
HAL Id: tel-03521336
https://hal.inria.fr/tel-03521336

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposition algorithms for deterministic and
uncertain integer programs

B. Detienne

To cite this version:
B. Detienne. Decomposition algorithms for deterministic and uncertain integer programs. Optimiza-
tion and Control [math.OC]. Ecole doctorale EDMI (ED Mathématiques et Informatique) Université
de Bordeaux, 2021. �tel-03521336�

https://hal.inria.fr/tel-03521336
https://hal.archives-ouvertes.fr

Université de Bordeaux

Institut de Mathématiques de Bordeaux

Thèse d’habilitation à diriger des
recherches

présentée par

Boris Detienne

SPÉCIALITÉ : MATHEMATIQUES APPLIQUEES ET
CALCUL SCIENTIFIQUE

Decomposition algorithms for deterministic
and uncertain integer programs

Date de soutenance : 15 décembre 2021

Devant la commission d’examen composée de :
Christian Artigues . Directeur de recherche, LAAS-CNRS, Toulouse Rapporteur
Luce Brotcorne . . Directeur de recherche, Inria, Lille Examinateur
François Clautiaux . Professeur, Université de Bordeaux Examinateur
Safia Kedad-Sidhoum Professeur, CNAM, Paris Rapporteur
Ivana Ljubic Professeur, ESSEC Business School, Paris . . Examinateur
Gautier Stauffer . . Professeur, Kedge Business School, Bordeaux Examinateur
Wolfram Wiesemann Professeur, Imperial College, London Rapporteur

2021

i

Acknowledgments

First of all I would like to thank Isia, Dimitri and my partner for their love and
support.

I would like to thank the reviewers of this HDR, Chrisitan Artigues, Safia Kedad-
Sidhoum and Wolfram Wiesemann, as well as the other members of the jury, Luce
Brotcorne, François Clautiaux, Ivana Ljubic and Gautier Stauffer for accepting this
time-consuming charge.

I am very grateful to Éric Pinson, David Rivreau, Stéphane Dauzère-Pérès,
François Clautiaux, François Vanderbeck and Ayşe Nur Arslan for, each in their
own way, forging my vision of research.

Finally, I would like to thank my peers and colleagues for their friendship and/or
fruitful scientific discussions: Céline Turbillon, Olivier Guyon, Laurent Péridy, Nabil
Absi, Claude Yugma, Dominique Feillet, Dominique Quadri, C. Diego Rodrigues,
Evgeny Gurevsky, Laurent Facq, Aurélien Froger, Pierre Pesneau, Ruslan Sadykov,
Gautier Stauffer, Michaël Poss, Quentin Viaud, Super Guillot Bros., Mohamed
Benkirane, Rodolphe Griset, Henri Lefebvre, Xavier Blanchot, Agnès Leroux, Halil
Şen, Shunji Tanaka, Pascale Bendotti, Marc Porcheron, and many others.

Contents

List of Acronyms v

1 Introduction 1
1.1 Mathematical programming models 1

1.1.1 Deterministic mathematical programs 2
1.1.2 Uncertain mathematical programs 3

1.2 Relaxation, reformulation and decomposition 9
1.2.1 Motivation . 10
1.2.2 Classical mixed integer linear programming reformulations . . 13
1.2.3 Lagrange relaxation . 21
1.2.4 Relaxation-based solution schemes 30

1.3 Main contributions . 37
1.3.1 Real-life large scale problems 37
1.3.2 Two-stage robust problems 38
1.3.3 Scheduling problems . 39

2 State space relaxation algorithms 41
2.1 Branch-and-bound algorithms: application to the flowshop problem . 41

2.1.1 DP formulation and dominance rules 44
2.1.2 Network flow formulations and lower bounds 47
2.1.3 Branch-and-bound algorithms 56
2.1.4 Computational results . 59

2.2 Successive sublimation dynamic programming: application to the
temporal knapsack problem . 63
2.2.1 Integer programming and dynamic programming models . . . 66
2.2.2 Specializing Successive Sublimation Dynamic Programming to

TKP . 69
2.2.3 Refinements of SSDP to solve TKP effectively 78
2.2.4 Computational experiments 86

2.3 Other contributions in State-Space Relaxation and deterministic op-
timization . 93

3 Decomposition approaches for uncertain optimization problems 95
3.1 Double decomposition for the outage planing problem 95

3.1.1 Introduction . 96
3.1.2 Problem description . 98
3.1.3 Extended formulations . 102
3.1.4 Solution approaches . 110
3.1.5 Computational results . 119

iv Contents

3.2 Decomposition for two-stage robust problems with mixed integer re-
course . 130
3.2.1 Introduction and literature review 131
3.2.2 Methodological development 136
3.2.3 Complexity results . 153
3.2.4 Numerical results . 155

3.3 Other contributions in optimization under uncertainty 165

4 Perspectives 169

Bibliography 173

List of Acronyms

ACCPM Analytic Center Cutting Plane Method 24

API Application Programming Interface . 3

CP Constraint Programming . 28

DAG Directed Acyclic Graph . 33

DP Dynamic Programming . 13

DSSR Decremental State-Space Relaxation 35

DW Dantzig-Wolfe . 13

ISSR Iterative State-Space Relaxation . 171

LP Linear Programming . 11

MILP Mixed Integer Linear Programming 2

OR Operations Research . 1

RCESPP Resource Constrained Elementary Shortest Path Problem 35

SSR State-Space Relaxation . 16

SSDP Successive Sublimation Dynamic Programming 27

TKP Temporal Knapsack Problem . 28

wlog without loss of generality . 26

Chapter 1

Introduction

Contents
1.1 Mathematical programming models 1

1.1.1 Deterministic mathematical programs 2

1.1.2 Uncertain mathematical programs 3

1.2 Relaxation, reformulation and decomposition 9

1.2.1 Motivation . 10

1.2.2 Classical mixed integer linear programming reformulations . . 13

1.2.3 Lagrange relaxation . 21

1.2.4 Relaxation-based solution schemes 30

1.3 Main contributions . 37

1.3.1 Real-life large scale problems 37

1.3.2 Two-stage robust problems 38

1.3.3 Scheduling problems . 39

This manuscript describes the core of my research activities, which consist of
solving mathematical optimization problems based on mathematical programming
paradigms, with a focus on the computational performance of the developed algo-
rithms. Decomposition approaches are used to solve hard integer linear programs,
that represent real-life economical problems or archetypical idealized problems. The
first chapter introduces the types of problems addressed and the different methodolo-
gies employed. Chapter 2 concerns deterministic optimization, and in particular two
representative studies based on State-Space Relaxation techniques. In Chapter 3,
the most significant research about optimization under uncertainty is exposed.

The rest of this chapter is organized as follows. Section 1.1 presents mathe-
matical models and notations encountered throughout the manuscript. Section 1.2
describes methodological tools, recalling their basic principle and mentioning their
usage in my research. The main contributions are summarized in Section 1.3.

1.1 Mathematical programming models

This work concerns optimization problems that arise in various application fields
of Operations Research (OR), mostly in planning and scheduling. The following

2 Chapter 1. Introduction

formulation encompasses all problems studied:

inf f(x) (1.1.1)

s.t. g(x) ≤ 0 (1.1.2)

x ∈ S (1.1.3)

In this manuscript, vectors and matrices are indicated in boldface, whereas a
scalar or vector component is non-boldface.

This class of models aims at determining the value of n real decision variables
x that minimizes the objective function f : Rn → R. The feasible set is com-
posed of vectors of the decision variables that satisfy constraints (1.1.2), where
g = (gi)i∈{1,...,m} is a vector of functions gi : Rn → R. A large variety of OR
applications involve discrete decisions. Constraints (1.1.3) embed variable domain
constraints: the typical form of S is S = Rp+ × Nn−p with p ∈ N the number of
decision variables restricted to take integer values.

Unless stated otherwise, we consider finite-dimensional (n and m assume finite
value) and single-objective optimization models.

1.1.1 Deterministic mathematical programs

This section introduces two important types of mathematical programs. The class of
deterministic Mixed Integer Linear Programming (MILP) models is at the heart of
the contributions exposed in this manuscript. Chapter 2 is dedicated to algorithms
designed to solve such problems, and the contributions in Chapter 3 are based on
deterministic reformulations of uncertain problems.

Mixed integer linear programs This special case is defined by a linear objective
function, and affine constraints. The topic is covered by [Schrijver 1986,Wolsey &
Nemhauser 1999, Wolsey 2020]. MILP models are then often represented using
matrix notations:

min c>x (1.1.4)

s.t. Ax ≤ b (1.1.5)

x ∈ S (1.1.6)

Although most real situations involve non-linear systems and uncertain data,
there are many reason to consider this simplified setting. The first reason is its high
expressive power when it comes to describing OR applications. In a wide range of
practical contexts, it is acceptable to neglect the uncertainty in the input data, in
the sense that the solution obtained disregarding it will remain practically imple-
mentable despite possible variation. Likewise, some non-linearities in the system
may be described accurately enough with linear expressions, possibly at the price
of introducing additional variables and constraints. In these situations, the cost es-
timated on the basis of a deterministic input data set and linear model can also be

1.1. Mathematical programming models 3

considered a sufficiently close approximation to the actual cost of the implemented
solution.

The second reason is that effective algorithms to solve this kind of mathemati-
cal programs have now been developed for decades. Nowadays, off-the-shelf libraries
with high-level Application Programming Interface (API) are available to researchers
and practitioners and considerably facilitate the development of MILP-based meth-
ods.

This leads to the third reason: some uncertain mathematical programs can be
recast – sometimes approximately – as deterministic MILP models, or can be tackled
with help of procedures that iteratively solve such models. The degree of efficiency
attained by MILP solvers also make them tools of choice to develop competitive
algorithms for more complex problems.

Bi-level programs Bi-level programming typically models situations where a pair
of actors, with potentially conflicting interests, have to make decisions in a system
where their choices interact with each other. The terminology leader/follower is
often used in the literature to refer to the sequential decision making, with the leader
making a decision first and the follower second. In this paradigm, the leader has to
choose his optimal decision, knowing that the follower will react to these decisions
by optimizing their own objective function (see for example [Dempe 2002]).

(Bi− level) : min
α∈Λ,β

F (α,β) (1.1.7)

s.t. G(α,β) ≤ 0 (1.1.8)

β ∈ arg min
β′∈Π
{f(α,β′) : g(α,β′) ≤ 0} (1.1.9)

Here, α ∈ Λ ⊂ Rn1 (resp. β ∈ Π ⊂ Rn2) is the set of leader’s (resp. follower’s)
decision variables. Functions F and f are the objective functions of the leader and
the follower, respectively, while functions G and g are used to define the actors’
interacting constraints. In our case of interest, F , G, f and g are linear functions,
and Λ and Π can include integrality restrictions. Bi-level linear programs are NP-
hard in general even when no integrality restriction is imposed [Bard 1991].

1.1.2 Uncertain mathematical programs

In practice, most applications involve uncertain data. This is especially true in the
fields of planning and scheduling, which by nature are about taking decisions that
will be implemented in the future. This is also true for any problem related to a
physical system, where the precision of measurements is limited. In some situations,
ignoring the fluctuation between the value of the data at the time of decision-making
and their actual value leads to significantly suboptimal or infeasible solutions (see
for example the instructive numerical study on NETLIB problems in [Ben-Tal &
Nemirovski 2000]). A variety of paradigms has been proposed since [Dantzig 1955]

4 Chapter 1. Introduction

to deal with the uncertainty at the modeling stage of the problem solution process.
Several ways of integrating uncertainty into the model can be naturally distinguished
using the mathematical tool of random variables and their basic characteristics.

Notations In this document, we adopt notations close to those employed in [Birge
& Louveaux 2011] or [Shapiro et al. 2014]. Unless stated otherwise, we denote by ξ̃
the random vector that reflect the impact of the random events on our data, Ξ its
support, and ξ ∈ Ξ a realization of this random vector. In this context, we redefine
function f to incorporate this piece of information: f : Rn ×Ξ→ R and f(x, ξ) is
the value of solution x under uncertainty realization ξ. Functions gi, i = 1, . . . ,m

are modified likewise. Moreover, in more explicit models such as (1.1.4)-(1.1.6), we
make the dependence of data on random events explicit using a functional notation.
For example, c(ξ) denotes the cost vector under random realization ξ.

We now very briefly introduce the modeling paradigms used in this manuscript
for uncertain problems through key modeling components. The topic of uncertain
mathematical programs is covered in [Ben-Tal et al. 2009,Birge & Louveaux 2011,
Shapiro et al. 2014,Shapiro 2021].

1.1.2.1 Handling optimality and feasibility

Relying on random variables to express the problem basically extends both objective
function and constraints functions (respectively f and g in (1.1.1)-(1.1.3)) to random
variable valued-functions. Then, one has to specify the notion of feasibility of a
solution (a random vector in this context) as well as of its optimality. We now
introduce a few approaches which have been developed for this purpose.

Risk-neutral stochastic programming In this setting, we consider that the
constraints must be satisfied with probability one, while the expected value of the
objective function must be optimized:

inf Eξ̃[f(x, ξ̃)] (1.1.10)

s.t. g(x, ξ̃) ≤ 0 a.s. (1.1.11)

x ∈ S (1.1.12)

Optimizing the average value of the objective function makes most sense when
the decision prescribed by the model will be used many times once implemented, so
that the empirical, observed, cost tends towards its theoretically computed expected
value thanks to the Law of Large Numbers (provided the random data incorporated
into the decision model reflects the true distribution of data). This approach is risk-
neutral in the sense that it mitigates extremely unfavorable and favorable outcomes.
It does not distinguish between two solutions providing the same expected objective
function, the first one giving only average quality solutions, and the second one
giving only very good or very bad decisions depending on the random scenario. This
is relevant in applications where a bad realization of uncertainty, or even several in

1.1. Mathematical programming models 5

a row, cannot harm the decision-maker. This is for example the case with very large
companies, which are not likely to go bankrupt if the returns of one of their branches
is a few percents less than expected for some year.

Regarding feasibility, the solution is required to be feasible for all subsets of
realizations of uncertainty except those whose probability measure equals zero. In
this manuscript, only discrete scenario-based approaches are developed. In this
context, constraints must be satisfied in each non-zero probability scenario.

Risk-averse stochastic programming These approaches are able to capture
the variability of the objective function depending on uncertainty realizations. The
information about the random variable representing the objective function is sum-
marized into a single real value using a risk measure M:

inf Mξ̃[f(x, ξ̃)] (1.1.13)

s.t. g(x, ξ̃) ≤ 0 a.s. (1.1.14)

x ∈ S (1.1.15)

Risk measure M takes various forms in the literature, each with a specific mean-
ing, and theoretical as well as numerical advantages and shortcomings. In the finance
literature, the concept of coherent risk measures [Artzner et al. 1999] is developed,
to characterize their desired properties in practice. We refer to [Shapiro et al. 2014]
for a thorough discussion of those properties, frequently encountered measures and
their relations with other ways of coping with uncertainty in decision problems.

In this document, we only present from this rich theoretical background the
coherent and easily linearized measure Conditional Value-at-Risk CVaR. It is most
conveniently described using the non-coherent, non-linear, risk measure Value-at-
Risk. Given a probability threshold α ∈ [0, 1], the value at risk α of a random
variable with continuous probability distribution X̃ is VaRα(X̃) is:

VaRα(X̃) = inf
{
t : P(X̃ ≤ t) ≥ 1− α

}
The value at risk 1% associated with the cost of a solution x, VaR0.01(f(x, ξ̃)), can
be understood as the worst possible cost of solution x in the 99% most favorable
scenarios. This risk measure is by nature based on a probabilistic constraint, which
are in general very hard to handle when solving optimization problems. Moreover,
it is not a coherent measure as defined by [Artzner et al. 1999], which may render
its use in practice irrelevant. The conditional value at risk α of a random variable
with continuous probability distribution X̃ is defined as:

CVaRα(X̃) = E
[
X̃|X̃ ≥ VaRα(X̃)

]
The conditional value at risk 1% associated with the cost of a solution x,
CVaR0.01(f(x, ξ̃)), can be understood as the average cost of solution x in the 1%

6 Chapter 1. Introduction

least favorable scenarios. It has been proven in [Pflug 2000] that CVaR is a coher-
ent risk measure, and [Rockafellar & Uryasev 2000] show that it can be alternatively
expressed as:

CVaRα(X̃) = inf
t

{
t+

1

1− α
E
[
(X̃ − t)+

]}
Computing this value can then be done with help of a linear program, merely by
linearizing the expression (X̃ − t)+ .

Robust optimization Introduced by [Soyster 1973], robust optimization is ini-
tially oriented towards feasibility: it aims at finding solutions that are immune to
infeasibility when some parameters of the model deviate from their nominal values.
It ignores probability distributions and requires only the definition of the so-called
uncertainty set, which contains all the plausible values of the uncertain parameters
and can be assimilated to Ξ, the support of the random variables. The constraints
must be satisfied for all elements of Ξ. The idea is extended to the objective function,
by modeling it as min t subject to the additional constraints t ≥ f(x, ξ) ∀ξ ∈ Ξ.
This can be seen as a special case of stochastic programming where the risk measure
is the worst-case value: MX̃ = sup{X : X ∈ support(X̃)}. As such, in applications
where the effects of uncertainty can be catastrophic, robust optimization presents
itself as a viable modeling approach. Robust mathematical programming models
take the form:

inf sup
ξ∈Ξ

f(x, ξ̃) (1.1.16)

s.t. g(x, ξ) ≤ 0 ξ ∈ Ξ (1.1.17)

x ∈ S (1.1.18)

This paradigm is, in certain aspects, more attractive than stochastic program-
ming. Since only the support of the random variable is required, it can be used
without knowledge of probability distributions or of relevant sets of scenarios. Fur-
ther, robust optimization models with polyhedral or convex uncertainty sets lead
to deterministic equivalent formulations that are often in the same complexity class
as their deterministic counterparts (see e.g. [Ben-Tal et al. 2009] for an in-depth
discussion). For these reasons, robust optimization has enjoyed and continues to
enjoy a growing attention from the research community. Advances in static robust
optimization are presented in [Bertsimas et al. 2011] and [Gabrel et al. 2014].

Other approaches Assuming that we know the distribution of the random vari-
ables, the question of feasibility can be addressed through the concept of proba-
bilistic constraints (or chance constraints). [Charnes & Cooper 1959, Ahmed &
Shapiro 2008,Birge & Louveaux 2011] It basically consists in replacing constraints
g(x) ≤ 0 with P(g(x, ξ̃) ≤ 0) ≥ α, with α ∈ [0, 1] . This intuitive modeling tool
unfortunately leads to very hard mathematical programs in general: the chance-
constrained counterpart of linear programs is already NP-hard.

1.1. Mathematical programming models 7

1.1.2.2 Decision stages

Orthogonal to the way optimality and feasibility are handled in uncertain decision
problems, the articulation of the decisions and of the revelation of the value of
uncertain data is an important feature which one has to determine when translating
a real decision process into a formal mathematical description. This is commonly
addressed using the concept of decision stages. Once again, the interested reader
may refer to [Ben-Tal et al. 2009, Birge & Louveaux 2011, Kall & Wallace 1994,
Shapiro et al. 2014].

Static models In static (or single-stage) models (Figure 1.1.1), all decisions must
be taken before the actual value of the uncertain parameters is revealed.

Time

Take decision x
knowing only

characteristics of ξ̃

Actual value
ξ ∈ Ξ

is revealed
Undertake decision x

Figure 1.1.1: In static models, the decision-maker must take her decisions before
knowing the realization of the uncertain parameters.

Hence, one must choose the vector of decision variables x, that must a priori
comply with the feasibility restrictions since no action is allowed afterward. For-
mally, static mixed integer linear stochastic programs take the following form:

min Mξ̃

[
c(ξ̃)>x

]
(1.1.19)

s.t. A(ξ̃)x ≤ b(ξ̃) a.s. (1.1.20)

x ∈ S (1.1.21)

Because robust optimization assumes no probability distribution, the constraints
of static robust mixed integer linear programming models take a slightly different
form:

min max
ξ∈Ξ

c(ξ)>x (1.1.22)

s.t. A(ξ)x ≤ b(ξ) ∀ξ ∈ Ξ (1.1.23)

x ∈ S (1.1.24)

Notice that in the case of stochastic programs where uncertainty is encoded as a
discrete and finite set of scenarios, null-probability scenarios are inherently excluded
from Ξ, by definition of the support of random variables. Hence, constraints (1.1.20)
can be replaced by (1.1.23).

8 Chapter 1. Introduction

The fact that x must be completely determined from the start has an interesting
consequence: in static models, the uncertainty can be considered independently in
each constraint (this is discussed in [Ben-Tal & Nemirovski 1999] for example). This
leads to the convenient result that constraints (1.1.23) can be reformulated as:

Ai(ξ)x ≤ bi(ξ) ∀i, ξ ∈ Ξ

⇔max
ξ∈Ξ
{Ai(ξ)x− bi(ξ)} ≤ 0 ∀i (1.1.23′)

Then, it is possible to obtain an equivalent model by independently rewriting each
constraint with help of various techniques, such as the ones introduced in [Ben-Tal
& Nemirovski 1999] for convex uncertainty sets, of which polyhedral uncertainty
set [Bertsimas & Sim 2004] is a special case.

Unfortunately, this also formally shows that static models are not suitable for
many real situations. There are many applications where such models artificially
multiply the variability of the parameters, leading to excessively conservative solu-
tions or infeasible programs. To remedy this issue, one might turn to distributionally
robust models [Goh & Sim 2010]. When the underlying application permits it, one
might also consider introducing recourse (adjustability/adaptability) in a second
decision stage that occurs after the realization of uncertainty.

Two-stage models In two-stage models, decisions are partitioned into first-stage
variables, whose value must be fixed before knowing the realization of the uncer-
tainty, and second-stage (or recourse) decisions that complete the solution based
on full knowledge of the data in order to determine all required decisions, recover
feasibility and/or evaluate the quality of the solution after random events occur.

Time

Take decision x
knowing only

characteristics of ξ̃

Actual value
ξ ∈ Ξ

is revealed

Take recourse decision
y(x, ξ)

Figure 1.1.2: In two-stage models, the decision-maker first takes planning decisions.
Then, the value of uncertain parameters is revealed. Finally, recourse decisions can
be taken to complete the solution.

The case of two-stage stochastic linear programs was identified as especially
important in practice, as soon as a few years after the development of efficient
methods for linear programming. In [Beale 1955,Dantzig 1955], one can find early
occurrences of formulations for two-stage and multi-stage programs very close to the
ones considered as standard nowadays [Birge & Louveaux 2011,Shapiro et al. 2014]:

1.2. Relaxation, reformulation and decomposition 9

min Mξ̃

[
c>x+ min q(ξ̃)y(ξ̃)

]
(1.1.25)

s.t. Ax = b (1.1.26)

T(ξ̃)x+ W(ξ̃)y(ξ̃) = h(ξ̃) a.s. (1.1.27)

x ∈ Sx,y(ξ̃) ∈ Sy (1.1.28)

This model makes the dependence of second-stage variables to the uncertain parame-
ters explicit using the functional notation: y(ξ) is the value of the recourse decision
vector under revealed parameters ξ. Section 1.2 presents classical techniques to
handle a large number of scenarios in two-stage stochastic MILP settings.

The same kind of models can represent two-stage robust problems, also called
adjustable [Ben-Tal et al. 2004], adaptable [Bertsimas & Caramanis 2010,Hanasu-
santo et al. 2015], adaptive [Bertsimas et al. 2013b], with recourse [Thiele et al. 2009]
or recoverable [Liebchen et al. 2009]:

min t (1.1.29)

s.t. t ≥ c>x+ q(ξ)y(ξ) ∀ξ ∈ Ξ (1.1.30)

Ax = b (1.1.31)

T(ξ)x+ W(ξ)y(ξ) = h(ξ) ∀ξ ∈ Ξ (1.1.32)

x ∈ Sx (1.1.33)

y(ξ) ∈ Sy ∀ξ ∈ Ξ (1.1.34)

Introducing additional notations for the feasible sets X = {x ∈ Sx : Ax = b}
and Y(x, ξ) = {y ∈ Sy : W(ξ)y = h(ξ)−T(ξ)x}, these problems can also be cast
more compactly:

min
x∈X

max
ξ∈Ξ

min
y∈Y(x,ξ)

c>x+ q(ξ)y (1.1.35)

The difficulty of these problems has long been established in the literature even in
the simple case of two-stage adjustable robust optimization with linear programming
problems in both stages, and a polyhedral uncertainty set (see [Ben-Tal et al. 2004]).

1.2 Relaxation, reformulation and decomposition

The research presented in this manuscript is mostly about hard combinatorial opti-
mization problems. This section first motivates our use of relaxation, decomposition
and reformulation approaches to deal with them. Then it recalls classical techniques
in MILP. We also present a high-level description of various algorithms used in the
remainder of the manuscript to obtain (near-)optimal feasible solutions from the
iterative solution of relaxations.

10 Chapter 1. Introduction

1.2.1 Motivation

The different approaches described in this document to tackle NP-hard problems
are based on bounding problems, which are approximations that can be solved ef-
ficiently. This can be done by imposing new restrictions, leading to heuristic al-
gorithms providing primal bounds. For example, imposing the sequence of jobs in
machine scheduling problems yields (often polynomial time-) list algorithms. An-
other way to approximate hard problems is to remove some constraints, leading to
relaxations, providing dual bounds. These bounds are iteratively refined using var-
ious schemes until they coincide (or the duality gap is sufficiently small), proving
the (near-)optimality (see Section 1.2.4) of the best known primal bound.

Let us state the precise definition of the term relaxation, which has entered the
folklore of combinatorial optimization, that is used in this manuscript. It is adapted
from [Wolsey 2020], with our notations.

Definition 1.2.1 (Relaxation of a combinatorial optimization problem). A problem
(RP) : minx∈XR fR(x) is a relaxation of problem (P) : minx∈X f(x) if :

(i) X ⊆ XR, and

(ii) fR(x) ≤ f(x) for all x ∈ X .

The optimal value of (RP) is a dual bound for problem (P): Opt(RP) ≤ Opt(P).

The linear relaxation The most well-known and probably the most used re-
laxation when solving MILP models is the linear relaxation, which is obtained by
merely dropping all integrality restrictions of the decision variables. The result-
ing approximation can then be solved using variations of simplex or interior point
algorithms (see e.g. [Vanderbei 2020] for both an overview and details on this topic).

Definition 1.2.2 (Linear relaxation of a mixed integer set). Let us consider the
mixed integer set X = {x ∈ Rn : Ax ≤ b} ∩ (Zp × Rn−p). The linear relaxation of
X , denoted by X in this document, is defined as X = {x ∈ Rn : Ax ≤ b}.

Definition 1.2.3 (Linear relaxation of a mixed integer linear program). Let us
consider the MILP model (P) : min{c>x : x ∈ X}, with X = {x : Ax ≤ b,x ∈
Zp × Rn−p}. The linear relaxation of (P), which is denoted by (P), is defined as
(P) : min{c>x : x ∈ X}.

Definition 1.2.4 (Strength of a relaxation). Let (RP1) and (RP2) be two relaxations
of problem (P). Relaxation (RP1) is said to be stronger than (RP2) if and only if
Opt(RP1) > Opt(RP2).

Remark 1.2.1 (Optimality of a relaxed solution). When a relaxation (RP) has the
same objective function as the original optimization problem (P) (i.e. fR = f), any
optimal solution solution of (RP) that is feasible for (P) is also optimal for (P).
This does not hold in general when fR 6= f .

1.2. Relaxation, reformulation and decomposition 11

Practical difficulty of MILP When attempting to solve one of the types of prob-
lems described in Section 1.1 with classical integer linear programming approaches,
one usually encounters at least one of the following issues:

Issue 1 Poor relaxation: assuming an integer linear formulation is available for the
problem, the global solution method suffers from poor dual bounds.

Issue 2 Severely non-linear and non-convex formulations (e.g. bi-level or two-stage
robust programs).

Issue 3 Large-scale mathematical programs: this typically arises in the context of
stochastic programming with a large number of realizations, robust optimiza-
tion with infinitely many constraints and/or variables, large-scale deterministic
problems that are common in practical applications.

1.2.1.1 Why reformulate?

In this document, reformulation techniques are used to achieve two objectives. First,
we design deterministic MILP equivalent formulations of two-stage uncertain prob-
lems (see Section 3.1 or Section 3.2), hence we benefit from the abundant MILP
toolbox to propose solution approaches. Second, the linear relaxation is used as a
basis of many branch-and-X type algorithms (generic branch-and-bound, branch-
and-cut, dedicated or generic branch-and-price. . .). Very efficient commercial codes
that implement LP-based branch-and-cut procedures are now available and easy to
use, even for practitioners that are not optimization experts. Having a model with
strong linear relaxation on hand can drastically change the practical solution of a
combinatorial optimization problem through these means. This is one of the main
motivations for reformulation techniques: in order to address Issue 1, we seek for
stronger formulations based on the following ideas.

Ideal formulation of an MILP problem Let us consider the MILP problem
(1.1.4)-(1.1.6), that we recall here:

(P) : min
{
c>x : x ∈ X

}
, with X =

{
x : Ax ≤ b,x ∈ Zp × Rn−p

}
.

Since the objective function of (P) is convex, at least one of its optimal solutions
is an extreme point of the convex hull of X . Hence, this problem is equivalent
to min{c>x : x ∈ conv X}. Assuming that A and b are rational, conv X is a
polyhedron [Meyer 1974]. Thus, (P) is equivalent to the Linear Programming (LP)
model:

(LP ∗P) : min
{
c>x : A∗x ≤ b∗,x ∈ Rn

}
with A∗ and b∗ chosen such that {x : A∗x ≤ b∗,x ∈ Rn} = conv X .

So, any rational MILP problem can virtually be solved through an equivalent
LP problem. Unfortunately explicitly determining the value of A∗ and b∗ is NP-
hard when (P) is NP-hard (as a consequence of the equivalence of separation and
optimization [Grötschel et al. 1981]).

12 Chapter 1. Introduction

Exploiting ideal formulations of subsystems Even if trying to obtain an ideal
formulation of the whole problem might not be helpful in practice, we can sometimes
identify remarkable subsystems for which we are able to easily (not necessarily
in polynomial time) write the ideal LP formulation, leading to a new, stronger
formulation. Formally, consider a mixed-integer set with the "natural" formulation
Y = Y ∩ (Zp′ × Rn′−p′) with Y = {y ∈ Rn′ : Dy ≤ d}, and the ideal formulation
Y∗ = Y∗ ∩ (Zp′ × Rn′−p′) with Y∗ = {y ∈ Rn′ : D∗y ≤ d∗}. Clearly, we have
Y = Y∗, conv Y = conv Y∗ = Y∗, and Y∗ ⊆ Y with, in general, Y∗ 6= Y.

Now let us consider the following combinatorial optimization problem:

(CO) : min
{
c>xx+ c>y y : Bxx+ Byy ≤ b,x ∈ X ,y ∈ Y

}
(1.2.1)

Using formulation Y yields a linear relaxation whose feasible set is:{
(x,y) : Bxx+ Byy ≤ b,x ∈ X ,y ∈ Y

}
.

Using formulation Y∗ it becomes:{
(x,y) : Bxx+ Byy ≤ b,x ∈ X ,y ∈ conv Y

}
, (1.2.2)

which makes the linear relaxation strictly stronger in most cases. Section 1.2.2
shows how to systematically obtain the ideal formulation of some subsystems using
extended formulations. Although this seems to worsen Issue 3 at first sight, the
trade-off between size and strength of the formulations is sometimes beneficial to
large models. Moreover, some of these techniques come with the possibility of dy-
namically generating the resulting formulations through column and row generation
algorithms, mitigating the effect of increasing the size of the formulation.

1.2.1.2 Why decompose?

We see decomposition techniques as algorithmic strategies that exploit the inde-
pendence of some subsystems, or the loose connection between them. A natural
decomposition emerges between the two levels in bi-level problems, the two stages
in the stochastic or robust settings and between the min and max problems in static
robust context. In many practical contexts, reasonable size MILP models are ap-
propriate for the first stage alone, and for each of the scenarios of the second stage.
However, when considering them together as a whole, they often exhibit Issue 2
or Issue 3. Decomposition approaches permit treating them separately, thus ben-
efiting from their simple structure, the understanding of it and the tools exploiting
it.

Many deterministic problems exhibit a decomposable structure too: an appro-
priate partition of the set of variables (some possibly artificially introduced) reveals
a set of easy constraints and a set of complicating constraints. Easy constraints
form a well-structured subsystem in the sense that, when complicating constraints
are ignored, effective algorithms exist for its solution. Decomposition techniques

1.2. Relaxation, reformulation and decomposition 13

allow the computation of dual bounds by iteratively solving these easy subprob-
lems (Lagrange relaxation), or by dynamically generating their ideal formulation
(Dantzig-Wolfe decomposition). Constraint generation methods, such as Benders
decomposition, replace their natural set of variables and constraints with a (usually
very large) set of constraints that are iteratively determined and added by solving
these subproblems.

1.2.2 Classical mixed integer linear programming reformulations

This section is a short reminder of some reformulation techniques commonly used in
mixed integer linear programming. Along with Dantzig-Wolfe (DW) and Benders
reformulations, we describe the less well-identified modeling tool that consists in
rewriting a sequential decision process as a linear program. Both an overall view
and details about these and other decomposition approaches can be found in the
comprehensive paper [Vanderbeck & Wolsey 2010].

1.2.2.1 Reformulation of sequential decision processes

Some problems are more easily described using the concept of state of the system,
actions applicable from a state, and the state resulting by performing a specific
action from a specific state. Dynamic Programming (DP) [Bellman 1954] is widely
used to tackle such deterministic decision processes, particularly in the field of pro-
duction planning and scheduling. This name identifies both the paradigm used
to model problems through recurrence equations, and the algorithms and algorith-
mic strategies employed to solve them (memoization, label setting, label correct-
ing, iterative state space algorithms (see 1.2.4.4)). . . Such routines can be used in
a straightforward way to solve relatively stylized problems (see a few examples in
scheduling [Brucker 2004b,Brucker 2004a,Pinedo 2012], production planing [Pochet
& Wolsey 2006], packing [Dowsland & Dowsland 1992]. . .). However, when the
sequential decision process is part of a larger system, they cannot be directly used.

Some dynamic programs have an LP formulation, whose extreme point solutions
satisfy possible integrality requirements. These systems can be integrated as sub-
systems of MILP models encompassing the whole problem. This helps solve Issue
1 by providing an ideal formulation for those subsystems (see Section 1.2.1.1). On
the other hand, doing so typically worsens Issue 3. Solution methods can integrate
algorithmic strategies, such as iterative state space methods, to dynamically man-
age the size of the model [Ibaraki 1987]. These approaches become more and more
popular with the revival of decision diagrams [Bryant 1986, Hooker 2013]. Note
that the resurgence of decision diagrams being mostly posterior to our use of such
techniques, we do not really relate them to our work, although it is clear that it
could have benefited from the recent results in this area. In this document, we
merely stick to our initial view, based on more general DP. The relation between
DP and decision diagrams is discussed in [Hooker 2013]. The interested reader can
find more formalism and details about DP in [Karp & Held 1967] (that connects it

14 Chapter 1. Introduction

to automatons and grammars).

A class of simple dynamic programs In order to stay concise and only intro-
duce what is necessary for the rest of this document, we focus on a special class of DP
models. Note however that what we expose below can be generalized to some extent
using among other things hypergraphs instead of graphs (see [Martin et al. 1990] for
theoretic results, and e.g. [Clautiaux et al. 2018] for a real-life application of a 2D
packing problem). Introducing stochasticity leads to considering Markov Decision
Processes, for which [Guillot & Stauffer 2020], among other things, generalize some
ideas exposed below.

The dynamic programs we consider can be defined by a tuple M =

(Q⊥,Σ, δ, q0, q•, c), where Q⊥ = Q ∪ {⊥} is a finite set of states (also referred to
as the state space), Σ a finite set of actions or transitions, δ a transition function
defined from Q⊥ ×Σ to Q⊥, q0 ∈ Q an initial state, and q• ∈ Q a final state. Sym-
bol ⊥ ∈ Q⊥ denotes a non-final state that gathers infeasible sequences. Specifically,
we have δ(⊥, a) = ⊥ for every transition a ∈ Σ (i.e.,⊥ is an absorbing state) and
δ(q, a) = ⊥ if transition a is not applicable to q ∈ Q. The cost function c is defined
from Q⊥×Σ to R∪{+∞}. Without loss of generality, we assume that c(q, a) = +∞
for every q ∈ Q⊥ and every a ∈ Σ such that δ(q, a) = ⊥. Let

−→
Φ : Q⊥ → R ∪ {+∞}

be the function that associates to each state q ∈ Q⊥ the best cost to switch from
state q0 to q. The DP problem (Λ) is to compute the value of

−→
Φ (q•), the functional

equations of Λ being written as:

−→
Φ (q0) = 0 (1.2.3)
−→
Φ (q) = inf

{−→
Φ (q′) + c(q′, a)| q′ ∈ Q, a ∈ Σ, δ(q′, a) = q

}
∀q ∈ Q− {q0} (1.2.4)

Formulation as a shortest path problem First, we introduce the transition
graph GM = (VM, AM) associated with M. Graph GM is a weighted directed
acyclic multigraph. Each node in VM represents a state of the DP. Let us denote
q(v) ∈ Q the state associated with node v ∈ VM and v(q) the node associated with
a state q ∈ Q. Each arc of the graph corresponds to applying an action from a
particular state. Specifically, for each state q ∈ Q and each transition a ∈ Σ such
that δ(q, a) 6= ⊥, the graph contains an arc in AM labeled with a weight c(q, a).
We have AM = {

(
v(q), v(δ(q, a)), c(q, a)

)
: q ∈ Q ∧ a ∈ Σ ∧ δ(q, a) 6= ⊥}. For each

arc α ∈ AM, we denote t(α), h(α) and c(α) its tail, head, and cost, respectively.
Solving (Λ) is equivalent to computing a shortest path in GM from q0 to q•.

Formulation as a linear program This shortest path problem admits a network
flow LP model. Associating decision variables ϕα to the arcs in multidigraph GM

1.2. Relaxation, reformulation and decomposition 15

yields the following arc-flow MILP formulation of (Λ), denoted (FΛ):

(FΛ) : min
∑
α∈AM

c(α)ϕα (1.2.5)

s.t.
∑

α∈AM:h(α)=v

ϕα −
∑

α∈AM:t(α)=v

ϕα =

1 if q(v) = q0

0 if q(v) ∈ Q \ {q0, q•}
−1 if q(v) = q•

v ∈ VM

(1.2.6)

ϕα ∈ [0, 1] α ∈ AM. (1.2.7)

The objective function (1.2.5) minimizes the total cost to reach state q• from q0.
Constraints (1.2.6) are the flow conservation constraints. Finally, constraints (1.2.7)
define the domain of the decision variables. It is crucial to remark that (1.2.6),
(1.2.7) being network flow constraints with integer right-hand-side, extreme point
solutions of (FΛ) are integer.

Reformulation of a subsystem Let us consider a combinatorial optimization
problem where a subset of variables y must take their value so that they follow the
sequential decision process defined by DP (Λ). More precisely, for all a ∈ Σ, variable
ya is equal to the number of times action a is selected in the sequence of decisions,
and Y is the set of feasible vectors y according to (Λ). For the sake of conciseness,
let us rewrite (FΛ) using the following matrix notation: (FΛ) : min{c>ϕϕ : Φϕ =

bΛ,ϕ ≥ 0}. Moreover, let us denote by AΛ the matrix such that AΛ
i,α = 1 if arc

α ∈ A corresponds to applying action i ∈ Σ, and 0 otherwise. Then we have the
following ideal formulation for Y:

y ∈ conv Y ⇔ y ∈
{
AΛϕ : Φϕ = bΛ,ϕ ≥ 0

}
.

This expression can be plugged into the model (1.2.1) by either replacing y
(1.2.8) or by replacing the constraints y ∈ Y (1.2.9), or a mix of the two approaches.

(CODP1) : min
{
c>xx+ c>yAΛϕ : Bxx+ ByA

Λϕ ≤ b,x ∈ X ,

Φϕ = bΛ,ϕ ≥ 0,AΛϕ ∈ Zp
′ × Rn

′−p′
}

(1.2.8)

(CODP2) : min
{
c>xx+ c>y y : Bxx+ Byy ≤ b,x ∈ X ,

y = AΛϕ,Φϕ = bΛ,ϕ ≥ 0,y ∈ Zp
′ × Rn

′−p′
}

(1.2.9)

Directly including ϕ in the objective function as in (1.2.8) is helpful when the
cost of using an action depends on the state it is applied from. Keeping variables y in
the model allows branching on them in a branch-and-X algorithm. The drawback of
this approach is that the number of ϕ-variables is equal to the number of transitions
in Λ, while the number of flow conservation constraints is approximately equal to
its number of states.

16 Chapter 1. Introduction

Work with DP-based (re)formulations Some of the work presented in this
manuscript rely on a Dynamic Programming formulation, in particular those based
on State-Space Relaxation (SSR) techniques (see Sections 1.2.3.3 and 1.2.4.4), where
the models at the heart of the solution approach are shortest path reformulations
directly derived from a DP. [Detienne et al. 2012, Tanaka et al. 2015, Detienne
et al. 2016] describe applications of SSR for single machine, jobshop and flowshop
scheduling (Section 2.1), respectively, and [Clautiaux et al. 2021] describes an ap-
plication for a generalization of the knapsack problem (Section 2.2). The primary
motivation is to obtain strong dual bounds (Issue 1).

In [Griset et al. 2021], the possible schedules of power plants are modeled through
a state/transition graph embedding various complex constraints. With the purpose
of coping with Issue 1 and Issue 2, we use this graph to build a MILP model on
top of which we design our methods (Section 3.1).

Facing Issue 2 in [Arslan & Detienne 2021], we derive deterministic MILP for-
mulations for two-stage robust integer programs, which rely on the convexification of
the second stage feasible set. When the application possesses the appropriate struc-
ture, the DP-based reformulation is a possible way of performing this convexification
(Section 3.2).

1.2.2.2 Dantzig-Wolfe reformulation/decomposition

The classical Dantzig-Wolfe reformulation [Dantzig & Wolfe 1960,Vanderbeck 2000]
helps solve Issue 1 by replacing a specific subsystem with its ideal formulation (see
Section 1.2.1.1). Two close but different approaches are described in the literature:
[Wolsey & Nemhauser 1999,Vanderbeck 2000,Lübbecke & Desrosiers 2005] present
the discretization approach, for integer subsystems and the convexification approach,
that applies also for mixed integer sets. The difference lays in the way the integrality
requirements on the subsystem solutions are handled.

We first focus on the convexification approach, which it is based on the Minkow-
ski-Weyl theorem for polyhedra. Let us once again consider a mixed-integer set
with the natural formulation Y = {y : Dy ≤ d,y ∈ Zp′ × Rn′−p′}. As recalled in
Section 1.2.1.1, when D and d are rational, conv Y is a polyhedron. Then according
to Minkowsky-Weyl theorem, it can be expressed as a convex combination of its N
extreme points and conic combination of its N ′ extreme rays:

conv Y =
{

Yvλ+ Yrµ : 1>λ = 1,λ ∈ RN+ ,µ ≥ RN
′

+

}

Here, each column of matrix Yv (resp. of matrix Yr) is the vector describing one
extreme point (resp. one extreme ray) of Y.

1.2. Relaxation, reformulation and decomposition 17

Reformulation of a subsytem Let us instantiate problem (1.2.1) as a MILP:

(OCMILP) : min c>xx+ c>y y

s.t. Bxx+ Byy ≤ b
Ax ≤ a,x ∈ Zp × Rn−p

Dy ≤ d,y ∈ Zp
′ × Rn

′−p′

The DW reformulation by convexification of this model is obtained by replacing
y with its Minkowski-Weyl expression:

(OCDW) : min c>xx+ c>y (Yvλ+ Yrµ)

s.t. Bxx+ By (Yvλ+ Yrµ) ≤ b (1.2.10)

Ax ≤ a,x ∈ Zp × Rn−p (1.2.11)

1>λ = 1 (1.2.12)

λ ∈ RN+ ,µ ≥ RN
′

+ (1.2.13)

(Yvλ+ Yrµ) ∈ Zp
′ × Rn

′−p′ (1.2.14)

In case of multiple independent subsystems, the same reformulation approach
can be used for each of them separately. However, when there are identical sub-
systems, enforcing constraint (1.2.14) in a branch-and-X method turns out to be
non-trivial. The discretization approach is not appropriate when Y is not an integer
set, but it simplifies the management of the integrality restrictions in practice. The
difference is essentially to replace constraint (1.2.14) with λ ∈ {0, 1}N ,µ ∈ NN ′ .

Solution via a decomposition algorithm Obviously, the size of model (OCDW)

is usually very large, but finite. The introduction of an exponential number of
variables in the formulation would worsen Issue 3 if algorithmic strategies were
not developed to deal with them. The standard way to solve (OCDW) is through a
branch-and-price procedure, which solves its linear relaxation and uses branching to
enforce the integrality requirements. Branch-and-price algorithms take advantage
of the known implicit definition of Yv and Yr (e.g. the MILP formulation of Y, or
the set of all pseudo-schedules on machine 2 . . .) to solve (OCDW) through column
generation.

The column generation procedure [Dantzig & Wolfe 1960] is comprised of two
elements. The restricted master program (RMP) simply is a truncated version of
(OCDW) where only a subset of λ− and µ−variables are included. Model (RMP) is
iteratively solved and missing variables are integrated into it until one can prove the
optimality of the current solution for (OCDW) without adding more variables. The
global procedure can be seen as an implementation of the primal simplex algorithm
[Dantzig et al. 1955] where finding the next column entering the basis is done in
two ways. Given current simplex multipliers, it is first done by inspecting the
reduced cost of the variables already in (RMP). This is done until all variables in
(RMP) have non-negative reduced costs (that is, (RMP) is solved using the simplex

18 Chapter 1. Introduction

algorithm). Then the oracle, second ingredient of the procedure, is used to look for
a negative reduced cost variable in (OCDW) (the oracle solves the so-called pricing
problem). According to the definition of Yv and Yr, each λ− and µ−variable
corresponds to a feasible solution or an extreme ray of Y. Thus, given simplex
multipliers (π, η) associated with constraints (1.2.10) and (1.2.12), respectively, the
pricing problem reads:

(Pricing(π, η)) : inf

{(
cy −B>yπ

)>
y − η : Dy ≤ d,y ∈ Zp

′ × Rn
′−p′
}

This decomposition algorithm makes DW reformulation an interesting technique
even in some cases when it does not improve the strength of the relaxation (i.e. when
we already have Y = conv Y, like in Section 3.1), because it contributes to the
practical management of huge models.

The case of independent subsystems The last remark is especially true when
Y is composed of a set K of independent subsystems. In this case, D is block
diagonal, and Y =×k∈K Yk, with Yk = {y : Dky ≤ dk,y ∈ Zp′ × Rn′−p′}. This
leads to

conv Y =×
k∈K

{
Yvkλk + Yrkµk : 1>λk = 1,λk ∈ RNk+ ,µk ≥ RN

′
k

+

}
The formulation (OCDW) is adapted in consequence. In practice, the pricing prob-
lem can be decomposed into one subproblem per subsystem, and various policies
can be defined concerning which subproblem(s) should be solved at each iteration.
This makes DW decomposition particularly interesting to deal with problems with
a constraint matrix exhibiting a block diagonal structure with a set of
linking rows.

In the vein of the diverse improvements of the algorithmic solution of MILP
problems, DW decomposition has seen many developments [Pessoa et al. 2018a,
Sadykov et al. 2019,Bergner et al. 2015,Elhallaoui et al. 2005] making the approach
very effective for more and more classes of problems [Pessoa et al. 2020, Bulhões
et al. 2020].

Work with DW reformulation We describe an application of Dantzig-Wolfe
reformulation and column generation on a large-scale real-life problem in [Griset
et al. 2021] (Section 3.1). This is done in conjunction with a DP based reformulation,
in order to cope with Issue 3 caused by the latter. The technique is also used in
[Arslan & Detienne 2021] (Section 3.2) in the two-stage robust setting as a means for
convexifying the second stage feasible set, in order to write a deterministic equivalent
formulation (Issue 2).

1.2.2.3 Benders reformulation/decomposition or L-shaped method

Benders decomposition has been introduced by [Benders 1962] to solve MILP models
by decomposing the problem into an integer programming problem and a linear

1.2. Relaxation, reformulation and decomposition 19

programming problem. Later, [Van Slyke & Wets 1969] independently described
the same procedure, that was called the L-shaped method, with the aim of solving
two-stage stochastic linear programs and some optimal control problems. From our
point of view, Benders decomposition helps dealing with Issue 3 in the context of
two-stage mixed-integer stochastic programming, with an LP as recourse problem.

Reformulation of a subsytem Let us consider the following instance of 1.2.1,
where the vector of variables y has no integrality requirement:

(OCLinearRecourse) : min c>xx+ c>y y

s.t. Bxx+ Byy ≤ b
Ax ≤ a,x ∈ Zp × Rn−p

Dy ≤ d,y ∈ Rn
′

+

The approach relies on the fact that x-variables are complicating variables: when
their value is fixed, the resulting problem is a simple LP. Note that in many con-
texts (such as two-stage optimization), this LP is itself composed of independent
subsystems. This makes Benders decomposition particularly interesting to deal with
problems with a constraint matrix exhibiting a block diagonal structure with
a set of linking columns. Several approaches are described in the literature,
based on variations of the reasoning exposed below (e.g. [Van Slyke & Wets 1969]
propose an approach based on the phase I simplex auxiliary program for checking
the feasibility, [Fischetti et al. 2010] modify the subproblem to deal with feasibil-
ity and optimality at the same time. . .), or on convex analysis (see e.g. [Shapiro
et al. 2014] for a derivation in terms of subgradients of the recourse value function).
Let us assume that the vector x is fixed (let x̄ be its value). Then the remaining
optimization problem reads:

SPBenders(x̄) : min
{
c>y y : Byy ≤ b−Bxx̄,Dy ≤ d,y ∈ Rn

′
+

}
Its dual problem is:

DSPBenders(x̄) : max
{

(b−Bxx̄)> π + d>η : B>yπ + D>η ≤ cy,π ≤ 0,η ≤ 0
}

The reformulation can be derived by characterizing the feasibility of SPBenders(x̄),
and its optimal value, based on the value of x̄. We remark that the feasibility of
DSPBenders(x̄) does not depend on the choice of x̄. So, either:

(i) DSPBenders(x̄) is infeasible for all x̄, which implies that SPBenders(x̄) is in-
feasible or unbounded for all x̄, and thus (OCLinearRecourse) is also infeasible
or unbounded ; or

(ii) SPBenders(x̄) is infeasible if and only if DSPBenders(x̄) is unbounded. In this
case, there necessarily exists an extreme ray (π̄, η̄) of DSPBenders(x̄) such
that (b−Bxx̄)> π̄ + d>η̄ > 0.

20 Chapter 1. Introduction

So, imposing that x̄ can be completed with a decision variable vector y to form a
feasible solution can be done with help of the set of constraints (b−Bxx)> π̄r +

d>η̄r ≤ 0 for all (π̄r, η̄r) ∈ QFeas, where QFeas denotes the set of (normalized)
extreme rays of {(π,η) : B>yπ + D>η ≤ cy,π ≤ 0,η ≤ 0}.

An alternative expression of the optimal value of SPBenders(x̄) is obtained through
the discretization of its dual problem:

DSPDBenders(x̄) : max{(b−Bxx̄)> π̄q + d>η̄q : (π̄q, η̄q) ∈ QOpt}

where QOpt denotes the set of extreme points of {(π,η) : B>yπ + D>η ≤ cy,π ≤
0,η ≤ 0}. Assuming that SPBenders(x̄) is feasible, its optimal value is equal to
the optimal value of DSPDBenders(x̄). Hence, it is equal to the optimal value of the
LP model min{θ : θ ≥ (b−Bxx̄)> π̄q + d>η̄q ∀(π̄q, η̄q) ∈ QOpt, θ ∈ R}.

Finally, putting things together yields the following Benders reformulation of
problem (OC)LinearRecourse:

(OCBenders) : min c>xx+ θ (1.2.15)

s.t. Ax ≤ a,x ∈ Zp × Rn−p (1.2.16)

(b−Bxx)> π̄r + d>η̄r ≤ 0 (π̄r, η̄r) ∈ QFeas (1.2.17)

θ ≥ (b−Bxx)> π̄q + d>η̄q (π̄q, η̄q) ∈ QOpt (1.2.18)

θ ∈ R (1.2.19)

Constraints (1.2.17) are called feasibility cuts, while constraints (1.2.18) are referred
to as optimality cuts.

Solution via a decomposition algorithm As for the DW reformulation, in-
troducing an exponential (but finite) number of constraints in the model would
worsen Issue 3 if algorithmic strategies were not developed to handle them. The
classical Benders decomposition algorithm dynamically generates feasibility and op-
timality cuts until it can be proven that the set of already integrated constraints is
sufficient. The constraint generation algorithm starts by solving a relaxed master
program, obtained from (OCBenders) by only retaining a subset of Qfeas and Qopt.
Then, the procedure checks the feasibility of its solution (x̄, θ̄) for the whole problem
(OCBenders) by solving the subproblem DSPBenders(x̄). If the latter is unbounded,
then an extreme ray defining a violated feasibility cut is found, which is added to
Qfeas, and the routine loops with solving the new relaxed master program. If the
subproblem is bounded, then its optimal value is compared to its approximation θ̄.
If it is higher than θ̄, then the optimality cut associated with its solution is violated.
Hence, it is added to the relaxed master program and another iteration of the loop
is performed. Otherwise, (x̄, θ̄) satisfies all the constraints of (OCBenders), so that
its cost is a primal bound on its optimal value. It is also an optimal solution of
a relaxation, so its cost (in the relaxed master program) is a dual bound on the
optimal value of (OCBenders). Since both programs have the same objective func-
tion, the primal and dual bounds are equal and (x̄, θ̄) is optimal for (OCBenders).

1.2. Relaxation, reformulation and decomposition 21

The algorithm converges in a finite number of iterations because Qfeas and Qopt are
finite and one cut is added at each iteration (except for the last one).

The reformulation exposed above is called single-cut Benders reformulation.
When DSPBenders(x̄) is itself composed of independent subsystems (for example in
the context of two-stage stochastic programming), their optimization can be done
separately. Moreover, the sets of cuts can be considered separately for each subsys-
tem, leading to the multi-cut reformulation. There is no clear superiority in general
between the two approaches [Birge & Louveaux 2011], empirical results showing
that the best choice is problem-dependent.

The introduction of lazy constraint callbacks in MILP solvers paved the way to
another algorithm to solve model (OCBenders). Instead of solving the whole relaxed
master program at each iteration, the Branch-and-Benders-cut algorithm [Fortz
& Poss 2009] explores a single branch-and-bound tree, adding cuts only after a
potential incumbent solution found during the search is proven to be infeasible.

A recurrent critic against the use of Benders decomposition is its tendency to
exhibit slow convergence because of zigzagging behavior or tailing-off effect. A lot
of work has been devoted in the past decade to improve the practical convergence
speed of various algorithms (see e.g. [Rahmaniani et al. 2017] for a review of the
improvements), leading to competitive methods (e.g. [Fischetti et al. 2017,Bucarey
et al. 2022]).

Work with Benders reformulation In [Griset et al. 2021] (see Section 3.1), we
present an application of Benders decomposition for a real-life two-stage stochas-
tic problem, and its combination with Dantzig-Wolfe reformulation. In [Detienne
et al. 2009], we use Benders decomposition to decompose an employee timetabling
problem into shift assignment on one side, and task assignment on the other. In both
contexts, we aim at managing large size models with the help of a decomposition
algorithm that results from Benders reformulation (Issue 3).

From a methodological perspective, we propose in [Blanchot et al. Submitted]
acceleration techniques for problems with many independent subsystems, that arise
in stochastic programs with many uncertain realizations (Issue 3).

1.2.3 Lagrange relaxation

Lagrangian duality is a widely used concept in mathematical optimization and its
applications (in macro-and micro-economy for example). It has been used in discrete
optimization (notably in the field of integer linear programming) since at least the
1960’s [Everett 1963,Nemhauser & Ullmann 1968,Held & Karp 1970,Fisher 1973].
The basic theoretical properties are established in [Geoffrion 1974]. For an in-depth
presentation of Lagrangian relaxation, we refer to [Lemaréchal 2001].

Our use of Lagrangian relaxation aims at solving Issue 1, by defining relaxations
that are stronger than the linear relaxation of a considered MILP. We also use it
to treat independent subsystems separately and deal with Issue 3. It is also at the

22 Chapter 1. Introduction

heart of iterative state-space relaxation methods, described in Section 1.2.3.3 and
Section 1.2.4.4.

We consider mathematical programs of the following type:

(PLag) : min f(x) (1.2.20)

s.t. g(x) ≤ 0 (1.2.21)

x ∈ X (1.2.22)

with X ⊂ Rn and g = (gi)i=1,...,m, and gi : Rn → R for i = 1, . . . ,m. Constraints
x ∈ X usually define "simple" subproblems, while g(x) ≤ 0 are "complicating
constraints". In this context, removing the latter yields an optimization problem
that is easy to solve in practice.

The Lagrangian relaxation consists in removing the complicating constraints and
penalizing their violation using a penalty term in the objective function (i.e. dual-
izing them). This term is a weighted sum of the violations of individual constraints.
Given fixed penalties (so-called Lagrangian multipliers), solving the simple sub-
problems (with modified objective) yields a dual bound for the optimal value of
the original problem. In order to find the best such dual bound, the Lagrangian
multipliers need to be optimized, resulting in what is called the Lagrangian dual
problem.

Formally, the Lagrangian L : Rn × Rm+ → R is the function defined by:

L (x,λ) = f(x) + λ>g(x).

We define the Lagrangian dual function L : Rn → R as:

L(λ) = min
x∈X

L (x,λ).

The problem of computing L(λ) is often referred to as the Lagrangian subproblem
(RLag(λ)) : minx∈X L (x,λ).

The Lagrangian dual problem is:

(DLag) : sup
λ∈Rm+

L(λ).

1.2.3.1 Basic properties

In practice, one of the main interests of the Lagrangian dual function is the weak
duality property: the value of the Lagrangian dual function at any feasible point λ
is a lower bound for (PLag).

Therorem 1.2.1 (Weak duality theorem). Let x be a feasible solution of the primal
problem (PLag), and let λ be a feasible solution of the dual problem (DLag). Then
f(x) ≥ L(λ).

So, for any value of λ ∈ Rm+ , the problem (RLag)(λ) is a relaxation of (PLag).
In order to build effective solution methods, one would like to get the best possible

1.2. Relaxation, reformulation and decomposition 23

relaxation, by solving problem (DLag). This turns out to be a convex optimization
problem, for which we are able to obtain relevant information (subgradients) about
L as a by-product of its computation.

Proposition 1.2.2. The dual function L is concave. Moreover, its subdifferential
at λ is ∂L(λ) = conv{g(x) : x ∈ arg minx′∈X L (x′,λ)}.

Note that Remark 1.2.1 does not always apply for (RLag(λ)), for an arbitrary
value of λ ∈ Rn+: given x∗ ∈ arg minx∈X L (x,λ), we may have λ>g(x∗) < 0 and
hence f(x∗) > L (x∗,λ). In such a case, one cannot guarantee in general that
there is no feasible solution x′ of (PLag) with L (x∗,λ) ≤ f(x′) < f(x∗). However,
Remark 1.2.1 holds when constraints (1.2.21) take the special form g(x) = 0. Even
if it is not the case, under certain conditions, it is possible to prove that x∗ is optimal
for (P), thanks to the following result.

