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Abstract: This paper investigates a practical batching decision problem that arises in the batch annealing 

operations in the cold rolling stage of steel production faced by most large iron and steel companies in the 

world. The problem is to select steel coils from a set of waiting coils to form batches to be annealed in 

available batch annealing furnaces and choose a median coil for each furnace. The objective is to maximize 

the total reward of the selected coils less the total coil-coil and coil-furnace mismatching cost. For a special 

case of the problem that arises frequently in practical settings where the coils are all similar and there is only 

one type of furnace available, we develop a polynomial-time dynamic programming algorithm to obtain an 

optimal solution. For the general case of the problem which is strongly NP-hard, an exact 

branch-and-price-and-cut solution algorithm is developed using a column and row generation framework. A 

variable reduction strategy is also proposed to accelerate the algorithm. The algorithm is capable of solving 

medium size instances to optimality within a reasonable computation time. In addition, a tabu search heuristic 

is proposed for solving larger instances. Three simple search neighborhoods as well as a sophisticated variable 

depth neighborhood are developed. This heuristic can generate near-optimal solutions for large instances 

within a short computation time.  

Using both randomly generated and real-world production data sets, it is shown that our algorithms are 

superior to a typical rule-based planning approach used by many steel plants. A decision support system that 

embeds our algorithms was developed and implemented at Baosteel to replace their rule-based planning 

method. The use of the system brings significant benefits to Baosteel, including an annual net profit increase 

of at least 1.76 million US Dollars, and a large reduction of standard coal consumption and carbon dioxide 

emissions.  
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1. Introduction 

The steel industry has been one of the pillar industries in the world economy and is a powerful symbol of 

industrialization, urbanization and economic development, leading the development of other industries such as 

construction, shipbuilding, machinery, home appliances, and automotive. However, globally, the steel industry 

is also one of the largest industrial energy consumers and one of the largest contributors to greenhouse gas and 

air pollution. Consequently, for most steel companies, improving energy utilization and reducing 

environmental impact become equally important as improving productivity and profitability.  

Iron and steel production is a complicated multistage process that mainly consists of iron-making, 

steel-making, hot rolling and cold rolling stages, where batch processing is the most commonly used 

production mode. A detailed description of various production processes in integrated steel production can be 

found in Tang et al. (2001). Cold rolled products are of the highest value-added among all steel products. 

Therefore, cold rolled products are a key to increasing profitability. The global annual output of cold rolled 

products accounts for about 40 percent of the total steel product output. The production process of cold rolled 

products consists of pickling, rolling, batch annealing, temper rolling, and some post-treatment steps. Batch 

annealing is a key operation which can improve the mechanical properties of cold rolled products. During the 

annealing operation, steel coils are first heated and soaked in a high temperature (i.e. 600-1200°C), and then 

cooled to room temperature. This can change the structure of crystal grain of steel coils and hence improve 

their thermodynamic stability and guarantee their performance. However, annealing is a main 

energy-consuming operation in the cold rolling stage; it consumes a huge amount of energy and resources, 

such as water, electricity, coal gas and protective gas. Thus, the batch annealing process is one of the 

bottlenecks at most steel plants, and improving its efficiency becomes crucial to increase a steel company’s 

profitability and energy utilization. 

Steel coils waiting to be annealed in annealing furnaces generally have different sizes and physical 

characteristics according to specific requirements of customer orders. The structure of a coil and that of an 

annealing furnace are shown in Figures 1 and 2, respectively. Each furnace consists of a base for holding the 

coils to be annealed and two layers of covers – inner cover and outer cover. Coils to be annealed in a furnace 

are stacked one on top of another, with a convector plate underneath each coil to help the heat reach inside the 

coils. The height of a convector plate in a steel plant for any type of furnace is always the same (70 mm). 

There are four types of protective gas atmospheres used within a furnace: nitrogen hydrogen (NH), pure 

hydrogen (HH), pure nitrogen (NN) and pure argon (AR). By both gas atmosphere and the inner-diameter of 

the inner cover, batch annealing furnaces can be classified into several different types, e.g. NH-small, 

NH-medium, NH-large, HH-small, HH-medium, HH-large, and so on.  
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   Figure 1. The structure of a coil           Figure 2. The structure of a batch annealing furnace  
     

The batch annealing process can be described as follows. After a batch of coils is loaded onto a furnace 

and protective gas atmosphere is filled in to prevent oxidation, a series of heating and cooling operations are 

executed following a temperature control curve of the furnace. For a loaded furnace, the temperature control 

curve represents the temperature of the gas atmosphere in the furnace over time. Although each coil has its 

own annealing curve which the annealing process should follow for annealing this coil in order to guarantee 

its highest quality, the temperature of a furnace can only be set following one control curve for a batch of coils. 

Ideally, each loaded furnace should use a temperature control curve that can maximize the overall quality of 

the coils in the furnace at minimum energy consumption. However, it would require a series of technological 

experiments and tests involving a lot of time and cost in order to identify such an optimal temperature control 

curve. Therefore, it is a common practice that one coil is selected from the batch as the median coil whose 

annealing curve is used to set the temperature control curve of the furnace. The total time needed for 

annealing a batch of coils varies from 48 to 76 hours, depending on the characteristics of the median coil in 

the batch.  

In most steel plants, planners make coil batching decisions on a shift-by-shift basis such that the 

decisions in each 8-hour shift are made at the end of the previous shift by considering all furnaces that become 

available in the planning shift and all coils that are waiting to be annealed at the time of decision. In general, 

the number of coils waiting to be annealed prior to the start of a shift can vary from tens to hundreds, 

depending on available production capacity, market demand, and the schedule of batch annealing operations. 

Market demand for batch annealed coils can vary significantly from month to month. During low demand 

months when the number of coils to be annealed in each shift is low, some available furnaces may be shut 

down intentionally to save energy consumption and to maximize average charging weight of a furnace. Since 

batch annealing takes a long time to complete, the furnaces that begin annealing a batch of coils in a shift are 

not available until several shifts later. The number of available furnaces in a shift is usually about one tenth of 

the number of coils to be annealed. In most cases, the available furnaces are not enough to cover all the coils 

currently waiting to be annealed such that some coils may have to wait for a future shift to be annealed.  

The batching decision problem can be generally described as follows. A set of coils with different 
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physical characteristics are to be annealed using a number of available empty furnaces. There are two sets of 

decisions to make. The first is to select a subset of coils to form batches, each to be loaded into an available 

empty furnace. The second is to choose one of the coils in each furnace as a median coil based on which a 

temperature control curve is set for the furnace. In making these decisions, planners are faced with many 

physical constraints and business rules (described in Section 3.1). Planners usually consider two objectives. 

Their first objective is maximizing the total reward of the coils covered, where the reward of a coil is 

determined by several factors including its weight, due date, and its relationship with other coils. The total 

reward of the coils annealed in a furnace is an aggregate performance measure that takes into account the 

charging weight and customer service, where the charging weight of a furnace is defined as the total weight of 

coils annealed in the furnace. In practice, the total energy consumption for annealing a batch of coils in a 

furnace is independent of the total charging weight of the furnace. By maximizing the total reward, the 

charging weight and energy utilization of a furnace are also maximized in most cases. Their second objective 

is minimizing the total cost due to the waste of energy and impact on coil quality caused by mismatching of 

coils in the same batch and mismatching between furnaces and the coils inside. In practice, the differences of 

physical characteristics between the median coil and the other coils are used to measure the level of 

mismatching between coils in the same batch. Both rewards and mismatching costs are measured in monetary 

terms at Baosteel and hence can be considered together.   

As discussed earlier, following the practice by most steel plants including Baosteel, the batching decision 

problem defined above is for one shift only. Theoretically, a better solution could be obtained if multiple shifts 

are considered jointly. However, if multiple shifts are considered together, one would need to forecast future 

coil arrivals prior to each of the future shifts involved, including the specific types of coils to arrive, the 

quantity of each type and the time they will arrive. The benefit from a multi-shift model will depend on the 

accuracy of the forecast of future coil arrivals, especially due to the combinatorial nature of the problem. 

Unfortunately, in a complex context like Baosteel, there will be forecast errors due to the natural variability in 

the upstream production processes prior to batch annealing. Hence, we choose to use the single-shift model as 

defined earlier, as it is compatible with Baosteel’s current practice, and, as shown later in the paper, using such 

a model already provides substantial opportunity for improvement. We believe that in some practical settings, 

e.g., when there are many urgent coils waiting to be annealed, using the single-shift model can already 

generate near-optimal solutions for the multi-shift problem. In the future, if planners can gather accurate 

information about coils to arrive in subsequent shifts, the problem could be extended to include multiple shifts 

to generate potentially better batching decisions.  

In most steel plants, coil batching decisions are either made manually by planners based on their 

experience and intuition or by computerized decision support systems that mainly rely on greedy rules that 
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consider coils batch-by-batch instead of jointly (described in Section 7.1). Although planners may have 

extensive experience, it is very hard to construct effective batching plans manually due to the complex 

constraints involved. Similarly, it can be expected that greedy rules generally do not work well for such a 

complex problem which, as will be seen later, is a strongly NP-hard combinatorial optimization problem.  

In this paper, we formulate the batching decision problem as an optimization problem with a single 

objective function which is the total reward of the selected coils minus the total mismatching cost. We first 

propose a polynomial-time dynamic programming algorithm to solve a special case of the problem that arises 

frequently in practical settings. For the general case of the problem, we develop a branch-and-price-and-cut 

algorithm to obtain optimal solutions for medium size problems and a tabu search heuristic to obtain 

near-optimal solutions for large scale problems. We have developed a batching decision support system for 

Baosteel that contains all of our algorithms. The use of this system, as benchmarked against their previous 

solution approach, has brought significant benefits to Baosteel.  

The rest of this paper is structured as follows. Section 2 reviews related literature. Section 3 defines the 

batching decision problem formly and formulates it as a binary integer program. Section 4 describes the 

dynamic programming algorithm for the special case of the problem. Sections 5 and 6 describe the 

branch-and-price-and-cut exact solution algorithm and the tabu search heuristic for the general problem, 

respectively. Section 7 reports the computational results of the developed algorithms. Section 8 estimates the 

benefits brought to Baosteel by this research. Finally we conclude the paper in Section 9. 

2. Related Literature and Problem Complexity 

Batching problems arising in other industries that we are aware of, including semiconductor and chemical 

industries (e.g., Lee et al. 1992, Prasad and Maravelias 2008), are very different from the batching problem 

we study in this paper because of different technological and management constraints involved in different 

industries. Therefore, our literature review is focused on the steel industry. Optimization tools have been 

applied to a large variety of decision problems in the steel industry (Dutta and Fourer 2001). Tactical and 

operational planning problems are a subset of such problems. These problems can generally be classified as 

scheduling or batching problems. Scheduling is concerned with assignment of jobs to machines and 

sequencing and timing of jobs. Batching is concerned with grouping jobs into batches for joint processing.  

To the best of our knowledge, all the batching related problems in the iron and steel industry reported in 

the literature arise from operations other than batch annealing, and hence have a different structure from the 

problem we study in this paper. Kalagnanam et al. (2000) study a surplus inventory matching problem arising 

in operations planning in the process industry. In the case of a steel plant, this problem is to assign surplus 

slabs to orders with the objective of maximizing the total weight of surplus slabs used. Balakrishnan and 
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Geunes (2003) study a flexible demand assignment problem that is to decide which slabs to be selected and 

processed into plates, which plates to be assigned to each selected slab, and what finished weight to produce 

in the stainless steel plate production process. Chu and Antonio (1999) address a real-life uni-dimensional 

cutting stock problem where given input rods need to be cut into output rods ordered by customers. The above 

two assignment problems and cutting stock problem can be viewed as batching problems because they involve 

grouping the slabs (or plates, output rods) into batches and assigning them to orders (or slabs, input rods). In 

these problems, there is no compatibility issue between the slabs, plates or output rods (i.e., any slabs, plates, 

or output rods can be assigned to the same batch), and there is no such concept as median coils in our 

problem.  

Tang and Jiang (2009) investigate a charge batching problem arising from the steel making stage. The 

problem is to batch primary order requirements into various production charges subject to some processing 

constraints and composite batch conditions. Naphade et al. (2001) study a batching and scheduling problem 

for the melting process in steelmaking which is to select ingots to be processed and decide how to batch the 

selected ingots for melting in a given horizon. Tang and Wang (2008) consider an order batching problem in 

the steelmaking process and a charge batching problem in the continuous casting process. The order (charge) 

batching problem is to decide how to consolidate orders into charges (casts) considering the compatibility of 

any two orders (charges) in the same batch. Tang et al. (2014) investigate a joint charge batching and casting 

width selection problem arising in the continuous casting operation at Baosteel. Tang et al. (2011) study a 

batching problem in the melting process to group orders into batches and specify the size and the grade of 

slabs for each batched order. In all the above reviewed batching problems, all batches are processed by 

identical equipment and hence there is no compatibility issue between the items and the equipment. 

Furthermore, in these problems there is also no such concept as median coils in our problem.  

