
Model Continuity in Discrete Event Simulation:
A Framework for Model Driven Development of Simulation Models

DENİZ ÇETİNKAYA, ALEXANDER VERBRAECK and MAMADOU D. SECK
Delft University of Technology

Most of the well known modeling and simulation methodologies state the importance of conceptual mod-
eling in simulation studies and they suggest the use of conceptual models during the simulation model
development process. However, only a limited number of methodologies refers to how to move from a con-
ceptual model to an executable simulation model. Besides, existing modeling and simulation methodologies
do not typically provide a formal method for model transformations between the models in different stages
of the development process. Hence, in the current M&S practice, model continuity is usually not fulfilled.
In this article, a model driven development framework for modeling and simulation is presented in order to
bridge the gap between different stages of a simulation study and to obtain model continuity. The applicabil-
ity of the framework is illustrated with a prototype modeling environment and a case study in the discrete
event simulation domain.

Categories and Subject Descriptors: I.6.5 [Simulation and Modeling]: Model Development—Modeling
methodologies; I.6.8 [Simulation and Modeling]: Types of Simulation—Discrete event

General Terms: Design, Theory, Languages

Additional Key Words and Phrases: conceptual modeling, discrete event simulation, metamodeling, model
driven development, model transformation

ACM Reference Format:
Deniz Ç etinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2015. Model Continuity in Discrete Event
Simulation: A Framework for Model Driven Development of Simulation Models. ACM Trans. Model. Comput.
Simul. X, Y, Article Z, 24 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Simulation is the process of developing a model and conducting experiments with it
for a specific p urpose s uch a s a nalysis, p roblem s olving, d ecision s upport, training,
entertainment, testing, research or education [Shannon 1975; Balci 2001]. The funda-
mental prerequisite for simulation is a model, which is called a simulation model. A
simulation model is developed through a modeling process, which is called simulation
model development. The activities in a simulation study are collectively referred to as
Modeling and Simulation (M&S) [Balci 2001].

Several methodologies have been proposed to guide modelers through various stages
of M&S and to increase the probability of success in simulation studies [Shannon 1975;

Author’s addresses: D. Ç etinkaya, Electrical and Electronics Engineering Department, Faculty of Engineer-
ing, University of Turkish Aeronautical Association, Ankara, Turkey; A. Verbraeck, Systems Engineering
Section, Multi Actor Systems Department, Faculty of Technology, Policy and Management, Delft Univer-
sity of Technology, Delft, The Netherlands; M. D. Seck, Engineering Management and Systems Engineering
Department, Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015

(Note: This is the submitted version for open access. Please refer to publisher's version for the final published copy.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/161511042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Z:2 D. Çetinkaya, A. Verbraeck, M. D. Seck

Roberts et al. 1983; Banks 1998; Balci 2012]. Each methodology suggests a body of
methods, techniques, procedures, guidelines, patterns and/or tools as well as a num-
ber of required steps to develop and execute a simulation model. Almost all of the
existing methodologies suggest developing a preliminary conceptual model at the be-
ginning of the simulation model development process. However, only a limited number
of methodologies refers to how to move from a conceptual model to an executable sim-
ulation model [van der Zee et al. 2010].

In general, conceptual modeling is a process that elicits the general knowledge about
a problem or research domain and describes an abstract model that can be refined in
subsequent steps to develop a solution for a given problem or a construct for a specific
purpose [Olive 2007; Robinson 2008a]. There are several definitions for simulation con-
ceptual modeling. In this research we mainly follow Balci and Robinson [Balci et al.
2011; Balci 2012] and [Robinson 2008a; 2008b; 2011]. Balci et al. [2011] define a simu-
lation conceptual model as a repository of high-level conceptual constructs and knowl-
edge specified in a variety of communicative forms intended to assist in the design of
an M&S application. A simulation conceptual model is a non-executable higher level
abstraction of the system under study [Fishwick 1995; Kotiadis and Robinson 2008].
It represents a high-level structure and the abstract behavior of a system according to
the purpose of the simulation study.

A conceptual model needs to be transformed into a simulation model by using trans-
formation rules, techniques or patterns. However, conceptual models are often not used
explicitly in the further stages of the simulation study and a large semantic gap exists
between the models at different stages of the simulation project. This gap causes a
breach in model continuity in many cases. Model continuity refers to the generation
of an approximate morphism relation between the different models within a develop-
ment process through predefined transformation rules. Model continuity is obtained
if the initial and intermediate models are effectively consumed in the later steps of
a development process and the modeling relation is preserved [Hu and Zeigler 2005].
The main advantages of supporting model continuity are increasing the productivity,
maintainability, consistency and quality of a simulation study.

In order to address the model continuity problem, our research suggests the applica-
tion of a Model Driven Development (MDD) approach throughout the whole set of M&S
activities and proposes a formal MDD framework for modeling and simulation. MDD
is a software engineering methodology that prescribes the systematic use of models
as the primary means of a development process [Kleppe et al. 2003]. MDD introduces
model transformations between the models at different abstraction levels and proposes
the use of metamodels for specifying modeling languages. In MDD, models are trans-
formed into other models in order to (semi)automatically generate the final software
system. Due to the similarities between software development and simulation model
development, MDD could potentially be a cost and effort saving approach for the M&S
community, while taking into account the peculiarities of simulation such as data in-
tensiveness and time dependence.

MDD approaches were introduced to M&S in 2001 when Bakshi et al. [2001] pre-
sented a practical application of Model Integrated Computing (MIC) into embedded
system design and simulation. They provided a formal paradigm for specification of
structural and behavioral aspects of embedded systems, an integrated model-based
approach, and a unified software environment for embedded system design and simu-
lation. One year later, Vangheluwe et al. [2002] introduced metamodeling and model
transformation concepts for modeling and simulation. They present an approach to in-
tegrate three orthogonal directions of M&S research: multi-formalism modeling, model
abstraction, and metamodeling.

Model Continuity in Discrete Event Simulation Z:3

In the context of MDD, metamodeling is the process of complete and precise specifi-
cation of a modeling language in the form of a metamodel. For many years, the term
’metamodeling’ was used in the simulation field i n a d ifferent c ontext. H ere, meta-
modeling referred to constructing computationally faster models with the same input-
output behavior as complex simulation models [Barton 1998; Kleijnen 2009]. Such a
metamodel is now called a ’surrogate model’. Surrogate models mimic the complex be-
havior of an underlying simulation model. Metamodeling in the context of MDD has
been introduced to simulation later.

Tolk and Muguira [2004] introduced the Model Driven Architecture (MDA) [OMG
2003] for distributed simulation. They presented methods to merge the High Level Ar-
chitecture (HLA) and the Discrete Event System Specification (DEVS) within the MDA
framework. After the introduction of these initial ideas, there have been many efforts
to use MDD concepts in M&S. In some cases, metamodeling was used to describe do-
main specific modeling languages for one stage in the M&S methodology [Duarte and
de Lara 2009; Levytskyy et al. 2003; Lei et al. 2009; Touraille et al. 2011; Sarjoughian
and Markid 2012]. In all of these applications, MDD tools were mainly used for auto-
matic code generation from a system specification and they ignored the more abstract
conceptual models.

More unified solutions are presented by following either the MDA approach [DeAn-
toni and Babau 2005; Guiffard et al. 2006; D’Ambrogio et al. 2010; Garro et al. 2013;
Sarjoughian and Markid 2012] or the MIC approach [Topçu et al. 2008; Ç etinkaya
et al. 2010; Ledeczi et al. 2003]. Guiffard et al. [2006] provide a study that aims at
applying a model driven approach to M&S in the military domain. Their prototype
demonstrates that the automated transformation from a source model to executable
source code is possible. D’Ambrogio et al. [2010] introduce a model driven approach for
the development of DEVS simulation models. Their approach allows to specify DEVS
models in UML, and it automates the generation of DEVS simulations that make use
of the DEVS Service Oriented Architecture implementation that is presented by Mit-
tal et al. [2009]. Garro et al. [2013] propose an MDA-based process for agent-based
modeling and simulation (MDA4ABMS) that uses the agent modeling framework of
the Eclipse Agent Modeling Platform project. The MDA4ABMS process allows the au-
tomatic production of platform specific s imulation models s tarting f rom p latform in-
dependent simulation models. The source code can be automatically generated, which
results in a significant reduction of programming and implementation efforts. Topçu
et al. [2008] propose the Federation Architecture Metamodel (FAMM) for describing
the architecture of a HLA compliant federation. FAMM supports the behavioral de-
scription of federates based on sequence charts and it formalizes the standard HLA
object model and federate interface specification.

In addition to the MDA and MIC approaches, UML or SysML (Systems Modeling
Language) based methods for metamodel-based simulation have been proposed by ei-
ther using extension mechanisms, or model transformations [Pop et al. 2007; Schamai
et al. 2009; Kerzhner et al. 2011; Batarseh and McGinnis 2012; Reichwein et al. 2012].
Pop et al. [2007] propose a UML profile for Modelica called ModelicaML (Modelica Mod-
eling Language) which is a graphical modeling language that enables users to depict a
Modelica simulation model graphically. The Modelica language provides a sound way
for defining m odels i n a d eclarative, m odular, a nd h ierarchical w ay [Fritzson 2010].
ModelicaML extends the graphical modeling capabilities of Modelica by using UML
diagrams. ModelicaML enables the generation of executable Modelica code. Schamai
et al. [2009] extended ModelicaML with constructs for model behavior. They also dis-
cuss the usage of executable UML state machines for system modeling and present a
proof of concept for the translation of UML state machines into executable Modelica
code [Schamai et al. 2010; Schamai et al. 2013].