Therorem 1.2.3 (Saddle points of L). A solution (x∗,λ∗), with x∗ ∈ X and
λ∗ ∈ Rm+ is a saddle point of the Lagrangian function L if and only if:

a) x∗ is an optimal solution of (RLag)(λ
∗): L (x∗,λ∗) = minx∈X {L (x,λ∗)}

b) x∗ is feasible for (P)Lag : g(x∗) ≤ 0

c) λ∗>g(x∗) = 0

If (x∗,λ∗) is a saddle point of L , then x∗ is optimal for (PLag) and λ∗ is optimal
for (DLag).

Under mild constraint qualification assumptions, convex programs (and linear
programs as a special case) have a strong Lagrangian dual (see Theorem 1.2.4). As a
consequence, the optimal value of (PLag) can be obtained by solving (DLag), which
might be easier in practice. Moreover, some methods [Barahona & Anbil 2000] for
solving (DLag) provide a solution of (PLag) as a by-product.

Therorem 1.2.4 (Strong duality theorem). Suppose that X , f and g are convex
(that is, (PLag) is a convex program). Further, assume that there exists x̂ ∈ X with
g(x̂) < 0. If (PLag) admits an optimal solution of value γ, then (DLag) admits an
optimal solution of the same value γ.

Applications with a natural formulation leading to a strong Lagrangian dual are
rather rare. However, the case occurs more frequently when reformulation techniques
are used – some solution strategies are even based on the construction of such models
(see Section 1.2.4.4).

Relation with MILP reformulations Under some assumptions, the Lagrangian
dual problem (DLag) is in fact equivalent to the replacement of X with its ideal
formulation conv X (introduced in Section 1.2.1.1). For the special case where
(PLag) is an integer linear program, [Geoffrion 1974] gives a proof of this result,
relying on partial LP duality (see [Geoffrion 1971]). For the same case, another

24 Chapter 1. Introduction

proof can be derived from the epigraph LP formulation of the dual function and
LP duality (see e.g. [Vanderbeck & Wolsey 2010]).

We propose an alternative proof that requires different assumptions.

Therorem 1.2.5. Consider problem (PLag) and assume that (PLag) is feasible and
bounded, X is bounded and finite dimensional, and functions f , gi, i = 1, . . . ,m are
affine. Moreover, there exists x̂ ∈ ri(conv X) such that g(x̂) ≤ 0. Then problem
(DLag) is equivalent to:

(P conv
Lag) : min f(x) (1.2.23)

s.t. g(x) ≤ 0 (1.2.24)

x ∈ conv X (1.2.25)

Proof. First remark that, under our assumptions, function L (·,λ) is concave for
all λ ∈ Rm+ . It follows that we can extend X to its convex hull in problem
(RLag) and obtain an equivalent problem. Hence, problem (DLag) is equivalent to
supλ∈Rm+ minx∈conv X L (x,λ). Since f is continuous and (PLag) is bounded, f(x̂)

is finite. So L (x̂, ·) is upper bounded (by value f(x̂) because g(x̂) ≤ 0 and λ ≥ 0).
Besides, L (·,λ) is convex for all λ ∈ Rm+ , L (x, ·) is concave for all x, conv X
is finite dimensional and bounded. Hence, Theorem 1 of [Perchet & Vigeral 2015]
applies and the min and sup operators can be swapped to obtain the equivalent for-
mulation of (DLag): min{supλ∈Rm+ f(x) + λ>g(x) : x ∈ convX}. Remark that the
sup problem is bounded if and only if g(x) ≤ 0. It follows that (DLag) is equivalent
to min{f(x) : g(x) ≤ 0,x ∈ conv X}.

Remark that the regularity assumption on the existence of x̂ is satisfied when
dim(X)(≤ n) feasible points of (PLag) with linearly independent projections on
conv X exist, which is more restrictive than the proofs mentioned above.

These results show that the dual bound defined by the Lagrangian relaxation of
constraints g(x) ≤ 0 is the same as the one obtained by the dynamic programming-
based reformulation of subsystem X , or by its DW reformulation. In the latter case,
the Lagrangian subproblem turns out to be identical to the DW pricing problem.

1.2.3.2 Solving the dual problem

In order to optimize the Lagrangian dual function, [Lemaréchal 2001] counts sev-
eral type of methods: subgradient-based, cutting plane, ellipsoid, Analytic Center
Cutting Plane Method (ACCPM) and bundle methods. In our work, we use only
subgradient-based procedures (and, in some sense, column generation when DW
decomposition is chosen). This choice is motivated first by the good empirical per-
formance of these algorithms: confirmed by the computational study of [Frangioni
et al. 2017], that shows that well-tuned subgradient procedures are competitive with
more complex ones for large-scale problems (although bundle methods seem more
effective for moderate size problems). The second reason is their simple and flexible
implementation, and their few requirements, that [Lemaréchal 2001] summarizes as:

1.2. Relaxation, reformulation and decomposition 25

• The only information available on [the dual function] θ is an oracle,
which returns θ(u) and one subgradient g(u), for any given u ∈ Rm.

• No control is possible on g(u) when ∂θ(u) is not the singleton
∇θ(u).

These requirements on the components of the optimization algorithm match well
with the combinatorial algorithms usually used to solve the Lagrangian subproblem,
often based on dynamic programming or combinatorial considerations (in the sense
that they do not ask for designing and developing an (effective) algorithm able to re-
turn several optimal solutions, or dealing with artificially added non-linearities. . .).

The basic subgradient algorithm computes a sequence of feasible solutions based
on the following recursion, inspired by the descent methods in smooth optimization:

λk+1 = P (λk + skd
k)

Here, sk is the step length, and dk ∈ Rm is the moving direction, chosen in
∂L(λk). Function P : Rm → Rm+ is a projection operator that ensures the feasi-
bility of all iterates. A number of subgradient-based optimization algorithms ex-
ist, according to the different choices made for these elements. Direction deflect-
ing strategies have been proposed in order to stabilize the procedure, by reducing
the zigzagging effect observed when a raw subgradient is used (see [Belgacem &
Amir 2018]). Various schemes have been proposed to define the step size sk, such
as the Polyak rule [Polyak 1969]. The Volume algorithm [Barahona & Anbil 2000]
combines smoothing of the directions and the ColorTV rule (sic) for the step size.

Similar to DW or Benders decomposition, when X is composed of indepen-
dent subsystems, the dual function can be computed by solving one independent
subproblem per subsystem. This makes Lagrangian relaxation a suitable choice for
problems with a constraint matrix exhibiting a block diagonal structure with
a set of linking rows.

1.2.3.3 State-space relaxation

Introduced by [Christofides et al. 1981], the state-space relaxation consists in pro-
jecting the state space of a dynamic program on a smaller state space in order to
derive lower bounds. Specifically, let ρ be the projection operator of the original
state space Q⊥ to a smaller space. To define a proper relaxation, the dynamic
program resulting from the projection ρ(Q⊥) should verify the following property:
if two states q, q′ ∈ Q⊥ are such that q′ can be reached from q after applying a
single transition, then ρ(q′) can be reached from ρ(q). The functional equation of
the relaxed DP is adapted from (1.2.4):

−→
Φ ρ(q) = inf

{−→
Φ ρ

(
q′
)

+ c(q′′, a)| q′′ ∈ Q, a ∈ Σ, δ(q′′, a) = q, q′ ∈ ρ(q′′)
}

∀q ∈ ρ(Q− {q0})

26 Chapter 1. Introduction

[Christofides et al. 1981] also proposed to penalize the violation of the constraints
that are discarded in the relaxed DP, in a Lagrangian fashion.

Formally, let us consider combinatorial optimization problems of the form:

(COSS) : min f(x)

s.t. x ∈ X
gi(x) ≤ 0 ∀i ∈ I

Let us assume that (COSS) is a special case of (PLag) ((1.2.20)-(1.2.22)) for which
we know a dynamic programming algorithm defined byM = (Q⊥,Σ, δ, q0, q•, c) (see
Section 1.2.2.1). Typically, in single machine scheduling, each constraint gi(x) ≤ 0

controls that job i is performed exactly once, while X encodes the set of pseudo-
schedules satisfying the disjunctive constraints (i.e. the machine capacity constraints).
The problems we consider are such that, when a subset of constraints J ⊆ I is re-
moved, the resulting problem can be solved by projecting Q⊥ onto a smaller state-
space QI−J⊥ . Moreover, the dynamic program is able to handle the more general
objective function L J(x,λ) = f(x) + λ>g(x), for all λ ∈ R|I|+ (one can assume
without loss of generality (wlog) that λi = 0 for i ∈ I − J). These assumptions
hold for many single machine scheduling problems, and single vehicle routing prob-
lems that arise in more complex applications. Under those conditions, state-space
relaxation allows defining a family of Lagrangian relaxations of (COSS), that are
parameterized by the set J of dualized constraints. Computing the Lagrangian dual
function associated with dualized constraints J for multipliers λ amounts to solve,
with the help of the relaxed dynamic program:

(COSS)(J,λ) : min f(x) + λ>g(x) (1.2.26)

s.t. x ∈ X (1.2.27)

gi(x) ≤ 0 ∀i ∈ I − J (1.2.28)

The relaxations defined in this way are more or less easy to solve, and more or
less strong. Iterative state-space relaxation methods (Section 1.2.4.4) progressively
build stronger and stronger relaxations, potentially possessing the strong duality
property.

1.2.3.4 Lagrangian-cost variable fixing

Relaxation-based variable fixing is a technique used to fix the value of some
decision variables to their optimal value, thus eliminating them from the optimiza-
tion problem. Its basic principle is simple: given problem (P) : min{c>x : x ∈ X}
and a primal bound z of (P), define problem (P (H)) by imposing an additional
restriction on the solutions: (P (H)) : min{c>x : x ∈ X ,x ∈ H}. Compute a
dual bound z(H) of (P (H)). If z(H) > z, then we proved that (P) is equivalent
to min{c>x : x ∈ X − H}, and the same process can be applied to this reduced
problem with other hypotheses. This broad description covers a very wide range

1.2. Relaxation, reformulation and decomposition 27

of algorithmic techniques, that encompasses even the basic principle of branch-and-
bound. The specificity of relaxation-based variable fixing is to rely on the quick
computation of the conditional lower bounds. The concept has emerged in various
fields of optimization: for example, in scheduling under the name shaving [Carlier &
Pinson 1994,Martin & Shmoys 1996,Carlier et al. 2004] when used with combinato-
rial or Lagrangian dual bounds, in Constraint Programming as constraint program-
ming based Lagrangian relaxation [Sellmann 2004] (Lagrangian bound), in Convex
Optimization and Machine Learning as screening [Ghaoui et al. 2011,Atamtürk &
Gomez 2020] (Fenchel dual bound), etc.

Reduced-cost fixing In the context of MILP, reduced-cost fixing relies on an
optimal solution of the LP relaxation and the associated reduced costs. According
the notations above, the basic hypothesis H that is tested here in a binary LP is
of the type H = {x : xi = 1}. [Dantzig et al. 1954] uses the idea in an ad-hoc
procedure to solve for the first time a 49-city TSP instance, and [Crowder et al. 1983]
describes its integration in a Binary Linear Programming solver. The following result
formalizes the idea.

Proposition 1.2.6. Let us consider the mixed integer linear program (P) :

min{c>x : Ax ≤ b,x ∈ Np × Rn−p+ }, λ∗ an optimal dual solution of (P) and z

its value. Moreover, let H = {x ∈ Rn+ : xk ≥ x̂k} and (P (H)) = min{c>x : Ax ≤
b,x ∈ H,x ∈ Np × Rn−p+ }.

Then z + (ck −Ak>λ∗)>x̂k is a dual bound for (P (H)).

The proposition can be proven using LP duality arguments, or Lagrangian dual-
ity as we show below. If a primal bound for (P) is known, this results implies that
in any optimal solution, xk ≤ z−z

ck−Ak>λ∗
holds for all k such that ck −Ak>λ∗ > 0.

If we also have that xk must be integer, the right-hand-side can be rounded down:
xk ≤ b z−z

ck−Ak>λ∗
c.

Lagrangian-cost variable fixing In order to solve large-scale DP models,
[Ibaraki 1987] bases the Successive Sublimation Dynamic Programming (SSDP)
method (see Section 1.2.4.4) on a graph representation (like the one presented in Sec-
tion 1.2.2.1) of a relaxed DP(1.2.3.3). The algorithm includes an elimination phase
during which irrelevant states are eliminated. The routine is based on the efficient
computation of a set of lower bounds. For each arc in the graph, the minimum cost
path going through this arc is calculated. The key is to compute all those shortest
paths at the same time, in a forward and a backward pass of the Bellman algorithm.
The hypothesis H that is tested in the elimination phase is H = {x : xe = 1}, where
xe = 1 if and only if the path representation of the solution uses arc e. [Ibaraki &
Nakamura 1994] improve this filtering technique by considering the minimum La-
grangian cost that goes through the arc. The same idea is redeveloped under the
name of graph cleaning by [Sourd 2009] for the single machine earliness-tardiness
problem. This principle is also used in [Focacci et al. 1999,Demassey et al. 2006] in

28 Chapter 1. Introduction

the COST-REGULAR constraint in the Constraint Programming (CP) context. Years
later, the same idea called path-reduced cost fixing is redeveloped starting from the
LP reduced-cost fixing in the context of vehicle routing in [Irnich et al. 2010].

Based on another state-space relaxation scheme in the single machine schedul-
ing context, [Detienne et al. 2010] uses various Lagrangian dual bounds to test
problem-specific hypothesis. Another originality of this work is the exploitation
of the decomposition of independent subsystems to effectively compute the condi-
tional bounds. The most basic assumption "can job i start at time t?" comes down
to LP reduced-cost fixing, while the more sophisticated assumptions "can the opti-
mal schedule start before (resp. end after) time t" and "can job i be before job j"
exploit dominance rules and require solving small auxiliary dynamic programs.

As the following proof shows, reduced-cost fixing is clearly a special case of
Lagrangian-cost fixing.

Proof of Proposition 1.2.6. Let us consider the Lagrangian relaxation of (P) where
constraints Ax ≤ b are dualized. The Lagrangian subproblem reads (RLag)(λ) :

min{(c+A>λ)>x−λ>b : x ∈ Np×Rn−p+ }. Imposing hypothesisH , the subproblem
becomes (RLag)(λ,H) : min{(c + A>λ)>x − λ>b : x ∈ H ∩ (Np × Rn−p+)}. The
optimal solution of (RLag)(−λ∗,H) is trivially xi = 0 for all i 6= k, and xk = x̂k,
whose cost is (ck −Ak>λ∗)>x̂k + λ∗>b.

The hypograph formulation (1.2.29) of the Lagrangian dual function permits a
visual insight of Lagrangian-cost variable fixing (Figure 1.2.1).

(DLag) : max
λ∈Rm+

min
{
f(x) + λ>g(x) : x ∈ X

}
= max

{
θ : θ ≤ f(x) + λ>g(x) ∀x ∈ X ,λ ∈ Rm+

}
(1.2.29)

The figure shows, among other things, that as pointed out by [Sellmann 2004], the
best multipliers for (DLag) are not always the most appropriate for fixing variables.
This is why, in our work, we embed variable fixing routines in the course of a
subgradient algorithm, in order to perform filtering based on diversified Lagrangian
multipliers.

1.2.3.5 Work with Lagrangian relaxation and SSR

Lagrangian relaxation has been used in the context of SSR , in conjunction with La-
grangian cost variable fixing, for solving scheduling problems in [Detienne et al. 2010,
Detienne et al. 2012, Detienne et al. 2016], and the Temporal Knapsack Prob-
lem (TKP) in [Clautiaux et al. 2021], with various primal schemes taking advantage
of the very strong dual bounds obtained (Issue 1).

In [Detienne et al. 2009], it permits exploiting the natural decomposability of
the employee timetabling problem. In [Tanaka et al. 2015], strong dual bounds are
obtained at the price of a very large scale formulation which is optimized using
Lagrangian decomposition (Issue 1, Issue 3). Lagrangian multipliers serve as a
guide to obtain good feasible solutions for a lot-sizing problem in [Absi et al. 2013].

1.2. Relaxation, reformulation and decomposition 29

Figure 1.2.1: Illustration of the Lagrangian-cost variable fixing based on the hypo-
graph formulation (1.2.29) of an MILP model. The Lagrangian relaxation is ob-
tained by relaxing only one constraint, whose multiplier is λ. Each solution x ∈ X
appears as an affine function (linear constraint). Plain black lines are associated
with solutions in X that satisfy hypothesis H, while dashed purple lines are associ-
ated with the other solutions of X .
The value of L(λ) is achieved at the minimum of all the affine functions at λ. The
optimal solution λ∗ of (DLag) is obtained by finding the maximum of the hypograph.
The value of the dual function under hypothesis H at λ∗ is obtained by finding the
minimum of the affine functions only associated with H at λ∗. Even though λ∗ is
not optimal for (DLag(H)), L(λ∗,H) is larger than the known primal bound z. That
proves that no solution in H can be optimal.
Note that the optimal solution of (DLag(H)) is not λ∗. Hence, stronger variable
fixing could be achieved using different Lagrangian multipliers.

30 Chapter 1. Introduction

1.2.4 Relaxation-based solution schemes

Solving a relaxation ensures getting a lower bound on the optimal value of our
original problem. However, it does not provide a feasible solution in general. This
section summarizes various ways of obtaining optimal solutions based on the succes-
sive solution of relaxations: branch-and-bound, constraint generation and iterative
state space relaxation are presented under a same generic framework.

1.2.4.1 Obtaining optimal solutions: abstract algorithm

We now give a schematized view of the various algorithms utilized to get an optimal
solution to a combinatorial problem based on various relaxations. The common
principle to all these methods is to refine a relaxation until a feasible solution is
found and its optimality is proven, by the process of excluding infeasible solutions.
They differ in the way this exclusion is performed. For the sake of conciseness, our
abstract descriptions do not allow the instantiation of all subtleties of the specific
procedures. By a slight abuse of notation, in Algorithms 1.2.1 and 1.2.2, notation
(P) refers both to the problem (P) and its set of feasible solutions, depending on
the context.

Special case: fR = f We first focus on the special case where Remark 1.2.1
applies, which covers the classical LP-based branch-and-bound, algorithms based
on Lagrangian relaxation of equality constraints only or based on combinatorial
relaxations. Algorithm 1.2.1 works with a set Q of open relaxations, that are defined
but not solved yet. At each iteration, an open relaxation (R) is picked up, removed
from the queue and solved (line 3). If its optimal value is not better than the best
known primal bound z (line 4), then we know that (R) contains no improving
solution, and we start again the loop with another open relaxation - (R) is closed.
Otherwise, line 5 checks whether s is feasible for the global problem. If this is
the case, we update the best known primal bound (line 6), and conclude that (R)

contains no better feasible solution. Hence, it is closed.
If s is not feasible for (P), then we have to further explore the set of solutions

of (R) for potentially feasible solutions. In this purpose, we define a new relaxation
that contains the feasible solutions of (P)∩ (R). Some precautions have to be taken
in line 8 if finite convergence of the algorithm is desired. We propose, as a general
rule, to associate a finite measure value #(R) to each relaxation (R), such as the
diameter of the relaxed feasible set or the number of integer points contained in
the relaxed feasible set. We also assume that it is defined in such a way that it
is bounded from below for any relaxation generated by the algorithm (by zero in
our examples). If there exists δ# > 0 such that, for each relaxation (Ri) defined
in line 8, we have that #(Ri) + δ# ≤ #(R), then Algorithm 1.2.1 converges in
a finite number of steps since # is bounded from below and #(R0) is finite. Note
that if the set of feasible solutions of (R) is finite, it is sufficient to guarantee that
s /∈

⋃r
i=1(Ri) (this typically happens in iterative state-space relaxation algorithms).

1.2. Relaxation, reformulation and decomposition 31

Algorithm 1.2.1: Generic overall solution algorithm.
Special case where fR = f (see Remark 1.2.1)
Input: problem (P), optimality tolerance ε

1 Define a first relaxation (R0) of (P). Q← {(R0)}. z ←∞;
2 while Q 6= ∅ do
3 Pick up (R) from Q. Solve (R) and let s be an optimal solution;
4 if fR(s) + ε < z then
5 if s ∈ (P) then
6 Register s as a primal solution, z ← f(s)(= fR(s)).
7 else
8 Define a family of relaxations (Ri)i=1,...,r such that

(P) ∩
⋃r
i=1(Ri) = (P) ∩ (R) and #(Ri) + δ# ≤ #(R);

9 Add (Ri) to Q for all i = 1, . . . , r.

This can be modeled by choosing # as the cardinal of the relaxed feasible set, and
δ# = 1. Depending on the algorithm, the new relaxation can take the form of a
single refined relaxation, or the disjunction of several "smaller" relaxations (typically
by branching). Finally, (R) is closed and the new open relaxations are added to Q.

General case: fR(x) ≤ f(x) This case arises, for example, when a Lagrangian
relaxation of inequality constraints is performed or when refining an approximation
of the cost function from below (case of Benders optimality cuts). In this case,
solution s computed at line 3 may be feasible for (P), but we cannot be sure that
no better feasible solution exist in (R) when fR(s) < f(s).

The generic Algorithm 1.2.2 deals with this situation by either refining the cur-
rent relaxation by reducing its feasible set like in Algorithm 1.2.1 (line 8, case
(i)), or by modifying the objective function in the subsequent relaxations (line 8,
case (ii)). This modification of fR is such that the objective value of s in relax-
ation (Ri), fRi(s), is strictly larger than its value fR(s) in the current relaxation.
Further, condition (ii) ensures that the value of s will never become smaller in all
child relaxations of (Ri). Hence, the finite convergence is guaranteed if either (a)
the number of solutions of (P) is finite and case (ii) is active only when s is feasible
for (P), or (b) each relaxation (R) has a finite number of feasible solutions. Note
that this is still not sufficient to ensure the finite convergence of the algorithm (in
particular when f is not continuous and the number of feasible solutions of (P) is
not finite). Concrete examples where case (i) or case (ii) can be implemented are
described below, in Section 1.2.4.2 and Section 1.2.4.4. Once again, when the set
of feasible solutions of (R) is finite, replacing conditions (i) and (ii) by assumption
s /∈

⋃r
i=1(Ri) ensures the finite convergence.

32 Chapter 1. Introduction

Algorithm 1.2.2: Generic overall solution algorithm.
Input: problem (P), optimality tolerance ε

1 Define a first relaxation (R0) of (P). Q← {(R0)}. z ←∞;
2 while Q 6= ∅ do
3 Pick up (R) from Q. Solve (R) and let s be an optimal solution;
4 if fR(s) + ε < z then
5 if s ∈ (P) then
6 Register s as a primal solution and possibly update the primal

bound z.
7 if fR(s) + ε < f(s) (i.e. s cannot be proven ε−optimal for

(P) ∩ (R)) then
8 Define a family of relaxations (Ri)i=1,...,r such that

(P) ∩
⋃r
i=1(Ri) = (P) ∩ (R) and, for each i, either:

(i) #(Ri) + δ# ≤ #(R)

(ii) For all ancestors (R−) of (R) whose optimal solution found
at line 4 was s−, fRi(s−) ≥ fR−(s−) + ε′

Add (Ri) to Q for all i = 1, . . . , r.

1.2.4.2 Branch-and-bound

First described in [Land & Doig 1960] (republished in [Land & Doig 2010]),
branch-and-bound is one of the most used procedure in optimization [Wolsey &
Nemhauser 1999]. The instantiation of Algorithm 1.2.2 as a branch-and-bound rou-
tine is done by associating a node of a search tree to each relaxation. Among the
various approaches we list in the following sections, it has the specificity of gen-
erating several child relaxations in line 8, usually by branching on the value of
a variable. Depending on the application, one can also branch on more complex
structures like the next job in a schedule, the next arc in a path, a set of jobs that
will not be processed next. . .

Ensuring the finite convergence of the algorithm is usually not difficult when
dealing with bounded MILP problems: branching on an integer variable with a
fractional value in s strictly decreases the number of such branching possibilities
in the resulting relaxation. When using other strategies like spatial branching on
continuous variables (like in [Detienne et al. Submitted]), the volume of the relaxed
set is decreased at each step by a finite amount. However, one must invoke another
mechanism to guarantee that this amount is bounded below by a strictly positive
value. For example, if the objective function f is Lipschitz-continuous, then all solu-
tions in a box have the same objective value within a tolerance equal to the diameter
of the box times the Lipschitz constant of f . Hence, choosing the diameter of the
relaxed feasible set for measure value # (and a branching scheme that generates

1.2. Relaxation, reformulation and decomposition 33

smaller and smaller boxes) and a non-zero tolerance ε prevents from an infinite loop
thanks to the test in line 4.

Now let us describe an example of branch-and-bound algorithm where case (i)
and case (ii) are relevant. Consider a procedure based on the Lagrangian relax-
ation of inequality constraints in model (PLag)(1.2.20)-(1.2.22). Assume that the
relaxation (Rk) is defined, among other components, by Lagrangian multipliers
λk. Its optimal solution x found at line 3 is feasible for (P), and λk>g(x) < 0,
i.e. fRk(x) < f(x). Contrary to the context of LP-based branch-and-bound, we are
not able to easily branch on some component of x to exclude s from the search (what
must be discarded is the whole vector x, not a forbidden value of one component).
An example of this situation is the problem of finding resource-constrained shortest
paths in a Directed Acyclic Graph (DAG) with a single source and sink, resulting
from a SSR of a DP. The set of solutions explored is the set of paths, subject to
additional constraints, from the source to the sink. Each node k of the search tree
is associated with a relaxation (Rk), a DAG node u(k), and an already fixed path
from the source node to u(k). Measure #(Rk) is equal to the maximum length from
u(k) to the sink. Relaxation (Rk) consists in finding the minimum Lagrangian cost
from the source node to the sink node that goes through node u(k).

• Case (i) occurs when we branch on the successor of the current node u(k)

in the DAG and we keep Lagrangian multipliers λk. At the successor node
k+ 1 of k, we might very well find x again when solving (Rk+1), with exactly
the same cost as before. However no infinite loop is possible since we have
progressed towards the sink of the DAG.

• Case (ii) occurs when we decide to change the value of λk, for example in
the hope to prove optimality of x using Theorem 1.2.3. In this purpose, we
choose a relaxed constraint with λki gi(x) ≤ −ε′, and set λk+1

i ← 0 to define a
new relaxation (Rk+1), also associated with node u(k+1) = u(k) of the DAG.
We have fRk+1

(x) = fRk(x) − λki gi(x) ≥ fRk(x) + ε′. Since x is feasible for
(P), we have that g(x) ≤ 0. It follows that not increasing the Lagrangian
multipliers in descendants ` of k ensures that fR`(x) > fR`(x) + ε′. Another
sufficient condition for finite convergence is to restrict Lagrangian multipliers
in descendants ` of k so that λ`i = 0. The dimension of λ being finite, we can
then use a modified version of measure # that combines the length from u(`)

to the sink with the number of components of λ fixed to zero to prove the
convergence of Algorithm 1.2.2.

Work with branch-and-bound algorithms Such algorithms have been devel-
oped in two contexts. For scheduling problems, Lagrangian relaxations are used
in [Detienne et al. 2016] (Section 2.1) and [Detienne et al. 2010]. The algorithm
of the first paper relies on SSR, and explores the set of paths in the graph of re-
laxed Dynamic Programs. The second paper makes intensive use of Lagrangian cost
variable fixing in order to reduce the time windows of the jobs. Branching is done

34 Chapter 1. Introduction

by ordering pairs of jobs (selection of disjunctions [Carlier & Pinson 1989]), or by
splitting the time window of a job.

The studies in [Arslan & Detienne 2021] (Section 3.2) and [Griset et al. 2021]
(Section 3.1) make use of DW reformulation. In order to obtain integer feasible
solutions, we use branch-and-price algorithms, which are branch-and-bound proce-
dures that solve the linear relaxation of the DW reformulation and branch on the
value of variables with integer requirements but fractional optimal value in the re-
laxation. In the first paper, there is no integrality restrictions on the subproblem
variables, so that classical branching on the set of non-dynamically-generated vari-
ables is sufficient. In order to cope with cases where DW reformulation leads to
a relaxation of the problem, we devise a set of additional cuts that yield an exact
reformulation. We propose a branch-and-price-and-cut algorithm to solve the re-
sulting model. In [Griset et al. 2021], DW subproblems are shortest path problems
in DAG. Hence, it is sufficient to branch on the value of the original arc-variables in
the master program to ensure their integrality (cf. [Vanderbeck 2000], Proposition
4). A branch-and-cut-and-price algorithm is proposed to deal with both DW and
Benders reformulations.

1.2.4.3 Constraint generation/cutting planes

In this section, we focus on problems defined as MILP models with a bounded feasi-
bility set. In this document, we make the following distinction between cutting plane
methods and constraint generation methods. We define cutting plane algorithms as
procedures that iteratively generate valid inequalities in order to strengthen the lin-
ear relaxation of a MILP model (see for example [Conforti et al. 2010]). We use the
terms constraint generation specifically for procedures that are based on a combina-
torial relaxation of the problem (i.e. where some constraints are just omitted) that
generates these constraints when needed. While the cuts of the cutting plane algo-
rithms are optional for the proper definition of the problem, the constraints of the
constraint generation methods are mandatory for its full description. In our work,
we are interested in branch-and-Benders-cut (Section 1.2.2.3), cut-and-branch, and
pure constraint generation algorithms.

Branch-and-Benders-cut procedures [Fortz & Poss 2009] can be regarded either
as satisfying Remark 1.2.1 or not, depending on whether we include the optimality
cuts as constraints linking variables θ and x, or as elements defining the objective
function of the relaxation. In both cases, they can be seen as branch-and-bound
algorithms. The generation of cuts at a given node of the search tree can be viewed as
generating a single new relaxation in line 8. When optimality cuts are considered
as proper constraints, Algorithm 1.2.1 can be applied and one can define a measure #

based on the number of cuts and the number of branching constraints already added.
Otherwise, Algorithm 1.2.2 is applied. Case (ii) is performed when optimality cuts
are added, while case (i) is active with the same measure # when branching on a
variable.

Cut-and-branch algorithms are a variant of branch-and-cut where the valid in-

1.2. Relaxation, reformulation and decomposition 35

equalities are added only at the root node of the search tree. Pure constraint gen-
eration algorithms such as the classical Benders decomposition method described
in Section 1.2.2.3 are similar to branch-and-Benders-cut procedure, without the
branching phase. Each relaxation is a mixed integer linear program, which can be
seen as a combinatorial relaxation of feasibility and optimality cuts.

Work with constraint generation We decomposed some machine scheduling
problems into sequencing and timing problems. An alternative model for the second
subproblem was designed, based on a polynomial but large number of knapsack con-
straints (which exhibit a well-understood polyhedral structure that makes solution
with generic integer linear programming approaches efficient). This yielded a pure
constraint generation method in [Detienne et al. 2011]. The same kind of alterna-
tive formulation was used to generate a dedicated variant of knapsack cover cuts to
reinforce another mixed integer linear program in [Detienne 2014], embedded within
a cut-and-branch algorithm.

As already mentioned above, in [Griset et al. 2021] (Section 3.1), we combine
Benders and Dantzig-Wolfe reformulations to solve a real-life planning problem.
This section describes a row-and-column generation algorithm, as well as a heuristic
version that we call a price-and-branch-and-Benders-cut method.

1.2.4.4 Iterative state space relaxation

While the state-space relaxation (Section 1.2.3.3) was primarily thought as a way
to compute dual bounds, dual iterative methods based on the refinement of the
projection have been proposed to tackle the original problem (P). Since this type
of approach is not as widely used as the previous ones, we propose a brief litera-
ture review on the topic. These methods essentially focus on solving the Resource
Constrained Elementary Shortest Path Problem (RCESPP), or problems implicitly
modeled as such. [Christofides et al. 1981] proposed to reinforce the dual bound in
their scheme using the so-called state-space ascent, whose idea is further developed
by [Ibaraki 1987] within the SSDP framework (see also [Ibaraki 1988]) and shortly
after by [Abdul-Razaq & Potts 1988], who coined the concept of state-space modi-
fiers to improve the lower bounds obtained from a state-space relaxation for single
machine scheduling. For the same type of problems, [Ibaraki & Nakamura 1994]
integrated state-space modifiers inside SSDP. Long after, when computer memory
became significantly larger, [Boland et al. 2006] presented a state-space augmenting
algorithm where the first projection consists in relaxing the elementary requirement
of the RCESPP. A very similar approach was introduced independently by [Righ-
ini & Salani 2008], who proposed the (famous in the vehicle routing community)
Decremental State-Space Relaxation (DSSR). The main difference lies in the fact
that only the constraints violated by the optimal solution of the current relaxation
are added at a given iteration. [Desaulniers et al. 2008] introduced the partially
elementary shortest-path problem with resource constraints. They dynamically in-
troduced elementary requirements in this problem based on the solution of the linear

36 Chapter 1. Introduction

relaxation to strengthen the latter. At the same time, [Tanaka et al. 2009,Tanaka
& Fujikuma 2012] revisited the SSDP algorithm to propose an effective method for
total cost single machine problems.

SSDP and DSSR are two similar methods. They are both based on SSR, and
– at least in their basic version – solve successively refined relaxations. After one
relaxation is solved, either the obtained solution is proved to be optimal, or at least
one relaxed constraint is added to the state space to define the new relaxation. They
differ in the way each relaxation is solved. The known implementations of DSSR do
not explicitly build the DP graph, but use labeling algorithms instead. Several labels
are kept for each vertex of the graph representation of the initial relaxation. One
strength of this method is its ability to effectively deal with elementary constraints
in routing problems, making use of strong dominance checks. At each step of the al-
gorithm, SSDP explicitly builds the graph representation of the DP expressed in the
current relaxed state-space. This extended graph, which can be exponentially large,
is used to eliminate some variables with the help of Lagrangian-cost variable fixing.
These two versions of iterative state-space relaxations have different advantages. On
the one hand, DSSR allows more dominance checking than SSDP, since advanced
label-setting/correcting techniques can be used. On the other hand, filtering tech-
niques based on costs apply only to the initial graph in DSSR, whereas SSDP filters
arcs from the extended graphs corresponding to all intermediate relaxations.

We now focus on the use of the SSDP algorithm to solve problems with bounded
feasible sets and integer solutions. When the assumption of Remark 1.2.1 holds
(i.e. only equality constraints are relaxed), Algorithm 1.2.1 takes a rather simple
form. Each relaxation is a problem of the form (1.2.26)-(1.2.28). If the solution
s found in line 4 is not feasible for (P), then at least one relaxed constraint in
(1.2.28) is added to the set J of constraints considered in the dynamic program to
construct the refined relaxation. This ensures the convergence of the method, that
never removes constraints integrated before (augmenting the state space related
to a violated constraint in a state-space relaxation procedure removes a non-zero
number of integer solutions in (R)). The approach is rendered more efficient by the
integration of Lagrangian cost-variable fixing within the solution of the Lagrangian
subproblem. The filtering of states and transitions in a relaxed DP are propagated
in the subsequent relaxations, which – hopefully – prevents the explosion of the size
of the relaxed DP, keeping the curse of dimensionality at bay.

When inequality constraints are relaxed, case (ii) of Algorithm 1.2.2 appears
to be necessary to its convergence1. Assume once again that the relaxation (Rk)

is defined, among other components, by Lagrangian multipliers λk. Its optimal
solution x found in line 3 is feasible for (P) and λk>g(x) < 0, i.e. fRk(x) <

f(x). Since x is feasible for (P), integrating any constraint of (1.2.28) into the
state space would not avoid finding it again at the next iteration, with the same

1This case does not match the original framework of SSDP defined in [Ibaraki 1987], who
proves the convergence of the method based on the so-called Congener theorem, whose assumptions
include the one of Remark 1.2.1. To our knowledge, all published applications of SSDP satisfy this
restrictive assumption, and the adaptation of the algorithm to relax the hypothesis is new.

1.3. Main contributions 37

relaxed objective value. Since no new feasible solution has been found, the duality
gap is not reduced. Finally, one could add all constraints into the state space
without proving the optimality of s (which can indeed be sub-optimal). In order to
guarantee the convergence of SSDP in this case, we choose a relaxed constraint with
λki gi(x) ≤ −ε′, and set λk+1

i ← 0 to define a new relaxation (Rk+1). We then have
fRk+1

(x) ≥ fRk(x) + ε′. Only decreasing the Lagrangian multipliers in descendants
` of k ensure that fR`(x) > fR`(x) + ε′. Here again, we can also choose to fix
λ`i = 0 in all subsequent relaxations and prove the convergence of Algorithm 1.2.2
with help of a measure # combining the number of relaxed constraints (1.2.28) and
the number of components of λ fixed to zero.

Work with Iterative State-Space relaxation We applied the SSDP method
for Temporal Knapsack Problem in [Clautiaux et al. 2021] (Section 2.2). To our
knowledge, this is the first attempt to develop a competitive SSDP algorithm for
a problem apart from single machine scheduling. It sheds a different light on how
to choose, and how many constraints to incorporate in the state-space, and how to
reduce the size of the DP model.

We propose in [Detienne et al. 2012] a new solution approach based on state-
space relaxation, for a generalization of the minimization of the weighted number
of late jobs on a single machine. It consists in successively removing infeasible
solutions from the state-space, by directly altering the graph representation of the
DP. At each iteration, the algorithm defines a single relaxation (R1) in line 8 of
Algorithm 1.2.1. The relaxation satisfies the hypothesis of Remark 1.2.1. Here, the
set of relaxed solutions is the set of paths in a DAG, which is finite. Hence, the
convergence of the algorithm is guaranteed by condition s /∈ (R1).

In [Benkirane et al. 2020], a large-scale model is proposed for a real-life railway
problem. We use SSR without Lagrangian relaxation to obtain a smaller relaxed
LP formulation. We then use reduced-cost variable fixing in order to reduce the size
of the original model and solve it using a MILP solver (in order to cope with Issue
3).

1.3 Main contributions

References to my work are mentioned all along the previous section according to the
lens of the methodological tools involved. Some of them are also described in details
in Chapter 2 and Chapter 3, while others are summarized in those same chapters.
The current section states my main contributions in the solution of industrial large
scale problems, robust optimization and scheduling.

1.3.1 Real-life large scale problems

I co-supervised two PhD thesis funded by CIFRE programs, in collaboration with
two companies in the fields of transportation and energy.

38 Chapter 1. Introduction

During the PhD thesis of Mohamed Benkirane at the French railway company
SNCF, which I co-supervised with François Clautiaux, we have studied a rolling
stock rotation problem, combined with train selection. In this problem, we are given
a set of transportation demands defined on time windows, which must be fulfilled
with the help of trains. Trains are composed of rail cars and must be assigned times
of departure from each station. Various constraints restrict the (re)composition
of trains, their possible timing and route. The problem is to decide the route
of each rail car to maximize the fulfillment of the demands while satisfying all
technical constraints. The challenge of this problem resides in its size and the variety
and number of the constraints. We propose a hypergraph-based MILP model that
encompasses all the constraints, but whose size does not allow the direct solution
using a generic solver. We develop a three phase approach. The first phase solves
a state-space relaxation that basically corresponds to ignoring restrictions on the
type of rail cars that can be combined in a same train or be assigned to some routes.
In the second phase, we repair the solution of this relaxation, to obtain a feasible
solution and the associated primal bound. The latter is used within a reduced-
cost fixing procedure that eliminates variables of the original model, which is solved
during the third phase. The prototype has been tested and used at SNCF on real
data in the context of studies on the transportation offer.

I co-supervised, with François Vanderbeck, the PhD thesis of Rodolphe Griset
at the French power company EDF. The main study carried out during this project
is described in Section 3.1. In a few words, it is about the long-term planning of
outages of nuclear plants. We model the industrial problem as a two-stage stochastic
problem, which is solved with the help of combined Dantzig-Wolfe and Benders refor-
mulations. The developed prototype has been tested on real instances and showed
that taking into account the stochasticity within a global optimization approach
could lead to significant profits compared to the current industrial practice.

1.3.2 Two-stage robust problems

The main contribution on this topic is detailed in Section 3.2, and is about two-
stage robust problems with integer recourse. There are only few exact approaches
suitable for this class of problems. When uncertainty affects the objective func-
tion or the constraint matrix, the column-and-row generation algorithm proposed
in [Zhao & Zeng 2012a] is not finitely convergent, and does not perform well in
practice. On the heuristic side, binary decision rules [Vayanos et al. 2011,Bertsimas
& Georghiou 2018] and K−adaptability models [Hanasusanto et al. 2015, Subra-
manyam et al. 2020] are the most appropriate approaches.

We focus on a subclass of those problems, restricted to deterministic constraints
with binary first-stage variables in the constraints linking the first and second stages.
Our main contribution is a deterministic equivalent MILP formulation. From the
methodological perspective, it allows exactly solving the problem, with the help
of a branch-and-price algorithm. Our numerical study reported solution times 2
to 4 orders of magnitude lower than K−adaptability methods on the applications

1.3. Main contributions 39

considered. From a theoretical perspective, the formulation allows proving that
problems of this class are only NP-complete (they are not higher in the polynomial
hierarchy unless P = NP).

1.3.3 Scheduling problems

The most significant contributions in the field of scheduling are about two specific
single machine and flowshop problems.

In [Detienne 2014], we study 1|ri|
∑
wiUi, the minimization of the weighted

number of tardy jobs on a single machine, and generalizations with machine un-
availabitily constraints. For this well-studied problem, we propose a non-trivial
MILP model and dedicated valid inequalities. These cuts can be separated with the
help of DP algorithms in O(n10)- and O(n102n)-time complexity (with n the num-
ber of jobs), respectively. Despite this prohibitive worst-case complexity, restricting
the separation algorithm to cases with a small practical solution time already allows
designing an effective MILP-based solution approach, improving the state-of-the-art
from 200-job instances to 500-job instances.

In [Detienne et al. 2016], we added Lagrangian cost variable fixing to the ideas
of [Akkan & Karabati 2004] to solve F2||

∑
Ci (and F2|STSI |

∑
Ci), the two-

machine flowshop total completion time problem (with and without setup times).
This allowed us to consider an extended DP formulation, and thus integrate known
and new dominance rules to reinforce the Lagrangian relaxation. Using memoù-
)ization inside the branch-and-bound algorithm finally improved the state-of-the-art
from 45 job-instances (resp. 35 job-instances with setup times) to 140 job-instances
(resp. 100 job-instances). This study is presented in Section 2.1.

Chapter 2

State space relaxation algorithms

Contents
2.1 Branch-and-bound algorithms: application to the flowshop

problem . 41
2.1.1 DP formulation and dominance rules 44
2.1.2 Network flow formulations and lower bounds 47
2.1.3 Branch-and-bound algorithms 56
2.1.4 Computational results . 59

2.2 Successive sublimation dynamic programming: application
to the temporal knapsack problem 63

2.2.1 Integer programming and dynamic programming models . . . 66
2.2.2 Specializing Successive Sublimation Dynamic Programming to

TKP . 69
2.2.3 Refinements of SSDP to solve TKP effectively 78
2.2.4 Computational experiments 86

2.3 Other contributions in State-Space Relaxation and deter-
ministic optimization . 93

This chapter concerns deterministic optimization, and in particular two repre-
sentative studies based on State-Space Relaxation techniques. In Section 2.1, an
application of SSR techniques in the context of machine scheduling. Strong La-
grangian relaxations are derived from a Dynamic Programming formulation of the
problem. They are used within an effective branch-and-bound algorithm. Sec-
tion 2.2 describes the use of SSDP for the Temporal Knapsack Problem, which was
developed during the PhD thesis of Gaël Guillot. It shows several problem-specific
and generic improvements that need to be made to design a competitive solving
method. An overview of other contributions in deterministic optimization is finally
reported in Section 2.3.

2.1 Branch-and-bound algorithms: application to the
flowshop problem

This section is based on the journal paper [Detienne et al. 2016]. We consider the
flowshop problem on two machines with sequence-independent setup times to min-
imize total completion time. Large scale network flow formulations of the problem

42 Chapter 2. State space relaxation algorithms

are suggested together with strong Lagrangian bounds based on these formulations.
To cope with their size, filtering procedures are developed. To solve the problem
to optimality, we embed the Lagrangian bounds into two branch-and-bound algo-
rithms. The best algorithm is able to solve all 100-job instances of our testbed with
setup times and all 140-job instances without setup times, thus significantly outper-
forming the best algorithms in the literature. The outline of the section is as follows.
We first precisely describe the problem and give an overview of the literature on the
topic. Different dominance rules, which are both from the literature and new ones,
are described in Section 2.1.1. In Section 2.1.2, we present network flow formula-
tions for the problem, as well as a subgradient algorithm with embedded filtering
procedures to obtain Lagrangian dual bounds. Two improved branch-and-bound
algorithms for the problem are suggested in Section 2.1.3. Results of computational
experiments with these algorithms are given in Section 2.1.4.

Contribution from a State-Space Relaxation perspective. This work is a
successful application of SSR in the branch-and-bound setting. We base our study on
the network flow formulation from [Akkan & Karabati 2004]. Using Lagrangian-cost
variable fixing and integrating dominance rules into the structure of the network,
we are able to use a larger network and obtain strong lower bounds. Those are
also improved by enforcing the relaxed constraints locally using two- and three-
cycle elimination, and altering the graph to remove dominated two-arc paths. The
structure of the network allows us to compute an expensive Lagrangian dual bound
only once at the root node, and then recompute the bound in linear time at every
node of the enumeration tree. Thus, millions of nodes can be checked in a reasonable
time.

The original paper [Detienne et al. 2016] gives a more extensive literature re-
view. It also proposes a generalization of the mixed-integer linear programming
formulation proposed in [Akkan & Karabati 2004] for the problem with setup times
F2|STsi|

∑
Cj , whose linear relaxation is exploited within a preprocessing proce-

dure. For the sake of conciseness, the proofs are omitted in this version of the study.
Moreover, the dynamic programming and Lagrangian dual bound are presented in
a slightly different way in order to emphasize the SSR methodology.

Problem description. We consider the problem of scheduling a set of jobs J =

{1, . . . , n} in a two-machine flowshop with the objective of minimizing the sum of
completion times of jobs. The jobs are available at time zero and they should be
processed first on machine 1, and then on machine 2. Each machine can process at
most one job at a time. Let pmj denote the processing time of job j on machine m,
where m = 1, 2. All processing times are integer. Preemption of the processing of
the jobs in not allowed on either machine. Let Cmj denote the completion time of job
j on machine m. According to the scheduling classification, the problem is denoted
by F2||

∑
Cj . It is known to be NP-hard in the strong sense [Garey et al. 1976].

It has been shown by Conway et al. [Conway et al. 1967] that there exists at least

2.1. B&B: application to the flowshop problem 43

one optimal solution where both machines have the same sequence of jobs. Thus,
we may restrict the search to permutation schedules only.

In addition to this classic two-machine flowshop problem, we also consider its
extension in which every job should be set up on each machine before being pro-
cessed. Let smj denote the setup time of job j on machine m. Setup of a job on
machine 2 and processing of the same job on machine 1 can be performed in parallel.
Note that setup times do not depend on the job processed just before job j, i.e. the
setup times are sequence independent. This generalization of the problem has been
treated previously in [Gharbi et al. 2013]. It can be denoted as F2|STsi|

∑
Cj in

the scheduling classification. The set of permutation schedules remains dominant
for this generalization as indicated in [Allahverdi et al. 1999].

Related work. The problem F2||
∑
Cj has been studied in the literature for many

years. First lower bounds and the branch-and-bound algorithms based on them were
proposed by [Ignall & Schrage 1965]. Several Lagrangian relaxation-based lower
bounds have been developed for the problem. The most successful one was described
by [Akkan & Karabati 2004], who give a positional (assignment) formulation for the
problem F2||

∑
Cj . The authors use the notion of waiting time of a job before

its processing starts on the second machine. The formulation has O(n2) variables
and O(n) constraints. In [Hoogeveen et al. 2006], it was shown experimentally that
the lower bound one can obtain by solving the linear relaxation of the positional
formulation is stronger than any other bound proposed previously in the literature.
It was also shown that any Lagrangian relaxation does not improve this bound.
In [Akkan & Karabati 2004], a network flow formulation for the problem was also
suggested. In this network, each node corresponds to a position in the schedule
and the waiting time of the job on this position. The network was then reduced
by finding bounds on waiting times of jobs on different positions. To find a lower
bound and design a branch-and-bound, the Lagrangian relaxation is used, in which
job occurrence constraints are relaxed. Here the subproblem is the shortest path
problem, and the Lagrangian dual problem is solved using a subgradient method.
The branch-and-bound algorithm which uses this Lagrangian relaxation is able to
solve instances with up to 60 jobs with small processing times (up to 10) and up to
45 jobs with large processing times (up to 100). Gharbi et al. [Gharbi et al. 2013]
proposed several dual bounds for the problem F2|STsi|

∑
Cj . Some of the suggested

lower bounding procedures are similar to those used for the problem without setup
times. One lower bound is based on solving the linear relaxation of a positional
formulation. Another lower bound is based on Lagrangian relaxation similar to one
used in [Velde 1990]. Best exact algorithms based on the proposed dual bounds
allowed the authors to solve all instances with up to 30 jobs and the majority of
instances with 35 jobs with large processing and setup times (up to 100).

44 Chapter 2. State space relaxation algorithms

2.1.1 DP formulation and dominance rules

This section introduces a DP formulation of the problem, as well as dominance
rules that are used in the branch-and-bound procedures to avoid exploring the set
of solutions which are proved to be dominated, and in network reduction procedures
to shrink the size of the networks.

Lag-based formulation of the objective function. This section general-
izes the results of [Akkan & Karabati 2004] for the problem with setup times
F2|STsi|

∑
Cj . Note that the setup time of any job on machine 1 can be inte-

grated into its processing time on machine 1. This follows from the fact that there
exists an optimal schedule in which machine 1 process jobs without idle time. So,
without loss of generality, for all j ∈ J , we can set s1

j = 0, and adjust appropriately
processing times p1

j . In the following, [k] denotes the index of the job in position k.
Assuming the convention that C1

[0] = C2
[0] = 0, the completion times Cm[k] of the job

in position k, k ∈ J , on machines m = 1, 2 can be computed as:

C1
[k] = C1

[k−1] + p1
[k].

C2
[k] = max{C1

[k], C
2
[k−1] + s2

[k]}+ p2
[k].

In [Akkan & Karabati 2004], the authors introduced the notion of time lag
between the processing of the same job on both machines to write a positional
model and a network flow model for the problem. This kind of models is also called
waiting time-based models in [Gharbi et al. 2013]. The completion-to-completion
lag Lck of the job in position k, k ∈ J is defined as the time elapsed between the
completion of the job on machine 1 and its completion on machine 2:

Lck = C2
[k] − C

1
[k]

= max{0, Lck−1 + s2
[k] − p

1
[k]}+ p2

[k].

The completion-to-start lag Lsk of the job in position k, k ∈ J , is defined as
the time elapsed between the completion of the job on machine 1 and its start on
machine 2:

Lsk = Lck − p2
[k] = max{0, Lsk−1 + p2

[k−1] + s2
[k] − p

1
[k]}.

The objective function can finally be rewritten as:∑
k

C2
[k] =

∑
k

(C1
[k] + Lck)

=
∑
k

(
(n− k + 1)p1

[k] + Lsk + p2
[k]

)
=

∑
k

(
(n− k + 1)p1

[k] + Lsk
)

+
∑
j∈J

p2
j . (2.1.1)

2.1. B&B: application to the flowshop problem 45

Dynamic programming formulation. The problem can also be modeled with
help of the following Dynamic Programming equations:

−→
Φ (0, 0,0) = 0
−→
Φ (k, `,u) = min

{−→
Φ (k − 1, `′,u− εj) + (n− k + 1)p1

j + ` :

j ∈ J, ` = max{0, `′ + s2
j − p1

j}
}
,

k ∈ {1, . . . , η}, t ∈ {0, . . . , dk},u ∈ Zn
−→
Φ (k, `,u) = ∞ otherwise.

In these recurrence equations,
−→
Φ (k, `,u), k ∈ {1, . . . , η}, ` ∈ N, u ∈ Zn denotes the

minimum possible cost of a sequence of k jobs, where the completion-to-start lag of
the last job is `, and each job j has been processed exactly uj times. Note that this
value anticipates the cost for subsequent jobs that is only due to the jobs already
sequenced (more precisely, their completion time on the first machine). Vector εj
is the jth canonical vector, whose components are all equal to zero except the jth,
which equals one. The first relation states initial conditions: If no job is processed
at the beginning of the horizon, the cost is null. The second equation keeps the best
among one choice per job: Processing job j at position k completing at lag ` adds
(n− k + 1)p1

j + ` to the objective value. The last relation corresponds to infeasible
states. The optimal value is obtained by calculating min`∈N

−→
Φ (n, `,1) +

∑
j∈J p

2
j ,

which would lead to straightforward O(2nn
∑

j p
2
j)-time procedure.

Dominance rules. We now describe dominance rules which allow us to speed
up the solution process. As specified in the corresponding sections, they are used
in the branch-and-bound procedures to avoid exploring the set of solutions which
are proved to be dominated, and in network reduction procedures to shrink the
size of the networks. To make them consistent with the network approach, the
dominance rules are expressed in terms of waiting time, or lag variables. The next
proposition gives a generalization of the dominance rule from [Velde 1990] for the
problem F2||

∑
Cj .

Proposition 2.1.1 ([Allahverdi 2000]). If jobs i and j satisfy p1
i + s2

j ≤ p1
j + s2

i ,
p2
i + s2

i ≤ p2
j + s2

j , and p
2
j ≤ p2

i , then there exists an optimal schedule in which job i
precedes job j.

In our solution methods, Proposition 2.1.1 is used as preprocessing to determine
a set of predecessors Γ−i and successors Γ+

i for each job i. The next proposition is
an extension of the dominance rule of [Croce et al. 1996] to the case with sequence-
independent setup times.

Proposition 2.1.2. Let σ be a partial schedule, and i and j two jobs not in σ.
Let us denote by Cmσ the completion time of σ on machine m ∈ {1, 2}. If p1

i ≤ p1
j ,

p2
i ≥ p2

j , s
2
i ≥ s2

j , and

max{C1
σ + p1

i , C
2
σ + s2

i }+ p2
i ≤ max{C1

σ + p1
j , C

2
σ + s2

j}+ p2
j ,

46 Chapter 2. State space relaxation algorithms

then there exists an optimal solution not headed by σj, where σj denotes σ immedi-
ately followed by j.

Proposition 2.1.2 can be translated in terms of completion-to-completion lag, by
substituting Lcσ = C2

σ − C1
σ:

Proposition 2.1.3. Let σ be a partial schedule, Lcσ the corresponding completion-
to-completion lag, and i and j two jobs not in σ. If p1

i ≤ p1
j , p

2
i ≥ p2

j , s
2
i ≥ s2

j , and
max(p1

i , L
c
σ + s2

i) + p2
i ≤ max(p1

j , L
c
σ + s2

j) + p2
j , then there exists an optimal solution

not headed by σj.

Let us consider a partial schedule, built up to position k − 1. For a position k,
two jobs a and b and ` ∈ {k, k + 1}, let Lcl (k, a → b) denote the time lag between
the completion times of [`] on machines 1 and 2, under the assumption that a is
processed at position k and b at position k + 1 (i.e. [k] = a and [k + 1] = b):

Lck(k, a→ b) = max{p1
a, L

c
k−1 + s2

a}+ p2
a − p1

a

Lck+1(k, a→ b) = max{p1
b , L

c
k + s2

b}+ p2
b − p1

b

Let us define f(k, a → b) as the contribution of jobs a and b to the total cost
expressed in the objective function (2.1.1), when they are scheduled at positions k
and k + 1 respectively:

f(k, a→ b) = (n− k + 1)p1
a + Lck(k, a→ b) + (n− k)p1

b + Lck+1(k, a→ b)

In the same way, one can define Lc`(k, σ) and f(k, σ), which are the completion-
to-completion lag in position ` and the partial cost, respectively, when scheduling a
sequence of jobs σ starting at position k:

Lc`(k, σ) =

max{p1

σ(1), L
c
k−1 + s2

σ(1)}+ p2
σ(1) − p

1
σ(1) if ` = k

max{p1
σ(`−k+1), L

c
`−1(k, σ) + s2

σ(`−k+1)}+ p2
σ(`−k+1) − p

1
σ(`−k+1)

if k < ` < |σ|+ k

f(k, σ) =

k+|σ|−1∑
`=k

(n− `+ 1)p1
σ(`−k+1) +

k+|σ|−1∑
`=k

Lc`(k, σ)

The next proposition may be useful to improve a bound and/or to reduce the size
of networks which will be presented below. It shows that, under some conditions,
schedules in which a job j at position k precedes a job i can be discarded.

Proposition 2.1.4 (Dominance on two consecutive jobs). If f(k, i→ j) < f(k, j →
i) and Lck+1(k, i → j) ≤ Lck+1(k, j → i), then jobs j and i are not processed at
positions k and k + 1, respectively, in any optimal solution.

The next proposition is used in our branch-and-bound procedures, as well as
for removing edges in the networks (see Section 2.1.2). In the latter context, the
constraint specifying that each job must be scheduled not more than once is relaxed.
Hence, Proposition 2.1.5 is described in such a form that job repetition is allowed
in partial sequences.

2.1. B&B: application to the flowshop problem 47

Proposition 2.1.5 (Dominance on K consecutive jobs). Let σ = (σ1, . . . , σl) be a
partial sequence of jobs starting at position k, and let σ′ be a permutation of σ. If at
least one of these conditions hold, then no optimal schedule contains partial sequence
σ of jobs starting at position k:

• σi = σj for some i 6= j.

• σj ∈ Γ−σi for some i < j.

• f(k, σ′) < f(k, σ) and Lck+|σ|−1(k, σ′) ≤ Lck+|σ|−1(k, σ).

Consistency of the different rules We should be careful in applying several
dominance rules at the same time so that their consistency is ensured. For example,
it can happen that one rule eliminates such schedules where job i precedes job j,
whereas another rule forbids job j to precede job i. To ensure that at least one
optimal schedule is not eliminated, we use a modified version of Proposition 2.1.3
where the condition max(p1

i , L
c
σ + s2

i) + p2
i ≤ max(p1

j , L
c
σ + s2

j) + p2
j is replaced by

max(p1
i , L

c
σ + s2

i) + p2
i < max(p1

j , L
c
σ + s2

j) + p2
j . That way, any deduction made by

Propositions 2.1.3, 2.1.4 or 2.1.5 removes only non-optimal schedules. Thus, when
applying Proposition 2.1.1, we can safely break ties according to the index of the
jobs.

2.1.2 Network flow formulations and lower bounds

In this section, we introduce two minimum cost flow formulations to obtain tight
lower bounds. The first one can be obtained from the DP model (2.1.2) by the
method exposed in Section 1.2.2.1. In order to get stronger bounds and solve larger
instances, we also design an extended network, based on an augmented DP model
by adding redundant information into the state-space.

2.1.2.1 Basic network G1

Our first lower bound is based on a transshipment type network, which is a directed
graph G1 = (V1, A1) whose structure is identical to the one proposed in [Akkan &
Karabati 2004]:

• Each node vk,` ∈ V1 of the network is associated with a position k in the
sequence, and a value ` of the completion-to-completion lag of the job in
position k − 1. Node v1,0 is the source of the network. A sink node vn+1,0 is
also added, which represents the end of the schedule.

• For each combination of job j, position k, and completion-to-completion lag
`, there is an arc (vk,`, vk+1,`′ , j) ∈ A1 from node vk,` to node vk+1,`′ . Here
`′ = max{0, `+s2

j−p1
j}+p2

j if k < n, and `′ = 0 if k = n. This arc represents the
processing of job j in position k, when the completion-to-completion lag of the
previous job is equal to `, so that job j ends with a completion-to-completion

48 Chapter 2. State space relaxation algorithms

lag equal to `′. Note that multiple arcs representing different jobs may connect
the same pair of nodes. Following the expression of the objective function given
by (2.1.1), the cost c(vk,`, vk+1,`′ , j) of using this arc is (n− k+ 1)p1

j + `′ when
k < n, and c(vn,`, vn+1,0, j) = p1

j + max{0, `+ s2
j − p1

j}+ p2
j .

