
THE DYNAMIC, RESOURCE-CONSTRAINED SHORTEST PATH PROBLEM

ON AN ACYCLIC GRAPH WITH APPLICATION IN COLUMN GENERATION

AND A LITERATURE REVIEW ON SEQUENCE-DEPENDENT SCHEDULING

A Dissertation

by

XIAOYAN ZHU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE DYNAMIC, RESOURCE-CONSTRAINED SHORTEST PATH PROBLEM

ON AN ACYCLIC GRAPH WITH APPLICATION IN COLUMN GENERATION

AND A LITERATURE REVIEW ON SEQUENCE-DEPENDENT SCHEDULING

A Dissertation

by

XIAOYAN ZHU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Wilbert E. Wilhelm
Committee Members, Illya V. Hicks
 Sergiy Butenko
 David Larson
Head of Department, Brett A. Peters

December 2005

Major Subject: Industrial Engineering

 iii

ABSTRACT

The Dynamic, Resource-Constrained Shortest-Path Problem

on an Acyclic Graph with Application in Column Generation and

a Literature Review on Sequence-Dependent Scheduling. (December 2005)

Xiaoyan Zhu, B.En., Tsinghua University;

M.S., MIT & Nanyang Technological University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm

This dissertation discusses two independent topics: a resource-constrained shortest-path problem

(RCSP) and a literature review on scheduling problems involving sequence-dependent setup

(SDS) times (costs).

RCSP is often used as a subproblem in column generation because it can be used to

solve many practical problems. This dissertation studies RCSP with multiple resource

constraints on an acyclic graph, because many applications involve this configuration, especially

in column genetation formulations. In particular, this research focuses on a dynamic RCSP

since, as a subproblem in column generation, objective function coefficients are updated using

new values of dual variables at each iteration. This dissertation proposes a pseudo-polynomial

solution method for solving the dynamic RCSP by exploiting the special structure of an acyclic

graph with the goal of effectively reoptimizing RCSP in the context of column generation. This

method uses a one-time “preliminary” phase to transform RCSP into an unconstrained shortest

path problem (SPP) and then solves the resulting SPP after new values of dual variables are used

to update objective function coefficients (i.e., reduced costs) at each iteration. Network

reduction techniques are considered to remove some nodes and/or arcs permanently in the

 iv

preliminary phase. Specified techniques are explored to reoptimize when only several

coefficients change and for dealing with forbidden and prescribed arcs in the context of a column

generation/branch-and-bound approach. As a benchmark method, a label-setting algorithm is

also proposed. Computational tests are designed to show the effectiveness of the proposed

algorithms and procedures.

This dissertation also gives a literature review related to the class of scheduling

problems that involve SDS times (costs), an important consideration in many practical

applications. It focuses on papers published within the last decade, addressing a variety of

machine configurations - single machine, parallel machine, flow shop, and job shop - reviewing

both optimizing and heuristic solution methods in each category. Since lot-sizing is so

intimately related to scheduling, this dissertation reviews work that integrates these issues in

relationship to each configuration. This dissertation provides a perspective of this line of

research, gives conclusions, and discusses fertile research opportunities posed by this class of

scheduling problems.

 v

To my dear sister Xiaona Zhu

 vi

 ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Wilbert E. Wilhelm, Department

of Industrial Engineering, Texas A&M University, for his continuous guidance and many

educational contributions. Throughout my Ph.D. program, I have learned so many aspects of life

from him. Without his guidence and encouragement I could not have finished my Ph.D. studies

smoothly.

 Dr. Wilhelm has co-authored papers that are in review and I am very grateful for his

significent contributions and valuable hard work. I also would like to thank Dr. Wilhelm for his

helpful comments and suggestions that have improved both the contents and the structure of the

dissertation.

 I wish to thank Dr. Illya V. Hicks, Dr. Sergiy Butenko and Dr. David Larson for serving

on the committee and for giving valuable suggestions. Thanks also to my peers: Dong Liang,

Deepak Warrier and Brijesh Rao for the wonderful time and discussions we shared together.