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:4 D. Çetinkaya, A. Verbraeck, M. D. Seck

Paredis and Johnson [2008] present a generic approach for defining automated, bidi-
rectional transformations between SysML and domain specific languages. They pro-
pose metamodels for a specific domain and a SysML profile in which the domain spe-
cific constructs are mapped to stereotypes. Then, graph transformations are created
that use the domain specific metamodel and the corresponding SysML profile. This
approach have been formalized in [Paredis et al. 2010] for the mapping of SysML to
Modelica. The SysML-Modelica transformation is specified between the profile con-
structs and the Modelica language constructs as captured in the Modelica metamodel.
The transformation approach simplifies the transformation to Modelica, and facilitates
model reuse by using existing model libraries.

In addition to these approaches, Risco-Martı́n et al. [2009] present a UML-based
DEVS simulation method that is part of the DEVS Unified Process (DUNIP). DUNIP
proposes a process that uses the DEVS formalism as a basis for automated generation
of models from various requirement specifications [Mittal et al. 2007; Mittal et al.
2008]. Mittal and Douglass [2012] show that an underlying DEVS metamodel provides
model reusability across different platforms. Furthermore, there have been studies to
use ontologies during the development of simulation models to provide a substantive
basis for defining a system structure for a domain [Silver et al. 2007; McGinnis et al.
2011; Tolk and Miller 2011].

Although the aforementioned efforts show the applicability of the MDD approach in
the simulation field, most of the applications are formalism or specification dependent.
As a result, to the best of our knowledge, there is no generic theoretical framework that
provides guidance for formal model transformations while moving from a conceptual
model to an executable simulation model. One of the reasons for this issue could be
that there is not a commonly accepted terminology and formal specification for MDD
[Favre 2004]. Although MDD has been advocated as a cost and effort saving devel-
opment approach for software projects [Selic 2003], the MDD principles for the M&S
field are currently only described informally. The M&S research community has re-
cently started to move toward a theoretical framework for simulation such as the work
of Tolk et al. [2013] and Diallo et al. [2011], which use model theory.

The contribution of this paper is to bridge the gap between different stages of a simu-
lation study in a formal manner as well as proposing a theory for MDD within M&S. A
model driven development framework for modeling and simulation, called MDD4MS,
has already been introduced in [Çetinkaya et al. 2011]. The proposed framework de-
fines three metamodels for different stages of a simulation study and suggests model
transformations based on these metamodels. The improved version of the framework
is represented in [Çetinkaya et al. 2013]. The MDD4MS prototype implementation is
illustrated in [Çetinkaya et al. 2012; 2013]. Although our earlier work introduced the
initial ideas, basic concepts and practical aspects, the formal theory of our framework
is presented in this article. In this theory, MDD principles have been clearly defined
and specified for the M&S field. A comprehensive definition of the MDD4MS frame-
work is presented and formal relations between the key concepts are defined.

The next section provides a comparative analysis between the selected M&S method-
ologies in order to highlight the common steps in simulation studies. Section 3 pro-
poses the theory of modeling, metamodeling, model transformation and MDD. Section
4 introduces a mapping between the MDD concepts and the M&S concepts. Section 5
proposes the theory of the MDD4MS framework. Section 6 presents a case study with
the MDD4MS prototype to illustrate the applicability of the framework in the discrete
event simulation domain. Finally, conclusions are drawn in Section 7.

Model Continuity in Discrete Event Simulation Z:5

2. SIMULATION MODEL DEVELOPMENT AS A MODEL-BASED PROCESS
In this section, a set of M&S methodologies will be analyzed in order to see if they
can be identified a s a m odel-based a pproach a nd i f a n M DD a pproach c an b e incor-
porated into these methodologies. Each methodology prescribes a number of steps for
conducting a simulation study [Balci 2012]. Looking at the existing methodologies,
some similar terms and patterns can be distinguished. Each simulation study roughly
consist of four main stages; problem definition, model development, simulation model
execution and analysis of results. In the problem definition stage, the purpose of the
simulation study, the boundaries of the problem and the requirements are defined. In
the simulation model development stage, an executable simulation model is developed,
which is ready to be executed on a platform, and data for the simulation study is col-
lected. Developing a conceptual model is often recommended at the beginning of this
stage. In the simulation model execution stage, experiments are designed and the sim-
ulation model is executed using a subset of the collected data. In the analysis stage,
the experimentation results are presented and analyzed.

Table I presents an analysis of different M&S methodologies. Each methodology is
evaluated according to a set of questions to analyze their support for model continuity
[Atkinson and K ̈uhne 2003]. The results in Table I show that all of the methodologies
introduce multiple steps for carrying out a simulation study. Regarding the outputs of
these steps it is identified that the development process highly relies on models such
as conceptual models, formal models, computer models, and experimentation models.

All of the methodologies require a conceptualization step and many of them suggest
to transform the conceptual model into a simulation model, but do not formally define
how to do that. All of the methodologies prepare for computer simulation and require
a programming step or model coding step. Some of them mention automatic code gen-
eration. Therefore, M&S can be identified as a model-based process [Ören 2007] and
an MDD method can be incorporated into these methodologies. On the other hand,
some of the methodologies are lacking a formal specification step which is important
to separate the formal system specification from programming concerns. Moreover, al-
most all of the methodologies ignore model transformations and none of them provides
formal model transformation methods between the models in different step. Hence,
model continuity is not supported. Well-defined model driven approaches are needed
to provide model continuity. The MDD4MS framework provides a generic MDD frame-
work for M&S that supports model continuity [Ç etinkaya et al. 2011]. It provides a
formalism independent solution via formalizing the steps which can be incorporated
into existing methodologies. Before presenting the theory of the MDD4MS framework,
the next section gives a formal definition of models, modeling languages, metamodels,
and model transformations, and it proposes a theory for MDD within M&S.

3. THEORY OF MODELING, METAMODELING AND MODEL DRIVEN DEVELOPMENT
This section provides a theoretical basis for modeling, metamodeling and model trans-
formations. Although a sound and comprehensive reference is lacking in software en-
gineering literature, the related work on mathematical explanation of MDD concepts
[Favre 2004; K ̈uhne 2006; Jouault and Bézivin 2006; Jackson and Sztipanovits 2009]
provided us the preliminary definitions and ideas.

3.1. What is a Model?
Modeling is the process of representing a source system for a specific p urpose i n a
form that is ultimately useful for an interpreter. The concrete form that represents
the system is called the model. Broadly speaking, a model is a representation of some-
thing. The represented thing is called the source that can for instance be an object,

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:6 D. Çetinkaya, A. Verbraeck, M. D. Seck

Table I. Analysis of M&S methodologies according to their support for model continuity.

Analysis criteria [S
ha

nn
on

19
75

]p
.2

4

[R
ob

er
ts

et
al

.1
98

3]
p.

8

[N
an

ce
19

84
]p

.7
6

[F
is

hw
ic

k
19

95
]p

.4

[S
ha

nn
on

19
98

]p
.9

[B
an

ks
19

98
]p

.1
5

[L
aw

20
03

]p
.6

7

[R
ob

in
so

n
20

04
]p

.5
2

[W
ai

ne
r

20
09

]p
.2

7

[v
an

D
aa

le
n

et
al

.2
00

9]
p.

11
29

[S
ar

ge
nt

20
10

]p
.1

69

[B
al

ci
20

12
]p

.4

Has multiple models? Y Y Y Y Y Y Y Y Y Y Y Y

How many models? 2 3 4 6 2 2 2 2 3 3 2 2

Has a conceptualization step? P1 P1 Y Y P1 Y Y Y Y Y Y Y

Has a formal specification step? N Y N Y N N N P3 Y Y P3 P3

Has a programming step? Y Y Y Y Y Y Y Y Y Y Y Y

Proposes conceptual model
transformation?

N P Y Y P Y N Y N Y N Y

Proposes automatic code gener-
ation?

N N Y Y N Y N N N N N Y

Provides formal model transfor-
mations?

N N N P2 N N N N N N N N

Note: Y: Yes, N: No, P: Partially.
1Conceptual model is not mentioned, but a diagram such as a flow diagram is suggested.
2The framework does not provide formal transformation methods, but proposes some heuristics, ex-
plicit translation rules and general code writing rules.
3A software specific description that determines how to structure the model is proposed.

an idea, a phenomenon, an organization, a process, or an event. A model can also be
a representation of another model. In systems thinking, a model is a representation
of a source system. We see a system as a set of interrelated elements [Klir 1969; von
Bertalanffy 1968]. A model is developed for a purpose related to the source system
[Klir 1969; Shannon 1975; Ackoff 1978]. This purpose can be achieved by executing or
interpreting the model and thereby gaining knowledge about the source system. The
interpretation can only be validated in a given context. The context includes the pur-
pose of the modeling process, information about the environment of the source system,
and the constraints, assumptions and facts that affect the modeling process. A context
can be formally defined in a model as well [Theodorakis et al. 2002].