Basic network flow formulation The scheduling problem can be seen as the
problem of finding a minimum cost flow of value 1 (a path) from the source node
to the sink node, going through exactly one arc associated with each job, leading to
the following ILP model:

min
∑

(v,w,j)∈A1

c(v, w, j) · xv,w,j (2.1.2)

s.t.
∑

(v,w,j)∈A1

xv,w,j =
∑

(w,v,j)∈A1

xw,v,j ∀v ∈ V1 − {v1,0, vn+1,0} (2.1.3)

∑
(v,w,j)∈A1

xv,w,j ≤ 1 ∀j = 1, . . . , n (2.1.4)

∑
(v1,0,w,j)∈A1

xv1,0,w,j = 1 (2.1.5)

xv,w,j ∈ {0, 1} ∀(v, w, j) ∈ A1 (2.1.6)

Network reduction during its creation In order to reduce the size of the
network, we use a procedure similar to the one described in [Akkan & Karabati 2004]:

• An upper bound z̄ on the optimum value of the problem is computed. Instead
of the meta-heuristic of [Croce et al. 1996], we use the iterated enhanced
dynasearch heuristic of [Tanaka 2011], with a straightforward adaptation to
handle setup times. The time taken by this heuristic is given in Table 2.1.1.

• A modified version of the adapted positional MILP model is used to derive
upper bounds on the lag values at each position, in all schedules whose cost
is not larger than z̄. Bounds on completion-to-completion lags allow one to
remove dominated nodes. Bounds on completion-to-start lags and on the sum
of those for consecutive pairs of positions allow one to remove dominated arcs.
See [Akkan & Karabati 2004] for details. In our implementation, the bounds
are improved by removing variables xjk from the model when job j cannot
be processed in position k from the dominance rules, that is, k ≤ |Γ−j | or
k ≥ n− |Γ+

j |.

• For each node v, we keep track of the set of jobs P(v) that exist in all paths
from the source node to v, and utilize it when creating arcs out of v as follows:

– Similar to [Akkan & Karabati 2004], if j ∈ P(v), then no arc is created
for job j out of v.

2.1. B&B: application to the flowshop problem 49

– If i ∈ P(v) and j ∈ Γ−i , then no arc is created for j out of v.

• For each node v, we keep track of the set of jobs P̄(v) that exist in at least
one path from the source to v, and utilize it when creating arcs out of v as
follows:

– If i /∈ P̄(v) and i ∈ Γ−j , then no arc is created for j out of v.

– If i /∈ P̄(vk,`) and j is dominated by i at lag ` and position k in the sense
of Proposition 2.1.3, then no arc is created for j out of v.

Table 2.1.1: Time (in seconds) required for computing the initial upper bound using
heuristic from [Tanaka 2011].

F2||
∑
Ci F2|STsi|

∑
Ci

(instances of [Gharbi et al. 2013])

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 3.8 13.2 29.1 59.5
[1− 100] 5.2 16.6 38.1 80.0 27.5 43.4 65.4 129.4

As a preliminary experiment, we directly apply an MILP solver to formulation
(2.1.2)–(2.1.6) based on network G1 which is reduced as described just above. Ta-
ble 2.1.2 reports the number of solved instances (without setup times) within the
time limit. Table 2.1.5 reports the average number of nodes and arcs in graph G1.

Durations n=10 n=30 n=40 n=50 n=60

[1, 10] 20 20 20 19 18
[1, 100] 20 15 2 0 0

Table 2.1.2: Number of instances of F2||
∑
Ci solved to optimality within 1000

seconds using formulation (2.1.2)-(2.1.6) based on G1.

Lagrangian lower bound by state-space relaxation. The authors of [Akkan
& Karabati 2004] computed a Lagrangian lower bound based on a similar network.
It is used within a branch-and-bound procedure, as well as some dominance rules to
solve the problem. Relaxing the constraints (2.1.4) to the objective function leads
to the following Lagrangian subproblem:

L1(π) = min

 ∑
(v,w,j)∈A1

(c(v, w, j) + πj)xv,w,j −
n∑
j=1

πj

∣∣∣(2.1.3), (2.1.5), (2.1.6)

For any non-negative vector of Lagrange multipliers π, L1(π) is a Lagrangian lower
bound on the optimum of the problem, which can be computed by solving a simple

50 Chapter 2. State space relaxation algorithms

shortest path problem in G1 with modified costs c(v, w, j) + πj . This problem can
be solved in O(|A1|)-time complexity.

To improve bound L1(π), the constraint forbidding immediate repetition of a
same job is added to the Lagrangian subproblem (this technique is sometimes called
two-cycle elimination in the vehicle routing community [Desrochers et al. 1992]).
We can take into account this constraint without increasing the complexity of the
shortest path algorithm [Abdul-Razaq & Potts 1988,Peridy et al. 2003].

Like in [Tanaka et al. 2009], we obtain near-optimal Lagrangian multipliers
employing the conjugate subgradient algorithm [Sherali & Ulular 1989, Sherali &
Lim 2007]. At each iteration k of the procedure, given current Lagrangian mul-
tipliers πk, we first compute L1(πk). We denote by x∗k the corresponding opti-
mal solution of the Lagrangian subproblem. We choose the subgradient vector as
(gkj = 1−

∑
(v,w,j)∈A1

x∗kv,w,j)j∈{1,...,n}. The Lagrangian multipliers are updated by

dk = gk + ξkdk−1

πk+1 = πk + γk
UB − L1(πk)

||dk||2
dk

Following [Sherali & Ulular 1989,Sherali & Lim 2007], we choose ξk = ||gk||/||dk−1||.
The choice of the step size parameter γk obeys these rules:

• The initial value is γ0 = γini.

• It is decreased by ξk = κSγ
k−1 if the best lower bound is not updated for δS

successive iterations.

• It is increased by ξk = κEγ
k−1 if the best lower bound is improved at iteration

k.

The algorithm is terminated if the best lower bound does not increase by 100ε/(1−
ε)% and the gap between the best lower and upper bounds does not decrease by
100ε% in δT successive iterations, but not before miniter iterations have been com-
pleted.

Filtering procedure for G1 In order to reduce further the size of network G1,
we developed Lagrangian cost variable fixing (see Section 1.2.3.4, [Ibaraki & Naka-
mura 1994,Tanaka et al. 2009]). Given a vector of Lagrange multipliers π,

• let F 1(v, π) be the cost of the shortest path from the source to node v in G1

with modified costs;

• let B1(v, π) be the cost of the shortest path from node v to the sink in G1

with modified costs.

Given π, values F 1(v, π) for all nodes v ∈ V1 can be found using the forward dynamic
programming algorithm, and all values B1(v, π), v ∈ V1 can be found using backward
dynamic programming algorithm. Then an arc (v, w, j) ∈ A1 can be removed from

2.1. B&B: application to the flowshop problem 51

G1 if F 1(v, π) + c(v, w, j) + πj + B1(w, π) ≥ z̄. Furthermore, a node v ∈ V1 can
be removed from G1 if it does not have any incoming or any outgoing arc anymore.
For a fixed vector π, the time complexity of this filtering procedure remains equal
to O(|A1|). The filtering procedure is called at every iteration of the conjugate
subgradient algorithm.

The running time of the subgradient algorithm is presented in Table 2.1.3. The
relative gaps obtained after the subgradient algorithm are shown in Table 2.1.4.
The gap is computed as UB−LB

LB , where UB is the upper bound given by the heuris-
tic [Tanaka 2011], and LB is the best Lagrangian bound obtained during the sub-
gradient algorithm. One can see from the results that a very tight lower bound is
obtained in small running time, which is 25 seconds for the largest instances with-
out setup times. The computing time is twice larger for instances with setup times.
This is explained by the slightly degraded performance of the dynasearch procedure
for this class of problems to compute an upper bound (the root gap is twice larger).
Hence, the network cannot be reduced as much in this case (as can be seen from
Table 2.1.5), so that solving the subproblem at each iteration of the subgradient
procedure takes more time.

Table 2.1.3: Average running time (in seconds) for the subgradient procedure on
network G1.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.2 0.4 0.8 1.7
[1− 100] 1.1 4.2 10.5 23.5 9.0 16.1 24.7 55.9

Table 2.1.4: Average duality gap produced by the subgradient procedure on network
G1.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.13% 0.11% 0.10% 0.08%
[1− 100] 0.16% 0.18% 0.12% 0.10% 0.21 % 0.22 % 0.20 % 0.20 %

From Table 2.1.5 it can be seen that the filtering procedure reduces the size of
the graph G1 significantly: the number of arcs is decreased by a factor of 5 on large
instances without setup times, and by more than 2 on instances with setup times.
Once again, the degraded results can be attributed to the quality of the upper bound
used in the filtering procedure.

We applied an MILP solver to formulation (2.1.2)–(2.1.6) based on filtered net-
work G′1. Table 2.1.6 reports the number of solved instances (without setup times)
within the time limit. Again the improvement of results in comparison with the

52 Chapter 2. State space relaxation algorithms

Table 2.1.5: Average size of network G1 before and after filtering.

Number of nodes in G1 (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.8 1.3 2.0 2.8
[1− 100] 8.0 14.6 21.3 30.4 20.3 26.1 31.9 46.3

Number of arcs in G1(in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 21.9 59.3 119.0 213.9
[1− 100] 258.3 731.7 1451.6 2635.2 1026.4 1553.3 2189.3 4030.1

Number of nodes in G1 after filtering (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.5 0.9 1.4 1.9
[1− 100] 4.4 9.1 14.2 21.0 14.9 20.3 24.9 38.6

Number of arcs in G1 after filtering (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 3.4 11.3 26.2 47.0
[1− 100] 30.9 129.8 264.0 520.6 311.6 567.6 828.6 1813.3

network flow formulation based on G1 is very limited despite a significant reduction
of the graph size.

Table 2.1.6: Number of instances of F2||
∑
Ci solved to optimality within 1000

seconds using formulation (2.1.2)-(2.1.6) based on G′1.

Durations n=10 n=30 n=40 n=50 n=60

[1, 10] 20 20 20 19 19
[1, 100] 20 19 9 2 1

2.1.2.2 Expanded network G2

Although lower bounds obtained using Lagrangian relaxation of the network flow
formulation based on G1 are already very tight, we can improve them by adding
another dimension to G1. It results in a larger network G2, which allows us to
eliminate more dominated subsequences of jobs in the Lagrangian subproblem and
thus to improve the lower bound.

2.1. B&B: application to the flowshop problem 53

Network structure of G2. The network is a directed graph G2 = (V2, A2) with
the following structure.

• Each node vk,`,i ∈ V2 of the network is associated with a position k in the
sequence, a job i, and a value ` of the completion-to-completion lag of the job
in position k− 1. Node v0,0,0 is the source of the network. An additional sink
node vn+1,0,0 is added, which represents the end of the schedule.

• For each combination of jobs i, j, i 6= j, position k, and completion-to-
completion lag `, there is an arc (vk,`,i, vk+1,`′,j) ∈ A2, with:

`′ =

{
0 if k = 0

max{0, `+ s2
i − p1

i }+ p2
i otherwise

This arc represents the processing of job i in position k, when the completion-
to-completion lag of the job in position k − 1 is equal to `, the completion-
to-completion lag of job i is equal to `′, and job j is processed at position
k + 1. When 0 < k < n, the cost c(vk,`,i, vk+1,`′,j) of using this arc is (n −
k + 1)p1

i + `′. For the first position, c(v0,0,0, v1,0,j) = 0. For the last position,
c(vn,`,i, vn+1,0,0) = p1

i + max{0, `+ s2
i − p1

i }+ p2
i .

Network reduction during its creation.

• A node vk,`,i in G2 is created only if an arc (vk,`, vk+1,`′ , i) exists in filtered
network G′1.

• Arc (vk,`,j , vk+1,`′,i) is not created if scheduling job j is dominated at lag ` by
Proposition 2.1.3.

• Arc (vk,`,j , vk+1,`′,i) is not created if scheduling of jobs j and i at positions k
and k + 1, respectively, is dominated by Proposition 2.1.4.

• Arc (vk,l1,j1 , vk+1,l2,j2) is not created if, for all arcs (vk−1,l0,j0 , vk,l1,j1), the se-
quence of jobs (j0, j1, j2) is dominated at lag l0 and position k − 1 according
to Proposition 2.1.5.

2.1.2.3 Filtering procedure for G2

We developed a filtering procedure embedded in the subgradient algorithm. The
procedure is similar to the one described in Section 2.1.2.1, but has the following
differences.

• The Lagrangian lower bound is improved using 3-cycle elimination by forbid-
ding such partial sequences of job as (i, j, i) (adding this constraint does not
change the time-complexity of the Lagrangian subproblem [Abdul-Razaq &
Potts 1988,Peridy et al. 2003]).

• Similar to the filtering procedure in Section 2.1.2.1, Lagrangian cost fixing is
performed by computing the following values.

54 Chapter 2. State space relaxation algorithms

– F 2(v, π) is the cost of the shortest path from the source to node v in G2

with modified costs;

– B2(v, π) is the cost of the shortest path from node v to the sink in G2

with modified costs.

An arc (v, w) ∈ A2 can be removed from G2 if F 2(v, π) + c(v, w) + πj +

B2(w, π) ≥ z̄, where j is the index of the job represented by w.

• In addition, Proposition 2.1.5 is applied to perform what we call 3-consecutive-
jobs filtering. It removes arc (vk,l1,j1 , vk+1,l2,j2) if one of these conditions holds:

– for all arcs (vk−1,l0,j0 , vk,l1,j1) in G2, the sequence of jobs (j0, j1, j2) is
dominated at lag l0 and position k − 1 according to Proposition 2.1.5 ;

– for all arcs (vk+1,l2,j2 , vk+2,l3,j3) in G2, the sequence of jobs (j1, j2, j3) is
dominated at lag l1 and position k according to Proposition 2.1.5.

This 3-consecutive-jobs filtering is costly. Therefore, it is not applied at every
iteration of the subgradient procedure, but each time the number of arcs in
the graph is reduced by 5% using the Lagrangian cost fixing since the last
time 3-consecutive-jobs filtering was used.

• The lower bound is improved using Proposition 2.1.5 by removing dominated
sequences of three jobs which are part of the Lagrangian subproblem solution.
More precisely, at each iteration of the subgradient procedure, the Lagrangian
subproblem solution is inspected. Assume that a subsequence of jobs (j1, j2, j3)

starting at lag l1 and position k is part of the solution and dominated. Let
(vk,l1,j1 , vk+1,l2,j2 , vk+2,l3,j3) be the corresponding sequence of nodes. This path
is removed from the network using the following procedure (see Figure 2.1.1):

1. Identify the set V ∗(k, l1, j1, l2, j2) of nodes v′ which are successors of
vk+1,l2,j2 and such that sequence (vk,l1,j1 , vk+1,l2,j2 , v

′) is not dominated
(by inspection).

2. Create a new node v′′, which is a duplicate for node vk+1,l2,j2 .

3. For each node v′ ∈ V ∗(k, l1, j1, l2, j2), create an arc (v′′, v′), which is a
duplicate for (vk+1,l2,j2 , v

′).

4. Create an arc (vk,l1,j1 , v
′′).

5. Remove arc (vk,l1,j1 , vk+1,l2,j2).

The Lagrangian subproblem is then solved again, on the modified network and
with the same Lagrange multipliers. This procedure is repeated until there
exist no dominated sequences of three jobs in the Lagrangian subproblem
solution. This solution is then returned to the sub-gradient procedure.

• At the end of the subgradient procedure, the following additional filtering
procedure is used, as in [Detienne et al. 2012]. Given a vector of Lagrange
multipliers π,

2.1. B&B: application to the flowshop problem 55

vk1,l1

j1

vk1,l2

j2

vk1,l3

j3

vk2,l4

j4

vk3,l5

j5

vk3,l7

j1

vk3,l6

j6

vk1,l1

j1

vk1,l2

j2

vk1,l3

j3

vk2,l4

j4

vk3,l5

j5

vk3,l7

j1

vk3,l6

j6

v′′

Figure 2.1.1: On the left side, assume that the bold dashed path
(vk1,l2,j2 , vk2,l4,j4 , vk3,l7,j1) is part of the optimal solution of the current Lagrangian
subproblem, and is dominated in the sense of Proposition 2.1.5. On the right
side, this path is removed from the graph by adding a duplicate node v′′

for vk2,l4,j4 and rerouting non-dominated paths through the new node. Path
(vk1,l1,j1 , vk2,l4,j4 , vk3,l7,j1) is also removed since it is not feasible.

– let F 2
j (v, π) (resp. B2

j (v, π)) denote the cost of the shortest path from the
source to node v (resp. from node v to the sink) in G2 with Lagrangian
costs, such that this path goes through exactly one arc representing job
j;

– let F 2
¬j(v, π) (resp. B2

¬j(v, π)) denote the cost of the shortest path from
the source to node v (resp. from node v to the sink) inG2 with Lagrangian
costs, such that this path does not contain any arc representing job j.

Given π, these values for all jobs and all nodes can be computed in time
O(n|A2|) by applying several times the forward and backward dynamic pro-
gramming algorithms. Then for each arc a = (vk,`,j , vk+1,`′,i) ∈ A2, we com-
pute value L2(a, π) as:

L2(a, π) = max

F 2
¬j(vk,`,j , π) + c(a) + πj +B2

¬j(vk,`′,i, π),

max
j′ 6=j

{
min

{
F 2
j′(vk,`,j , π) + c(a) + πj +B2

¬j′(vk,`′,i, π),

F 2
¬j′(vk,`,j , π) + c(a) + πj +B2

j′(vk,`′,i, π)

}} .

Arc a can be removed from G2 if L2(a, π) > z̄.

The running time of the subgradient algorithm with embedded filtering of graph
G2 is presented in Table 2.1.7. The relative gaps obtained after the subgradient
algorithm are shown in Table 2.1.8. One can see from the results that the gap is
decreased by 30% in comparison with the subgradient procedure on network G1.
However, the running time is increased by a factor of 5 for instances without setup
times, and 16 with setup times.

From Table 2.1.9 it can be seen that, again, the filtering procedure reduces the
size of the graph significantly for instances without setup times: the number of arcs
is decreased by a factor of 4 on large instances. For instances with setup times, the
number of arcs is still very large. In Section 2.1.3, we show that filtering is also
efficient for this class of instances when used with a tighter upper bound.

56 Chapter 2. State space relaxation algorithms

Table 2.1.7: Time in seconds for the subgradient procedure on network G2.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.2 0.7 2.5 8.9
[1− 100] 1.3 9.8 38.1 94.1 68.0 167.7 291.0 913.5

Table 2.1.8: The duality gap produced by the subgradient procedure on network
G2.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.07% 0.05% 0.06% 0.06%
[1− 100] 0.09% 0.07% 0.08% 0.07% 0.19% 0.20 % 0.19 % 0.19%

2.1.3 Branch-and-bound algorithms

We have implemented two branch-and-bound algorithms.

• Algorithm BB1 is based on network G1 and Lagrangian bound L1(π).

• Algorithm BB2 is based on network G2 and Lagrangian bound L2(π).

The following parts of the algorithm are the same for both BB1 and BB2.

• The initial upper bound is computed by the dynasearch heuristic
from [Tanaka 2011].

• Network G1 or G2 is constructed and reduced by the corresponding filtering
algorithm.

• After the subgradient algorithm, the vector of multipliers π∗ which gives the
best Lagrangian lower bound L1(π∗) or L2(π∗) is fixed till the branch-and-
bound termination.

• The set of possible job sequences is explored, by enumerating the set of feasible
(with respect to the job assignment constraint) paths in graph G1 or G2. We
proceed from the source to the sink in the graph. For each node v, the outgoing
arcs (v, w) are sorted in non-decreasing order of B1(w, π∗) or B2(w, π∗). The
algorithms use the depth-first-search rule in this order.

• We use Proposition 2.1.5 in a Memory Dominance Rule fashion [Baptiste
et al. 2004, T’kindt et al. 2004, Kao et al. 2008]: the set of non-dominated
subsequences explored is maintained in a hash map. At each node of the tree,
the current subsequence is tested against the subsequences composed of the
same set of jobs.

2.1. B&B: application to the flowshop problem 57

Table 2.1.9: Average size of network G2 before and after filtering. Filtering is
performed with the initial upper bound.

Number of nodes in G2 (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 2.3 7.8 17.0 35.8
[1− 100] 26.5 92.7 212.4 391.3 246.7 426.9 608.4 1 234.1

Number of arcs in G2 (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 12.9 68.2 217.6 642.7
[1− 100] 164.2 937.0 2925.4 6431.4 3818.3 8224.6 13 550.5 35 554.8

Number of nodes in G2 after filtering (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.4 2.2 6.6 13.0
[1− 100] 5.2 35.5 92.5 166.2 163.7 284.8 396.8 766.3

Number of arcs in G1 after filtering (in thousands)
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.8 7.6 38.6 99.2
[1− 100] 16.4 170.7 639.0 1465.4 1866.5 4236.0 6931.7 18 544.7

• At each node of the search tree, we maintain incrementally the number of
unscheduled predecessors of each job. An arc in G1 or G2 corresponding to
job j is a candidate for branching only if the number of remaining predecessors
of j is zero.

• We branch, i.e. we extend current partial sequence σ with job j, only if the
subsequence of the last K jobs (K = 5 in our implementation) including j is
not dominated, according to Proposition 2.1.5, by any permutation of these
K jobs.

• The upper bound may be updated only when a leaf node of the search tree is
reached. We do not use any heuristics within the branch-and-bound algorithm.

2.1.3.1 Algorithm BB1

In algorithm BB1, at each non-root node of the search tree corresponding to node
v in graph G1, we compute lower bound L1(v). Let σ be the partial sequence built

58 Chapter 2. State space relaxation algorithms

so far. Then,
L1(v) = cost(σ) +B1(v, π∗)−

∑
j /∈σ

π∗j .

Computation of L1(v) can be done in constant time by incrementally maintaining
at each node the current value of

∑
j /∈σ πj .

Note that algorithm BB1 is similar to the branch-and-bound algorithm presented
in [Akkan & Karabati 2004]. The main differences are that graph G1 is filtered, and
we use Proposition 2.1.5 as a memory dominance rule. In [Akkan & Karabati 2004],
other dominance rules are used, but preliminary computational experiments indi-
cated that they do not improve the performance of our branch-and-bound procedure.

2.1.3.2 Algorithm BB2

In algorithm BB2, at each non-root node of the search tree corresponding to node
v in graph G2, we compute lower bound L2(v). Again, let σ be the partial sequence
built so far. Then,

L2(v) = cost(σ) + max

B2(v, π∗),

maxj /∈σ B
2
j (v, π∗),

maxj∈σ B
2
¬j(v, π

∗)

−∑
j /∈σ

π∗j .

Computation of L2(v) can be done in time O(n).

Tentative upper bound As one can expect from Tables 2.1.8 and 2.1.9, solving
large instances of the problem F2|STSI |

∑
Ci by enumerating the set of paths in

network G2 is very time-consuming. The optimal objective values of medium size
instances indicate us that the very large size of the network in this case compared
with the case without setup times clearly comes from a degraded initial upper bound.
That is why, following the idea described in [Tanaka et al. 2009], we introduce the use
of a tentative upper bound around algorithm BB2. Contrary to the initial upper
bound coming from a feasible solution, a tentative upper bound is fixed a priori
without evidence that this value is not smaller than the optimum of the problem.
The problem, once restricted by using this bound, can be either equivalent to the
original one, or infeasible. Solving the restricted problem yields a posteriori evidence
that the tentative upper bound is correct or not. The overall procedure can be
summarized like this:

• Build and filter network G1, to obtain network G′1.

• If the number of arcs in G′1 does not exceed a given threshold (fixed empirically
to 300 thousands arcs in our experiments), then build network G2 from G′1,
filter G2 and run algorithm BB2 to solve the problem to optimality.

• Otherwise, it is very likely that the upper bound significantly over-estimates
the optimal objective value and that it will result in a very large network G2

at the basis of the branch-and-bound procedure. In this case, perform a major

2.1. B&B: application to the flowshop problem 59

iteration: use a tentative upper bound UBtent to build and filter network G2

from G′1, and run algorithm BB2. Two outcomes are possible.

– If algorithm BB2 does not improve the upper bound, then UBtent under-
estimates the optimal objective value. In this case, the algorithm per-
forms next major iteration with an increased value of UBtent.

– If algorithm BB2 completes with a new, improved upper bound, then it
is optimal and the overall procedure terminates.

Table 2.1.10 shows the usefulness of the tentative upper bound on instances with
setup times: the size of network G2 once it is filtered during the last major iteration
(i.e. with the smallest feasible tentative upper bound) is more than seven times
smaller than when it is filtered with the initial upper bound for 100-job instances.
We do not report the corresponding results for instances without setup times since
the impact is very limited for this class of problems.

Number of nodes in G2 after filtering (in thousands)
Initial upper bound Best feasible tentative upper bound

n=60 n=70 n=80 n=100 n=60 n=70 n=80 n=100
163.7 284.8 396.8 766.3 63.1 88.4 135.1 237.1

Number of arcs in G2 after filtering (in thousands)
Initial upper bound Best feasible tentative upper bound

n=60 n=70 n=80 n=100 n=60 n=70 n=80 n=100
1 866.5 4 236.0 6 931.7 18 544.7 344.1 544.5 1013.3 2 237.8

Table 2.1.10: Average size of network G2 after filtering, for problem F2|STSI |
∑
Ci,

when filtering is performed with the initial upper bound and the smallest feasible
tentative upper bound.

2.1.4 Computational results

All the algorithms were coded in C++ and compiled under Microsoft Visual Studio
2012. All the experiments were conducted on a laptop computer with an Intel i7 2.7
GHz processor and 16GB RAM. The solver used to solve the MILP and LP models
is IBM ILOG Cplex v12.6.

The initial value of the tentative upper bound is chosen as UBtent = α1(UB −
LB)+LB, where UB and LB are, respectively, the initial upper bound obtained by
the dynasearch procedure and the best lower bound at the end of the subgradient
procedure applied to filter network G1. If necessary, UBtent is increased at each
major iteration by α2(UB − LB). In our implementation, α1 = 0.4 and α2 = 0.2,
ensuring the convergence of the overall procedure in four major iterations.

We use the same tuning of the different parameters for subgradient procedure
for filtering networks G1 and G2 for both problem types with and without setup

60 Chapter 2. State space relaxation algorithms

times: γini = 1, κS = 0.95, κE = 1.02, ε = 10−4, δS = 2, δT = n, miniter = 2n.

2.1.4.1 Instances without setup times

We first tested our branch-and-bound algorithms on instances without setup times
generated similarly to the instances in [Haouari & Kharbeche 2013]. The instance
generator takes as input the number of jobs n, and a maximum duration of op-
erations pmax. The duration of the operations is drawn from the uniform distri-
bution [1, pmax]. We generated 20 instances for each combination of parameters
n ∈ {10, 30, 40, 50, 60, 70, 80, 90, 100, 140} and pmax ∈ {10, 100}.

In Table 2.1.11 we report the number of instances solved to optimality within
the time limit of 1000 seconds (for the whole method) by both algorithms BB1 and
BB2. Algorithm BB2 solves all instances of the testbed within the time limit. The
hardest 100-job instance is solved in 602 seconds.

Table 2.1.11: F2||
∑
Ci: Number of instances of our testbed solved to optimality

within 1000 seconds. The hardest 100-job instance is solved by BB2 in 602 seconds.

Alg. Duration n=10 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

BB1 [1− 10] 20 20 20 20 20 20 20 18 18
BB1 [1− 100] 20 20 20 20 19 20 20 19 15

BB2 [1− 10] 20 20 20 20 20 20 20 20 20
BB2 [1− 100] 20 20 20 20 20 20 20 20 20

In Table 2.1.12 and Table 2.1.13 we give, respectively, the average running time
of our branch-and-bound algorithms, and the average number of nodes in the search
tree. These average values are computed on the instances solved to optimality by
both methods.

Table 2.1.12: F2||
∑
Ci: Average total running time (in seconds) of the algorithms.

Time for initial heuristic, network building and filtering is included. For BB2, the
overall time including all major iterations of the tentative upper bound procedure
is reported.

Alg. Duration n=10 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

BB1 [1− 10] 0.3 2.7 5.7 11.2 19.8 22.7 60.9 62.4 89.6
BB1 [1− 100] 0.2 3.4 8.7 16.9 33.3 60.8 113.6 339.1 455.6

BB2 [1− 10] 0.3 2.2 4.5 8.9 14.8 23.2 35.1 54.6 95.0
BB2 [1− 100] 0.3 3.0 8.2 17.4 34.2 57.3 91.8 153.6 215.8

As it can be seen from the results, algorithm BB2 performs better than BB1

in terms of computing time, and explores up to 70 times less nodes for instances
with 100 jobs and large durations. The difference in the number of nodes can be
explained by the fact that lower bound L2 is much stronger than L1 and reduces the

2.1. B&B: application to the flowshop problem 61

Table 2.1.13: F2||
∑
Ci: Average number of nodes for the branch-and-bound algo-

rithms (K: thousands, M: millions). For BB2, the total number of nodes explored
in all major iterations of the tentative upper bound procedure is reported.

Alg. Duration n=10 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

BB1 [1− 10] 0.0 K 0.7 K 5.0 K 38.5 K 124.7 K 777.1 K 7.0 M 20.3 M 15.3 M
BB1 [1− 100] 0.0 K 1.7 K 78.0 K 320.6 K 2.6 M 23.3 M 53.0 M 214.0 M 283.5 M

BB2 [1− 10] 0.0 K 0.0 K 0.2 K 2.5 K 2.5 K 45.7 K 236.1 K 1.3 M 8.6 M
BB2 [1− 100] 0.0 K 0.0 K 0.0 K 4.0 K 12.2 K 303.4 K 348.2 K 3.1 M 3.9 M

size of the search tree by several orders of magnitude for some instances. Moreover,
it allows an early detection of infeasible subsequences that cannot be extended to
complete sequences with each job processed exactly once. For example, if job j is
already scheduled, and no path without job j exists in G2 from current node to
the sink node, then B¬j(v) = ∞ and the branch-and-bound node is pruned by the
bound. In less extreme scenarios, such paths exist but are all relatively costly, and
B¬j(v) may be sufficiently large to prune the node. The difference in the solution
times is less. One can remark that the distribution of the time consumed by each
algorithm is not the same: for BB1, most of the time is spent in the exploration
of the search tree, while for BB2 the computational effort is balanced between the
filtering of G2 and the exploration of the search tree. The relatively small difference
in solution times is also due to the fact that calculating L2 takes linear time instead
of constant time for bound L1.

In order to test the limits of algorithm BB2, we generated 40 140-job instances.
Our method still performs well for this size of instances: the hardest 140-job instance
is solved to optimality in 3006 seconds, and the average computing time is 752
seconds. Within a time limit of 1000 seconds, 18 out 20 (resp. 12 out of 20)
instances with small (resp. large) processing times are solved. Furthermore, we
tested the proposed algorithms on the instances in [Haouari & Kharbeche 2013]
(with up to 70 jobs), and both BB1 and BB2 solved them to optimality within 1000
seconds.

Efficiency of the Memory Dominance Rule The Memory Dominance Rule
appears to be critical for the efficiency of algorithm BB1: when it is disabled, this
method does not solve any 100-job instance within 1000 seconds. Moreover, the
average (resp. maximum) number of nodes for solving 60-job instances reaches 16
millions (resp. 225 millions) for small processing times, and 1.3 billions (resp. 5.8
billions) for large processing times, while the average computing time is multiplied
by a factor 3.

The rule appears to be less critical for algorithm BB2, probably because of the
better quality of the lower bound used. However, it still clearly makes the algorithm
more robust in terms of computing time and number of nodes explored. Two 100-job
instances are not solved within 1000 seconds when the rule is disabled, but one of
them needs more than 7700 seconds to be closed. The average (resp. maximum)

62 Chapter 2. State space relaxation algorithms

number of nodes for solving 100-job instances reaches 78 millions (resp. 958 millions)
for small processing times, and 179 millions (resp. 2.7 billions) for large processing
times, while the average computing time is multiplied by a factor 4.

2.1.4.2 Instances with setup times

For the problem F2|STSI |
∑
Ci, our solving methods are tested against the testbed

of Gharbi et al. [Gharbi et al. 2013]. Their generator takes as input a number n
of jobs, and a factor K for setup times. The processing time of each operation
is drawn from the uniform distribution [1, 100], and one setup time is drawn for
each operation from the uniform distribution [1, 100K]. As mentioned in Section
2.1.1, we modify the instances by integrating the setup time of the first operation
of each job into its processing time. The whole set of instances is composed of 50

instances for each combination of the number of jobs ranging from 10 to 500, and
K ∈ {0.25, 0.5, 0.75, 1}. We restrict our computational study to the 800 instances
with the number of jobs in n ∈ {60, 70, 80, 100} (the test set of [Gharbi et al. 2013]
does not contain 90-job instances).

Table 2.1.14 reports the number of instances solved to optimality by both meth-
ods within 1000 seconds. Algorithm BB2 significantly outperforms BB1. Moreover,
algorithm BB2 solves all instances of the testbed with up to 100 jobs in less than
two hours: only four 100-job instances are not solved within one hour; the hardest
instance is solved in 6443 seconds.

The value of parameter K has no significant impact on the performance of al-
gorithm BB1. However, while BB2 solves 47 out of the 50 100-job instances within
1000 seconds when K = 0.25, it solves only 26 of the instances when K = 1 in the
same time. This can be explained by the wider range of completion-to-completion
lag in the latter case, leading to more nodes in both networks G1 and G2. For
large instances, the larger size of G2 implies a consequent computational effort dur-
ing the first iterations of the subgradient procedure (when the network is only a
little shrunk). This hypothesis is confirmed by the fact that the root gap is not
significantly impacted by parameter K, while the average time for the subgradi-
ent procedure is increased by a factor two for 80-job and 100-job instances when
increasing parameter K from K = 0.25 to K = 1.

Table 2.1.14: F2|STSI |
∑
Ci: Number of instances of the testbed of [Gharbi

et al. 2013] solved to optimality within 1000 seconds. The hardest instance is solved
by algorithm BB2 in 6443 seconds.

Alg. n=60 n=70 n=80 n=100

BB1 200 190 125 10
BB2 200 200 200 145

In Table 2.1.15 and Table 2.1.16 we give, respectively, the average running time
of our branch-and-bound algorithms, and the average number of nodes in the search

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 63

tree. These results emphasize the importance of having tight lower and upper
bounds in our methods: algorithm BB2 performs two order of magnitude less nodes
than algorithm BB1.

Table 2.1.15: F2|STSI |
∑
Ci: Average total running time (in seconds) of the algo-

rithms. Time for initial heuristic, network building and filtering is included. For
BB2, the overall time including all major iterations of the tentative upper bound
procedure is reported.

Alg. n=60 n=70 n=80 n=100

BB1 - Avg. on solved instances 79.6 280.3 393.9 615.8
BB2 - Avg. on instances solved by BB1 99.5 162.6 235.9 478.8

BB2 - Avg. on all instances 99.5 168.6 287.18 935.2

Table 2.1.16: F2|STSI |
∑
Ci: Average number of nodes for the branch-and-bound

algorithms (K: thousands, M: millions). For BB2, the total number of nodes ex-
plored in all major iterations of the tentative upper bound procedure is reported.

Alg. n=60 n=70 n=80 n=100

BB1 - Avg. on solved instances 30.4 M 142.6 M 216.2 M 301.1 M
BB2 - Avg. on instances solved by BB1 125.7 K 310.6 K 626.1 K 822.0 K

BB2 - Avg. on all instances 125.7 K 369.2 K 2.4 M 42.6 M

2.2 Successive sublimation dynamic programming: ap-
plication to the temporal knapsack problem

This section is based on the journal paper [Clautiaux et al. 2021]. In this section,
we address the TKP, a generalization of the classical knapsack problem, where se-
lected items enter and leave the knapsack at fixed dates. We model the TKP with
a dynamic program of exponential size, which is solved using SSDP. This method
starts by relaxing a set of constraints from the initial problem, and iteratively rein-
troduces them when needed. We show that a direct application of SSDP to the
temporal knapsack problem does not lead to an effective method, and that several
improvements are needed to compete with the best results from the literature. The
rest of the section is organized as follows. In Section 2.2.1, we formally discuss
integer programming and DP formulations for TKP. In Section 2.2.2, we describe
an application of SSDP to TKP. Section 2.2.3 outlines the various refinements
of the method that are necessary to obtain competitive results. We present our
computational experiments in Section 2.2.4.

64 Chapter 2. State space relaxation algorithms

Contribution from a State-Space Relaxation perspective. The SSDP
method has been highly successful for single machine scheduling problems [Tanaka
et al. 2009,Tanaka & Fujikuma 2012,Tanaka & Araki 2013]. However, to the best
of our knowledge, it had not been applied in other contexts, probably because of its
demanding implementation and the lack of generic tools. We show that the appli-
cation of the textbook approach does not make a competitive approach, at least for
TKP. Inspired by the impressive work of Dr. Shunji Tanaka (Kyoto University) in
scheduling, we integrate many problem-specific properties to help reducing the size
of the relaxed DP models. We also exploit an original MILP formulation to obtain
good initial Lagrangian multipliers. From a methodological point-of-view, we use
partial enumeration techniques to improve the efficiency of variable fixing and take a
more general view, investigating different strategies for the choice of the constraints
to be reintroduced into the relaxed DP. From a theoretical perspective, we give a
formal proof of a conjecture never explicitly stated in the related literature: once
an arc is eliminated from the graph at a given iteration, all corresponding arcs can
be removed from the graphs built during subsequent iterations.

We choose to keep most of the contents of the original paper [Clautiaux
et al. 2021] in this document, in order to give a detailed illustration of this rather
obscure method.

Problem description. The Temporal Knapsack Problem is a generalization of
the well-known knapsack problem, where each item has a time window during which
it can be added to the knapsack, and the capacity constraint is considered at each
time period. The name Temporal Knapsack was introduced in [Bartlett et al. 2005],
although the problem had already been studied in [Chen et al. 2002] as a bandwidth
allocation problem. Formally, the TKP can be stated as follows.

Problem 2.2.1 (Temporal Knapsack Problem). Let I = {1, . . . , n} be a set of
items. Each item i ∈ I has a profit pi ∈ R+, a size wi ∈ N, and a time interval
[si, fi), where si, fi ∈ N and si < fi. Moreover, let W ∈ N be the weight of the
knapsack. A feasible solution comprises a subset J of I such that for any value of
m ∈ N, the sum of the sizes of the items in J whose time interval contains m is less
than or equal to W . The Temporal Knapsack Problem is the problem of finding a
feasible subset J of I with maximum profit.

Figure 2.2.1 represents an instance of TKP with three items, and its two
inclusion-wise maximal solutions. One can see that no solution can contain both
items 2 and 3, since they are both active at time 3, and the sum of their sizes is
larger than the capacity of the container. Conversely, 1 and 3 can be selected in the
same solution, despite their size, since their time intervals do not overlap.

In its general form, the TKP is NP-hard in the strong sense [Bonsma et al. 2014].
The first results proposed for TKP were focused on a theoretical characterization:
a polynomially solvable case [Arkin & Silverberg 1987], and approximation results
[Chen et al. 2002,Calinescu et al. 2002]. Two dynamic programs were proposed by
[Chen et al. 2002] and [Caprara et al. 2013], and are described more precisely in the

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 65

W = 8

i wi pi [si, fi)

1 4 2 [0, 2)

2 4 20 [1, 4)

3 8 200 [3, 5)

(a) A TKP Instance

t

w

W

1
2

(b) A first solution of profit
22

t

w

W

1 3

(c) A second solution of
profit 202

Figure 2.2.1: A TKP instance with three items and its two inclusion-wise maximal
solutions

next section. A Dantzig-Wolfe reformulation was proposed by [Caprara et al. 2013],
where the idea is to partition the time horizon into consecutive time periods (blocks).
For each block, the variables related to the items whose time intervals intersect the
corresponding time period are duplicated. Each subproblem is a smaller TKP,
while the master problem makes sure that the duplicated variables related to the
same item have the same value. Based on this reformulation, [Caprara et al. 2013]
proposed a branch-and-price algorithm. These results were improved in [Gschwind
& Irnich 2017] using an innovative stabilization technique. This method relies on
so-called dual-optimal inequalities, and uses dominance relations between (pairs of)
items to add additional effective dual cuts that are satisfied by at least one optimal
dual solution. Finally, [Caprara et al. 2016] proposed a method based on the previous
Dantzig-Wolfe reformulation, where each subproblem is itself decomposed into a
master problem and several smaller TKPs, and solved by branch-and-price.

Here, we propose a new exact algorithm for TKP. It is based on an exponential
size dynamic program, where the size of the state-space depends exponentially on the
number of items n. SSDP consists in solving a relaxation of the original dynamic
program, removing some transitions that cannot belong to an optimal solution,
and incrementally reintroducing the relaxed constraints until an optimality proof
is reached. An originality of this method is that it does not use a label-setting
algorithm, but explicitly builds the graph representation of each relaxed dynamic
program. The effectiveness of the method is highly dependent on the capability to
reuse information from the previous iterations (primal and dual bounds, variable
fixing).

As is the case with many generic methods, obtaining an effective version of
SSDP for a new problem is not straightforward. We numerically show that a basic
application of this technique to TKP is not competitive compared to state-of-the-art
solvers. We then propose several advanced algorithmic techniques which allow a sig-
nificant improvement on the computational results. We implemented our algorithms
and empirically compared them against a commercial MIP solver, using instances
proposed in [Caprara et al. 2013]. We also report results obtained by [Gschwind
& Irnich 2017] on these instances. These experiments show that our algorithm is
competitive compared to the state of the art.

66 Chapter 2. State space relaxation algorithms

2.2.1 Integer programming and dynamic programming models

In this section, we discuss compact MIP formulations and dynamic programs for
TKP.

Integer programming formulations We first recall the commonly used integer
programming formulation (see e.g. [Caprara et al. 2013, Caprara et al. 2016]) for
TKP. In this model, each binary variable xi is equal to one if item i is selected, and
zero otherwise, similarly to the classical knapsack problem. As suggested in [Caprara
et al. 2013], it is sufficient to check the capacity constraints at starting time sj of
each item j.

max
∑
i∈I

pixi (2.2.1)

s.t.
∑

i∈I:si≤sj<fi

wixi ≤W, j ∈ I (2.2.2)

xi ∈ {0, 1}, i ∈ I (2.2.3)

We now propose an alternative MIP formulation for TKP, which is not meant to be
used directly to solve the problem but simplifies the presentation of our dynamic
program. In this model, we see the problem as a succession of events where decisions
have to be taken (adding the item, or removing the item). This means that we split
each original variable xi into two distinct variables that have to take the same value.

Let (1, . . . , 2n+ 1) be an ordered list of events. There are two events in the list
for each item, plus an additional dummy event 2n + 1. We distinguish the events
related to the beginning of a time window (set E in) and those related to the end
of a time window (set Eout). For each event e in 1, . . . , 2n, we denote by i(e) ∈ I
the item related to e, and by t(e) the time period when e occurs, i.e., t(e) = si(e) if
e ∈ E in and t(e) = fi(e) if e ∈ Eout. Events related to items are ordered from 1 to
2n as follows: e < e′ if t(e) < t(e′) or (t(e) = t(e′) ∧ e ∈ Eout ∧ e′ ∈ E in) (ties are
broken arbitrarily).

The decisions of the new MIP model are related to these events. For each event
e, we define a binary variable ye that indicates whether the action related to event
e is performed or not. If e ∈ E in, this decision corresponds to adding i(e) to the
current solution. If e ∈ Eout, the decision corresponds to removing i(e). In a valid
solution, an item leaves the knapsack if and only if it enters the knapsack in a
previous event. Each variable φe (e = 1, . . . , 2n) is equal to the total size of the

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 67

selected items at the end of event e.

max
∑

e=1,...,2n

1

2
pi(e)ye (2.2.4)

φ1 = wi(1)y1 (2.2.5)

φe = φe−1 + wi(e)ye e ∈ E in \ {1} (2.2.6)

φe = φe−1 − wi(e)ye e ∈ Eout (2.2.7)

φe ≤W e = 1, . . . , 2n (2.2.8)

φ2n = 0 (2.2.9)

ye − ye′ = 0 e ∈ E in, e′ ∈ Eout, i(e) = i(e′) (2.2.10)

ye ∈ {0, 1}, φe ∈ R+ e = 1, . . . , 2n (2.2.11)

The objective function is similar to that of model (2.2.1). The only difference
is that the profit is split between the two events related to each item. Constraints
(2.2.5)–(2.2.7) ensure that the capacity consumption at the end of each event is con-
sistent with the contents of the knapsack. Constraints (2.2.8) and (2.2.9) guarantee
that the capacity constraints are satisfied. Note that constraint (2.2.9) is redundant
when no other constraint is relaxed. Constraints (2.2.10) state that if an item enters
the knapsack, it has to leave it. We call constraints (2.2.10) consistency constraints.
Using two variables to decide if an item is selected in the solution is redundant. The
idea behind this variable splitting is to apply Lagrangian relaxation to the consis-
tency constraints. Our method is based on this relaxation, which is similar to the
so-called Lagrangian decomposition technique [Guignard & Kim 1987].

Dynamic programs for TKP. To our knowledge, two DP have been proposed
for TKP in the literature. Both DP record in each state the subset of items that
belong to a partial solution. In [Chen et al. 2002], a state (i,d) is characterized by
the current item i ∈ I and d ∈ {0, 1}n, the characteristic vector of the set of items
currently in the knapsack. Let εk ∈ {0, 1}n be the characteristic vector of set {k},
for k ∈ I. The value of a state is computed with the following recursive formulas:
f(n+ 1,0) = 0, and f(i,d) = max{f(i+ 1,d′), pi + f(i+ 1,d′ + εi)} where d′ is
obtained from d by removing all items whose departure date is before the starting
time of i. The left-hand part of the alternative chooses not to select item i (and thus
just removes the items whose intervals do not overlap with item i + 1), while the
right-hand part corresponds to selecting item i (and collects the profit of i). In the
latter case, i is recorded in the current vector, and serves to fathom configurations
where the total size of the items is larger than the size of the bin. The optimal
value is equal to f(1,0). States where d represents an infeasible subset of items are
discarded.

In [Caprara et al. 2013], another dynamic program is proposed. The possible
subsets of items that can be in the knapsack at the same instant are computed
a priori, and each of them is related to a state. More precisely, the approach is
based on a reformulation of the problem as a maximum profit path problem in

68 Chapter 2. State space relaxation algorithms

an exponentially large graph. The vertex set of this graph can be partitioned in
so-called layers, one for each knapsack constraint (2.2.2). In each layer, a node is
created for each feasible subset of items that can be in the knapsack. There is an
arc between two nodes from two consecutive layers if and only if their contents are
consistent. The cost of the arc is equal to the sum of the profits of the items that
are added to obtain the new configuration. This method can be used to solve only
the smallest instances in the literature, since it cannot be applied when many items
can be packed at the same time period, as the number of states in the dynamic
program grows exponentially with this quantity.

There are some similarities between the two DP described above. Both state-
spaces record the elements in the knapsack at a given step. The first DP builds the
possible configurations item by item, and thus may consider non-maximal configu-
rations. On the other hand, it may serve to fathom some configurations using some
dominance rules or cost considerations, while in the second DP, one has to build all
possible configurations beforehand, which may not be possible when their number
is large.

Our dynamic program is based on the concept of events used in (2.2.4)–(2.2.11).
It is an adaptation of [Chen et al. 2002] whereby we add redundant information to
the states (the capacity consumption), and split the decision of adding an item into
two decisions. Both modifications are necessary to compute our relaxations. The
model works similarly to model (2.2.4)–(2.2.11) in the sense that it uses the same
decisions, and the current capacity is updated event by event recursively; one has
to ensure that the capacity constraint remains satisfied and that decisions related
to items are consistent.

We now formally describe our dynamic program using states and transitions.
We define a state as a tuple (e, w,d) where e ∈ {1, . . . , 2n+ 1} is the current event,
w ∈ Z+ the current consumption of the knapsack capacity, and d ∈ {0, 1}n the
characteristic vector of the set of items currently in the knapsack. Note that w is
redundant, since it can be deduced from vector d. We call a transition the possibility
of passing from one state to another by taking a decision. A transition is defined
by a tuple (∆e,∆w,∆d, p) where ∆e ∈ Z+ describes the increase in the current
event index, ∆w ∈ Z is the capacity consumed/released when the decision is taken,
∆d ∈ {−1, 0, 1}n a vector that updates the content of the knapsack, and p ∈ R+

the profit obtained when the decision is taken.
The possible decisions that can be taken are defined by ψ, the function that

associates each state with a set of feasible transitions. For any feasible state (e, w,d),
function ψ((e, w,d)) is computed as follows.

ψ((e, w,d)) =

{
(1, 0,0, 0), (1, wi(e), εi(e),

1
2pi(e))

}
if e ∈ E in ∧ w + wi(e) ≤W

{(1, 0,0, 0)} if e ∈ E in ∧ w + wi(e) > W{
(1,−wi(e),−εi(e), 1

2pi(e))
}

if e ∈ Eout ∧ di(e) = 1

{(1, 0,0, 0)} if e ∈ Eout ∧ di(e) = 0

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 69

When an event e ∈ E in is considered, two transitions are possible: one corre-
sponding to selecting i(e), the other to not selecting i(e) (the former exists only if
the remaining capacity is large enough). When an event e ∈ Eout is considered, only
one transition is possible, depending on the value di(e). The cost function α from
each state (e, w,d) is then expressed in a backward recursive fashion.

α((e, w,d)) =

max

(∆e,∆w,∆d,p)∈ψ((e,w,d))
{p+ α((e+ ∆e, w + ∆w,d + ∆d))}

if e ∈ {1, . . . , 2n}
0 if e = 2n+ 1, w = 0,d = 0

(2.2.12)

The optimal value of the TKP is α((1, 0,0)).

2.2.2 Specializing Successive Sublimation Dynamic Programming
to TKP

In this section, we explain how SSDP can be used to solve TKP. We first describe
the generic algorithm, emphasizing the main points to be studied, namely choosing
a relaxation, solving the relaxation, and updating the relaxation to obtain a refined
model. We then address each point specifically.

2.2.2.1 Graph representation of the dynamic program

We first describe a graph representation of dynamic program (2.2.12), where states
are represented by vertices, and transitions by arcs. The graph representation G =

(V,A) is obtained by creating a vertex for each possible reachable state of (2.2.12),
and an arc for each possible transition. Each arc has the profit p of the corresponding
transition. Starting from initial state (1, 0,0), the nodes of the graph are created
by computing recursively function ψ(s) and creating the corresponding transitions
to obtain the arcs and the vertices.

Figure 2.2.2 illustrates the graph representation of DP (2.2.12) applied to the
instance in Figure 2.2.1a. The different paths from (1, 0, (0, 0, 0) to (7, 0, (0, 0, 0))

are related to the different solutions for instance 2.2.1a. We call a layer the set of
vertices related to a given event. Note that in layers related to out events, vertices
have exactly one outgoing arc, while in layers related to in events, there are at most
two possible outgoing arcs.

Once the graph representation of the DP is built, the problem is solved by finding
the maximum profit path between the vertex associated with (1, 0, (0, 0, 0)) and the
vertex associated with the final state (2n + 1, 0, (0, 0, 0)). Since the graph has no
directed cycles, we use Bellman’s algorithm.

70 Chapter 2. State space relaxation algorithms

1,0,(0,0,0) 2,0,(0,0,0) 3,0,(0,0,0) 4,0,(0,0,0) 5,0,(0,0,0) 6,0,(0,0,0) 7,0,(0,0,0)

2,4,(1,0,0) 3,4,(1,0,0)

3,4,(0,1,0)

3,8,(1,1,0)

4,4,(0,1,0) 5,4,(0,1,0)

5,8,(0,0,1) 6,8,(0,0,1)

1in 2in 1out 3in 2out 3out

0 0 0 0 0 0

0

0 0

0

100

1

1
10

10

10

1

100

Figure 2.2.2: Graph representation of dynamic program
(2.2.12) applied to the instance in Figure 2.2.1a.

2.2.2.2 Iterative state-space relaxation

Building the graph representation of DP (2.2.12) and using Bellman’s algorithm does
not lead to a practical method. The size of the state-space in (2.2.12) is exponential
in the size of d: the size of the binary vector d is n, so the size of the state-space is
in O(n× 2n).

For TKP, we decided to use SSDP for several reasons. First, our preliminary
experiments had shown that the gap between the dual and primal bounds was good
enough to filter a good percentage of arcs on many instances, and thus that the
extended graph would not grow too fast. Second, the dominance relations between
two labels are weak for TKP, since one has to take into account the residual capacity
that is freed by the items leaving the knapsack over time.

2.2.2.3 Presentation of the generic algorithm

SSDP is a dual method that iteratively solves problems obtained by applying state-
space relaxation to a dynamic program. An initial relaxation is obtained by relaxing
constraints that cause the exponential size of the state-space. A first dual bound
is obtained by solving the relaxation. This dual bound is improved by refining
the relaxation (i.e. reintroducing constraints) until the duality gap to a known
primal bound is closed. The bound obtained at each step is possibly reinforced
using a Lagrangian relaxation of the constraints. At each step of the algorithm,
some unnecessary states and transitions are identified and removed from subsequent
relaxations.

An important feature of the algorithm is that at each step it explicitly constructs
the graph representation of the current dynamic program. This representation is
used to record variable fixing information from one relaxation to the next. The main
steps of the method are summarized in Algorithm 2.2.1.

Similar to many generic frameworks, several ad-hoc key ingredients have to be
designed for each new problem. The most important are the set of relaxed con-

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 71

Algorithm 2.2.1: SSDP
1 Compute the graph related to the first relaxation.
2 Build graph G0, the graph representation of the initial relaxation ;
3 `← 0 ;
4 Solving the relaxation and filtering.
5 Solve the relaxation corresponding with graph G` to obtain a solution sol ;
6 if sol is feasible and has a cost equal to the current best dual bound then

return sol;
7 Remove non-optimal states and transitions, obtaining graph Ĝ` ;
8 Sublimation.
9 Construct the new graph G`+1 from Ĝ` by reintroducing new constraints ;

10 `← `+ 1 ;
11 go back to step 4 ;

straints, and the type of relaxation used. Another major ingredient is the algorithm
used to solve each relaxed problem, and its capability to eliminate infeasible/non-
optimal partial solutions. Finally, an effective method to update the relaxation at
each step is necessary.

2.2.2.4 Relaxation used for TKP

Our relaxation consists in not considering consistency constraints for some items.
This is equivalent to considering only a subset of the values in d in the states, which
reduces the size of the state-space. In this case, an item can enter the knapsack and
not leave it, or vice-versa. Our algorithm relies on the fact that there is a one-to-one
correspondence between the consistency constraints and the dimensions of the DP
related to vector d in (2.2.12).

Observation 2.2.1. Projecting out vector d in (2.2.12) is equivalent to relaxing
consistency constraints (2.2.10) in (2.2.4)– (2.2.11).

We use a modified graph representation to compute the relaxation. At a given
iteration of the algorithm, the relaxation is based on a set J of items that have
to satisfy constraint (2.2.10). Let GJ = (VJ , AJ) be the graph representation of
the relaxed DP associated with J . A vertex is now identified by a tuple (e, w, C),
where C ⊆ J is the subset of items from J that are in the knapsack. Each vertex v
represents a set of states SJ (v) = SJ ((e, w, C)) = {(e′, w′,d) : e′ = e, w′ = w,∀i ∈
J , di = 1↔ i ∈ C}. For a given state s = (e, w,d), we denote by v̂J (s) the unique
vertex v such that s ∈ SJ (v).

Given the modified graph representation, the relaxed dynamic program is ob-
tained by the following recursive functional equation that applies to the vertices of

72 Chapter 2. State space relaxation algorithms

the graph: α̂J ((2n+ 1, 0, ∅)) = 0 and

α̂J ((e, w, C)) = max
(∆e,∆w,∆d,p)∈∪s∈SJ ((e,w,C))ψ(s)

{p+ α̂J (v̂J (e+ ∆e, w+ ∆w,d + ∆d))}

(2.2.13)
The optimal solution for the relaxation is obtained by computing α̂J ((1, 0, ∅)).
For any arc a in AJ , we denote by µ(a) the transition associated with arc a. For

each arc a ∈ AJ , let τ(a) be its tail and h(a) be its head. For a vertex v, let Γ+(v)

(resp. Γ−(v)) be the set of outgoing arcs (resp. incoming arcs).
Figure 2.2.3 depicts the graph representation of the relaxed version of the dy-

namic program when J = ∅. Note that in this relaxation, the vertices in the out
layers can have up to two outgoing arcs, instead of one originally. For example,
since vertex (3, 4, ∅) represents states (3, 4, (1, 0, 0)) and (3, 4, (0, 1, 0)) of the orig-
inal dynamic program, it has two outgoing arcs, related to these two original DP
states. All feasible paths in the original graph representation remain feasible, but
new paths that are not related to feasible solutions are now considered. The optimal
solution for this relaxation is to add item 2, remove item 1, add item 3 and remove
item 3, for a profit equal to 211.

1,0,∅ 2,0,∅ 3,0,∅ 4,0,∅ 5,0,∅ 6,0,∅ 7,0,∅

2,4,∅ 3,4,∅

3,8,∅

4,4,∅

4,8,∅

5,4,∅

5,8,∅

6,4,∅

6,8,∅

1in 2in 1out 3in 2out 3out

0 0 0 0 0 0

0 0

0 0

0

0

0

100

1 10

10

1 10

1 10

100

Figure 2.2.3: Graph representation of the relaxed DP with
J = ∅. In this relaxation, the presence of each item in the
knapsack is not recorded. Note that state (6, 4, ∅) does not

belong to any path from the source to the sink of the
graph, and will be deleted.

2.2.2.5 Solving the relaxation and filtering

We use Lagrangian relaxation to produce stronger bounds than those of a combi-
natorial relaxation, while keeping the problem tractable. This method is used to
compute a dual bound, and to remove some arcs that cannot belong to an optimal
solution.

Let π ∈ Rn be the vector of Lagrangian multipliers associated with Constraints
(2.2.10) for indices I \ J . To simplify the notation, we assume that π and d are

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 73

always of size n. Within this setting, for a given set J , and a given vector of
multipliers π, the Lagrangian dual function can be written as:

LJ (π) = max
∑
e∈E in

(
1

2
pi(e) + πi(e)

)
ye +

∑
e∈Eout

(
1

2
pi(e) − πi(e)

)
ye (2.2.14)

(2.2.6)− (2.2.9), (2.2.11) (2.2.15)

ye − ye′ = 0 e ∈ E in, e′ ∈ Eout, i(e) = i(e′), i(e) ∈ J (2.2.16)

In Figure 2.2.4, we report the graph obtained by adding Lagrangian costs to the
initial state-space relaxation. There is one multiplier for each consistency constraint.
Here, we choose (0,−3, 0) to penalize the possibility of making item 2 enter the
knapsack without leaving it. The new optimal solution is the same as in Figure
2.2.3, but its cost is now 208, leading to a better bound. Note that by choosing
vector (0,−10, 0) for the Lagrangian multipliers, the relaxation would have allowed
the problem to be solved optimally.

1,0,∅ 2,0,∅ 3,0,∅ 4,0,∅ 5,0,∅ 6,0,∅ 7,0,∅

2,4,∅ 3,4,∅

3,8,∅

4,4,∅

4,8,∅

5,4,∅

5,8,∅ 6,8,∅

1in 2in 1out 3in 2out 3out

0 0 0 0 0 0

0 0

0 0 0

0

100

1 7

7

1 13

1

100

Figure 2.2.4: Graph representation of the relaxed DP for
J = ∅, with Lagrangian costs (0,−3, 0). Adding item 2

now has a profit of 7 instead of 10, while removing item 2

now has an increased profit of 13 instead of 10.