Many studies on scheduling problems that arise in steel production have also been reported in the 

literature. Since scheduling is not the focus of this paper, we only briefly review some representative papers 

below. Vonderembse and Haessler (1982) study a ripper scheduling problem resulting from the casting stage 

of steel production. Tang et al. (2000) study a hot rolling scheduling problem. Möhring et al. (2003) 

investigate a resource-constrained project scheduling problem which has a variety of applications in the steel 

industry. König et al. (2007) study a stacking problem related to storage planning of steel slabs in steel 

production. Höhn et al. (2012) study a no-wait flowshop scheduling problem that arises from the continuous 

casting operations in steel production. Höhn et al. (2011) consider a scheduling problem for color coating 

operations in the cold rolling stage. Moon and Hrymak (1999) investigate a short-term scheduling problem for 

the batch annealing process in the cold rolling stage of steel production. Tang et al. (2009) study a scheduling 

problem in batch annealing operations in the cold rolling stage which is to assign inner covers and outer 
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covers to given batches and schedule a single crane for minimizing the completion time of the last batch of 

coils. Although the problems studied by Moon and Hrymak (1999) and Tang et al. (2009) are both related to 

batch annealing operations, the batching of steel coils is a known input in their scheduling problems.  

As described earlier, in our problem, there are two sets of decisions: assigning coils to furnaces and 

selecting a median coil for each furnace, and there are two parts in the objective: the total reward of coils 

assigned to a given number of furnaces and the total cost of mismatching between the coils and the furnaces 

and between the median coil and the other coils in each furnace. With the only consideration of the first part of 

the objective and one set of the decisions (coil assignment), our problem can be viewed as the multiple 

knapsack problem if we view the different types of furnaces in our problem as different types of knapsacks in 

the latter problem. The multiple knapsack problem is known to be strongly NP-hard (Martello and Toth 1990). 

Hence our problem is also strongly NP-hard. There are several existing studies on the multiple knapsack 

problem. Chekuri and Khanna (2006) prove that the multiple knapsack problem does not admit an FPTAS 

even for the case with two knapsacks and give a polynomial time approximation scheme for the multiple 

knapsack problem. Dawande et al. (2000) investigate the multiple knapsack problem with assignment 

restrictions where the objective is to maximize assigned weight and minimize utilized capacity.  

With the only consideration of the first part of the objective and one set of decisions (selection of median 

coils), our problem can be viewed as the p-median problem with capacity constraints if we view the median 

coils in our problem as the medians in the latter problem. The p-median problem is known to be NP-hard 

(Megiddo and Supowit 1984). In fact, it is shown (Lin and Vitter 1992) that there is no polynomial-time 

algorithm with a constant worst-case bound for the p-median problem. Since our problem is more general, this 

result also applies to our problem.  

Therefore, our problem can be seen as a combination of the multiple knapsack problem and the p-median 

problem, and inherits the complexity of both problems. Different from the multiple knapsack problem, the 

decision of assigning a coil to a furnace is not only decided by the reward of the coil, but also by the selection 

of the median coil in that furnace. Different from the p-median problem, both clustering and assignment of 

clusters to empty furnaces are considered jointly in our problem. Because of these differences, no existing 

solution algorithms for the multiple knapsack problem or p-median problem can be applied to our problem.  

3. Problem Description and Formulation 

3.1. Constraints and Requirements 

To ensure that each coil in a batch receives the level of annealing required, coils in the same batch must have 

the same or similar characteristics with the median coil and the annealing of the batch must be done in an 

appropriate type of furnace. These considerations can be described as the following constraints and 
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requirements, which to our knowledge are adopted by many steel plants. 

3.1.1 Equipment Constraints 

The outer-diameter of each coil in the batch must be smaller than the inner-diameter of the inner cover of the 

furnace where the batch is annealed. The total height of a batch, which is equal to the sum of the total width of 

all the coils and the total height of all the convector plates in the batch, must not exceed the height of the inner 

cover of the furnace. In practice, the designed weight capacity of a furnace is always large enough to hold any 

number of coils as long as the height capacity is not violated. Therefore, there is no explicit weight capacity 

constraint in the problem. 

3.1.2 Matching Constraints and Requirements 

To maximize the quality of annealed coils, only compatible coils can be annealed in the same furnace. 

Whether two coils are compatible or not is judged by the relevant characteristics of the coils including 

annealing curve, thickness, outer-diameter, surface flatness and steel grade. For each coil in a batch, if the 

relevant characteristics of the coil are not identical to but compatible with those of the median coil in the batch, 

a cost is incurred due to the mismatching between the characteristics of these two coils.  

Besides the above described matching requirements between coils, there are also matching requirements 

between coils and the protective gas atmosphere in annealing furnaces. According to its annealing curve index, 

a coil may have to be processed in a furnace with a particular type of protective gas or with one of several 

types of protective gas but with some types being more appropriate than others. Mismatching between a coil 

and a furnace is discouraged through a penalty which is assigned based on the annealing curve index of the 

coil and the protective gas atmosphere of the furnace. 

 3.1.3 Management Considerations 

In addition to the technical requirements described above, planners also need to consider management issues 

concerning customers and internal logistics, including due dates, relationship between coils, and contract 

accumulation times and storage times of coils. From these factors, we can judge if a coil should be processed 

as quickly as possible. We quantify these management issues and represent them collectively using a priority 

index (PRI). Coils with a larger value of PRI are given a higher priority for batching. In Appendix A, we 

describe how the PRI values and the values of some other parameters are set at Baosteel.  

3.2. Problem Formulation 

In this subsection, we define mathematical notation and formulate the batching decision problem as a 0-1 

integer programming model. 

Parameters: 
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N Set of n coils waiting to be annealed, N = {1, 2, …, n}; 
P Set of all available annealing furnaces; 
Oj Set of coils which can be loaded into furnace j following the equipment and matching 

constraints described in Section 3.1 ( j P jO N∈ = ); 

Rk Set of coils which can be loaded together with coil k following the matching constraints 
described in Section 3.1; 

Qi Set of available annealing furnaces where coil i can be loaded, Qi = {j ∈ P | i ∈ Oj};  

H Height of the inner cover of a furnace;  

gi Weight of coil i; 

hi Sum of the width of coil i and the height of a convector plate; 

fi PRI value of coil i, which is determined by its due date, relationship with other coils, contract 
accumulation times and storage times, as described in Section 3.1.3;  

 Fi Reward for covering coil i in the batching plan, which is the weighted sum of the PRI value 
and the weight of the coil, i.e., ρfi+(1-ρ)gi, where 0 < ρ < 1 is the weighting of PRI factor;  

C1ij Mismatching cost between coil i and furnace j, representing the mismatching between the 
annealing curve index of coil i and the type of protective gas atmosphere in furnace j, as 
described in Section 3.1.2; 

C2ik Mismatching cost between coil i and coil k, representing the mismatching of these coils in 
terms of annealing curve index, thickness, outer-diameter, surface flatness, and steel grade, as 
described in Section 3.1.2. 

Decision Variables: 

Xij = 1 if coil i∈N is loaded into annealing furnace j∈Qi, and 0 otherwise 

Yikj = 1 if coil i∈N is loaded into annealing furnace j∈Qi whose median is coil k∈Ri, and 0 otherwise  

The batching decision problem can then be formulated as an integer programming model below. 

 
(BDP) 
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{0,1}ijX ∈  for j∈P, i∈Oj (7) 

{0,1}ikjY ∈  for j∈P, k∈Oj, i∈ Oj ∩ Rk (8) 

The objective function (1) is the total reward minus the total mismatching cost. Constraint (2) ensures 

that each coil can be loaded into at most one furnace. Constraint (3) is the height capacity constraint for each 

furnace. Constraint (4) requires each furnace to have exactly one median coil. Constraints (5) and (6) mean 

that if a coil is loaded into a furnace, it must be in the same batch as the median coil of the furnace. 

Constraints (7) and (8) set the binary integer requirements for the variables.  

For a large problem instance with 200 coils and 20 furnaces, this formulation contains more than 100,000 

binary integer variables and 40,000 constraints. A commercial IP solver such as CPLEX cannot deal with such 

a large scale problem due to memory overflow. For a medium problem instance with 100 coils and 10 

furnaces, as will be seen later when we report computational results, a commercial IP solver cannot obtain an 

optimal solution in two hours. However, in practice, there is a time window of less than one hour at the end of 

a shift within which the batching decisions for the next shift must be made. This motivates us to design 

specialized solution methods to solve the problem more efficiently. 

For ease of presentation in the sections that follow, we define the following concept: a feasible batching 

scenario for a furnace is a subset of coils that can be loaded into the furnace satisfying all the constraints 

discussed earlier, with one of the coils specified as the median coil. Mathematically, a feasible batching 

scenario for furnace j is the part of solution to the formulation BDP that specifies the values of all the 

variables related to furnace j, i.e., Xij and Yikj variables, for all i and k. 

4. A Frequently Occurring Special Case  

Some small to medium steel plants (e.g. China’s Tiantie and Benxi Steel Companies) only produce annealed 

coils with a similar dimension (i.e., width, thickness, and steel grade) using only one type of furnace. 

Consequently, considering the height capacity of annealing furnaces, the maximum number of coils which can 

be assigned to each furnace is fixed, i.e. H/hi = H/hk for any two coils i and k to be annealed. Let r be the 

maximum number of coils which can be assigned to each furnace. 

Since all the coils will have to be annealed in a single type of furnace, the mismatching cost 

between a coil and any furnace is fixed. Consequently, we can ignore all mismatching costs between the 

coils and the furnaces. In practice, coils with similar steel grades always have similar required annealing 

processes, hence any coil can be batched into the same furnace. Given the small differences in width, 

thickness, and steel grade, mismatching between coils is mostly represented by mismatching associated 

with the required heat consumption during the annealing process. Let Ti denote the amount of heat 
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consumption by coil i during the annealing process. Then the mismatching cost between two coils i and k 

can be calculated as C2ik=q |Ti-Tk|, where q is a constant.  

For a small to medium steel plant, it is often the case that its available annealing capacity in a shift 

is not enough to cover all the coils from a single customer order. For ease of order management, the 

plant often dedicates multiple consecutive shifts to the coils from each order. Consequently, the plant is 

only concerned with the coils from a single order in some shifts. Therefore, we can assume that all the 

coils to be considered in a shift have the same due date, contract accumulation time and storage time. 

Thus, by the definition of priority value of a coil fi (given in Section 3.2), the coils from the same order 

usually have the same priority value. Furthermore, coils with a higher weight consume more heat, and 

vice versa, i.e., given two coils i and k, Ti ≥ Tk if and only if gi ≥ gk. Recall that the reward of a coil i is 

defined as Fi = ρfi+(1-ρ)gi. Therefore, it is practical to assume that the reward values Fi and Fk of any 

two coils i and k to be considered in a shift are agreeable with their required heat consumption, i.e., if Ti 

≥ Tk, then Fi ≥ Fk.  

Based on the above discussions, we consider a special case of the batching decision problem as 

follows. Given n coils satisfying the agreeable condition: if Ti ≥ Tk, then Fi ≥ Fk for any two coils i and k, 

select a subset of them to be loaded to p (p=|P|) given identical furnaces with a capacity of r coils each, 

so as to maximize the total reward minus the total mismatching cost between the selected coils. 

We have the following optimality property for this special case of the problem.  

LEMMA 1: For any given batching scenario for a furnace in an optimal solution, reindex the coils in the 

furnace as [1], [2], …, [q], such that T[1] ≥T[2] ≥ …≥T[q], where q ≤ r is the number of coils in the furnace. The 

median coil for this furnace must be coil [l], where l = q/2. 

PROOF: See Appendix B. 

In the rest of this section, all the coils are re-indexed such that T1 ≥ T2 ≥ … ≥ Tn, and F1 ≥ F2 ≥ … ≥ 

Fn. In any given batching scenario with q coils, if we sequence the coils in the increasing order of their 

indices, then by Lemma 1, the median coil is the l-th coil in the sequence, where l = q/2.  

For ease of presentation, in a given batching scenario, we refer to coils with indices smaller (larger) 

than that of the median coil as left coils (right coils). Given two sets of coils, we say that the index 

ranges of the two sets are non-overlapping if the indices of the coils in one set are all greater or all 

smaller than the index of any coil in the other set.  

THEOREM 1: There exists an optimal solution where the index range of all the coils assigned to any 

furnace is non-overlapping with that of all the coils assigned to any other furnace. 

PROOF: See Appendix B.  
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By Theorem 1, we can consider the coils in increasing order of their indices and try to add them one 

by one to furnaces such that if a coil is considered but not added to the current furnace, then this coil is 

skipped and will never be considered again. Based on this idea, we propose a dynamic programming 

algorithm to solve the special case of the problem optimally.    

Define f (j, x, q, u) to be the maximum objective value of a partial solution where (i) the first j coils 

have been considered (each is either added to a furnace or not); (ii) x furnaces have been used; (iii) u 

coils have been assigned to the current furnace (which is the x-th furnace); and (iv) q coils will finally be 

loaded into the current furnace. Define G(j, q, u) to be the increase in objective value when coil j is 

assigned to a furnace which contains u coils before coil j is added and will have q coils in the end. 

DP Algorithm: 

Initial condition: f(0, 0, 0, 0) = 0. 