A model is specified in a modeling language [Milicev 2009]. A modeling language con-
sists of an abstract syntax, concrete syntax and semantics [Atkinson and Kühne 2003].
The abstract syntax describes the vocabulary of the concepts provided by the modeling
language and how they can be connected to create models. The abstract syntax consists
of the concepts, the relationships and well-formedness rules, where well-formedness
rules state how the concepts may be combined. The concrete syntax provides a way to
show the modeling elements in a concrete form which we see and work with on paper
or on the computer screen [Rumpe 1998]. The expression generated with the concrete
syntax is called the model and it is often in a structured textual form. The semantics
of a modeling language is the additional information to explain what the abstract syn-
tax actually means. We use the grammar notion of formal language theory to define
the abstract syntax and we assume that a default concrete syntax is provided by the

Model Continuity in Discrete Event Simulation Z:7

Fig. 1. The relationships between model, source and language.

metalanguage [see Appendix A]. In this paper, we use the following primitive terms
and relations:
S is the infinite set of all source systems. Variables such as “s, s1, s2, ...” range over S.
C is the infinite set of all contexts. Variables such as “c, c1, c2, ...” range over C.
L is the infinite set of all formal languages. Variables such as “l, l1, l2, ...” range over L.

The usual set operations are applicable to S, C and L such as union, intersection,
difference, complement, subset, proper subset, cartesian product and powerset. The +
function c1 +c2 : C ×C → C is used to represent the composition of two contexts, where
c1 + c1 = c1, c1 + c2 = c2 + c1 and c1 ≤ c1 + c2. We next propose the following definitions
using formal language theory.

Definition 3 .1 (Model). Let g = {T, N, I, P } be a grammar where T, N, I and P are
defined i n A ppendix A , a nd t he l anguage t hat g g enerates i s l (g). I f a n expression
m∈l(g) is a representation of a source system s within a context c, then m is said
to be a model of s in c. The infinite s et o f a ll m odels i s d enoted w ith M . Variables
such as “m, m1, m2, ...” range over M . The ternary relation ‘model-of ’ is denoted with
µ: M × S × C.

Definition 3 .2 (Conforms-to r elation). I f an expression m∈l(g) and m∈M , then the
language l is a modeling language and m conforms-to l. The binary relation ‘conforms-
to’ is denoted with γ: M × L.

Axiom 3.3 (Transitive-µ). µ(x, y, c1) ∧ µ(y, z, c2) ∧ y∈M ⇒ µ(x, z, c1 + c2) .

Figure 1 shows the relationships between a model, a source and a language. Al-
though the terminal symbols of the grammar provide a default concrete syntax (pri-
mary view), it is possible to define other concrete syntax mappings (secondary views).
For example, it is very common that a model has a textual view and a diagrammatic
view in computer science. We suggest using an extended grammar to define a map-
ping from the default concrete syntax to a set of concrete symbols. In this way, all of
the possible final or intermediate productions of a given grammar with both terminal
and non-terminal symbols can be included in the mapping. The language defined with
the extended grammar allows defining c omposed m odeling e lements f or a modeling
language. Most important is that the primary view has all the specified information
and the secondary views will be syntactically either equivalent to or weaker than the
primary view.

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:8 D. Çetinkaya, A. Verbraeck, M. D. Seck

Definition 3.4 (Extended grammar). Let g = {T,N, I, P} be a grammar, and l(g)

be a modeling language. Let ĝ = {T ∪ N,N, I, P} be another grammar, and l̂(ĝ) be all
expressions generated by ĝ. l̂ includes all of the possible expressions with both terminal
and non-terminal symbols of g. Hence, l ⊆ l̂. The grammar ĝ is the extended grammar
of g.

Definition 3.5 (Concrete syntax mapping). Let g = {T,N, I, P} be a grammar, and
l(g) be a modeling language. A concrete syntax mapping for l(g) is a binary relation
from l̂(ĝ) to cs, where cs is a set of concrete symbols, and the relation is denoted as
ψ(l̂(ĝ), cs).

Definition 3.6 (Secondary view). Let m∈M be a model that conforms-to a modeling
language l(g). For a given set of concrete symbols cs, if m can be mapped to an ex-
pression v ∈ cs∗, by using a concrete syntax mapping ψ(l̂(ĝ), cs), then v is a secondary
view of the model m. cs∗ is the infinite set of all expressions, which can be obtained
by composing zero or more symbols from cs. The infinite set of all secondary views is
denoted with V . Variables such as “v, v1, v2, ...” range over V .

In order to specify, view or change models on computer platforms, we use model
editors. A model editor for a modeling language l provides a way to specify models
according to the syntax of l and save them according to a specific file format. In addi-
tion, the editor uses a language parser to decompose a model according to the abstract
syntax of l [Muller et al. 2008] and shows the model on the screen using one or more
views from V . If a concrete syntax mapping is defined, the editor can show a different
view of the model, e.g., by changing the shape of a specific type of element in a model.
Although secondary views of a model are based on the default concrete syntax, seman-
tically they can be more powerful than the primary view. In many cases, the model
editor provides extra features such as verification or syntax highlighting. Most model
editors are also capable of hiding aspects of a model for the user. In this case, the con-
crete syntax remains unchanged. It is not easy to define a grammar and a concrete
syntax for a modeling language from scratch. Furthermore, developing a model edi-
tor for a language requires advanced software engineering skills. The metamodeling
approach, introduced in the next section, solves most of these problems.

3.2. Metamodeling
Metamodeling is the process of specifying a grammar of a modeling language in the
form of a model, which in turn can be used to specify models in that language. Hence,
metamodeling is a modeling process where the source is a grammar. The following
definitions can be derived from the earlier ones.

Definition 3.7 (Metamodel). Letmm∈M is a model and ∃µ(mm, s, c), where s∈S and
c∈C. A model mm is a metamodel if, and only if, s is a grammar. The infinite set of all
metamodels is denoted with M ′, where M ′ ⊂M . Variables such as “mm,mm1,mm2, ...”
range over M ′.

Definition 3.8 (Metamodeling language). For any mm∈M ′ and γ(mm, l), the lan-
guage l is a metamodeling language. The infinite set of all metamodeling languages
is denoted with L′, where L′ ⊂ L. Variables such as “l′, l′1, l′2, ...” range over L′.

Similar to a modeling language, a metamodeling language has one abstract syntax
and at least one concrete syntax. In order to specify, view or change metamodels on
computer platforms, we use metamodel editors. All information about models can also
be applied to metamodels and metamodeling languages.

Model Continuity in Discrete Event Simulation Z:9

∼=

Fig. 2. Metamodeling.

The purpose of the metamodeling process is representing the grammar of a modeling
language in order to provide a proper way to develop models with that language. For
example, instead of developing a model for a specific problem in a certain domain, first
a metamodel which defines the concepts that apply to a larger set of problems in that
domain is specified. Then, the metamodel is used to develop a specific model. In this
case, a model is said to be an instance-of the metamodel. If a model m is an instance of
a metamodel mm, where mm is a model of a grammar g, then the model m conforms-to
l(g). Figure 2 illustrates the relations between a model and a metamodel. If mm is a
model of a grammar g then we write l(mm) l(g).

Definition 3 .9 (Instance-of r elation). L et m m∈M ′ b e a m etamodel, m ∈M b e a
model, and γ(m, l(mm)). Then, m is an instance-of mm if, and only if, every element of
m is an instance of some element in mm. The binary function ‘is-instance-of ’ is denoted
with τ(m) : M → M ′.

Lemma 3.10 (Formalized conforms-to). (τ(x) = y) ⇒ γ(x, l(y)) (by definition 3.9).

Popular metamodeling languages are: MOF [OMG 2006], Ecore [Eclipse 2014], KM3
[IRISA 2011] and MetaGME [Emerson et al. 2004]. One can easily notice that the
metamodeling pattern can be applied again, and a metamodeling language can also
be defined w ith a m etamodel. I n t his c ase, t he m etamodel w hich i s a m odel o f the
grammar of a metamodeling language is called a meta-metamodel and it is specified
in a meta-metamodeling language.

Although, it is possible to increase the number of metamodeling levels theoretically,
a 4-level metamodeling architecture that was introduced in the UML specification by
OMG in 1999 [OMG 1999] is generally used in practice. In the metamodeling architec-
ture introduced by OMG, the M3-level is for representing a metamodeling language as
a meta-metamodel; the M2-level is for representing a modeling language as a meta-
model; the M1-level is for representing a system without specific u ser data; and the
M0-level is for representing a system with user data. In addition, OMG introduces the
concept of a UML profile at the M1-level. It is a way of specifying an incomplete (pa-

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:10 D. Çetinkaya, A. Verbraeck, M. D. Seck

rameterizable) model, so that the details can be filled in later. We will use the term
template models for these incomplete models within the modeling process. A set of
template models in a modeling language for a domain is called a domain specific mod-
eling library, whereas the set of modeling elements provided by the grammar of the
language is called the basic (or core) modeling library [Atkinson and Kühne 2002]. We
accept these features as implementation specific concepts, and many state-of-the-art
metamodel editors provide them.

In general, the metamodel editors provide extra features such as model-to-model
transformation, code generation or model interpretation. In this case, the complete
tool set is called a metamodeling environment. A full featured metamodeling environ-
ment provides a way to specify a metamodel mm and automatically generate a model
editor for the modeling language l(mm). The resulting editor may either work within
the metamodeling environment, or less commonly be produced as a separate stan-
dalone program. Once we have metamodels and models, we can discuss metamodel-
based model transformations. The next section explains model transformations in the
MDD context.

3.3. Model Transformations
A model transformation is the process of converting a model into another form accord-
ing to a set of transformation rules. According to the output type or target language
of the process, the model transformation can be classified as a model to model (M2M)
transformation, a model to text (M2T) transformation, or a model to code transforma-
tion (M2C or code generation). As the name implies, a M2M transformation converts
a model into another model, whereas M2T transformation converts a model into text.
M2T transformation is generally used for supportive document creation. If the model is
used to generate source code, then the transformation is called code generation. Well
known M2M transformation languages are ATL (ATLAS Transformation Language)
and QVT (Query/View/Transformation) [Çetinkaya and Verbraeck 2011].