For fixed J and any vector π, LJ (π) is an upper bound on the optimal value
of (2.2.4)-(2.2.11). To compute a good bound using this relaxation, we need to
solve approximately the Lagrangian dual problem minπ∈Rn{LJ (π)}. In the case
of a primal maximization problem, function LJ (π) is known to be convex, which
implies that minimizing this function can be done using a subgradient algorithm, or
one of its refinements (see for example [Bertsekas 2015]).

We solve the Lagrangian dual problem using the Volume algorithm proposed
in [Barahona & Anbil 2000]. This approximate method builds a sequence of solutions
π that converges to an optimum. For each value of π, LJ (π) is computed by
applying Bellman’s algorithm on graph (VJ , AJ), where the profits of the arcs are
modified to take into account the penalization of the relaxed constraints. More

74 Chapter 2. State space relaxation algorithms

precisely, for each arc a such that µ(a) = (∆e,∆w,∆d, p), the profit of a is now
p+ < π,∆d >. In what follows, we call GπJ the graph GJ with the costs modified
by the Lagrangian multipliers π. We denote by v0 = (1, 0, ∅) the vertex representing
the initial state, and by vΩ = (2n+1, 0, ∅) the vertex representing the terminal state.
We denote by απJ ((e, w, C)) the value of Bellman’s function for vertex (e, w, C).
The value of LJ (π) is the maximum profit of a path from v0 to vΩ. Solving the
Lagrangian subproblem has complexity O(|VJ |+ |AJ |) using Bellman’s algorithm.

Figure 2.2.5 illustrates a case where a dimension has been added (namely the
dimension related to item 2), and Lagrangian costs are used for the other dimensions.
Note that all paths where 2 is added and not removed or vice-versa have been
excluded.

1,0,∅ 2,0,∅ 3,0,∅ 4,0,∅ 5,0,∅ 6,0,∅ 7,0,∅

2,4,∅

3,4,∅

3,4,{2}

3,8,{2}

4,0,{2}

4,4,∅

4,4,{2}

5,0,{2}

5,4,{2}

5,4,∅

5,8,∅

6,4,∅

5,8,{2}

6,8,∅

1in 2in 1out 3in 2out 3out

0 0 0 0 0 0

0
0

0

-1

0

0

0

0

0

100

0

3 10

10

-1

10

-1

10

100

Figure 2.2.5: Graph representation of the relaxed DP for
J = 2, with Lagrangian costs (2, 0, 0). Nodes (4, 0, {2}),
(5, 0, {2}), (4, 4, ∅), (5, 4, ∅), (5, 8{2}) and (6, 4, ∅) can be
deleted since they are not contained in any path from the

source to the sink.

Observation 2.2.2. Problem (2.2.4)-(2.2.11) is equivalent to the problem defined
by graph GπI , for all π ∈ Rn. Indeed, any path in GπI defines a feasible solution of
(2.2.4)-(2.2.11) with the same cost since the contributions of Lagrangian multipliers
are canceled out.

Now we recall a result used in [Ibaraki 1987,Ibaraki & Nakamura 1994] to remove
unnecessary vertices and arcs from GπJ (and thus the corresponding states and
transitions). For this purpose, let us remark that for any node (e, w, C) ∈ VJ ,
Bellman function value α̂πJ ((e, w, C)) is equal to the maximum cost of a path in
GπJ from (e, w, C) to vΩ. Likewise, we define γ̂πJ ((e, w, C)) as the maximum cost of
a path from v0 to (e, w, C).

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 75

Proposition 2.2.1 ([Ibaraki 1987]). For J ⊆ I, let a ∈ AJ , such that µ(a) =

(∆e,∆w,∆d, p), between two vertices (e1, w1, C1) and (e2, w2, C2), and π ∈ Rn. The
following value is an upper bound on the cost of any path in GπJ that uses arc a:

γ̂πJ ((e1, w1, C1)) + p+ < π,∆d > +α̂πJ ((e2, w2, C2))

This result allows us to remove unnecessary transitions from graph GJ : if the
upper bound for arc a is lower than a known lower bound for the problem, then
arc a and the related transition cannot be in an optimal solution of the relaxation
defined by J . We illustrate the filtering process in Figure 2.2.6, whic pictures the
graph obtained after applying the filtering phase to the graph in Figure 2.2.4. This
eliminates from the graph in all arcs that only belong to paths whose profit is less
than a lower bound equal to 202. The filtering also works if a value is smaller than
the optimum, although fewer arcs may be removed. We keep the same Lagrangian
multipliers for the filtering.

1,0,∅ 2,0,∅ 4,0,∅ 7,0,∅

2,4,∅ 3,4,∅

5,8,∅ 6,8,∅

1in 2in 1out 3in 2out 3out

0

0 100

0

1 7 1

100

Figure 2.2.6: Graph representation of the relaxed DP for
J = ∅, with Lagrangian multipliers (0,−3, 0) after filtering
arcs whose Lagrangian profit is not large enough (using a

lower bound equal to 202).

The efficiency of SSDP lies in the fact that the corresponding arcs in subsequent
stronger relaxations can be removed as well. However, to our knowledge, the validity
of this permanent removal is only implicitly assumed in the literature. We now
formally prove of this property in our specific context. The following lemma shows
that the set of arcs going out of each vertex of a refined relaxation related to J ’ is
a subset of the arcs going out of the vertex it comes from, through the sublimation
of the relaxation related to J .

Lemma 2.2.2. Let us consider e ∈ {1, . . . , 2n + 1}, w ∈ {0, . . . ,W}, J and J ’
such that J ⊆ J ′ ⊆ I, v = (e, w, C) ∈ VJ and v′ = (e, w, C′) ∈ VJ ′ such that
C ∩ J = C′ ∩ J (i.e. vertex v′ comes from the sublimation of vertex v). Then
∪s∈SJ ((e,w,C))ψ(s) ⊇ ∪s∈SJ ′ ((e,w,C′))ψ(s).

76 Chapter 2. State space relaxation algorithms

Proof. Let (e, w,d) ∈ SJ ′(e, w, C′). Then by definition of SJ , for all i ∈ J ′, di =

1 ↔ i ∈ C′. Since J ⊂ J ′, for all i ∈ J , di = 1 ↔ i ∈ C′, and so di = 1 ↔ i ∈ C
because C ∩ J = C′ ∩ J . Thus (e, w,d) ∈ SJ ′(e, w, C), from which the result
follows.

The next lemma formally shows that for a given vector of multipliers π the
Lagrangian cost of taking a decision from a specific state cannot increase when the
relaxation is refined.

Lemma 2.2.3. Let us consider e ∈ {1, . . . , 2n + 1}, w ∈ {0, . . . ,W}, J and J ’
such that J ⊆ J ′ ⊆ I, v = (e, w, C) ∈ VJ and v′ = (e, w, C′) ∈ VJ ′ such that
C ∩J = C′∩J (i.e. vertex v′ comes from the sublimation of vertex v) and π ∈ Rn a
vector of Lagrangian multipliers. Then α̂πJ (e, w, C) ≥ α̂πJ ′(e, w, C′) and γ̂πJ (e, w, C) ≥
γ̂πJ ′(e, w, C′).

Proof. We proceed by induction on e to prove the part of the proposition involving
α̂. A straightforward adaptation of the proof yields the result for γ̂. At rank
e = 2n + 1, the property is satisfied since we have α̂πJ (e, 0, C) = α̂πJ ′(e, 0, C′) = 0

and α̂πJ (e, w, C) = α̂πJ ′(e, w, C′) = −∞ if w 6= 0, C 6= ∅ or C′ 6= ∅.
At rank e ∈ {1, . . . , 2n}, assume that α̂πJ (e + 1, w̄, C̄) ≥ α̂πJ ′(e + 1, w̄, C̄′) for all

(e + 1, w̄, C̄) ∈ VJ and (e + 1, w̄, C̄′) ∈ VJ ′ such that w̄ ∈ {0, . . . ,W} and C̄ ∩ J =

C̄′ ∩ J . Then for all (e, w, C) ∈ VJ and (e, w, C′) ∈ VJ ′ such that w ∈ {0, . . . ,W}
and C ∩ J = C′ ∩ J , and for all (∆e,∆w,∆d, p) ∈ ∪s∈SJ ((e,w,C))ψ(s), we have

α̂πJ (e+ ∆e, w + ∆w, C+) ≥ α̂πJ ′(e+ ∆e, w + ∆w, C′+)

with C+ = C ∪ {i ∈ I : (∆d)i = 1} \ {i ∈ I : (∆d)i = −1} and C′+ = C′ ∪ {i ∈ I :

(∆d)i = 1} \ {i ∈ I : (∆d)i = −1}. Indeed, C+ ∩ J = C′+ ∩ J . From (2.2.13) and
Lemma 2.2.2, we have α̂πJ (e, w, C) ≥ α̂πJ ′(e, w, C′).

The proposition below is crucial for the efficiency of the SSDP algorithm: it
shows that once an arc is eliminated from a graph at a given iteration, all corre-
sponding arcs can be removed from the graphs built during subsequent iterations.

Proposition 2.2.4. Let LB be a valid lower bound for the problem, J ⊆ I, a ∈ AJ
such that τ(a) = (e1, w1, C1), h(a) = (e2, w2, C2), µ(a) = (∆e,∆w,∆d, p), and
π ∈ Rn. If γ̂πJ (e1, w1, C1)+ < ∆d,π > +α̂πJ (e2, w2, C2) < LB, then the shortest
path problem in GπJ without arc a is a relaxation of (2.2.4)-(2.2.11). Moreover, for
any J ′ ⊇ J and π′ ∈ Rn, the shortest path problem Gπ

′
J ′ without any arc related to

transition µ(a) from states (e1, w1, C1′) such that C1′ ∩ J = C1 ∩ J is a relaxation
of (2.2.4)-(2.2.11) as well.

Proof. First, we prove the validity of the proposition for the same vector π and
a relaxation refined by enforcing a larger set of consistency constraints J ′. Let
us consider arc b ∈ AJ ′ , such that µ(a) = µ(b), τ(b) = (e1, w1, C1′) such that
C1′ ∩ J = C1 ∩ J . Then h(b) = (e2, w2, C2′), such that C2′ ∩ J = C2 ∩ J . Indeed,
C2′ ∩ J = (C1′ ∩ J) ∪ ({i ∈ I : (∆d)i = 1} ∩ J) \ {i ∈ I : (∆d)i = −1} = C1 ∪ ({i ∈

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 77

I : (∆d)i = 1} ∩ J) \ {i ∈ I : (∆d)i = −1} = C2 ∩ J . Hence Lemma 2.2.3 implies
that γ̂πJ ′(e

1, w1, C1′)+ < ∆d,π > +α̂πJ ′(e
2, w2, C2′) < LB. Arc b being part of a

feasible solution of the relaxation defined by GπJ ′ that is optimal for the problem
would contradict LB being a lower bound. It follows that b can be removed from
GπJ ′ that will still define a relaxation of (2.2.4)-(2.2.11).

Second, we prove the validity of the proposition for a fixed set of consistency
constraints J and a different vector of multipliers π′. Lemma 2.2.1 shows that arc
u cannot be part of a feasible solution of the relaxation associated with GπJ that
would be optimal (and feasible) for the problem, since that would imply that LB
is not a lower bound. Hence, no solution using a in Gπ′J , π′ ∈ Rn can be optimal
for the problem, and removing a does not remove optimal solutions of the problem
from those relaxations.

Values α̂πJ ((e, w, C)) and γ̂πJ ((e, w, C)) can be computed for all nodes (e, w, C) ∈
VJ in two passes using Bellman’s forward and backward dynamic programming
algorithm, respectively.

If an arc is filtered from a graph GπJ , it is filtered in the graph representation
(VJ , AJ), and all vertices with no predecessors or no successors are removed from
VJ . The corresponding states and transitions will not be considered in subsequent
iterations.

2.2.2.6 Sublimation and convergence

In SSDP, the sublimation phase consists in strengthening the current relaxation by
enforcing some constraints that are violated in the current solution. In our applica-
tion, the set J of consistency constraints taken into account in the DP is extended
by adding new ones, defining K ⊃ J . Let ρJ be the function that associates with
state s = (e, w,d) the set of transitions that were not filtered up to the iteration
related to set J .

ρJ ((e, w,d)) =

{
∅ if v̂J ((e, w,d)) 6∈ VJ
{µ(a) : a ∈ Γ+(v̂J (e, w,d))} otherwise

The sublimation phase builds a new graph GK from filtered graph GJ using the
following modified transition function ψ̂K:

ψ̂K((e, w,d)) = ψ((e, w,d)) ∩ ρJ ((e, w,d))

This function defines the set of transitions going out of a given state (e, w,d).
These transitions should not have been discarded by filtering during previous it-
erations (i.e., they should be in ρJ ((e, w,d))). Also, the latter set might contain
infeasible transitions for (e, w,d) specifically since it gathers all transitions from
states which are not distinguishable from (e, w,d) in the previous relaxation (i.e.
from all the states associated with v̂J (e, w,d) in VJ). Thus, only the transitions
that are in ψ((e, w,d)) as well are kept. The maximum number of iterations of the
algorithm is n, since at least one item index is added to J at each sublimation step,

78 Chapter 2. State space relaxation algorithms

and when J = I, the relaxation obtained is equivalent to (2.2.4)-(2.2.11) (Obser-
vation 2.2.2). However, a feasible solution may be found at step 5 when J 6= I. In
the latter case, the cost of this solution in model (2.2.14)-(2.2.16) is equal to its cost
in (2.2.4)-(2.2.11), so that it provides dual and primal bounds with the same value
and the algorithm terminates with this optimal solution.

In Figure 2.2.7, we report the graph obtained after the sublimation step from
J = ∅ to J = {2} (that adds dimension 2 to the state space). Note that only
arcs that are represented by an arc in the graph in Figure 2.2.6 are created. When
J = {2}, vertex (3, 4, {2}) is eliminated, since the only possible arc from vertex
(3, 4, ∅) (when J = ∅) removes item 1, which would lead to an infeasible state (total
weight of 0 and item 2 included in the knapsack).

1,0,∅ 2,0,∅ 4,0,∅ 7,0,∅

2,4,∅

3,4,∅

3,4,{2}

5,8,∅ 6,8,∅

1in 2in 1out 3in 2out 3out

0

0

100

0

1 7

1
100

Figure 2.2.7: Graph representation built from the filtered
graph in Figure 2.2.6 by adding dimension 2 to the state

space.

2.2.3 Refinements of SSDP to solve TKP effectively

Preliminary computational experiments showed that a direct implementation of
SSDP for TKP is not able to produce results that can compete with state-of-the-
art TKP solvers. This can be explained by several issues: the method requires a
long computation time to build the first relaxation, many states that are not useful
are generated when the first relaxation is computed, and the gap is not reduced
significantly when only one constraint at a time is reintroduced in the sublimation
phase. We now propose several techniques to deal with these issues, and improve
the performance of SSDP for solving TKP.

2.2.3.1 Attaching additional information to the states

Let J be the index set of constraints that are currently taken into account in the
dynamic program. For a given vertex v = (e, w, C) such that e ∈ Eout, if i(e) 6∈ J ,
two transitions are possible (removing item i(e) or not). In some cases, all states

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 79

from the original state-space represented by vertex v contain i(e). In some others,
not any one of such states contains i(e). In both cases, only one transition should
be created.

To detect these cases, we attach to each vertex v an additional vector dη(v) ∈
{0, 1, ∅}n. If dη(v)i = 0, v represents only states where i is not in the knapsack,
while dη(v)i = 1 means that v represents only states where i is in the knapsack. If
dη(v)i = ∅, v represents both types of states.

For i 6∈ J , we set dη(v0)i = 0, and dη(v)i is computed recursively for each other
vertex v as follows:

dη(v)i =

1 if ∀a = (e+ ∆e, w + ∆w,d + ∆d) ∈ Γ−(v),(
dη(τ(a))i = 1 and ∆d 6= −εi

)
or ∆d = +εi

0 if ∀a = (e+ ∆e, w + ∆w,d + ∆d) ∈ Γ−(v),(
dη(τ(a))i = 0 and ∆d 6= +εi

)
or ∆d = −εi

∅ otherwise

To illustrate the computation of this information, take the graph in Figure 2.2.3.
Let v be vertex (2, 4, ∅). This vertex can only be obtained by adding item 1, and
the other items have not been considered yet. Therefore, for this vertex, dη(v) =

(1, 0, 0). On the contrary, let v′ be vertex (3, 4, ∅). This vertex can be obtained by
either selecting item 2, or from vertex (2, 4, ∅), so dη(v′) = (∅, ∅, 0).

Consequently, vector dη(v) is computed on the fly when (VJ , AJ) is created. We
attach another piece of information to each vertex v, which corresponds to redundant
constraints. For each vertex v = (e, w, C), we define qηmin(v) (resp. qηmax(v)) as a
lower (resp. upper) bound on the number of items that can be in the knapsack in
the states of SJ (v). These values can be computed recursively, in a similar way
to vector dη(v). We set qηmin(v0) = 0 and for each other vertex v, qηmin(v) =

mina=(∆e,∆w,∆d,p)∈Γ−(v){q
η
min(τ(a))+ < ∆d.1 >}. Value qηmax(v) can be obtained

by replacing min by max in the expression. As an example, consider the graph in
Figure 2.2.3. Although we are not able to know the configuration related to vertex
(3, 4, ∅), we know that all configurations represented by the vertex contain exactly
one item.

Let I(e) = {i ∈ I : si ≤ t(e) < fi} be the set of items that may belong to
the knapsack when event e occurs. For each event e, let Qmax(e) = max{|S| :

S ⊆ I(e),
∑

i∈S wi ≤ W} be the maximum number of items that can belong to the
knapsack when this event occurs (this value can be computed in time linear in |I(e)|
for each event e when the elements of this set are sorted by non-decreasing order
of size). Obviously, for vertex v = (e, w, C), the number of items in any valid state
represented by v is in [0, Qmax(e)].

2.2.3.2 Feasibility tests

In the rest of this section, a feasible state is defined as a state that can be generated
from s0 by applying a feasible sequence of transitions following recurrence equations

80 Chapter 2. State space relaxation algorithms

(2.2.12). We denote by S+ the set of feasible states. We recall that VJ is the set of
vertices considered when solving the relaxation related to J . Note that any vertex
in VJ that is not related to a state in S+ can be removed from the graph without
impairing the validity of the algorithm. We now describe several techniques used to
detect infeasibilities of such vertices. The following results are stated without proof.

The first feasibility test checks that the number of items in the knapsack is con-
sistent with the list of items that are either present or absent in all states represented
by a vertex v.

Proposition 2.2.5. Let J ⊆ I and v = (e, w, C) ∈ VJ . If card({i ∈ I : dη(v)i 6=
0}) < qηmin(v) or card({i ∈ I : dη(v)i = 1}) > qηmax(v) then SJ (v) ∩ S+ = ∅.

For example in Figure 2.2.3, vertex (4, 8, ∅) would be eliminated, since the min-
imum number of items in the configuration represented by the vertex is 2, and for
this layer, there cannot be more than one item.

Another feasibility test is based on the set of possible weights of subsets of items
that can belong to the knapsack at a given event. For this purpose, we precompute
for each event e the following set: F(e) = {

∑
i∈S wi : S ⊆ I(e),

∑
i∈S wi ≤ W},

which corresponds to all reachable weights of a subset of items. Each of these sets
can be computed in O(nW)-time using a straightforward dynamic programming
algorithm. Proposition (2.2.6) follows from the definition of F .

Proposition 2.2.6. Let J ⊆ I and v = (e, w, C) ∈ VJ . If w /∈ F(e) then SJ (v) ∩
S+ = ∅.

This rule also serves to remove vertex (4, 8, ∅) from the graph in Figure 2.2.3,
since for this layer, there are no possible item combinations whose size is 8 (the only
possible values are 0 and 4).

This rule can be improved by considering additional information gathered from
dη(s). We precompute, for each event e and each item i ∈ I(e), F+(e, i) and
F−(e, i), the possible weights that can be reached using item i, and without item i,
respectively. We have F+(e, i) = {

∑
j∈S∪{i}wj : S ⊆ I(e)\{i},

∑
j∈S wj ≤W−wi}

and F−(e, i) = {
∑

j∈S wj : S ⊆ I(e) \ {i},
∑

j∈S wj ≤W}.

Proposition 2.2.7. Let J ⊆ I, v = (e, w, C) ∈ VJ and i ∈ I(e). If dη(v)i = 1

and w /∈ F+(e, i) then SJ (v) ∩ S+ = ∅. Likewise, if dη(v)i = 0 and w /∈ F−(e, i)

SJ (v) ∩ S+ = ∅.

The following result allows the detection of nodes related to states that can be
generated only by removing an item from the knapsack without adding it first. In
such cases, the weight recorded in the state might become lower than the weight of
the items whose presence in the knapsack is known for sure.

Proposition 2.2.8. Let J ⊆ I and v = (e, w, C) ∈ VJ . If
∑

i∈I:dη(v)i=1wi > w

then SJ (v) ∩ S+ = ∅.

For a vertex (e, w, C), the following feasibility test integrates the bounds on the
number of items in the knapsack to ensure the consistency of set C with respect to
value w.

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 81

Proposition 2.2.9. Let J ⊆ I and v = (e, w, C) ∈ VJ . Let S1 = {i ∈ I(e) :

dη(v)i 6= 0} be the set of items potentially in the knapsack, and S2 = {i ∈ I(e) :

dη(v)i = 1} the set of items in the knapsack for sure. If max
{∑

i∈S wi : S ⊆
S1, |S| ≤ qηmax(v)

}
< w or min

{∑
i∈S wi : S2 ⊆ S ⊆ S1, |S| ≥ qηmin(v)

}
> w then

SJ (v) ∩ S+ = ∅.

In the classical knapsack problem, an item i is dominated by item j if pi ≤ pj ,
wi ≥ wj and one of the two inequalities is strict. In this case, from any feasible
solution where item i is chosen but not item j, we can build another solution where
j is chosen and whose profit is not smaller than that of the initial solution. Thus,
among solutions that include i, only those including j as well need to be considered.
For TKP, dominance relations must take into account the temporal aspect as well.

Proposition 2.2.10. Item i is dominated by item j if pi ≤ pj, wi ≥ wj, si ≤ sj,
fi ≥ fj and one of the four inequalities is strict.

In the course of SSDP, we can take advantage from it by modifying the recurrence
equations as follows. Let us consider vertex v = (e, w, C) ∈ VJ such that e ∈ E in,
i(e) = j and dη(v)i = 1 with i an item which is dominated by item j. Then any
transition (∆e,∆w,∆d, p) ∈ ∪s∈SJ (v)ψ(s) with (∆d)j = 0 can be discarded from
equation (2.2.13). Indeed, selecting this transition would mean choosing item i but
not item j.

2.2.3.3 Partial enumeration of transitions

Combining several consecutive transitions into single compound transitions allows
the enforcement of some consistency constraints locally, even if the corresponding
dimensions are not included in the current state space.

Our implementation of this idea uses an input parameter kenum, which controls
the depth of the enumeration of consecutive transitions. More precisely, from a
given state, instead of computing the two possible transitions, we compute the
O(2k

enum
) possible sequences of kenum successive transitions. Sequences that violate

consistency constraints are not generated. Figure 2.2.8 illustrates a case where three
consecutive events are considered.

In some cases this technique might lead to a larger network. However, when
the enumeration of some transitions spans the two events of the same item, the
associated consistency constraint is always satisfied, which results in a stronger re-
laxation. Moreover, the filtering procedure may filter a compound transition because
the related sequence of transitions has a poor cost, while in the initial graph, each
intermediate arc of this sequence may individually belong to a path with a better
cost, preventing the removal of any transition. This contributes to limiting the
growth of the network, and improves the quality of the relaxation at the same time.

2.2.3.4 Criteria for selecting constraints to reintroduce

At each sublimation step, one has to select the dimensions related to violated con-
straints that are integrated into the state-space. To make this selection, we record

82 Chapter 2. State space relaxation algorithms

i+1 i+2 i−1

⇒

i+1 , i
+
2 ,i−1

+i1

+i2

+i2 -i1

-i1
+i1,+i2, -i1

+i2

+i1, -i1

∅

∅ ∅ ∅

∅

∅ ∅

∅

Figure 2.2.8: Partial enumeration of three events. Four
sequences out of eight are feasible.

some information that will be used in our method. At the iteration determined by
set J , we record a list (π1, . . . ,πk

nbsol
) of Lagrangian multipliers that led to the best

upper bounds in the Volume algorithm. This list is sorted by decreasing value of
LJ (πq). For each recorded vector πq, let yq be the corresponding solution expressed
in terms of the variables of (2.2.14)-(2.2.16).

First, we do not consider all dimensions for inclusion in the state-space. Only
those that are related to violated constraints are considered. Let J 6= =

{
i ∈ I \J :

∃q ∈ {1, . . . , knbsol},yq
ein(i)

6= yqeout(i)
}

be the set of items whose consistency con-

straint is violated in at least one of the solutions of (y1, . . . ,yk
nbsol). The corre-

sponding dimensions are natural candidates to be considered for the sublimation
phase.

We now describe three criteria for estimating the computational attractiveness
of adding a specific dimension to set J .

The first criterion (Lagrangian Multipliers) is to use the best Lagrangian
multipliers π1 found to determine the attractiveness of each consistency constraint:
ψ1
i = |π1

i |. A Lagrangian cost of large magnitude tends to indicate that many
solutions violate the corresponding constraint, which is penalized by Volume.

The second criterion (Network Size) aims to control the number of states in the
network after the sublimation step. For each constraint, we compute an estimation
of the growth of the vertex set if the corresponding constraint – and only that one
– is included in the state-space. When adding a single constraint related to item i,
only states s such that dη(s)i = ∅ can yield two different states after sublimation.
Hence, the second criterion we define is the opposite (smaller is better) of an upper
bound on the number of additional states due to i: ψ2

i = −|v ∈ VJ : dη(v)i = ∅|.
The third criterion (Number of violations) favors the constraints that are vi-

olated in many solutions recorded in the list (y1, . . . ,yk
nbsol

). This can be computed
as follows: ψ3

i = 1
knbsol

∑knbsol

q=1

∣∣yq
ein(i)

− yqeout(i)
∣∣.

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 83

2.2.3.5 Reintroducing batches of constraints

Adding several violated constraints at once is generally a good strategy for TKP. The
sublimation step is a time-consuming procedure, and preliminary experiments have
shown that in many cases, adding only one constraint is not sufficient to ensure
a significant decrease in the dual bound. However, adding too many constraints
dramatically increases the size of the network. Therefore, we have to find a good
trade-off between the quality of the bound and the size of the network.

A first issue is to compute a reliable estimation of the size of the network when a
new constraint is introduced. The following proposition provides an upper bound on
the number of labels in the network given a set of consistency constraints enforced
in the state space.

Proposition 2.2.11. Let J and K such that J ⊆ K ⊆ I. It holds that

|VK| ≤
∑

e=1,...,2n+1

(
2|(K\J)∩I(e)|card({(e′, w, C) ∈ VJ : e′ = e})

)
.

Proof. The set of vertices created in VK from a given vertex (e, w, C) ∈ VJ is included
in the set

{(e, w,d′) :d′i = di ∀i ∈ J ,
d′i ∈ {0, 1} ∀i ∈ (K \ J) ∩ I(e),

d′i = 0 ∀i ∈ I \ (J ∪ (K ∩ I(e)))}

whose cardinality is 2|(K\J)∩I(e)|. Summing up over all states in VJ yields the
result.

This indicates that adding constraints related to items with pairwise disjoint time
windows is particularly attractive: in such cases, for all events e ∈ {1, . . . , 2n + 1}
we have card((K \ J) ∩ I(e)) ≤ 1. It follows that the network grows by a constant
factor only, as stated formally in the next corollary.

Let Gint = (I, Eint) be the interval graph related to intervals [si, fi), i ∈ I. An
arc in this graph represents a pair of dimensions that should not be added together
(if one wants to avoid overly rapid growth of the network size). We also define the
subgraph of Gint induced by J 6=: Gint

6= = (J 6=, Eint
6=), where Eint

6= = Eint∩(J 6=×J 6=).

Corollary 2.2.12. Let J and K be such that J ⊆ K ⊆ I, and K \ J is a stable set
in graph Gint. Then |VK| ≤ 2|VJ |.

This corollary guided our strategies to select the set of dimensions that are
added at each sublimation step. We propose four strategies that aim at finding a
good tradeoff between the approximate growth of the network and the quality of
the relaxation.

The first strategy, which we call Weighted stable set, limits the expected
network growth during the sublimation step. To this end, we use the upper bound
on the number of additional states in the new DP provided by Corollary 2.2.12: when

84 Chapter 2. State space relaxation algorithms

set J ⊆ K forms a stable set in Gint,
∑

i∈J⊆K ψ
2
i is an upper bound on the overall

number of the new states. This upper bound allows us to account for the effect of
including item i in set J . Note that in [Tanaka & Fujikuma 2012], the authors try
to heuristically restrain the growth of the DP by choosing the constraints impacting
the smallest number of arcs. Here, we rely on properties of our specific problem,
allowing for a stricter control of the number of additional states. Based on criteria
ψ1
i , ψ

2
i and ψ3

i , we define a weight ψi for each item. We then search for a stable set
in Gint of maximum weight, such that the estimated growth of the number of states
is less than parameter MAXG.

This is done by solving the model below, where a binary variable xi is created
for all i ∈ J 6=, indicating whether i is selected or not.

max

{ ∑
i∈J 6=

ψixi :
∑
i∈J 6=

−ψ2
i xi ≤ MAXG,

xi + xj ≤ 1 ∀(i, j) ∈ Eint
6= , xi ∈ {0, 1} ∀i ∈ J 6=

}

This problem is a knapsack problem with conflicts, which is NP-complete, but
can be solved in pseudo-polynomial time through dynamic programming for interval
graphs (see [Sadykov & Vanderbeck 2013]). For the instances we considered, the
time needed to solve this subproblem is negligible compared to the overall time of
the algorithm.

Our second strategy, called Cardinality constrained stable set, aims at cir-
cumventing a major drawback of the Weighted stable set strategy, which sometimes
adds too few new constraints, leading to a slow convergence of the overall algorithm.
Our strategy consists first in solving the model above with unit profits to find a sta-
ble set of maximum cardinality (which we denote by Cmax). We then seek a stable
set of cardinality larger than Cmax ∗krstable where krstable is a parameter in (0, 1], by
solving the following cardinality constrained maximum weight stable set problem.
Using the same variables as the model above, one obtains the following model.

max

{ ∑
i∈J 6=

ψixi :
∑
i∈J 6=

xi ≥ Cmax ∗ krstable,

xi + xj ≤ 1 ∀(i, j) ∈ Eint
6= , xi ∈ {0, 1} ∀i ∈ J 6=

}

This problem is also NP-complete, but is solved effectively by modern MILP
solvers (i.e., the time needed to solve it is also negligible compared to the overall
time of the algorithm).

The third strategy, called k-coloring, considers not only stable sets in Gint
6= ,

but in a larger graph also representing constraints that were added in the previous
iterations. To this end, we denote this extended set J + = J ∪ J 6=, we define
Eint

+ = Eint ∩ (J + × J +), and we consider the subgraph Gint
+ = (J 6= ∪ J , Eint

+)

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 85

of Gint induced by J +. Let kcolor be equal to the number of colors that we allow
at the current step. At each iteration, we seek a kcolor-colorable subgraph of Gint

+

of maximum weight. If the solution is different from J , then we add the new
constraints selected. If the solution only contains J , then we increase the value of
kcolor by one unit, and solve the model again. Initially, kcolor is set to one. We
repeatedly solve the following model, where zij are binary variables indicating that
item i is assigned to color j.

max
∑
i∈J 6=

∑
j=1,...,kcolor

ψizij

zij + z`j ≤ 1,∀(i, `) ∈ Eint
+ , j ∈ {1, . . . , kcolor}∑

j=1,...,kcolor

zij ≤ 1,∀i ∈ J 6=

∑
j=1,...,kcolor

zij = 1,∀i ∈ J +

zij ∈ {0, 1},∀i ∈ J 6= ∪ J +, j ∈ {1, . . . , kcolor}

We also solve this subproblem with a general-purpose MILP solver. Again, the
solution time is negligible compared to the time needed to build the new graph at
each iteration.

Finally, we consider a strategy called Hybrid, which favors a strong improve-
ment in the gap in the first iterations, and then favors a network of manageable size
when the number of vertices reaches a threshold. This is based on the following ob-
servation: in the first iterations, one would like to close the gap between the primal
and dual bounds as fast as possible to allow a better-performing filtering procedure,
but when the number of vertices in the network becomes large, the most impor-
tant criterion becomes its size, since a too large network may lead to intractable
Lagrangian subproblems. Therefore, the hybrid strategy uses one of the strategies
above in the first iterations, and when the number of nodes is larger than a given
threshold, the choice is only based on the expected size of the network.

2.2.3.6 Implementation issues

The effectiveness of the filtering step depends heavily on the fact that a good primal
solution is known. In general, during the optimization of the Lagrangian multi-
pliers, it may happen that a primal solution is computed as a side product of the
method. However, one cannot rely on this for TKP, since many constraints are often
violated in a solution of a relaxation. To produce a lower bound for our problem,
we heuristically solve model (2.2.1)–(2.2.3) by giving a small amount of time to a
general-purpose integer linear programming solver.

A good dual solution is also useful to warmstart the Volume algorithm, which
may take a long time to converge when the DAG are large. To find a good set of
multipliers, we solve the LP relaxation of (2.2.4)–(2.2.10), and use the optimal dual

86 Chapter 2. State space relaxation algorithms

values of constraints (2.2.10). Solving the LP relaxation is fast and provides a good
starting point for the Volume algorithm.

We implemented a parallel version of Bellman’s algorithm. We first compute
the longest path (in terms of number of arcs) from s0 to all vertices. All vertices at
the same distance are stored in a common bucket. The treatment of vertices in the
same bucket can be done in parallel.

2.2.4 Computational experiments

In this section, we provide experimental results for our methods. For each refine-
ment proposed, we evaluate its impact on the performance of the general algorithm.
Finally, we compare our results to those of [Gschwind & Irnich 2017] and to the re-
sults obtained using an all-purpose commercial Integer Linear Programming solver.
In this section, we consider an instance as solved if the algorithm finds an optimal
solution and proves its optimality.

All our experiments are conducted using 2 Dodeca-core Haswell Intel Xeon E5-
2680 v3 2.5 GHz with 128Gb RAM. For each instance, our code1 was run on 6
threads and a 32 Gb RAM limit. All models considered in subroutines are solved
with IBM ILOG Cplex 12.7.

We use instances proposed in [Caprara et al. 2013], composed of two groups.
For instances in the first group (I), the number of items ranges from 2071 to 13025,
the size of the knapsack is 100, and each item has a profit and a weight between 1
and 100. Since the method described in [Gschwind & Irnich 2017] and our methods
can solve all those instances to optimality in a short time, we do not report the
corresponding results. For the 100 instances in the second group (called U), the
number of items is 1000 and the size of the knapsack ranges from 500 to 520. Each
item has a profit and a weight between 1 and 100.

The goal of our experiments is twofold. We first want to determine the best
parameters for our algorithm, and evaluate the impact of the different improvements
that we have proposed. Secondly, we want to assess their effectiveness against the
state-of-the-art methods from the literature.

2.2.4.1 Parameters of the method

We first evaluate the impact of the improvements proposed. For this purpose, we
report the results obtained by the best combination of techniques (called SSDP*
below), and methods obtained from SSDP* by deactivating some features. We
deactivated the partial enumeration technique (subsection 2.2.3.3) and dominance
and feasibility tests (subsection 2.2.3.2). For each method, we report in Figure 2.2.9
the number of instances solved along time, with a limit of three hours.

The number of instances solved optimally within 3 hours increases by about 20%
when partial enumeration is used. This means that enumerating sequences of tran-

1The source code of our algorithms is available at gitlab.inria.fr/realopt/
TemporalKnapsack

gitlab.inria.fr/realopt/TemporalKnapsack
gitlab.inria.fr/realopt/TemporalKnapsack

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 87

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

100

Time (hours)

#
in
st
an

ce
s
so
lv
ed

SSDP*
Without Lagrangian multipliers initialization

Without partial enumeration
Without Proposition 2.2.5
Without Proposition 2.2.8
Without Proposition 2.2.10

Without Propositions 2.2.5-2.2.10

Figure 2.2.9: Number of instances of TKP from data set U [Caprara et al. 2016]
solved along time, for the best version of our algorithm, and six versions obtained
by deactivating some techniques.

sitions allows us to include useful information that is used by the filtering algorithm.
To illustrate the effect of partial enumeration, we report in Table 2.2.1 the size of
the first network constructed, for different values of kenum. As one might expect,
increasing the number of consecutive transitions considered reduces the number of
nodes in the network but increases the number of arcs (since combinations of arcs
are replaced by single arcs). Although it yields a higher memory consumption and
a longer solution time of the relaxations, it can be advantageous to some extent:
selecting one arc means deciding more arcs simultaneously and more impact on the
Lagrangian cost of the solution. Thus, such long sequences of decisions are more
easily discarded by Lagrangian filtering. This also explains, along with the removal
of short infeasible sequences, why the network with kenum = 2 has fewer arcs than
that with kenum = 1.

The feasibility tests proposed in Propositions 2.2.5 to 2.2.10 have a crucial impact
on the performance of our algorithm, since they allow us to solve 40 more instances
in a one-hour time limit, and 11 additional instances in a three-hour time limit.
These tests remove about 20% of the nodes and 32% of the arcs included in the
first network when kenum = 4. One can also remark that each of them improves the
overall procedure significantly.

88 Chapter 2. State space relaxation algorithms

Table 2.2.1: Average size of first network for different value of kenum, after the
filtering step. "k" stands for thousands.

kenum 1 2 3 4 5 6
Average nodes 703 k 384 k 264 k 202 k 162 k 135 k
Average arcs 1,392 k 1,344 k 1,639 k 2,269 k 3,155 k 4,658 k

Table 2.2.2: Parameters of the tested methods.

Configuration Strategy Criterion ψi
SSDP* Cardinality constrained ψ2

i

(
1− ψ3

i

)
Stable Weighted stable set

−ψ2
i+max

j∈J 6= ψ2
j

max
j∈J 6= ψ2

j
ψ3
i

NbLabels Cardinality constrained ψ2
i

Hybrid Cardinality constrained First ψ3
i , then ψ

2
i

LagMult Cardinality constrained ψ1
i

KColor K-Color
−ψ2

i+max
j∈J 6= ψ2

j

max
j∈J 6= ψ2

j
ψ3
i

2.2.4.2 Strategies for reintroducing constraints

As stated in most papers working on iterative state-space relaxations, the selection
of the constraints to reintroduce is the most critical component in the method.
In what follows, we empirically compare our different strategies to determine the
most effective. In Table 2.2.2, we report how each configuration of our algorithm
is parameterized. Preliminary experiments led us to set parameter knbsol = 20

for the computation of criterion ψ3. The performance of the overall method was
impaired by values of knbsol less than 10, but does not seem to be affected by values
larger than 20. In the method based on Cardinality constrained strategy, parameter
krstable is empirically fixed to 0.7. For the SSDP* method, the weight associated
with each constraint tries to balance the upper bound on the number of additional
labels and the frequency of violation of this constraint in the best relaxed solutions
considered. When using the Weighted stable set strategy, minimizing the expected
number of added labels boils down to selecting no new constraint. That is why we
maximize the complement to the maximum number of expected additional labels.
This value is weighted by the frequency of violation of the constraint. Configuration
Hybrid aims at improving the dual bound as fast as possible by enforcing the most
frequently violated constraints. Once the network is too large (we empirically fixed
a limit at 4,000k nodes), adding fewer labels is preferred.

Figure 2.2.10 numerically compares our different methods for selecting the con-
straints to add during the sublimation phase. Similarly to Figure 2.2.9, we report
the total number of instances solved along time, with a limit of three hours. We
observe that the k−coloring strategy is clearly not competitive compared to strate-
gies based on stable sets. The fact that this strategy performs poorly shows that
our method to evaluate the size of the network in the stable-set based strategies is

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 89

useful, and that one cannot just rely on the interval structure of the constraints.
All strategies based on stable sets have similar behaviour. Configuration Stable
performs reasonably well within medium time limits. However, it does not seem
to be more effective when more time is allocated. This can be explained by the
fact that, the larger the network, the less controlled the number of new constraints
added. Indeed, we empirically observed that only a few constraints are added in
general by this method once a critical size is reached. The configurations based on
the Cardinality constrained stable set strategy do not suffer from that drawback.
For the group U of instances which are composed of 1000 items, both SSDP* and
Stable configurations reintroduce between 5 and 20 constraints in more than 75%
of the iterations, while the maximum number of constraints added by the algorithm
at each iteration is respectively 29 and 41. The total number of constraints added
is lower than or equal to 15 for 20% of the instances, more than 274 (resp. 267)
for 20% of the instances for configuration SSDP* (resp. Stable). The maximum
number of constraints added for a single instance is 328 (resp. 348).

The performance of Hybrid configuration is disappointing. This might be due to
the difficulty of finding a good rule for switching between the two criteria. Overall,
an important conclusion is that taking into account the increase in the size of the
network appears to be crucial to the method.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

100

Time (hours)

#
in
st
an

ce
s

SSDP *
KColor
Stable

NbLabels
Hybrid
LagMult

Figure 2.2.10: Number of instances solved along time for different methods used to
determine the constraints to add at each iteration.

90 Chapter 2. State space relaxation algorithms

2.2.4.3 Comparison with the branch-and-price of [Gschwind & Ir-
nich 2017]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

Time (hours)

#
in
st
an

ce
s

SSDP *
GI

Figure 2.2.11: Number of instances solved along time for our best algorithm (SSDP*)
and the algorithm of [Gschwind & Irnich 2017] on Intel(R) Core(TM) i7-2600 at 3.4
GHz with 16.0 GB main memory using a single thread only.

We now compare our method with the algorithm of [Gschwind & Irnich 2017].
The authors kindly provided us with the results obtained with their algorithm within
a three-hour time limit. They implemented a pure branch-and-price without any pri-
mal heuristics and using best-first as node selection strategy. Their experiments were
performed on a standard PC with an Intel(R) Core(TM) i7-2600 at 3.4 GHz with
16.0 GB main memory using a single thread. Figure 2.2.11 reports the performance
of our best algorithm (SSDP*) and those obtained by [Gschwind & Irnich 2017](GI)
using a similar computer (same processor, same amount of RAM), using a single
thread only. The processor speeds in this setting and in the one described at the
beginning of Section 2.2.4 are roughly comparable. However, the limited amount of
memory on this machine is not always enough for our method (the algorithm ran
out of memory for eight instances that are solved on the other machine).

The approach of [Gschwind & Irnich 2017] is more efficient within a short com-
puting time: it solves 41 instances in 30 minutes, whereas the best version of our
algorithm, when restricted to a single thread on the same machine, solves only 35
instances. Both algorithms perform similarly within a one-hour time limit (47 in-
stances solved versus 49). However, only a few more instances are solved by the
branch-and-price approach within 3 hours of computing time (55 instances in to-
tal), while our approach solves 50 percent of the still-unsolved instances between 1
and 3 hours (75 instances in total).

2.2. Successive sublimation dynamic programming: application to the
temporal knapsack problem 91

2.2.4.4 Comparison with a general-purpose MILP solver

Figure 2.2.12 reports the performance of our best algorithm (SSDP*), and those
obtained by ILP solver IBM Ilog Cplex when solving model (2.2.1)-(2.2.3) (CPLEX)
. For the sake of completeness, we also report the results obtained with model (2.2.4)-
(2.2.11) (CPLEX-Event-based). We limited all methods to a single thread.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

Time (hours)

#
in
st
an

ce
s

SSDP *
CPLEX (2.2.1)-(2.2.3)

CPLEX-Event-based (2.2.4)-(2.2.11)

Figure 2.2.12: Number of instances solved along time for our best algorithm (SSDP*)
and an ILP solver solving model (2.2.1)-(2.2.3) (CPLEX) and model (2.2.4)-(2.2.11)
(CPLEX-Event-based), using a single thread.

First, the straightforward use of the event-based model (2.2.4)-(2.2.11) is not a
competitive approach. All instances but five were solved by at least one of the two
other methods. In terms of number of instances solved after three hours, SSDP*
shows the best performance. After three hours, SSDP* optimally solves 83 instances,
which is 14 more than CPLEX. CPLEX is better than SSDP* for several instances,
mostly instances numbered from 1 to 55. The solver is able to solve most of them in
a few seconds, while SSDP* may need minutes or hours. That can be explained by
the powerful procedures embedded in such solvers to deal with knapsack constraints
(for example to derive cuts), as well as good generic heuristics. From instance 55

to 99 however, CPLEX is only able to solve 16 instances. This can be explained by
the structure of the instances: each batch of ten consecutive instances has a similar
structure, most notably the maximum number of items in a clique. This number
increases with the index of the instances. It transpires from these experiments that
linear programming based methods are highly sensitive to this parameter, which is
not the case for SSDP*.

We now report the performances of CPLEX and our method in their multi-
ple thread setting. Figure 2.2.13 reports the results with six threads for SSDP*,
CPLEX and CPLEX-Event-based. Using more cores is beneficial for all methods,

92 Chapter 2. State space relaxation algorithms

although CPLEX-Event-based only solves two more instances within the time limit.
After those three hours, SSDP* with six threads optimally solved 94 instances, 12
more than CPLEX. Our method is not six times faster, since only the Lagrangian
problem solver is parallelized. The time needed to construct and update the graph
representation of the dynamic program represents a large percentage of the total
running time, and this part of the algorithm does not benefit from a multi-core ar-
chitecture. Only two instances are solved by CPLEX and not by SSDP* (U69 and
U78). Conversely, SSDP* is able to find 14 solutions when CPLEX does not reach
convergence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

Time (hours)

#
in
st
an

ce
s

SSDP *
CPLEX (2.2.1)-(2.2.3)

CPLEX-Event-based (2.2.4)-(2.2.11)

Figure 2.2.13: Number of instances solved along time for our best algorithm (SSDP*)
using 6 threads and an ILP solver on model (2.2.1)-(2.2.3) (CPLEX) and model
(2.2.4)-(2.2.11) (CPLEX-Event-based), using 6 threads.

2.2.4.5 Sensitivity of our method to the knapsack capacity

The size of our dynamic program depends on the knapsack capacity W . When this
value increases, so does the time and memory needed to create the graph represen-
tation of the problem. Conversely, MIP solvers are generally less sensitive to the
value of this parameter.

We run additional experiments on instances with larger knapsack capacities. We
implemented the data generators of [Caprara et al. 2013], the same that were used
to create the instances we use in the previous experiments. As mentioned above,
the authors generated 20 different classes of instances (I1 to I10 and U1 to U10).
We generated four new instances for each class: two with W = 1000 and two with
W = 10000. Therefore, the instances we generated have the same structure as the
instances generated by [Caprara et al. 2013], but with a larger knapsack capacity.
For these experiments, Proposition 2.2.7 is not used within the SSDP algorithm,

2.3. Other contributions in State-Space Relaxation and deterministic
optimization 93

Table 2.2.3: Sensitivity of our method to the knapsack capacity. In these experi-
ments, Proposition 2.2.7 is not used within the SSDP algorithm.

Instance type Capacity #Instance status (over 20)
CPLEX only SSDP only solved by both unsolved

I 1000 0 12 8 0
U 1000 5 0 7 8
I 10000 0 11 9 0
U 10000 14 0 0 6

because the memory requirements of the additional data is too large.
Our results are reported in Table 2.2.3. For each instance type (I or U), and

each knapsack capacity (1000 and 10000), we report the number of instances (over
the 20 generated) that are solved by CPLEX only, SSDP only, and both methods,
within a three-hour time limit. We also report the number of unsolved instances.

According to these results, SSDP clearly suffers when there is a larger knapsack
capacity and from the deactivation of Proposition 2.2.7, as expected. On average,
SSDP remains competitive even with larger capacities (47 instances solved against
43), in particular for instances in type I. Although these instances were solved in
a handful of seconds by all methods for W = 100, CPLEX was only able to solve 8

instances over the 20 generated with W = 1000, and 9 instances when W = 10000.
It is able to find a good solution quickly, but is not able to close the gap after
three hours of computation time. SSDP is able to solve all large type I instances,
although it comes with a larger computational cost (respectively 284s and 596s on
average for W = 1000 and W = 10000). Conversely, CPLEX is more effective for
instances of type U . For W = 10000, it is able to solve 14 instances, while SSDP is
not able to solve any instance of this set, because the memory needed to store the
graph representation of the first dynamic program is too large.

2.3 Other contributions in State-Space Relaxation and
deterministic optimization

SSR for scheduling In [Detienne et al. 2012], study we a single machine schedul-
ing problem whose objective is to minimize a regular step total cost function. Lower
and upper bounds, obtained from linear and Lagrangian relaxations of different In-
teger Linear Programming formulations, are compared. A dedicated exact approach
is presented, based on a Lagrangian relaxation. It consists of finding a Constrained
Shortest Path in a specific graph designed to embed a dominance property. Filtering
rules are developed for this approach in order to reduce the size of the graph, and the
problem is solved by successively removing infeasible paths from the graph. Numer-
ical experiments are conducted to evaluate the lower and upper bounds. Moreover,
the exact approach is compared with a standard solver and a naive branch-and-
bound algorithm.

94 Chapter 2. State space relaxation algorithms

MILP approach for scheduling problems In [Detienne 2014], we investigate
scheduling problems that occur when the weighted number of late jobs that are sub-
ject to deterministic machine availability constraints have to be minimized. These
problems can be modeled as a more general job selection problem. Cases with resum-
able, non-resumable, and semi-resumable jobs as well as cases without availability
constraints are investigated. The proposed efficient mixed integer linear program-
ming approach includes possible improvements to the model, notably specialized
lifted knapsack cover cuts. The method proves to be competitive compared with ex-
isting dedicated methods: numerical experiments on randomly generated instances
show that all 350-job instances of the test bed are closed for the well-known problem
1|ri|

∑
wiUi. For all investigated problem types, 98.4% of 500-job instances can be

solved to optimality within one hour.

SSR and MILP for a railway problem The subject of [Benkirane et al. 2020]
is an integrated optimization approach for timetabling and rolling stock rotation
planning in the context of passenger railway traffic. Given a set of possible passenger
trips, service requirement constraints, and a fleet of multiple heterogeneous self-
powered railcars, our method aims at producing a timetable and solving the rolling
stock problem in such a way that the use of railcars and the operational costs are
minimized. To solve this hard optimization problem, we design a mixed-integer
linear programming model based on network-flow in an hypergraph. We use this
models to handle effectively constraints related to coupling and decoupling railcars.
To reduce the size of the model, we use an aggregation and disaggregation technique
combined with reduced-cost filtering. We present computational experiments based
on several French regional railway traffic case studies to show that our method scales
successfully to real-life problems.

Lagrangian relaxation-based heuristics for lot-sizing In [Absi et al. 2013],
we deal with the multi-item capacitated lot-sizing problem with setup times and
lost sales. Because of lost sales, demands can be partially or totally lost. To find a
good lower bound, we use a Lagrangian relaxation of the capacity constraints, when
single-item uncapacitated lot-sizing problems with lost sales have to be solved. Each
subproblem is solved using an adaptation of the dynamic programming algorithm
of [Aksen et al. 2003]. To find feasible solutions, we propose a non-myopic heuristic
based on a probing strategy and a refining procedure. We also propose a metaheuris-
tic based on the adaptive large neighborhood search principle to improve solutions.
Some computational experiments showing the effectiveness and limitation of each
approach are presented.

Chapter 3

Decomposition approaches for
uncertain optimization problems

Contents
3.1 Double decomposition for the outage planing problem . . . 95

3.1.1 Introduction . 96
3.1.2 Problem description . 98
3.1.3 Extended formulations . 102
3.1.4 Solution approaches . 110
3.1.5 Computational results . 119

3.2 Decomposition for two-stage robust problems with mixed
integer recourse . 130

3.2.1 Introduction and literature review 131
3.2.2 Methodological development 136
3.2.3 Complexity results . 153
3.2.4 Numerical results . 155

3.3 Other contributions in optimization under uncertainty . . . 165

This chapter reports contributions for solving optimization problems with un-
certain parameters. Section 3.1 presents a study made in collaboration with the
French power producer EDF, within the PhD thesis of Rodolphe Griset. It is about
the planning of nuclear plant outages, modeled as a two-stage stochastic problem.
Dantzig-Wolfe and Benders decompositions are jointly used to produce high quality
solutions to real size instances. In Section 3.2, we describe decomposition approaches
for a class of two-stage robust problems with integer recourse, which has been de-
veloped in collaboration with Ayşe Nur Arslan during her postdoctoral residency.
Reformulations based on the convexification of the recourse feasible set are pro-
posed, leading to an effective exact solution method. Section 3.3 summarizes other
contributions addressing uncertain optimization problems.

3.1 Double decomposition for the outage planing prob-
lem

This section is based on the journal paper [Griset et al. 2021]. We are interested
in the nuclear outage planning problem at the French power producer EDF. This

96
Chapter 3. Decomposition approaches for uncertain optimization

problems

problem is quite challenging given the specific operating constraints of nuclear units,
the stochasticity of both the demand and non-nuclear units availability, and the
scale of the instances. To tackle these difficulties we use a combined decomposition
approach. The operating constraints of the nuclear units are built into a Dantzig-
Wolfe pricing subproblem whose solutions define the columns of a demand covering
formulation. The scenarios of demand and non-nuclear units availability are handled
in a Benders decomposition. Our approach is shown to scale up to the real-life
instances of the French nuclear fleet.

Section 3.1.1 presents the context of the study and some literature review. In
Section 3.1.2, the nuclear outage planning problem is described. In Section 3.1.3,
variants of the proposed extended formulation are presented. Section 3.1.4 gives
the details of the Dantzig-Wolfe and Benders reformulations dedicated to handle
real size stochastic instances through a row-and-column generation technique. In
Section 3.1.5, the computational results attest the effectiveness of the proposed
approach on real size (deterministic and stochastic) EDF instances of the problem.

3.1.1 Introduction

Nuclear production is a major source of electricity production for EDF, which op-
erates 58 reactors at 19 locations in France. In the following, reactors are referred
to as nuclear units and locations as power plants. Each nuclear unit must undergo
a periodic outage to perform maintenance tasks and to reload nuclear fuel, thus
leading to a complex industrial process. In particular, each outage of a nuclear
unit must be scheduled in advance to allow for coordination of EDF’s personnel
and subcontractors. Furthermore, a nuclear outage induces an expensive substitute
production by other means, e.g., gas-fired units or purchases on electricity market,
to fulfill the electricity demand. For these reasons, scheduling nuclear outages is of
major economic importance for EDF.

In this study, we consider a fixed number of outages to be scheduled within
a given time horizon. The electricity demand is discretized over the time horizon
and includes potential sales in the electricity market. At each time period, demand
must be met by available generation units or market purchases. Nuclear outages
are subject to scheduling constraints caused by limited resource availability as unit
refueling and maintenance operations share the same resources in terms of personnel
and equipment. Nuclear units must account for various operational constraints,
which also impact nuclear outages, namely upper-bound on remaining fuel levels
at outage starts, limiting operation at intermediate power, non-linear decreasing
production profiles once the fuel level falls below a given threshold. As the time
horizon is large, the data is subject to uncertainty in particular the demand, prices
and capacities of exchanges on the market, but also the availability of non-nuclear
units. The Nuclear Outage Planning Problem (NOPP) is to find a minimum cost
plan for the nuclear refueling outages satisfying both scheduling and operational
constraints to meet the demand in an uncertain future. The uncertainty is modeled
by a set of scenarios in a stochastic setting. The NOPP can be formulated as a two-

3.1. Double decomposition for the outage planing problem 97

stage decision problem. The first-stage decisions are nuclear outage dates, which
have to be fixed before knowing the future; the second-stage decisions correspond
to the production plan once uncertainty is revealed.

In the 90’s, different approaches were investigated on a deterministic variant of
the problem. [Edwin & Curtius 1990] and [Mukerji et al. 1991] consider an Integer
Linear Programming (ILP) approach in which nuclear decreasing profile constraints
are relaxed. Furthermore both studies limit their tests to one nuclear power plant
with at most six nuclear units and a one-year horizon.

[Fourcade et al. 1997] report a high increase in solution-time when attempting
to solve a compact ILP formulation on instances involving several power plants over
a three-year horizon, while enforcing binding scheduling constraints between out-
ages from units of different power plants. To reduce the solution time, they apply
Lagrangian relaxation to the demand constraint. The corresponding decomposi-
tion scheme is solved through Uzawa’s sub-gradient algorithm [Arrow et al. 1958].
Each sub-problem, corresponding to a nuclear power plant, is solved through a
Branch & Bound algorithm which has been enhanced with a clique cut genera-
tion of local power plant scheduling constraints. However, this approach presents a
computational limitation related to the use of Uzawa’s algorithm. It also needs a
re-dispatching phase to satisfy the demand, which could not ensure that solutions
remain feasible.

In 2010, EDF submitted the stochastic variant of the problem to the academic
community through the ROADEF Challenge [Porcheron et al. 2010]. In the pro-
posed problem specification, the amount of nuclear fuel to be reloaded was a con-
tinuous decision, the time period was from four to six hours and there were up to
500 stochastic scenarios. Moreover, the solution time was limited to one hour.Given
these characteristics, the best results were obtained by (meta-)heuristic approaches,
thus reinforcing EDF’s choice to use such methods in the current operational so-
lution to the NOPP . However, most of the teams involved in the challenge took
advantage of the natural two-stage structure of the problem by embedding an MIP
or LP formulation in some specific phase of their solution scheme. To deal with the
various scheduling constraints, [Jost & Savourey 2013] propose an ILP formulation
to fix outages dates, whereas [Brandt 2010, Godskesen et al. 2013, Gavranović &
Buljubašić 2013] apply constraint programming methods. Once first-stage decisions
are fixed it is possible to solve the production dispatching problem through a Ben-
ders’ like reformulation suitable for row generation. In [Lusby et al. 2010], such an
approach is used, where specific constraints of the nuclear units are relaxed in a
first phase before a so called reparation phase is performed. [Rozenknop et al. 2013]
propose a dedicated state-space graph embedding nuclear operational constraints.
A path in the graph corresponds to a feasible production plan with respect to the
fuel level and the outage time-window constraints. The set of feasible plans is gen-
erated dynamically using a column generation scheme. The principle is that each
plan prescribes fixed production levels for each week. The authors report compu-
tational issues as a lot of plans have to be generated, and generating each plan is
computationally demanding.

98
Chapter 3. Decomposition approaches for uncertain optimization

problems

Some characteristics did change over time in the definition of the problem since
the ROADEF challenge. The amount of fuel to be reloaded was assumed to be
variable. This assumption is no longer currently valid as the amount of fuel is fixed
in the operational data. Hence the approaches presented in this article account for
a fixed amount of fuel, even though they can account for a variable amount. Given
the economic value at stake, a solution with guaranteed quality is of particular
interest for EDF. To this end, some characteristics and specifications can be slighted
amended is set back to a week and the solution time is extended to eight hours.
These amendments make it possible to use approaches based on an exact solution
procedure, in particular those combining reformulations and decompositions.

The principal focus of the current study is the stochastic aspect of the prob-
lem. A preliminary step is to deal with a single scenario in a deterministic setting.
The idea is to find a suitable mathematical programming formulation to solve the
corresponding NOPP instances at optimum. Then the number of scenarios consid-
ered is increased in a stochastic setting. The goal is then to solve NOPP instances
with a quality guarantee whenever an exact solution is non-achievable. From an
operational point of view the interest is to capture the impact of a given stochastic
representation in the guaranteed solution quality.