Most importantly, I would like to thank my husband, Tao Yuan, for his encouragement and aid

in solving some computer problems.

 vii

 TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION... 1

II INTRODUCTION TO RSCP... 3

2.1 Scope .. 3
2.2 Motivation .. 5
2.3 Objectives ... 7
2.4 Organization of part I ... 7

III LITERATURE REVIEW: RSCP... 8

3.1 SPP ... 8
3.2 Complexity ... 9
3.3 Available algorithms... 10
3.4 Preprocessing techniques.. 14
3.5 Reoptimization.. 15
3.6 Fixed arcs.. 16
3.7 Summary... 17

IV PROBLEM FORMULATION... 18

V THREE-STAGE APPROACH .. 22

5.1 Preprocessing stage... 23
5.2 Expanding stage.. 33
5.3 Iterative solution stage.. 41
5.4 TSA for repeatedly solving RCSP.. 42
5.5 Summary... 43

VI LABEL-SETTING ALGORITHM ... 44

VII COMPUTATIONAL EVALUATION OF TSA.. 47

7.1 Test problems and computational platform .. 47
7.2 Computational results for TSA and LSA.. 50
7.3 Effect of resource limitations on TSA.. 59
7.4 Effectiveness of prescribing resource windows and RP in TSA 62

VIII TSA FOR SOLVING RCSP IN CG AND CG/B&B ... 67

8.1 ROA and TSA-CG.. 67

 viii

CHAPTER Page

8.2 MDFA and TSA-CG/B&B... 75

IX THREE EXTENSIONS OF TSA... 86

9.1 SPPRW and SPRCRW... 86
9.2 RCkSP .. 88
9.3 MMCKP ... 89
9.4 An application of MMCKP .. 94

X INTRODUCTION TO SCHEDULING PROBLEMS WITH SDS..................... 100

XI THE SINGLE MACHINE CONFIGURATION ... 104

11.1 Optimizing and hybrid methods ... 104
11.2 Heuristics.. 106
11.3 Combined lot sizing and SDS scheduling .. 109

XII THE PARALLEL MACHINE CONFIGURATION... 112

12.1 Optimizing and hybrid methods ... 112
12.2 Heuristics.. 113
12.3 Combined lot sizing and SDS scheduling .. 116

XIII THE FLOW SHOP CONFIGURATION.. 118

13.1 Optimizing and hybrid methods ... 119
13.2 Heuristics.. 120
13.3 Variation of the flow shop.. 121
13.4 CC assembly... 122
13.5 Combined lot sizing and SDS scheduling .. 124

XIV THE JOB SHOP CONFIGURATION .. 125

14.1 Optimizing and hybrid methods ... 125
14.2 Heuristics.. 126

XV PERSPECTIVES ON SDS SCHEDULING RESEARCH................................... 128

XVI CONCLUSIONS AND FUTURE RESEARCH.. 137

16.1 Conclusions on the RCSP research .. 137
16.2 Conclusions on the SDS scheduling literature review...................................... 138
16.3 Future research on SDS scheduling problems.. 138

