DOF (Quaternion), ” n. d. ); (Wang et al., 2016). 

Instead of attempting to build a simulation output for the flight path of the UAV in SoS-A, 

an activity diagram was created to develop a shared workspace with MATLAB and Simulink. 

Using Cameo Simulation Toolkit, it is possible to call MATLAB/Simulink functions directly from 

Magic Systems of System Architect. MATLAB is one of the supported evaluation tools. When 

invoking MATLAB functions, UML/SysML model parameters can be input and run 

MATLAB/Simulink models returning results to the SysML models. After the proper parameters 

have been imported using the previously described block definition diagram, the necessary 

MATLAB and Simulink files can be loaded via the activity diagram to provide a simulation output 
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of the UAV flight route. Figure 20 depicts the five files that must be executed/loaded to complete 

the simulation. 

 

Figure 20. MATLAB-Simulink Simulation Activity Diagram 

'A_SetDroneControl' initializes the UAV's parameters. The 'B_DroneSignal’ target path 

determines the coordinates the UAV must travel to follow the target by determining the X, Y, 

and Z points and T (time) required to reach each set of coordinates using a matrix (Ahmed et al., 

2022). The 'C_XYZsignal' MATLAB script is then executed to calculate the UAV's velocity and 

Euler's angles at each set of points specified. The results of these computations are then input 

into Simulink File 'D_DroneControl', and output values are subsequently sent into 'E_animation'. 

The activity diagram will execute these files chronologically and depict the current step (Figure 
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21). Figure 22 depicts the simulation's successful conclusion after the stages have been 

concluded. 

 

Figure 21. Simulating Activity Diagram and Establishing Shared Workspace 
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Figure 22. UAV Flight Path Simulation 

SoS-A, MATLAB, and Simulink's unified workspace enhance simulation capabilities. 

Due to the number of files and input parameters required for the simulation of the UAV flight 

route, errors can occur. SoS-A guarantees that the required input values are visualized and 

maintained in MATLAB and Simulink if user or system requirements change. It, moreover, 

makes it simple for other users to duplicate the actions required to achieve the simulation 

outcome. A user with no prior MATLAB knowledge may simply execute the corresponding files 

using the created shared workspace. SoS-A indicates to users and stakeholders that the 

architecture satisfies system and stakeholder requirements. The models and shared workspace 

that SoS-A develops allow for the representation of a system that assures user comprehension. 
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MBSE aims to provide a framework for models that makes them comprehensible and 

manageable throughout the development of complex systems. 

Visualization. While both SoS-A and MATLAB offer several simulation features, there 

are limits regarding visualization. Using a game engine is intended to result in more dynamic 

simulations. Using algorithms and scripting languages, a gaming engine such as Unity 3D may 

significantly improve simulations. Unity 3D, or Unity for short, is a popular game engine that 

enables 2D and 3D visual effects. In Unity, it is possible to recreate any scenario or system; 

nonetheless, the notion of a cross-platform shared workspace is essential to this research. Given 

Unity's numerous APIs, C# script is primarily employed for this project's scope. Following the 

integration of SoS-A and MATLAB, the next objective is integrating Unity into this shared 

workspace. 

Getting Started with Unity. Unity offers varied options for individuals, teams, and 

businesses; a free student plan was used for this project. The Unity Hub and Unity Editor were 

installed on a Windows 10 system. Microsoft Visual Studio 2022 was used to develop C# scripts 

and manage repositories and packages. Due to Unity's built-in physics engine, the same 

simulation parameters used in MATLAB will also be used in this environment. A real-time link 

between MATLAB and Unity must be validated before beginning work in Unity. To feed data 

from MATLAB into Unity, MATLAB was set up as a client, and Unity was set up as a server. 

MATLAB's tcpclient command generates a TCP/IP client that synchronizes to a server 

connected with the requested host IP address and port (“Object Creation Properties,” n.d.). In 

order to use a port, a number between 1 and 65535 must be used. The corresponding inputs set 

both the Address and Port properties. Figure 23 depicts the C++ code written to establish 

MATLAB as the client.  
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Figure 23: C++ Code for Client Set Up 

“tcpclient(address, port, Name, Value)” establishes a connection using name-value pair 

arguments. The address is the IP address, the port is the remote host port, Timeout is the allowed 

time to conclude processes, and ConnectionTimeout is the allowed time to connect to the remote 

host.  