Aside from ROADEF Challenge, a two-stage extended formulation, proposed
in [Joncour 2011], involves a state-space graph in the first stage where an arc corre-
sponds to either a production or an outage period. Our present work is derived from
the latter formulation. Such an approach is computationally attractive because it
involves network flow subsystems, thus leading to tight formulations. However, the
size of the resulting model seriously impairs the scalability of the approach when fac-
ing real size instances. Our contribution is to propose an efficient, sparse, extended
formulation for real size instances. When the number of scenarios increases, we re-
sort to a double decomposition scheme to solve large-scale instances of the problem.
Dantzig-Wolfe decomposition is used to manage the large-scale instances at first-
stage and Benders’ decomposition to exploit the independence of the sub-problems
associated with different scenarios at second stage. We also study the effect of in-
troducing second-stage variables representing a surrogate measure of the first-stage
decisions. The problem is finally solved using a dedicated row-and-column genera-
tion algorithm. Our numerical study shows that, in the deterministic setting, real
size instances can be solved to optimality directly using a commercial MIP solver
with the proposed extended formulation. In the stochastic setting with up to 32 ag-
gregated scenarios built from a 484 scenario database, the proposed row-and-column
generation based method provides good quality solutions.

3.1.2 Problem description

The objective of the NOPP variant considered in this paper is to find a plan for the
nuclear refueling outages that minimizes, on a given time horizon, the expectation
cost of non-nuclear units on several scenarios of demand, market prices and capaci-
ties, and fossil unit availability, while satisfying the demand and both the scheduling

3.1. Double decomposition for the outage planing problem 99

and operational constraints.

Stochastic aspects In its most general form, the NOPP is a multi-stage stochas-
tic problem. The plan of nuclear refueling outages is re-optimized every month,
given that the outages scheduled to occur in less than a year are almost fixed.
The demand, availability of nuclear and non-nuclear units and costs of non-nuclear
units are known weeks and sometimes only days in advance, and unit production is
re-optimized up to 30 minutes before producing.

In this article, we assume that the availability of nuclear units is deterministic,
while the demand and non-nuclear units are stochastic and subject to uncertainty.
The uncertainty is represented through a set of aggregated scenarios built using an
EDF library with a database of 484 original scenarios (see Section 3.1.5). These
assumptions allow for modeling the NOPP as a two-stage problem. In the first
stage the outage dates are the here-and-now decisions taken before uncertainty is
revealed, while in the second stage, the aim is to have a feasible production plan –
i.e., the demand is met and the fuel level constraints of nuclear units are satisfied –
which minimizes the leasing cost of non-nuclear units.

In each scenario, fictitious units have been included to guarantee that production
can meet the demand. A failure unit with a very high cost and infinite power ca-
pacity is added to the non-nuclear fleet to prevent any under-capacity of production
with respect to the demand. Thus a solution with insufficient nuclear production
will be feasible but expensive. Similarly a load shedding unit with cost matching
expected selling prices on electricity markets and negative production is added to
the non-nuclear fleet to prevent any overcapacity with respect to the demand.

Nuclear unit production constraints A nuclear unit operates in a cyclic but
non-periodic way. Every cycle starts with a production campaign which might
be divided into two phases. During the first phase, the unit may be operated at
intermediate power in order to save fuel for later on. The total fuel saving, called
modulation, is limited for each cycle. If the fuel level reaches a given threshold, called
BO in the following, the unit operation enters its second phase where production has
to follow a non-linear decreasing profile starting from full power and decreasing each
week from about 3% until the next outage starts. Figure 3.1.1 gives an illustration
of a nuclear cycle.

A cycle ends with an outage during which maintenance is performed and a given
amount of nuclear fuel is reloaded. In practice, a fraction (a third or quarter) of the
assemblies in the core of the reactor are replaced by fresh ones. Deciding to start
an outage period during the first phase, i.e. with a fuel level greater than the BO
level, is called a stop by anticipation; it can occur only provided the fuel level is
below a given fuel level called maximum anticipation. Conversely, a stop during the
second phase is called a stop in prolongation. Note that, from the fuel perspective,
a stop in prolongation is economically more interesting than a stop by anticipation,

100
Chapter 3. Decomposition approaches for uncertain optimization

problems

Figure 3.1.1: Illustration of the specific constraints related to nuclear units.

as a prolongation leads to a better use of the removed fuel assemblies. However, the
unit must be stopped at the latest once the fuel level has reached a threshold called
maximum prolongation.

Outage scheduling constraints Nuclear units refueling and maintenance oper-
ations are complex industrial tasks that require personnel with specific and possibly
rare skills, and dedicated equipment. Hence, the number of outages sharing a specific
resource is limited at any time. There is a large variety of such resource constraints,
but the most widely used ones can be classified in one of the following two categories:

- Local power plant constraints: nuclear units are located on 19 power plants.
All but one power plant comprise either two or four units. Each of such power
plants has the required personnel to perform at most one outage at a time.
In addition, the outages of any two units at the same power plant should be
separated by several weeks. As for the six unit power plant, the outages of at
most two units can be performed at a time.

- Global power plant constraints: when an outage duration is less than a month,
only nuclear fuel can be reloaded. When an outage duration is more than a
month, maintenance tasks are also performed and a very specific equipment
is required. Hence, the number of simultaneous outages with a duration more
than a month is limited for the whole nuclear fleet.

Nomenclature and notations

In this article, sets, vectors and matrices are indicated in boldface, whereas a scalar

3.1. Double decomposition for the outage planing problem 101

is in non-boldface.
Indices

t ∈ T index of weeks

j ∈ J index of non-nuclear plants

i ∈ I index of nuclear units

k ∈ Ki cycle index of nuclear unit i

c ∈ R scheduling constraint index

ω ∈ Ω index of scenarios

Input Data

Dω
t total demand for week t in scenario ω

For each nuclear unit i:

Si initial fuel level

P it maximum production during week t

For each nuclear unit i and each cycle k:

Aik maximum fuel level at the beginning of the outage

Mik maximum modulation during the production period

DPik minimum fuel level at the beginning of the outage

EDik early date of the outage

DDik due date of the outage

For each non-nuclear unit j:

P
ω
jt maximum production during week t in scenario ω

Cωjt leasing cost during week t in scenario ω

For each scheduling constraint r:

Nrt maximum number of resources available during week t

Ir time interval (in weeks) during which constraint r is active

Or set of outages defined by pair (i, k) involved in constraint r

Lr(i, k) delay (in weeks) after the beginning of outage (i, k) ∈ Or for the con-
sumption of one resource for each nuclear unit i and cycle k

Dr(i, k) duration of resource consumption for outage (i, k) ∈ Or

Energy is given in Equivalent Full Power, denoted by EFP, corresponding to the
energy produced in one week at full power for the corresponding nuclear unit.

102
Chapter 3. Decomposition approaches for uncertain optimization

problems

3.1.3 Extended formulations

In this section, the nuclear constraints of each unit are captured in a dedicated graph,
thus leading to a network flow formulation. Such a formulation involves additional
variables w.r.t. original variables, e.g., outage dates, thus leading to a so called
extended formulation. Indeed an extended formulation of the original polyhedron is
a polyhedron whose projection onto the original variables is the original polyhedron.

3.1.3.1 Assumptions

Assumption 3.1.1. Similarly to [Rozenknop et al. 2013] and [Joncour 2011], we
assume a discretization of the fuel levels that can be reached at the end of a production
cycle.

Assumption 3.1.2. A production campaign with modulation greater than a week of
production will contain a modulation corresponding to an integer number of weeks
during which the unit is operated at minimum power instead of maximum power. It
implies in particular that BO level will be reached at the end of a week, allowing a
decreasing profile period to start at the beginning of the next week.

Assumption 3.1.3. A production campaign that involves a significant modulation,
i.e more than one EFP, cannot be stopped before the fuel level reaches BO level.

Assumption 3.1.4. Inversely, a production campaign can be stopped by anticipation
provided it involves no modulation, except the minimum required to end the cycle with
the nearest discrete fuel level available. Note that the corresponding modulation must
be lower than one EFP (Equivalent Full Power).

Assumption 3.1.5. The fuel level at the end of a given production period and the
starting time of each decreasing profile are common to all scenarios. It implies in
particular that the total energy saved by modulation is common for all scenarios as
well.

Assumption 3.1.1 is a mild assumption used to convert continuous fuel levels
in discrete states decisions. Assumptions 3.1.2-3.1.4 are slightly stronger assump-
tions used to define production arcs corresponding to production decisions which
translate into bounds on production variables in Section 3.1.3.3. Assumption 3.1.2
separates decreasing profile periods from production periods. Assumption 3.1.3 and
Assumption 3.1.4 are standard from an economical point of view. The rationale
behind is that using modulation before a stop with anticipation would increase the
amount of fuel loss during an outage. Finally Assumption 3.1.5 is the strongest
assumption used to separate first stage decisions, i.e., outages dates and fuel levels,
from second stage production dispatching in each scenario. As for Assumption 3.1.1,
it can be argued that matter, while production dispatching results from the former
decisions. Note that the cost and feasibility w.r.t. the demand of a given scenario
can be evaluated once production is dispatched. Assumption 3.1.5 is used to obtain
an efficient formulation in Section 3.1.3.5 and in decomposition schemes presented
in Section 3.1.4. Under these assumptions, we assume that there exists at least one
feasible production plan for each nuclear unit.

3.1. Double decomposition for the outage planing problem 103

3.1.3.2 Transition graph

Thanks to the previous assumptions, we can associate to each nuclear unit i a graph
Gi = (Vi,Ei). Each path from the source to the sink of this graph corresponds to
a plan satisfying the following constraints for unit i: time window for each outage,
maximum fuel level for each refueling both minimum and maximum fuel level, and
maximum modulation for each cycle.

Each vertex is uniquely associated with a flag f , a cycle index k, a fuel level
index a (Assumption 3.1.1) and a week t, while each arc corresponds to either an
outage or a production period. Vertices are partitioned in four classes:

(f = Begin, k, a, t) called Begin vertex corresponds to the start of the kth pro-
duction period taking place at the beginning of week t, while a corresponds
to the index of the fuel level at the end of the preceding production period.

(f = End, k, a ≥ 1, t) called Anticipation vertex corresponds to the end of the
kth production period taking place at the end of week t − 1 with a positive
fuel level corresponding to a weeks at full power.

(f = BO, k, a = 0, t) called BO vertex corresponds to the case where the BO
level is reached in the kth cycle at the end of week t − 1. An outage or a
decreasing profile period may start at the beginning of week t.

(f = End, k, a < 0, t) called DP vertex corresponds to the end of the kth pro-
duction period taking place at the beginning of week t following a decreasing
profile of −a weeks.

Note that the information defining vertices includes the exact fuel level of the unit
in week t. The source node of Gi is a fictitious node whose data are adjusted in
order to reflect the initial condition of the unit at the outset of the planning horizon.

An arc is defined by a starting week t1 and an ending week t2− 1. Assumptions
3.1.3, 3.1.2 and 3.1.4 let us use only arcs in the following four categories:

Full-power arcs linking a Begin vertex to an Anticipation vertex. Each arc is
defined only if t2 is within the time window for the following outage and if the
targeted fuel level is below the maximum anticipation of the current cycle.

Modulation arcs linking a Begin vertex to a BO vertex. Such arcs correspond to
a fuel reload and a production leading to the BO level at the end of week
t2−1. It is defined if and only if the amount of modulation necessary to reach
BO level at the end of week t2− 1 is below the maximum modulation value of
the current cycle.

Decreasing profile arcs linking a BO vertex to a DP vertex. Such arcs corre-
spond to the decreasing profile of the current cycle from week t1 to t2 − 1.
Week t2 has to be within the time window of the following outage.

Outage arcs linking a BO or End vertex to a Begin vertex relative to the next
cycle. Such arcs represent an outage between weeks t1 and t2 − 1 with a
fuel reload. Note that the length of the current cycle’s outage should equal
t2 − t1 − 1.

104
Chapter 3. Decomposition approaches for uncertain optimization

problems

The sink of the graph is a fictitious vertex linked to all vertices going beyond the
horizon t by a fifth kind of arc called arc to sink.

Let us consider an instance with a single unit as an illustrative example on the
graph construction. For ease of presentation, the index of the unit is omitted. By
convention, the initial cycle index and initial week are 0. The entries given in terms
of EFP for the first cycle k = 0 are the following : S = 9.8, A0 = 2.5, M0 = 3,
DP0 = 8, while the early and due dates are ED0 = 7 and DD0 = 11. The first
vertex with a positive fuel level is a Begin vertex. Hence, the source vertex s of
the graph is with label (Begin,0,0,0). For full-power arcs, the unit must produce
at full power at least for eight weeks for the fuel level initially at S = 9.8 to be
less than A0 = 2.5. The discretized final fuel levels correspond to integers in terms
of EFP, hence every production period will at least contain a modulation of 0.2
EFP. At the beginning of week 8, the fuel level is 2 and the production period
can end as ED0 ≤ 8 ≤ DD0. A full-power arc is added to the graph leading to
vertex (End,0,2,8). Similarly, another full-power arc leads to vertex (End,0,1,9),
which corresponds to produce during one additional week. No more full power
arcs can be added. Reaching BO level through a modulation arc at the beginning
of week 10 is possible with a modulation of 0.2 EFP between week 0 and 9, the
corresponding vertex is (BO,0,0,10). With a modulation of 1.2 EFP between week
0 and 9, another vertex (BO,0,0,11) can be added. As the outage due date has been
reached, no more vertices can be added, even though it would be possible w.r.t. M0

to increase modulation. Decreasing profile periods correspond to keep producing
below BO level, i.e., with a negative fuel level. The time window allows producing
until the end of week 10, i.e., beginning of week 11. Hence a decreasing profile arc
is created from vertex (BO,0,0,10) to a new vertex (End,0,-1,11). As the outage
due date has been reached, no more vertices can be added, even though it would be
possible w.r.t. DP0 to keep producing along the decreasing profile. As for outage
arcs, an outage can begin at each End and BO vertices. Figure 3.1.2 shows the
resulting graph at the beginning of cycle 1.

In the remainder of the article, each arc is associated with an index e where
e = (u, v) represents the arc with origin vertex u and destination vertex v.

3.1.3.3 Additional precomputed data

In order to write our models, we introduce additional parameters computed from
the input data.

First, we associate with each arc bounds that specify how energy production is
constrained when it is chosen in a solution. Given an arc e ∈ Ei, starting at the
beginning of week t1(e) and ending at the end of the week t2(e)− 1, we define p̄e(t)
(resp. p

e
(t)), t ∈ {t1(e), . . . , t2(e) − 1} such that

∑t
t′=t1

p̄e(t
′) (resp.

∑t
t′=t1

p
e
(t′))

is the maximum (resp. minimum) possible energy produced by plant i between
weeks t1(e) and t, taking into account the type of arc e and its prescribed start
and end fuel levels. For full power and decreasing profile arcs, p̄e(t) = p

e
(t) for

all t. Note that the use of those bounds allows modeling non-linear decreasing

3.1. Double decomposition for the outage planing problem 105

week

#weeks of fuel

+3

+2

+1

0

-1

Outage
early date

Outage
due date

Begin,0,0,0

End,0,2,8

End,0,1,9

BO,0,0,10 BO,0,0,11

End,0,-1,11

Begin,1,2,12

Begin,1,1,13

Begin,1,0,14 Beg,1,0,15

Beg,1,-1,15

Full
power arcs

Modulation
arcs

Decreasing
profile arcs

Outage
arcs

Figure 3.1.2: Graph relative to a single unit at the end of the first cycle.

profile constraint through linear constraints involving integer arc variables. For
outage arcs, p̄e(t) = p

e
(t) = 0 for all t. For a modulation arc, p̄e(t) (resp. p

e
(t)),

t ∈ {t1(e), . . . , t2(e)−1}, is computed by placing the maximum amount of production
as soon as (resp. as late as) possible in the corresponding cycle (see Figure 3.1.3).
Note that those bounds prescribe a precise cumulative energy produced over the
time period spanned by arc e. By convention, we set pe(t) = p

e
(t) = 0 for all e, w

such that e, w /∈ [t1(e), t2(e)− 1].

t∑
t′=t1

pe(t)

t∑
t′=t1

p
e
(t)∑

pωit

Cumulative production

t1(u, v) t2(u, v)

week

Figure 3.1.3: Bounds on cumulative energy produced for a given arc (u, v).

Second, we aim at writing a compact expression for the set R of various schedul-
ing constraints. Each constraint r ∈ R involves a set Or of outages each identified
with plant i and the cycle k. When outage (i, k) starts at week t ∈ Ir, one unit of
resource r is used from week t+ Lr(i, k) to week t+ Lr(i, k) +Dr(i, k)− 1. Based
on those data, we derive the set of outage arcs that are involved in each constraint
r at week t:
Ort = {e outage arc : t1(e) ≤ t− Lr(i, k) ≤ t1(e) +Dr(i, k), e ∈ Ei, (i, k) ∈ Or}.

106
Chapter 3. Decomposition approaches for uncertain optimization

problems

3.1.3.4 Arc flow-based mixed integer programming formulation

We now introduce a natural formulation in the sense it is based on natural variables
arising from the transition graph defined in Section 3.1.3.2 and the precomputed
data in Section 3.1.3.3. This is a preliminary step before introducing additional
variables leading to more efficient formulations.

For nuclear unit i and each arc e of graph Gi = (Vi,Ei), let δe be a 0-1 variable
which takes on a value of 1 if the arc is used to define the production plan for
nuclear unit i, 0 otherwise. We note respectively s(Gi) and t(Gi) the source and
the sink of Gi. For each scenario ω, let pωiw be a continuous variable defining the
energy produced by nuclear unit i during week w. Similarly let pωjw be a continuous
variable defining the energy produced by non-nuclear nuclear unit j for week w

under scenario ω. An intermediary variable q
it
(resp. qit) is introduced to set the

lower bound (resp. upper bound) on the total energy produced by nuclear unit
i up to time period t in any scenario ω, i.e., such energy is bound to lie in the
prescribed envelope defined in Section 3.1.3.3. The resulting formulation for NOPP
with (δ,p) as mandatory variables and (q, q) as intermediate variables is denoted
by F(q,q)(δ,p) and is as follows.

min
1

Ω

∑
j,t,ω

Cωjtp
ω
jt (3.1.1)

∑
(u,v)∈Ort

δ(u,v) ≤ Nrt ∀r ∈ R, t ∈ Ir (3.1.2)

∑
(u,v)∈Ei

δ(u,v) −
∑

(v,u)∈Ei

δ(v,u) = 0 ∀i, u ∈ Vi\{s(Gi), t(Gi)} (3.1.3)

∑
(s(Gi),v)∈Ei

δ(s(Gi),v) = 1 ∀i (3.1.4)

δ(u,v) ∈ {0, 1} ∀i, (u, v) ∈ Ei (3.1.5)

q
it

=
∑

(u,v)∈Ei

p
(u,v)

(t)δ(u,v) ∀i, t (3.1.6)

qit =
∑

(u,v)∈Ei

p(u,v)(t)δ(u,v) ∀i, t (3.1.7)

t∑
t′=0

q
it′
≤

t∑
t′=0

pωit′ ≤
t∑

t′=0

qit′ ∀i, t, ω (3.1.8)∑
i

pωit +
∑
j

pωjt = Dω
t ∀t, ω (3.1.9)

0 ≤ pωit ≤ P it ∀i, t, ω (3.1.10)

0 ≤ pωjt ≤ Pωjt ∀j, t, ω (3.1.11)

Objective function (3.1.1) minimizes the average total production cost of non-nuclear
units over all considered scenarios ω, (3.1.2) corresponds to the scheduling con-
straints with limited resource, (3.1.4) are flow constraints imposing that one feasible

3.1. Double decomposition for the outage planing problem 107

plan should be assigned to each nuclear unit. Then (3.1.6) and (3.1.7) define bounds
on energy production corresponding to arc flow decisions and enforced to nuclear
production by (3.1.8) for each week w and each scenario ω. Finally (3.1.9) ensures
that the demand is satisfied each week t under each scenario ω.

3.1.3.5 Dedicated arc flow-based MIP formulation

The arc flow formulation presented in Section 3.1.3.4 is quite straightforward bearing
in mind that total energy to be produced by each nuclear unit is bound to lie
in a given envelope as defined in Section 3.1.3.3. However, constraints (3.1.6)-
(3.1.8) induce triangular dense structures linking δ variables to nuclear production
variables for each scenario ω. Such structure is likely to impair the performance of
the formulation especially anticipating to solve large-scale NOPP instances.

In this section, the key idea is to take advantage more explicitly of the definition
of arcs combined with Assumption 3.1.5, which states that the fuel level at the end of
any production period is the same for all scenarios. Formally, for a given production
arc e ∈ Ei:

t2(e)∑
t=t1(e)

p
it

=

t2(e)∑
t=t1(e)

pit =

t2(e)∑
t=t1(e)

pωit , ∀ω (3.1.12)

Let us introduce, for each nuclear unit i and week t, set Ait ⊂ Ei, the set of
active arcs at time t, i.e., Ait = {e ∈ Ei|t1(e) ≤ t < t2(e)}. Interested reader
may check that the following proposition follows from the left equality in (3.1.12)
combined with the definition of p and p:

Proposition 3.1.1.

t∑
t′=0

∑
e∈Ei

(
pe(t

′)− p
e
(t′)
)
δe =

∑
e∈Ait

t∑
t′=t1(e)

(
pe(t

′)− p
e
(t′)
)
δe

Then we can rewrite equations (3.1.6)-(3.1.8) without q-variables for a given unit
i, a time period t and a scenario ω:

t∑
t′=0

∑
e∈Ei

p
e
(t′)δe ≤

t∑
t′=0

pωit′ ≤
t∑

t′=0

∑
e∈Ei

pe(t
′)δe

⇔
t∑

t′=0

∑
e∈Ei

(
pe(t

′)− p
e
(t′)
)
δe ≥

t∑
t′=0

∑
e∈Ei

pe(t
′)δe − pωit′

 ≥ 0

⇔
∑
e∈Ait

t∑
t′=t1(e)

(
pe(t

′)− p
e
(t′)
)
δe ≥

t∑
t′=0

∑
e∈Ei

pe(t
′)δe − pωit′

 ≥ 0 (3.1.13)

Note that only active arcs in Ait have a non-zero contribution in the left hand
side of Equation (3.1.13). Moreover the contribution of the decreasing profile and
outage arcs in this left hand side is zero; the same holds for full power arcs, except

108
Chapter 3. Decomposition approaches for uncertain optimization

problems

in the case of arcs with marginal modulation for which the contribution stays close
to zero (see Assumption 3.1.4).

For the right hand side of Equation (3.1.13) we need to use a difference equation
in order to keep only contributions of active arcs. Let us introduce a new continuous
variable sωit defined as the difference between the upper bound on the total energy
produced and the real production by nuclear unit i up to time period t in scenario
ω. Then, we can represent the evolution of this variable by a difference equation
involving active arcs Ait and production variable pωit:

sωit =
t∑

t′=0

∑
e∈Ei

pe(t)δe − pωit′

⇔ sωit − sωi,t−1 =

∑
e∈Ait

pe(t)δe − pωit

⇔ sωit + pωit = sωi,t−1 +
∑
e∈Ait

pe(t)δe (3.1.14)

Finally we can rewrite Equation (3.1.13) using variables s as:

∀i, t, ω
∑
e∈Ait

t∑
t′=t1(e)

(
p
e
(t′)− pe(t′)

)
δe ≥ sωit ≥ 0 (3.1.15)

The following equivalent MIP is thus derived:

F (δ, s,p) : min

{
1

Ω

∑
j,t,ω

Cωjtp
ω
jt : (3.1.2)− (3.1.5),

(3.1.14)− (3.1.15), (3.1.9)− (3.1.11)

}
From preliminary experiments (see Section 3.1.5), formulation F (δ, s,p) appears

to outperform by far formulation F(q,q)(δ, p) introduced in Section 3.1.3.4. The ra-
tionale behind introducing formulation F(q,q)(δ, p) is twofold. First it helps deriving
formulation F (δ, s, p), which is in comparison more involved. Second it provides a
reference to assess the improved performance. For the rest of the article, formulation
F (δ, s, p) is retained and formulation F(q,q)(δ, p) discarded.

3.1.3.6 Splitting first and second stages through capacity variables

In the vein of the reformulation for problems with a fixed technology matrix exposed
in [Birge & Louveaux 2011], Chap. 3, Section 1, we project the first-stage variables
δ onto the capacity of production or modulation relative to the plant schedules cor-
responding to δ. Note that such a capacity is the only relevant information for the
second stage problem. This technique is of special interest in the context of a double
decomposition, where reformulations lead to an exponential (in terms of the size of
input data) number of variables involved in an exponential number of constraints.
The general solving process we design is based on the dynamic generation of the

3.1. Double decomposition for the outage planing problem 109

model. That implies heavy computational burden when adding each constraint or
column, since the number of new coefficients to set at this occasion is potentially
huge. The step of the algorithm corresponding to setting those additional coeffi-
cients will be referred to as projection. Moreover, the overall number of non-zero
coefficients in the MIP formulation is very large as well. We investigated two ways
of projecting the first-stage variables δ onto the second-stage constraints, leading to
equivalent formulations but with different computational benefits.

The first option is to define first-stage variables qit, i ∈ I, t ∈ T, which are
equal to the maximum possible total energy produced by i up to week t, restricted
to the cycle at t, and mit the difference between the upper and lower bounds of the
production envelop and hence the upper bound on variable sωit:∑

e∈Ei

pe(t).δe = qit ∀i, t (3.1.16)

∑
e∈Ait

t∑
t′=t1(e)

(
pe(t

′)− p
e
(t′)).δe = mit ∀i, t (3.1.17)

qit + sωi,t−1 = sωi,t + pωit ∀i, t, ω (3.1.18)

sωit ≤ mit ∀i, t, ω (3.1.19)

The second option is to use cumulative capacity variables cqit (resp. cqit), i ∈ I,
t ∈ T, defined as the maximum (resp. minimum) total energy produced by unit i
up to week t:∑

e∈Ei

t∑
t′=t1(e)

p
e
(t′).δe = cq

it
∀i, t (3.1.20)

∑
e∈Ei

t∑
t′=t1(e)

pe(t
′).δe = cqit ∀i, t (3.1.21)

cqit − cqi,t−1 + sωi,t−1 = sωi,t + pωit ∀i, t, ω (3.1.22)

sωit ≤ (cqit − cqit) ∀i, t, ω (3.1.23)

The corresponding resulting formulations are the following:

F(q,m)(δ, s, p) : min

{
1

Ω

∑
j,t,ω

Cωjtp
ω
jt : (3.1.2)− (3.1.5),

(3.1.16)− (3.1.18), (3.1.9)− (3.1.11)

}

F(cq,cq)(δ, s, p) : min

{
1

Ω

∑
j,t,ω

Cωjtp
ω
jt : (3.1.2)− (3.1.5),

(3.1.20)− (3.1.22), (3.1.9)− (3.1.11)

}

110
Chapter 3. Decomposition approaches for uncertain optimization

problems

3.1.4 Solution approaches

This section describes the proposed solution algorithms for NOPP. Such algorithms
are based on the mathematical programming formulations presented in Section 3.1.3.5
and 3.1.3.6. As the intent is to solve large-scale NOPP instances, a double decompo-
sition approach is considered, thus leading to a so-called reformulated problem. The
principle is to solve iteratively small subproblems, which prevents us from solving
too large of a problem. To ease notation, the different formulations are cast into
a generic linear matrix formulation. The idea is to make it possible to present the
Dantzig-Wolfe and Benders decomposition schemes in a general setting suited for
all formulations. The row-and-column generation algorithm optimizing the linear
relaxation of the reformulated problem is then presented. Finally the way to get
near-optimal feasible solutions for NOPP from this relaxation is explained.

3.1.4.1 Generic formulation

The proposed generic formulation, called FGen, is introduced to cast the mathemat-
ical program corresponding to all formulations in a general setting. Such generic
formulation involves vectors to put together subsets of decision variables, and ma-
trices to capture the structure of all formulations.

All formulations presented in Section 3.1.3.5 feature a planning for each nuclear
plant as a common structure. Such planning is defined in constraints (3.1.3)-(3.1.5),
which can be rewritten as (3.1.25)-(3.1.26) in FGen. More precisely matrix ∆ and
vector d are used to rewrite the shortest path constraints (3.1.3)-(3.1.4). For a given
scenario ω ∈ Ω, nuclear and non-nuclear power production variables, (pωit)i∈I,t∈T

and (pωjt)j∈J,t∈T, respectively, are included into a single vector pω, so that demand
constraints (3.1.9) and bounds on production (3.1.10)-(3.1.11) are cast as (3.1.30) in
FGen. Cost vectors C̄ω, ω ∈ Ω, showing in the objective (3.1.24), take value C̄ωit = 0

for i ∈ I and t ∈ T, and C̄ωjt = 1
|Ω|C

ω
jt for j ∈ J and t ∈ T.

The proposed three formulations differ from one another in the way they link the
plant plannings to the actual corresponding power production. We introduce a vec-
tor of abstract variables ξ in the sense they replace either variables s from formula-
tion F (δ, s, p) or [q, s] (resp. [cq, cq, s]) from F(q,m)(δ, s, p) (resp. F(cq,cq)(δ, s, p))
and their dimension changes accordingly. Matrices A0, Ξ0 and Θω

0 and vector bω0 ,
ω ∈ Ω, are used to rewrite constraints (3.1.14)-(3.1.15) from F (δ, s, p) as con-
straints (3.1.27) in FGen. They are with zero dimension in the case of alternative
formulations, namely F(q,m)(δ, s,p) and F(cq,cq)(δ, s,p). Matrices A1 and Ξ1 and
vector b1 are used in constraints (3.1.28) to rewrite constraints (3.1.2) relative to
resource-constrained scheduling along with complementary constraints induced by
abstract variables ξ, namely constraints (3.1.16)-(3.1.17) (resp. (3.1.20)-(3.1.21)) in
formulation F(q,m)(δ, s, p) (resp. F(cq,cq)(δ, s, p)). Matrices Ξ2 and Θω

2 and vec-
tor bω2 , ω ∈ Omega are used in constraints (3.1.29) to rewrite constraints (3.1.18)-
(3.1.19) (resp. (3.1.22)-(3.1.23)) linking power production pω to abstract variables ξ
in formulation F(q,m)(δ, s, p) (resp. F(cq,cq)(δ, s, p)). They are with zero dimension
in the case of formulation F (δ, s,p). Note that generic constraints (3.1.28) involve

3.1. Double decomposition for the outage planing problem 111

only first-stage variables, while (3.1.27) and (3.1.29) involve first- and second-stage
variables. The correspondence between the abstract variables and the generic con-
straints in FGen and all formulations is summarized in Table 3.1.1.

FGen : min
∑
ω

C̄ω>pω (3.1.24)

s.t. ∆δ = d (3.1.25)

δ ∈ {0, 1} (3.1.26)

A0δ + Ξ0ξ + Θω
0p

ω ≥ bω0 ∀ω (3.1.27)

A1δ + Ξ1ξ ≥ b1 (3.1.28)

Ξ2ξ + Θω
2p

ω ≥ bω2 ∀ω (3.1.29)

Pωpω = Dω ∀ω (3.1.30)

pω ≥ 0 ∀ω (3.1.31)

ξ ≥ 0 (3.1.32)

FGen F (δ, s, p) F(q,m)(δ, s, p) F(cq,cq)(δ, s, p)

ξ s [q,m] [cq, cq, s]

(3.1.27) (3.1.14), (3.1.15) - -
(3.1.28) (3.1.2) (3.1.2),(3.1.16),(3.1.17) (3.1.2), (3.1.20),(3.1.21)
(3.1.29) - (3.1.18),(3.1.19) (3.1.22),(3.1.23)

Table 3.1.1: Correspondence between the generic formulation FGen and all proposed
formulations F (δ, s, p), F(q,m)(δ, s, p) and F(cq,cq)(δ, s, p). Mark “-” indicates for-
mulations for which the generic constraint (3.1.27) (resp. (3.1.29)) vanishes, i.e.,
F(q,m)(δ, s, p) and F(cq,cq)(δ, s, p) (resp. F (δ, s, p)).

3.1.4.2 Dantzig-Wolfe reformulation

Constraints (3.1.25)-(3.1.28) present a classical structure which is suitable for col-
umn generation. As constraints (3.1.25)-(3.1.26) are independent for each power
plant i, they define a subproblem with binding constraints (3.1.27)-(3.1.28).

Let Gi be the set of feasible paths satisfying constraints (3.1.25) for nuclear unit
i. Let λig be the decision variable associated with choosing path g ∈ Gi for nuclear
unit i and Λg ∈ {0, 1}|Ei| the binary vector such that Λge = 1 if and only if arc
e ∈ Ei is part of path g. For i ∈ I and e ∈ Ei, we can now write δe =

∑
g∈Gi Λgeλig,

i.e., in matrix form δ = Λλ. Moreover, let H ∈ {0, 1}|I|×
∑

i |Gi|, such that Hg
i = 1 if

112
Chapter 3. Decomposition approaches for uncertain optimization

problems

and only if g ∈ Gi. This leads to the following Dantzig-Wolfe reformulation of FGen:

FDWGen : min
∑
ω

C̄ω>pω (3.1.33)

s.t. Hλ = 1

(3.1.34)

A0Λλ + Ξ0ξ + Θω
0p

ω ≥ bω0 ∀ω
(3.1.35)

A1Λλ + Ξ1ξ ≥ b1

(3.1.36)

(3.1.29), (3.1.30), (3.1.31), (3.1.32)

λ ∈ {0, 1}
∑
i |Gi| (3.1.37)

Exponentially-many λ-variables are involved in constraints (3.1.35), which are
replicated for each scenario ω. Recall constraints (3.1.35) is a reformulation of
constraints (3.1.27) actually used only in formulation F (δ, s, p). Interestingly the
use of additional variables in formulations F(q,m)(δ, s, p) and F(cq,cq)(δ, s, p) allows
for elimination of λ-variables from second-stage constraints. The benefit is even
clearer when the second-stage problem is reformulated with an exponential num-
ber of constraints, as shown in the next section. The Dantzig-Wolfe reformulation
of F (δ, s, p) (resp. F(q,m)(δ, s, p) or F(cq,cq)(δ, s, p)) is denoted by FDW (λ, s, p)

(resp. FDW(q,m)(λ, s, p) or FDW(cq,cq)(λ, s, p)).

3.1.4.3 Benders reformulation

We propose to cope with the second-stage part of the problem using Benders refor-
mulation [Benders 1962]. To avoid dealing with both optimality and feasibility cuts,
we first move the second-stage objective value into constraints. Hence while only
feasibility cuts are written, some of them can be interpreted as optimality cuts. The
feasibility cuts are derived from an appropriate feasibility subproblem (see e.g. [Slyke
& Wets 1969]). We use the multi-cut approach, which is to deal with feasibility and
optimality conditions for each scenario independently.

Given the first-stage solution (λ, ξ), let us introduce the recourse functionRω(λ, ξ),
ω ∈ Ω, equal to the optimal cost of the second-stage solution in scenario ω if one
exists, or equal to ∞ if the second stage problem is infeasible. We also use new
decision variables ηω ∈ R, ω ∈ Ω, equal to the value of the recourse function at
optimality. Formulation FDWGen now takes the form of the following mathematical
program, where all second-stage constraints and costs are implicitly embedded in
piecewise linear convex functions Rω :

min

{∑
ω∈Ω

ηω : ηω ≥ Rω(λ, ξ) ∀ω ∈ Ω,η ∈ R|Ω|, (3.1.32), (3.1.34), (3.1.36), (3.1.37)

}
(3.1.38)

3.1. Double decomposition for the outage planing problem 113

A feasibility question arises that needs to be answered. A given first-stage solution
(λ̄, ξ̄, η̄ω) that satisfies (3.1.32), (3.1.34), (3.1.36), (3.1.37) might not be feasible
for (3.1.38) if it induces an unavoidable over-production for at least one period in
one scenario, or if the estimated second-stage cost η̄ω is lower than the actual cost
Rω(λ, ξ). Formally solution (λ̄, ξ̄, η̄ω) is feasible for scenario ω if and only if the
optimum of the following linear program is zero.

fω(λ̄, ξ̄, η̄ω) = min 1>[τωobj , τ
ω
0 , τ

ω
2] (3.1.39)

s.t. Pωpω = Dω (3.1.40)∑
ω

C̄ω>pω − τωobj ≤ η̄ω (3.1.41)

Θω
0p

ω + τω0 ≥ bω0 −A0Λλ̄−Ξ0ξ̄ (3.1.42)

Θω
2p

ω + τω2 ≥ bω2 −Ξ2ξ̄ (3.1.43)

pω ≥ 0 (3.1.44)

In this program, artificial variables τωobj , τ
ω
0 and τω2 are introduced to account for the

violations of the second-stage constraints. Then the latter program mimics phase
one of the simplex method where artificial variables required to be zero are allowed to
be non negative. Taken apart, constraints (3.1.40) can always be satisfied, possibly
resorting to exchanges on the spot market. That is why no artificial variables are
needed for them.

Since LP (3.1.39)-(3.1.44) is feasible and bounded, one can use the strong duality
theorem in linear programming to express fω(λ̄, ξ̄, η̄ω) as the optimal value of its
dual program. Associating vectors of dual variables νω, µω, ρω0 and ρω2 to constraints
(3.1.40), (3.1.41), (3.1.42) and (3.1.43), respectively, the dual LP is as follows.

fω(λ̄, ξ̄, η̄ω) = max
{
Gωλ̄,ξ̄,η̄ω(νω, µω,ρω0 ,ρ

ω
2) : (νω, µω,ρω0 ,ρ

ω
2) ∈ Dω

}
(3.1.45)

where Gω
λ̄,ξ̄,η̄ω

is the objective function

Gωλ̄,ξ̄,η̄ω(νω, µω,ρω0 ,ρ
ω
2) = Dω>νω+η̄ωµω+

[
bω0−A0Λλ̄−Ξ0ξ̄

]>
ρω0 +

[
bω2−Ξ2ξ̄

]>
ρω2

and Dω its feasible set

Dω =
{

(νω, ηω,ρω0 ,ρ
ω
2) : Pω>νω + C̄ωµω + Θω>

0 ρω0 + Θω>
2 ρω2 ≤ 0,

νω ∈ R|T|,−1 ≤ µω ≤ 0,0 ≤ ρω0 ≤ 1,0 ≤ ρω2 ≤ 1
}

The dual LP being feasible and bounded, it admits an extreme optimal solution,
and its feasibility set can be replaced with the finite set of its extreme points Dω∗ :

fω(λ̄, ξ̄, η̄ω) = max
{
Gωλ̄,ξ̄,η̄ω(νω, µω,ρω0 ,ρ

ω
2) : (νω, µω,ρω0 ,ρ

ω
2) ∈ Dω∗

}
(3.1.46)

It follows that the condition ηω ≥ Rω(λ, ξ) in (3.1.38) can be replaced with

Gωλ̄,ξ̄,η̄ω(νω, µω,ρω0 ,ρ
ω
2) ≤ 0 ∀(νω, µω,ρω0 ,ρω2) ∈ Dω∗ .

114
Chapter 3. Decomposition approaches for uncertain optimization

problems

We then obtain the following Benders reformulation of model FDWGen :

FDWB
Gen : min

∑
ω

ηω (3.1.47)

s.t. Hλ = 1 (3.1.34)

A1Λλ+ Ξ1ξ ≥ b1 (3.1.36)

− µωηω + ρω>0 A0Λλ+
(
ρω>0 Ξ0 + ρω>2 Ξ2

)
ξ ≥ νω>Dω + ρω>0 bω0 + ρω>2 bω2

∀ω, (νω, µω,ρω0 ,ρω2) ∈ Dω∗ (3.1.48)

ξ ≥ 0,λ ∈ {0, 1}
∑
i |Gi|,η ∈ R|Ω|

Note that the number of Benders cuts (3.1.48) is exponential in the size of
the input data. Moreover, a single Benders cut may involve exponentially-many
terms in λ in formulation F (δ, s, p). The use of additional variables in formulations
F(q,m)(δ, s, p) andF(cq,cq)(δ, s, p) allows for splitting the first and second stages,
thus avoiding all terms involving ρω0 . This reduces drastically the number of non-
zero coefficients in formulation FDWB

Gen .
The combined Dantzig-Wolfe and Benders reformulation of F (δ, s, p) (resp.

F(q,m)(δ, s, p) or F(cq,cq)(δ, s, p)) is denoted by FDWB(λ, η) (resp. FDWB
(q,m) (λ, η)

or FDWB
(cq,cq)(λ, η))

3.1.4.4 Row-and-column generation algorithm

Formulation FDWB
Gen is with an exponential number of λ-variables and Benders cuts

(3.1.48). The principle is to solve dynamically its linear relaxation by combining a
column generation for λ-variables and a cutting-plane technique for Benders cuts.
In this section, we describe the row-and column generation algorithm devised to
solve the following master program, which is the linear relaxation of FDWB

Gen .

[MP] : min

{∑
ω

ηω : (3.1.34), (3.1.36), (3.1.48), ξ ≥ 0,λ ≥ 0,η ∈ R|Ω|
}

To this aim, we introduce the relaxed master program MP (D`) at row-iteration `,
obtained from MP by including the collection of Benders cuts D` = (D1

` , . . . ,D
|Ω|
`)

already generated in the course of the algorithm. We also define the partial master
program MP (D`, Et) at row-iteration ` and column-iteration t. Such program is
obtained from MP (D`) by restricting the vector of λ-variables to the vector λ(t) of
its components whose indices are in set Et. Submatrices H(t) and Λ(t) are obtained
from H and Λ by selecting the corresponding columns. Note that MP (D`, Et) is
neither a relaxation nor a restriction of MP in general, even though MP (D`) is a

3.1. Double decomposition for the outage planing problem 115

relaxation of MP and thus of NOPP.

MP (D`, Et) : min
∑
ω

ηω

s.t. H(t)λ(t) = 1 (3.1.49)

A1Λ
(t)λ(t) + Ξ1ξ ≥ b1 (3.1.50)

− µωηω + ρω>0 A0Λ
(t)λ(t) +

(
ρω>0 Ξ0 + ρω>2 Ξ2

)
ξ ≥ νω>Dω + ρω>0 bω0 + ρω>2 bω2

∀ω, (νω, µω,ρω0 ,ρω2) ∈ Dω` (3.1.51)

ξ ≥ 0,λ(t) ∈ R|Et|+ ,η ∈ R|Ω| (3.1.52)

Algorithm 3.1.1: Outer loop of the column-and-row generation algorithm
to solve MP . This cutting-plane component iteratively calls the column
generation algorithm to solve relaxed master programsMP (D`), which are
improved at each iteration until the relaxation is tight.
1 `← 0 ; t← 0 ; Initialize E0 and D0 ; nc ← |E0|
2 repeat
3 Solve MP (D`)
4 Let (λ(t)∗, ξ∗,η∗) be the optimal solution
5 NewCuts← false ; D`+1 ← D`
6 foreach ω ∈ Ω do
7 Solve (3.1.45) to compute Fω(λ(t)∗, ξ∗,η∗)

8 if Fω(λ(t)∗, ξ∗,η∗) > 0 then
9 Let (νω∗, µω,ρω∗0 ,ρω∗2) be the optimal solution of (3.1.45)

10 D`+1 ← D`+1 ∪ {(νω∗, µω,ρω∗0 ,ρω∗2)}
11 NewCut← true

12 `← `+ 1

13 until NewCuts = false

14 return (λ(t)∗, ξ∗,η∗)

The cutting-plane algorithm given in Algorithm 3.1.1 is the outer loop of the
column-and-row generation procedure to solve MP . It calls iteratively the column
generation algorithm given in Algorithm 3.1.2 to solve relaxed master programs
MP (D`). At each iteration, the objective function of such programs is improved
until no more improvement is possible, thus leading to a tight relaxation. At the
initial iteration, it starts with a minimal set of columns and Benders cuts (see line
1 of Algorithm 3.1.1). Many strategies can be designed in this purpose. To keep
the partial master programs small, our implementation choice is to start without
any Benders cuts, and with a single path for each nuclear unit, namely the shortest
path in each transition graph with original costs. The main loop starts by solving
the current relaxed master programMP (D`) (see line 3), thus obtaining an optimal
solution (λ(t)∗, ξ∗,η∗). If it is feasible forMP , then it is also an optimal solution for

116
Chapter 3. Decomposition approaches for uncertain optimization

problems

it as MP (D`) is a relaxation of MP with the same objective function. The Benders
separation problem checks whether all constraints (3.1.48) are satisfied or not. It
decomposes for each scenario ω ∈ Ω into one independent subproblem, which is to
compute Fω(λ(t)∗, ξ∗, ηω∗) using LP (3.1.45) (see line 7). If Fω(λ(t)∗, ξ∗, ηω∗) > 0,
then the corresponding Benders cut is violated by solution (λ(t)∗, ξ∗,η∗). For each
scenario satisfying this condition, the associated cut is added to the formulation,
thus defining D`+1 (see line 9). The algorithm iterates solving [MP (D`+1)] until no
more violated cuts can be found. In the latter case, (λ(t)∗, ξ∗,η∗) is a feasible and
optimal solution of MP , and the algorithm stops.

Algorithm 3.1.2: Inner loop of the column-and-row generation algorithm
to solve MP . This column generation component solves partial master
programs [MP (D`, Et)], columns being iteratively added until MP (D`) is
solved to optimality.
1 repeat
2 Solve MP (D`, Et)
3 Let (λ(t)∗, ξ∗,η∗) and (π∗,µ∗, σ∗) be the primal and dual optimal

solutions, respectively
4 NewCols← false ; Et+1 ← Et
5 foreach i ∈ I do
6 Solve [Pricingi(π

∗,µ∗,σ∗)]

7 Let δ∗ be the optimal solution
8 if

∑
e∈Ei c̃e(µ

∗,σ∗)δe − πi < 0 then
9 nc ← nc + 1 ; NewCol← true

10 Et+1 ← Et+1 ∪ {nc}
11 (Λ(t+1))nc ← δ∗ ; (H(t+1))nc ← εi

12 if NewCols = true then
13 t← t+ 1

14 until NewCols = false

15 return (λ(t)∗, ξ∗,η∗)

In order to solve each relaxed master program MP (D`) involved in the inner
loop, Algorithm 3.1.2 solves to optimality the partial master program MP (D`, Et)
(with the restricted set of λ−variables Et, see line 2). Let us consider an optimal
solution (λ(t)∗, ξ∗,η∗), and corresponding dual values (π∗,µ∗,σ∗) associated with
constraints (3.1.49), (3.1.50) and (3.1.51), respectively. Linear programming theory
tells us that (λ(t)∗, ξ∗,η∗) is an optimal solution of MP (D`) if the reduced cost
(w.r.t. (π∗,µ∗,σ∗)) of all λ-variables in MP (D`) are non-negative. For the sake of
readability, we use the following generic form of the reduced cost for variable λig, i ∈
I, g ∈ Gi 1:

∑
e∈Ei c̃e(µ

∗,σ∗)Λge−π∗i , where coefficient c̃e(µ∗,σ∗) is the contribution

1The detailed expression of the reduced cost of variable λig, i ∈ I, g ∈ Gi is −π∗>Hg −(
µ∗>A1 +

∑
ω∈Ω

∑
(νω,ρω

0 ,ρ
ω
2)∈Dω

∗
σ∗>νω,ρω

0 ,ρ
ω
2
ρω>0 A0

)
Λg

3.1. Double decomposition for the outage planing problem 117

of Λg in the dual LP of MP (D`). A remarkable feature of this expression is that
it is only related to nuclear unit i. It follows that the pricing problem, which is to
find the minimum reduced cost λ-variable, decomposes for each unit i ∈ I into one
subproblem [Pricingi(π

∗,µ∗,σ∗)] (solved in line 6) is as follows.

[Pricingi(π
∗,µ∗,σ∗)] : min

∑
e∈Ei

c̃e(µ
∗,σ∗)δe − π∗i

s.t δ(u,v) −
∑

(v,u)∈Ei

δ(v,u) = 0 ∀u ∈ Vi\{s(Gi), t(Gi)}∑
(s(Gi),v)∈Ei

δ(s(Gi),v) = 1

δe ∈ {0, 1} ∀e ∈ Ei

Subproblem [Pricingi(π
∗,µ∗,σ∗)] seeks for a shortest path in the transition graph

of unit i with modified costs on the arcs. If negative reduced cost λ-variables are
found, they are added to the formulation, thus defining Et+1. More precisely, line 11
appends the corresponding vector to matrix Λ(t+1) and registers this column into
the set of variables for unit i (by appending the ith canonical vector εi to matrix
H(t+1)). The algorithm iterates solving MP (D`, Et+1) until no negative reduced
cost λ-variable is found. In the latter case, (λ(t)∗, ξ∗,η∗) is an optimal solution of
MP (D`).

3.1.4.5 Obtaining integer feasible solutions

To obtain feasible solutions for NOPP, formulation F (δ, s, p) can be solved directly
with an MIP solver.

The master program MP , solved using the row-and-column generation algo-
rithm described in Section 3.1.4.4, is a building block for several methods. A first
option is to use an exact method based on a branch-and-price-and-cut procedure
(see e.g., [Desrosiers & Lübbecke 2011]) to solve the NOPP from the master pro-
gram MP . Schematically it is a branch-and-bound algorithm in which the dual
bound used at each node of the search tree is MP augmented with branching con-
straints. Its computation is quite similar to Algorithm 3.1.1, where the relaxed
master program also contains branching constraints. When solution (λ∗, ξ∗,η∗) of
the relaxation does not satisfy integrality requirements (i.e., some original variable
δe =

∑
g∈Gi Λgeλ∗ig is not integer), one creates two child nodes, in which additional

branching constraints
∑

g∈Gi Λgeλig = 0 and
∑

g∈Gi Λgeλig = 1 are imposed, respec-
tively. Unfortunately, this exact solving procedure is not appropriate to deal with
the NOPP as the computation time required is prohibitive for large-scale instances.

A second option is to use branch-and-price-based heuristics (see [Sadykov
et al. 2019] for the presentation of several heuristics). The pure diving heuristic
is a greedy algorithm: it first solves MP . If the obtained solution is not inte-
ger, a greedy solution is constructed by choosing a branch in the branch-and-price
search tree following a given criterion. At the given branch, the master program

118
Chapter 3. Decomposition approaches for uncertain optimization

problems

is solved using the column generation algorithm. The heuristic stops when an in-
teger solution is found, or when the current node of the search tree is infeasible.
Following the implementation described in [Sadykov et al. 2019], we choose the
λ−variable whose value is closest to 1, and branch by fixing its value to 1. In the
case of a column-and-row generation algorithm the principle is similar except MP

is solved by column-and-row generation before each greedy selection of a branch in
the branch-and-price-and-cut tree.

This heuristic often suffers from its myopic behavior and can be improved using
least discrepancy search instead of a purely greedy search. The idea is to explore a
larger part of the search tree by allowing limited backtracking. Given a maximum
discrepancy parametermaxDiscrepancy, the algorithm explores paths of the search
tree that are obtained by applying the greedy criterion of the pure diving procedure
except for, at most, maxDiscrepancy branching choices. The search is also limited
by forcing the use of the greedy criterion at nodes whose depth in the search tree is
larger than parameter maxDepth.

We also investigated the use of the restricted master heuristic, also called price-
and-branch heuristic. In the context of dynamic generation of columns only, the
principle is to first solve the linear relaxation of the reformulated problem using
column generation, thus obtaining a restricted master program with a subset of all
the columns. Integrality requirements are then reintroduced into the current for-
mulation, and the restricted master program is solved as a static MIP, i.e., without
generating new columns. In the context of column-and-row generation, this algo-
rithm must be customized to account for the dynamically generated constraints. Our
strategy is to combine the price-and-branch heuristic with the branch-and-Benders-
cut algorithm [Fortz & Poss 2009], leading to the so-called price-and-branch-and-
Benders-cut algorithm. The procedure first solves formulationMP using Algorithm
3.1.1, thus generating columns and Benders cuts necessary to solve the linear re-
laxation of the considered reformulations. Then, it yields a partial master program
MP (D`, Et). The algorithm is a heuristic in the sense that no new columns are gen-
erated after the root node processing. However, in order to obtain a feasible solution,
one needs to ensure that all Benders cuts are satisfied. Formally, we solve problem
MP (D∗, Et), where D∗ is the set of extreme points of the dual LP (3.1.39)-(3.1.44),
with additional integrality restrictions λ(t) ∈ {0, 1}|Et|. The corresponding formula-
tion is solved using an MIP solver, starting with the restricted set of cuts D` explic-
itly included. Whenever an integer candidate solution (λ(t)∗, ξ∗,η∗) is found during
the search, the separation problems (3.1.45) are solved via the solver’s callback inter-
face, for all ω ∈ Ω. If violated Benders cuts are identified, i.e., Fω(λ(t)∗, ξ∗, ηω∗) > 0

for some ω, they are dynamically added to the formulation and the candidate solu-
tion is rejected.

The quality of the solutions obtained using the price-and-branch heuristic im-
proves as the number and the diversity of columns in the restricted master program
increases. The diving with sub-MIPing heuristic exploits this idea by first calling the
pure diving heuristic, and second solving a restricting master composed of all the
columns generated during the diving (with integrality restrictions). This method

3.1. Double decomposition for the outage planing problem 119

can suffer from a large number of columns, leading to elevated computation times.

3.1.5 Computational results

3.1.5.1 Instances

The proposed formulations and solution approaches are evaluated on a real data-
set of the french electricity production with a time horizon ranging from January
2015 to December 2018. The data-set is composed of 58 nuclear units and 84 other
sources accounting for non-nuclear units, and exchanges on the market spot.

The stochastic data are given through 5 sets of 96 scenarios of demand and
non-nuclear unit characteristics (production bounds and leasing costs). From this
original data-set, we derive several NOPP instances by reducing the number sce-
narios and possibly scaling down the fleet. From each set of scenarios and given an
integer S, a dedicated Scenario Clustering Library provided by EDF generates S
aggregated scenarios. This library clusters similar original scenarios using a norm
based on a heuristic cost evaluation of demand satisfaction accounting for a set of
random parameters attached to each scenario (demand, availability of non-nuclear
units, prices/capacities on the electricity spot market).

The fleet is scaled down when needed by considering a subset of the nuclear units
as non-nuclear units, thus reducing the nuclear share in the instances while the other
data are not changed. Such instances are referred to as scaled-down instances in the
sequel. To maintain local power plant scheduling constraints valid, we first select a
subset of nuclear power plants that is kept unchanged in the scaled-down instances.
In the data-set, a baseline planning defines, for each of the remaining nuclear units
i, outage periods during which its production is set to zero, while they can produce
between zero and P it for other periods t ∈ T. The corresponding constraints on
modulation and fuel level are relaxed, and removed from all scheduling constraints.
Last the leasing cost of the new non-nuclear units is derived from real data relative
to EDF nuclear units.

Instances are classified into instance types, labeled using the following pattern
pAiB-C.D.EsS where:

- A is the number of nuclear units. A = 58 corresponds to EDF current nuclear
fleet, A = 22 and 40 are considered for scaled-down instances.

- B is the instance type tag number. Each unique value of B corresponds
to a selection of a subset of nuclear units in the real data-set that are kept
unchanged, and a number of aggregated scenarios.

- C ∈ {0,1} is the number of 6-unit power plants in type B.

- D ∈ {0, 1, . . . , 8} is the number of 4-unit power plants in type B.

- E ∈ {0, 1, . . . , 10} is the number of 2-unit power plants in type B.

- S is the number of aggregated scenarios in type B.

120
Chapter 3. Decomposition approaches for uncertain optimization

problems

Note that instances inside a same type differ by the set of considered scenarios.
The formulation of the first stage problem described in Section 3.1.3.2 has strong

linear relaxation, but it comes at the price of a very large number of constraints and
variables. For real instances p58i0-1.8.10sS (for any number of scenario S), the tran-
sition graphs lead to around 120.000 binary arc variables, 30.000 flow conservation
constraints (corresponding to the number of nodes in all graphs) and 3.000 schedul-
ing constraints binding outage arcs from different graphs. Hence, anticipating that
it will not be possible to solve the formulation directly with a MIP solver for a large
number of scenarios, we will study the use of Dantzig-Wolfe decomposition-based
heuristics combined or not with Benders’ decomposition. The Dantzig-Wolfe refor-
mulation is not used here to obtain an improvement in the relaxation but for its
ability to decompose the problem into smaller subproblems solved iteratively.

Tests are carried out on a Linux machine equipped with 2 × 12-core Haswell
Intel Xeon E5-2680 v3 CPUs with 128 Go of RAM. Modeling and solving are done
using BaPCod which is a black-box framework dedicated to solve MIPs using refor-
mulation techniques such as Dantzig-Wolfe and Benders decompositions [Vander-
beck 2011]. At most one column for each nuclear unit is added to the partial master
program at each iteration. To improve the convergence of the column generation
procedure, we use stabilization by automatic smoothing the dual variables of the
master program, as described in [Pessoa et al. 2018b]. We use Lemon library for
modeling the graph structure and shortest path algorithm, and Boost 1.56 library
for parallelization of Benders subproblems (the solution of column generation sub-
problems is sequential). The MIP solver used is Cplex solver 12.7.1. In order to
have a fair comparison between the different solution approaches we limit to 6 the
number of threads used by the MIP solver in the tests of Sections 3.1.5.3 and 3.1.5.5.
In Section 3.1.5.6 the solver is used with default settings.

3.1.5.2 Comparing arc flow-based formulations

In this section a few preliminary results is provided to show the comparative per-
formance of the first two proposed MIP formulations, namely F(q,q)(δ, p) given in
Section 3.1.3.4 and F (δ, s, p) in Section 3.1.3.5. Table 3.1.2 shows the computa-
tion time in seconds required to solve the LP relaxation of each formulation for
the simplified NOPP instances with 22 nuclear units. The difference in terms of
performance is quite significant in favor of formulation F (δ, s, p). Then the latter
formulation should lead to better performance when used by a linear solver at each
node of a branch and bound tree or at each column generation iteration.

3.1.5.3 Comparing heuristics to solve deterministic instances

In this section the aim is to compare different solution approaches on simplified
deterministic instances to select the most promising approach anticipating real size
stochastic instances. Note that the cut generation procedure is not needed to solve
a deterministic instance, nor is the use of capacity variables defined in (3.1.16)-
(3.1.17). It would only add variables in the master of the column generation pro-

3.1. Double decomposition for the outage planing problem 121

Instance type FLP(q,q)(δ, p) FLP (δ, s, p)

p22i0-1.4.0s1 142,2 55,8
p22i1-0.1.9s1 129,2 26,0
p22i2-1.3.2s1 182,4 47,6
p22i3-0.4.3s1 159,2 35,8
p22i4-0.4.3s1 102,0 28,0

Table 3.1.2: Comparative computation time (in seconds) to solve the LP relaxation
of F(q,q)(δ, p) and F (δ, s, p).

cedure without any benefit. Hence, we compare the performance using the original
integer formulation F (δ, s, p), as defined in Section 3.1.3.5, solved directly with
Cplex solver or using Dantzig-Wolfe reformulation FDW (λ, s, p) solved by a col-
umn generation algorithm, as described in Section 3.1.4.4, followed by a heuristic
to obtain a feasible solution for NOPP.

Note that the work presented in this article focuses on solving efficiently the
linear relaxation of several formulations to find a good primal solution in terms
of quality through a heuristic. Hence we used the generic column generation-based
heuristics of the literature without any further analysis of the internal solving process
for improvement. Such work is beyond the scope of this article. The following
benchmark of heuristics, described in Section 3.1.4.5, is considered:

- Price-and-branch: First price, i.e., solve formulation FDW (λ, s, p) by column
generation at the root node, and then branch, i.e., enforce integrity constraints
and solve the resulting restricted master program to optimality using Cplex
solver.

- Pure diving: Formulation FDW (λ, s, p) is solved by column generation fol-
lowed by a diving heuristic with maxDiscrepancy=0 and maxDepth=0, i.e.,
greedy construction of a solution alternating branching in the branch-and-price
tree and solving the master problem.