Recursive relations: For j = 1, …, n, x = 1, …, p, q = 1, …, r and u = 1, …, q:  

{ }
{ }

max ( 1, , , ),   max{ ( 1, 1, , ) |1 } ( , ,0) ,   if 1 
( , , , )

max ( 1, , , ),   ( 1, , , 1) ( , , 1) ,   if 1                

 − − − ≤ ≤ + == 
− − − + − >

f j x q u f j x y y y r G j q u
f j x q u

f j x q u f j x q u G j q u u

 
where 

,    if / 2

( , , ) ,    if / 2

,   if  is odd, and / 2

j j

j j

j

F T u q

G j q u F T u q

F q u q

q

q

 + ≤   
= − >    
 =      

An optimal solution is found by calculating max{f(n, x, u, u) | 1 ≤ x ≤ p, 1 ≤ u ≤ r}. 

The DP considers two cases, u =1 or u > 1, in calculating the value functions. In both cases, there are two 

ways of assigning coil j: it is either not assigned to any furnace, or assigned to the current furnace. In the 

former case, the objective value of the current state f(j, x, q, u) remains the same as f(j-1, x, q, u). In the latter 

case, coil j contributes G(j, q, u-1) to the objective value f(j, x, q, u). We note that when u =1, the current 

furnace is a new furnace. In this case, if coil j is added to this new furnace, then the previous state that leads to 

the current state (j, x, q, u) must be in the form (j-1, x-1, y, y), for some y that maximizes f(j-1, x-1, y, y).  

THEOREM 2: The above DP algorithm finds an optimal solution for the special case of the problem in 

O(npr2) time. 

PROOF: See Appendix B. 

5. Branch-and-Price-and-Cut Algorithm 

We first reformulate the integer programming formulation BDP given in Section 3.2 for the general problem 

as a set-packing model in Section 5.1. We then propose a branch-and-price-and-cut solution algorithm to solve 

medium-size problem instances to optimality. The structure of the algorithm is the same as most 
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branch-and-bound algorithms for integer programming problems where each branch-and-bound node (B&B 

node) is the LP relaxation of the original IP problem with additional constraints imposed by the branching 

rules used (Nemhauser and Wolsey 1988). We develop a combined column and row generation approach in 

Section 5.2 for solving the LP relaxation of the problem at each B&B node. This approach uses a column 

generation procedure with valid inequalities added into the LP relaxation in many iterations. A variable 

reduction strategy is proposed to prevent the generation of too many columns and, hence, accelerate the 

algorithm. Finally, in Section 5.3, we develop a layered branching strategy to obtain an optimal integer 

solution in the proposed branch and bound framework.  

5.1. Reformulation 

Let m be the number of different furnace types, where the furnaces of the same type are identical. Let pj be the 
number of available furnaces of type j∈{1, …, m}. We define Sj as the set of all feasible batching scenarios 

for a furnace of type j, and for each batching scenario s ∈ Sj, define s
jc  to be its net reward value (total 

reward of the coils in it minus total coil-coil and coil-furnace mismatching cost) and s
ija  to be 1 if coil i is 

contained in batching scenario s and 0 otherwise. Define a decision variable s
jλ  to be 1 if batching scenario 

s∈Sj is selected and 0, otherwise. The problem BDP can be reformulated as the following set packing model: 

(SP-BDP)   Max
1 j

m
s s
j j

j s S
Z c

= ∈

= ∑ ∑ λ           (9) 

Subject to 

j

s
j j

s S
pλ

∈

≤∑  for j=1, …, m (10) 

1
1

j

m
s s
ij j

j s S
a

= ∈

≤∑ ∑ λ  for i=1, …, n (11) 

{0,1}s
j ∈λ  for s∈Sj , j=1, …, m (12) 

Constraint (10) requires that at most pj feasible batching scenarios are assigned to furnaces of type j. 

Since in our problem there are more coils to be considered than the total capacity of the available furnaces, in 

an optimal solution, this constraint will be binding. We use inequality for this constraint instead of equality to 

make the column generation process more stable. Constraint (11) corresponds to constraint (2) ensuring that 

each coil can be assigned to at most one furnace. Let LSP-BDP denote the linear programming (LP) relaxation 

of SP-BDP. Then the solution of LSP-BDP provides an upper bound for SP-BDP.  

To strengthen the LP relaxation, we add some valid inequalities to this formulation as follows. We say a 

coil i dominates another coil k if all of the following conditions are satisfied: (1) the mismatching cost 

between coil i and coil k is zero (i.e., these two coils have the same annealing curve, thickness, and 

outer-diameter), (2) the width of coil i is no more than that of coil k, (3) the reward value of i is larger than 
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that of coil k (i.e., Fi > Fk), or the reward value of i is equal to that of k, but i > k. By this definition, it can be 

seen that if coil i dominates coil k, then coil i should be given a higher priority than coil k when selecting coils 

to form batches (i.e., if coil k is selected, then coil i should be selected too). For each coil i, define the 

domination set Di to be the set of coils dominated by coil i. Let ND be the set of coils with a non-empty 

domination set.  

We construct a directed graph G(ND) to represent the domination relations between all possible pairs of 

coils as follows. For each pair of coils (i, j), where i∈ND and j∈Di, we create a vertex i and a vertex j if they 

have not been created yet, and create a directed arc from vertex i to vertex j. Clearly, the resulting graph is a 

directed acyclic graph which is either a connected graph or a disconnected graph consisting of multiple 

disjoint subgraphs each of which is connected. We replace the entire graph G(ND) if it is connected or each 

connected subgraph of G(ND) by its unique transitive reduction (e.g. Aho et al. 1972). The transitive reduction 

Gr of a given directed acyclic graph G contains the same vertices as in G but a minimum subset of arcs in G 

such that there is a directed path from vertex i to vertex j in G if and only if there is a directed path from i to j 

in Gr. The resulting graph, denoted as Gr(ND), has fewer arcs than the original graph G(ND), but is sufficient 

for us to describe all the valid inequalities implied by the domination relations between the coils.  

We add the following inequalities implied by the domination relations of the coils to LSP-BDP: 

1 1j j

m m
s s s s
uj j vj j

j s S j s S
a a

= ∈ = ∈

≥∑ ∑ ∑ ∑λ λ  for each directed arc (u, v)∈Gr(ND)              (13) 

Using the reduced graph Gr(ND) instead of G(ND) prevents the other inequalities that are implied by the 

ones included in (13) from being included and hence removes some redundancies. Our computational 

experiment shows that for the problems with 100 coils we tested, on average, the reduced graph Gr(ND) has 

about a dozen arcs (i.e., there are about a dozen inequalities in (13)).  

Due to the huge number of feasible batching scenarios, it would be impractical to enumerate all of them 

in solving the LP relaxation problem LSP-BDP. Therefore, a column generation technique is applied to solve 

LSP-BDP by solving a series of smaller problems that only include a limited number of feasible batching 

scenarios. Such a problem with only a limited number of feasible batching scenarios is called a restricted LP 

master problem, RLSP-BDP. 

5.2. Column and Row Generation for LP Relaxation  

Column generation is an effective method to solve linear programming (LP) problems with a large number of 

columns. It is often used within a branch and bound framework to solve large integer programs (Barnhart et 

al. 1998), including many combinatorial optimization problems (Lubbecke and Desrosiers 2005). The 

structure of the column generation algorithm for our problem is as follows. In each iteration, a restricted 

javascript:showjdsw('jd_t','j_')
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master problem containing only a subset of the columns of the LP relaxation LSP-BDP is solved first (by LP 

solver of CPLEX). The values of the dual variables obtained from solving the restricted master problem are 

used to update the pricing subproblems, which are then solved to find columns with a positive reduced cost in 

the maximization problem. If such columns exist, they are added to the restricted master problem. The 

procedure is repeated until there is no column with a positive reduced cost. The final solution obtained is the 

optimal solution for the LP relaxation. We also propose some valid inequalities and add them to the LP 

relaxation along with the columns generated to strengthen the LP relaxation. In addition, a variable reduction 

strategy is proposed to reduce the number of columns and speed up the algorithm.  

 Below we describe the valid inequalities, the pricing subproblems and the variable reduction strategy in 

Sections 5.2.1, 5.2.2 and 5.2.3, respectively.  

5.2.1 Valid Inequalities 

To strengthen the upper bound generated by solving the LP relaxation by the column generation approach, we 

propose some valid inequalities to tighten the solution space of the LP relaxation. Before giving the 

inequalities, we first introduce some definitions. Given the optimal solution of a LP relaxation problem, we 

define  Π as the set of batching scenarios contained in the LP relaxation problem with a positive solution 

value, λe as the solution value of each batching scenario e∈Π, and Ω as the set of the coils contained in the 

batching scenarios in  Π. For any three-coil subset Γ ={i1, i2, i3} of Ω, we define the coverage value of Γ as 

( )

e

e
λ

∈Π Γ
∑ , where  Π (Γ)={ e∈Π | batching scenario e contains at least two of the three coils i1, i2, i3 in Γ}. We 

call a three-coil subset of Ω a conflictual subset if its coverage value is greater than 1. If the given solution of 

a LP relaxation is integral, then the coverage value of any three-coil subset Γ of Ω must be 0 or 1 and there is 

no conflictual three-coil subset. However, when the solution of the LP relaxation is fractional, this property 

may not hold as shown in the following example. As a part of the optimal solution to the LP relaxation 

problem LSP-BDP, for example, there are three batching scenarios e1 consisting of coils 1 and 2, e2 consisting 

of coils 2 and 3, and e3 consisting of coils 1 and 3, and the solution value of each of these three batching 

scenarios is 1/2. The coverage value of the three-coil subset {1, 2, 3} is 3/2 (and hence {1, 2, 3} is a 

conflictual subset), while in any integral solution this value must be at most 1. 

Given a fractional solution of a LP relaxation problem, with the coil set Ω defined as above, find every 

conflictual three-coil subset of Ω. Let v denote the number of such three-coil subsets found, and Γu+1, Γu+2 , …, 

Γu+v denote these subsets, where u is the number of conflictual three-coil subsets found in earlier iterations. We 

can create the following valid inequalities corresponding to each conflictual three-coil subset Γl, as follows:
 

1
1

j

m
s s
l

j s S
t l

= ∈

≤∑ ∑            for l = u+1, …, u+v,                                          (14) 
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where s
lt  is 1 if batching scenario s contains at least two coils in Γl, and 0 otherwise. 

The proposed valid inequality (14) for each given conflictual three-coil subset Γl can be viewed as a 

clique inequality (Nemhauser and Wolsey 1988) if our problem SP-BDP is viewed as an optimization problem 

in the following graph: view each batching scenario as a node, create an arc between each node containing at 

least two coils of Γl and each other node also containing at least two coils of Γl. It can be seen that all the 

batching scenarios that contain at least two coils of Γl form a clique in the graph, and at most one of these 

batching scenarios can be selected. There are studies in the literature that incorporate clique inequalities in 

solving difficult combinatorial optimization problems such as timetabling and vehicle routing problems 

(Avella and Vasil’Ev 2005, Baldacci et al. 2008).  

In the process of solving the LP relaxation problem at a B&B node, we first apply the column generation 

procedure. When no column with a positive reduced cost can be generated, we perform the following row 

generation procedure: Find the coil set Ω and all three-coil conflictual subsets of Ω, generate a valid inequality 

(14) for each such three-coil subset, and add all these valid inequalities to the LP relaxation. Then the column 

generation procedure is run again. This process is repeated until no new column or row can be generated.  

5.2.2 Pricing Subproblems 

In the column generation procedure, pricing subproblems are solved to find columns with the largest reduced 

cost. Suppose that we have solved the LP relaxation of a restricted master problem containing L valid 

inequalities of the form (14), each corresponding to a conflictual three-coil subset Γl. Let σj, j=1, …, m, and πi, 

i=1, …, n, denote the dual variables corresponding to constraints (10) and (11) respectively, βl denote the 

dual variable value corresponding to the l-th valid inequality (14) (corresponding to Γl), and γuv, (u, v) ∈ 

Gr(ND), denote the dual variables corresponding to constraint (13). Let Njk denote the set of coils which can be 

loaded into a furnace of type j with the median coil k, following the equipment and matching constraints 

described in Section 3.1. For a given furnace type j = 1, 2, …, m, and a given median coil k∈Oj, the 

pricing subproblem, denoted as SUB(j, k), of finding a batching scenario s∈Sj with the given median coil k 

that has the largest reduced cost can be formulated as the following binary integer program. 

(SUB(j,k))   Max 
{ | } 1

( C1 2 )δ π γ γ σ β
∈ ∈ ∈ ∈ =

= − − − − + − −∑ ∑ ∑ ∑
jk i u

L

jk i ij ik i iv ui i j l l
i N v D u u i D l

F C x z   (15) 

Subject to 

jk

i i k
i N

h x H h
∈

≤ −∑   (16) 

1≥ + −l i hz x x
 

for i, h∈Γl, i > h; and l=1, …, L (17) 

{0,1}∈ix  
for i∈Njk (18) 



 

16 
 

{0,1}lz ∈  for l=1, …, L (19) 

where ix  is a binary variable taking value 1 if the batching scenario to be found contains coil i, and 0 

otherwise, and lz  is a binary variable taking value 1 if the batching scenario to be found contains at least 

two of the three coils in Γl, and 0 otherwise. Constraint (16) is the height capacity constraint corresponding 

to constraint (3). Constraint (17) defines the value of lz . If the optimal objective value δjk is positive, then the 

column corresponding to the optimal solution is added into the restricted master problem. If for every furnace 

type j = 1, 2, …, m and median coil k∈N, solving the corresponding subproblem SUB(j, k) does not generate a 

column with a positive reduced cost, then the column generation procedure is terminated.  