In the MDD context, we are only interested in formal model transformations. A for-
mal transformation requires that the models are specified in well-defined modeling
languages and the rules are defined with a model transformation language. A trans-
formation rule consists of two parts: a left-hand side that accesses the given model; and
a right-hand side that generates the target system. Hence, a model transformation is
performed with a well-defined model transformation pattern. In order to provide model
continuity, the target model should contain as much as possible from the source model
and the initial modeling relation should be preserved [Ehrig and Ermel 2008].

Definition 3.11 (Model transformation pattern). A model transformation pattern p
is defined as a triple p = {lx, ly, r}, where
lx is the source modeling language,
ly is the target language (any language such as a programming language, a modeling

language or any well-defined language),
r is a finite set of transformation rules from lx to ly which are defined with a model

transformation language.
The infinite set of all model transformation patterns is denoted with P . Variables

such as “p, p1, p2, ...” range over P .

Definition 3.12 (Formal model transformation). Let m∈M be a model that con-
forms to l1, and p = {l1, l2, r} be a model transformation pattern. If an expression e∈l2
is derived from m by applying p, then the derivation is called a formal model transfor-
mation. We say that m is transformed-to e by applying p and denote it as θ(m, p) = e.

Model Continuity in Discrete Event Simulation Z:11

Fig. 3. The relationships in a model-to-model transformation.

Definition 3.13 (Formal model-to-model transformation). If θ(x, p) = y and y∈M ,
then the transformation is called a formal model-to-model transformation.

Theorem 3.14. If the model transformation pattern p preserves the system related
information in the source model, then
(θ(x, p) = y) ∧ µ(x, s, c) ∧ (y ∈M)⇒ µ(y, s, c+ p).

Figure 3 shows the relationships in a model-to-model transformation.

Definition 3.15 (Code generation). If θ(x, p) = y and y is a source code in a software
programming language, then the transformation is called code generation.

Lemma 3.16. (θ(x, p) = y) ∧ (p = {l1, l2, r})⇒ γ(x, l1) (by definition 3.12).

Lemma 3.17. (θ(x, p) = y) ∧ (y ∈ M) ∧ (p = {l1, l2, r}) ⇒ γ(y, l2) (by definition 3.12
and definition 3.13).

For a metamodel-based model transformation, either the source model is an instance
of a metamodel or the target model is an instance of a metamodel, or preferably both.

Lemma 3.18. (θ(x, p) = y) ∧ (p = {l(mm1), l2, r}) ∧ (mm1 ∈M ′)⇒ (τ(x) = mm1)
(by definition 3.12).

Lemma 3.19. (θ(x, p) = y)∧(y∈M)∧(p={l1, l(mm2), r})∧(mm2∈M ′)⇒ (τ(y)=mm2)
(by definition 3.12 and definition 3.13).

The goal of model transformations is to automatically generate different representa-
tions of a system at different abstraction levels and to enable the reuse of information
that was once modeled. A key point here is the model transformation language. A
model transformation language is a language that provides a way to write transforma-
tion rules for the expressions of a formal grammar. Given two formal grammars (one
is for the source language and one is for the target language) and a model specified in
the source language, a language parser can parse the transformation rules; an inter-
preter can interpret the source model; and a model transformation engine can apply a
consecutive set of the rules on the source model and generate a target model according
to the interpretation. A model transformation tool combines all of these concepts and
it is usually embedded in a metamodeling environment. Sometimes, a model transfor-
mation is called a graph transformation if the models are specified as graphs, and the
transformation tool is then called a graph transformation tool [Agrawal et al. 2004]. A
model transformation is also known as a model morphism [Agostinho et al. 2010].

The presented definitions and relations provide a generic framework allowing any-
thing to be the source of a modeling process, i.e. anything can be modeled. For exam-

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:12 D. Çetinkaya, A. Verbraeck, M. D. Seck

ple, it is possible to develop a model of a model transformation pattern [Bézivin et al.
2006]. In addition, a metamodel can be defined to represent the grammar of the model
transformation language.

In the M&S domain, metamodeling has been applied for formal transformations. For
example, Paredis and Johnson [2008] discuss the use of a graph transformation ap-
proach to define a mapping between domain specific metamodels and a corresponding
SysML profile. Paredis et al. [2010] provide an overview of the formal transformation
between SysML and Modelica. Risco-Martı́n et al. [2009] propose XML/XSLT-based
transformations to generate executable DEVS models from UML models by using a
DEVS metamodel. McGinnis et al. [2011] discuss how ontologies can be effectively de-
ployed in simulation and they present formal transformations to generate Arena and
AnyLogic models from SysML models. All of these studies show that the transfer of
modeling information between different models is improved by formalizing the steps.

3.4. What is an MDD process?
Model driven development is a software engineering methodology that uses well-
defined modeling languages to specify models, and applies model transformations to
automatically generate source code from an initial software design model. In an MDD
approach, there is usually a chain of several M2M transformations and a final model-
to-code transformation. By using the definitions given in the previous sections, we
define an MDD process as:

Definition 3.20 (MDD process). A model driven development process for a software
application development is defined as a tuple

mdd = {n,MML,ML,MO ,SL, pl ,MTP ,STP ,MT , sc,TO}

where
n is the number of models,
MML = {l′0, l′1, ..., l′n−1} is an ordered set of metamodeling languages (can be defined

with meta-metamodels),
ML = {l0(mm0), l1(mm1), ..., ln−1(mmn−1) |γ(mmi, l

′
i)(0 ≤ i < n)} is an ordered set of

modeling languages (preferably defined with metamodels),
MO = {m0,m1, ...,mn−1 |γ(mi, li)(0 ≤ i < n)} is an ordered set of models, m0 is the

initial model and mn−1 is the final model,
SL is a set of supplementary languages (including at least a model transformation

language for writing transformation rules),
pl is a programming language for final code generation,
MTP = {p0, p1, ..., pn−2, pn−1} is a set of formal model transformation patterns,

where pi is a model-to-model transformation pattern, pn−1 is a code generation pattern,
and (pn−1 = {ln−1(mmn−1), pl, r}) ∈ MTP (including at least the final code generation
pattern),
STP is a set of other supplementary model transformation patterns,
MT = {(θ(x, p) = y) |(x ∈M)∧ (p ∈ MTP)} is a set of formal model transformations,

where (θ(mn−1, pn−1) = sc) ∈ MT (including at least the final code generation),
sc is the final source code,
TO is a set of tools to ease the activities.

The most notable advantages of MDD are rapid software development and increased
productivity. Hence, computerized tool support is very important in MDD approaches.
We recommend the following basic tools for MDD: a full-featured metamodeling envi-
ronment, a set of model editors and a set of model transformation tools [Atkinson and
Kühne 2003; Emerson et al. 2004].

Model Continuity in Discrete Event Simulation Z:13

Although MDD principles are described by different specifications, t he m ost com-
monly used terminology is introduced by MDA [OMG 2003]. MDA introduces three
types of viewpoints: The computation independent viewpoint focuses on the environ-
ment of the system and the requirements for the system. The platform independent
viewpoint focuses on the structure and operation of the system while hiding the de-
tails necessary for a particular platform. The platform specific v iewpoint f ocuses on
the use of a specific platform by a system. Based on these viewpoints, three types of
models are used in MDA: A Computation Independent Model (CIM) is a representa-
tion of a system from the computation independent viewpoint that does not show the
details of the system. A Platform Independent Model (PIM) is a representation of a
system that exhibits a specified degree of platform independence to be usable with a
number of different platforms. A Platform Specific M odel (PSM) i s a representation
of a system that combines the specifications in the PIM with the details that specify
how that system uses a particular type of platform. MDA also defines the PIM-to-PSM
transformation and requires that the PSM will include the source code. However, a
CIM-to-PIM transformation is not clearly defined in MDA since a CIM is assumed to
be a kind of requirements specification.

When following the MDA viewpoints, we can say that at least three types of models
are produced during a software development lifecycle: a CIM for the analysis stage, a
PIM for the design stage, and a PSM for the implementation stage [Sommerville 2007].
The final source code will be generated from the PSM. In more generic terms, an MDD
process is supposed to have an initial model, a number of intermediate models, a final
model and final source code. The aim i s to obtain a large part of the models and the
final code through successive model transformations. An MDD process supports model
continuity by formal model transformations.

Definition 3 .21 (Model c ontinuity). Let mdd be an MDD process, m 0 be the initial
model of this process and µ(m0, s, c).

We say that model continuity is obtained in an mdd process if, and only if n ≥ 2 and
µ(mfinal, s, c + x), where mfinal is the final model of the MDD process, it is generated
through formal model transformations, and it preserves the modeling relation.

As a result, MDD approaches place models in the core of the entire software devel-
opment process. They suggest better and faster ways of developing software systems
through automated model transformations that are specified with well-defined model-
ing languages. As a final remark, due to the fact that different MDD tools apply the
same principles, an MDD expert can easily combine different approaches and tools to
carry out an MDD process [Bézivin 2005]. For example, MDA concepts such as PIM
and PSM metamodels can be defined w ith t he M IC t ool s uite [ISIS 1 997] a nd GME
[Emerson et al. 2004]. The next section extends the MDD concepts for M&S and Sec-
tion 5 presents the resulting MDD4MS framework.