Like tcpclient, TcpListener is a class that needs a local IP address and port number to 

admit incoming connection requests (“Object Creation Properties,” n.d.). The same IP address 

and port number from Figure 23 are used in Figure 24 to establish a connection between 

MATLAB and Unity. Methods Pending() checks for the presence of any outstanding connection 

requests where AcceptTcpClient() responds to said requests. C# script must then be written to 

establish Unity as a server, as seen in Figure 24. The C# file must be dragged and dropped onto 

the Main Camera in the Unity editor. The message "Unity is listening" is seen in the Unity 

console and awaits the message "connection successful!". Once this message was seen in the 

console (Figure 25), the real-time connection between the two platforms was confirmed. 

However, to visualize changes, the script in MATLAB had to be executed multiple times. A User 

Datagram Protocol (UDP) was then utilized and imported into the Simulink file used in Figure 

26. A UDP is a network interface that allows programs to communicate across the internet with 

minimal delay and interruption (“Basic UDP Communication - MATLAB & Simulink 
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Example,” n.d.). UDP speeds up data transfers by allowing data to be sent before the receiving 

side makes an agreement. 

 

Figure 24: C# Script For Establishing Unity as A Server 



66 
 

 

Figure 25: Successful Connection Between MATLAB and Unity 

The set of coordinates specified in 'B_DroneSignal_targetpath.mat' is the input signal 

supplied to the UDP Send block (Figure 26) via a Simulink File (Figure 27). The 'Remote IP 

address' is used by the UDP Send and Receive blocks to facilitate communication between the 

two platforms.  

 

Figure 26: UPD Send Block 
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Figure 27: Simulink Model for MATLAB-Unity Shared Workspace 

The three data inputs seen in Figure 27 must first be loaded in the MATLAB workspace 

before the Simulink file can successfully run simultaneously with Unity. Now that files have 

successfully been configured in MATLAB, in order to get the UPD block to communicate with 

Unity, a C# script must be generated and attached to the combat tank (target). Using 

transformPosition (Figure 28), the target will move to each of the coordinates specified in 

'B_DroneSignal_targetpath.mat'.  

Figure 28: C# Script for UAV Target Positioning. 

The Unity engine employs the left-handed cartesian coordinate system, wherein 

clockwise rotation around the axis of rotation is positive. Within Unity, there are two basic 

coordinate systems: local and global. Local coordinates represent a game object's location 

relative to another, while global coordinates represent a game object's position inside the overall 
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space of the Unity project. Now that the MSOS target parameters and coordinates have been 

linked with MATLAB and Unity, a more comprehensive simulation may be developed. 

Unity Capabilities. The Unity Asset Store offers diverse free and purchasable 2D and 3D 

models, templates, and tools to speed and aid game development ("The Best Assets for Game 

Making,” n.d.). A free demo pack created by Jonah Hessel, including low-poly PBR ready 

WW2-era tanks, was utilized for this scenario (Hessel, n.d.). More specifically, the 

SOMUA_S35 model tank was used (Figure 29). This game object is the inheritor of the 

coordinates previously defined. Any object could easily be replaced with SOMUA_S35 and still 

follow the movement and positioning defined in MATLAB. However, this model tank was 

utilized for the scope of this scenario. 

 

Figure 29: SOMUA_S35 Model Tank in Unity World 
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The UAV for this scenario is fashioned via a modification of a free drone controller demo 

created by Mario Haberle, accessible from the Unity Asset Store ("FPV Drone Controller: 

Physics,” n.d.). Due to the requirement for perfect weather conditions for UAV operation, all 

other game elements, such as terrain and environment, are cosmetic. The UAV's positioning and 

movement depend on the tank's positioning and movement. The main objective of the UAV is to 

maintain a safe distance from the tank as it moves so that it may collect imaging data (Figure 

30). A camera is included to visualize said imaging data. 