Each pricing subproblem SUB(j, k) is a generalization of the knapsack problem with the added 

complication that the objective value is reduced by a certain amount βl whenever at least two of the three coils 

from a conflictual three-coil subset Γl are included in the final batching scenario. It is known that the knapsack 

problem is ordinarily NP-hard and can be solved to optimality by a pseudo-polynomial time algorithm 

(Kellerer et al. 2004). We show that the pricing subproblems are more difficult than the knapsack problem. 

THEOREM 3: The pricing subproblems are strongly NP-hard. 

PROOF: See Appendix B.  

By Theorem 3, no pseudo-polynomial time algorithms exist for the pricing subproblems unless P=NP. To 

solve these problems efficiently, we develop a valid inequality as follows and solve the resulting formulation 

via the MIP solver of CPLEX. Let r
jkN  denote the subset of coils in Njk that are not involved in valid 

inequalities (17) (i.e. not in any Γl, for l = 1, …, L). Let SUBr(j, k) denote the revised subproblem SUB(j, k) 

where the coil set Njk is replaced by r
jkN and all the parts related to lz  variables (i.e. the term 

1
β

=
∑

L

l l
l

z in the 

objective function and constraints (17)) are removed from the formulation. Clearly, SUBr(j, k) is the knapsack 

problem which can be solved optimally by a pseudo-polynomial time dynamic programming algorithm 

(Kellerer et al. 2004). The optimal objective value of SUBr(j, k) is denoted as δ r
jk . It is clear that the optimal 

objective value of SUB(j, k) must be at least δ r
jk . This means that we can add the following valid inequality 

to SUB(j, k) when solving SUB(j, k): 

{ | } 1
( C1 2 )π γ γ σ β δ

∈ ∈ ∈ ∈ =

− − − − + − − ≥∑ ∑ ∑ ∑
jk i u

L
r

i ij ik i iv ui i j l l jk
i N v D u u i D l

F C x z                           (20) 

Since usually r
jkN contains less than half of the coils in Njk, an optimal solution of SUBr(j, k) can be 

obtained in a very short amount of time. As shown later in our computational tests, the addition of the 
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proposed valid inequality (20) can significantly reduce the running time of the MIP solver of CPLEX in 

solving the pricing subproblems involved in large size test problems. 

5.2.3 Variable Reduction 

In the process of column and row generation, a large number of columns may have to be generated. However, 

many of the columns generated are not part of the optimal solution. The presence of all these columns can 

slow down the algorithm. To accelerate the algorithm, we propose a variable reduction strategy to reduce the 

number of columns that have to be considered. The idea of our variable reduction strategy is similar to that 

used by Bianco et al. (1994) and Hadjar et al. (2006) for vehicle scheduling problems.  

Given a B&B node, we denote ξ*=(σ, π, β, γ) and Z up, respectively, as an optimal dual solution and the 

optimal objective value of the underlying LP relaxation problem, *δ as the vector of the reduced costs with 

respect to the optimal dual solution ξ* , *
jkδ  as the optimal objective value of the pricing subproblem SUB(j, 

k) corresponding to the dual solution ξ*, and Z lo as the objective value of a feasible solution of problem 

SP-BDP. Then we have the following Lemma. 

LEMMA 2. If *
jk

lo upZ Zδ < − , for some coil k and furnace j, then any optimal solution of problem SP-BDP 

cannot contain any batching scenario for furnace j where coil k is the median coil. 

PROOF: See Appendix B.   

If the condition in Lemma 2 is satisfied at any B&B node, batching scenarios for furnace j with median 

coil k should not be considered in its subsequent B&B nodes. This means that in any child node of this B&B 

node, we should not consider the pricing subproblem SUB(j, k) for any (j, k) that satisfies this lemma.   

5.3. Branching Strategy 

In our algorithm, the LP relaxation problem at each node of the branch-and-bound tree is solved by the 

column and row generation approach described in Section 5.2. If the optimal objective value of the LP 

relaxation problem is less than or equal to that of the incumbent solution, the node is pruned. Otherwise, we 

check if the solution is fractional or integral. If the solution is integral, then the corresponding B&B node is 

pruned. In this case, if the objective value is larger than the incumbent solution, then we replace the incumbent 

solution by this solution. Next we select a fractional node to branch on as follows. If the current B&B node is 

not pruned, then the depth-first-search rule is applied such that the current B&B node is selected as the next 

node to branch on. If the current B&B node is pruned, then the best-upper-bound rule is applied such that an 

active node in the B&B tree with the largest upper bound is selected to branch on. 
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It is crucial to design an effective branching strategy that exploits the problem structure. We propose the 

following branching strategy. Given the fractional LP relaxation solution λ of a B&B node being considered, 

we define the following parameters for all i, q∈N,  

1 j

m
s s

i ij j
j s S

V a λ
= ∈

= ∑ ∑   and  ∑∑
= ∈

=
m

j Ss

s
j

s
qj

s
ijiq

j

aa
1

λq  

The value of Vi represents the fraction of coil i contained in the furnaces, and this value should be 0 or 1 in 

any feasible integer solution. The value of qiq represents the fraction of both coils i and q contained in the 

same furnace, and this value should be 0 or 1 in any feasible integer solution.  

LEMMA 3: If the solution of the LP relaxation problem of a B&B node is fractional, then there exist some 

coils i and q such that the iqq value is fractional. 

PROOF: See Appendix B.  

Lemma 3 implies that when all iqq  variables are integral, the corresponding LP relaxation solution of 

the B&B node being considered must be integral.  

Given the fractional LP relaxation solution λ of a B&B node being considered, we first branch on Vi 

values. If there are coils with fractional Vi values, we then select a coil i with Vi value closest to 0.5 and create 

two child nodes as follows. For the left child node, fix the value of Vi to be 0 by excluding coil i from being 

selected in the optimal solution. For the right child node, the value of Vi is fixed to be 1 by requiring that coil i 

be selected in the optimal solution. The master problem and pricing subproblems for each of these newly 

created nodes are created accordingly. 

If there is no coil with a fractional Vi value, then we select a pair of coils i and q with qiq value closest to 

0.5 and create two child nodes as follows. For the left child node, fix the variable qiq to be 0 by excluding 

batches containing both coils i and q from being selected in the optimal solution. The corresponding initial 

master problem consists of all the columns of its parent node except the batching scenarios that contain both 

coils i and q. At the same time, the constraint that 1≤+ qi xx  is added to all pricing subproblems to guarantee 

that no batching scenarios that contain both coils i and q are generated. For the right child node, the variable 

qiq is fixed to be 1 by requiring that a batch containing both coils i and q is selected in the optimal solution. 

The corresponding initial master problem consists of all the columns of its parent node except the batching 

scenarios that contain exactly one of coils i and q. The constraint that qi xx =  is added to every pricing 

subproblems to ensure that any generated batching scenario contains either both coils i and q or none of them.  

6. Tabu Search Heuristic 
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As discussed in Section 2, our problem is strongly NP-hard. Furthermore, there is no polynomial-time 

algorithm for this problem with a constant worst-case bound. The branch-and-price-and-cut algorithm 

proposed in Section 5 can only solve problems with a medium size. Therefore, we propose a tabu search 

heuristic to find near optimal solutions for large-scale problems. First, a greedy heuristic is proposed to obtain 

an initial solution. Then, three types of basic search neighborhoods are searched repeatedly to improve the 

solution. These basic search neighborhoods are defined as the set of solutions that can be obtained by an 

exchange between two coils in different furnaces, between one coil in a furnace and one coil not in any 

furnace, or between one coil in a furnace and two coils not in any furnace. If a solution obtained by applying a 

move is in the tabu list, then the move is constrained. When the solution cannot be improved any more, a 

sophisticated variable depth neighborhood is adopted to further improve the solution. Since the procedures for 

generating an initial solution and for constructing and searching the three basic neighborhoods are rather 

standard, we describe them in Appendix C, along with the step-by-step procedure of the tabu search heuristic.  

In the remainder of this section, we briefly describe the construction of a variable depth neighborhood 

and how this neighborhood is searched. A variable depth neighborhood consists of a sequence of k simple 

moves where each move is performed on the solution obtained by its previous move and the depth k is 

dynamically determined. The purpose of using a variable depth neighborhood is to balance the scale of 

neighborhood and computational effort. An effective approach to explore a variable depth neighborhood is 

called filter-and-fan method. The method was initially proposed by Glover (1998) to refine solutions in scatter 

search. In recent years, many researchers have used the method to explore large-scale neighborhoods for 

solving complex problems including the job shop scheduling problem (Rego and Duarte 2009), the protein 

folding problem (Rego et al. 2011), and the resource-constrained project scheduling problem (Ranjbar 2008). 

The method can be illustrated as constructing a search tree where each node is a solution and each branch 

represents a basic move. In this paper, the implementation of the filter-and-fan method is slightly different 

from the existing literature. 

 We set the incumbent solution as the root node S0 of the search tree. Basic neighborhoods of the root 

node are searched and the best η1 solutions with the largest objective values are selected as nodes in the first 

level of the search tree, which are denoted as (S1(1), S1(2),…, S1(η1)). For k ≥1, given the nodes generated in 

level k, the nodes in the next level k+1 are generated as follows. In level k, select η1 nodes with the largest 

objective values and denote them as Sk(1), Sk(2),…, Sk(η1). For each selected node Sk(l), l = 1, …, η1, search its 

basic neighborhoods to generate many solutions and select the η2 solutions with the largest objective values as 

part of the nodes in the next level k+1. This results in η1×η2 solutions in level k+1. The procedure terminates 

when a pre-specified maximum number of (e.g. 7) levels is reached or a node whose objective value is larger 

than that of the incumbent solution is obtained. The node with the maximum objective value in the search tree 
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is set to be the current solution for the next round of tabu search. The detailed procedure of the proposed 

filter-and-fan method for the problem is given in Appendix C.  

7. Computational Experiments 

As discussed in Section 1, the number of coils to be annealed and the number of available furnaces in each 

shift vary from plant to plant, and within the same plant, vary from month to month and shift to shift. In 

practice, typically, the batching decision problem with no more than 100 coils in a shift is considered as 

medium-sized and the problem with more than 100 coils in a shift is considered as large sized. The largest 

possible problem instances can have up to 300 coils in a shift.  

Our extensive computational experiments show that the branch-and-price-and-cut algorithm is capable of 

solving medium-sized problem instances to optimality within a time acceptable to a steel plant in practice. 

However, when the number of coils to be annealed is more than 100, the branch-and-price-and-cut algorithm 

could take a time longer than desired, and hence the tabu search heuristic should be used. Accordingly, to give 

a fair evaluation of these algorithms, we report the results from the following experiments that we conducted:  

(i) Test the performance of the branch-and-price-and-cut algorithm using both randomly generated 

problem instances and real problem instances from Baosteel with a medium size.  

(ii) Test the performance of the tabu search heuristic using real problem instances from Baosteel with a 

large size.  

Baosteel previously used a rule-based planning approach (described in Section 7.1) to make coil batching 

decisions. Since many steel plants still use similar rule-based approaches, we use Baosteel’s approach as a 

benchmark and compare it with our branch-and-price-and-cut algorithm and tabu search algorithm described 

in Sections 5 and 6 in the computational experiments. We collaborated with Baosteel in the last several years 

and developed a decision support system which replaced Baosteel’s rule-based approach by our algorithms. 

The associated economic benefits for Baosteel are described in Section 8.  

All the algorithms are executed on a PC with P4-3.0 GHz CPU and 1 GB memory. Baosteel’s rule-based 

approach is given in Section 7.1. Computational results are reported in Sections 7.2 and 7.3.  

7.1. A Typical Rule-Based Planning Approach 

Most steel plants make coil batching decisions in the batch annealing process based on greedy rules and 

planners’ experience. We briefly describe below the rule-based planning approach used by Baosteel prior to 

our collaboration. A flowchart of the approach is given in Appendix D. We believe that many other steel 

companies still use a similar approach. 

In each iteration of their approach, planners at Baosteel first select an available furnace from the furnace 

type with the minimum number of remaining furnaces. This is to ensure that a maximum number of different 
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furnace types is used, resulting in an overall maximum number of coil-furnace matching opportunities. Given 

a furnace, they then select a median coil and a batch of other coils to be loaded into this furnace, considering 

the matching requirements and constraints, as follows. According to the management requirements described 

in Section 3.1.3, a coil that has the highest priority index PRI (with ties broken by choosing the coil with the 

largest weight) and matches with the protective gas atmosphere of the furnace is selected as the median coil 

for the furnace. Select the coils which satisfy the following three conditions as the candidate coils to be put in 

the furnace together with the median coil: (1) annealing curve index is appropriate for the furnace, (2) 

annealing curve index is in the same subset as that of the median coil, and (3) outer-diameter difference and 

thickness difference with the median coil are not greater than the given thresholds defined by the planners. At 

first, the threshold for outer-diameter difference and that for thickness difference are set to be some small 

values respectively. If there are not enough coils satisfying the above conditions that can fill up the furnace, 

increase the threshold for outer-diameter difference and that for thickness difference and re-select the 

candidate coils satisfying the conditions until enough candidate coils are selected. Among the candidate coils 

identified, sequentially select the coils with the highest priority indices (with ties broken by weight) that can 

fill up the current furnace, and assign these coils to the furnace. Record the furnace and the coils assigned to it, 

and repeat the above process to generate a batching plan for next furnace.  