 ix

 Page

REFERENCES... 143

VITA.. 162

 x

LIST OF FIGURES

FIGURE Page

1 General outline of TSA .. 22

2 Illustration of notation
jr

f , jrf , jra , jra , jrb and jrb ... 24

3 S1A... 25

4 An example of MRCSP.. 30

5 k
jry is calculated using RP (4-5)... 35

6 EP: expanding (,)R R RG V A to form (,)E E EG V A .. 36

7 An example of expanded graph EG ... 38

8 OA .. 42

9 TSA .. 42

10 LSA .. 45

11 Instance s-500-2a.. 60

12 ROA.. 69

13 TSA-CG.. 71

14 Dashed arcs ((a), (b), (c)) are forbidden due to prescribed arc (i, j) 76

15 GFA: generating 0̂F algorithm ... 77

16 GERA: EG revising algorithm ... 78

17 TSA-CG/B&B ... 80

18 S1A-A: stage 1 algorithm of ATSA ... 87

19 S1A-G: stage 1 algorithm of GTSA ... 88

20 Representation of MMCKP on an acyclic graph: (a) multigraph; (b) MMCKP

 xi

FIGURE Page

 -graph ... 90

21 S1A-M: S1A specialized for the MMCKP-graph .. 94

22 An example of SP1: (a) example of BOM restrictions; (b) example of BAFN; and
 (c) example of SBAFN... 98

 xii

LIST OF TABLES

TABLE Page

1 A taxonomy of available methods to solve RCSP and SPPRW..................................... 11

2 Main acronyms used in Part I of the dissertation ... 20

3 TSA for different problem types .. 21

4 Test instances in Classes 2 and 3.. 49

5 Results of solving instances in Class 1 for 100 replications... 53

6 Results of solving instances in Class 2 for 100 replications... 54

7 Results of solving instances in Class 3 for 100 replications... 57

8 Results of solving s-500 series for }0.1,,1.0{ …=η .. 60

9 Results of solving m-50 series for }0.1,,1.0{ …=η ... 61

10 Comparison of TSA and EGA.. 66

11 Comparison of OA and ROA ... 74

12 Results of instances s-1000-2a with fixed arcs... 83

13 Three –field notation | |α β γ .. 102

14 A taxonomy of SDS scheduling literature published over the last decade................... 128

15 Summary of research methodologies for SDS scheduling ... 133

 1

This dissertation follows the style and format of IIE Transactions.

CHAPTER I

INTRODUCTION

This dissertation addresses two independent topics: a resource-constrained shortest-path problem

(RCSP) and a literature review related to scheduling problems that involve sequence-dependent

setup (SDS) times (costs).

The first topic studied in this dissertation is a dynamic RCSP, which is a variant of the

classical single-source, single-sink shortest-path problem (SPP). Consider a directed graph

(digraph) in which each arc has an associated cost and a vector representing the resources

required to traverse it. Then, RCSP is to find a shortest path (i.e., the path with the least total arc

cost) from the source node to the sink node with a total consumption of each type of resource

that observes a given upper bound. We denote RCSP with a single resource constraint as

SRCSP and RCSP with multiple resource constraints as MRCSP. RCSP is often used as a

subproblem in column generation (CG); many applications (e.g., in scheduling) may be modeled

using an acyclic graph and multiple resource restrictions. Thus, this dissertation studies RCSP

with multiple resource constraints on an acyclic graph in the context of CG. When RCSP is used

as a subproblem in CG, objective function coefficients are updated using new values of dual

variables at each CG iteration and, consequently, RCSP must be reoptimized with respect to

these new objective function coefficients. This renders the dynamic property of RCSP.

Moreover, numerous mixed integer linear programming problems (MIPs) have been solved

successfully using branch-and-bound (B&B), incorporating CG at each node of the B&B tree to

compute (tight) bounds. When RCSP is used as a subproblem in CG/B&B, some arcs in the

graph may be forbidden or prescribed (i.e., with associated decision variables fixed to 0 or 1,

 2

respectively) by the branching rule. Thus, an effective solution method for RCSP must offer the

ability to handle repeated reoptimization, subject to fixed (i.e., forbidden and prescribed) arcs in

the context of CG/B&B. Currently available methods do not satisfy these needs, so this

dissertation aims to fill this void.

Another topic studied in this dissertation is a class of scheduling problems that involve

SDS times (costs). In general, setup includes work required to prepare a machine (or process) to

produce parts of a given type, including setting jigs and fixtures, adjusting tools, and

provisioning material. Because of their prevalence in, and importance to, industry and because

of the challenges they present to solution methodologies, scheduling problems that involve SDS

have attracted the interests of many researchers. This dissertation contributes by focusing on

recent results and providing a technical perspective of the topic.

 The dissertation is structured in two parts; each corresponds to one of the two topics.

Part I, consisting of Chapters II-IX, investigates RCSP. Part II, consisting of Chapters X-XV,

reviews the literature on scheduling problems with SDS. The last chapter presents conclusions

of this dissertation research and outlines fertile opportunities for future work.

 3

CHAPTER II

INTRODUCTION TO RCSP

This chapter presents the scope of RCSP (Section 2.1), addressing various types of constrained

SPPs (CSPs); motivations of this research (Section 2.2), focusing on the applications of RCSP;

objectives of the research on RCSP (Section 2.3); and the organization of Part I (Section 2.4).