 

Figure 30: UAV Target Scenario 

Another C# script is required for the UAV to autonomously follow the tank while 

keeping a safe distance (Figure 31). Using transform.position and relativePosition, the UAV 

camera will move relative to the parent game object (combat tank). Similarly, the UAV body 

will move relative to the game parent object using transform.position and the specified distance 
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and speed parameters (Figure 32). In addition to moving toward the target, the UAV's body will 

rotate, so the target is always inside the camera's field of view (FOV). 

Figure 31: C# Script for UAV Camera 

 

Figure 32: C# Script for UAV Body 

The camera settings can also be easily changed within Unity. Local coordinates 

determine the position, rotation, and scale of the camera. The FOV axis is set to vertical, and the 
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FOV ranges from 1e-05 to 179. The type of camera sensor ranges from 8mm to 70mm, as seen in 

Figure 33. 

 

Figure 33: UAV Camera Settings 
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Unity contains numerous simulation capabilities. Due to the limited experience with 

Unity and the limited scope of this research, Unity was used for visualization purposes. Using 

Unity, a more dynamic model, or even a true digital twin, can be created.  
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CHAPTER V 

 

DISCUSSION 

 

Limitations and Gaps in Related Work 

Data Sources 

 The objective of this research was to explore a hypothetical scenario involving an 

unmanned aerial vehicle (UAV) conducting surveillance on a combat battle tank, specifically for 

a military operation. Given the lack of access to actual physical UAV flight data, the data 

inserted into the SysML diagrams were approximations. Even with access to actual physical 

data, the time and resources required to develop virtual models would have been significantly 

greater. Data sources coming from a physical system must first be recorded and verified. This 

data must then be consistently communicated to the developed/developing virtual model. There 

is a need for standardized methods that expedite, streamline, and integrate the MBSE methods 

and tools previously mentioned. However, the purpose of this study is to provide an example 

of procedures, tools, and modeling languages that can be applied to model, simulate, and analyze 

a true physical system after its deployment. 

Executable Models 

Jasper Sprockhoff et al., implement an MBSE approach to develop an AI-based system 

(Sprockhoff et al., 2023). Using SysML diagrams, a threat localization system for aircraft object
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detection is modeled. They model how their AI-based system should detect potential encounters 

and notify the level of danger. While they are able to effectively model their system and create 

and executable implementation outside of SysML diagrams, there is a disconnect from their 

simulation and modeling platform.  

 Similarly, authors Bajaj et al., determine the gaps in current state-of-the-art tools for 

design and simulation of complex systems (Bajaj et al., 2011). They detail a disconnect between 

the different lifecycle phases of a system. Gap 1 pertains to the absence of model-based 

continuity in system design and simulation activities that extend from the initial design stages to 

subsequent design stages (Bajaj et al., 2011). Gap 2 pertains to the discrepancies that arise 

between design and analysis/simulation models during various design stages (Bajaj et al., 2011). 

For instance, this gap can appear between conceptual system design models and mathematically 

based analysis models in the initial stages of design. 

 Chapter III presents a template for digital model development that is enabled by MBSE, 

with the objective of resolving the issues mentioned above. Since the publication by Bajaj et al., 

there has been a noteworthy expansion in the availability of MBSE collaborative tools. The 

application of the Model-Based Systems Engineering (MBSE) enabled template facilitated the 

establishment of a collaborative workspace among three distinct platforms for modeling, 

simulating, and visualization. Additionally, it addressed the research of Jasper Sprockhoff et al.'s 

absence of executable SysML diagrams. In addition to being used to import UAV variables like 

speed and timing, SysML activity diagrams were generated and executed to initiate the 

simulations carried out in MATLAB. The simulations conducted in MATLAB were visualized 

more effectively by integrating Unity 3D into the shared workspace of SoS-A and MATLAB. 
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Virtual Model Types 

Each platform utilized in this work can be directly traced to the templates shown in 

Figures 2, 3, and 4. SoS-A was used to create a digital model of the UAV surveillance scenario. 

SoS-A data was then imported into MATLAB/Simulink in real time to create a digital shadow. 

With input from MATLAB and Simulink, a digital twin can then be created in Unity 3D using 

real-time data connection. While the work shown here cannot be considered a digital twin in the 

strict sense due to the lack of a physical system, it does demonstrate the streamlined capabilities 

required to construct a digital twin from a physical one. 