4. APPLYING MDD IN M&S
A simulation model is a representation of a system that can be simulated by means of
experimentation [Kleijnen 2008]. It may be a physical model, a mathematical model, a
computer model, or a combination of these [Roberts et al. 1983]. A simulation model is
executed on a simulation platform to generate simulation results. Following the earlier
definitions we say that modeling for computer simulation is the process of representing
a system for a specific purpose in a f orm that i s executable by a s imulator. Figure 4
shows the basic concepts and relations based on the general modeling principles given
in Section 3.1.

The main difference from a general modeling process is that the model is interpreted
(i.e. executed) by a model interpreter (i.e. simulator). In the context of computer sim-

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:14 D. Çetinkaya, A. Verbraeck, M. D. Seck

Fig. 4. Modeling and simulation in general.

ulation, a simulator is a computer program that can be executed on a computer or
embedded in hardware. The output of the simulator is called the simulation results.
A computer simulation model needs to be specified in a programming language that
provides or can be extended to provide simulation capabilities (preferably with a suit-
able model editor). Simulation is the process of conducting experiments with a model
so that the behavior of the system is simulated over time. We propose the following
definitions based on the MDD concepts from the previous section.

Definition 4.1 (Simulation model). Letm ∈M be a model, s ∈ S be a source system,
and µ(m, s, c). m is a simulation model if, and only if, there exists a simulator that can
simulate m over time.

Definition 4.2 (Simulation modeling language). Let l(g) be a modeling language.
The language l(g) is a simulation modeling language if, and only if, there exists a
simulation model m such that γ(m, l(g)).

System specification formalisms can be used to define simulation models in a precise
way. In the M&S field, the term computer simulation model often refers directly or
indirectly to the final executable source code (PSM). Hence, simulation model code
generation can be perceived as a model-to-code transformation.

5. THEORY OF THE MDD4MS FRAMEWORK
The MDD4MS framework proposes an MDD-based simulation model development
method [Çetinkaya et al. 2011]. Similar to the stages in a simulation study explained
in Section 2, the MDD4MS framework addresses the steps in a simulation study
from conceptual modeling through final implementation by applying metamodeling
and model transformations. In this way, it can be embedded into the existing M&S
methodologies easily. Appendix B presents the MDD4MS lifecycle [Çetinkaya et al.
2011; Çetinkaya et al. 2013; Çetinkaya 2013].

The MDD4MS framework introduces model and metamodel definitions for various
stages, transformations between different models, methods to support the transforma-
tion steps, and a tool architecture for the overall process. When the model types in the
M&S lifecycle are analyzed, it is most likely that these models need to be specified in
different modeling languages. The MDD4MS framework introduces three intermedi-
ate models: a simulation conceptual model (CM), a platform independent simulation
model (PISM), and a platform specific simulation model (PSSM). In addition it intro-

Model Continuity in Discrete Event Simulation Z:15

duces three metamodels for specifying CM, PISM and PSSM in order to support model
transformations.

. CMmetamodel represents the grammar of a conceptual modeling language,

. PISMmetamodel represents the grammar of a system specification formalism,

. PSSMmetamodel represents the grammar of a simulation model programming
language.

CM is an instance-of CMmetamodel, PISM is an instance-of PISMmetamodel, and
PSSM is an instance-of PSSMmetamodel. All of the metamodels are specified in a
metamodeling language. Although it is practical to use the same metamodeling lan-
guage for all metamodels, it is also possible to use different metamodeling languages
as far as there is a suitable model transformation language for each transformation.

The metamodels are expected to be specified in a metamodeling environment, where
model editors can be generated automatically. By using these model editors, the mod-
els are specified as the instances of the metamodels. After introducing the metamod-
els, the MDD4MS framework introduces model transformations between the different
models of the M&S lifecycle in order to automatically generate a subset of the simu-
lation model source code. The following metamodel-based model transformations are
proposed:

. CMtoPISM is a M2M transformation from CM to PISM.

. PISMtoPSSM is a M2M transformation from PISM to PSSM.

. PSSMtoSM is a M2C transformation from PSSM to SM.

Model transformations are orthogonal to metamodeling as shown in Figure 5. The
figure i llustrates t he p roposed f ramework w ith a s ingle m eta-metamodel. T here are
three metamodeling stacks, which are presented vertically in the figure. A practical ap-
plication of the MDD4MS framework is an MDD process and it is called an MDD4MS
process. Although we propose an MDD4MS process with three models and one final
set of executable source code, it is possible to increase the number of models in the
framework.

In the CMtoPISM and PISMtoPSSM transformations, extra information needs to be
added to obtain a full model. Without extra information, either the CM should con-
tain a full specification, which i s not l ikely, or the target model can only be partially
generated. When moving from a CM to a PISM, more detailed behavior of the system
should be added, and while moving from a PISM to a PSSM, the implementation de-
tails should be added. CMtoPISM transformation contains domain specific constructs
in order to add execution semantics. A PSSMtoSM transformation is generally a one-
to-one transformation for a programming language and its metamodel. Defining pre-
cise metamodels and transformation rules are the challenging activities of MDD. If
the modeling language is defined informally or semi-formally, which i s very common
for conceptual modeling languages, it is not possible to define a s ingle a nd precise
metamodel for that modeling language.

The expressiveness of the metamodel and the existence of component libraries are
very important to be able to generate an executable and useful simulation model. Do-
main specific modeling languages or component l ibraries can be used to increase the
percentage of automatically generated code. In this case, the transformations can be
written in a more generic and compact way since the domain knowledge is already
added via the language elements or components [Huang 2013]. In addition, higher
level conceptual and platform independent models have a high potential to support ef-
ficient compositions of components developed for different environments [Diallo et al.
2011; Tolk et al. 2012; Tolk et al. 2013].

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:16 D. Çetinkaya, A. Verbraeck, M. D. Seck

The domain-specific metamodels and model transformations need to consider the
data intensive nature of simulation as well. In the MDD4MS framework, data is added
on the PISM level. It is expected that the modeler will enter the data either during the
CMtoPISM model transformation or add it to the PISM model itself. It is also possible
that the modeler needs to manually add data into the auto-generated code. In this
case, data continuity can only be guaranteed if there are parameterized components
on the lowest level, and all data is entered by specifying parameter values.

MDD4MS clearly separates the conceptual modeling, model formulation (specifica-
tion), implementation and model coding with the associated models CM, PISM, PSSM,
and SM. However, according to the different needs in simulation projects, it is also
possible to merge some stages by using the same modeling language to specify the
different models, e.g., the same language can be used for CM and PISM in small scale
projects. Then, the CM will be less detailed than the PISM. For example, an incomplete
visual DEVS diagram can serve as a conceptual model, if the problem owner is famil-
iar with DEVS. Besides, different model transformation patterns can be defined for a
metamodel, e.g., a CM can be used to generate multiple PISMs, and a PISM can be
used to generate multiple PSSMs. An implementation pattern for applying the MDD
concepts in M&S domain is given as follows:

Definition 5.1 (MDD4MS process with three models). An MDD4MS process with
three models is a specialized MDD process (Definition 3.20):

mdd4ms = {n,MML,ML,MO ,SL, pl ,MTP ,STP ,MT ,SM ,TO}

where
n = 3 (CM ,PISM ,PSSM),
MML = {l′0, l′1, l′2} is an ordered set of metamodeling languages (can be defined with

meta-metamodels),
ML = {l0(CMmetamodel), l1(PISMmetamodel), l2(PSSMmetamodel)} such that

. γ(CMmetamodel , l′0),

. γ(PISMmetamodel , l′1),

. γ(PSSMmetamodel , l′2),

MO = {CM ,PISM ,PSSM } such that CM is the initial model, PSSM is the final
model, and

. τ(CM) = CMmetamodel ,

. τ(PISM) = PISMmetamodel ,

. τ(PSSM) = PSSMmetamodel ,

SL is a set of model transformation languages,
pl is a programming language with simulation capabilities,
MTP = {pcm, ppism, ppssm} such that

. pcm = {l0(CMmetamodel), l1(PISMmetamodel), r0},

. ppism = {l1(PISMmetamodel), l2(PSSMmetamodel), r1},

. ppssm = {l2(PSSMmetamodel), pl, r2},

STP is a set of other supplementary formal model transformation patterns,
MT = {(θ(CM , pcm) = PISM), (θ(PISM , ppism) = PSSM), (θ(PSSM , ppssm) = SM)},
SM is the final executable simulation model,
TO a set of tools to ease the activities.

Finally, we propose that any practical application of the MDD4MS framework ob-
tains model continuity.

Model Continuity in Discrete Event Simulation Z:17

Fig. 5. MDD4MS framework: models, metamodels and model transformations [Çetinkaya 2013].

Z:18 D. Çetinkaya, A. Verbraeck, M. D. Seck

THEOREM 5.2. An MDD4MS process with three models (performed according to the
Definition 5.1) obtains model continuity.

PROOF. For a given mdd4ms = {n,MML,ML,MO ,SL, pl ,MTP ,STP ,MT ,SM ,TO},
by definition 5.1, where n = 3 and MO = {CM ,PISM ,PSSM } we have:

. CM ,PISM ,PSSM ∈M ,

. pcm = {l0(CMmetamodel), l1(PISMmetamodel), r0},

. ppism = {l1(PISMmetamodel), l2(PSSMmetamodel), r1},

. ppssm = {l2(PSSMmetamodel), pl, r2}

. θ(CM , pcm) = PISM ,

. θ(PISM , ppism) = PSSM ,

. θ(PSSM , ppssm) = SM ,

. SM is the final executable simulation model.

We assume that CM is the initial model, µ(CM , s, c) and s is a system. Although,
PSSM is the final model in software engineering, we accept that SM is the final model
in M&S.