2.1. Scope

The classical SPP is to find a path with minimum cost from a given source node to a given sink

node on a digraph. A SPP subject to different types of constraints results in distinct types of

CSPs. In general, a CSP is to find a minimum cost path with respect to objective function

coefficients while satisfying a set of constraints, which may impose some additional

characteristics on the path in a graph. The term “cost” in Part I of this dissertation refers to the

objective function coefficients in SPP or CSP, although it may represent distance, time or

another measure, depending on the application.

CSP is important because, by incorporating different constraints in SPP, CSP can be

used to model and solve a variety of practical problems. The types of constraints most

frequently considered include time-window constraints for nodes (Desaulniers et al. (1997),

Desrochers et al. (1992)) or arcs (Jaumard et al. (1996, 1998)); traffic-light constraints (Chen

and Yang (2000)); on-off time-switch constraints (Chen and Yang (2003)); time-schedule

constraints (Chen and Tang (1997)) in which departures from nodes are only allowed at some

discrete time points; hop constraints (Daul and Gouveia (2004)), which require a feasible path

with at most a given number of hops (arcs); equity constraints (Gopalan (1990)); label-

constraints (Barrett et al. (2000), Sherali et al. (2003)); bottleneck constraints (Berman et al.

 4

(1990), Shin et al. (1995), Wilhelm (1999)), which limit the resource requirement (single

resource) on each arc in the shortest path to be no greater than a given threshold; constraints

from a set of forbidden paths that can not be part of any feasible solution (Villeneuve and

Desaulniers (2005)); constraints from a set of prescribed arcs that are required to be part of the

shortest path (Chen and Hung (1994)); as well as budget- or resource-constraints (Holmberg and

Yuan (2003), Elimam and Kohler (1997)).

This dissertation focuses on RCSP with single or multiple knapsack-type resource

limitations; for example, a resource can be time, distance, capacity, money, workload, or

reliability requirement. Given a digraph in which each arc has an associated cost and a vector

representing the resource required to traverse it, RCSP can be depicted as finding a shortest path

from a source node to a sink node with a total consumption of each type of resource that

observes a given upper bound. The next chapter presents a formal description of RCSP.

The shortest path problem with time windows (SPPTW), or, more generally, resource

windows (SPPRW), is another type of CSP, which is to find a shortest path between a given pair

of source and sink nodes such that the cumulative requirement of each type of resource at each

node on the shortest path lies within a given resource window associated with that node.

Analogous to a time window, a resource window at a node defines the smallest and largest

amounts of resource that the cumulative resource requirement along a path from the source node

to that node can be. In this dissertation, the term “SPPTW” represents the SPP with window

constraints on a single resource (usually time), and the term “SPPRW” represents the general

case (i.e., SPP with multiple types of resource-window constraints). Resource windows can be

classified into two types: “hard” or “soft”. In the former case, if one or more resource-window

constraints are not satisfied, then the solution becomes infeasible (Kolen et al. (1987), Russell

(1995), Bramel and Simchilevi (1996)). In the latter case, a cost penalty is incurred if the

 5

cumulative resource requirement at a node is outside its resource window (Balakrishnan (1993))

(the penalty is typically assumed to be a linear function of the amount of violation). For

example, if the resource is time, as in a vehicle routing problem with time windows (VRPTW), a

hard time window requires a vehicle that arrives at a customer too early to wait to service the

customer within the window, and that the vehicle can not arrive later than the due date (i.e., the

upper bound of the window). The SPPRW most extensively investigated is the one with hard

resource windows. Apparently, RCSP can be regarded as a SPPRW with a hard window at each

node for each resource that ranges from 0 to the total resource limitation. However, Chapter V

shows that RCSP on an acyclic graph can be transformed in polynomial time into SPPRW with

much tighter resource windows. The next chapter presents a formal description of SPPRW.