- Diving23: Formulation FDW (λ, s, p) is solved by column generation followed
by a diving heuristic with maxDiscrepancy=2 and maxDepth=3.

- Pure diving + price-and-branch: Formulation FDW (λ, s, p) is solved by col-
umn generation followed by a combination of a pure diving heuristic before
price-and-branch. Then the initial solution from pure diving could lead to gen-
erate improving columns, thus possibly reducing the number of visited nodes
during the price-and-branch.

Comparative results for simplified deterministic instances using the column gen-
eration based heuristics benchmark are presented in Table 3.1.3, which features for
each instance type:

- F (δ, s, p) - Int.gap: average integrity gap opt−b
opt between the integer optimum

opt and the optimal linear bound b.

122
Chapter 3. Decomposition approaches for uncertain optimization

problems

- F (δ, s, p) - CPU(s): average computation time in seconds to solve the mixed
integer original formulation F (δ, s, p) to optimality with Cplex solver;

- for each heuristic in the benchmark:

- gap: average gap p−opt
p between the integer value p found by the heuristic

and the integer optimum opt found by F (δ, s, p);

- CPU(s): average computation time in seconds.

Note first that for this set of instances the optimal value is obtained with F (δ, s, p)

solved directly by Cplex solver. Therefore, the gap being zero is not shown and re-
placed by the integrity gap in Table 3.1.3. Note also that b is the optimal value
of both the linear relaxation FLP (δ, s, p) and the Dantzig-Wolfe reformulation
FDW (λ, s, p).

F (δ, s, p) Price-and-branch Pure diving Diving23
Pure diving

+Price-and-branch
Instance type Int.gap(%) CPU(s) gap(%) CPU(s) gap(%) CPU(s) gap(%) CPU(s) gap(%) CPU(s)
p22i0-1.4.0s1 0,67 68,2 0,06 54,4 0,06 97,4 0,06 680,2 0,05 64,4
p22i1-0.1.9s1 1,03 67,8 0,20 40,4 0,30 64,2 0,30 429,2 0,13 66,4
p22i2-1.3.2s1 0,59 71,4 0,01 34 0,10 44 0,06 336,2 0,00 40,8
p22i3-0.4.3s1 1,26 67,4 0,61 30,2 0,50 85 0,48 445,4 0,05 94,2
p22i4-0.4.3s1 0,68 53,5 0,01 18,75 0,05 43,5 0,04 210,75 0,01 42,75
p40i0-1.8.1s1 1,23 282,6 0,91 186,8 13,97a 391,8 13,97a 3494,6 0,16 489,6
p40i1-0.5.10s1 0,86 151,8 0,95 110 5,40b 185,2 5,20b 1848,2 0,21 216,6
p40i2-1.5.7s1 1,26 1052 0,46 406,4 0,83 403,8 0,70 4587,6 0,16 919,4

Table 3.1.3: Comparing performance of exact solutions and solutions obtained us-
ing the column generation based heuristics benchmark for simplified deterministic
instances.

The performance results presented in Table 3.1.3 correspond to average with
respect to sets of five instances. The average reflects quite well the performance
results of each instance in the corresponding set for all sets of instances but for
two sets relative to 40 nuclear unit instances. For these two latter instances, gaps
in Table 3.1.3 appear with superscript a (resp. b) to indicate cases where a large
variability in the gaps have been observed, namely 3 (resp. 1) out of 5 solutions are
with a gap around 20-25%, whereas 2 (resp. 4) out of 5 solutions are with a gap close
from 1%. In other words, diving heuristics either find solutions with a gap less than
1% or around 20-25%. An explanation for such behavior is twofold. First binding
constraints are active on 40 unit instances while they are inactive on 22 nuclear unit
instances. Second columns do not have coefficients in the objective function, thus
leading to poor branching choices. Anticipating solving large size instances, the
computation time should be less than that obtained for solving F (δ, s, p) directly
by Cplex solver.

The ranking of the different heuristics relative to the computation time required
to solve F (δ, s, p) directly by Cplex solver is as follows: diving23 is extremely slow,
pure diving heuristic is slow, pure diving + price-and-branch is close to Cplex solver,
and price-and-branch outperforms Cplex solver. The price-and-branch heuristic

3.1. Double decomposition for the outage planing problem 123

always finds a solution with a very good gap less than 1% in average and with a
computation time 30-50% less than that obtained by Cplex solver. Note that in
terms of quality, pure diving + price-and-branch finds excellent solutions but with
a computation time close to that obtained with Cplex solver.

This benchmark suggests to try solving real instances directly with Cplex solver
whenever possible and to use price-and-branch heuristic otherwise.

3.1.5.4 Model validation

The main thrust of this work is that outage dates computed using the NOPP for-
mulation will lead to operational savings when accounting for an increased number
of scenarios.

As mentioned in Section 3.1.1, the operational outage planning process is a multi-
stage procedure involving successive re-optimizations of outage dates and power pro-
ductions on a rolling horizon. Designing a code to emulate this multi-stage process
to evaluate a first-stage solution over a set of validation scenarios is beyond the scope
of this paper. We use a dedicated tool developed at EDF to evaluate solutions in the
limited framework of a two-stage process (consistent with the structure of NOPP).
This library, referred to as Checker, takes as input a scenario and a given nuclear
outage plan, and optimizes the production of the units while meeting the demand
over the time horizon, thus emulating a NOPP second stage. This is modeled as a
simple linear program, which allows refining the time discretization to six periods
per day (instead of one per week used in the optimization models).

The cost of each first-stage solution is evaluated as the expected second-stage
cost calculated with the checker, over 96 scenarios. For each of the 25 (resp. 15)
scaled-down instances with 22 (resp. 40) nuclear units, we computed first-stage so-
lutions with F (δ, s, p) and FDW (λ, s, p). Recall that F (δ, s, p) is directly solved
with Cplex solver as defined in Section 3.1.3.5, while FDW (λ, s, p) is to solve the
linear relaxation with column generation and to use the Price-and-branch heuristic
selected in section 3.1.5.3. The number of aggregated scenarios considered for the
optimization ranges in S ∈ {1, 5, 10, 15}. This allows us to estimate the savings
obtained when using a given method with a given number of aggregated scenarios,
compared to the deterministic case, i.e., with one aggregated scenario. More pre-
cisely, the savings correspond to the expected cost of the first-stage solution obtained
with a method and S scenarios minus the expected cost of the solution obtained with
F (δ, s, p) and S = 1. In Table 3.1.4 statistics relative to the savings are reported
over the whole set of simplified 22-unit instances (resp. 40-unit instances), denoted
by p22* (resp. p40*). Rows "avg. savings" and "stddev. savings" respectively show
the average and standard deviation, over the considered instance type, of savings
evaluated by the Checker over the 96 original scenarios. Note that the objective
functions of the scaled-down instances is considerably increased compared to the
original ones: this is a side effect of virtually converting nuclear units to thermal
ones. To better emphasize the benefit of using more scenarios, absolute savings
are reported. The order of magnitude of an absolute difference of 1 monetary unit

124
Chapter 3. Decomposition approaches for uncertain optimization

problems

is, here, 0.001% in relative difference. A one-hour time limit is imposed for each
run. Within this time limit, Cplex solver (F (δ, s, p)) converges to optimality for all
runs up to S = 10. For 22 units and S = 15, optimality was not proven but the
optimality gap is less than 0.15%. We do not report results for instances with 40
units and S = 15, because both methods failed at finding feasible solutions for most
instances.

Instance type Statistic Method S=1 S=5 S=10 S=15

p22*
avg. savings

F (δ, s, p) 0.00 7.28 8.62 11.80
FDW (λ, s, p) -3.64 4.75 2.22 4.62

stddev. savings
F (δ, s, p) 0.00 6.65 5.79 6.47

FDW (λ, s, p) 3.72 7.43 7.85 6.10

p40*
avg. savings

F (δ, s, p) 0.00 21.47 23.49 -
FDW (λ, s, p) -9.83 0.53 8.42 -

stddev. savings
F (δ, s, p) 0.00 15.67 15.94 -

FDW (λ, s, p) 9.85 16.97 17.02 -

Table 3.1.4: EDF Checker evaluation of optimal and heuristic solutions, absolute
difference w.r.t. the planning computed on deterministic instances.

We observe that the expected savings of optimal solutions (F (δ, s, p)) increase
with the number of aggregated scenarios. The same trend is obtained with heuristic
solutions even if the corresponding expected savings are not as good as the one ob-
tained with optimal solutions, they globally increase with the number of aggregated
scenarios. However, the case of S = 5 with 22 units appears as an outlier that can
be explained by the variability in terms of quality of the heuristic solutions.

3.1.5.5 Comparing formulations for simplified stochastic instances

This section aims at selecting, on simplified stochastic instances, the most promising
approaches to solve real size stochastic instances. Several formulations and solution
approaches might be efficient on stochastic instances depending on the number of
aggregated scenarios taken into account. Note first that linear relaxation is a major
component to any solution approach. Then to limit the number of experiments
to be included in the article, the comparative results for stochastic scaled-down
instances are performed with the linear relaxation of the problem using the following
benchmark of formulations along with their solution approaches.

- FLP (δ, s, p): Linear relaxation of the MIP formulation F (δ, s, p) described in
Section 3.1.3.5 and solved directly using Cplex solver.

- FDW (λ, s, p): the Dantzig-Wolfe reformulation, as described in Section 3.1.4.2,
solved by column generation as described in Section 3.1.4.4.

- FDWB(λ, η): the Dantzig-Wolfe and Benders reformulation as described in

3.1. Double decomposition for the outage planing problem 125

Figure 3.1.4: Comparison of computation times for solving the LP relaxation of 22
nuclear unit stochastic instances using a benchmark of formulations.

Section 3.1.4.2 and 3.1.4.3 and solved by column-and-cut generation algo-
rithms as described in Section 3.1.4.4.

- FDWB
(q,m) (λ, η): The Dantzig-Wolfe and Benders reformulation using interme-

diary variables q and m linking first and second stage as described in Sec-
tion 3.1.3.6. and solved by column-and-cut generation algorithms as described
in Section 3.1.4.4.

- FDWB
(cq,cq)(λ, η): the Dantzig-Wolfe and Benders reformulation using interme-

diary variables cq and cq linking first and second stage as described in Sec-
tion 3.1.3.6 and solved by column-and-cut generation algorithms as described
in 3.1.4.4.

Figure 3.1.4 shows the average computation time on sets of 25 stochastic in-
stances, five for each possible structure with 22 nuclear units. The stochastic in-
stances are the same as the 22 nuclear unit deterministic instances presented in
Table 3.1.3, but for the number of scenarios S which ranges from 1 to 25.

Approaches combining Dantzig-Wolfe and Benders reformulations FDWB(λ, η),
FDWB

(q,m) (λ, η) and FDWB
(cq,cq)(λ, η) solved through column-and-cut generation are slower

on instances with few scenarios. Whereas approaches without Benders decomposi-
tion FLP (δ, s, p) and FDW (λ, s, p) are faster, but with rapid deterioration of per-
formance as the number of scenarios increases. To be more specific, the solution
time of FLP (δ, s, p) (resp. FDW (λ, s, p)) ranges from less than 60 seconds for one
scenario to more than 2000 seconds for solving FLP (δ, s, p) (resp. 3600 seconds for
solving FDW (λ, s, p)) with 25 scenarios. Beyond 15 scenarios, FDWB(λ, η) and
FDWB

(cq,cq)(λ, η) become more efficient than FLP (δ, s, p). Interestingly the solution
time increases really slowly – indeed is almost constant – with respect to the number

126
Chapter 3. Decomposition approaches for uncertain optimization

problems

of scenarios for FDWB
(cq,cq)(λ, η). This clearly shows that the reformulation with cumu-

lative capacity variables is the most efficient to solve the LP relaxation for stochastic
instances with a large number of scenarios. The computation time appears to be
linear in the number of scenarios up to 15 using FDWB(λ, η) (green plot in Figure
3.1.4) while it is almost constant using FDWB

(cq,cq)(λ, η) (black plot in Figure 3.1.4).
It is interesting to check in more details which components of the column-and-cut
algorithms are making the difference. We consider a component-wise comparison
of computation times to evaluate more closely the performances of each solution
approach. Table 3.1.5 provides for each of the three formulations solved through
cut-and-column generation the following entries evaluated on an average of the 22
nuclear unit stochastic instances :

- S is the number of aggregated scenarios;

- For column generation (resp. cut generation), denoted by ColGen (resp.
CutGen), #it is the number of iterations and #Col (resp. #Cuts) is the
total number of columns (resp. Cuts) generated.

- TotalLP is the total time spent solving the linear relaxation

- SolMaster is the total time spent solving the restricted master problem during
column generation,

- SolSep is the time spent solving the separation subproblems and generating
cuts which involves the projection,

- UpPric is the time to update arc costs with dual variables coming from the
master solution,

- UpSep + SolPric is the sum of the time spent updating first-stage decisions in
the separation subproblems and solving the shortest path problem – i.e., pric-
ing subproblem – and generating new columns. The two components have
been added together as they represent a really small part of the time spent in
other steps.

First note that the number of generated columns variations does not seem to
have a clear link with the number of aggregated scenarios for any formulation and
for a given number of scenarios all formulations require a similar number of cuts
and cut generation iterations. Second it appears that FDWB

(q,m) (λ, η) requires twice as
many column generation iterations compared to others formulations and far more
columns. This deeply affects the performance of the latter formulation. Formulation
FDWB

(cq,cq) requires the same number of column generation iterations as formulation

FDWB does but 1.3 times more columns, which explains the relative low efficiency
of formulation FDWB

(cq,cq) for few scenarios. Then an interesting question that arises is
why the solving time is constant w.r.t. the number of scenarios with intermediary
variables (cq, cq), while it is linear without.

3.1. Double decomposition for the outage planing problem 127

ColGen CutGen Computation time component-wise (s)

S Formulation # It # Col # It # Cuts TotalLP SolMaster SolSep UpPric UpSep
+ SolPric

1

FDWB(λ, η) 410 1590 90 89 159,8 27,7 80,6 43,0 2,0
FDWB

(cq,cq)(λ, η) 433 2297 89 88 370,4 151,5 67,2 116,1 3,4
FDWB

(q,m) (λ, η) 868 5010 88 87 1510,2 1182,0 92,0 196,1 6,2

5

FDWB(λ, η) 355 1539 52 245 445,7 78,9 215,3 124,0 6,2
FDWB

(cq,cq)(λ, η) 365 2228 51 240 374,5 145,1 71,1 108,0 5,8
FDWB

(q,m) (λ, η) 747 4613 52 242 1274,0 937,0 80,6 189,4 8,8

10

FDWB(λ, η) 342 1545 43 405 715,7 102,1 365,6 193,9 9,3
FDWB

(cq,cq)(λ, η) 346 2242 44 406 421,8 157,6 87,7 109,1 8,6
FDWB

(q,m) (λ, η) 685 4391 44 405 1411,0 1050,0 94,9 178,3 10,8

15

FDWB(λ, η) 360 1671 42 590 1036,9 159,3 499,3 288,7 12,7
FDWB

(cq,cq)(λ, η) 362 2283 41 576 526,0 125,0 105,0 131,7 3,9
FDWB

(q,m) (λ, η) 729 4453 41 579 1878,6 1460,0 105,8 193,6 14,5

Table 3.1.5: Comparative performance for solving the LP relaxation for 22 nuclear
unit stochastic instances using the three Danzig-Wolfe and Benders formulations
through cut-and-column generation.

Let us look at the time spent in each component of the algorithm. First note
that the time spent in components SolMaster and UpPric is larger in a deterministic
setting with intermediary variables (q,m) or (cq, cq). This is consistent with the
larger number of generated columns. However the time spent in components SolSep
and UpPric is almost constant with intermediary variables (cq, cq) while it grows
w.r.t. the number of scenarios without. The rationale behind is that without inter-
mediary variables one needs to perform a projection as described in Section 3.1.3.6.
The number of coefficients, involved in the generated cuts rewritten with the orig-
inal variables or in the pricing update to add new cuts with dual values, increases
rapidly with the number of aggregated scenarios (and hence the number of gener-
ated cuts) taken in account. This results in a significant increase in the time spent
in components SolSep and UpPric, i.e., components of the algorithms where projec-
tion is performed, which is 82% of the total time increase. This clearly answers the
question.

3.1.5.6 Solving the real large-scale instances

The aim in this section is to perform a final comparative evaluation among for-
mulations and solution approaches, which have passed previous evaluations with
reasonable chances to solve large size instances. Contrary to Section 3.1.5.5, we are
looking to mixed integer solutions. The considered benchmark is:

- F (δ, s, p) : Original MIP formulation solved directly using Cplex solver.

- FDW (λ, s, p) : Dantzig-Wolfe reformulation solved by column generation,
followed by the best promising heuristic from Section 3.1.5.3, namely price-
and-branch as described in Section 3.1.4.5.

128
Chapter 3. Decomposition approaches for uncertain optimization

problems

- FDWB(λ, η) : Dantzig-Wolfe and Benders reformulation solved by column-
and-cut generation algorithms, followed by the price-and-branch as described
in Section 3.1.4.5.

- FDWB
(cq,cq)(λ, η) : the Dantzig-Wolfe and Benders reformulation using intermedi-

ary variables cq and cq and solved by column-and-cut generation algorithms,
followed by the price-and-branch as described in Section 3.1.4.5.

Note that for Dantzig-Wolfe and Benders reformulations we had to adapt the
price-and-branch heuristic as it was originally designed for a Dantzig-Wolfe reformu-
lation. The principle is to use a usercut callback in Cplex solver to keep generating
cuts during the heuristic step as described in Section 3.1.4.5. All benchmark for-
mulations are used to solve real size instances within a total time limit of 8 hours.
Table 3.1.6 shows results over a set of five 58 nuclear unit stochastic instances cor-
responding to p58i0-1810sS with S ranging from 1 to 48. Table 3.1.6 uses the same
entries as Table 3.1.5 in Section 3.1.5.5, but Gap which is the average gap p−b

b be-
tween the integer value p found by the heuristic and the linear relaxation value b.
Note that b is the same for all formulations, then it is not useful in the evaluation.
Nor it is to show the computation time, as the 8-hour time limit is reached by all
solution approaches, but F (δ, s, p) for S=1 in the deterministic case. In the latter
case, the average computation time is 4667 seconds to find an optimal solution,
whereas it is 1739 seconds to find a primal feasible solution. Finally whenever no
integer feasible solution is found within the time limit for at least one of the five
instances, this is indicated with symbol ”-” in the corresponding cell of Table 3.1.6.
Similarly whenever an entry in the table is not relevant for a formulation, e.g., #
ColGen it in the case of formulation F (δ, s, p) as it is solved directly with Cplex
solver or # CutGen it in the case of formulation F (λ, s, p) as there is no Benders
cut generation.

The sparse structure of formulation F (δ, s, p) allows Cplex solver to find solu-
tions with less than 1% to optimality within the 8-hour time limit up to 10 stochastic
scenarios, whereas FDW (λ, η) provides good quality solutions in less than 30 min-
utes in the deterministic case. The time spent solving master problems grows rapidly
to more than 6 hours 30 minutes for 10 scenarios, thus explaining why F (δ, s, p)

and F (λ, s, p) could not find a good feasible solution within the 8-hour time limit.
This calls for the use of column-and-cut generation approaches.

Confirming results from Section 3.1.5.5 both FDW (λ, η) and FDWB
cq,cq (λ, η) re-

quires roughly the same number of cut generation iterations and number of cuts to
solve the linear relaxation. FDWB

(cq,cq)(λ, η) generates once again 30% more columns

than FDW (λ, η), thus spending more time to solve the master problems and likewise
to solve the LP relaxation for few scenarios. It is worth noting that the time spent
solving separation problems and generating cuts represent the largest part of the
computation time for few scenarios. Not surprisingly this is the step taking most
of the total time when searching for an integer solution with Cplex solver. This
is also the reason why none of the formulations using column-and-cut generation

3.1. Double decomposition for the outage planing problem 129

LP relaxation LP + heuristic (s)

S Formulation # ColGen It # Col # CutGen It # Cuts TotalLP SolMaster SolSep UpPric UpSep
+ SolPric

Gap

1

F (δ, s, p) - - - - - - - - - 0.49
FDW (λ, s, p) 79 1768 - - 255 180 - 52 2 0,57
FDWB(λ, η) 1146 7247 723 722 6462 3993 22332 1523 94 0.57
FDWB
cq,cq (λ, η) 1021 10035 768 767 9740 8079 10819 772 113 0.66

5

F (δ, s, p) - - - - - - - - - 0.71
FDW (λ, s, p) 79 1925 - - 5199 4702 - 394 4 0,87
FDWB(λ, η) 738 6168 227 1111 8032 3511 19297 2485 177 1.04
FDWB
cq,cq (λ, η) 691 9454 227 1115 8570 7250 10309 279 283 0.94

10

F (δ, s, p) - - - - - - - - - 0.89
FDW (λ, s, p) 69 1845 - - 24268 23112 - 927 8 25,86
FDWB(λ, η) 690 6004 173 1688 11319 5047 20339 3229 175 1.37
FDWB
cq,cq (λ, η) 625 8586 155 2249 7264 5766 13556 572 363 1.61

15

F (δ, s, p) - - - - - - - - - -
FDW (λ, s, p) - - - - - - - - - -
FDWB(λ, η) 649 5810 157 2295 15694 7317 19256 4133 254 1.74
FDWB
cq,cq (λ, η) 610 8424 155 2249 9069 7256 14286 604 504 2.62

25

F (δ, s, p) - - - - - - - - - -
FDW (λ, s, p) - - - - - - - - - -
FDWB(λ, η) 597 5537 137 3214 21744 10978 11674 4768 206 1.96
FDWB
cq,cq (λ, η) 570 8101 139 3208 12202 10003 13805 560 379 2.22

32

F (δ, s, p) - - - - - - - - - -
FDW (λ, s, p) - - - - - - - - - -
FDWB(λ, η) 567 5345 124 3863 24991 12823 9741 4939 230 2.22
FDWB
cq,cq (λ, η) 522 7523 123 3816 11310 9202 13357 478 505 2.76

48

F (δ, s, p) - - - - - - - - - -
FDW (λ, s, p) - - - - - - - - - -
FDWB(λ, η) - - - - - - - - - -
FDWB
cq,cq (λ, η) 548 7334 124 5537 19893 17008 7573 482 414 4.48

Table 3.1.6: Final comparative performance for solving the real large-scale instances.

130
Chapter 3. Decomposition approaches for uncertain optimization

problems

does finish within the time limit even for few scenarios. Formulation FDWB(λ, η)

solved through column-and-cut generation with projection leads to high quality so-
lutions for instances with up to 32 stochastic scenarios. Even though FDWB

(cq,cq)(λ, η)

solves the linear relaxation faster than FDWB(λ, η) for more than five scenarios,
it does not reflect on the gap as the performance of the heuristic is the other way
around. This shows that Cplex solver performance is impaired by the up-sizing of
the formulation induced by the additional columns and variables. Beyond 32 sce-
narios, the LP relaxation solution time using FDWB(λ, η) raises up to 7 hours due
to the time increase in components SolSep and UpPric by projection, as shown in
Section 3.1.5.5. Then solving reformulation with cumulative capacity variables via
column-and-cut generation becomes the best solution approach. In particular, it
allows us to solve the LP relaxation faster and provides us with solutions within
4.48% of optimality.

The presented comparative results lead to define a strategy for solving real in-
stances: for less than 10 aggregated scenarios, use formulation F (δ, s, p) with Cplex
solver whereas for more than 10 scenarios, use FDWB(λ, η) instead. Introducing
cumulative splitting variable, leading to formulation FDWB

cq,cq (λ, η), tackled the pro-
jection issue, which is the bottleneck of formulation FDWB(λ, η). In particular,
using FDWB

cq,cq (λ, η) allows us to find integer solutions up to 48 scenarios, whereas
FDWB(λ, η) is limited to 32 scenarios. Hence, a perspective for future work would
be to find a formulation having both properties of solving the linear relaxation within
a time almost constant in the number of scenarios and efficient solution by Cplex
solver.

Finally, we estimate the industrial potential savings of the approaches based
on the NOPP formulations presented in this article using the EDF Checker. We
evaluated the best solution found for each number of aggregated scenarios up to
32. Directly using Cplex solver on F (δ, s, p), the expected savings (computed as in
Section 3.1.5.4) for ten scenarios over a three year horizon are evaluated to 0.56%.
Solving FDWB(λ, η) using the column-and-row generation algorithm followed by
price-and-branch heuristic allows us considering 32 aggregated scenarios, thus lead-
ing to increased expected savings of 1.11%. To put this in perspective, 1% of gain
corresponds to approximately 50 million euros.

3.2 Decomposition for two-stage robust problems with
mixed integer recourse

This section is based on [Arslan & Detienne 2021]. We study a class of two-stage
robust binary optimization problems with objective uncertainty where recourse de-
cisions are restricted to be mixed-binary. For these problems, we present a deter-
ministic equivalent formulation through the convexification of the recourse feasible
region, that is obtained using either Dantzig-Wolfe relaxation (see Section 1.2.2.2)

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 131

or DP-based reformulation (see Section 1.2.2.1). We then explore this formula-
tion under the lens of a relaxation, showing that the specific relaxation we propose
can be solved using the branch-and-price algorithm. We present conditions un-
der which this relaxation is exact, and describe alternative exact solution methods
when this is not the case. Despite the two-stage nature of the problem, we provide
NP-completeness results based on our reformulations. Finally, we present various
applications in which the methodology we propose can be applied. We compare
our exact methodology to those approximate methods recently proposed in the lit-
erature under the name K−adaptability. Our computational results show that our
methodology is able to produce better solutions in less computational time com-
pared to the K−adaptability approach, as well as to solve bigger instances than
those previously managed in the literature.

From a methodological perspective, the main contribution of this work is pro-
viding an efficient algorithmic framework to solve a class of two-stage robust op-
timization problems to exact optimality. The methods developed outperform the
existing approaches, either exact or approximate, for this specific class.

From a theoretical point-of-view, the complexity the reformulation presented
therein paves the way to a theoretical complexity result that shows that the studied
two-stage robust optimization problem is NP-complete. The non-triviality of this
result resides in the problem being at most NP-complete (the exact complexity of
such problems often being unclear, as discussed in Section 3.2.3).

The remainder of this section is organized as follows: Section 3.2.1 describes
the problem in its context and related literature. In Section 3.2.2 we present a
single-stage equivalent reformulation of (3.2.1) through convexification of the re-
course feasible region, Y(x), and propose a computationally attractive relaxation of
conv(Y(x)). The reformulations we obtain lead to deterministic equivalent models
that can be solved using either the branch-and-price or the branch-and-price-and-cut
algorithm. In Section 3.2.3, we present related complexity results. In Section 3.2.4,
we illustrate two different applications of our methodology, and present a numerical
evaluation of the proposed column generation-based approaches, comparing them
to the direct solution of extended and K-Adaptability formulations.

3.2.1 Introduction and literature review

Robust optimization is an approach to handling uncertainty in optimization where
the probability distributions are replaced with uncertainty sets. In robust optimiza-
tion, constraints are imposed for all realizations whereas the objective function is
evaluated for the worst-case realization within the uncertainty set. As such, in ap-
plications where the effects of uncertainty can be catastrophic, robust optimization
presents itself as a viable modeling approach. Further, robust optimization models
with polyhedral or convex uncertainty sets lead to deterministic equivalent formula-
tions that are often in the same complexity class as their deterministic counterparts.
For these reasons, robust optimization has enjoyed and continues to enjoy a growing
attention from the research community. Advances in static robust optimization are

132
Chapter 3. Decomposition approaches for uncertain optimization

problems

presented in [Ben-Tal et al. 2009], [Bertsimas et al. 2011] and [Gabrel et al. 2014].
On the other hand, robust optimization can sometimes be “over-conservative”,

especially when uncertainty does not have a row-independent structure. To remedy
this problem, when the underlying application permits it, one might consider in-
troducing recourse (adjustability/adaptability) after the realization of uncertainty.
Further, some applications may naturally involve a set of “wait-and-see” decisions
that are taken after the realization of uncertainty. This is the case, for instance,
where strategic design decisions are undertaken by evaluating the future operational
conditions of a system under uncertainty. In robust optimization with recourse, first-
stage decisions are evaluated by taking the possibility to “recover” a feasible solution
after the realization of uncertainty into account. The difficulty of these problems has
long been established in the literature even in the simple case of two-stage adjustable
robust optimization with linear programming problems in both stages, and a poly-
hedral uncertainty set (see [Ben-Tal et al. 2004]). We remark that another approach
to deal with the over-conservativeness of static robust optimization is to consider
distributionally robust uncertainty models (e.g. [Goh & Sim 2010]). However, its
discussion is out of the scope of this work.

Example 3.2.1. Consider the static robust optimization problem

max
x∈{0,1},y∈{0,1}3

−x+ min
ξ∈[0,1]

(3− 2.5ξ)y1 + (−1 + 4ξ)y2 + (4− 6ξ)y3

s.t. y1 + y2 + y3 ≤ x

Its optimal solution is x = y1 = y2 = y3 = 0, with objective value 0 (as when x = 1

the objective value is −0.5). Consider now the possibility to take decisions y after
the realization of uncertainty. We write the adjustable robust optimization problem

max
x∈{0,1}

−x+ min
ξ∈[0,1]

max
y∈{0,1}3

(3− 2.5ξ)y1 + (−1 + 4ξ)y2 + (4− 6ξ)y3

s.t. y1 + y2 + y3 ≤ x

In Figure 3.2.1, we present the functions (3 − 2.5ξ), (−1 + 4ξ) and (4 − 6ξ). The
maximum of these three functions is to be minimized over ξ ∈ [0, 1] when x = 1.
This is achieved at ξ = 0.61 and yields a value of 1.46. On the other hand when
x = 0 the second-stage value is trivially 0. The optimal solution to the two stage
problem is therefore x = 1 with value 0.46.

Example 3.2.1 highlights the value of incorporating wait-and-see decisions into
robust optimization. Strategic decisions are improved, by making a more judicious
evaluation of the effects of uncertainty. It also demonstrates why doing so is not
straightforward. Indeed, for each first-stage solution, evaluating its second-stage cost
requires the solution of a bilevel optimization problem where the optimal solution
of the outer level is not necessarily an extreme point of the corresponding feasible
region.

Existing methodologies in robust adjustable optimization can be categorized
as exact or approximate. Exact approaches do not pose any assumptions on the

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 133

Figure 3.2.1: Graphical representation of Example 3.2.1. The horizontal axis rep-
resents the adversarial decision, while the adversarial objective function is over the
vertical axis. The colored affine functions each represent a second-stage decision
that restrains this value. The bold black line shows the value of the recourse func-
tion with respect to the decision of the adversary.

set of possible recourse actions aside from constraints imposed by the definition of
the problem, whereas approximate approaches restrict possible recourse actions to
either functions of the uncertain parameters or a preselected subset. On the other
hand, all of the exact approaches in the literature consider two-stage models whereas
approximations may extend to multiple stages.

Most approximate solution methods for adjustable robust optimization restrict
the set of recourse solutions to more or less simple functions of uncertain parameters.
These are referred to, in general, as “decision rules”. In [Ben-Tal et al. 2004], authors
study the complexity of the adjustable robust optimization problem with continu-
ous recourse and propose a linear decision rule that they coin affine-adjustability.
In affine adjustability, continuous recourse decisions are expressed as affine func-
tions of uncertain parameters where the parameters of this affine function are to be
optimized. The authors prove that, when the recourse matrix is fixed, if the uncer-
tainty set is tractable then the affinely adjustable robust optimization is tractable.
More elaborate decision rule schemes have been explored in the context of robust
optimization as well as stochastic and distributionally robust optimization. Some
examples of this literature include but are not limited to, [Chen et al. 2008] where
deflected and segregated linear decision rules are considered, [Chen & Zhang 2009]
where authors propose affine adaptability defined over an extended uncertainty set
(extended affine adjustability), and [Goh & Sim 2010] where extended uncertainty
sets are again used with piecewise linear decision rules (termed bi-deflected linear
decision rules). In [Kuhn et al. 2011], authors apply linear decisions rules both in

134
Chapter 3. Decomposition approaches for uncertain optimization

problems

the primal and dual spaces to evaluate the optimality gap resulting from using lin-
ear decision rules. In [Georghiou et al. 2015] this idea is further generalized to be
applied in an extended probability space, encompassing piecewise linear, segregated,
and nonlinear decision rules in the original space by a choice of the lifting operator
while providing an a posteriori measure of the optimality gap resulting from using
decision rules.

Although linear decision rules have desirable properties both from a theoretical
and numerical perspective, their application is limited to adaptive problems with
continuous recourse. Decision rules have therefore been extended to be able to in-
corporate binary and integer recourse decisions. In [Vayanos et al. 2011], authors
develop a conservative approximation for multistage robust MILPs presented in the
context of information discovery in multistage stochastic programming. They parti-
tion the uncertainty set into hyperrectangles and restrict the continuous and binary
recourse decisions to piecewise affine and constant functions of the uncertain pa-
rameter over each hyperrectangle, respectively. The resulting conservative approxi-
mation can be formulated as an MILP; see also [Gorissen et al. 2015]. In [Bertsimas
& Georghiou 2015], authors propose a piecewise constant decision rule for binary
recourse variables used in conjunction with a scenario generation scheme resulting
in an endogenous design of the decision rule. In [Bertsimas & Georghiou 2018],
piecewise constant functions are again used to describe linearly parameterized bi-
nary decision rules, the reformulated problem is mapped to an extended probability
space to obtain a deterministic equivalent formulation through linear programming
duality. Although the generic reformulation does not scale polynomially in problem
data, instances where this is the case are presented.

Another line of recent research in the approximate solution methods literature
is based on the idea of restricting the recourse to a preselected set of policies termed
K−adaptability or finite adaptability. The K−adaptability problem consists of se-
lecting a first-stage solution along with K recourse solutions at the first stage. In
the second stage, after the realization of uncertainty, the recourse problem reduces
to selecting the best solution among these K solutions. As such, this approach is
a restriction of the original two-stage problem where the flexibility of actions that
can be taken at the second stage is reduced. We remark however that this method
becomes exact for binary problems with only objective function uncertainty when
K is sufficiently large. The authors of [Hanasusanto et al. 2015] extend the idea of
finite adaptability (K = 2) considered in [Bertsimas & Caramanis 2010], for two-
stage robust optimization with pure binary recourse under objective function and
right-hand-side uncertainty. They propose a direct solution as a mixed integer pro-
gram after reformulation for fixed K. In [Subramanyam et al. 2020], the concept of
K-Adaptability is extended to problems with mixed-integer first- and second-stage
feasible regions as well as uncertainty affected technology and recourse matrices.
The authors propose a semi-infinite disjunctive programming formulation that im-
poses that at least one of the K recourse solutions be feasible for every realization
of uncertainty. They then propose a branch-and-bound algorithm combining ideas
from semi-infinite and disjunctive programming. In [Buchheim & Kurtz 2017], au-

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 135

thors study K-adaptability for combinatorial optimization problems in the special
case where there are no first-stage decisions, coined “min-max-min”. For the same
type of problems, [Chassein et al. 2019] propose faster algorithms, when K = 2

and the Bertsimas-Sim budgeted uncertainty set is used. While in these papers, a
partition of the uncertainty set and an assignment of K recourse policies to subsets
defined by this partition is sought concurrently, it is also possible to define the finite
adaptability problem for a given partition of the uncertainty set. This partition is
then iteratively improved using the information from the solution obtained. This
idea is explored in [Bertsimas & Dunning 2016] and [Postek & Hertog 2016] in the
context of multi-stage adjustable robust mixed-integer optimization.

Most of the exact approaches developed in the literature concern two-stage ad-
justable robust optimization with continuous recourse and right-hand-side uncer-
tainty. In this case an epigraph formulation can be defined through Benders’ type
cuts obtained based on the linear programming dual where the subproblem used to
identify violated cuts is bilinear. Decomposition-based approaches have been used
in [Jiang et al. 2014], [Bertsimas et al. 2013a], and [Zhao & Zeng 2012b] in the con-
text of the well-known unit commitment problem under demand/wind uncertainty.
They are presented in a generic framework based on Kelley’s cutting plane algo-
rithm in [Thiele et al. 2009]. In [Zhao & Zeng 2012b], authors additionally propose
cutting planes expressed in the space of primal variables. They later develop this
idea in [Zhao & Zeng 2012a], in a more general context and coin their methodology
“constraint-and-column generation”. This approach consists of adding a set of re-
course variables and all the associated recourse constraints to the master problem for
an identified uncertainty realization that is violated by the current restricted master.
The subproblem in this case is a bilevel programming problem. This idea is further
explored in [Ayoub & Poss 2016], which presents a mixed integer programming refor-
mulation for the subproblem based on a Farkas system. Their reformulation is valid
in the case where the uncertainty set can be represented as a projection of a binary
set, the most important example being the Bertsimas-Sim budgeted uncertainty set.
Finally, in [Atamtürk & Zhang 2007], authors consider a network design problem
under demand uncertainty where the flow decisions on certain arcs can be delayed
until after the realization of uncertainty. As such, the recourse problem is a network
flow problem with right-hand-side uncertainty. The authors give a projection of the
recourse polyhedron to the space of the first-stage variables through an exponential
family of inequalities. They propose a cutting-plane algorithm for the solution of
this model and show that the separation problem is NP-hard except for some special
cases. Ideas based on projection are explored in a more generic framework in [Zhen
et al. 2018] who show that two-stage robust optimization problems with continuous
and fixed recourse can be cast as static problems via Fourier-Motzkin elimination.

There are few studies that consider exact approaches for two-stage adjustable
robust optimization with integer recourse in the literature. In [Zhao et al. 2013], the
ideas presented in [Zhao & Zeng 2012a] are extended to the mixed-integer recourse
case where the authors propose a nested constraint-and-column generation scheme.
Unfortunately, approaches based on on-the-fly generation of uncertainty realizations

136
Chapter 3. Decomposition approaches for uncertain optimization

problems

are no longer finitely convergent when the uncertainty interferes in the objective
function or the recourse matrix, as optimal solutions are not necessarily extreme
points of the uncertainty set (see Figure 3.2.1). Further, their application seems
to be restricted to the case where the optimal solution can be defined by adding a
very small number of cuts. Independently of this work, [Kämmerling & Kurtz 2020]
proposed an oracle-based solution method for two-stage robust binary optimization
problems with objective uncertainty. We provide a brief qualitative comparison of
their approach to the approaches presented in this here in Section 3.2.2.1.

As highlighted by the above review of the existing literature in the domain, there
is a need for further research into exact solution methodologies for two-stage robust
optimization problems with integer recourse. In this section, we consider two-stage
robust optimization problems of the form

min
x∈X

c>x+ max
ξ∈Ξ

min
y∈Y(x)

(f +Qξ)>y (3.2.1)

where X ⊆ RN+ , Y ⊆ RM+ are bounded mixed binary sets, and Ξ ⊆ RS is a poly-
hedral set with c,x, ξ,f ,Q,y of conforming dimensions. We assume throughout
the section that x = (x1, . . . , xN1 , . . . , xN)>. We denote x1 = (x1, . . . , xN1)> with
x1 ∈ {0, 1}N1 , and consider Y(x) = {y ∈ Y |Hy ≤ d− Tx1}. Therefore, the prob-
lems we consider in this section are two-stage robust mixed-binary optimization
problems with objective uncertainty.

Remark 3.2.1. We remark that both X and Y are mixed binary sets. However,
the linking constraints in Y(x) involve only binary variables from the first-stage
feasibility set.

3.2.2 Methodological development

In this section, we present the main results underlying our solution approach. We
first present a result that allows us to write (3.2.1) as an equivalent deterministic
problem. This equivalent formulation is based on the convexification of the recourse
feasible region Y(x) for a given first-stage solution x ∈ X .

Proposition 3.2.1. Problem (3.2.1) is equivalent to

min
x∈X ,y∈conv(Y(x))

c>x+ max
ξ∈Ξ

(f +Qξ)>y (3.2.2)

Proof. For a given first-stage solution x ∈ X , and an uncertainty realization ξ ∈ Ξ,
we have that

min
y∈Y(x)

(f +Qξ)>y = min
y∈conv(Y(x))

(f +Qξ)>y (3.2.3)

as the inner minimization problem is a mixed integer linear programming problem.
This allows for exchanging the order of optimization in maxξ∈Ξ miny∈conv(Y(x)) (f+

Qξ)>y using the well-known minimax theorem (see [Neumann 1928]), as (f+Qξ)>y

is convex in y and concave in ξ, and the sets Ξ and conv(Y(x)) are convex by
definition.

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 137

Proposition 3.2.1 has two important implications:

(i) When conv(Y(x)) = Y(x) for all x ∈ X , adaptability has no effect, i.e., the
two-stage problem has the same optimal solution as the static robust problem.
This is, for instance, the case when the recourse problem is a linear program
or is an integer program with a totally unimodular constraint matrix (e.g.
network flow problems).

(ii) If one can express the conditions y ∈ conv(Y(x)) for x ∈ X as mixed integer
linear constraints, then a deterministic equivalent mixed integer programming
formulation of (3.2.1) can be obtained.

Although point (ii) above suggests a generalized approach to reformulating
problem (3.2.1) as a deterministic equivalent problem, expressing the conditions
y ∈ conv(Y(x)) for x ∈ X remains a challenge. In general, given x ∈ X , we
may express conv(Y(x)) using its Dantzig-Wolfe reformulation, i.e., as a convex
combination of its extreme points. However, as conv(Y(x)) is dependent on x, we
additionally need to impose a relationship between x and convY(x) (in other words,
a recourse solution from conv(Y(x)) can be selected only if the first-stage solution
x is selected). In Figure 3.2.2, we illustrate the resulting deterministic equivalent
feasible region with two possible first-stage solutions. As should be clear from this
figure, the feasible region is made up of two disjunctions, each describing a recourse
polyhedron based on the first-stage solution selected.

conv(Y(0))conv(Y(1))

Figure 3.2.2: The feasible region of problem (3.2.1) after Dantzig-Wolfe reformula-
tion. Here, Y(x) = {y ∈ {0, 1}3 | y2 ≤ x,−y1 + 2y2 + y3 ≥ 3x− 2}, with x ∈ {0, 1}.

Based on Figure 3.2.2, it is clear that the dependence of the set Y(x) on variables
x is the main difficulty prohibiting the numerically efficient use of solution methods
based on Dantzig-Wolfe decomposition. In Section 3.2.2.1, we present a relaxation
of (3.2.2) that overcomes this difficulty. In Section 3.2.2.2, we use this relaxation
to solve (3.2.1) to optimality under an assumption on the structure of the linking
constraints. We also adapt the branch-and-price and branch-and-price-and-cut al-
gorithms to this context. Finally, in Section 3.2.2.3, reposing on a reformulation

138
Chapter 3. Decomposition approaches for uncertain optimization

problems

of (3.2.1) in an extended space, we generalize the results of Section 3.2.2.2 to cases
where the assumption on the structure of linking constraints does not hold.

3.2.2.1 A computationally convenient relaxation

We define, for x ∈ X , the set

Ȳ(x) = {y ∈ conv(Y) |Hy ≤ d− Tx1} .

Figure 3.2.3 illustrates the sets conv(Y(x)) and Ȳ(x) on an example with two
binary variables. As the illustration suggests, conv(Y(x)) is a subset of Ȳ(x). We
formalize this result in the following proposition.

conv(Y(x))Ȳ(x)

Figure 3.2.3: Sets conv(Y(x)) and Ȳ(x) illustrated on an example. Here, Y(x) =

{y ∈ {0, 1}2 | y1 + y2 ≤ 1.5− x}, Ȳ(x) = {y ∈ [0, 1]2 | y1 + y2 ≤ 1.5− x} and x = 0.

Proposition 3.2.2. For x ∈ X , we have that conv(Y(x)) ⊆ Ȳ(x).

Proof. Let y ∈ conv(Y(x)), we show that y ∈ Ȳ(x). Firstly, as conv(Y(x)) ⊆
conv(Y), then it trivially holds that y ∈ conv(Y). Further, we have that Hy ≤
d− Tx1 since y is a convex combination of points that satisfy this constraint. The
result follows.

Proposition 3.2.2 directly leads to a relaxation of problem (3.2.1) and its deter-
ministic equivalent reformulation (3.2.2). We have:

min
x∈X ,y∈conv(Y(x))

c>x+max
ξ∈Ξ

(f+Qξ)>y ≥ min
x∈X ,y∈Ȳ(x)

c>x+max
ξ∈Ξ

(f+Qξ)>y.

By replacing conv(Y(x)) with Ȳ(x) in (3.2.2), we no longer perform the convexifi-
cation operation on a set that is dependent on x ∈ X . We may therefore express the
conditions y ∈ Ȳ(x) by directly imposing the linking constraints Hy ≤ d−Tx1 on
conv(Y).

To this end, let ȳj for j ∈ L = {1, . . . , L} be the extreme point solutions of
conv(Y) and denote the n-dimensional simplex

{
α ∈ [0, 1]n

∣∣∣∑n
j=1 α

j = 1
}
for n ∈ N

by ∆n. Using this notation, we have that

Ȳ(x) =

∑
j∈L

αjȳj

∣∣∣∣∣∣H
∑
j∈L

αjȳj ≤ d− Tx1, α ∈ ∆L

 .

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 139

We may therefore write the relaxation of (3.2.1) as:

(R) : min c>x+ max
ξ∈Ξ

(f +Qξ)>
∑
j∈L

αjȳj (3.2.4)

s.t. H
∑
j∈L

αjȳj ≤ d− Tx1 (3.2.5)

x ∈ X ,α ∈ ∆L. (3.2.6)

The computational advantage of relaxation (3.2.4)-(3.2.6) is clear. After reformulat-
ing the inner maximization problem in ξ, this equivalent formulation can be solved
using a branch-and-price algorithm, adding the columns ȳj ∈ Y to the master prob-
lem as needed and branching when solutions x are fractional. We remark that unlike
in a typical branch-and-price framework, here the variables α are continuous, i.e.,
no integrality restrictions are imposed on the reformulated variables y. This is by
definition of (3.2.1) where one can choose a different recourse solution y for each re-
alization of uncertainty. For instance, for the problem of Example 3.2.1 the optimal
recourse value is found as a convex combination of solutions y1 = 1 and y2 = 1.

An alternative relaxation building on Proposition 3.2.1 was proposed by [Käm-
merling & Kurtz 2020], and used in a specialized implicit enumeration algorithm to
determine optimal solutions. This relaxation can be expressed as an exponential-size
LP model which is solved by a cutting plane algorithm. In this framework, each cut
corresponds to a complete solution of the initial problem, i.e., a pair of first- and
second-stage solutions, and expresses its cost as a linear function of uncertain pa-
rameters. The separation problem identifies the best complete solution given a fixed
vector of uncertain parameters. This approach can be used for non-linear optimiza-
tion problems, as long as it is possible to express the cost of a solution as a linear
function of the uncertain parameters. This flexibility comes at the price of having to
solve subproblems in the X ×Y space (i.e. optimize over {(x,y)|x ∈ X ,y ∈ Y(x)}),
and an ad-hoc branching scheme.

The approach presented in this section exploits the decomposition of the first and
second stages that is naturally present in the structure of problem (3.2.1). As many
decomposition approaches, it is well-suited when optimizing a deterministic function
over sets X and Y separately is significantly easier than optimizing it over X × Y.
By reposing on the well-known paradigms of Dantzig-Wolfe decomposition and the
branch-and-price algorithm, it is easier to implement in practice, especially with the
increasing availability of automatic decomposition software. However, as the pricing
of second-stage variables requires LP duality, naturally nonlinear formulations can
be handled only after an appropriate linearization.

We conclude this section by presenting an equivalent deterministic MILP for-
mulation of (R), that allows both a theoretical characterization of the complexity
of the problem, and development of solution algorithms. To do so, we first dualize
the inner maximization problem in (3.2.4)

max
ξ∈Ξ

(f +Qξ)>
∑
j∈L

αjȳj (3.2.7)

140
Chapter 3. Decomposition approaches for uncertain optimization

problems

which is a linear programming problem as we assume that Ξ is a polyhedral set. We
write, without loss of generality, that Ξ =

{
ξ ∈ RS

∣∣Aξ ≤ b} with A ∈ RS′×S and
b ∈ RS′ . Let u ∈ RS′+ be the dual variables associated with the constraints of the
uncertainty set. We then have that

max
ξ∈Ξ

(f +Qξ)>
∑
j∈L

αjȳj = f>
∑
j∈L

αjȳj + min
u∈RS′+

u>b (3.2.8)

s.t. A>u = Q>
∑
j∈L

αjȳj . (3.2.9)

Therefore the deterministic equivalent of the formulation (3.2.4)-(3.2.6) is expressed
as:

min c>x+ f>
∑
j∈L

αjȳj + u>b (3.2.10)

s.t. H
∑
j∈L

αjȳj ≤ d− Tx1 (3.2.11)

A>u = Q>
∑
j∈L

αjȳj (3.2.12)

∑
j∈L

αj = 1 (3.2.13)

x ∈ X ,α ∈ RL+,u ∈ RS
′

+ . (3.2.14)

3.2.2.2 Exact formulations based on relaxation (R)

In this section, we present two key results that enable the exact solution of problem
(3.2.1) based on relaxation (R) and its deterministic equivalent model (3.2.10)-
(3.2.14). The first result establishes certain cases where the relaxation (R) is exact,
whereas the second result provides a family of valid inequalities that cut off infeasible
solutions when this is not the case. To present them, we need the following additional
assumption.

Assumption 3.2.1. We let y = (y1, . . . , yM1 , . . . , yM)>, and we denote
y1 = (y1, . . . , yM1)> with y1 ∈ {0, 1}M1. We assume in the following that
Y(x) = {y ∈ Y |Hy1 ≤ d− Tx1}.

Assumption 3.2.1 guarantees that the set of extreme points of conv(Y(x)) is a
subset of the set of extreme points of conv(Y) as illustrated in the following example.

Example 3.2.2. Consider the second-stage feasibility set Y(x) = {y ∈ {0, 1}2 |
y1 + y2 ≤ 1.5 + 0.5x} with x ∈ {0, 1}, and its variant obtained by replacing the
binary restrictions on y by y ∈ [0, 1]× {0, 1}.

In Figure 3.2.4, we present the sets conv(Y(0)) and Ȳ(0) for these two variants.
As is clear from this figure, the set conv(Y(0)) is described by the extreme points
of conv(Y) for the first variant, whereas the additional extreme point (0.5, 1) is

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 141

(a)

(0
0) (1

0)

(0
1) (1

1)

(b)

(0.5
1)

(0
0) (1

0)

(0
1) (1

1)

conv(Y(0))Ȳ(0)Y

Figure 3.2.4: Illustration of Example 3.2.2 and the implications of Assumption 3.2.1.
In case (a), Y = {0, 1}2 and conv(Y(0)) = conv{(0

0) , (0
1) , (1

0)}, whose extreme
points are a subset of the extreme points of conv(Y). In case (b), Y = [0, 1]×{0, 1}
and conv(Y(0)) = conv{(0

0) , (0
1) , (1

0) , (0.5
1)}. The point (0.5

1) is not an extreme
point of conv(Y).

required in the description of conv(Y(0)) for the second variant. We remark that
this new extreme point is created by the intersection of the set Y with the link-
ing constraint y1 + y2 ≤ 1.5 + x. Intuitively, Assumption 3.2.1 guarantees that
the linking constraints always intersect with a lattice free set (see e.g. [Wolsey &
Nemhauser 1999]), therefore do not create additional extreme points.

Let xi for i ∈ K = {1, . . . ,K} be the extreme point solutions of conv(X).
Further let ȳj for j ∈ L = {1, . . . , L} be the extreme point solutions of conv(Y) as
before, and define, Li = {j ∈ L | Hȳj1 ≤ d − Txi1} for i ∈ K. We first present an
intermediary result that allows the characterization of conv(Y(x)) in terms of the
extreme points of the set conv(Y).

Proposition 3.2.3. conv(Y(xi)) =
{∑

j∈Li α
jȳj

∣∣∣ α ∈ ∆|Li|
}

for i ∈ K.

Proof. Given i ∈ K, let ext(Y(xi)) denote the set of extreme point solutions of
conv(Y(xi)).

Let y ∈ ext(Y(xi)) ⊆ Y(xi) =
{
y ∈ Y

∣∣Hy1 ≤ d− Txi1
}
. Since y ∈ Y, there

exists α ∈ ∆|L| such that y =
∑

j∈L α
jȳj . Further, for all r ∈ L such that αr > 0,

we must have that ȳr1 = y1, as otherwise there exists a row index ` such that∑
j∈L α

j
(
ȳj1

)
`
∈]0, 1[. It follows that Hȳr1 ≤ d − Txi1 for all r ∈ L such that

αr > 0, and therefore r ∈ Li following the definition of Li. This shows that
ext(Y(xi)) ⊆

{∑
j∈Li α

jȳj
∣∣∣ α ∈ ∆|Li|

}
, and as a consequence that conv(Y(xi)) ⊆{∑

j∈Li α
jȳj

∣∣∣ α ∈ ∆|Li|
}
.

Conversely, take any solution ȳj for j ∈ Li. By definition of the set Li, we have
that ȳj ∈ Y, and that Hȳj1 ≤ d − Txi1. It follows that ȳj ∈ Y(xi) and therefore
can be expressed as a convex combination of points y ∈ ext(Y(xi)). Therefore

142
Chapter 3. Decomposition approaches for uncertain optimization

problems{∑
j∈Li α

jȳj
∣∣∣ α ∈ ∆|Li|

}
⊆ conv(Y(xi)), proving the result.

We next present a result that characterizes a sufficient condition for the equiva-
lence between conv(Y(x)) and Ȳ(x) for x ∈ X .

Proposition 3.2.4. If H = I, T = −I and d = 0, then Ȳ(x) = conv(Y(x)) for
x ∈ X .

Proof. Under the given assumptions, Y(x) = {y ∈ Y | y1 ≤ x1}. Assume now that
there exists a solution y such that y =

∑
j∈L α

jȳj ∈ Ȳ(x) and y /∈ conv(Y(x)).
Then, we must have that

∑
j∈L α

j = 1 and
∑

j∈L|ȳj1≤x1
αj < 1 by using the char-

acterization of Proposition 3.2.3. This implies the existence of a linking constraint,
say constraint i, and an index k ∈ L such that ȳki > xi and αk > 0. Since xi ∈ {0, 1}
and ȳki ∈ {0, 1}, we must have that xi = 0 and ȳki = 1. We may therefore write,

yi =
∑
j∈L

ȳjiα
j ≥ αkȳki = αk > 0 = xi

Thus y /∈ Y(x), which contradicts the assumption that y ∈ Ȳ(x). Therefore, we
have proved Ȳ(x) ⊆ conv(Y(x)). We additionally have that conv(Y(x)) ⊆ Ȳ(x) by
Proposition 3.2.2. As a result Ȳ(x) = conv(Y(x)).

Example 3.2.3. Consider the second-stage feasibility set

Y(x) =
{
y ∈ {0, 1}2 | yi ≤ xi ∀i = 1, 2

}
with X = {0, 1}2. Let L = {1, . . . , 4} and ȳ1 = (1, 0), ȳ2 = (0, 1), ȳ3 = (0, 0), and
ȳ4 = (1, 1). Associating αj ≥ 0 with ȳj for j ∈ L, it is easy to confirm that Ȳ(x) ={∑

j∈L α
jȳj
∣∣∣α1 + α4 ≤ x1, α

2 + α4 ≤ x2,α ∈ ∆4
}
. Further, by Proposition 3.2.3,

we have that conv(Y(x)) =
{∑

j∈L ȳ
jαj
∣∣∣∑j∈L | ȳji≤xi,∀i=1,2

αj = 1,α ∈ ∆4
}
. It can

easily be verified that conv(Y(x)) = Ȳ(x) for x ∈ X . This equivalence is a direct
consequence of Proposition 3.2.4.

Problems of form (3.2.1) that satisfy Assumption 3.2.1 and have the structure
presented in Proposition 3.2.4, can be solved using the deterministic equivalent
model (3.2.10)-(3.2.14) based on relaxation (R), which, in this case, is exact. These
include, by a substitution of variables, problems with linking constraints of type y1 ≥
x1, x1 +y1 ≤ 1, x1 +y1 ≥ 1 and 1>y1 ≤ x that cover a wide range of applications.
As the number of extreme points of the set Y are in general prohibitively large,
we propose to solve this relaxation using the branch-and-price algorithm generating
columns from the set Y and branching when x1 is fractional.

We next outline the main components of this branch-and-price algorithm start-
ing with the restricted master problem. The complete branch-and-price scheme is
presented in Algorithm 3.2.1. Let us recall that ȳj for j ∈ L = {1, . . . , L} are the
extreme point solutions of conv(Y), and let LR ⊂ L. Further, assume without loss

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 143

of generality that X = {x ∈ {0, 1}N1 × RN−N1 | Gx ≤ g}. The restricted master
problem is then written as:

(MP (LR)) : min c>x+ f>
∑
j∈LR

αjȳj + u>b (3.2.15)

s.t. Gx ≤ g (3.2.16)

H
∑
j∈LR

αjȳj ≤ d− Tx1 (3.2.17)

A>u = Q>
∑
j∈LR

αjȳj (3.2.18)

∑
j∈LR

αj = 1 (3.2.19)

x ∈ [0, 1]N1 × RN−N1 ,α ∈ R|L
R|

+ ,u ∈ RS
′

+ . (3.2.20)

Let π∗, µ∗, and λ∗ be the optimal values of the dual variables associated with the
constraints (3.2.17), (3.2.18), and (3.2.19), respectively. Then the pricing problem
takes the form:

(Pricing(π∗,µ∗, λ∗)) : min
y∈Y

− λ∗ +
(
f −H>π∗ +Q>µ∗

)>
y (3.2.21)

Remark 3.2.2. The pricing problem (3.2.21) is free of the first-stage variables x.

Once the restricted master problem MP (LR) is solved to optimality, generating
columns ȳj for j ∈ L \ LR as needed, yielding the optimal relaxation solution
(x∗,α∗), one typically needs to branch in order to obtain integer solutions. As the
integrality of variables y is not required in this case, we branch only on fractional
x1 variables. Let i ∈ {1, . . . , N1} such that x∗i ∈]0, 1[. The branching constraints
x∗i ≤ 0 and x∗i ≥ 1 are added to the restricted master problem, for the left and
right children of the current node, respectively. These constraints do not affect the
pricing problem.

We now turn our attention to the case where conv(Y(x)) 6= Ȳ(x) for some
x ∈ X . We motivate our main result with the following example.

Example 3.2.4. Consider the second-stage feasibility set

Y(x) = {y ∈ {0, 1}2 | 1>y ≤ 1, x1 + 2x2 + y1 + y2 ≥ 1.9}

with X = {x ∈ {0, 1}2 | 1>x ≤ 1}. Let L = {1, . . . , 3} and ȳ1 = (1, 0), ȳ2 = (0, 1)

and ȳ3 = (0, 0). Let us consider x∗ = (1, 0) and associate αj ≥ 0 with ȳj for j ∈ L.
We have that Ȳ(x∗) =

{∑
j∈L α

jȳj
∣∣∣ α1 + α2 ≥ 0.9,α ∈ ∆3

}
. Further we have,

144
Chapter 3. Decomposition approaches for uncertain optimization

problems

by Proposition 3.2.3, that

conv(Y(x∗)) =

∑
j∈L

αjȳj

∣∣∣∣∣∣∣
∑

j∈L|ȳj1+ȳj2≥0.9

αj = 1, α ∈ ∆3

=

∑
j∈L

αjȳj

∣∣∣∣∣∣ α1 + α2 = 1, α ∈ ∆3

 .