(1) (θ(CM , pcm) = PISM) ∧ µ(CM , s, c) ∧ PISM∈M ⇒ µ(PISM , s, c+ pcm)
(by theorem 3.14).

(2) (θ(PISM , ppism) = PSSM) ∧ µ(PISM , s, c+ pcm) ∧ PSSM∈M ⇒
µ(PSSM , s, c+ pcm + ppism) (by 1 and theorem 3.14).

(3) If SM is a simulation model, then SM∈M (by definition 4.1).
(4) (θ(PSSM , ppssm) = SM) ∧ SM∈M ∧ µ(PSSM , s, c+ pcm + ppism)⇒

µ(SM , s, c+ pcm + ppism + ppssm) (by 1, 2, 3 and theorem 3.14).
(5) n ≥ 2∧µ(SM , s, c+pcm+ppism+ppssm)⇒mdd4ms process obtains model continuity

(by definition 3.21).

The next section presents an overview of a case study to apply MDD4MS in the
discrete event simulation domain.

6. PROOF OF CONCEPT: DISCRETE EVENT SIMULATION OF BPMN MODELS
To show the applicability of the MDD4MS process, we have chosen a sample problem
from the electronic payments sector which is presented in [Sun et al. 2009]. The crucial
role of M&S within this example is to document the business processes as much as
possible in a visualized way, to enable different parties to gain insight into the issues
and into potential solutions. A manually developed simulation model is available [Sun
et al. 2009] for comparison with our auto-generated model. We used the MDD4MS
prototype implementation to develop the simulation model [Çetinkaya et al. 2013]. The
MDD4MS prototype implementation is an Eclipse-based application of the MDD4MS
tool architecture, which is defined in the MDD4MS framework [Çetinkaya et al. 2011].

We used BPMN (Business Process Model and Notation) for conceptual modeling,
DEVS for system specification and Java for the simulation model code. Please note
that these languages are used just to provide a proof of concept implementation. They
are not part of the MDD4MS framework and any other conceptual modeling language,
system specification language, or simulation model programming language could have
been chosen. For example, UML activity diagramming technique could be used as con-
ceptual modeling language; Petri Nets could be used as system specification language;
and C++ could be used as simulation model programming language. In this case, new
metamodels and transformation rules would have to be developed.

Model Continuity in Discrete Event Simulation Z:19

According to the MDD4MS framework, the following metamodels and model trans-
formations are needed:

. BPMN metamodel as the CMmetamodel,

. DEVS metamodel as the PISMmetamodel,

. JAVA metamodel as the PSSMmetamodel,

. BPMNtoDEVS transformation as the CMtoPISM transformation,

. DEVStoJAVA transformation as the PISMtoPSSM transformation,

. JAVAtoJAVACode transformation as the PSSMtoCode transformation.

Definition 6.1 (MDD4MS case example). Model driven development of DEVS-
based simulation models from BPMN models is an MDD4MS process defined as

case = {n,MML,ML,MO,SL, pl,MTP, STP,MT, SM, TO}
where
n = 3 (CM ,PISM ,PSSM),
MML = {Ecore,Ecore,Ecore} is the ordered set of metamodeling languages,
ML = {l0(BPMNmetamodel), l1(DEVSmetamodel), l2(JAVAmetamodel)} such that

. γ(BPMNmetamodel ,Ecore),

. γ(DEVSmetamodel ,Ecore),

. γ(JAVAmetamodel ,Ecore),

MO = {CM ,PISM ,PSSM } such that CM is the initial model, PSSM is the final
model, and

. τ(CM) = BPMNmetamodel ,

. τ(PISM) = DEVSmetamodel ,

. τ(PSSM) = JAVAmetamodel ,

SL = {ATL, JAVA} is the set of model transformation languages,
pl = JAVA is the programming language and it is extended with simulation libraries,
MTP = {pcm, ppism, ppssm} such that

. pcm = {l0(BPMNmetamodel), l1(DEVSmetamodel), bpmn2devs.atl},

. ppism = {l1(DEVSmetamodel), l2(JAVAmetamodel), devs2java.atl},

. ppssm = {l2(JAVAmetamodel), JAVA, java2code.java},
STP = {} is the set of other supplementary formal model transformation patterns,
MT = {(θ(CM , pcm) = PISM), (θ(PISM , ppism) = PSSM), (θ(PSSM , ppssm) = SM)},
SM is the final executable simulation model,
TO = {Eclipse and a set of plugins(GEMS ,ATL,PDE ,EMF ,GEF)} is the set of tools

to support the activities.

The MDD4MS prototype implementation includes metamodels, model editors, model
transformation rules, and model interpreters for DEVS-based simulation of BPMN
models [Ç etinkaya et al. 2013; 2012; 2011]. The BPMNtoDEVS transformation pro-
duces atomic and coupled models with ports, couplings and templates for the system
behavior. The DEVStoJAVA transformation produces valid Java visual models with in-
formation for Java classes. The JAVAtoJAVACode transformation generates Java code.
In order to support the transformation process and to generate fully executable DEVS
models, a DEVS simulation model component library for BPMN was used [Rust et al.
2011]. By using validated DEVS components, which are implemented in Java and exe-
cutable with the DEVSDSOL simulation library, we ensured that the semantics of the
DEVS model was preserved in the Java model. The case example showed that model
continuity between the different models within the M&S lifecycle was obtained when

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date:

Z:20 D. Çetinkaya, A. Verbraeck, M. D. Seck

the MDD4MS framework is applied. The metamodels specified in Ecore [Eclipse 2014]
and more information about the case study can be found in Appendix C.

7. CONCLUSIONS
Applying MDD in M&S provides new capabilities for efficient development of reliable,
error-free and maintainable simulation models. Availability of tools and techniques for
both metamodeling and model transformations is one of the practical advantages of
MDD. Metamodeling provides a precise way for specifying models and their modeling
languages.

This paper proposes a comprehensive theoretical framework for model driven de-
velopment of simulation models. The framework recommends the use of three inter-
mediate models in addition to the executable simulation model. We showed that the
proposed MDD4MS framework obtains model continuity via formal, metamodel-based
model-to-model transformations. The main objective of this research was to improve
and speed-up the simulation model development process by using software engineering
methods. The most important outcomes of applying MDD in the M&S domain are: pro-
viding syntactic and semantic validity of the models, formalizing the modeling steps
and the process, increasing productivity, and providing model continuity.

The case study illustrated that the framework is applicable in the DEVS-based
discrete-event simulation domain. Due to the fact that there are other successful stud-
ies on applying MDD and component-based approaches in the simulation field, and
because MDD4MS provides a generic framework, we believe that MDD4MS is also
applicable in other domains. Future work will therefore include testing the MDD4MS
framework in different domains and in large scale real life M&S studies. In the pre-
sented case study, there was still some work for the modeler, e.g., adding data during
the CMtoPISM model transformation, and selecting appropriate components during
the PISMtoPSSM model transformation. Further research will study possible exten-
sions to the framework to be able to select automatically among alternatives at various
levels and testing the quality of these choices.

MDD is different from traditional development approaches and it requires a learning
period and change of standard M&S development habits. When modeling languages
for the different stages are not yet available and the team members have little or
no knowledge about MDD, it may take quite some time to develop metamodels and
model transformations. However, once these are developed, further development time
and costs decrease significantly. A model-driven approach is therefore expected to have
most benefits for multiple projects in the same domain, and for large-scale and critical
simulation projects.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors would like to thank to Assoc.Prof. Joseph Barjis for his valuable comments on the case exam-
ple. In addition, the authors appreciate the insightful suggestions and critical comments from one of the
reviewers.

REFERENCES
Russell L. Ackoff. 1978. The Art of Problem Solving. John Wiley & Sons, New York, NY.
Carlos Agostinho, Filipe Correia, and Ricardo Jardim-Goncalves. 2010. Interoperability of complex business

networks by language independent information models. In New World Situation: New Directions in
Concurrent Engineering (Proceedings of the 17th International Conference on Concurrent Engineering),
Jerzy Pokojski, Shuichi Fukuda, and Jozef Salwinski (Eds.). Springer-Verlag, London, 111–124.

Model Continuity in Discrete Event Simulation Z:21

Aditya Agrawal, Gyula Simon, and Gabor Karsai. 2004. Semantic translation of Simulink/stateflow models
to hybrid automata using graph transformations. Electronic Notes in Theoretical Computer Science 109
(2004), 43–56.

Colin Atkinson and Thomas Kühne. 2002. Rearchitecting the UML infrastructure. ACM Transactions on
Modeling and Computer Simulation 12, 4 (October 2002), 290–321.

Colin Atkinson and Thomas Kühne. 2003. Model-driven development: a metamodeling foundation. IEEE
Software 20, 5 (2003), 36–41.

Amol Bakshi, Viktor K. Prasanna, and Akos Ledeczi. 2001. MILAN: a model based integrated simulation
framework for design of embedded systems. In Proceedings of the Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES). ACM, New York, NY.

Osman Balci. 2001. A methodology for certification of modeling and simulation applications. ACM Transac-
tions on Modeling and Computer Simulation 11, 4 (2001), 352–377.

Osman Balci. 2012. A life cycle for modeling and simulation. Simulation 88, 7 (2012), 870–883.
Osman Balci, James D. Arthur, and William F. Ormsby. 2011. Achieving reusability and composability with

a simulation conceptual model. Journal of Simulation 5 (2011), 157–165.
Jerry Banks. 1998. Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice.