2.2. Motivation

RCSP finds application in many areas, including transportation and communication (Holmberg

and Yuan (2003)), network routing (Desrochers et al. (1992)), wastewater treatment (Elimam

and Kohler (1997)), global supply chain design (Wilhelm et al. (2005b)), investment planning

and project evaluation (Bard and Miller (1989)), transfer-line balancing (Dolgui et al. (2004)),

scheduling and planning (Avella et al. (2004); Mingozzi et al. (1999)), as well as in some

classical combinatorial problems, including generalized assignment, matching, and traveling

salesman problems (Houck et al. (1980)). Avella et al. (2004) discussed the applications of

RCSP in the management and control of a vehicle fleet on a road network.

In an important class of applications, RCSP appears as a subproblem in CG, which has

been successfully used to solve some well-known problems like vehicle routing (Desrochers et

al. (1992); Desrosiers et al. (1988); Desrosiers et al. (1984)), crew scheduling (Mingozzi et al.

(1999); Desrochers and Soumis (1989); Lavoie et al. (1988)), prescribing the content and timing

 6

of products upgrades (Wilhelm et al. (2003)), optimizing placing and picking operations on dual-

head placement machines (Wilhelm et al. (2004) and Wilhelm et al. (2005a)), and

multicommodity flow problems (Holmberg and Yuan (2003)). CG was first suggested by Ford

and Fulkerson (1958) for a problem involving maximizing flow in a multicommodity network.

It was then presented by Dantzig and Wolfe (1960) for linear programs with decomposable

structures and by Gilmore and Gomory (1961) for the cutting-stock problem. A good recent

survey on CG was provided by Wilhelm (2001). CG requires a model to be decomposed into

two parts: the master problem and the subproblem(s). RCSP is one of most important

subproblems in many large-scale real-world problems because it can be used to model the

complex logic by which many systems operate (Wilhelm (2001)). Modern interest in CG was

stimulated by the work in the context of VRPTW (e.g., Desrosiers et al. (1984); Desrochers et al.

(1992); Desrosiers et al. (1993)). Desrochers et al. (1992) solved VRPTW using a B&B

approach for the integer set-partitioning formulation of VRPTW. They solved the linear

relaxation of this set-partitioning formulation by CG, generating feasible columns by solving

SRCSP with additional time-window constraints using dynamic programming (DP). Recently,

Holmberg and Yuan (2003) solved a multicommodity network-flow problem with side

constraints, using CG with SRCSP as a subproblem for each commodity to deal with side

constraints. The problem arose in the telecommunications area and the side constraints may

represent the time-delay or reliability requirements on paths that are used for routing.

In particular, many applications can be represented on an acyclic graph, e.g., nurse

scheduling (Jaumard et al. (1998)), crew pairing (Desaulniers et al. (1997)), crew scheduling

(Mingozzi et al. (1999)), assembly system design with tool changes (Wilhelm (1999)),

prescribing the content and timing of products upgrades (Wilhelm et al. (2003)), transfer line

balancing (Dolgui et al. (2004)), and simultaneous operational flight and pilot scheduling

 7

(Stojković and Soumis (2001)). Typically, applications in the area of scheduling can be modeled

on an acyclic graph (van den Akker et al. (2000)).

These types of applications, especially the class for which RCSP is a subproblem in CG,

motivate this dissertation research. This dissertation contributes by proposing a new, improved

approach for repeatedly solving RCSP on an acyclic graph in CG/B&B. Consequently, it can

speed up CG approaches for problems that can be solved using CG with RCSP as a subproblem.

Specialized algorithms handle issues related to preprocessing, reoptimization, and fixed arcs in

CG/B&B.

2.3. Objectives

The objectives of this dissertation research on RCSP are: i) a review of the literature that relates

applications and existing algorithms for RCSP; ii) an effective solution method for the dynamic

RCSP, including preprocessing techniques, reoptimization methods, and procedures for dealing

with fixed arcs; iii) some extensions of the proposed method; and iv) computational evaluation.

2.4. Organization of part I

The remainder of part I is structured as follows. Chapter III reviews related literature and

Chapter IV gives the formal descriptions of RCSP and SPPTW and introduces the main

acronyms that are used in Part I of this dissertation. Chapters V and VI propose new algorithms

for solving RCSP. Chapter VII presents a computational evaluation to show the effectiveness of

the proposed algorithms. Chapter VIII investigates the special issues that arise when the new

method is applied in the context of CG and CG/B&B. Finally, Chapter IX provides some

extensions of the proposed algorithms.