It is clear that conv(Y(x∗)) 6= Ȳ(x∗). More specifically, in Ȳ(x∗), one can use the
extreme point ȳ3 = (0, 0) /∈ Y(x∗) with α3 ≤ 0.1, whereas α3 = 0 in conv(Y(x∗)).
To establish an equivalence between conv(Y(x)) and Ȳ(x), one needs to forbid the
use of extreme point ȳ3 in Ȳ(x∗). This is achieved by adding the inequality α3 ≤
1 − x1 + x2 to Ȳ(x). It can be verified that, with the addition of this inequality,
Ȳ(x) = conv(Y(x)) for x ∈ X .

In the following proposition, we generalize the inequality we have introduced in
Example 3.2.4 to no-good cut type inequalities (see e.g. [Hooker 1994]). To this end,
let N = {1, . . . , N1}, and define I(x) = {i ∈ N | xi = 1} for x ∈ X . Further, let
for I ⊆ N , L(I) =

{
j ∈ L

∣∣∣Hȳj1 ≤ d− T ∑i∈I ei

}
where ei is the ith unit vector

of conforming dimensions.

Proposition 3.2.5. The inequalities∑
j∈L\L(I)

αj ≤ |I| −
∑
i∈I

xi +
∑
i∈N\I

xi ∀I ⊆ N (3.2.22)

are valid for conv(Y(x)) =
{∑

j∈L(x) α
jȳj | α ∈ ∆|L(x)|

}
.

Proof. Given x ∈ X , we show that, if α ∈ ∆|L| and
∑

j∈L α
jȳj ∈ conv(Y(x)) then

it satisfies inequalities (3.2.22). In this case, by definition of conv(Y(x)), we must
have that αj = 0 for all j ∈ L \ L(I(x)). Therefore, if I(x) = I then we have that
0 ≤ 0. Otherwise, we have that either

∑
i∈I xi < |I| or

∑
i∈N\I xi > 0. Therefore,

we have on the left-hand-side
∑

j∈L\L(I) α
j which is not greater than 1, and on the

right-hand-side |I|−
∑

i∈I xi+
∑

i∈N\I xi > 0, which is greater than 1 by integrality
of the terms involved, for all I ⊆ N , I 6= I(x).

Proposition 3.2.6. Let α ∈ ∆|L| such that
∑

j∈L α
jȳj ∈ Ȳ(x) and αj > 0 for some

j ∈ L \ L(I(x)), then there exists an inequality of form (3.2.22) that is violated.

Proof. Let, in this case, I = I(x). We have on the left-hand-side
∑

j∈L\L(I(x)) α
j >

0 and on the right-hand-side |I(x)| −
∑

i∈I(x) xi +
∑

i/∈I(x) xi = 0. Therefore,
inequality (3.2.22) with I = I(x) is violated.

Propositions 3.2.5 shows that inequalities (3.2.22) are valid for conv(Y(x)), and
Proposition 3.2.6 establishes that they are sufficient to describe conv(Y(x)) for x ∈

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 145

X . As a result we may write an equivalent formulation for (3.2.2) as follows:

min c>x+ f>
∑
j∈L

αjȳj + u>b (3.2.23)

s.t. H
∑
j∈L

αjȳj1 ≤ d− Tx1 (3.2.24)

A>u = Q>
∑
j∈L

αjȳj (3.2.25)

∑
j∈L\L(I)

αj ≤ |I| −
∑
i∈I

xi +
∑
i∈N\I

xi ∀I ⊆ N (3.2.22)

∑
j∈L

αj = 1 (3.2.26)

x ∈ X ,α ∈ ∆L,u ∈ RS
′

+ . (3.2.27)

As this formulation has an exponential number of variables and constraints, we pro-
pose to couple column generation with cut generation within a branch-and-price-
and-cut algorithm in its solution, which is described by Algorithm 3.2.1. We next
outline the main changes to the branch-and-price algorithm proposed earlier. An
initial restricted master problem and the associated pricing problem are given by
(3.2.15)-(3.2.20) and (3.2.21), respectively, assuming that LR is used as the ini-
tial set of columns and no cuts are added. Compared to our previous algorithm,
the identification of violated cuts (3.2.22), and the changes to the pricing problem
resulting from their addition need to be addressed.

We first discuss the identification of violated cuts of type (3.2.22) given a can-
didate incumbent solution (x∗,α∗) with x∗1 ∈ {0, 1}N1 . In this case, it suffices to
verify whether or not inequality (3.2.22) with I = I(x∗) is satisfied as the proof
of Proposition 3.2.6 suggests. If it is satisfied then (x∗,α∗) is accepted as an in-
cumbent solution and the current upper bound is updated. Otherwise, the cut∑

j∈L\L(I(x∗)) α
j ≤ |I(x∗)| −

∑
i∈I(x∗) xi +

∑
i∈N\I(x∗) xi is added to the current

restricted master. We remark that, identifying columns that are not feasible for a
given first-stage solution x (j ∈ L \ L(I(x))) is not complicated, as it suffices to
verify whether or not Hȳj1 ≤ d−T

∑
i∈I(x) ei for current columns in the restricted

master.
On the other hand, handling the changes induced by the introduction of cuts

(3.2.22) in the pricing problem is more computationally demanding. Consider a
subset of cuts (3.2.22) added to the restricted master MP (LR):∑

j∈L\L(I)

αj ≤ |I| −
∑
i∈I

xi +
∑
i∈N\I

xi ∀I ∈ NR. (3.2.28)

Let η∗I be the optimal value of the dual variable associated to I ∈ NR. The pricing
problem (3.2.21) takes the form

min
j∈L

−
∑

I∈NR|j /∈L(I)

η∗I − λ∗ +
(
f −H>π∗ +Q>µ∗

)>
ȳj . (3.2.29)

146
Chapter 3. Decomposition approaches for uncertain optimization

problems

Casting this problem as a mixed integer linear optimization problem over Y raises
the issue of linearizing the first term in the objective function, which accounts for
the dual values corresponding to added cuts (3.2.22) in which the new column will
be involved. To this end, consider the indicator variable zI for I ∈ NR that takes
value 1 if and only if ȳj ∈ L \ L(I), i.e., Hȳj1 + T

∑
i∈I ei − d > 0. The updated

pricing problem then takes the form

(Pricing′(π∗,µ∗, λ∗,η∗)) : min −
∑
I∈NR

η∗IzI − λ∗ +
(
f −H>π∗ +Q>µ∗

)>
y

(3.2.30)

s.t. MzI ≥Hȳj1 + T
∑
i∈I

ei − d ∀I ∈ NR

(3.2.31)

y ∈ Y, zI ∈ {0, 1}|N
R| (3.2.32)

where M is a sufficiently large constant.

Branch-and-price-and-cut algorithm Algorithm 3.2.1 summarizes the branch-
and-price-and-cut procedure proposed to solve problem (3.2.1) through its reformu-
lation (3.2.23)-(3.2.27). Line 1 initializes the set of columns, LR, so that the re-
stricted master problem is feasible. To do so, one can use any feasible solution of
(3.2.1). In the relatively rare applications where no trivial feasible solutions exist,
one can solve the deterministic counterpart of the problem obtained by fixing an
arbitrary scenario. Alternatively, the phase 1 simplex algorithm is used in that pur-
pose for column generation approaches in more general contexts. The best primal
bound found, PrimalBound, the best feasible solution found, S∗, and the subset
of no-good cuts (3.2.22), NR, are initialized in Line 2. Each node is encoded as
the set of branching constraints, B, defining the set of solutions of that node. The
list of open nodes, Q, is thus initialized in Line 2 with the root node, that has
no branching constraints. Loop 3-19 processes the open nodes. The solution of
the relaxation at the current node is computed in Line 5. If the solution satis-
fies the integrality requirements (Line 10), we check whether it satisfies constraints
(3.2.22) (Line 11-12). Note that this is always the case when Assumption 3.2.1
and the conditions of Proposition 3.2.4 hold, so that Lines 11-16 can be replaced
by line 13 only, where PrimalBound and S∗ are updated. If the current second-
stage solution y∗ is not compatible with the current first-stage solution x∗, i.e.,
y∗ =

∑
j∈Lα

∗jȳj /∈ convY(x∗), Line 15 adds the constraint excluding this solution.
In this case, the node is put back in the list of open nodes in Line 16. When x∗1 is
not integer, branching is performed in Lines 18 and 19.

Algorithm 3.2.2 depicts the column generation procedure used to compute the
relaxation at each node of the search tree in Line 5 of Algorithm 3.2.1. The loop
1-8 adds new columns to the restricted master MP (LR) until no negative reduced
cost column is found. Model MP (LR) is solved in Line 2, providing optimal dual
variables that are used as input to the pricing problem in Line 4. Lines 6-7 add a

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 147

Algorithm 3.2.1: Branch-and-price-and-cut algorithm for solving problem
(3.2.22)-(3.2.27). In the special case where Assumption 3.2.1 as well as
Proposition 3.2.4 hold, the test in line 12 is always true and lines 11-16 can
be replaced by line 13 only.
1 Choose LR and (ȳj)j∈LR such that (3.2.15)-(3.2.20) is feasible
2 PrimalBound←∞, S∗ ← ∅ , NR ← ∅, Q ← {∅}
3 while Q 6= ∅ do
4 Pop a node/set of branching constraints B from Q
5 (x∗,u∗,α∗)← optimizeRelaxation(B,LR,NR)

6 DualBound← c>x∗ + f>
∑

j∈Lα
∗jȳj + u∗Tb

7 if DualBound ≥ PrimalBound then
8 Current node is pruned by bound
9 else

10 if x∗1 ∈ {0, 1}N1 then
11 I ← {i ∈ {1, . . . , N1} : x∗i = 1}
12 if

∑
j∈L\L(I) α

∗j ≤ |I| −
∑

i∈I x
∗
i +

∑
i∈N\I x

∗
i then

13 Update PrimalBound and S∗ with DualBound and
(x∗,u∗,α∗)

14 else
15 Add the no good cut NR ← NR ∪ {I}
16 Q ← Q∪ B

17 else
18 Choose i ∈ {1, . . . , N1} such that x∗i ∈]0, 1[

19 Add two nodes B0 = B ∪ {xi = 0} and B1 = B ∪ {xi = 1} to Q

20 return S∗, an optimal solution of (R)

new column to MP (LR) if the pricing problem returns a column with a negative
reduced cost. When Assumption 3.2.1 as well as Proposition 3.2.4 hold there is no
need for Constraints (3.2.28), so that the pricing problem in Line 4 can be replaced
with (Pricing(π∗,µ∗, λ∗)). The left-hand-side of the tests in Lines 6 and 8 takes
the simpler form −λ∗ +

(
f −H>π∗ +Q>µ∗

)>
y∗.

We conclude this section by comparing the branch-and-price-and-cut approach
to the methodologies presented under the name constraint-and-column generation
in the literature (see [Zhao et al. 2013]). In constraint-and-column generation, a
deterministic equivalent formulation inspired by stochastic programming is dynam-
ically constructed. In this scheme, a block of variables and constraints is appended
to the master problem for each violated scenario. As a result, columns correspond
to variables yξ, associated to each violated scenario ξ, for which the values should
be determined by the solution of the master. The constraints correspond to the set
of linking constraints and constraints describing Y for each yξ (which renders the
on-the-fly generation difficult). Further, violated scenarios are identified by solving

148
Chapter 3. Decomposition approaches for uncertain optimization

problems

Algorithm 3.2.2: optimizeRelaxation(B,LR,NR): column generation
algorithm for computing the dual bound at each node of the search tree
when solving (3.2.22)-(3.2.27). In the special case where Assumption 3.2.1
as well as Proposition 3.2.4 hold, the algorithm takes a simpler form.
Input: B: set of branching constraints, LR: set of indices of columns, NR:

set of no-good cuts
1 repeat
2 Solve (MP (LR)) with additional branching constraints B and no-good

cuts NR

3 Let (x∗,u∗,α∗) be the optimal solution and π∗, µ∗, λ∗ and η∗ be the
optimal dual variables associated with the constraints (3.2.17),
(3.2.18), (3.2.19) and (3.2.28)

4 Solve (Pricing′(π∗,µ∗, λ∗,η∗))

5 Let (y∗, z∗) be the optimal solution
6 if −

∑
I∈NR η∗Iz

∗
I − λ∗ +

(
f −H>π∗ +Q>µ∗

)>
y∗ < 0 then

7 LR ← LR ∪ {|LR|+ 1}, ȳ|LR| ← y∗

8 until −
∑
I∈NR η∗Iz

∗
I − λ∗ +

(
f −H>π∗ +Q>µ∗

)>
y∗ ≥ 0

9 return (x∗,u∗,α∗)

a bilinear problem, which can be very challenging. On the other hand, we propose to
generate columns that correspond to the extreme points of Y, and generate at most
one cut of type (3.2.22) for each candidate solution. The difficulty of the pricing
problem is the same as optimizing a linear function over the set Y.

3.2.2.3 An exact extended deterministic equivalent formulation

The results of Section 3.2.2.2 allow the exact solution of problem (3.2.1) when As-
sumption 3.2.1 is satisfied, i.e., when the linking constraints are expressed only in
terms of the binary variables in the set Y. In this section, we propose a refor-
mulation in an extended space that enables us to exploit those results even when
problem (3.2.1) does not naturally present in a form that satisfies this assumption.
In other words, we present an alternative formulation of the recourse feasible re-
gion Y(x), that allows transforming problem (3.2.1) into a problem that satisfies
Assumption 3.2.1. The reformulation we propose additionally produces problems
that satisfy the assumptions of Proposition 3.2.4. The main result of this section
is therefore showing that problem (3.2.1) can be solved using the branch-and-price
algorithm of Section 3.2.2.2 regardless of the structure of the linking constraints
after an appropriate reformulation of the set Y(x).

To this end, let z ∈ {0, 1}N1 , and consider the reformulation of the recourse
feasible region as

Y ′(x) =
{
y ∈ Y, z ∈ {0, 1}N1

∣∣Hy ≤ d− Tz, z ≤ x1, z ≥ x1

}
,

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 149

essentially incorporating a copy of the first-stage decision variables x1 and the link-
ing constraints Hy ≤ d − Tx1 to the recourse feasible region. We remark that it
suffices to copy only those first-stage variables that are involved in the linking con-
straints. The advantage of this reformulation is that, the constraints Hy ≤ d−Tz
are expressed purely in terms of recourse variables and therefore can be incorporated
to the subproblem. The new linking constraints z = x1 ensure that the generated
columns belong to the set conv(Y(x)) for x ∈ X .

Example 3.2.5. Consider the second-stage feasibility set

Y(x) =
{
y ∈ [0, 1]× {0, 1} y1 + y2 ≤ 1.5 + 0.5x

}
with X = {0, 1}. Here the linking constraints do not follow Assumption 3.2.1. It
turns out that Ȳ(x) 6= conv(Y(x)) for x ∈ X . This is illustrated in Figure 3.2.5(a)
for x∗ = 0, where conv(Y(0)) = {y ∈ [0, 1]2 | y1 + 0.5y2 ≤ 1} and Ȳ(0) = {y ∈
[0, 1]2 | y1 + y2 ≤ 1.5}.

(a) (b)

conv(Y(x∗))/conv(Y ′(x∗))Ȳ(x∗)/Ȳ ′(x∗)Y/Y ′

Figure 3.2.5: Illustration of Example 3.2.5. Given the same first-stage solution
x∗ = 0, sets Ȳ(x∗) and conv(Y(x∗)) are depicted for two different formulations of
the second stage. In part (a), the formulation Y(x) does not follow Assumption 3.2.1,
whereas the reformulation Y ′(x) in part (b) does.

Consider now the extended formulation obtained by creating a copy of the variable
x in the second-stage feasible region, we write:

Y ′(x) =

{
(y, z) ∈ [0, 1]× {0, 1}2 y1 + y2 ≤ 1.5 + 0.5z

z = x

}
.

In this reformulation the constraint y1 + y2 ≤ 1.5 + 0.5z is part of the definition of
the set Y. We have that conv(Y) = {(y, z) ∈ [0, 1]3 | y1 + 0.5y2 ≤ 1 + 0.5z} which
is illustrated in grey in Figure 3.2.5(b). It follows that, Ȳ ′(x) = {(y, z) ∈ conv(Y) |
z = x} = {(y, z) ∈ [0, 1]3 | y1 + 0.5y2 ≤ 1 + 0.5z, z = x}. As a result, Ȳ ′(x∗) is
the face highlighted in red in Figure 3.2.5(b) which is also equal to conv(Y ′(x∗)).
Indeed, it follows that Ȳ ′(x) = conv(Y ′(x)) for x ∈ X by Proposition 3.2.4 as the
new linking constraint z = x follows its assumptions.

150
Chapter 3. Decomposition approaches for uncertain optimization

problems

Let Y ′ =
{
y ∈ Y, z ∈ {0, 1}N1

∣∣Hy ≤ d− Tz} and (ȳ, z̄)j for j ∈ L′ =

{1, . . . , L′} be the extreme point solutions of conv(Y ′). We may then write problem
(3.2.2) as:

min c>x+ f>
∑
j∈L′

αjȳj + u>b (3.2.33)

s.t. x1 =
∑
j∈L′

αj z̄j (3.2.34)

A>u = Q>
∑
j∈L′

αjȳj (3.2.35)

∑
j∈L′

αj = 1 (3.2.36)

x ∈ X ,α ∈ RL
′

+ ,u ∈ R>+. (3.2.37)

Formulation (3.2.33)-(3.2.37) provides a generic formulation for problem (3.2.1),
where the linking constraints (3.2.34) involve only binary second-stage variables,
i.e., satisfy Assumption 3.2.1, and satisfy assumptions of Proposition 3.2.4 (writing
z ≤ x1 and z ≥ x1). It can therefore be solved using the branch-and-price algorithm
(Algorithm 3.2.1), generating columns from the set Y ′, and branching when the
variables x1 are fractional.

Although formulation (3.2.33)-(3.2.37) has desirable theoretical properties, its
numerical efficiency depends on the dimension of the reformulation Y ′(x). To this
end, we remark that the ideas presented in this section can be used for a subset of the
x1 variables. Indeed, it suffices to create copies of those first-stage variables that are
involved in linking constraints that do not satisfy Assumption 3.2.1 or the conditions
of Proposition 3.2.4. We conclude this section with an example illustrating this idea.

Example 3.2.6. Consider the second-stage feasibility set

Y(x, x0) =

{
y ∈ {0, 1}2 y1 + y2 ≤ 1.5 + 0.5x0

yi ≥ xi ∀i = 1, 2

}
with X = {0, 1}3. Here the linking constraints follow Assumption 3.2.1. How-
ever, the linking constraint y1 + y2 ≤ 1.5 + 0.5x0 does not follow the assumption
of Proposition 3.2.4, although constraints yi ≥ xi for i = 1, 2 do. We remark that
Ȳ(x) 6= conv(Y(x)) for x ∈ X .

Consider x∗ = (0, 0, 0). We have that conv(Y(x∗)) = {y ∈ [0, 1]2 | y1 + y2 ≤ 1}
and that Ȳ(x∗) = {y ∈ [0, 1]2 | y1 +y2 ≤ 1.5}. This is illustrated in Figure 3.2.6(a).

Consider now the extended formulation obtained by creating a copy of the variable
x0 in the second-stage feasible region, we write:

Y ′(x, x0) =

 (y, z) ∈ {0, 1}3
y1 + y2 ≤ 1.5 + 0.5z

yi ≥ xi ∀i = 1, 2

z = x0

 .

In this reformulation the constraint y1+y2 ≤ 1.5+0.5z0 is part of the definition of the
set Y. We have that conv(Y ′) = {(y, z) ∈ [0, 1]3 | y1 +y2 ≤ 1+z} which is illustrated

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 151

in grey in Figure 3.2.5(b). It follows that, Ȳ ′(x) = {(y, z) ∈ conv(Y) | yi ≥ xi ∀i =

1, 2, z = x0} = {(y, z) ∈ [0, 1]3 | y1 + y2 ≤ 1 + z, yi ≥ xi ∀i = 1, 2, z = x0}. As a
result, Ȳ ′(x∗) is the face highlighted in red in Figure 3.2.5(b) which is also equal to
conv(Y ′(x∗)). Indeed, Ȳ ′(x) = conv(Y ′(x)) for x ∈ X by Proposition 3.2.4 as the
new linking constraint z = x0, along with the linking constraints yi ≥ xi for i = 1, 2

follow its assumptions.

(a) (b)

conv(Y(x∗))/conv(Y ′(x∗))Ȳ(x∗)/Ȳ ′(x∗)Y/Y ′

Figure 3.2.6: Illustration of Example 3.2.6. Given the same first-stage solution x∗ =

(0, 0, 0), sets Ȳ(x∗) and conv(Y(x∗)) are depicted for two different formulations of
the second stage. In part (a), the formulation Y(x) does not follow Proposition 3.2.4,
whereas the reformulation Y ′(x) in part (b) does.

3.2.2.4 Reformulation through enumeration

In this section, we present an alternative formulations of (3.2.1) in certain special
cases. It is based on the idea of enumerating the first- and second-stage feasible so-
lutions and creating an uncertainty vector corresponding to each first-stage solution.
Writing such a formulation in theory for pure binary sets X and Y is always possi-
ble but in practice is only viable when X and Y are easily enumerable. Although
direct solution of this formulations is extremely time/memory consuming for larger
instances, it provides benchmarks for evaluating the computational efficacy of the
column generation-based approach proposed above. In this section, we assume that
X and Y are pure binary sets. Let us denote by xi, for i ∈ K = {1, . . . ,K}, the
feasible solutions of X . For i = 1, . . . ,K, let yi,j ∈ Y(xi) for j ∈ Li = 1, . . . , Li be
the feasible solutions of Y(xi). We write

max θ (3.2.38)

s.t. θ ≤ θi ∀i ∈ K (3.2.39)

θi ≤ cTxi + (f +Qξi)Tyi,j ∀i ∈ K, j ∈ Li (3.2.40)

ξi ∈ Ξ ∀i ∈ K. (3.2.41)

Proposition 3.2.7. Linear program (3.2.38)-(3.2.41) is a formulation of (3.2.1).

152
Chapter 3. Decomposition approaches for uncertain optimization

problems

Proof. Consider a first-stage feasible solution xi ∈ X . We write the inner optimiza-
tion problem corresponding to this solution:

max
ξi∈Ξ

min
y∈Y(xi)

(f +Qξi)Ty

and its corresponding epigraph formulation by enumerating the feasible solutions of
Y(xi):

max
θi∈R,ξi∈Ξ

θi

s.t. θi ≤ (f +Qξi)Tyi,j ∀j ∈ Li

As a result, we may write the objective value of the solution xi as

max
θi∈R,ξi∈Ξ

θi

s.t. θi ≤ cTxi + (f +Qξi)Tyi,j ∀j ∈ Li.

Problem (3.2.1) can then be expressed as

min
i∈K

θi

s.t. θi ≤ cTxi + (f +Qξi)Tyi,j ∀j ∈ Li
ξi ∈ Ξ

or equivalently,

max θ

s.t. θ ≤ θi ∀i ∈ K
θi ≤ cTxi + (f +Qξi)Tyi,j ∀i ∈ K, ∀j ∈ Ki
ξi ∈ Ξ ∀i ∈ K

3.2.2.5 Reformulation through dynamic programming

In this section, we present another reformulation assuming that an extended lin-
ear programming formulation for the recourse problem exists. This is, for instance,
the case if there exists a dynamic programming equivalent (presumably in a much
higher dimensional space) that can be cast as a shortest path problem on an ap-
propriately defined network (see e.g. [Martin et al. 1990]). As we assume that
the linear programming relaxation is integral, in this case conv(Y(x)) = Y(x) for
x ∈ X . Therefore we may directly write the deterministic equivalent (3.2.2) replac-
ing conv(Y(x)) by its linear programming equivalent. We illustrate this idea below
in the case of dynamic programs written as equivalent shortest path formulations
on an appropriately defined network.

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 153

Let G = (N ,A) be the network associated with the dynamic programming for-
mulation of Y(x), where N is the set of nodes and A is the set of arcs. Let further
F be the incidence matrix associated to G, φa be the flow variable associated with
arc a ∈ A and ȳai be the value of variable yi on arc a ∈ A for i = 1, . . . ,M . Then a
deterministic equivalent formulation for (3.2.1) can be written as

min cTx+ fTy + uTb (3.2.42)

s.t. Hy ≤ d− Tx1 (3.2.43)

ATu = QTy (3.2.44)

Fφ =

−1

0

1

 (3.2.45)

yi =
∑
a∈A

ȳai φa ∀i ∈ I (3.2.46)

x ∈ X ,u ∈ RT+,y ∈ [0, 1]I ,φ ∈ [0, 1]A. (3.2.47)

Clearly, the computational tractability of (3.2.42)-(3.2.47) is dependent on the size
of the network G. Unfortunately, in most applications, this size is pseudo-polynomial
at best and exponential at worst. However, one might still consider dynamic ag-
gregation/disaggregation (see e.g. [Clautiaux et al. 2017]) or state-space relaxation
techniques (see Section 1.2.3.3) to efficiently solve these models.

Therefore, formulation (3.2.42)-(3.2.47) is potentially prohibitive for practically
sized instances. However, we use it as a baseline to assess the computational efficacy
of our column generation approach.

3.2.3 Complexity results

Min-max-min problems, even with linear objective and constraints, are in general
(most probably) harder than NP-complete problems (i.e., in the second or third level
of the polynomial hierarchy). Falling into this category, two-stage robust problems
with integer recourse are often suspected to be outside of class NP. For example,
in [Bertsimas et al. 2013b], the authors study such a robust network flow problem
which is shown to be NP-hard and yet admits a strong dual. To explain this odd
situation, they conjecture that the problem and its dual are respectively ΣP

2 - and ΠP
2 -

complete. As a second example, [Deineko &Woeginger 2010] show that a special case
of the min-max regret knapsack problem with uncertain objective is ΣP

2 -complete.
In this section, we show that despite the three-level structure of problem (3.2.1),

it is NP-complete. First, formulation (3.2.10)-(3.2.14) reveals that the problem of
solving (R) actually lies inside the class NP (Proposition 3.2.8). Second, Section
3.2.2.3 shows that any problem of form (3.2.1) can be reformulated (by adding a
polynomial number of variables and constraints) as a problem for which relaxation
(R) is exact. Therefore, problem (3.2.1) is NP-complete (Theorem 3.2.10) as it
can be solved through its (exact) relaxation (R) using model (3.2.10)-(3.2.14) or

154
Chapter 3. Decomposition approaches for uncertain optimization

problems

model (3.2.33)-(3.2.37). In the following, we formalize these results starting with
the decision problem associated to solving (R).

Problem: Relaxed Two Stage Robust MILP (R2SRMILP)
Input data: Integer η, positive integers N = p+ p′, N ′,M = q + q′,M ′,M ′′, S, S′,
first-stage data G ∈ ZN ′×N , g ∈ ZN ′ , c ∈ ZN , second-stage data E ∈ ZM ′′×M ,
e ∈ ZM ′′ , f ∈ ZM , Q ∈ ZM×S , linking constraints data H ∈ ZM ′×M , d ∈ ZM ′ ,
T ∈ ZM ′×N , uncertainty set data A ∈ ZS′×S , b ∈ ZS′ , such that X = {x ∈
Np×Rp

′

+ : Gx ≤ g}, Y = {y ∈ Nq ×Rq
′

+ : Ey ≤ e}, and Ξ = {ξ ∈ RS : Aξ ≤ b} are
bounded polyhedral sets. Let Ȳ(x) = conv(Y) ∩ {y : Hy ≤ d− Tx} .
Question: Does minx∈X ,y∈Ȳ(x) cTx+ maxξ∈Ξ (f +Qξ)Ty ≤ η?

Proposition 3.2.8. Problem R2SRMILP is NP-complete.

Proof. The problem is trivially NP-hard, since choosing M = 0 makes the problem
a general MILP. To show that it lies inside NP, let us assume that the answer of
R2SRMILP is Yes. It follows that there is a solution to (3.2.10)-(3.2.14), whose
cost is not larger than η. Moreover, using Carathéodory’s theorem, there exists such
a solution (x̂, û, α̂) where the number Θ of non-zero entries of α̂ is bounded above
by a polynomial of M ′ and S. Let θ(j) be the jth non-zero entry in α̂. Then, we
can build a certificate C by concatenating the significant elements of (x̂, û, α̂) and
the description of the associated columns: C =

(
x̂, û,

(
α̂θ(j)

)
1≤j≤Θ

,
(
ŷθ(j)

)
1≤j≤Θ

)
.

The description of each column ŷθ(j) requires at most M integers, so that the size
of C is bounded by a polynomial of the input data.

In order to prove the existence of a solution from a certificate C, one could verify
that it provides a solution to (3.2.10)-(3.2.14). However, checking that

(
ŷθ(j)

)
1≤j≤Θ

is indeed part of the model would require solving a NP-hard problem (checking that
each ŷθ(j) is indeed an extreme point of Y). In order to design a polynomial-time
algorithm processing C, we therefore write the equivalent formulation of (3.2.10)-
(3.2.14):

min
{
cTx+ fTy + uTb : Hy ≤ d− Tx,ATu = QTy,

x ∈ X ,y ∈ conv(Y),u ∈ RS
′

+

}
. (3.2.48)

From C, one can check that ẏ =
∑Θ

j=1 α̂
θ(j)ŷθ(j) ∈ conv(Y) by verifying that

ŷθ(j) ∈ Y for all j ∈ {1, . . . ,Θ} and
∑Θ

j=1 α̂
θ(j) = 1. This can trivially be done

in polynomial time with help of the mathematical programming representation of
Y provided as an input of R2SRMILP. It then suffices to check the cost and the
feasibility of (x̂, ẏ, û) for the rest of (3.2.48).

Remark 3.2.3. This NP-completeness result does not depend on the restrictions
over x1 imposed in the definition of (3.2.1).

As a result of Proposition 3.2.4, problems of form (3.2.1) that satisfy its assump-
tions are equivalent to (3.2.4)-(3.2.6), i.e., problem R2SRMILP, which leads to the

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 155

following complexity result.

Corollary 3.2.9. If H = I, T = −I and d = 0, or if H = I, T = I and d = 1,
then solving problem (3.2.1) is NP-complete.

Finally, the reformulation of (3.2.1) proposed in Section 3.2.2.3 allows us to show
that this problem lies inside class NP as well.

Problem: Two Stage Robust MILP (2SRMILP) with binary first-stage
variables
Input data: Integer η, positive integers N = N1 + p + p′, N ′,M = q +

q′,M ′,M ′′, S, S′, first-stage data G ∈ ZN ′×N , g ∈ ZN ′ , c ∈ ZN , second-stage
data E ∈ ZM ′′×M , e ∈ ZM ′′ , f ∈ ZM , Q ∈ ZM×S , linking constraints data
H ∈ ZM ′×M , d ∈ ZM ′ , T ∈ ZM ′×N , uncertainty set data A ∈ ZS′×S , b ∈ ZS′ ,
such that X = {x ∈ {0, 1}N1 × Np × Rp

′

+ : Gx ≤ g}, Y = {y ∈ Nq × Rq
′

+ : Ey ≤ e},
and Ξ = {ξ ∈ RS : Aξ ≤ b} are bounded polyhedral sets. Let x1 ∈ {0, 1}N1 be the
subset of binary first-stage variables, and Y(x) = {y ∈ Y : Hy ≤ d− Tx1} .
Question: Does minx∈X ,y∈Y(x) cTx+ maxξ∈Ξ (f +Qξ)Ty ≤ η?

Therorem 3.2.10. Problem 2SRMILP is NP-complete.

Proof. From any instance Π of 2SRMILP, one can build an equivalent instance Π′

satisfying Assumption 3.2.1, as shown in Section 3.2.2.3, whose size is polynomial in
the size of Π. Instance Π′ is then equivalent to the related instance of R2SRMILP.
Thus, solving any instance of 2SRMILP is equivalent to solving an appropriately
constructed instance of R2SRMILP, whose size is polynomial in the size of Π.

Remark 3.2.4. This NP-completeness result does not depend on the restrictions
over variables y. However, the restrictions posed on variables x1 in the definition
of (3.2.1) are necessary.

3.2.4 Numerical results

In this section we demonstrate the application of the methodologies developed in
Section 3.2.2 in various contexts. We present numerical results on two applications,
presenting a comparison between the branch-and-price (B&P) algorithm, and the
approaches from the K−adaptability literature with K = 2, 3, 4: the monolithic
reformulation approach presented in [Hanasusanto et al. 2015] (2-,3-,4-AdaptM),
and the semi-definite programming-based branch-and-bound algorithm presented
in [Subramanyam et al. 2020] (2-,3-,4-AdaptBB). A first application is a knapsack
variant that gives the possibility to reject/produce or repair items in the second
stage. It involves a recourse problem with knapsack-type constraints expressed
purely in terms of recourse variables along with linking constraints of type y ≤ x.
In this case, we may apply directly the result of Proposition 3.2.4 to show that the
deterministic equivalent model (3.2.10)-(3.2.14) based on relaxation (R) is exact. A
second application is centered around a variant of the capital budgeting problem

156
Chapter 3. Decomposition approaches for uncertain optimization

problems

studied previously in K-Adaptability literature (see e.g. [Hanasusanto et al. 2015],
[Subramanyam et al. 2020]). In this case, it turns out that the assumptions of
Proposition 3.2.4 are not verified. As a result, we repose on the extended formulation
proposed in Section 3.2.2.3.

To obtain optimal integer solutions to our formulations based on models (3.2.10)-
(3.2.14) and (3.2.33)-(3.2.37), we use the C++ branch-and-price library BaPCod2.
At each node of the search tree, the linear relaxation of the problem is solved using
column generation. The pricing sub-problems are solved using dynamic program-
ming algorithms, using simple array-based forward label-correcting. At most one col-
umn is added to the master program at each iteration. To improve the convergence
of the column generation procedure, we use stabilization by automatic smoothing
of the dual variables of the master program, as described in [Pessoa et al. 2018b].
When the optimal solution of the corresponding relaxation does not satisfy the inte-
grality requirements of first-stage variables x, one such fractional variable is chosen
and two child nodes are created in order to exclude its current value from the search
space. In order to reduce the size of the search tree, the branching choices are made
with help of the strong branching technique, as described in [Sadykov et al. 2019].
The open nodes are processed according to the best first rule. At the root node, and
each tenth processed node, a diving heuristic [Sadykov et al. 2019] is used to derive
a feasible solution and try to improve the best known primal bound. The diving
heuristic is used only at nodes whose depth is at most ten. The implementations of
the branch-and-price and pricing sub-problem solvers are sequential.

The branch-and-bound algorithm of [Subramanyam et al. 2020] is adapted to
each application using the authors’ implementation available online3. All mixed
integer linear programs, including mathematical models resulting from the mono-
lithic reformulation of [Hanasusanto et al. 2015] and linear programs inside the
column generation procedures, are solved using IBM ILOG Cplex 12.9, through the
C callable library, using default parameters and four threads.

All our experiments are conducted using a 2 Dodeca-core Haswell Intel Xeon
E5-2680 v3 2.5 GHz machine with 128Go RAM running Linux OS. The resources of
this machine are strictly partitioned using Slurm Workload Manager4 to run several
tests in parallel. The resources available for each run (algorithm-instance) are set to
4 threads and a 20 Go RAM limit (we remark that our branch-and-price algorithms
do not benefit from parallel processing). This virtually creates six independent
machines, each running one single instance at a time.

Sections 3.2.4.1 and 3.2.4.2 introduce the applications in detail, present the de-
tails of instances generated, and the results obtained.

2https://realopt.bordeaux.inria.fr/?page_id=2 (accessed June 2019)
3https://github.com/AnirudhSubramanyam/KAdaptabilitySolver/tree/v1.0 (accessed June

2020)
4https://slurm.schedmd.com/ (accessed June 2019)

https://realopt.bordeaux.inria.fr/?page_id=2
https://github.com/AnirudhSubramanyam/KAdaptabilitySolver/tree/v1.0
https://slurm.schedmd.com/

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 157

3.2.4.1 Two-stage robust knapsack problem

Consider a two-stage robust knapsack problem with the set of items I = {1, . . . , I}.
Each item has a weight ci and an uncertain profit p̃i ∈ [p̄i − p̂i, p̄i] for i ∈ I where
p̄i is the expected profit and p̂i is its maximum deviation. In this problem, a first
stage decision is to choose a subset of items to produce. After this choice, a profit
degradation factor ξ ∈ Ξ = {ξ ∈ RI+ |

∑
i∈I ξi ≤ Γ, 0 ≤ ξi ≤ 1} is revealed. We

define pi(ξ) = p̄i − ξip̂i for i ∈ I. After observing the profit degradation, there are
three possible recourse actions:

(i) Produce the item as is, using ci units of the knapsack capacity, with the
degraded profit p̄i − ξip̂i.

(ii) Repair the item, using an additional ti units of the knapsack capacity, recov-
ering the original profit p̄i.

(iii) Outsource the item, with associated profit p̄i − fi where fi is the cost of
outsourcing the item.

We next give a mathematical formulation for this problem. Let, for i ∈ I, xi
denote the decision to produce item i in the first-stage, and yi = 1, ri = 1 and
yi = 0 denote the decisions to produce without repair, repair or outsource item i in
the second-stage, respectively. We then write,

min
x∈{0,1}I

∑
i∈I

(fi − p̄i)xi + max
ξ∈Ξ

min
y,r∈Y(x)

∑
i∈I

(p̂iξi − fi)yi − p̂iξiri (3.2.49)

where

Y(x) =

 y ∈ {0, 1}I , r ∈ {0, 1}I
∑

i∈I ciyi + tiri ≤ C
yi ≤ xi ∀i ∈ I
ri ≤ yi ∀i ∈ I

 .

As the linking constraints yi ≤ xi for i ∈ I conform with the assumption of
Proposition 3.2.4, we can directly solve the deterministic equivalent formulation
(3.2.10)-(3.2.14), generating the columns from the generalized knapsack set:

Y =

{
y ∈ {0, 1}I , r ∈ {0, 1}I

∑
i∈I ciyi + tiri ≤ C

ri ≤ yi ∀i ∈ I

}
.

In this case, the pricing problem takes the form

−λ+ min
y,r∈Y

∑
i∈I

(−fi + p̂iπi − µi)yi −
∑
i∈I

p̂iπiri

which can be solved using an extension of the pseudo-polynomial dynamic pro-
gramming algorithm for the classical knapsack problem. We additionally test a K-
Adaptability approach to this problem, the associated model can be found in [Arslan
& Detienne 2021].

158
Chapter 3. Decomposition approaches for uncertain optimization

problems

Instance generation For our numerical tests we generate instances inspired by
those presented by [Pisinger 2005]. These instances are categorized as uncorrelated
(UN), weakly correlated (WC), almost strongly correlated (ASC), and strongly cor-
related (SC). For given number of items I, and parameters R = 1000, H = 100,
h ∈ {40, 80}, δ ∈ {0.1, 0.5, 1}, we generate ci ∈ [1, R] for i ∈ I and C = h

H+1

∑
i∈I ci.

The profit p̄i for i ∈ I is then generated based on the category of instances as follows:
p̄i = [1, R] for UN, p̄i ∈ [ci− R

20 , ci+
R
20] for WC, p̄i ∈ [ci+

R
10−

R
1000 , ci+

R
10 + R

1000] for
ASC, and p̄i = ci + R

10 for SC. Based on p̄i, the maximum degradation factor p̂i for
i ∈ I is generated in the interval [p̄i(1−δ)/2, p̄i(1+δ)/2] and the penalty of rejecting
an item fi for i ∈ I is generated in the interval [1.1p̄i, 1.5p̄i]. Finally, repair capacity
ti for i ∈ I is generated depending on the category of instances as follows: ti ∈ [1, ci]

for UN, ti ∈ [0.5p̂i− R
40 , 0.5p̂i + R

40] for WC, ti ∈ [0.5p̂i + ci
10 −

R
1000 , 0.5p̂i + ci

10 + R
1000]

for ASC, and ti = 0.5p̂i + ci
10 for SC.

Results In this section, we present our results on instances generated as described
above. We solve instances with I ∈ {20, 30, 40, 50, 60, 70, 80} and generate 72 in-
stances for each value of I, 18 in each instance category (UN,WC,ASC,SC), corre-
sponding to each combination of the parameters h ∈ {40, 80}, δ ∈ {0.1, 0.5, 1}, and
the uncertainty budget Γ ∈ {0.1I, 0.15I, 0.2I}.

We start by presenting, in Table 3.2.1, our results for 20-item instances with
all solution methods considered. For these instances the time limit was set to 1
hour. In Table 3.2.1, #Conv represents the number of instances for which each
method converged within the time limit. Time* represents the solution time (when
converged) divided by the solution time of the branch-and-price algorithm. Con-
vGap(%) represents the percentage optimality gap reported by each method, that
is the gap between the best primal and dual bounds found by the corresponding
algorithm. OptGap(%) represents the percentage gap between the best primal so-
lution reported by each method versus the optimal solution of the branch-and-price
algorithm. #BestSol represents the number of instances for which each method was
able to find the best primal solution, and #NotBestSol represents the number of
instances for which this was not the case.

As can be seen in the first column of Table 3.2.1, the branch-and-price algorithm
converged for all instances considered, while the monolithic approach of [Hanasu-
santo et al. 2015] converged for 41 when K = 2 and 8 when K = 3. This method
did not converge for any of the instances considered when K = 4. Similarly, the
branch-and-bound algorithm of [Subramanyam et al. 2020] converged for 44, 12 and
2 instances when K = 2, 3, and 4, respectively. A comparison of the average solution
time for the branch-and-price algorithm to that of the other methods reveals the
numerical promise of this approach. Not only did it solve the instances considered
exactly, but it did so at least two orders of magnitude faster than other methods.
On the other hand, although the gaps reported (ConvGap(%)) by K−adaptability
methods were large, the primal solutions provided by these methods were on average
within 1% (OptGap(%)) of the optimal solution provided by the branch-and-price

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 159

#Conv Time* ConvGap(%) OptGap(%) #BestSol #NotBestSol
B&P 72 1 0 0 72 0

DP-based 35 2611.55 50.92 23.95 41 28
2-AdaptM 41 468.26 9.72 0.61 16 56
3-AdaptM 8 5019.24 29.52 0.53 17 55
4-AdaptM 0 - 40.32 0.66 16 56
2-AdaptBB 44 613.21 2.87 0.61 14 58
3-AdaptBB 12 3951.08 3.87 0.32 16 56
4-AdaptBB 2 3145.44 4.59 0.24 19 53

Table 3.2.1: A summary of 20-item instance results with 8 different solution methods
and 1 hour time limit. Solution time ratios are reported as an average over instances
solved to convergence within the time limit. Convergence gaps are reported as an
average over instances not solved to convergence within the time limit. Optimality
gaps are reported as an average over 72 instances.

algorithm.
The column #BestSol provides further insight to this observation. It reveals

that the optimal solution of the branch-and-price algorithm coincided with that of
K−adaptability methods for a number of instances, which may happen when there
exists an optimal solution which can be represented with at most K active columns.
This reveals finite adaptability as a good approximation method for finding near-
optimal solutions, at least for the problem, and the 20-item instances considered.

Finally, we remark that although the average gap of the dynamic programming
based formulation is very large, this method was able to find the optimal solution
for 41 of the 72 instances considered (and was able to prove optimality for 35).
The large gap reported is explained by a few instances where this method was not
able to find a primal solution and therefore had poor relative gaps. Indeed, if the
calculation of this gap is restricted only to those instances where a primal solution
is found then the gap for the DP-based method is %5.04. Additionally, for 3 of the
instances considered, the memory limitations were reached, hence the discrepancy
in the sum of the columns #BestSol and #NotBestSol (41 + 28 6= 72).

In Figure 3.2.7, we provide the performance profile for five of the methods con-
sidered, plotting the number of 20-item instances for which the method converged
versus the time (expressed in logarithmic scale). We remark that theK-Adaptability
approaches with K = 4 were excluded as the number of instances solved to con-
vergence was very small. This plot further confirms the numerical promise of the
branch-and-price algorithm. It also shows that among the other methods considered
the most promising is 2−Adaptability.

Despite its lack of scalability, the DP-based formulation could be considered as
an interesting alternative for solving the problem exactly, since it provides better
solutions than 3-Adaptability in a shorter computing time.

We therefore further compare these three methods (B&P, 2-AdaptM, 2-AdaptBB)
on 30-item instances, with a 2-hour time limit. The results are presented in Ta-

160
Chapter 3. Decomposition approaches for uncertain optimization

problems

0.1 1 10 100 1,000
0

10

20

30

40

50

60

70

Time (seconds)

#
in
st
an

ce
s
so
lv
ed

Branch-and-price
2-AdaptM
3-AdaptM
2-AdaptBB
3-AdaptBB

DP-based formulation

Figure 3.2.7: Performance profile comparing six methods for 20-item instances of the
Robust Knapsack problem. Results for 4-Adaptability model are not shown since
this method does not converge for any of the 20-item instances within the one-hour
time limit.

ble 3.2.2 where the headers are kept the same as Table 3.2.1. The branch-and-price
approach converges for 65 of the 72 instances considered whereas 2-AdaptM and
2-AdaptBB methods are able to converge for only 12 and 11 instances, respectively.
Interestingly, the primal solutions provided by the 2-Adaptability approach are still
within %1 of optimality, with each method providing a better solution in 6 of the
instances.

We next explore the limits of the column generation-based approach with in-
creasing number of items. In Table 3.2.3, we report our results for instances with
I ∈ {20, 30, 40, 50, 60, 70, 80}, where starting from 40-item instances the time limit
was set to 3 hours. We report the number of instances solved to optimality (#Opt),
the average optimality gap reported (AvgGap (%)), and the maximum optimality
gap reported among the instances considered (MaxGap(%)). The results show that
starting from 50-item instances the 3-hour time limit was not sufficient although

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 161

#Conv Time* ConvGap(%) OptGap(%) #BestSol #NotBestSol
B&P 65 1 3.24 0 67 5

2-AdaptM 12 2886.42 21.98 0.63 6 66
2-AdaptBB 11 191.07 3.67 0.60 6 66

Table 3.2.2: A summary of 30-item instance results with branch-and-price algorithm
and 2-Adaptability, and 2-hour time limit. Solution time ratios are reported as an
average over instances solved to convergence before the time limit only. Convergence
gaps are reported as an average over instances not solved to convergence before the
time limit. Optimality gaps are reported as an average over 72 instances.

the average optimality gap was below %5, with the maximum optimality gap being
around %11. Moreover, the branch-and-price algorithm found a feasible solution for
all the instances considered. We finally remark that, as observed by [Pisinger 2005],
introducing correlation between the parameters of the problem renders the solution
more difficult. Indeed, starting from 60-item instances no correlated instances were
solved to optimality within the time limit.

I = 20 I = 30 I = 40 I = 50 I = 60 I = 70 I = 80

#Opt 72 65 49 35 22 18 18
AvgGap(%) 0 3.24 3.37 3.92 3.43 4.16 4.49
MaxGap(%) 0 6.75 7.8 9.44 11.21 10.97 9.91

Table 3.2.3: Summary of results for the branch-and-price algorithm: number of
instances solved to optimality within the time limit (#Opt), average (AvgGap) and
maximum (MaxGap) optimality gaps for unsolved instances.

We conclude this section with an analysis of the value gained by considering an
exact solution method rather than the K−adaptability approach. In Table 3.2.4,
we present the percentage difference between the objective values of the best pri-
mal solution found by the branch-and-price algorithm versus the K−Adaptability
methods at the end of the time limit. This difference is calculated as 2 ∗ zCG−zK

zCG+zK
,

and is reported only for those instances where the optimal branch-and-price solution
had at least 2 active columns. Based on these results, the average percentage gap is
below %1, whereas the maximum gap is around %2 for the 2-Adaptability method.
One can expect the gaps to be smaller for 3- and 4-adaptable solutions when the
method is given enough time to converge.

Although the gains reported in Table 3.2.4 are rather small, we would expect
this number to increase as the number of items increases. Indeed, an indicator of
the difference between K−adaptability and an exact approach is the number of
active columns (i.e., second-stage solutions that are active for the optimal solution
of the adversarial problem). In our experiments, for 20-item instances, most exact
solutions used less than 9 active columns. On the other hand, for larger instances,
the best primal solution of the branch-and-price algorithm mostly used between 10
and 40 active columns.

162
Chapter 3. Decomposition approaches for uncertain optimization

problems

Average Max
I = 20 I = 30 I = 20 I = 30

2-AdaptM 0.78 0.75 1.98 2.12
3-AdaptM 0.67 - 4.19 -
4-AdaptM 0.79 - 4.81 -
2-AdaptBB 0.78 0.73 1.98 2.35
3-AdaptBB 0.41 0.54 1.39 2.29
4-AdaptBB 0.31 0.53 1.40 2.35

Table 3.2.4: Percentage profit gain by an exact approach when the number of active
columns is at least 2.

3.2.4.2 Capital budgeting problem

Consider an investment planning problem where a company can allocate an in-
vestment budget of B to a subset of projects i ∈ N = {1, . . . , N} with possible
extensions to the budget with loans. Each project i ∈ N has cost ci and uncertain
profit p̃i which is modeled as a function of uncertain vector ξ ∈ Ξ of risk factors. The
company can invest in a project before or after observing the risk factors ξ ∈ Ξ. We
assume that it is also possible to obtain loans before or after the realization of uncer-
tainty, however the interest rate will be higher in the latter case. Here, we suppose
that there is one loan option each before and after the realization of uncertainty, for
an amount of C1 and C2, respectively. To model the uncertainty associated with this
problem, we assume M risk factors that reside in the hyper-rectangle Ξ = [−1, 1]M

with M << N . We model the project profits as affine functions of these factors,
p̃i(ξ) = (1 + Q>i ξ/2)p̄i. Here p̄i is the nominal cost of project i and Qi represents
the ith row of the factor loading matrix Q ∈ RN×M as a column vector. Early in-
vestments enjoy a first-mover advantage whereas a postponed investment in project
i generates only a fraction f ∈ [0, 1) of the profits p̃i. An initial formulation of the
problem is given as

max
(x,x0)∈X

−λx0 +
∑
i∈N

p̄i(xi + fyi)

+ min
ξ∈Ξ

max
(y,y0)∈Y(x)

∑
i∈N

 M∑
j=1

Qi,jξj
2

 p̄i(xi + fyi)− λµy0

with µ > 1, where X =
{

(x, x0) ∈ {0, 1}N+1 | c>x ≤ B + C1x0

}
and

Y(x) =

{
(y, y0) ∈ {0, 1}N+1 c>y − C2y0 ≤ B + C1x0 − c>x

yi ≤ 1− xi ∀i ∈ N

}
.

It is easy to verify in this case that conv(Y(x)) 6= Ȳ(x) for x ∈ X . We alter-
natively describe how columns can be generated in an extended space to create a
relaxation Ȳ(x) that is exact. To this end, we begin with reformulating the recourse

3.2. Decomposition for two-stage robust problems with mixed integer
recourse 163

problem above. We write

Y ′(x) =

{
(y, y0) ∈ {0, 1}N+1 c>y ≤ B + C1x0 + C2y0

yi ≥ xi ∀i ∈ N

}
.

In the set Y ′(x), variable yi takes value 1 if the corresponding first-stage variable xi is
equal to 1, therefore implicitly counting for the budget already allocated to first-stage
investments. With this redefinition of the set Y(x), we also change the objective
function to replace variable yi with the difference yi − xi to differentiate between
investment decisions in the first and second stage. The problem then becomes

max
(x,x0)∈X

−λx0 +
∑
i∈N

p̄i((1− f)xi + fyi)

+ min
ξ∈Ξ

max
(y,y0)∈Y ′(x)

∑
i∈N

 M∑
j=1

Qi,jξj
2

 p̄i((1− f)xi + fyi)− λµy0.

We next proceed to extending the recourse feasible region so as to include a copy
of the variable x0 reposing on the results of Section 3.2.2.3. To this end we may
write

Y ′′(x) =

 (y, y0, z0) ∈ {0, 1}N+2

c>y ≤ B + C1z0 + C2y0

yi ≥ xi ∀i ∈ N
z0 = x0

 ,

therefore defining the budget constraint c>y ≤ B + C1z0 + C2y0 purely in
terms of recourse variables. Let the extreme point solutions of the set Y ′′ ={

(y, y0, z0) ∈ {0, 1}N+2
∣∣c>y ≤ B + C1z0 + C2y0

}
be denoted by (ȳ, ȳ0, z̄0)l for l ∈

L = {1, . . . , L}. When applying the branch-and-price algorithm to this modified
problem, the budget constraint c>y ≤ B+C1x0 +C2y0 is removed from the master
problem while the constraint x0 =

∑
l∈L α

lzl0 is added. Under this reformulation
the linking constraints are x0 =

∑
l∈L α

lzl0 and
∑

l∈L α
lyli ≥ xi for i ∈ N , and they

follow the assumptions of Proposition 3.2.4. We may therefore obtain an optimal
solution of the capital budgeting problem by directly solving a deterministic equiv-
alent model based on the set Ȳ ′′(x) with the branch-and-price algorithm without
the need to add any cuts.

We additionally test a K-Adaptability approach to this problem, the associated
model can be found in [Arslan & Detienne 2021].

Instance generation For our numerical tests, we generate instances inspired by
those presented in [Hanasusanto et al. 2015]. For given number of items N , and
parameters R = 100 and H = 100, h ∈ {20, 40, 60, 80}, we generate the costs ci for
i ∈ N uniformly from the interval [1, R], and we set the nominal profits p̄ = c/5.
The components in each row of Q are generated uniformly from the unit simplex in
RM , which implies that the profits of each project can deviate up to %50 from their
nominal values. We set the investment budget to B = h

H+1

∑
i∈I ci and we assume

164
Chapter 3. Decomposition approaches for uncertain optimization

problems

that postponed investments only generate %80 of the profits, that is f = 0.8. The
loans C1 and C2 are set to %20 of the initial budget B, and the cost parameters are
chosen as λ = 0.12

5 and µ = 1.2.

Results In this section, we present our results on instances generated as described
above. We solve instances with N ∈ {10, 20, 30, 40, 50, 100} and generate 60 in-
stances for each value of N , corresponding to 5 replications for each combination of
the parameters h ∈ {20, 40, 60, 80} and M ∈ {4, 6, 8}. All instances are solved with
a 1-hour time limit.

0.1 1 10 100 1,000
0

50

100

150

200

250

300

350

Time (seconds)

#
in
st
an

ce
s
so
lv
ed

Branch-and-price
2-AdaptM
3-AdaptM
2-AdaptBB
3-AdaptBB
4-AdaptBB

Figure 3.2.8: Performance profile comparing all three methods for all instances for
the Robust Capital Budgeting problem.

We first present in Table 3.2.5 the results comparing the number of instances
for which each method has converged. Similar to our results for the robust knap-
sack instances, our results reveal the column generation-based approach to be very
effective for this problem. The exact solution method scales up very well and is
able to solve more than %95 of the instances considered. It is also 3 to 4 orders of
magnitude faster than the K−adaptability methods for larger instances. This can
be seen from the performance profile presented in Figure 3.2.8 where the number

3.3. Other contributions in optimization under uncertainty 165

of instances for which each method has converged is plotted over time presented
in logarithmic scale. Additionally, the branch-and-price algorithm found a feasible
solution for all the instances considered.

N = 10 N = 20 N = 30 N = 40 N = 50 N = 100

B&P 60 60 58 55 60 57
2-AdaptM 60 60 21 15 7 0
3-AdaptM 60 31 13 0 0 0
2-AdaptBB 60 54 30 28 20 28
3-AdaptBB 59 37 25 19 23 35
4-AdaptBB 58 27 25 24 26 35

Table 3.2.5: Number of instances solved to convergence by each method.

Finally, similar to what was done for the knapsack instances, we investigate the
number of active columns in the best primal solution reported by the branch-and-
price algorithm. In all the instances we considered the number of active columns
required was smaller than 10 (although for most large instances at least 5 columns
were required). Additionally, for instances with smaller number of items, the per-
centage of instances that required 3 columns or less was high. Accordingly, one
would expect the K−adaptability methods to provide very good approximations for
the instances considered. Indeed, our results confirmed that the 2-Adaptability gaps
were always below %1 on average (except for N = 10) although higher maximum
gaps were present.

3.3 Other contributions in optimization under uncertainty

Extension of the convexification approach to handle arbitrary linking
constraints and convex non-linear problems In [Detienne et al. Submitted],
we extend the results of [Arslan & Detienne 2021] with help of Fenchel duality and
spatial branching.

We study optimization problems where some cost parameters are not known
at decision time and the decision flow is modeled as a two-stage process within a
robust optimization setting. We address general problems in which all constraints
(including those linking the first and the second stages) are defined by convex func-
tions and involve mixed-integer variables, thus extending the existing literature to
a much wider class of problems. We show how these problems can be reformulated
using Fenchel duality, allowing to derive an enumerative exact algorithm, for which
we prove-convergence in a finite number of operations. An implementation of the
resulting algorithm, embedding a column generation scheme, is then computation-
ally evaluated on two different problems, using instances that are derived starting
from the existing literature. To the best of our knowledge, this is the first approach
providing results on the practical solution of this class of problems.

166
Chapter 3. Decomposition approaches for uncertain optimization

problems

Application of the convexification approach to two-stage robust schedul-
ing Minimizing the weighted number of tardy jobs is a classical and intensively
studied scheduling problem. In [Lefebvre et al. Under revision], we develop a two-
stage robust approach, where exact weights are known after accepting to perform the
jobs, and before sequencing them on the machine. This assumption allows diverse
recourse decisions to be taken in order to better adapt one’s tactical plan.

The contribution of this paper is twofold: first, we introduce a new scheduling
problem and model it as a min-max-min optimization problem with mixed-integer
recourse by extending existing models proposed for the classical problem where
all the costs are assumed to be known. Second, we take advantage of the special
structure of the problem to propose two solution approaches based on results from
the recent robust optimization literature, namely finite adaptability [Bertsimas &
Caramanis 2010] and a convexification-based approach [Arslan & Detienne 2021].
We also study the cost of fixing the sequence of jobs before the uncertainty is
revealed. Computational experiments to analyze the effectiveness of our approaches
are reported.

Application of robust optimization in agriculture [Arslan & Detienne In
revision] deals with robust planning and scheduling of activities in agriculture and
in particular the application of phytosanitary treatments. The crops are subject to
many diseases that may arise during different time windows of the planning horizon.
In response, a phytosanitary treatment can be applied to protect against a subset
of these diseases. However, the effective duration of some treatments is uncertain,
it depends on the type of treatment applied as well as on the weather conditions. In
this study we introduce a penalty function based approach to handle this uncertainty
without being overly conservative akin to light robustness approach proposed in the
literature. We discuss different forms for this penalty function and elaborate on
solution methodologies for the resulting models. We test the effectiveness of our
approach with realistically-sized instances, which correspond to a typical vineyard
in Bordeaux area, and present a numerical analysis of different optimization models
and solution methods.

Acceleration of Benders decomposition [Blanchot et al. Submitted] intro-
duces a new exact algorithm based on Benders decomposition to solve two-stage
stochastic linear programs. We propose to solve only a small number of subprob-
lems at each iteration, and develop a simple and exact framework thanks to the
multicut formulation of Benders decomposition. We propose two primal stabiliza-
tion methods for the algorithm and perform an extensive computational study on
six large-scale benchmarks from the stochastic optimization literature. Results show
the efficiency of the method compared to five classical alternative algorithms and
significant time savings provided by its primal stabilization. We show acceleration
factors up to 10 times faster than the best method from the literature we use for
comparison, and up to 800 times faster than IBM ILOG CPLEX 12.10 built-in

3.3. Other contributions in optimization under uncertainty 167

Benders decomposition.