John Wiley & Sons, New York, NY.
Russell R. Barton. 1998. Simulation metamodels. In Proceedings of the 30th Winter Simulation Conference

(WSC ’98). IEEE, 167–176.
Ola Batarseh and Leon F. McGinnis. 2012. SysML to discrete-event simulation to analyze electronic assem-

bly systems. In Proceedings of the Symposium on Theory of Modeling and Simulation: DEVS Integrative
M&S Symposium. SCS.

Jean Bézivin. 2005. On the unification power of models. Journal of Software and Systems Modeling 4, 2
(May 2005), 171–188.

Jean Bézivin, Fabian Buttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev, and Arne Lindow. 2006. Model
transformations? Transformation models! In Proceedings of the 9th International Conference on Model
Driven Engineering Languages and Systems. LNCS, Vol. 4199. Springer-Verlag, 440–453.

Deniz Çetinkaya. 2013. Model Driven Development of Simulation Models: Defining and Transforming Con-
ceptual Models into Simulation Models by Using Metamodels and Model Transformations. Ph.D. Dis-
sertation. Delft University of Technology, The Netherlands.

Deniz Çetinkaya, Saurabh Mittal, Alexander Verbraeck, and Mamadou D. Seck. 2013. Model-driven engi-
neering and its application in modeling and simulation. In Netcentric System of Systems Engineering
with DEVS Unified Process, Saurabh Mittal and José L. Risco-Martı́n (authors). CRC Press, Taylor and
Francis Group, Chapter 9, 221–248.

Deniz Çetinkaya and Alexander Verbraeck. 2011. Metamodeling and model transformations in modeling
and simulation. In Proceedings of the Winter Simulation Conference. IEEE, 3048–3058.

Deniz Çetinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2010. A metamodel and a DEVS imple-
mentation for component based hierarchical simulation modeling. In Proceedings of the 43rd Annual
Simulation Symposium (ANSS ’10), Part of SpringSim ’10. SCS.

Deniz Çetinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2011. MDD4MS: a model driven develop-
ment framework for modeling and simulation. In Proceedings of the Summer Computer Simulation
Conference. SCS, 113–121.

Deniz Çetinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2012. Model transformation from BPMN
to DEVS in the MDD4MS framework. In Proceedings of the Symposium on Theory of Modeling and
Simulation: DEVS Integrative M&S Symposium. SCS, 304–309.

Deniz Çetinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2013. BPMN to DEVS: application of
MDD4MS framework in discrete event simulation. In Netcentric System of Systems Engineering with
DEVS Unified Process, Saurabh Mittal and José L. Risco-Martı́n (authors). CRC Press, Taylor and Fran-
cis Group, Chapter 22, 609–636.

Andrea D’Ambrogio, Daniele Gianni, José Luis Risco-Martı́n, and Alessandra Pieroni. 2010. A MDA-based
approach for the development of DEVS/SOA simulations. In Proceedings of the Spring Simulation Mul-
ticonference. SCS, San Diego, CA.

Julien DeAntoni and Jean-Philippe Babau. 2005. A MDA-based approach for real time embedded systems
simulation. In Proceedings of the 9th IEEE International Symposium on Distributed Simulation and
Real-Time Applications (DS-RT ’05). 257–264.

Saikou Y. Diallo, Heber Herencia-Zapana, Jose J. Padilla, and Andreas Tolk. 2011. Understanding inter-
operability. In Proceedings of the Emerging M&S Applications in Industry and Academia Symposium.
SCS.

Z:22 D. Çetinkaya, A. Verbraeck, M. D. Seck

Jaidermes Nebrijo Duarte and Juan de Lara. 2009. ODiM: a model-driven approach to agent-based simula-
tion. In Proceedings of the 23rd European Conference on Modelling and Simulation.

Eclipse. 2014. Eclipse Modeling Framework (EMF) Project. Retrieved January 3. (2014). http://projects.
eclipse.org/projects/modeling.emf

Hartmut Ehrig and Claudia Ermel. 2008. Semantical correctness and completeness of model transforma-
tions using graph and rule transformation. In Proceedings of the 4th International Conference on Graph
Transformations (ICGT ’08). Springer-Verlag, Berlin, Heidelberg, 194–210.

Matthew J. Emerson, Janos Sztipanovits, and Ted Bapty. 2004. A MOF-based metamodeling environment.
Journal of Universal Computer Science 10 (2004), 1357–1382.

Jean-Marie Favre. 2004. Towards a basic theory to model driven engineering. In Proceedings of the Interna-
tional Workshop on Software Model Engineering (WISME’04). Springer, Berlin Heidelberg.

Paul A. Fishwick. 1995. Simulation Model Design and Execution: Building Digital Worlds. Prentice Hall,
Englewood Cliffs, NJ.

Peter Fritzson. 2010. The Modelica object-oriented equation-based language and its OpenModelica envi-
ronment with metamodeling, interoperability, and parallel execution. In Proceedings of the 2nd Inter-
national Conference on Simulation, Modeling, and Programming for Autonomous Robots. LNCS, Vol.
6472. Springer Berlin Heidelberg, 5–14.

Alfredo Garro, Francesco Parisi, and Wilma Russo. 2013. A process based on the Model-Driven Architecture
to enable the definition of platform-independent simulation models. In Revised selected papers from the
International Conference on Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH ’11). Advances in Intelligent Systems and Computing, Vol. 197. Springer-Verlag Berlin
Heidelberg, 113–129.

Eric Guiffard, Dahbia Kadi, Jean-Paul Mochet, and Régis Mauget. 2006. CAPSULE: application of the MDA
methodology to the simulation domain. In Proceedings of the EURO SIW. SISO, 181–190.

Xiaolin Hu and Bernard Phillip Zeigler. 2005. Model continuity in the design of dynamic distributed real-
time systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 35,
6 (2005), 867–878.

Yilin Huang. 2013. Automated Simulation Model Generation. Ph.D. Dissertation. Delft University of Tech-
nology, The Netherlands.

IRISA. 2011. Kermeta workbench. Retrieved July 14, 2012 from. (2011). http://www.kermeta.org/
ISIS. 1997. Model Integrated Computing (MIC). Retrieved July 14, 2012 from. (1997). http://www.isis.

vanderbilt.edu/research/MIC
Ethan Jackson and Janos Sztipanovits. 2009. Formalizing the structural semantics of domain-specific mod-

eling languages. Journal of Software and Systems Modeling 8, 1 (2009), 451–478.
Frédéric Jouault and Jean Bézivin. 2006. KM3: a DSL for metamodel specification. In Formal Methods for

Open Object-Based Distributed Systems. LNCS, Vol. 4037. Springer-Verlag, Berlin, Heidelberg, 171–185.
Aleksandr A. Kerzhner, Jonathan M. Jobe, and Christiaan J.J. Paredis. 2011. A formal framework for cap-

turing knowledge to transform structural models into analysis models. Journal of Simulation 5 (2011),
202–216.

Jack P.C. Kleijnen. 2008. Design and Analysis of Simulation Experiments. Springer Science and Business
Media, New York, NY.

Jack P.C. Kleijnen. 2009. Kriging metamodeling in simulation: A review. European Journal of Operational
Research 192 (2009), 707–716.

Anneke Kleppe, Jos Warmer, and Wim Bast. 2003. MDA Explained - The Model Driven Architecture: Practice
and Promise. Addison-Wesley, Boston, MA.

George J. Klir. 1969. An Approach to General Systems Theory. Litton Educational Publishing, NY.
Kathy Kotiadis and Stewart Robinson. 2008. Conceptual modelling: knowledge acquisition and model ab-

straction. In Proceedings of the 40th Winter Simulation Conference (WSC ’08). IEEE, 951–958.
Thomas Kühne. 2006. Matters of (meta-) modeling. Journal of Software and Systems Modeling 5, 4 (2006),

369–385.
Averill M. Law. 2003. How to conduct a successful simulation study. In Proceedings of the Winter Simulation

Conference (WSC ’03). Winter Simulation Conference, New Orleans, LA.
Akos Ledeczi, James Davis, Sandeep Neema, and Aditya Agrawal. 2003. Modeling methodology for inte-

grated simulation of embedded systems. ACM Transactions on Modeling and Computer Simulation 13,
1 (January 2003), 82–103.

Yonglin Lei, Wang Weiping, Li Qun, and Zhu Yifan. 2009. A transformation model from DEVS to SMP2
based on MDA. Simulation Modelling Practice and Theory 17 (2009), 1690–1709.

Model Continuity in Discrete Event Simulation Z:23

Andriy Levytskyy, Eugène J.H. Kerckhoffs, Ernesto Posse, and Hans Vangheluwe. 2003. Creating DEVS
components with the metamodelling tool ATOM3. In Proceedings of the 15th European Simulation Sym-
posium. SCS, San Diego, CA.

Leon F. McGinnis, Edward Huang, Ky Sang Kwon, and Volkan Ustun. 2011. Ontologies and simulation: a
practical approach. Journal of Simulation 5 (2011), 190–201.

Dragan Milicev. 2009. Model-Driven Development with Executable UML. Wiley Publishing, Indianapolis, IN.
Saurabh Mittal and Scott A Douglass. 2012. DEVSML 2.0: The language and the stack. In Proceedings of

the Spring Simulation Multiconference.
Saurabh Mittal, José Luis Risco-Martı́n, and Bernard Phillip Zeigler. 2007. DEVSML: automating DEVS

execution over SOA towards transparent simulators. In Proceedings of the Spring Simulation Multicon-
ference. SCS, 287–295.

Saurabh Mittal, José L. Risco-Martı́n, and Bernard P. Zeigler. 2009. DEVS/SOA: A cross-platform framework
for Net-centric modeling and simulation in DEVS Unified Process. Simulation 85, 7 (2009), 419–450.