The rule-based approach selects coils for inclusion in a furnace mainly based on priority values and 

weights. This approach has several obvious shortcomings: (i) it does not consider the coil widths in selecting 

coils for a furnace; (ii) it does not select median coils and other coils jointly; and (iii) it considers coils 

batch-by-batch and is greedy in nature.  

7.2. Performance of the Branch-and-Price-and-Cut Algorithm  

We first evaluate the performance of our branch-and-price-and-cut algorithm described in Section 5 by 

comparing it with the MIP Solver of CPLEX version 12.4 directly applied to the formulation BDP using 

randomly generated problem instances with a medium size. To test the effectiveness of the various special 

techniques developed in Section 5 (including the valid inequalities of Section 5.2.1, the variable reduction 

strategy of Section 5.2.3, and the valid inequality of Section 5.2.2 for the subproblems), we consider four 

versions of our algorithm as follows: (i) BP: the most basic version of the algorithm without using any of 

these special techniques, (ii) BPC: BP with the valid inequalities of Section 5.2.1, (iii) BPCR: BP with both 

the valid inequalities of Section 5.2.1 and the variable reduction strategy of Section 5.2.3, and (iv) BPCRC: 

BPCR with the subproblems solved using the valid inequality developed in Section 5.2.2. 

We follow the structure of the real data from Baosteel to generate four sets of random test problems with 

a wide range of sizes that are viewed as medium in practice. The first set of problems (denoted as S1) all have 

40 coils and 4 furnaces; the second set (denoted as S2) 60 coils and 6 furnaces; the third set (denoted as S3) 80 
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coils and 8 furnaces; and the fourth set (denoted as S4) 100 coils and 10 furnaces. There are four types of 

furnaces involved in all the test problems, representing the most commonly seen scenario in practice. Each set 

consists of 10 problems with the given numbers of coils and furnaces which are generated following the 

structure of the real production data collected from Baosteel (see Appendix E for a detailed description of test 

problem generation). The average results over the 10 test instances of each problem set are presented in Table 

1. We set a computation time limit of two hours (7200 seconds) for each solution method. If an instance could 

not be solved to optimality within this time limit, we count its computation time as 7200 seconds.  

Table 1. Comparing four versions of the branch-and-price-and-cut algorithm and the MIP Solver of CPLEX 

Problem 
Sets Method Gap 

(%) Zero gap Node no. Solved to 
opt. Time (sec.) Time red. r.t. 

CPLEX (%) 
Solved 

to opt. by CPLEX 

S1 

BP 0.53 2 31 10 44.17 -6034.72% 10 
BPC 0.11 6 12.8 10 19.42 -2597.22% 10 
BPCR 0.11 6 12.6 10 5.75 -698.61% 10 
BPCRC 0.11 6 11.4 10 5.09 -606.94% 10 

S2 

BP 0.32 5 56 10 207.77 74.82% 9 

BPC 0.05 8 8.2 10 36.02 95.63% 9 

BPCR 0.05 8 8.2 10 10.23 98.76% 9 

BPCRC 0.05 8 8.2 10 11.68 98.58% 9 

S3 

BP 0.65 2 466 8 2247.96 37.71% 5 

BPC 0.23 4 309 9 1228.76 65.95% 5 

BPCR 0.23 4 316 10 283.38 92.15% 5 

BPCRC 0.23 4 302.8 10 260.88 92.77% 5 

S4 

BP 0.35 2 773.8 4 4350.01 - 0 

BPC 0.07 4 219.5 8 1812.52 - 0 

BPCR 0.07 4 277.1 9 1019.16 - 0 

BPCRC 0.07 4 261.8 10 612.40 - 0 

In Table 1, Column “Gap (%)” is the relative integrality gap between the optimal solution and the LP 

relaxation solution obtained at the B&B root node. Column “Zero gap” specifies the number of instances (out 

of 10) whose integrality gap is zero (i.e., LP relaxation solution is optimal for the integer problem). The next 

two columns represent the number of B&B nodes explored, and the number of instances (out of the given 10) 

that are solved optimally within 7200 seconds, respectively. Column “Time (sec.)” is the average computation 

time of the 10 instances in seconds. Column “Time red. r.t. CPLEX (%)” gives the average computation time 

reduction relative to the time used by the MIP solver of CPLEX, where “-” represents that CPLEX is not 

capable of obtaining a feasible solution for any test instance due to memory overflow. The last column is the 

number of instances that are solved to optimality by CPLEX within 7200 seconds. Note that the MIP solver of 

CPLEX used here incorporates a so-called warm start strategy; it starts with the solution generated by the tabu 

search heuristic described in Section 6 as an initial solution. This version of the solver is faster than the default 

version which is not given any initial solution to start with. 

By observing the results, our first conclusion is that the introduction of the row generation procedure (i.e. 
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using BPC over BP) effectively tightens the upper bounds, significantly reduces the integrality gap, and hence 

reduces the B&B nodes that need to be explored and shortens the computation time. Our second conclusion is 

that the introduction of variable reduction (i.e. using BPCR over BPC) further reduces the computation time in 

a significant way. Our third conclusion is that the introduction of the valid inequality for solving the 

subproblems further speeds up the algorithm for large problem instances. From BPCR to BPCRC, the average 

computation time essentially remains the same for S1 and S2 problems, whereas it is reduced slightly for S3 

problems and significantly for S4 problems. BPCRC is the only version that solves every test problem to 

optimality within 7200 seconds. Our last conclusion is that for problems with 60 or more coils (S2, S3, S4), 

our branch-and-price-and-cut algorithm is substantially more effective than directly solving the MIP 

formulation of the problem by the CPLEX MIP solver. CPLEX cannot handle any problem in set S4 due to 

memory overflow, whereas all four versions of our algorithm solve most of the same problems to optimality 

within the same time limit. Also, our algorithm takes much less time than CPLEX for the problems that are 

solved to optimality. CPLEX has an advantage over our algorithm for S1 problems because of the relatively 

small size of these problems. 

Another experiment is conducted to compare our branch-and-price-and-cut algorithm BPCRC and the 

rule-based approach described in Section 7.1 (denoted as RULE). Twenty representative real production 

problems collected from Baosteel, each corresponding to a shift in August 2007, are used for the experiment. 

The first six columns of Table 2 show the indices and sizes of these test problems including the number of 

coils and the number of furnaces for each furnace type. The test results are shown in the remaining columns of 

Table 2. Column “Imp on obj value (%)” is the improvement of objective value achieved by BPCRC relative 

to RULE. The columns under the heading “Average charging weight” are the average charging weight of a 

furnace in the solution generated by RULE and BPCRC and the improvement of this measure achieved by 

BPCRC relative to RULE. Column “BPCRC Gap (%)” is integrality gap of the optimal LP relaxation 

objective value obtained at the B&B root node in BPCRC relative to the optimal objective value of the 

problem. The last two columns are the run time of BPCRC and that of CPLEX solving formulation BDP 

directly, where 7200 means that the problem is not solved to optimality within the time limit of 7200 seconds.  

From these results, we can see that the objective value is significantly improved by our 

branch-and-price-and-cut algorithm over the rule-based method. Also, the average charging weight is 

improved. We note that in practice, even a small improvement of the charging weight can mean a large profit 

increase due to increased productivity. The exact benefits brought to Baosteel by replacing their rule-based 

approach with our algorithms are estimated in Section 8. Furthermore, our branch-and-price-and-cut algorithm 

can obtain an optimal solution for every test problem within 25 minutes, whereas CPLEX is much less stable 

and fails to find an optimal solution in 2 hours for 4 test problems. In practice, most steel plants usually 

reserve thirty to sixty minutes to make a batching plan before each shift. So it is safe to choose the 
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branch-and-price-and-cut algorithm to solve the batching decision problem with a medium size in practice. 

Table 2．Comparing the branch-and-price-and-cut algorithm and the rule-based approach 

Problem 
Index 

Number of 
coils 

Number of furnaces Imp on obj 
value (%)  

Average charging weight  BPCRC  
Gap (%)  

Run time (s) 

NH-big NH-small HH-big HH-small RULE BPCRC Imp (%) BPCRC CPLEX 

1 54 2 1 1 1 2.85  86.20 87.38 1.37 0 3.53 30.58 
2 52 2 1 1 1 0.87  87.75 88.61 0.98 0 8.83 9.14 
3 40 2 1 1 1 6.22  84.08 84.77 0.82 0 16.32 4.92 
4 56 2 1 1 1 14.89  88.23 89.99 1.99 0 6.71 7.05 
5 65 2 1 1 1 0.64  87.08 87.78 0.80 0 10.65 9.53 
6 77 3 2 2 2 15.70  88.07 90.78 3.08 0 21.87 7200 
7 45 2 1 1 1 7.96  84.14 84.70 0.67 0 5.43 17.71 
8 47 2 1 1 1 0.62  84.77 85.82 1.24 0.11 22.34 4.80 
9 57 2 1 1 1 9.10  87.58 87.95 0.42 0.02 20.16 7200 

10 79 3 2 2 2 6.31  86.85 87.35 0.58 1.41 313.53 7200 
11 73 3 2 1 0 5.27  87.64 87.85 0.24 0 19.45 22.60 
12 72 3 2 0 0 7.45  89.88 90.45 0.63 0.05 54.25 13.05 
13 58 2 1 1 1 14.01  87.76 87.98 0.25 0.41 87.66 7.88 
14 68 2 1 0 0 0.96  88.01 89.72 1.94 0 30.2 40.41 
15 56 2 1 1 1 0.00  80.80 81.68 1.09 0 7.43 51.66 
16 48 2 1 1 1 0.51  80.49 80.74 0.31 0.77 1258.37 966.75 
17 65 2 1 1 1 17.36  83.95 85.24 1.54 0 6.97 28.64 
18 51 2 1 1 1 23.47  74.38 75.64 1.69 0 4.95 8.91 
19 56 2 1 1 1 8.76  86.71 86.81 0.12 0 6.54 21.74 
20 75 3 2 2 2 33.60  84.18 89.83 6.71 0.06 172.36 7200 

Average      8.83  85.43 86.55 1.32 0.14 103.88 1502.27 

7.3. Performance of the Tabu Search Heuristic 

In this section, we evaluate the performance of two versions of the tabu search heuristic by comparing them 

with our branch-and-price-and-cut algorithm as well as with the rule-based planning approach described in 

Section 7.1. The first version (denoted as BTABU) is the tabu search heuristic described in Section 6 using 

three basic neighborhoods only without using the variable depth neighborhood. The second version (denoted 

as VTABU) is the improved tabu search heuristic which incorporates the variable depth neighborhood.  

We first compare the solutions obtained by BTABU and VTABU with the optimal solutions obtained by 

the branch-and-price-and-cut algorithm BPCRC using the same twenty medium size real problem instances 

from Baosteel given in Table 2. The test results are shown in Table 3 where column “ Imp (%)” represents the 

relative improvement of objective value (or average charging weight) achieved by VTABU over BTABU, 

column “Gap (%)” is gap of the objective value (or average charging weight) given by VTABU relative to the 

optimal objective value obtained by BPCRC, and the columns under “Run time (s)” are the computational 

time taken by BTABU and VTABU, respectively. 
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Table 3．Comparing two versions of the tabu search heuristic and the branch-and-price-and-cut algorithm 

Problem Index 
Objective value   Average charging weight Run time (s) 

Imp(%) Gap(%)  Imp(%) Gap(%) BTABU VTABU 

1 1.23 1.23 0.17 0.32 1.73 2.03 
2 0.21 0.53 0.23 0.41 1.65 3.24 
3 2.25 2.33 0.19 0.47 1.70 4.20 
4 2.56 6.21 0.2 1.40 1.39 3.15 
5 0.00 0.39 0.00 0.22 1.84 3.85 
6 1.54 6.62 0.19 2.1 5.24 8.28 
7 0.22 6.08 0.14 0.22 3.20 3.90 
8 0.28 0.34 0.00 0.68 1.01 2.62 
9 3.23 3.46 0.23 0.19 2.86 6.24 
10 2.24 1.81 0.20 0.26 4.52 11.82 
11 0.83 3.32 0.00 0.19 5.65 10.09 
12 1.77 3.42 0.14 0.10 5.88 11.47 
13 1.46 3.16 0.00 0.11 1.89 4.76 
14 0.00 0.82 0.00 0.11 11.86 20.23 
15 0.00 0 0.00 0.00 2.70 6.26 
16 0.00 0.51 0.00 0.16 1.00 2.50 
17 1.98 7.09 0.76 0.04 2.56 4.99 
18 2.43 5.25 0.13 0.75 1.79 4.00 
19 3.72 4.85 0.00 0.00 2.10 4.84 
20 11.31 5.75 1.39 2.10 3.92 9.49 

Average 1.86 3.16 0.20 0.49 3.22 6.40 

Based on the results in Table 3, it can be seen that the tabu search heuristic can generate a near optimal 

solution for each problem tested in terms of both the overall objective value and the average charging weight 

achieved. In addition, it can be seen that VTABU generates slightly better solutions than BTABU, and both 

can solve every medium size problem tested within a few seconds. 