Bilevel programming with risk-averse stochastic objective for energy In
[van Ackooij et al. 2018] we consider energy management optimization problems in
a future wherein an interaction with micro-grids has to be accounted for. We will
model this interaction through a set of contracts between the generation companies
owning centralized assets and the micro-grids. We will formulate a general stylized
model that can, in principle, account for a variety of management questions such as
unit-commitment. The resulting model, a bilevel stochastic mixed integer program
will be numerically tackled through a novel preprocessing procedure. As a result
the solution for the bilevel (or single leader multiple follower) problem will be nei-
ther “optimistic” nor “pessimistic”. We will numerically evaluate the difference of
the resulting solution with the “optimistic” solution. We will also demonstrate the
efficiency and potential of our methodology on a set of numerical instances.

Chapter 4

Perspectives

The work about robust optimization started a few years ago raises many questions.
In the short term, robust optimization will be studied with the aim of making

contributions from an application point-of-view.

• In the fields of reliable network design and post-disaster management where
human lives are engaged, worst-case optimization is particularly relevant. This
study will start in the framework of ANR project DESIDE, in collaboration
with Sobolev Institute and Kedge Business School and with the PhD thesis of
Komlanvi Parfait Ametana. The most appropriate settings of network-design
problems will be determined. Easy and hard cases will be identified, depending
on the set of constraints, the definition of the uncertainty sets and the possible
second-stage actions, with a focus on integer recourse. Our objectives are to
propose solution approaches (based on the robust literature in general), but
also to identify loopholes in current methodologies that need to be closed to
effectively address these kinds of problems.

• With the combination of the shortage of resources and the urging need for more
sustainable societies, the efficient production of energy is becoming more and
more important. This motivates research about the stability of the power
plant schedules in case of random events. To address these kinds of problems,
progress will have to be made more generally on the stability of solutions
of combinatorial problems when the uncertainty affects the structure of the
instance (for example, in case of significant change in a state/transition graph).
The first steps on this path will be made in collaboration with EDF through
a grant from the PGMO funding program.

In the medium term, methodological advances are sought, mainly pursuing the
work about convexification approaches.

• Constraint uncertainty in two-stage robust programs will be studied under
the angle of Lagrange and Fenchel duality. Several issues need to be resolved
investigating this approach, such as the optimization of the (potentially infinite
size-) dual problems and how to close the duality gap.

• K−adaptability [Hanasusanto et al. 2015] or min-max-min approaches [Buch-
heim & Kurtz 2017] make perfect sense in some decision processes. Moreover,
our results on fully adjustable problems show thatK−adaptability approaches
also provide excellent heuristic solutions [Arslan & Detienne 2021, Lefebvre

170 Chapter 4. Perspectives

et al. Under revision]. However, existing approaches are limited when the
number K of allowed second-stage solutions increases. This invites to investi-
gate convexification techniques for these types of problems.

In the long term, more theoretical questions and relations with related scientific
fields add up to the methodological challenges.

• Under the technical restrictions considered in [Arslan & Detienne 2021], the
problems are proven to be NP-complete. We aim at better understanding
where the frontier is between NP-complete robust optimization problems with
integer recourse and those that are (probably) outside the class NP. Also, is
this frontier tangible in terms of numerical difficulty?

• Some similar concepts are used in combinatorial game theory and robust op-
timization (both solve min-max-min. . . problems). Bridging the gap between
multi-stage integer robust optimization and combinatorial games might allow
to disseminate our techniques in another field. But above all, learning about
this domain of computer science could help answering the questions about the
complexity of robust problems.

• Exactly solving the general version of two-stage or even multi-stage robust
mixed integer programs is an exciting challenge, that could help in the realis-
tic contexts described for the short-term work plan above. Although our tool
of choice is convexification today, an alternative – hopefully complementary
– point-of-view on those problems from the combinatorial game theory per-
spective will be investigated, for the purpose of creating synergies between its
techniques and those of mathematical programming.

It seems clear that SSR methods work well when the problem is structured
around a single sequential decision process, when one can build strong relaxations
based on an LP reformulation. Assuming that a good primal bound is known,
variable fixing techniques help reduce the size of the manipulated models. Still,
answering the following questions would make these types of methods more effective
and more popular.

• In Iterative State-Space Relaxation algorithms, there remains an important
ingredient to make the method effective even when the bounds are not strong:
which constraints should be added to the DP when the solution of the current
relaxation is not feasible? In the literature, a compromise between the increase
in the dual bound and the increase in the size of the model is heuristically found
for each problem. Finding the best set of constraints to reintroduce seems a
very hard problem, akin to finding the best branching choices in a branch-
and-bound search. Several lines of research can be followed. Unifying SSDP
algorithm with Decision Diagrams would bring techniques to control the size
of the DP at each iteration, among other things. First results for predicting
the size of the model are proposed in [Clautiaux et al. 2021], but more pre-
cise estimation, in a general setting and without building the corresponding

171

DP, a priori requires an in-depth understanding of the structure of the recur-
rence equations and is very likely to be an NP-hard problem. Assuming a
satisfactory answer to this question is known, choosing the constraints to add,
that will yield the best dual bound at the next iteration can be viewed as an
interdiction problem: the problem of the attacker is to build the network of
limited size and that satisfies some construction rules such that the cost of
the shortest path of the defender is maximized. Pushing the logic of variable
fixing, a last line of research would be to find synergies with CP techniques.

• Subgradient-based algorithms are easy to implement and provide good solu-
tions to the Lagrangian dual problem – provided that they are well-tuned.
But implementing Iterative State-Space Relaxation methods also require the
management of very large DP models. This is definitely a hurdle to the testing
of this type of algorithmic strategies. A generic and effective implementation
of such methods could help researchers in this task. The implementation of
such a framework has started a few years ago, in collaboration with François
Clautiaux, Aurélien Froger and Gaël Guillot, leading to the numerical results
reported in Section 2.2. This generic code also allowed benchmarking the DP-
based reformulation (Section 3.2.2.5) for the robust knapsack problem using
only 350 additional lines of C++ code, in order to input the recurrence rela-
tions and additional constraints. Only 60 more lines were necessary to setup a
generic DP pricing oracle and connect with the branch-and-price library Bap-
Cod (also developed at Inria team RealOpt), in order to obtain a first version
of the branch-and-price algorithm proposed in Section 3.2.4. The generic algo-
rithms developed within this Iterative State-Space Relaxation (ISSR) frame-
work are, unfortunately, still not competitive with dedicated implementations
like those described in [Tanaka & Fujikuma 2012,Detienne et al. 2016], or like
the ad-hoc label-correcting algorithms developed for the final version of the
pricing oracles reported in Section 3.2.4. Writing a generic code that allows
the efficient use of specific dominance rules requires a considerable software
engineering work. Achieving this goal would allow releasing an interesting tool
for the community of operations researchers.

Bibliography

[Abdul-Razaq & Potts 1988] T. S. Abdul-Razaq and Chris N. Potts. Dynamic Pro-
gramming State-Space Relaxation for Single-Machine Scheduling. Journal of
the Operational Research Society, vol. 39, no. 2, pages 141–152, 1988. (Cited
on pages 35, 50 and 53.)

[Absi et al. 2013] Nabil Absi, Boris Detienne and Stéphane Dauzère-Pérès. Heuris-
tics for the multi-item capacitated lot-sizing problem with lost sales. Com-
puters & Operations Research, vol. 40, no. 1, pages 264–272, 2013. (Cited
on pages 28 and 94.)

[Ahmed & Shapiro 2008] Shabbir Ahmed and Alexander Shapiro. Solving Chance-
Constrained Stochastic Programs via Sampling and Integer Programming. In
State-of-the-Art Decision-Making Tools in the Information-Intensive Age,
INFORMS TutORials in Operations Research, pages 261–269. INFORMS,
September 2008. Section: 12. (Cited on page 6.)

[Akkan & Karabati 2004] Can Akkan and Selçuk Karabati. The two-machine flow-
shop total completion time problem: Improved lower bounds and a branch-
and-bound algorithm. European Journal of Operational Research, vol. 159,
no. 2, pages 420–429, December 2004. (Cited on pages 39, 42, 43, 44, 47, 48,
49 and 58.)

[Aksen et al. 2003] Deniz Aksen, Kemal Altınkemer and Suresh Chand. The single-
item lot-sizing problem with immediate lost sales. European Journal of Op-
erational Research, vol. 147, no. 3, pages 558–566, June 2003. (Cited on
page 94.)

[Allahverdi et al. 1999] Ali Allahverdi, Jatinder N.D Gupta and Tariq Aldowaisan.
A review of scheduling research involving setup considerations. Omega,
vol. 27, no. 2, pages 219 – 239, 1999. (Cited on page 43.)

[Allahverdi 2000] Ali Allahverdi. Minimizing mean flowtime in a two-machine flow-
shop with sequence-independent setup times. Computers and Operations Re-
search, vol. 27, no. 2, pages 111 – 127, 2000. (Cited on page 45.)

[Arkin & Silverberg 1987] E. M. Arkin and E.B. Silverberg. Scheduling with fixed
start and end times. Discrete Applied Mathematics, vol. 18, pages 1–8, 1987.
(Cited on page 64.)

[Arrow et al. 1958] Kenneth J Arrow, Leonid Hurwicz and Hirofumi Uzawa. Studies
in linear and non-linear programming. Stanford Math. Stud. Social Sci.
Cambridge Univ. Press, 1958. (Cited on page 97.)

174 Bibliography

[Arslan & Detienne 2021] Ayşe Arslan and Boris Detienne. Decomposition-based
approaches for a class of two-stage robust binary optimization problems. IN-
FORMS Journal on Computing, 2021. (Cited on pages 16, 18, 34, 130, 157,
163, 165, 166, 169 and 170.)

[Arslan & Detienne In revision] Ayşe Arslan and Boris Detienne. Robust Strategic
Planning of Phytosanitary Treatments in Agriculture. November In revision.
(Cited on page 166.)

[Artzner et al. 1999] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber and David
Heath. Coherent Measures of Risk. Mathematical Finance, vol. 9, no. 3, pages
203–228, 1999. (Cited on page 5.)

[Atamtürk & Gomez 2020] Alper Atamtürk and Andres Gomez. Safe screening
rules for L0-regression from Perspective Relaxations. In Proceedings of the
37th International Conference on Machine Learning, pages 421–430. PMLR,
November 2020. ISSN: 2640-3498. (Cited on page 27.)

[Atamtürk & Zhang 2007] Alper Atamtürk and Muhong Zhang. Two-stage robust
network flow and design under demand uncertainty. Operations Research,
vol. 55, no. 4, pages 662–673, 2007. (Cited on page 135.)

[Ayoub & Poss 2016] Josette Ayoub and Michael Poss. Decomposition for ad-
justable robust linear optimization subject to uncertainty polytope. Compu-
tational Management Science, vol. 13, no. 2, pages 219–239, 2016. (Cited on
page 135.)

[Baptiste et al. 2004] Ph. Baptiste, J. Carlier and A. Jouglet. A Branch-and-Bound
Procedure to Minimize Total Tardiness on One Machine with Arbitrary Re-
lease Dates. European Journal of Operational Research, vol. 158, no. 3, pages
595–608, 2004. (Cited on page 56.)

[Barahona & Anbil 2000] Francisco Barahona and Ranga Anbil. The volume algo-
rithm: producing primal solutions with a subgradient method. Mathematical
Programming, vol. 87, no. 3, pages 385–399, May 2000. (Cited on pages 23,
25 and 73.)

[Bard 1991] J. F. Bard. Some properties of the bilevel programming problem. Journal
of Optimization Theory and Applications, vol. 68, no. 2, pages 371–378,
February 1991. (Cited on page 3.)

[Bartlett et al. 2005] Mark Bartlett, Alan M. Frisch, Youssef Hamadi, Ian Miguel,
S. Armagan Tarim and Chris Unsworth. The Temporal Knapsack Problem
and Its Solution. In Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, volume 3524, pages 34–
48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. (Cited on page 64.)

Bibliography 175

[Beale 1955] Evelyn ML Beale. On minimizing a convex function subject to linear
inequalities. Journal of the Royal Statistical Society: Series B (Methodolog-
ical), vol. 17, no. 2, pages 173–184, 1955. (Cited on page 8.)

[Belgacem & Amir 2018] Rachid Belgacem and Abdessamad Amir. A new modified
deflected subgradient method. Journal of King Saud University - Science,
vol. 30, no. 4, pages 561–567, October 2018. (Cited on page 25.)

[Bellman 1954] Richard Ernest Bellman. The Theory of Dynamic Programming.
Technical report, January 1954. (Cited on page 13.)

[Ben-Tal & Nemirovski 1999] A. Ben-Tal and A. Nemirovski. Robust solutions of
uncertain linear programs. Operations Research Letters, vol. 25, no. 1, pages
1–13, August 1999. (Cited on page 8.)

[Ben-Tal & Nemirovski 2000] Aharon Ben-Tal and Arkadi Nemirovski. Robust so-
lutions of Linear Programming problems contaminated with uncertain data.
Mathematical Programming, vol. 88, no. 3, pages 411–424, September 2000.
(Cited on page 3.)

[Ben-Tal et al. 2004] Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer and
Arkadi Nemirovski. Adjustable robust solutions of uncertain linear programs.
Mathematical Programming, vol. 99, no. 2, pages 351–376, 2004. (Cited on
pages 9, 132 and 133.)

[Ben-Tal et al. 2009] Aharon Ben-Tal, Laurent El Ghaoui and Arkadi Nemirovski.
Robust optimization, volume 28. Princeton University Press, 2009. (Cited
on pages 4, 6, 7 and 132.)

[Benders 1962] Jacques F Benders. Partitioning procedures for solving mixed-
variables programming problems. Numerische mathematik, vol. 4, no. 1, pages
238–252, 1962. (Cited on pages 18 and 112.)

[Benkirane et al. 2020] Mohamed Benkirane, François Clautiaux, Jean Damay and
Boris Detienne. A Hypergraph Model for the Rolling Stock Rotation Planning
and Train Selection. Technical report, December 2020. (Cited on pages 37
and 94.)

[Bergner et al. 2015] Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Fu-
rini, Marco E. Lübbecke, Enrico Malaguti and Emiliano Traversi. Automatic
Dantzig–Wolfe reformulation of mixed integer programs. Mathematical Pro-
gramming, vol. 149, no. 1, pages 391–424, February 2015. (Cited on page 18.)

[Bertsekas 2015] Dimitri P Bertsekas. Convex optimization algorithms. Athena
Scientific Belmont, 2015. (Cited on page 73.)

176 Bibliography

[Bertsimas & Caramanis 2010] Dimitris Bertsimas and Constantine Caramanis. Fi-
nite adaptability in multistage linear optimization. IEEE Transactions on Au-
tomatic Control, vol. 55, no. 12, pages 2751–2766, 2010. (Cited on pages 9,
134 and 166.)

[Bertsimas & Dunning 2016] Dimitris Bertsimas and Iain Dunning. Multistage ro-
bust mixed-integer optimization with adaptive partitions. Operations Re-
search, vol. 64, no. 4, pages 980–998, 2016. (Cited on page 135.)

[Bertsimas & Georghiou 2015] Dimitris Bertsimas and Angelos Georghiou. Design
of near optimal decision rules in multistage adaptive mixed-integer optimiza-
tion. Operations Research, vol. 63, no. 3, pages 610–627, 2015. (Cited on
page 134.)

[Bertsimas & Georghiou 2018] Dimitris Bertsimas and Angelos Georghiou. Binary
decision rules for multistage adaptive mixed-integer optimization. Mathemat-
ical Programming, vol. 167, no. 2, pages 395–433, 2018. (Cited on pages 38
and 134.)

[Bertsimas & Sim 2004] Dimitris Bertsimas and Melvyn Sim. The price of robust-
ness. Operations research, vol. 52, no. 1, pages 35–53, 2004. (Cited on
page 8.)

[Bertsimas et al. 2011] Dimitris Bertsimas, David B Brown and Constantine Cara-
manis. Theory and applications of robust optimization. SIAM review, vol. 53,
no. 3, pages 464–501, 2011. (Cited on pages 6 and 132.)

[Bertsimas et al. 2013a] Dimitris Bertsimas, Eugene Litvinov, Xu Andy Sun, Jinye
Zhao and Tongxin Zheng. Adaptive robust optimization for the security con-
strained unit commitment problem. IEEE Transactions on Power Systems,
vol. 28, no. 1, pages 52–63, 2013. (Cited on page 135.)

[Bertsimas et al. 2013b] Dimitris Bertsimas, Ebrahim Nasrabadi and Sebastian
Stiller. Robust and Adaptive Network Flows. Operations Research, vol. 61,
no. 5, pages 1218–1242, October 2013. (Cited on pages 9 and 153.)

[Birge & Louveaux 2011] John R Birge and Francois Louveaux. Introduction to
stochastic programming. Springer Science & Business Media, 2011. (Cited
on pages 4, 6, 7, 8, 21 and 108.)

[Blanchot et al. Submitted] Xavier Blanchot, François Clautiaux, Boris Detienne,
Aurélien Froger and Manuel Ruiz. The Benders by batch algorithm: design
and stabilization of an enhanced algorithm to solve multicut Benders refor-
mulation of two-stage stochastic programs. Submitted. (Cited on pages 21
and 166.)

[Boland et al. 2006] Natashia Boland, John Dethridge and Irina Dumitrescu. Ac-
celerated Label Setting Algorithms for the Elementary Resource Constrained

Bibliography 177

Shortest Path Problem. Operations Research Letters, vol. 34, no. 1, pages
58–68, 2006. (Cited on page 35.)

[Bonsma et al. 2014] P.S. Bonsma, Jens Schulz and Andreas Wiese. A Constant-
Factor Approximation Algorithm for Unsplittable Flow on Paths. SIAM jour-
nal on computing, vol. 43, no. 2, pages 767–799, 2014. (Cited on page 64.)

[Brandt 2010] Felix Brandt. Solving a large-scale energy management problem with
varied constraints. Master’s thesis, Karlsruhe Institute of Technology (KIT),
Faculty of Informatics., Germany, 2010. (Cited on page 97.)

[Brucker 2004a] Peter Brucker. Single Machine Scheduling Problems. In Peter
Brucker, editor, Scheduling Algorithms, pages 61–106. Springer, Berlin, Hei-
delberg, 2004. (Cited on page 13.)

[Brucker 2004b] Peter Brucker. Some Problems in Combinatorial Optimization. In
Peter Brucker, editor, Scheduling Algorithms, pages 11–36. Springer, Berlin,
Heidelberg, 2004. (Cited on page 13.)

[Bryant 1986] Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Transactions on Computers, vol. C-35, no. 8, pages 677–691,
August 1986. Conference Name: IEEE Transactions on Computers. (Cited
on page 13.)

[Bucarey et al. 2022] Víctor Bucarey, Bernard Fortz, Natividad González-Blanco,
Martine Labbé and Juan A. Mesa. Benders decomposition for network design
covering problems. Computers & Operations Research, vol. 137, page 105417,
January 2022. (Cited on page 21.)

[Buchheim & Kurtz 2017] Christoph Buchheim and Jannis Kurtz. Min–max–min
robust combinatorial optimization. Mathematical Programming, vol. 163,
no. 1-2, pages 1–23, 2017. (Cited on pages 134 and 169.)

[Bulhões et al. 2020] Teobaldo Bulhões, Ruslan Sadykov, Anand Subramanian and
Eduardo Uchoa. On the exact solution of a large class of parallel machine
scheduling problems. Journal of Scheduling, vol. 23, no. 4, pages 411–429,
August 2020. (Cited on page 18.)

[Calinescu et al. 2002] G. Calinescu, A. Chakrabarti, H.J. Karloff and Y. Rabani.
Improved approximation algorithms for resource allocation. In Proceedings of
the 9th International Conference on Integer Programming and Combinatorial
Optimization, IPCO 2002, page 401–414. Springer-Verlag, 2002. (Cited on
page 64.)

[Caprara et al. 2013] A. Caprara, F. Furini and E. Malaguti. Uncommon Dantzig-
Wolfe Reformulation for the Temporal Knapsack Problem. INFORMS Jour-
nal on Computing, vol. 25, no. 3, pages 560–571, 2013. (Cited on pages 64,
65, 66, 67, 86 and 92.)

178 Bibliography

[Caprara et al. 2016] A. Caprara, F. Furini, E. Malaguti and E. Traversi. Solving
the Temporal Knapsack Problem via Recursive Dantzig–Wolfe Reformulation.
Information Processing Letters, vol. 116, no. 5, pages 379 – 386, 2016. (Cited
on pages 65, 66 and 87.)

[Carlier & Pinson 1989] J. Carlier and E. Pinson. An Algorithm for Solving the
Job-Shop Problem. Management Science, vol. 35, no. 2, pages 164–176, 1989.
Publisher: INFORMS. (Cited on page 34.)

[Carlier & Pinson 1994] J. Carlier and E. Pinson. Adjustment of heads and tails for
the job-shop problem. European Journal of Operational Research, vol. 78,
no. 2, pages 146–161, October 1994. (Cited on page 27.)

[Carlier et al. 2004] Jacques Carlier, Laurent Péridy, E Pinson and David Rivreau.
Elimination rules for job-shop scheduling problem: overview and extensions.
In Handbook of Scheduling: Algorithms, models, and performance analysis.
Chapman & Hall/CRC, 2004. (Cited on page 27.)

[Charnes & Cooper 1959] A. Charnes and W. W. Cooper. Chance-Constrained Pro-
gramming. Management Science, vol. 6, no. 1, pages 73–79, October 1959.
Publisher: INFORMS. (Cited on page 6.)

[Chassein et al. 2019] André Chassein, Marc Goerigk, Jannis Kurtz and Michael
Poss. Faster Algorithms for Min-max-min Robustness for Combinatorial
Problems with Budgeted Uncertainty. European Journal of Operational Re-
search, 2019. (Cited on page 135.)

[Chen & Zhang 2009] Xin Chen and Yuhan Zhang. Uncertain linear programs: Ex-
tended affinely adjustable robust counterparts. Operations Research, vol. 57,
no. 6, pages 1469–1482, 2009. (Cited on page 133.)

[Chen et al. 2002] B. Chen, Refael Hassin and Michal Tzur. Allocation of bandwidth
and storage. IIE Transactions, vol. 34, no. 5, pages 501–507, 2002. (Cited
on pages 64, 67 and 68.)

[Chen et al. 2008] Xin Chen, Melvyn Sim, Peng Sun and Jiawei Zhang. A linear
decision-based approximation approach to stochastic programming. Opera-
tions Research, vol. 56, no. 2, pages 344–357, 2008. (Cited on page 133.)

[Christofides et al. 1981] Nicos Christofides, A. Mingozzi and P. Toth. State-Space
Relaxation Procedures for the Computation of Bounds to Routing Problems.
Networks, vol. 11, no. 2, pages 145–164, 1981. (Cited on pages 25, 26 and 35.)

[Clautiaux et al. 2017] François Clautiaux, Saïd Hanafi, Rita Macedo, Marie-Émilie
Voge and Cláudio Alves. Iterative aggregation and disaggregation algorithm
for pseudo-polynomial network flow models with side constraints. European
Journal of Operational Research, vol. 258, no. 2, pages 467–477, 2017. (Cited
on page 153.)

Bibliography 179

[Clautiaux et al. 2018] François Clautiaux, Ruslan Sadykov, François Vanderbeck
and Quentin Viaud. Combining dynamic programming with filtering to solve
a four-stage two-dimensional guillotine-cut bounded knapsack problem. Dis-
crete Optimization, vol. 29, pages 18–44, August 2018. (Cited on page 14.)

[Clautiaux et al. 2021] F. Clautiaux, B. Detienne and G. Guillot. An iterative dy-
namic programming approach for the temporal knapsack problem. European
Journal of Operational Research, vol. 293, no. 2, pages 442–456, September
2021. (Cited on pages 16, 28, 37, 63, 64 and 170.)

[Conforti et al. 2010] Michele Conforti, Gérard Cornuéjols and Giacomo Zam-
belli. Polyhedral Approaches to Mixed Integer Linear Programming. In
Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi and Laurence A.
Wolsey, editors, 50 Years of Integer Programming 1958-2008: From the Early
Years to the State-of-the-Art, pages 343–385. Springer, Berlin, Heidelberg,
2010. (Cited on page 34.)

[Conway et al. 1967] R. W. Conway, W. L. Maxwell and L. W. Miller. Theory of
scheduling. Addison-Wesley, Reading, MA, 1967. (Cited on page 42.)

[Croce et al. 1996] F. Della Croce, V. Narayan and R. Tadei. The two-machine
total completion time flow shop problem. European Journal of Operational
Research, vol. 90, no. 2, pages 227 – 237, 1996. (Cited on pages 45 and 48.)

[Crowder et al. 1983] Harlan Crowder, Ellis L. Johnson and Manfred Padberg. Solv-
ing Large-Scale Zero-One Linear Programming Problems. Operations Re-
search, vol. 31, no. 5, pages 803–834, 1983. (Cited on page 27.)

[Dantzig & Wolfe 1960] George B. Dantzig and Philip Wolfe. Decomposition Prin-
ciple for Linear Programs. Operations Research, vol. 8, no. 1, pages 101–111,
February 1960. Publisher: INFORMS. (Cited on pages 16 and 17.)

[Dantzig et al. 1954] G. Dantzig, R. Fulkerson and S. Johnson. Solution of a Large-
Scale Traveling-Salesman Problem. Journal of the Operations Research So-
ciety of America, vol. 2, no. 4, pages 393–410, 1954. Publisher: INFORMS.
(Cited on page 27.)

[Dantzig et al. 1955] George B Dantzig, Alex Orden and Philip Wolfe. The gener-
alized simplex method for minimizing a linear form under linear inequality
restraints. Pacific Journal of Mathematics, vol. 5, no. 2, pages 183–195, 1955.
(Cited on page 17.)

[Dantzig 1955] George B. Dantzig. Linear Programming under Uncertainty. Man-
agement Science, vol. 1, no. 3-4, pages 197–206, April 1955. Publisher: IN-
FORMS. (Cited on pages 3 and 8.)

180 Bibliography

[Deineko & Woeginger 2010] Vladimir G. Deineko and Gerhard J. Woeginger. Pin-
pointing the complexity of the interval min–max regret knapsack problem.
Discrete Optimization, vol. 7, no. 4, pages 191–196, November 2010. (Cited
on page 153.)

[Demassey et al. 2006] Sophie Demassey, Gilles Pesant and Louis-Martin Rousseau.
A Cost-Regular Based Hybrid Column Generation Approach. Constraints,
vol. 11, no. 4, pages 315–333, November 2006. (Cited on page 27.)

[Dempe 2002] Stephan Dempe. Foundations of bilevel programming. Springer Sci-
ence & Business Media, 2002. (Cited on page 3.)

[Desaulniers et al. 2008] Guy Desaulniers, François Lessard and Ahmed Hadjar.
Tabu Search, Partial Elementarity, and Generalized Fc-Path Inequalities for
the Vehicle Routing Problem with Time Windows. Transportation Science,
vol. 42, no. 3, pages 387–404, 2008. (Cited on page 35.)

[Desrochers et al. 1992] Martin Desrochers, Jacques Desrosiers and Marius
Solomon. A New Optimization Algorithm for the Vehicle Routing Problem
with Time Windows. Operations Research, vol. 40, no. 2, pages 342–354,
April 1992. Publisher: INFORMS. (Cited on page 50.)

[Desrosiers & Lübbecke 2011] Jacques Desrosiers and Marco E Lübbecke. Branch-
price-and-cut algorithms. Encyclopedia of Operations Research and Manage-
ment Science. John Wiley & Sons, Chichester, pages 109–131, 2011. (Cited
on page 117.)

[Detienne et al. 2009] Boris Detienne, Laurent Péridy, Éric Pinson and David
Rivreau. Cut generation for an employee timetabling problem. European
Journal of Operational Research, vol. 197, no. 3, pages 1178–1184, Septem-
ber 2009. (Cited on pages 21 and 28.)

[Detienne et al. 2010] Boris Detienne, Éric Pinson and David Rivreau. Lagrangian
domain reductions for the single machine earliness–tardiness problem with
release dates. European Journal of Operational Research, vol. 201, no. 1,
pages 45–54, February 2010. (Cited on pages 28 and 33.)

[Detienne et al. 2011] Boris Detienne, Stéphane Dauzère-Pérès and Claude Yugma.
Scheduling jobs on parallel machines to minimize a regular step total cost
function. Journal of Scheduling, vol. 14, no. 6, pages 523–538, December
2011. (Cited on page 35.)

[Detienne et al. 2012] Boris Detienne, Stéphane Dauzère-Pérès and Claude Yugma.
An exact approach for scheduling jobs with regular step cost functions on a
single machine. Computers & Operations Research, vol. 39, no. 5, pages
1033–1043, May 2012. (Cited on pages 16, 28, 37, 54 and 93.)

Bibliography 181

[Detienne et al. 2016] Boris Detienne, Ruslan Sadykov and Shunji Tanaka. The
two-machine flowshop total completion time problem: Branch-and-bound al-
gorithms based on network-flow formulation. European Journal of Opera-
tional Research, vol. 252, no. 3, pages 750–760, August 2016. (Cited on
pages 16, 28, 33, 39, 41, 42 and 171.)

[Detienne et al. Submitted] Boris Detienne, Henri Lefebvre, Enrico Malaguti and
Michele Monaci. Adaptive robust optimization with objective uncertainty.
Submitted. (Cited on pages 32 and 165.)

[Detienne 2014] Boris Detienne. A mixed integer linear programming approach to
minimize the number of late jobs with and without machine availability con-
straints. European Journal of Operational Research, vol. 235, no. 3, pages
540–552, June 2014. (Cited on pages 35, 39 and 94.)

[Dowsland & Dowsland 1992] Kathryn A. Dowsland and William B. Dowsland.
Packing problems. European Journal of Operational Research, vol. 56, no. 1,
pages 2–14, January 1992. (Cited on page 13.)

[Edwin & Curtius 1990] K.W. Edwin and F. Curtius. New maintenance-scheduling
method with production cost minimization via integer linear programming.
International journal of Electrical Power & Energy Systems, vol. 12, no. 3,
pages 165–170, 1990. (Cited on page 97.)

[Elhallaoui et al. 2005] Issmail Elhallaoui, Daniel Villeneuve, François Soumis and
Guy Desaulniers. Dynamic Aggregation of Set-Partitioning Constraints in
Column Generation. Operations Research, vol. 53, no. 4, pages 632–645,
August 2005. Publisher: INFORMS. (Cited on page 18.)

[Everett 1963] Hugh Everett. Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources. Operations Research, vol. 11,
no. 3, pages 399–417, June 1963. Publisher: INFORMS. (Cited on page 21.)

[Fischetti et al. 2010] Matteo Fischetti, Domenico Salvagnin and Arrigo Zanette. A
note on the selection of Benders’ cuts. Mathematical Programming, vol. 124,
no. 1-2, pages 175–182, July 2010. (Cited on page 19.)

[Fischetti et al. 2017] Matteo Fischetti, Ivana Ljubić and Markus Sinnl. Redesign-
ing Benders Decomposition for Large-Scale Facility Location. Management
Science, vol. 63, no. 7, pages 2146–2162, July 2017. Publisher: INFORMS.
(Cited on page 21.)

[Fisher 1973] Marshall L. Fisher. Optimal Solution of Scheduling Problems Using
Lagrange Multipliers: Part I. Operations Research, vol. 21, no. 5, pages
1114–1127, October 1973. Publisher: INFORMS: Institute for Operations
Research. (Cited on page 21.)

182 Bibliography

[Focacci et al. 1999] F. Focacci, A. Lodi and M. Milano. Cost-Based Domain Filter-
ing. In Joxan Jaffar, editor, Principles and Practice of Constraint Program-
ming – CP’99, Lecture Notes in Computer Science, pages 189–203, Berlin,
Heidelberg, 1999. Springer. (Cited on page 27.)

[Fortz & Poss 2009] B. Fortz and M. Poss. An improved Benders decomposition
applied to a multi-layer network design problem. Operations Research Let-
ters, vol. 37, no. 5, pages 359–364, September 2009. (Cited on pages 21, 34
and 118.)

[Fourcade et al. 1997] Fabrice Fourcade, Ellis Johnson, Mourad Bara and Philippe
Cortey-Dumont. Optimizing nuclear power plant refueling with mixed-integer
programming. European journal of operational research, vol. 97, no. 2, pages
269–280, 1997. (Cited on page 97.)

[Frangioni et al. 2017] Antonio Frangioni, Bernard Gendron and Enrico Gorgone.
On the computational efficiency of subgradient methods: a case study with
Lagrangian bounds. Mathematical Programming Computation, vol. 9, no. 4,
pages 573–604, December 2017. (Cited on page 24.)

[Gabrel et al. 2014] Virginie Gabrel, Cécile Murat and Aurélie Thiele. Recent ad-
vances in robust optimization: An overview. European journal of operational
research, vol. 235, no. 3, pages 471–483, 2014. (Cited on pages 6 and 132.)

[Garey et al. 1976] M. R. Garey, D. S. Johnson and R. Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of Operations Research, vol. 1,
no. 2, pages 117–129, 1976. (Cited on page 42.)

[Gavranović & Buljubašić 2013] Haris Gavranović and Mirsad Buljubašić. A Hybrid
Approach Combining Local Search and Constraint Programming for a Large
Scale Energy Management Problem. RAIRO - Operations Research, vol. 47,
no. 4, pages 481–500, 2013. (Cited on page 97.)

[Geoffrion 1971] A. M. Geoffrion. Duality in Nonlinear Programming: A Simplified
Applications-Oriented Development. SIAM Review, vol. 13, no. 1, pages 1–
37, 1971. Publisher: Society for Industrial and Applied Mathematics. (Cited
on page 23.)

[Geoffrion 1974] A. M. Geoffrion. Lagrangean relaxation for integer programming.
In M. L. Balinski, editor, Approaches to Integer Programming, Mathemati-
cal Programming Studies, pages 82–114. Springer, Berlin, Heidelberg, 1974.
(Cited on pages 21 and 23.)

[Georghiou et al. 2015] Angelos Georghiou, Wolfram Wiesemann and Daniel Kuhn.
Generalized decision rule approximations for stochastic programming via lift-
ings. Mathematical Programming, vol. 152, no. 1-2, pages 301–338, 2015.
(Cited on page 134.)

Bibliography 183

[Ghaoui et al. 2011] Laurent El Ghaoui, Vivian Viallon and Tarek Rabbani. Safe
Feature Elimination for the LASSO and Sparse Supervised Learning Prob-
lems. arXiv:1009.4219 [cs, math], May 2011. arXiv: 1009.4219. (Cited on
page 27.)

[Gharbi et al. 2013] Anis Gharbi, Talel Ladhari, Mohamed Kais Msakni and Mehdi
Serairi. The two-machine flowshop scheduling problem with sequence-
independent setup times: New lower bounding strategies. European Journal
of Operational Research, vol. 231, no. 1, pages 69–78, November 2013. (Cited
on pages 43, 44, 49 and 62.)

[Godskesen et al. 2013] Steffen Godskesen, Thomas Sejr Jensen, Niels Kjeldsen and
Rune Larsen. Solving a real-life, large-scale energy management problem.
Journal of Scheduling, vol. 16, no. 6, pages 567–583, 2013. (Cited on page 97.)

[Goh & Sim 2010] Joel Goh and Melvyn Sim. Distributionally robust optimization
and its tractable approximations. Operations research, vol. 58, no. 4-part-1,
pages 902–917, 2010. (Cited on pages 8, 132 and 133.)

[Gorissen et al. 2015] Bram L Gorissen, İhsan Yanıkoğlu and Dick den Hertog. A
practical guide to robust optimization. Omega, vol. 53, pages 124–137, 2015.
(Cited on page 134.)

[Griset et al. 2021] Rodolphe Griset, Pascale Bendotti, Boris Detienne, Marc
Porcheron, Halil Şen and François Vanderbeck. Combining Dantzig-Wolfe
and Benders decompositions to solve a large-scale nuclear outage planning
problem. European Journal of Operational Research, July 2021. (Cited on
pages 16, 18, 21, 34, 35 and 95.)

[Grötschel et al. 1981] M. Grötschel, L. Lovász and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica, vol. 1, no. 2, pages 169–197, June 1981. Company: Springer Distrib-
utor: Springer Institution: Springer Label: Springer Number: 2 Publisher:
Springer-Verlag. (Cited on page 11.)

[Gschwind & Irnich 2017] Timo Gschwind and Stefan Irnich. Stabilized column gen-
eration for the temporal knapsack problem using dual-optimal inequalities.
OR Spectrum, vol. 39, no. 2, pages 541–556, 2017. (Cited on pages 65, 86
and 90.)

[Guignard & Kim 1987] Monique Guignard and Siwhan Kim. Lagrangean decom-
position: A model yielding stronger Lagrangean bounds. Mathematical pro-
gramming, vol. 39, no. 2, pages 215–228, 1987. (Cited on page 67.)

[Guillot & Stauffer 2020] Matthieu Guillot and Gautier Stauffer. The Stochastic
Shortest Path Problem: A polyhedral combinatorics perspective. European
Journal of Operational Research, vol. 285, no. 1, pages 148–158, August
2020. (Cited on page 14.)

184 Bibliography

[Hanasusanto et al. 2015] Grani A Hanasusanto, Daniel Kuhn and Wolfram Wiese-
mann. K-adaptability in two-stage robust binary programming. Operations
Research, vol. 63, no. 4, pages 877–891, 2015. (Cited on pages 9, 38, 134,
155, 156, 158, 163 and 169.)

[Haouari & Kharbeche 2013] Mohamed Haouari and Mohamed Kharbeche. An
assignment-based lower bound for a class of two-machine flow shop problems.
Computers and Operations Research, vol. 40, no. 7, pages 1693 – 1699, 2013.
(Cited on pages 60 and 61.)

[Held & Karp 1970] Michael Held and Richard M. Karp. The Traveling-Salesman
Problem and Minimum Spanning Trees. Operations Research, vol. 18, no. 6,
pages 1138–1162, 1970. Publisher: INFORMS. (Cited on page 21.)

[Hoogeveen et al. 2006] Han Hoogeveen, Linda van Norden and Steef van de Velde.
Lower bounds for minimizing total completion time in a two-machine flow
shop. Journal of Scheduling, vol. 9, no. 6, pages 559–568, 2006. (Cited on
page 43.)

[Hooker 1994] J. N. Hooker. Logic-based methods for optimization. In Alan Borning,
editor, Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, pages 336–349, Berlin, Heidelberg, 1994. Springer. (Cited
on page 144.)

[Hooker 2013] John N. Hooker. Decision Diagrams and Dynamic Programming. In
Carla Gomes and Meinolf Sellmann, editors, Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems, Lecture Notes in Computer Science, pages 94–110, Berlin, Heidelberg,
2013. Springer. (Cited on page 13.)

[Ibaraki & Nakamura 1994] Toshihide Ibaraki and Yuichi Nakamura. A Dynamic
Programming Method for Single Machine Scheduling. European Journal of
Operational Research, vol. 76, no. 1, pages 72–82, 1994. (Cited on pages 27,
35, 50 and 74.)

[Ibaraki 1987] Toshihide Ibaraki. Chapter 7 Successive sublimation methods for dy-
namic programming computation. Annals of Operations Research, vol. 11,
no. 1, pages 397–439, December 1987. (Cited on pages 13, 27, 35, 36, 74
and 75.)

[Ibaraki 1988] T Ibaraki. Enumerative approaches to combinatorial optimization.
Annals of Operations Research, vol. 10-11, 1988. (Cited on page 35.)

[Ignall & Schrage 1965] Edward Ignall and Linus Schrage. Application of the Branch
and Bound Technique to Some Flow-Shop Scheduling Problems. Operations
Research, vol. 13, no. 3, pages 400–412, 1965. (Cited on page 43.)

Bibliography 185

[Irnich et al. 2010] Stefan Irnich, Guy Desaulniers, Jacques Desrosiers and Ahmed
Hadjar. Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling.
INFORMS Journal on Computing, vol. 22, no. 2, pages 297–313, May 2010.
Publisher: INFORMS. (Cited on page 28.)

[Jiang et al. 2014] Ruiwei Jiang, Muhong Zhang, Guang Li and Yongpei Guan.
Two-stage network constrained robust unit commitment problem. European
Journal of Operational Research, vol. 234, no. 3, pages 751–762, 2014. (Cited
on page 135.)

[Joncour 2011] Cédric Joncour. 2D-orthogonal packing and scheduling problems:
modelling by graph theory and mathematical programming approaches. PhD
thesis, Université Sciences et Technologies - Bordeaux I, 2011. (Cited on
pages 98 and 102.)

[Jost & Savourey 2013] Vincent Jost and David Savourey. A 0–1 integer linear pro-
gramming approach to schedule outages of nuclear power plants. Journal of
Scheduling, vol. 16, no. 6, pages 551–566, 2013. (Cited on page 97.)

[Kall & Wallace 1994] Peter Kall and Stein W. Wallace. Stochastic Programming.
John Wiley & Sons, Chichester, second edition édition, 1994. (Cited on
page 7.)

[Kämmerling & Kurtz 2020] Nicolas Kämmerling and Jannis Kurtz. Oracle-based
algorithms for binary two-stage robust optimization. Computational Opti-
mization and Applications, vol. 77, no. 2, pages 539–569, 2020. (Cited on
pages 136 and 139.)

[Kao et al. 2008] Gio K. Kao, Edward C. Sewell and Sheldon H. Jacobson. A branch,
bound, and remember algorithm for the 1|ri|

∑
Ti scheduling problem. Journal

of Scheduling, vol. 12, no. 2, pages 163–175, August 2008. (Cited on page 56.)

[Karp & Held 1967] Richard M. Karp and Michael Held. Finite-State Processes and
Dynamic Programming. SIAM Journal on Applied Mathematics, vol. 15,
no. 3, pages 693–718, May 1967. Publisher: Society for Industrial and Ap-
plied Mathematics. (Cited on page 13.)

[Kuhn et al. 2011] Daniel Kuhn, Wolfram Wiesemann and Angelos Georghiou. Pri-
mal and dual linear decision rules in stochastic and robust optimization.
Mathematical Programming, vol. 130, no. 1, pages 177–209, 2011. (Cited
on page 133.)

[Land & Doig 1960] A. H. Land and A. G. Doig. An Automatic Method of Solving
Discrete Programming Problems. Econometrica, vol. 28, no. 3, pages 497–
520, 1960. Publisher: [Wiley, Econometric Society]. (Cited on page 32.)

[Land & Doig 2010] Ailsa H. Land and Alison G. Doig. An Automatic Method for
Solving Discrete Programming Problems. In Michael Jünger, Thomas M.

186 Bibliography

Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Ger-
hard Reinelt, Giovanni Rinaldi and Laurence A. Wolsey, editors, 50 Years of
Integer Programming 1958-2008: From the Early Years to the State-of-the-
Art, pages 105–132. Springer, Berlin, Heidelberg, 2010. (Cited on page 32.)

[Lefebvre et al. Under revision] Henri Lefebvre, François Clautiaux and Boris Deti-
enne. A two-stage robust approach for the weighted number of tardy jobs with
objective uncertainty. Under revision. (Cited on pages 166 and 169.)

[Lemaréchal 2001] Claude Lemaréchal. Lagrangian Relaxation. In Michael Jünger
and Denis Naddef, editors, Computational Combinatorial Optimization: Op-
timal or Provably Near-Optimal Solutions, Lecture Notes in Computer Sci-
ence, pages 112–156. Springer, Berlin, Heidelberg, 2001. (Cited on pages 21
and 24.)

[Liebchen et al. 2009] Christian Liebchen, Marco Lübbecke, Rolf Möhring and Se-
bastian Stiller. The Concept of Recoverable Robustness, Linear Program-
ming Recovery, and Railway Applications. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,
Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Ravindra K. Ahuja, Rolf H. Möhring and Christos D. Zaroliagis,
editors, Robust and Online Large-Scale Optimization, volume 5868, pages 1–
27. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. (Cited on page 9.)

[Lusby et al. 2010] Richard Martin Lusby, Laurent Flindt Muller and Bjørn Pe-
tersen. A solution approach to the ROADEF/EURO 2010 challenge based
on Benders’ Decomposition. Technical report, 2010. (Cited on page 97.)

[Lübbecke & Desrosiers 2005] Marco E. Lübbecke and Jacques Desrosiers. Selected
Topics in Column Generation. Operations Research, vol. 53, no. 6, pages
1007–1023, December 2005. (Cited on page 16.)

[Martin & Shmoys 1996] Paul Martin and David B. Shmoys. A new approach
to computing optimal schedules for the job-shop scheduling problem. In
William H. Cunningham, S. Thomas McCormick and Maurice Queyranne,
editors, Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science, pages 389–403, Berlin, Heidelberg, 1996.
Springer. (Cited on page 27.)

[Martin et al. 1990] R. Kipp Martin, Ronald L. Rardin and Brian A. Campbell.
Polyhedral Characterization of Discrete Dynamic Programming. Operations
Research, vol. 38, no. 1, pages 127–138, February 1990. Publisher: IN-
FORMS. (Cited on pages 14 and 152.)

[Meyer 1974] R. R. Meyer. On the existence of optimal solutions to integer and
mixed-integer programming problems. Mathematical Programming, vol. 7,
no. 1, pages 223–235, December 1974. (Cited on page 11.)

Bibliography 187

[Mukerji et al. 1991] Rana Mukerji, Hyde M Merrill, Bruce W Erickson, JH Parker
and RE Friedman. Power plant maintenance scheduling: optimizing eco-
nomics and reliability. IEEE Transactions on Power Systems, vol. 6, no. 2,
pages 476–483, 1991. (Cited on page 97.)

[Nemhauser & Ullmann 1968] George L. Nemhauser and Zev Ullmann. A Note
on the Generalized Lagrange Multiplier Solution to an Integer Programming
Problem. Operations Research, vol. 16, no. 2, pages 450–453, 1968. Publisher:
INFORMS. (Cited on page 21.)

[Neumann 1928] J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische
annalen, vol. 100, no. 1, pages 295–320, 1928. (Cited on page 136.)

[Perchet & Vigeral 2015] Vianney Perchet and Guillaume Vigeral. A Minmax Theo-
rem for Concave-Convex Mappings with no Regularity Assumptions. Journal
of Convex Analysis, vol. 22, 01 2015. (Cited on page 24.)

[Peridy et al. 2003] Laurent Peridy, Eric Pinson and David Rivreau. Using short-
term memory to minimize the weighted number of late jobs on a single ma-
chine. European Journal of Operational Research, vol. 148, no. 0, pages
591–603, 2003. (Cited on pages 50 and 53.)

[Pessoa et al. 2018a] A. Pessoa, R. Sadykov, E. Uchoa and F. Vanderbeck. Automa-
tion and Combination of Linear-Programming Based Stabilization Techniques
in Column Generation. INFORMS Journal on Computing, vol. 30, no. 2,
pages 339–360, May 2018. Publisher: INFORMS. (Cited on page 18.)

[Pessoa et al. 2018b] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa and François
Vanderbeck. Automation and combination of linear-programming based stabi-
lization techniques in column generation. INFORMS Journal on Computing,
vol. 30, no. 2, pages 339–360, 2018. (Cited on pages 120 and 156.)

[Pessoa et al. 2020] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa and François
Vanderbeck. A generic exact solver for vehicle routing and related problems.
Mathematical Programming, vol. 183, no. 1, pages 483–523, September 2020.
(Cited on page 18.)

[Pflug 2000] Georg Ch Pflug. Some remarks on the value-at-risk and the condi-
tional value-at-risk. In Probabilistic constrained optimization, pages 272–
281. Springer, 2000. (Cited on page 6.)

[Pinedo 2012] Michael L. Pinedo. Advanced Single Machine Models (Deterministic).
In Michael L. Pinedo, editor, Scheduling: Theory, Algorithms, and Systems,
pages 69–109. Springer US, Boston, MA, 2012. (Cited on page 13.)

[Pisinger 2005] David Pisinger. Where are the hard knapsack problems? Computers
& Operations Research, vol. 32, no. 9, pages 2271–2284, 2005. (Cited on
pages 158 and 161.)

188 Bibliography

[Pochet & Wolsey 2006] Yves Pochet and Laurence A Wolsey. Production planning
by mixed integer programming. Springer Science & Business Media, 2006.
(Cited on page 13.)

[Polyak 1969] B. T. Polyak. Minimization of unsmooth functionals. USSR Compu-
tational Mathematics and Mathematical Physics, vol. 9, no. 3, pages 14–29,
January 1969. (Cited on page 25.)

[Porcheron et al. 2010] Marc Porcheron, Agnès Gorge, Olivier Juan, Thomas
Simovic and Guillaume Dereu. Challenge ROADEF/EURO 2010: A large-
scale energy management problem with varied constraints, 2010. (Cited on
page 97.)

[Postek & Hertog 2016] Krzysztof Postek and Dick den Hertog. Multistage ad-
justable robust mixed-integer optimization via iterative splitting of the uncer-
tainty set. INFORMS Journal on Computing, vol. 28, no. 3, pages 553–574,
2016. (Cited on page 135.)

[Rahmaniani et al. 2017] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gen-
dreau and Walter Rei. The Benders decomposition algorithm: A literature
review. European Journal of Operational Research, vol. 259, no. 3, pages
801–817, June 2017. (Cited on page 21.)

[Righini & Salani 2008] Giovanni Righini and Matteo Salani. New Dynamic Pro-
gramming Algorithms for the Resource Constrained Elementary Shortest
Path Problem. Networks, vol. 51, no. 3, pages 155–170, 2008. (Cited on
page 35.)

[Rockafellar & Uryasev 2000] R Tyrrell Rockafellar and Stanislav Uryasev. Opti-
mization of conditional value-at-risk. Journal of risk, vol. 2, pages 21–42,
2000. (Cited on page 6.)

[Rozenknop et al. 2013] Antoine Rozenknop, Roberto Wolfler Calvo, Laurent Alfan-
dari, Daniel Chemla and Lucas Létocart. Solving the electricity production
planning problem by a column generation based heuristic. journal of Schedul-
ing, vol. 16, no. 6, pages 585–604, 2013. (Cited on pages 97 and 102.)

[Sadykov & Vanderbeck 2013] R. Sadykov and F. Vanderbeck. Bin Packing with
Conflicts: a generic Branch-and-Price algorithm. INFORMS Journal on
Computing, vol. 25, no. 2, pages 244–255, 2013. (Cited on page 84.)

[Sadykov et al. 2019] Ruslan Sadykov, François Vanderbeck, Artur Pessoa, Issam
Tahiri and Eduardo Uchoa. Primal Heuristics for Branch and Price: The
Assets of Diving Methods. INFORMS Journal on Computing, vol. 31, no. 2,
pages 251–267, 2019. (Cited on pages 18, 117, 118 and 156.)

[Schrijver 1986] Alexander Schrijver. Theory of linear and integer programming.
John Wiley & Sons, Inc., USA, 1986. (Cited on page 2.)

Bibliography 189

[Sellmann 2004] Meinolf Sellmann. Theoretical Foundations of CP-Based La-
grangian Relaxation. In CP, pages 634–647, 2004. (Cited on pages 27 and 28.)

[Shapiro et al. 2014] Alexander Shapiro, Darinka Dentcheva and Andrzej
Ruszczyński. Lectures on stochastic programming: modeling and the-
ory. SIAM, 2014. (Cited on pages 4, 5, 7, 8 and 19.)

[Shapiro 2021] Alexander Shapiro. Tutorial on risk neutral, distributionally robust
and risk averse multistage stochastic programming. European Journal of
Operational Research, vol. 288, no. 1, pages 1–13, January 2021. (Cited on
page 4.)

[Sherali & Lim 2007] Hanif D. Sherali and Churlzu Lim. Enhancing Lagrangian
Dual Optimization for Linear Programs by Obviating Nondifferentiability.
INFORMS J. on Computing, vol. 19, no. 1, pages 3–13, January 2007. (Cited
on page 50.)

[Sherali & Ulular 1989] Hanif D. Sherali and Osman Ulular. A primal-dual con-
jugate subgradient algorithm for specially structured linear and convex pro-
gramming problems. Applied Mathematics and Optimization, vol. 20, no. 1,
pages 193–221, July 1989. (Cited on page 50.)

[Slyke & Wets 1969] R. M. Van Slyke and Roger Wets. L-Shaped Linear Programs
with Applications to Optimal Control and Stochastic Programming. SIAM
Journal on Applied Mathematics, vol. 17, no. 4, pages 638–663, 1969. (Cited
on page 112.)

[Sourd 2009] Francis Sourd. New Exact Algorithms for One-Machine Earliness-
Tardiness Scheduling. INFORMS Journal on Computing, vol. 21, no. 1,
pages 167–175, February 2009. Publisher: INFORMS. (Cited on page 27.)

[Soyster 1973] A. L. Soyster. Technical Note—Convex Programming with Set-
Inclusive Constraints and Applications to Inexact Linear Programming. Op-
erations Research, vol. 21, no. 5, pages 1154–1157, October 1973. Publisher:
INFORMS. (Cited on page 6.)

[Subramanyam et al. 2020] Anirudh Subramanyam, Chrysanthos E. Gounaris and
Wolfram Wiesemann. K-adaptability in two-stage mixed-integer robust op-
timization. Mathematical Programming Computation, vol. 12, no. 2, pages
193–224, June 2020. (Cited on pages 38, 134, 155, 156 and 158.)

[Tanaka & Araki 2013] Shunji Tanaka and Mituhiko Araki. An exact algorithm for
the single-machine total weighted tardiness problem with sequence-dependent
setup times. Computers & Operations Research, vol. 40, no. 1, pages 344–
352, January 2013. (Cited on page 64.)

[Tanaka & Fujikuma 2012] Shunji Tanaka and Shuji Fujikuma. A dynamic-
programming-based exact algorithm for general single-machine scheduling

190 Bibliography

with machine idle time. Journal of Scheduling, vol. 15, no. 3, pages 347–
361, June 2012. (Cited on pages 36, 64, 84 and 171.)

[Tanaka et al. 2009] Shunji Tanaka, Shuji Fujikuma and Mituhiko Araki. An exact
algorithm for single-machine scheduling without machine idle time. Journal
of Scheduling, vol. 12, no. 6, pages 575–593, December 2009. (Cited on
pages 36, 50, 58 and 64.)

[Tanaka et al. 2015] Shunji Tanaka, Ruslan Sadykov and Boris Detienne. A new
Lagrangian bound for the min-sum job-shop scheduling. July 2015. (Cited on
pages 16 and 28.)

[Tanaka 2011] Shunji Tanaka. Extension of the Dynasearch to the Two-Machine
Permutation Flowshop Scheduling Problem (in Japanese). Transactions of
the Institute of Systems, Control and Information Engineers, vol. 24, no. 2,
pages 23–30, 2011. (Cited on pages 48, 49, 51 and 56.)

[Thiele et al. 2009] Aurélie Thiele, Tara Terry and Marina Epelman. Robust linear
optimization with recourse. Rapport technique, pages 4–37, 2009. (Cited on
pages 9 and 135.)

[T’kindt et al. 2004] V. T’kindt, F. Della Croce and C. Esswein. Revisiting Branch
and Bound Search Strategies for Machine Scheduling Problems. Journal of
Scheduling, vol. 7, no. 6, pages 429–440, November 2004. (Cited on page 56.)

[van Ackooij et al. 2018] Wim van Ackooij, Jérôme De Boeck, Boris Detienne, Ste-
fania Pan and Michael Poss. Optimizing power generation in the presence
of micro-grids. European Journal of Operational Research, vol. 271, no. 2,
pages 450–461, December 2018. (Cited on page 167.)

[Van Slyke & Wets 1969] R. M. Van Slyke and Roger Wets. L-Shaped Linear Pro-
grams with Applications to Optimal Control and Stochastic Programming.
SIAM Journal on Applied Mathematics, vol. 17, no. 4, pages 638–663, July
1969. Publisher: Society for Industrial and Applied Mathematics. (Cited on
page 19.)

[Vanderbeck & Wolsey 2010] François Vanderbeck and Laurence A. Wolsey. Re-
formulation and Decomposition of Integer Programs. In Michael Jünger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pul-
leyblank, Gerhard Reinelt, Giovanni Rinaldi and Laurence A. Wolsey, ed-
itors, 50 Years of Integer Programming 1958-2008: From the Early Years
to the State-of-the-Art, pages 431–502. Springer, Berlin, Heidelberg, 2010.
(Cited on pages 13 and 24.)

[Vanderbeck 2000] François Vanderbeck. On Dantzig-Wolfe decomposition in integer
programming and ways to perform branching in a branch-and-price algorithm.
Operations Research, vol. 48, no. 1, pages 111–128, 2000. (Cited on pages 16
and 34.)

Bibliography 191

[Vanderbeck 2011] François Vanderbeck. Branching in branch-and-price: a generic
scheme. Mathematical Programming, vol. 130, no. 2, pages 249–294, 2011.
(Cited on page 120.)

[Vanderbei 2020] Robert J Vanderbei. Linear programming: foundations and ex-
tensions, volume 285. Springer Nature, 2020. (Cited on page 10.)

[Vayanos et al. 2011] Phebe Vayanos, Daniel Kuhn and Berç Rustem. Decision rules
for information discovery in multi-stage stochastic programming. In Decision
and Control and European Control Conference (CDC-ECC), 2011 50th IEEE
Conference on, pages 7368–7373. IEEE, 2011. (Cited on pages 38 and 134.)

[Velde 1990] Steef van de Velde. Minimizing the sum of the job completion times in
the two-machine flow shop by Lagrangian relaxation. Annals of Operations
Research, pages 257–268, 1990. (Cited on pages 43 and 45.)

[Wolsey & Nemhauser 1999] Laurence A. Wolsey and George L. Nemhauser. Integer
and Combinatorial Optimization. John Wiley & Sons, July 1999. (Cited on
pages 2, 16, 32 and 141.)

[Wolsey 2020] Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.
(Cited on pages 2 and 10.)

[Zhao & Zeng 2012a] Long Zhao and Bo Zeng. An exact algorithm for two-stage ro-
bust optimization with mixed integer recourse problems. submitted, available
on Optimization-Online.org, 2012. (Cited on pages 38 and 135.)

[Zhao & Zeng 2012b] Long Zhao and Bo Zeng. Robust unit commitment problem
with demand response and wind energy. In Power and Energy Society General
Meeting, 2012 IEEE, pages 1–8. IEEE, 2012. (Cited on page 135.)

[Zhao et al. 2013] Chaoyue Zhao, Jianhui Wang, Jean-Paul Watson and Yongpei
Guan. Multi-stage robust unit commitment considering wind and demand
response uncertainties. IEEE Transactions on Power Systems, vol. 28, no. 3,
pages 2708–2717, 2013. (Cited on pages 135 and 147.)

[Zhen et al. 2018] Jianzhe Zhen, Dick Den Hertog and Melvyn Sim. Adjustable
robust optimization via Fourier–Motzkin elimination. Operations Research,
vol. 66, no. 4, pages 1086–1100, 2018. (Cited on page 135.)

	List of Acronyms
	Introduction
	Mathematical programming models
	Deterministic mathematical programs
	Uncertain mathematical programs

	Relaxation, reformulation and decomposition
	Motivation
	Classical mixed integer linear programming reformulations
	Lagrange relaxation
	Relaxation-based solution schemes

	Main contributions
	Real-life large scale problems
	Two-stage robust problems
	Scheduling problems

	State space relaxation algorithms
	Branch-and-bound algorithms: application to the flowshop problem
	DP formulation and dominance rules
	Network flow formulations and lower bounds
	Branch-and-bound algorithms
	Computational results

	Successive sublimation dynamic programming: application to the temporal knapsack problem
	Integer programming and dynamic programming models
	Specializing Successive Sublimation Dynamic Programming to TKP
	Refinements of SSDP to solve TKP effectively
	Computational experiments

	Other contributions in State-Space Relaxation and deterministic optimization

	Decomposition approaches for uncertain optimization problems
	Double decomposition for the outage planing problem
	Introduction
	Problem description
	Extended formulations
	Solution approaches
	Computational results

	Decomposition for two-stage robust problems with mixed integer recourse
	Introduction and literature review
	Methodological development
	Complexity results
	Numerical results

	Other contributions in optimization under uncertainty

	Perspectives
	Bibliography