Saurabh Mittal, Bernard P. Zeigler, José Luis Risco-Martı́n, Ferat Sahin, and Mo Jamshidi. 2008. Model-
ing and simulation for systems of systems engineering. In System of Systems: Innovation for the 21st
Century, Mo Jamshidi (Ed.). John Wiley & Sons, Hoboken, NJ, Chapter 5, 101–149.

Pierre-Alain Muller, Frédéric Fondement, Franck Fleurey, Michel Hassenforder, Rémi Schnekenburger,
Sébastien Gérard, and Jean-Marc Jézéquel. 2008. Model-driven analysis and synthesis of textual con-
crete syntax. Journal of Software and Systems Modeling 7, 4 (2008), 423–442.

Richard E. Nance. 1984. Model development revisited. In Proceedings of the Winter Simulation Conference.
IEEE, Piscataway, NJ, 74–80.

Antoni Olive. 2007. Conceptual Modeling of Information Systems. Springer-Verlag, Berlin Heidelberg.
OMG. 1999. UML specification version 1.3. Technical Report. Object Management Group, Available from.

http://www.omg.org/spec/UML/1.3/
OMG. 2003. Model driven architecture (MDA) guide version 1.0.1. Technical Report. Object Management

Group, Available from. http://www.omg.org/mda/specs.htm
OMG. 2006. Meta object facility (MOF) core specification, version 2.0. Technical Report. Object Management

Group, Available from. http://www.omg.org/spec/MOF/2.0/
Tuncer I. Ören. 2007. The importance of a comprehensive and integrative view of modeling and simulation.

In Proceedings of the Summer Computer Simulation Conference. SCS, 996–1006.
Christiaan J.J. Paredis, Yves Bernard, Roger M. Burkhart, Hans-Peter de Koning, Sanford Friedenthal,

Peter Fritzson, Nicolas F. Rouquette, and Wladimir Schamai. 2010. An overview of the SysML-Modelica
transformation specification. In Proceedings of the INCOSE International Symposium.

Christiaan J.J. Paredis and Thomas Johnson. 2008. Using OMG’s SysML to support simulation. In Proceed-
ings of the 40th Winter Simulation Conference (WSC ’08). 2350–2352.

Adrian Pop, David Akhvlediani, and Peter Fritzson. 2007. Towards unified system modeling with the Mod-
elicaML UML profile. In Proceedings of the International Workshop on Equation-Based Object-Oriented
Languages and Tools. Linköping University Electronic Press.

Axel Reichwein, Christiaan J.J. Paredis, Arquimedes Canedo, Petra Witschel, Philipp Emanuel Stelzig, An-
jelika Votintseva, and Rainer Wasgint. 2012. Maintaining consistency between system architecture and
dynamic system models with SysML4Modelica. In Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling. ACM, New York, NY, 43–48.

José L. Risco-Martı́n, Jesús M. De La Cruz, Saurabh Mittal, and Bernard P. Zeigler. 2009. eUDEVS: Exe-
cutable UML with DEVS theory of modeling and simulation. Simulation 85, 11-12 (2009), 750–777.

Nancy Roberts, David F. Andersen, Ralph M. Deal, Michael S. Garet, and William A. Shaffer. 1983. Intro-
duction to Computer Simulation: A System Dynamics Modeling Approach. Productivity Press, OR.

Stewart Robinson. 2004. Simulation: The Practice of Model Development and Use. John Wiley & Sons Ltd.,
Hoboken, NJ.

Stewart Robinson. 2008a. Conceptual modelling for simulation Part I: definition and requirements. Journal
of the Operational Research Society 59, 3 (2008), 278–290.

Stewart Robinson. 2008b. Conceptual modelling for simulation Part II: a framework for conceptual mod-
elling. Journal of the Operational Research Society 59, 3 (2008), 291–304.

Stewart Robinson. 2011. Choosing the right model: Conceptual modeling for simulation. In Proceedings of
the Winter Simulation Conference (WSC ’11). 1423–1435.

Bernhard Rumpe. 1998. A note on semantics (with an emphasis on UML). In Proceedings of the 2nd ECOOP
Workshop on Precise Behavioral Semantics. Technische Universität München, Germany.

Z:24 D. Çetinkaya, A. Verbraeck, M. D. Seck

Igor Rust, Deniz Çetinkaya, Mamadou D. Seck, and Ivo Wenzler. 2011. Business process simulation for
management consultants: a DEVS-based simplified business process modelling library. In Proceedings
of the 23rd European Modelling and Simulation Symposium.

Robert G. Sargent. 2010. Verification and validation of simulation models. In Proceedings of the Winter
Simulation Conference (WSC ’10). IEEE, Piscataway, NJ, 124–137.

Hessam S. Sarjoughian and Abbas Mahmoodi Markid. 2012. EMF-DEVS modeling. In Proceedings of the
Symposium on Theory of Modeling and Simulation: DEVS Integrative M&S Symposium. SCS.

Wladimir Schamai, Peter Fritzson, and Chris J.J. Paredis. 2013. Translation of UML state machines to
Modelica: handling semantic issues. Simulation 89, 4 (2013), 498–512.

Wladimir Schamai, Peter Fritzson, Christiaan J.J. Paredis, and Adrian Pop. 2009. Towards unified system
modeling and simulation with ModelicaML: modeling of executable behavior using graphical notations.
In Proceedings of the 7th Modelica Conference.

Wladimir Schamai, Uwe Pohlmann, Peter Fritzson, Christiaan J.J. Paredis, Philipp Helle, and Carsten Stro-
bel. 2010. Execution of UML state machines using Modelica. In Proceedings of the 3rd International
Workshop on Equation-Based Object-Oriented Modeling Languages and Tools.

Bran Selic. 2003. The pragmatics of model-driven development. IEEE Software 20, 5 (2003), 19–25.
Robert E. Shannon. 1975. Systems Simulation: The Art and Science. Prentice-Hall, Englewood Cliffs, NJ.
Robert E. Shannon. 1998. Introduction to the art and science of simulation. In Proceedings of the Winter

Simulation Conference (WSC ’98).
Gregory A. Silver, Osama Al-Haj Hassan, and John A. Miller. 2007. From domain ontologies to modeling

ontologies to executable simulation models. In Proceedings of the 39th Winter Simulation Conference
(WSC ’07). 1108–1117.

Ian Sommerville. 2007. Software Engineering (8th ed.). Pearson Education Limited, England.
Jessica W. Sun, Joseph Barjis, Alexander Verbraeck, Marijn Janssen, and Jacco Kort. 2009. Capturing com-

plex business processes interdependencies using modeling and simulation in a multi-actor environ-
ment. In Proceedings of the 5th International Workshop on Advances in Enterprise Engineering. LNBIP,
Vol. 34. Springer, 16–27.

Manos Theodorakis, Anastasia Analyti, Panos Constantopoulos, and Nicolas Spyratos. 2002. A theory of
contexts in information bases. Information Systems 27 (2002), 151–191.

Andreas Tolk, Saikou Y. Diallo, and Jose J. Padilla. 2012. Semiotics, entropy, and interoperability of simula-
tion systems: mathematical foundations of M&S standardization. In Proceedings of the Winter Simula-
tion Conference (WSC ’12).

Andreas Tolk, Saikou Y. Diallo, Jose J. Padilla, and Heber Herencia-Zapana. 2013. Reference modelling in
support of M&S: foundations and applications. Journal of Simulation 7 (2013), 69–82.

Andreas Tolk and John A. Miller. 2011. Enhancing simulation composability and interoperability using
conceptual/semantic/ontological models. Journal of Simulation 5 (2011), 133–134.

Andreas Tolk and James A. Muguira. 2004. M&S within the Model Driven Architecture. In Proceedings of
the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC).

Okan Topçu, Mehmet Adak, and Halit Oguztüzün. 2008. A metamodel for federation architectures. ACM
Transactions on Modeling and Computer Simulation 18, 3 (2008), 10:1–29.

Luc Touraille, Mamadou Kaba Traoré, and David R. C. Hill. 2011. A model-driven software environment for
modeling, simulation and analysis of complex systems. In Proceedings of the Symposium on Theory of
Modeling and Simulation: DEVS Integrative M&S Symposium. SCS, 229–237.

C. Els van Daalen, Wil A.H. Thissen, Alexander Verbraeck, and Pieter W.G. Bots. 2009. Methods for the
modeling and analysis of alternatives. In Handbook of Systems Engineering and Management (2nd ed.),
Andrew P. Sage and William B. Rouse (Eds.). John Wiley & Sons, Hoboken, NJ, Chapter 26, 1127–1169.

Durk-Jouke van der Zee, Kathy Kotiadis, Antuela A. Tako, Mike Pidd, Osman Balci, Andreas Tolk, and
Mark Elder. 2010. Panel discussion: education on conceptual modeling for simulation — challenging
the art. In Proceedings of the Winter Simulation Conference (WSC ’10).

Hans Vangheluwe, Juan de Lara, and Pieter J. Mosterman. 2002. An introduction to multi-paradigm mod-
elling and simulation. In Proceedings of the AI, Simulation and Planning in High Autonomy Systems.

Ludwig von Bertalanffy. 1968. General System Theory: Foundations, Development, Applications (revised).
George Braziller, New York, NY.

Gabriel A. Wainer. 2009. Discrete-Event Modeling and Simulation: A Practitioner’s Approach. CRC Press,
Taylor & Francis Group, Boca Raton, FL.

Received January YYYY; revised January YYYY; accepted January YYYY