Next we compare BTABU and VTABU with the rule-based approach (denoted as RULE) using twenty 

representative large size problem instances collected from Baosteel, each corresponding to the actual 

production data of a shift in October 2007. The first six columns of Table 4 show the indices and sizes of 

these problems including the number of available coils and the number of available furnaces for each furnace 

type. The test results are shown in the remaining columns of Table 4. Columns “Imp1 (%)” and “Imp2 (%)” 

represent the relative improvement of objective value achieved by VTABU over BTABU, and the relative 

improvement of objective value achieved by VTABU over RULE, respectively. Column “Imp3 (%)” is the 

relative improvement of charging weight achieved by VTABU over RULE. The columns under “Run time” 

are the computation times (in seconds) used by the corresponding methods. Column “Gap (%)” is the relative 

gap between the objective value given by VTABU and the upper bound (denoted as UB) obtained by solving 

the LP relaxation at the root node of the B&B tree, which is defined as UB-VTABU 100%
UB

× . 
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Based on the results in Table 4, we can make the following observations about the tabu search heuristic. 

Compared to BTABU, VTABU improves the objective value by an average of 3.80%, which shows that the 

variable depth neighborhood is effective for avoiding the search being trapped and hence improving the 

solution. The average gap between the solution obtained by VTABU and the upper bound is 2.88%, which 

indicates that the proposed tabu search heuristic is capable of generating near optimal solutions. Furthermore, 

it takes the tabu search heuristic less than five minutes to generate a near optimal solution for each problem 

tested, whereas it could take more than one hour for the planners to generate a batching plan if it is done 

manually as in the case of some steel plants. Finally, we can see that the proposed tabu search heuristic makes 

a significant improvement over the rule-based approach in all dimensions including the objective value and 

the average charging weight. Improvement on the objective value represents improvement on the total reward 

of the selected coils and improvement of matching quality. Improvement on average charging weight 

translates into reduced production cost and increased productivity. The exact benefits brought to Baosteel by 

replacing their rule-based approach by our algorithms are estimated in Section 8. 

Table 4. Comparing two versions of the tabu search heuristic and the rule-based approach 

Problem 
Index 

Number 
of coils 

Number of furnaces  Objective value  Avg. charging weight Run time (s)  
Gap (%) 

NH-big NH-small HH-big HH-small  Imp1(%) Imp2(%)  RULE VTABU Imp3(%) BTABU VTABU  

1 210 8 5 5 2  0.24 13.44  89.35 91.20 2.07 60.49 108.37  4.65 
2 205 7 5 6 3  1.47 24.24  88.15 92.61 5.06 73.98 80.44  1.09 
3 113 4 2 2 1  19.60 18.39  87.99 88.58 0.67 15.23 35.40  0.87 
4 226 7 5 5 4  6.17 9.67  91.53 93.18 1.80 54.95 130.70  1.00 
5 114 4 4 0 2  10.86 8.81  85.00 86.82 2.14 10.20 28.29  2.29 
6 175 6 6 1 5  0.90 12.57  85.61 92.03 7.50 27.95 96.09  3.07 
7 145 5 6 1 3  0.69 11.25  86.91 92.71 6.67 50.50 78.87  2.70 
8 107 4 3 0 1  2.45 7.10  81.19 81.37 0.22 16.78 29.17  4.63 
9 162 7 5 2 1  1.69 4.70  84.79 85.27 0.57 28.78 81.73  4.04 
10 201 5 8 4 6  6.65 17.20  86.04 86.26 0.26 82.14 105.79  6.01 
11 189 9 7 2 5  0.70 13.37  84.84 86.61 2.09 146.36 188.62  1.69 
12 216 10 5 1 5  0.07 7.46  89.96 90.63 0.74 98.16 150.20  2.06 
13 190 8 4 3 4  1.41 19.57  84.49 86.19 2.01 70.27 121.46  1.37 
14 132 7 7 1 0  5.16 12.44  86.72 87.18 0.53 109.09 131.06  0.93 
15 88 3 2 2 0  5.63 2.87  87.92 88.38 0.52 10.03 30.50  3.28 
16 145 6 4 1 2  0.57 4.38  86.63 87.05 0.48 32.07 96.48  3.71 
17 135 4 4 2 3  5.98 6.73  91.28 92.17 0.98 32.55 89.75  3.96 
18 87 5 3 1 0  1.25 4.90  80.39 82.19 2.24 10.22 23.34  3.35 
19 120 6 4 1 1  4.53 8.52  94.10 95.76 1.76 19.39 40.26  4.78 
20 220 8 6 3 5  0.24 16.42  83.41 83.93 0.62 134.06 241.03  2.13 

Average        3.80 11.20  86.82 88.51 1.95 54.36 94.38  2.88 

8. Benefits to Baosteel 

A computerized batching decision support system (BDSS) for Baosteel that contains all the algorithms 
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described in this paper was developed and implemented at Baosteel to replace their rule based approach 

(described in Section 7.1) with very satisfactory performance. A description of the BDSS is given in Appendix 

F. Below we estimate the annual economic benefits of the BDSS to Baosteel by generalizing the test results 

given in Sections 7.2 and 7.3 to the entire year such that the average results of Table 2 will be applied to all 

the low-demand months, and the average results of Table 4 will be applied to all the regular months. The 

demand for batch annealed coils that Baosteel experiences over time has a very similar pattern every year, 

which consists of 4 low-demand months and 8 regular months. 

By Baosteel’s statistics, in the low-demand seasons in the last 4 years, an average of 2160 batches of 

coils are annealed during the four low-demand months in a year. In the regular months of the same years, an 

average of 13680 batches of coils can be annealed during the eight regular months in a year. Generalizing the 

test results of Table 2, we can conclude that in the low-demand months, with the BDSS replacing the manual 

planning approach, the average charging weight of an annealing furnace is increased by 1.12 tons (from 85.43 

tons to 86.55 tons). Similarly, generalizing the test results of Table 4, we can conclude that in the regular 

months, the use of the BDSS increases average charging weight of an annealing furnace by 1.69 tons (from 

86.82 tons to 88.51 tons). As a result of the increase in the average charging weight brought by replacing the 

manual planning approach with the BDSS, the total annual tonnage of annealed coils is increased by 25538.4 

tons (=1.12×2160+1.69×13680). By Baosteel’s statistics, the per-ton net profit brought by batch annealing is 

US $68.93. Therefore, the increased annual tonnage of annealed coils due to the use of BDSS yields a net 

profit of about US $1.76 million (=68.93×25538.4) per year.  

In addition, the increased average charging weight of a furnace due to the use of BDSS reduces the 

average per-ton consumption of coal gas, protective gas, electricity and water. Accordingly, the standard coal 

consumption and the carbon emission are also reduced. The use of the computerized system has also brought 

other benefits to Baosteel, which are hard to quantify but are equally significant to Baosteel. These benefits 

include improved quality of the annealed coils, improved customer satisfaction, and improved efficiency and 

ease of making batching decisions. 

9. Conclusions  

We have developed several efficient algorithms to assist steel plants in making better batching decisions to 

maximize productivity and energy utilization. We proposed a polynomial-time DP algorithm for a frequently 

occurring special case of the problem and designed a branch-and-price-and-cut exact algorithm that can solve 

medium size instances to optimality for the general case of the problem. Furthermore, a tabu search heuristic 

was designed which can solve large size instances to near optimality. Our computational experiments have 

demonstrated that our algorithms outperform the rule-based planning approach Baosteel previously used and 
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many other steel plants may still be using. We have collaborated with Baosteel and replaced their rule-based 

planning approach by a decision support system that contains our algorithms. The use of our algorithms has 

brought significant tangible and intangible benefits to Baosteel.  
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All appendices are published as online supplement 

Appendix A: Parameter Settings at Baosteel 

1. Fi : Reward value of coil i 
As described in Section 3.2, the reward value of coil i, Fi, is calculated as ρfi+(1-ρ)gi, where ρ is the weight 

used for the PRI value fi. In most cases, Baosteel uses ρ = 0.5 to reflect the fact that they view the PRI factor and 
the weight factor equally important in setting the reward value of a coil.  Whenever necessary, Baosteel may 
change the value of ρ according to specific production and management requirements. 

The PRI value of coil i, fi, is mainly used to model the management requirements which are described in section 3. 
The management requirements consist of due dates, relationship with other coils, contract accumulation times and 

storage period of coils. Then the value of fi can be calculated by 1 2 3 4
1 2 3 4i i i i if P P P P= + + +α α α α , where α1, α2, α3, α4 

are the PRI weights given by planners according to their management requirement, and 1
iP , 2

iP , 3
iP , and 4

iP  are 

used to represent the values of the corresponding PRI items, respectively, which are described as follows.   

1) PRI item about the due date slack of a coil: 
1
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where 2 1 3
1 1 11 1 1F F F> > . Ai is the time between the current date when the batching decision is being made and the due 

date of coil i. A and B are respectively the lower bound and upper bound of the total processing time for a coil. If Ai∈[A, 
B], then coil i is the most urgent coil and should be given the highest priority for annealing to meet the required due date. 
If Ai<A, then coil i cannot be completed before its due data (i.e., it will be tardy) even if coil i is annealed immediately, 
and hence a lower priority is assigned to it. If Ai>B, then there is sufficient time for coil i to be completed before its due 
date, hence the coil should be given the lowest priority. In Baosteel, the values of A and B are set to be 5 days and 7 days, 
respectively.  

2) PRI item about relationship with other coils: 
1
2
2
2

2 3
2
4
2

1 ,    if the sorting grade of coil  is 4
1 ,   _

max 1 ,   _
1 ,   _

0,        otherwise
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In Baosteel, sorting grade is used to identify the surface flatness level of a coil. The coils with sorting grade of 4 are 
required to be with the highest level of surface flatness and should be batched together in the finishing operation after 
batch annealing. Hence, to reduce the setup in the finishing operation, the coils whose sorting grades are 4 should be 
given a priority for annealing. Additionally, coil i, which satisfies any of the following three conditions, is difficult to 
match with other coils and need to be given a priority to avoid overstocking: (1) annealing curve index Curvi belongs to a 
special annealing curve index set Spec_C, or (2) steel grade Gradi belongs to a special steel grade set Spec_G, or (3) 
thickness Thicki is no larger than a threshold value Low_Th (i.e., 1.1mm in Baosteel). According to the actual production 
situation of Baosteel, the priority values for the above four cases are set in sequence of 1 2 3 4

2 2 2 21 1 1 1F F F F> > > .  

3) PRI item about contract accumulation times 
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Peri is the total weight of the coils which belong to the same contract as coil i and have completed all production 
processes (and hence are waiting for coil i before being delivered together to their customer). When Peri is no less than a 
threshold value Low_Per (which is set to be 4 tons in Baosteel), it represents that there are a certain number of coils that 
have completed all production processes and are waiting for coil i. In this situation, coil i should be processed as quickly 
as possible to shorten the contract accumulation time.  

4) PRI item about storage time of coils 
1

4 41 ,  
0,   

i
i

i

F d D
P

d D
 ≥= 

<
 

Here di is the amount of time that coil i has spent in storage, and D is a threshold value (which is set to be 5 days in 
Baosteel). When di is larger than D, coil i should be processed as soon as possible.  

2. C1ij: Mismatching penalty between coil i and furnace j 

C1ij is the mismatching penalty between coil i and batch annealing furnace j. The matching constraints between coils 
and furnaces have been described in section 3.1. The coil whose annealing curve belongs to set ACS1= {01, 02, 04, 05, 
11, 12, 13, 23} can be annealed in furnaces with either NH type or HH type, but if it is annealed in a furnace of HH type, 
there is a penalty. The coil, whose annealing curve belongs to ACS2= {61, 62, 63, 64, 65, 66, 67, 68}, can only be 
annealed in furnaces with HH type. Accordingly, the value of C1ij is given as follows: 

1
1
1

0,     if the annealing curve of coil  belongs to ACS1 and the type of furnace  is NH
0 if the annealing curve of coil  belongs to ACS2 and the type of furnace  is HH
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

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
 i j  

3. C2ik: Mismatching penalty between coil i and coil k  

C2ik is the penalty caused by the mismatching between coil i and coil k, considering three main factors - the 
annealing curve index, thickness, outer-diameter of the coils. The value of C2ik is a weighted sum of three penalty 

terms reflecting these three factors, respectively, i.e., C2ik=β1
1
2ikC +β2

2
2ikC +β3

3
2ikC , where β1, β2, β3 are the penalty 

weights set by planners according the actual situation, and   
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where Ti and Tk are the thicknesses of coils i and k, respectively, and TT is a threshold of thickness difference 
(which is set to be 50mm by Baosteel). 

3 1
2 33 | |= × −ik i kC F d d , 

where di and dk are the outer-diameters of coils i and k, respectively. 

All the parameter values discussed above are set according to Baosteel’s actual production and management 
requirements. Different values of the parameters described above may produce different batching plans. The planners 
have the flexibility to change them according to their preferred requirements for batching quality. 
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Appendix B: Proofs of Lemmas 1, 2 & 3, and Theorems 1, 2 and 3 

LEMMA 1: For any given batching scenario in an optimal solution, reindex the coils in this furnace as [1], [2], …, [q], 
such that T[1] ≥T[2] ≥ …≥T[q], where q ≤ r is the number of coils in the furnace.  The median coil for this furnace must be 
coil [l], where l = q/2. 

