150 research outputs found

    A permutation flowshop model with time-lags and waiting time preferences of the patients

    Get PDF
    The permutation flowshop is a widely applied scheduling model. In many real-world applications of this model, a minimum and maximum time-lag must be considered between consecutive operations. We can apply this model to healthcare systems in which the minimum time-lag could be the transfer times, while the maximum time-lag could refer to the number of hours patients must wait. We have modeled a MILP and a constraint programming model and solved them using CPLEX to find exact solutions. Solution times for both methods are presented. We proposed two metaheuristic algorithms based on genetic algorithm and solved and compared them with each other. A sensitivity of analysis of how a change in minimum and maximum time-lags can impact waiting time and Cmax of the patients is performed. Results suggest that constraint programming is a more efficient method to find exact solutions and changes in the values of minimum and maximum time-lags can impact waiting times of the patients and Cmax significantly

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Production Scheduling in Integrated Steel Manufacturing

    Get PDF
    Steel manufacturing is both energy and capital intensive, and it includes multiple production stages, such as iron-making, steelmaking, and rolling. This dissertation investigates the order schedule coordination problem in a multi-stage manufacturing context. A mixed-integer linear programming model is proposed to generate operational (up to the minute) schedules for the steelmaking and rolling stages simultaneously. The proposed multi-stage scheduling model in integrated steel manufacturing can provide a broader view of the cost impact on the individual stages. It also extends the current order scheduling literature in steel manufacturing from a single-stage focus to the coordinated multi-stage focus. Experiments are introduced to study the impact of problem size (number of order batches), order due time and demand pattern on solution performance. Preliminary results from small data instances are reported. A novel heuristic algorithm, Wind Driven Algorithm (WDO), is explained in detail, and numerical parameter study is presented. Another well-known and effective heuristic approach based on Particle Swarm Optimization (PSO) is used as a benchmark for performance comparison. Both algorithms are implemented to solve the scheduling model. Results show that WDO outperforms PSO for the proposed model on solving large sample data instances. Novel contributions and future research areas are highlighted in the conclusion

    Multi-period maximal covering location problem with capacitated facilities and modules for natural disaster relief services

    Get PDF
    The paper aims to study a multi-period maximal covering location problem with the configuration of different types of facilities, as an extension of the classical maximal covering location problem (MCLP). The proposed model can have applications such as locating disaster relief facilities, hospitals, and chain supermarkets. The facilities are supposed to be comprised of various units, called the modules. The modules have different sizes and can transfer between facilities during the planning horizon according to demand variation. Both the facilities and modules are capacitated as a real-life fact. To solve the problem, two upper bounds-(LR1) and (LR2)-and Lagrangian decomposition (LD) are developed. Two lower bounds are computed from feasible solutions obtained from (LR1), (LR2), and (LD) and a novel heuristic algorithm. The results demonstrate that the LD method combined with the lower bound obtained from the developed heuristic method (LD-HLB) shows better performance and is preferred to solve both small- and large-scale problems in terms of bound tightness and efficiency especially for solving large-scale problems. The upper bounds and lower bounds generated by the solution procedures can be used as the profit approximation by the managerial executives in their decision-making process

    The dynamic, resource-constrained shortest path problem on an acyclic graph with application in column generation and literature review on sequence-dependent scheduling

    Get PDF
    This dissertation discusses two independent topics: a resource-constrained shortest-path problem (RCSP) and a literature review on scheduling problems involving sequence-dependent setup (SDS) times (costs). RCSP is often used as a subproblem in column generation because it can be used to solve many practical problems. This dissertation studies RCSP with multiple resource constraints on an acyclic graph, because many applications involve this configuration, especially in column genetation formulations. In particular, this research focuses on a dynamic RCSP since, as a subproblem in column generation, objective function coefficients are updated using new values of dual variables at each iteration. This dissertation proposes a pseudo-polynomial solution method for solving the dynamic RCSP by exploiting the special structure of an acyclic graph with the goal of effectively reoptimizing RCSP in the context of column generation. This method uses a one-time âÂÂpreliminaryâ phase to transform RCSP into an unconstrained shortest path problem (SPP) and then solves the resulting SPP after new values of dual variables are used to update objective function coefficients (i.e., reduced costs) at each iteration. Network reduction techniques are considered to remove some nodes and/or arcs permanently in the preliminary phase. Specified techniques are explored to reoptimize when only several coefficients change and for dealing with forbidden and prescribed arcs in the context of a column generation/branch-and-bound approach. As a benchmark method, a label-setting algorithm is also proposed. Computational tests are designed to show the effectiveness of the proposed algorithms and procedures. This dissertation also gives a literature review related to the class of scheduling problems that involve SDS times (costs), an important consideration in many practical applications. It focuses on papers published within the last decade, addressing a variety of machine configurations - single machine, parallel machine, flow shop, and job shop - reviewing both optimizing and heuristic solution methods in each category. Since lot-sizing is so intimately related to scheduling, this dissertation reviews work that integrates these issues in relationship to each configuration. This dissertation provides a perspective of this line of research, gives conclusions, and discusses fertile research opportunities posed by this class of scheduling problems. since, as a subproblem in column generation, objective function coefficients are updated using new values of dual variables at each iteration. This dissertation proposes a pseudo-polynomial solution method for solving the dynamic RCSP by exploiting the special structure of an acyclic graph with the goal of effectively reoptimizing RCSP in the context of column generation. This method uses a one-tim

    Matheuristics:survey and synthesis

    Get PDF
    In integer programming and combinatorial optimisation, people use the term matheuristics to refer to methods that are heuristic in nature, but draw on concepts from the literature on exact methods. We survey the literature on this topic, with a particular emphasis on matheuristics that yield both primal and dual bounds (i.e., upper and lower bounds in the case of a minimisation problem). We also make some comments about possible future developments

    Coil batching to improve productivity and energy utilization in steel production

    Get PDF
    This paper investigates a practical batching decision problem that arises in the batch annealing operations in the cold rolling stage of steel production faced by most large iron and steel companies in the world. The problem is to select steel coils from a set of waiting coils to form batches to be annealed in available batch annealing furnaces and choose a median coil for each furnace. The objective is to maximize the total reward of the selected coils less the total coil'coil and coil'furnace mismatching cost. For a special case of the problem that arises frequently in practical settings where the coils are all similar and there is only one type of furnace available, we develop a polynomial-time dynamic programming algorithm to obtain an optimal solution. For the general case of the problem, which is strongly NP-hard, an exact branch-and-price-and-cut solution algorithm is developed using a column and row generation framework. A variable reduction strategy is also proposed to accelerate the algorithm. The algorithm is capable of solving medium-size instances to optimality within a reasonable computation time. In addition, a tabu search heuristic is proposed for solving larger instances. Three simple search neighborhoods, as well as a sophisticated variable-depth neighborhood, are developed. This heuristic can generate near-optimal solutions for large instances within a short computation time. Using both randomly generated and real-world production data sets, we show that our algorithms are superior to the typical rule-based planning approach used by many steel plants. A decision support system that embeds our algorithms was developed and implemented at Baosteel to replace their rule-based planning method. The use of the system brings significant benefits to Baosteel, including an annual net profit increase of at least 1.76 million U.S. dollars and a large reduction of standard coal consumption and carbon dioxide emissions
    corecore