 8

CHAPTER III

LITERATURE REVIEW: RCSP

This chapter presents a comprehensive literature review. Starting from an overview of SPP in

Section 3.1, consecutive sections overview different aspects of RCSP, including complexity

(Section 3.2), available solution algorithms (Section 3.3), preprocessing techniques (e.g.,

network reduction and resource-window tightening) (Section 3.4), reoptimization (Section 3.5),

and issues related to fixed arcs (Section 3.6). Finally, Section 3.7 summaries this entire chapter,

emphasizing the necessity of this dissertation research.

3.1. SPP

The unconstrained, single-source, single-sink SPP is concerned with finding a minimum cost

through a digraph path from a source node to a sink node. SPP is important because it finds

numerous applications and generalizations, for example, in communications and transportation

networks (Deo and Pang (1984)), design of quality control systems (White (1969)), scheduling

(Gamache et al. (2005)), and many other areas. SPP is often used as a subproblem in CG

approaches, for example, in the linear multicommodity flow problem (Babonneau et al. (2004)),

vehicle routing problem (Christofides et al. (1981)), and single-machine scheduling problem

(van den Akker et al. (2000)). Glover et al. (1985a) described additional applications. SPP is

solvable in polynomial time and has been widely investigated. Several solution methods have

proven to perform very well in practice, including the label-setting algorithm of Dijkstra (1959)

for nonnegative arc costs, and the label-correcting algorithms of Bellman (1958) and Ford (1956)

for arbitrary arc costs but no negative cycles. The primary difference between a label-correcting

algorithm and a label-setting algorithm is the node selection criterion. Rather than selecting a

 9

node with the minimum cost label to scan as the label-setting algorithm does, label-correcting

algorithms may select any node from a list of eligible nodes. Using different selection criterion

results in different label-correcting algorithms. Glover et al. (1985b) presented several label-

correcting algorithms. Algorithms for CSP are based on these methods for SPP. Gallo and

Pallottino (1986), Deo and Pang (1984), Bodin et al. (1982), and Golden and Magnanti (1977)

provided reviews on SPP.

3.2. Complexity

Handler and Zang (1980) and Jaffe (1984) showed that RCSP is NP-hard, even if the graph is

acyclic, only one resource constraint is involved, and all resource requirements and costs are

positive (Dumitrescu and Boland (2003)). Hassin (1992) showed that SRCSP is polynomial

solvable if arc costs or arc resource requirements are bounded.

Dror (1994) proved that an SPPTW with the requirement that the shortest path be

elementary (no node is visited more than once on the path) is NP-hard in the strong sense and

Garey and Johnson (1979) showed that an SPPTW that does not invoke this elementary path

requirement is NP-hard in ordinary sense and can be solved in pseudo-polynomial time. The

solution to RCSP is guaranteed to be elementary if arc costs are nonnegative and resource

constraints have only upper bounds, or if the graph is acyclic (Beasley and Christofides (1989)).

Beasley and Christofides (1989) gave the conditions for a general graph that guarantee the

solution to RCSP to be elementary and presented MIP formulas for the elementary, simple (no

arc is visited more than once on the path), and nonelementary versions of RCSP with multiple

resource constraints.

 10

3.3. Available algorithms

Since RCSPs are imbedded in a number of important practical problems, they have been studied

rather extensively, as shown in Table 1, which gives taxonomy of available algorithms. Two

families of exact algorithms have been proposed: one involves solving a relaxed problem using

Lagrangian or linear relaxation and the other uses DP. Relaxation-based methods generally

involve three steps: (1) compute lower and upper bounds for the optimal solution of RCSP by

solving the relaxed problem, (2) use the results of the first step to reduce the network, and (3)

close the gap between lower and upper bounds. Following this general outline, Handler and

Zang (1980) solved a Lagrangian dual to optimality in a step (1) solution to SRCSP. To close

the duality gap, they used the kth-shortest path algorithm of Yen (1971) with modified arc cost

*
ij ijc w u+ (where ijc is the original arc cost, ijw is the amount of resource required to traverse the

arc, and *u is the optimal value of the Lagrangian multiplier), to update lower and upper bounds

of SRCSP until the lower bound was greater than or equal to the upper bound. They used

Lagrangian relaxation with the goal of reducing the value of k and their method usually – but not

always – achieves this goal.