PROOF: Given a batching scenario of q coils indexed as [1], [2], …, [q] such that T[1] ≥T[2] ≥ …≥T[q], denote f (k) to be 
the total mismatching cost between the median coil and all other coils in this batch if coil [k] is chosen as the median coil. 
Since C2[i][k]=q|T[i]-T[k]|,  we have,  

1

2[ ],[ 1] 2[ ],[ +1] 2[ ][ ] 2[ ][ ]
1 2 1 1

( 1) ( )
−

+
= = + = = +

+ − = + − −∑ ∑ ∑ ∑
q qk k

i k i k i k i k
i i k i i k

f k f k C C C C  

1

[ ] [ 1] [ 1] [ ] [ ] [ ] [ ] [ ]
1 2 1 1

1

[ ] [ 1] [ 1] [ ] [ ] [ ]
1 2 1

[ ] [ ]
1

( 1) ( 1)

  ( )

q qk k

i k k i i k k i
i i k i i k

qk k

i k k i i k
i i k i

q

k i
i k

T T T T T T T T

T k T q k T T T k T

q k T T

q q q q

q q q q q q

q q

−

+ +
= = + = = +

−

+ +
= = + =

= +

= − + − − − − −

= − + − − − − + −

− − +

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

 

[ ] [ 1](2 )( )k kk q T Tq += − −    

We can see that, if 2k ≥q, then f(k) is a monotonically non-decreasing function, and if 2k ≤ q, then f(k) is a 
monotonically non-increasing function.  Therefore, f(k) takes the minimum value when k = l, i.e., selecting coil [l] as the 
median coil minimizes the mismatching cost of the batch.  □ 
 
THEOREM 1: There exists an optimal solution where the index range of all the coils assigned to any furnace is 
non-overlapping with that of all the coils assigned to any other furnace. 

PROOF: We first prove the following claim which will be used to prove the theorem later:  

Claim: There exists an optimal solution that satisfies the following conditions: (i) the index range of the left coils 
in the batching scenario of any furnace is non-overlapping with that of the left coils in the batching scenario of any 
other furnace, and (ii) the index range of the right coils in the batching scenario of any furnace is non-overlapping 
with that of the right coils in the batching scenario of any other furnace.   

We prove this claim by showing that given a solution δ not satisfying the conditions stated in the above claim, 
we can always find a new solution δ′ which satisfies the conditions and has a total net reward no smaller than that 
of δ.   

Suppose that in the given solution δ, the conditions do not hold. Suppose that there are b (b ≤ P) batches in 
the solution δ. We rearrange the coils in these batches as follows.  First, we sequence these batches of coils in the 
non-decreasing order of the indices of their median coils, and denote these batches as B1, B2, …, Bb.  Let αj 
denote the median coil, Lj the set of the left coils and Rj the set of the right coils in Bj respectively, for j = 1, …, b.  
Next, we re-assign the left coils and right coils to these batches, respectively as follows: take all the left (right) 
coils from all the batches, put them together and sequence them in the non-decreasing order of their indices.  The 
resulting sequence of the left (right) coils is denoted as Γl (Γr).  Then sequentially re-assign these coils back to 
the b batches as follows: assign the first |L1| (|R1|) coils in Γl  (Γr), denoted as set U1 (V1), to batch B1; assign the 
next |L2| (|R2|) coils in Γl  (Γr), denoted as U2 (V2), to batch B2; …., assign the last |Lb| (|Rb|) coils in Γl (Γr), 
denoted as Ub (Vb), to the last batch Bb. This results in b new batches, denoted as B1

’, B2
’, …, Bb

’, where Bj
’ 

consists of Uj, αj, and Vj, for j = 1, …, b. A new feasible solution δ′ consisting of these b new batches is obtained.  

Since, in any batch Bj, there are at least 
1

j

k
k

L
=

∑  coils in Γl  whose indices are smaller than that of its median coil αj in 
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the new batch Bj
’, the index of coil αj is greater than the index of any coil in Uj. Similarly, we can show that in Bj

’, 
the index of coil αj is smaller than the index of any coil in Vj. This shows that αj is the median coil, Uj is the set of 
left coils and Vj is the set of right coils in Bj

’. Clearly, in the new solution δ′, the index ranges of all the left coils 
are non-overlapping, and the index ranges of all the right coils are also non-overlapping.   

The total mismatching cost between the median coils and the other coils in solution δ, denoted as MC, is 

equal to 
1

( ) ( )
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coils in solution δ′, denoted as MC’, is equal to 
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 
∑ ∑ ∑ . By the fact that |Lj| = |Uj| and |Rj| = 

|Vj|, for j = 1, …, b, and L1∪L2∪…∪Lb = U1∪U2∪…∪Ub, and R1∪R2∪…∪Rb = V1∪V2∪…∪Vb, it is easy to see 
that MC = MC’. Therefore, the total net revenue in δ is equal to that in solution δ’. This shows that the claim stated 
at the beginning of the proof holds.  

Now we prove the theorem. Suppose that in an optimal solution δ, the index ranges of coils assigned to 
different furnaces overlap. Without loss of generality, we assume that there are b batches in δ, B1, B2, …, Bb, which 
are in the increasing order of their indices of their median coils. By the claim proved earlier, the overlapping can 
only happen between the right-coils of a batch Bj and the left-coils of another batch Bj′ with a larger index (i.e., j′ > 
j). Without loss of generality, assume i is a right coil in Bj, k is a left coil in Bj′ and i > k. It is not hard to see that 
exchanging i and k will not increase the mismatching cost in either Bj or an Bj′. As the total reward is unchanged, 
the above exchange will not reduce the objective value. Therefore there is an optimal solution satisfying the 
conditions in this theorem.  □  

 
THEOREM 2: The above DP algorithm finds an optimal solution for the special case of the problem in O(npr2) time. 

PROOF: The discussion given right after the description of the algorithm in the main body of the paper shows the 
correctness of the recursive relations and hence the optimality of the algorithm. The total computational time of the DP 
includes the time for calculating G function values and the time for calculating f function values. It is easy to see that it 
takes O(nr2) time to calculate G values. To estimate the time for calculating f values, we consider two cases. When u = 1, 
there are a total of O(npr) states in the DP, and for each state, it takes O(r) time to calculate the value of the state. When 
u > 1, there are a total of O(npr2) states in the DP, and for each state, it takes a constant time to calculate the value of the 
state. Therefore, it takes a total of O(npr2) time to calculate f values. This shows that the time complexity of the DP is 
O(nr2) + O(npr2) = O(npr2).   □  

 

THEOREM 3: The pricing subproblems are strongly NP-hard. 

PROOF: We prove that each pricing subproblem SUB(j, k) is strongly NP-hard by a reduction from the strongly 
NP-complete Independent Set problem (Garey and Johnson 1979). 
Independent Set (IS): Given a graph G = (V, E) and a positive integer K ≤|V|, does G contain an independent set of size K 
or more, i.e. does there exist a subset U ⊆ V such that |U| ≥K and such that no two vertices in U are joined by an edge in 
E? 

Given an instance of the above described IS, we construct an instance of SUB(j, k) as follows. For ease of 
presentation, we denote v = |V|, V = {1, …, v}, w = |E|, and E = {ε1, …, εw}. For each edge εi∈E, define V(εi) as the set of 
the two vertices of the edge. Clearly, V(εi) is a subset of V. In the pricing subproblem SUB(j, k), there are v+w coils with 
the coil set Njk = {1, …, v, v+1, …, v+w}, where each coil i, for i = 1, …, v, corresponds to vertex i∈V, and coil v + i, for 
i  = 1, …, w, corresponds to edge εi∈E. Let L = w be the number of conflictual three-coil subsets, where for l = 1, …, L, 
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the l-th conflictual three-coil subset consists of coil v+l and the two coils corresponding to the two vertices of edge εi, i.e., 
Γl = {v+l}∪ V(εl). The parameters in the objective function of SUB(j, k) are defined as follows: Let the parameter of 
variable xi be 1 for every i∈V, and 0 for every i∈Njk\V. Let σj = 0. Let βl = 1, for l = 1, …, L. This the objective function 

(15) becomes: Max  The parameters in the constraints are defined as follows: hi = 1 for every i∈ Njk 

and H = K. The constraints in the problem consist of (16), (17) for each pair of coils in Γl, for l = 1, …, L, (18) and (19). 
The threshold of the objective value is K.  

We show below that there is a solution to the pricing subproblem SUB(j, k) with the objective value at least K if and 
only if there is a solution to the instance of IS. 

“If” Part: Suppose that for the instance of IS, there exists a subset U ⊆ V such that |U| ≥K and such that no two vertices in 
U are joined by an edge in E. We construct a solution to the instance of SUB(j, k) as follows. Choose arbitrary K vertices 
from the subset U to form another subset I. Let xi = 1 for i∈I, and xi = 0 for i∈Njk \ I. Let zl = 0 for every l = 1, …, L. It is 
clear that this solution has an objective value of K. We next show that this solution is feasible. Since exactly K of the xi 
variables have a value of 1, constraint (16) is obviously satisfied. Consider any conflictual three-coil subset Γl = {i1, i2, i3} 
where i1 < i2 < i3. Since Γl ={v+l}∪ V(εl)), we can conclude that i3 = v+l, and i1 and i2 correspond to the two vertices of 

edge εl. Thus, . Also, since no two vertices in I are joined by an edge in E, we have: . Thus 

constraint (17) is satisfied for any pair of coils in Γl. This shows that the constructed solution is feasible for SUB(j, k).  

“Only If” Part: Suppose that there is a feasible solution to the instance of SUB(j, k) with an objective value of at least K. 
By constraint (16), and the fact that the objective value of this solution is at least K, we know that in this solution, (i) 
exactly K coils of V have an xi value 1, and all other coils have an xi value 0 , and (ii) zl = 0 for every l = 1, …, L. Let U 
be the subset of V consisting of the K coils with an xi value 1. Fact (ii) implies that xi + xq ≤ 1 for any pair of coils i and q 
in Γl, for every l = 1, …, L. This means that U contains at most one of the two vertices of εl, for every l = 1, …, L. In 
other words, for each edge in E, at most one of the two vertices of this edge is contained in U. Thus U is a solution to the 
instance of IS.   � 

 

LEMMA 2. If *
jk

lo upZ Zδ < − , for some coil k and furnace j, then any optimal solution of problem SP-BDP cannot 

contain any batching scenario for furnace j where coil k is the median coil. 

PROOF: For ease of presentation, let c, A and b denote, respectively, the objective coefficient vector in (9), the 
constraint coefficient matrix, and the right-hand-side coefficient vector corresponding to constraints (10), (11), (13) and 

(14) in problem SP-BDP. From the linear programming duality, we know that Zup = ξ*b and *δ = *ξ−c A . Suppose that 

there is an optimal solution of the integer problem SP-BDP, λ*, which contains a batching scenario s for furnace j where 

coil k is the median coil, i.e., *
j

sλ =1. 

From the feasibility of λ* to the LP relaxation LSP-BDP, we can have the inequality Aλ*≤b. Since ξ* is nonnegative, 
the inequality ξ*Aλ*≤ξ*b can be easily obtained. Combining with the fact that Zlo≤cλ*, we have: 

* * *( )loZ ≤ − +c ξ A λ ξ b . Based on the definitions of Zup and *δ , the above inequality can be rewritten as 

*lo * upZ Zl≤ +δ . When *
j

sλ =1, the non-negativity of λ* and the non-positivity of the reduced cost vector imply that 

* * *
j j j

lo s s up s upZ Z Z≤ + = +δ l δ . Then, we can get *
j

s lo upZ Zδ ≥ − . By the definition of *
jk

δ , the 
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relationship * *
jk j

sδ δ≥ can easily be obtained and hence the inequality * ≥ −
jk

lo upZ Zδ  can also be easily deduced. This 

contradicts with the fact that *
jk

lo upZ Zδ < − . This shows that an optimal solution cannot contain any batching scenario 

for furnace j with median coil k.  �  

 
LEMMA 3. If the solution of the LP relaxation problem of a B&B node is fractional, then there exists some coils i and q 

such that theirθiθ value is fractional. 

PROOF: We prove it by contradiction. Suppose that θiθ is integer for every possible pair of coils i and q. Given the 

fractional solution of the LP relaxation problem, then there must exist two batching scenario s′ and s′′ both containing 

some coil i and both having a corresponding solution value jλ s' or '
''s

j
λ fractional. Since there are no duplicate columns 

in the optimal solution, there must exist a coil q which is not present in scenario 's  but in ''s . Thus 's
qja  = 0. 

According to the above analysis, we have the inequality that  

'

1 1
λ λ λ

= =∈ ∈

≥ +∑ ∑ ∑ ∑
j j

m m
s s s s s s
ij j qj ij j j

j js S s S

a a a  

By the definition of θiθ  and constraint (11), we have the following: 

' '

1 1
1θ λ λ λ λ

= =∈ ∈

= ≤ − ≤ −∑ ∑ ∑ ∑
j j

m m
s s s s s s s

iθθ j ij j ij j j j
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Since 0< 's
jλ <1, we can conclude that 0<θiθ <1, which contradicts with the assumption that θiθ is integer for every 

possible pair of coils i and q.  � 
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Appendix C: Detailed Description of the Tabu Search Heuristic   

Below we first describe how an initial solution is generated (Section C.1), followed by a description of the three basic 
neighborhoods (Section C.2), a detailed procedure of the filter-and-fan method (Section C.3), and a step-by-step 
description of the tabu search heuristic (Section C.4).  