Challenges and Lessons Learned 

 

 Due to the multidisciplinary nature of MBSE, an authentic digital twin cannot be created 

by a single individual. The created templates demonstrate the processes required for generating 

digital models which can potentially be used as a digital twin’s research testbed. Different types 

of software knowledge are required by both system designers and end users in the development 

of virtual models. When a person is able to focus their efforts on a single platform for the 

modeling, simulation, or visualization of a system, that system's dependability may improve. The 

developed templates are meant to be used by a team of system designers and stakeholders. 

MBSE enables this traceability between not only tools but different system users. 

 Integration of the three distinct applications required extensive troubleshooting. SoS-A 

allows for the use of four distinct simulation engines: the activity engine, the state machine 

engine, the interaction engine, and the parametric engine. Due to an absence of access to real-

world data, both the activity engine and parametric engine were utilized in SoS-A simulations. 

The parametric engine allowed for the simulation of blocks including UAV variables like mass 
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and gravity constant, with the data subsequently being sent on to MATLAB. The activity engine 

was also used to connect and execute MATLAB files that were developed outside of SoS-A. 

Despite SoS-A's compatibility with MATLAB script syntax generation, it was decided that 

testing script would be more beneficial in a separate environment.  

Unity integration with MATLAB required setting up a client-server connection between 

the two programs. When Unity was first set up as the server and MATLAB as the client, the 

waypoints would not transfer across properly. To make the integration work, MATLAB had to 

be set up as a client, while Unity had to be set up as a server. The sample time was another factor 

that affected how the MATLAB simulation was displayed. Adjustments had to be made to 

lengthen the time it took the UAV to reach each coordinate point so that it could clearly be 

depicted in the Unity environment. There was some temporal discrepancy between the two 

simulations, but the combined tank and UAV Unity simulation appropriately maintained the 

coordinates set up in MATLAB. 
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CHAPTER VI 

 

CONCLUSION 

 

 This research investigates the viability of utilizing Model-Based Systems Engineering 

(MBSE) alongside SysML to design, model, and simulate a surveillance system to track, record, 

and communicate information on an armored combat vehicle's state of health and performance 

through an unmanned aerial aircraft (UAV). In order to build SysML-compliant models and 

produce state machine diagrams and activity diagrams, the Magic System of Systems Architect 

(SoS-A) platform was used (Pavalkis, 2021). This research evaluates the efficacy of the 

processes from the developed conceptual template facilitated by MBSE for creating virtual 

models (Lopez & Akundi, 2021). SysML was used to represent the UAV surveillance scenario, 

with simulation performed in MATLAB and Simulink. The scenario was broken down into four 

distinct classes. The results of the research demonstrate that MBSE-based modeling aids in 

system visualization, organization, assessment, and validation. 

Furthermore, the Magic Systems of Systems Architect is a simulation-supporting tool. 

SoS-A has four different simulation engines: Activity, State Machine, Interaction, and 

Parametric. In this work, the Parametric and Activity engines were used to simulate the flight 

path of an unmanned aerial vehicle (UAV). Also employed to demonstrate the scenarios were 

MATLAB and Simulink, with Simulink functioning as a block diagram environment 

utilizing Model-Based Systems Engineering (MBSE). MATLAB scripts have been generated 
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(Ahmed et al., 2022) to simulate the UAV flight parameters, and in SoS-A, activity and block 

diagrams were utilized to integrate MATLAB and provide a collaborative workspace. The shared 

workspace improves simulation capabilities and guarantees that input values are retained if user 

or system requirements are modified. This shared workspace offers an approach for models that 

makes them understandable and controllable throughout the development of complicated systems 

on multiple platforms. 

Future Work 

This work involved employing Unity as a virtual environment for the unmanned aerial 

vehicle scenario. As mentioned, the Unity Hub and Unity Editor were installed on a Windows 

computer, while Microsoft Visual Studio 2022 was utilized for C# script creation. A real-time 

connection was created between MATLAB and Unity using the tcpclient and TcpListener 

commands. The coordinates from a MATLAB file were inserted into a UDP Send block so that 

the two platforms could communicate. Then, a C# script was written to manage the UAV and 

target's movement and placement. The Unity Asset Store was employed for game features like 

tanks and UAVs, and a C# script was created enabling the UAV to follow the tank safely. As a 

result of its varied APIs and packages, Unity offers unmatched simulation capabilities. More 

game objects can be incorporated to enhance the complexity of this scenario. Introducing UAV 

object detection and avoiding inclement weather circumstances may highlight Unity's physics 

engine better. In this scenario, object animations were kept minimal. The next steps include 

animating individual components on the UAV and combat vehicle, like rotors and tracks. 