Beasley and Christofides (1989) proposed a method based on Lagrangian relaxation to

optimize MRCSP. They used subgradient optimization to (approximately) solve the Lagrangian

dual as a first step and B&B to close the duality gap. Mehlhorn and Ziegelmann (2000)

proposed a hull approach for solving the linear-relaxation of MRCSP and closed the gap between

lower and upper bounds in one of three ways: by enumerating paths as in Hassin (1992), by

applying a kth-shortest path algorithm as in Handler and Zang (1980), or by enumerating paths in

order of increasing reduced cost in combination with pruning unpromising paths. However,

relaxation-based methods have not been applied when RCSP is used as a subproblem in CG.

 11

 T
ab

le
 1

. A
 ta

xo
no

m
y

of
 a

va
ila

bl
e

m
et

ho
ds

 to
 so

lv
e

R
C

SP
 a

nd
 S

PP
R

W

 12

A number of previous papers gave DPs for RCSP and SPPRW. Joksch (1966) proposed

a DP approach for SRCSP and Hassin (1992) gave two exact pseudo-polynomial DP algorithms

for SRCSP on an acyclic graph. Aneja et al. (1983) adapted the shortest-path label-setting

scheme of Dijkstra (1959) to solve MRCSP. The label-setting approach is a generalization of

Dijkstra’s algorithm, which permanently labels nodes that are processed in order, based on

resource consumptions. In addition to the label-setting approach, the label-correcting approach

is a generalization of Ford-Bellman’s algorithm; it treats each node more than once and attempts

to update the labels of all nodes at each iteration. Desrochers and Soumis (1988b) presented a

pseudo-polynomial time, generalized permanent labeling algorithm for SPPTW. Desrochers and

Soumis (1988a) presented a primal-dual reoptimization approach for SPPTW and Desrochers

(1988) generalized it to solve SPPRW. Dumitrescu and Boland (2003) investigated variants of

the label-setting algorithm of Desrochers and Soumis (1988b) for both SRCSP and MRCSP,

focusing on computational results. For SRCSP, they presented an improved version of the label-

setting algorithm and an exact algorithm based on the weight-scaling method of Dumitrescu and

Boland (2001), which scales resource requirements before applying the label-setting algorithm.

In our terminology, a weight associated with an arc is called a resource requirement. Both

algorithms integrate information obtained from preprocessing. They also presented an extension

that integrates information from applying Lagrangian relaxation.

Recently, Feillet et al. (2004) studied SPPRW, restricting the optimal path to be

elementary, even if negative cost cycles exist. Dror (1994) proved that the elementary SPPRW

is NP-hard in the strong sense. Feillet et al. (2004) proposed an exact DP algorithm adapted

from the label-correcting algorithm of Desrocher (1988), which was developed for the

nonelementary path version of SPPRW, and employed it in a CG approach for VRPTW. The

main advantage of the nonelementary SPPTW is that it can be solved effectively using DP, while

 13

the primary disadvantage is that it provides a weaker lower bound. If the graph is acyclic as in

this dissertation, the optimal path is always elementary.

Ioachim et al. (1998) considered a variant of SPPTW in a directed, acyclic network that

includes a cost that is a linear function of the time at which service starts at each node. A certain

scheduling problem, which Stojković and Soumis (2001) formulated as an integer nonlinear

multicommodity network flow model with time windows and additional coupling constraints,

motivated this study. Each coupling constraint links time variables (representing the service start

times at nodes) in several SPPTW subproblems, each related to a single commodity. Relaxing

these coupling constraints using Lagrangian relaxation (e.g., the time variables appear in the

objective function together with dual multipliers) introduces a linear cost on each node in the

network of each SPPTW subproblem. They proposed an exact DP algorithm for the

nonelementary version of their variant of SPPTW.