C.1. Initial Solution 

We propose the following greedy heuristic to obtain an initial solution for the tabu search heuristic. In each iteration, we 
first select an available furnace from the furnace type with the minimum number of remaining furnaces. Next we select a 
batch of coils to be loaded to the selected furnace as follows. All the available coils which can match with the furnace are 
sequenced in non-increasing order of their reward Fi. The coil with the largest reward value is chosen as the median coil 
of the batch. Then the other coils are checked sequentially, and the coils which can match with the median coil without 
violating the furnace height capacity constraint are put into the batch one by one. To guarantee a reasonable capacity 
utilization of the furnace, a weight threshold W (e.g. 70 tons, which is the lowest acceptable charging weight for a furnace) 
is applied. If the total weight of the batch is less than W after all the coils are checked, undo the batch by removing all the 
coils from the batch. Re-form the batch by choosing the coil next to the median coil chosen earlier in the coil sequence to 
be the new median coil of the batch and checking the coils and putting them into the batch sequentially as described 
earlier. This process is continued until a batch with a total weight of W or more is found. If no batch can be formed with a 
total weight of at least W when every coil in the coil sequence has been tried as the median, select the batch with the 
heaviest charging weight. The resulting batch is allocated to the furnace. This furnace and the coils allocated to it are then 
removed from further consideration. We repeat this procedure until there is no empty furnace. A complete initial solution 
is obtained.  

C.2. Basic Neighborhoods 

Based on the initial solution, a coil is either included in a batch for a furnace or not. We refer to the coils that are 
included in a batch in a solution as inside coils and the remaining coils as outside coils. To improve the solution using 
tabu search, certain moves within a neighborhood of the solution by exchanging some coils must be performed. We 
propose three neighborhoods in this section: one-to-one inside coil exchange neighborhood (N1), one-to-one 
inside-outside coil exchange neighborhood (N2) and one-to-two inside-outside coil exchange neighborhood (N3). These 
are explained in detail below. 

N1: One-to-one inside coil exchange neighborhood. This neighborhood is defined as the set of solutions that can be 
obtained by an exchange between two coils which belong to different furnaces in the current solution. Moves in such a 
neighborhood can modify the assignment of the coils. When the coils in different furnaces are exchanged, the total 
charging weight will not be changed, but the matching quality may be improved. 

N2: One-to-one inside-outside coil exchange neighborhood. This neighborhood is defined as the set of solutions that 
can be obtained by an exchange between an inside coil and an outside coil. Such a move can potentially increase the total 
charging weight and the matching quality as well. 

N3: One-to-two inside-outside coil exchange neighborhood. For a furnace with a low charging weight, its residual 
capacity may not be enough to accommodate another coil. So a further neighborhood, one-to-two inside-outside coil 
exchange, is introduced here. A move in the neighborhood consists of an exchange between one inside coil and two 
outside coils. Such a move may increase the utilization of a furnace significantly. 

In the tabu search algorithm, the search process goes through three phases repeatedly as follows to take advantage of 
different effects of the three neighborhoods. In the first phase, neighborhood N3 is used because of its potentially largest 
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improvement on charging weight. Then the search is done with neighborhood N2 to improve the charging weight and the 
matching relationship. Finally, neighborhood N1 is adopted to improve the matching quality without changing the total 
charging weight. Because the residual capacities of some furnaces are changed in the last phase, it may increase the total 
charging weight by searching in neighborhoods N3 and N2 again. 

 
C.3. Detailed Procedure of the Filter-and-Fan Method 

We set the new solution as the root node S0 of the search tree. The other nodes in the search tree are constructed as 
follows. Firstly, the basic neighborhood N1 is searched and the best η1 solutions with the largest objective values are 
selected as nodes in the first level, which are denoted as (S1(1), S1(2),…, S1(η1)). For k = 1, 2, …, η1, given the nodes 
generated in level k, the nodes in the next level k+1 are generated as follows. In level k, select η1 best nodes with the 
largest objective values and denote them as Sk(1), Sk(2),…, Sk(η1). For each node Sk(l), l = 1, …, η1, select the furnace 
which has not been recorded in its parent node from the two furnaces where the coil exchange occurred when this node 
was generated. If both of the two furnaces where the coil exchange occurred are not recorded, select the furnace with a 

lower net reward. Record the selected furnaces as ( 1
kj , 2

kj , …, 
1

kjη ), each corresponding to one of the η1 solutions. For 

each selected solution Sk(l) in level k, search the basic neighborhood N1 between the coils in the recorded furnace k
lj  

and the coils in the other furnaces, and then select the best η2 solutions with the largest net rewards as the nodes in the 
next level k+1. This results in η1×η2 solutions in level k+1. The procedure terminates when a pre-specified maximum 
number of (e.g. 7) levels is reached or a node whose objective value is larger than that of the incumbent solution is 
obtained. Then select the node with the maximum net reward and remove all virtual coils and virtual furnaces from the 
solution corresponding to the selected node. Finally, set the newly generated solution to be the initial solution for next 
round of tabu search. Figure C-1 shows an example search tree. 

S0

S1(1) S1(l) S1(η1)

... S2(l) ...

…… …… Level 1

Level 2…… …… ……… ……

η2 solutions η2 solutions

Sk(1) Sk(l) Sk(η1)…… ……

…
…

…
…

Level k

... ... ... Level k+1

S2(1) ... S2(η1)

Sk+1(1) Sk+1(l) Sk+1(η1)

η2 solutions

... ...…… ……

η2 solutions η2 solutions η2 solutions

...…

 
Figure C-1. Search tree for finding a compound exchange chain 

 

In the search tree, a node in level k (k>1) is obtained by exchanging coils between the recorded furnaces of the node 
and its parent node in the solution corresponding to its parent node. Suppose that the node with maximum objective value 
is in the level K, then the corresponding solution can be obtained, from the solution of the root node S0, by sequentially 
executing the exchanges of coils between the recorded furnaces. This series of exchanges of coils is called a compound 
exchange chain. Since the length of this chain is not pre-specified, the compound exchange chain is a variable depth 
neighborhood. An example of a compound exchange chain is given in Figure C-2. In the example, we only consider the 
reward for covering coils in the batching plan for illustration purposes. The reward and width of each coil in Figure 
C-2 are given in Table C-1. The furnaces drawn by dotted lines represent the virtual furnaces (furnaces j2 and j5), while 
the furnaces drawn by solid lines represent the real furnaces (furnace j, j1, j3 and j4). Coils drawn by dotted lines are 
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virtual coils. The total reward for the initial solution shown in Figure C-2 (before the compound exchange chain is 
performed) is 1122.68. The compound exchange chain can efficiently avoid the search procedure being trapped in a local 
optima.  
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Figure C-2. An example of a compound exchange chain 

Recall that the height of inner cover of furnace is 4700mm. Therefore, it is obvious that no improvement can be 
made by searching the neighborhoods N1, N2 and N3 on the initial solution in Figure C-2. However, after searching the 
variable depth neighborhood following the way shown in Figure C-2 by the filter-and-fan method, an improved solution 
is found as shown in Figure C-3, with the total reward improved to 1279.18. 

Table C-1． The weight and width of each coil in Figure B-1 

Number  Width  Reward  Number  Width  Reward  
1 1015 82.4 11 1335 88.9 
2 1015 82.79 12 1235 85.6 
3 1015 82.79 13 1652 95.1 
4 1015 83.1 14 1020 81.8 
5 1015 81.5 15 1137 83.2 
6 1312 88.5 16 1793 98.1 
7 1265 88.9 17 985 74.6 
8 1015 80.9 18 1020 79.7 
9 1015 81.5 19 1012 80.1 
10 990 81.1    
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Figure C-3. The improved solution 

C.4. The Complete Procedure of the Tabu Search Heuristic 

Set iteration counter of the heuristic k = 0, and the corresponding upper limit Tmax = 100. Let the number of iterations 
without improvement in the entire heuristic t = 0, and the corresponding upper limit Tbreak = 20. Denote the number of 
iterations without improvement in the searching process of each basic neighborhood t1 = 0, and set the corresponding 
upper limit T1 to be 5. The indicator flag is 1 if the incumbent solution has been updated, and 0 otherwise. The complete 
procedure of the proposed tabu search heuristic is presented as follows.  

Step1 Get an initial solution σ0 by the heuristic described in Section D.1. Let flag=0, the current 
solution σ =σ0, and the incumbent solution σbest=σ0. 

Step2 If k >Tmax or t >Tbreak, go to step 7; else if t1>T1, let t1=0 and go to Step 3; else, search 
neighborhood N3, and find the solution σ’ in neighborhood N3 with the maximum 
objective value. If the objective value f(σ’) >f(σbest), then let t1=0, flag=1, σ =σ’, σbest=σ’; 
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else t1= t1+1, σ =σ’ Repeat Step 2. 
Step3 If t1>T1, let t1=0 and go to Step 4; else, find the solution σ’ in neighborhood N2, that is not 

in the tabu list, with the maximum value of objective function. If the objective value 
f(σ’)>f(σbest), then let t1=0, flag=1, σ =σ’, σbest =σ’; else t1= t1+1, σ =σ’. Update tabu list, 
and repeat Step 3. 

Step4 If t1>T1, go to Step 5; else, find a solution σ’ in neighborhood N1, that is not in the tabu 
list, with the maximum value of objective function. If the objective value f(σ’)>f(σbest), 
then let t1=0, flag =1, σ =σ’, σbest =σ; else t1= t1+1, σ =σ’. Update tabu list, and repeat Step 
4. 

Step5 Let k=k+1. If flag=1, let t=0, flag=0, t1=0, and go to Step 2. 
Step6 Set the incumbent solution σbest as the current solution. Perform filter-and-fan method in 

the variable depth neighborhood (described in Section 6.1 in the paper) to obtain a solution 
σ′ with the maximum value of objective function. If the objective value f(σ’)>f(σbest), t=0, 
σ =σ’, σbest =σ’; else t=t+1, σ =σ’. Update tabu list, set t1 =0, flag=0, and go to Step2. 

Step7 Output the solution σbest and calculate the value of objective function for the final solution. 
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Appendix D: Flowchart of the Rule-Based Approach 
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Let P denote the set of all available and un-filled 
annealing furnaces, I denote the set of all  coils 

waiting to be annealed
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Set the outer-diameter difference threshold DD and the 
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annealing curve index is appropriate for furnace j and  
is in the same subset as that of median coil k, and add 

the selected coils into subset I2

Are 
all coils in I identified for furnace j or is 

coils set I empty?
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indices (with ties broken by weight) that can fill up  
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Appendix E: Generation of Random Test Problems 

The random test problems used in Section 7.2 are generated as follows. We follow the structure of the real data from 
Baosteel to generate four sets of random test problems with a wide range of sizes that are viewed as medium in practice. 
The first set of problems (denoted as S1) all have 40 coils and 4 furnaces; the second set (denoted as S2) 60 coils and 6 
furnaces; the third set (denoted as S3) 80 coils and 8 furnaces; and the fourth set (denoted as S4) 100 coils and 10 
furnaces. There are four types of furnaces involved in all the test problems. For each set of problems (with the given 
number of coils and furnaces), we generate 10 random problem instances as follows: 
(1) The number of each type of furnace is randomly generated given the total number of furnaces. 
(2) The heights of inner cover of all furnaces are all 4700mm. 
(3) The outer-diameter of inner cover of small furnace is 2050mm, and that of big furnace is 2550mm. 
(4) The widths of coils are generated uniformly from [800, 1800] mm. 
(5) The thicknesses of coils are generated uniformly from [0.4, 3.8] mm. 
(6) The weights of coils are generated uniformly from [10, 45] tons. 
(7) The outer-diameters of coils are generated uniformly from [1600, 2500] mm. 
(8) The annealing curve, steel grade, surface requirement, batching requirement, contract accumulation time, and 

storage time of coils are all selected from the practical data from Baosteel. 
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Appendix F: Description of the Decision Support System 

The BDSS mainly consists of a data downloading module, a parameter setting module, an optimization module, an 
adjusting module, and an uploading module. The function diagram of the system is shown in Figure F-1. Some time 
before the start of every shift, the BDSS is run to make batching decisions for the upcoming shift using the latest furnace 
and coil information at the plant. The planners first run the data downloading module, which is connected to the 
Baosteel’s central information system called 9672 system, to get the real-time data of the coils and empty furnaces in the 
annealing plant. Next, the optimization module is run to generate an optimal or near-optimal charging plan and show it 
on the screen. Both the exact branch-and-price-and-cut algorithm and the tabu search heuristic are imbedded in this 
module. Planners can choose one of these algorithms to run depending on the size of the problem they are facing. 
Planners can make adjustments on the plan through the adjusting module if they feel necessary. The final charging plan is 
uploaded to the 9672 system via the uploading module and transferred to the batch annealing plant to instruct the actual 
production. Figure F-2 is a screenshot showing a batching plan generated by the optimization module of the system. 

Parameters used in the mathematical model and the algorithms need to be set to reflect the actual situations at the 
plant. A description of how the parameters Fi, C1ij and C2ik are set, which has been validated by planners in the batch 
annealing plant of Baosteel, is given in Appendix B. Planners can adjust the parameter values in the parameter setting 
module whenever they feel necessary.  
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   Figure F-1. A function diagram of the BDSS        Figure F-2. A screenshot of a batching plan 
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