Developing an interactable graphical user interface (GUI) to emulate the ground control station 

is a new objective. SoS-A, MATLAB, Simulink, and eventually Unity would all benefit from 

importing data from a real-world physical system. Each new element enhances the simulation's 
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dynamic in Unity, bringing the digital representation one step closer to becoming a true digital 

twin. 
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TERMS AND DEFINITIONS 

Systems Engineering (SE) - Systems engineering considers every step of a system's life cycle, 
from design and development through retirement, to solve problems. Systems 
engineering is a transdisciplinary and integrative approach that enables the successful 
realization, use, and retirement of engineered systems through the application of systems 
principles (Sillitto et al., 2019). 

System Of Systems (SoS) - The term "System of Systems" (SoS) refers to a system 
that integrates several smaller systems into one larger system in order to perform a 
specific operation. 

Model-Based Systems Engineering (MBSE) - Model-based systems engineering (MBSE) is the 
systematic use of models from the early stages of a project's conceptual design all the 
way through its development and validation at the end of its life cycle, as defined by the 
2007 INCOSE Model-Based Systems Engineering Initiative (Friedenthal et al., 2007). 

Unified Modeling Language (UML) - The Unified Modeling Language (UML) is a set of 
diagrams that have been standardized to aid in the specification, visualization, 
construction, and documentation of software system artifacts (“What is UML,” n.d.). 

Systems Modeling Language (SysML) - Systems Modeling Language, or SysML for short, is a 
graphical modeling language for creating, analyzing, and defining complex systems. 
Using the notations and diagrams provided by SysML, system architectures may be 
represented in a more thorough and structured fashion. SysML has nine distinct types of 
diagrams (Delligatti, 2013). 

Architecture Analysis and Design Language (AADL) - Modeling language AADL 
(Architecture Analysis and Design Language) was developed specifically to describe the 
structure of real-time and embedded systems. It is used to formally analyze the attributes 
of the system, such as timing and resource use, by representing the structure and behavior 
of the system at various levels of abstraction ("Architecture analysis and Design 
Language (Aadl)," n.d.). 

Digital Twins (DT) - Virtual copies, or "digital twins," are created by simulating a physical 
system in a computer. DTs use information gathered from sensors, simulations, and other 
sources to provide engineers a real-time look into the system's performance, allowing for 
continuous monitoring and optimization. (Grieves, 2017). 
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Digital Model (DM) - A DM is a digital depiction of a physical system that does not utilize any 
computerized data exchange between the physical system and the virtual model 
(Kritzinger et al., 2018). 

Digital Shadow (DS) - A DS is a digital depiction of an integrated one-way data flow between 
the state of an existing physical system and the state of a virtual model (Kritzinger et al., 
2018). 

Magic System of Systems Architect (SoS-A) - Magic System of Systems Architect (SoS-A) is a 
No Magic, Inc. developed software application used for designing and analyzing complex 
systems of systems (“Magic Systems of Systems Architect Documentation,” n.d.). 

MATLAB/Simulink - MATLAB is a programming environment for engineers and scientists to 
evaluate and build systems and products. Simulink, a MATLAB add-on, allows 
interactive, graphical modeling, simulation, and analysis of dynamic systems. MATLAB 
and Simulink let you simulate your system using textual and graphical programming 
(MathWorks, 2022).  

Unity – Unity 3D, or Unity, is a robust, cross-platform 3D engine with an intuitive development 
environment. 

UAV - An unmanned aerial vehicle (UAV), sometimes known as a drone, is an aircraft that has 
no human pilot, crew, or passengers on board. 

GCU - The central command and control base for remotely piloted aircraft is the ground control 
unit (GCU). 

MoEs - MoEs is an abbreviation for Measures of Effectiveness. MoEs evaluate tactical 
objectives but not strategic or operational ones. 
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