In the context of CG, RCSP must be solved a number of times. Each time, arc costs are

updated with the current values of dual variables in the master problem. The DP algorithms

discussed above do not exploit this context. To reoptimize at each CG iteration, the DP

algorithm must be employed from scratch (i.e., from the first stage and onwards). On the other

hand, several approaches exploit the CG context. Jaumard et al. (1996) investigated a SPPRW in

which resource windows are associated with each arc. They described a DP algorithm and a

two-phase approach for an acyclic graph; both approaches have pseudo-polynomial time

complexity. The first phase of their two-phase algorithm constructed an expanded graph on

which SPPRW can be solved as SPP. The second phase used an (unconstrained) shortest path

algorithm to prescribe an optimal path through the expanded graph. The expanded graph need

be constructed only once, and SPP is solved each time a subproblem is invoked in an attempt to

generate an improving column. But they did not report the numerical performance of their

 14

method. Wilhelm et al. (2003) reported a similar, two-phase approach for a layered acyclic

graph in which each arc is incident from a node in one level to another node in the next level.

This dissertation develops a systematic method for solving RCSP and SPPRW repeatedly.

3.4. Preprocessing techniques

Preprocessing techniques, which aim to reduce the size of an instance either by removing

nodes/arcs or by tightening resource limitations, can facilitate solution and have been used

widely. They involve either resource-based reduction (Aneja et al. (1983)) or joint resource- and

cost-based reduction (Beasley and Christofides (1989); Dumitrescu and Boland (2003)).

Recently, Dumitrrescu and Boland (2003) presented a preprocessing algorithm for the general

RCSP; it interleaves resource- and cost-based reduction, and their computational tests

demonstrated that their approach can be surprisingly effective in reducing problem size. For

SPPTW, Desrochers et al. (1992) reduced the time window for each node, using a resource-

based method which examines and updates the time windows of nodes cyclically until no further

reductions are possible. Dumas et al. (1991) reported a similar time-window tightening

technique and Jaumard et al. (1996) used a forward recursion to tighten resource windows.

Desaulniers et al. (2002) mentioned that tightening resource windows is a way to speed up

SPPTW algorithms.

This dissertation develops an efficient preprocessing stage that implements a resource-

based reduction (see Section 5.1). It does not propose a cost-based reduction because it deals

with the dynamic RCSP for which arc costs are updated at each CG iteration.

 15

3.5. Reoptimization

The objective function coefficients of a RCSP subproblem in CG are updated using the new dual

variables generated by the master problem at each CG iteration. Thus, RCSP must be

reoptimized at each CG iteration using the new arc costs but subject to the same set of resource

constraints. The optimal solution (i.e., a shortest path tree rooted at source node) from the

previous CG iteration is available.

In early work related to reoptimizing SPP, Goto and Sangiovanni-Vincentelli (1978)

investigated the problem of updating shortest paths from all nodes to a set of nodes for the case

in which the cost on each of a subset of arcs is decreased and proposed a method based on LU

factorization of { }ijc , where ijc is the cost on arc (,)i j . Their method requires a considerable

amount of memory and is effective only if matrix { }ijc is sparse.

Gallo (1980) proposed the first efficient strategy for reoptimizing a SPP in two cases: (1)

a different node is selected to be the source node of SPP each time, and (2) exactly one arc is

assigned a new cost that is less than the old one each time. Fujishige (1981) proposed another

effective approach for the case in which each of a set of arcs incident to a common node is

assigned a new cost that is less than the previous one. Recently, Buriol et al. (2003) proposed a

technique that can reduce the sizes of heaps used by several reoptimization algorithms (i.e.,

Ramalingam and Reps (1996), King and Thorup (2001), and Demetrescu (2001)) for the case in

which a single arc is assigned a new cost that is either smaller or greater than the previous one.

They provided a survey of research that had dealt with the case in which the cost of a single arc

is changed and presented a comprehensive computational evaluation of their technique. These

methods, however, are very restrictive and only applicable to special cases (e.g., exactly one arc

is assigned a new cost, or each of a set of arcs incident to a common node is assigned a new

cost). Although these methods can be applied iteratively if several arc costs change, the

 16

resulting algorithms are computationally impractical when a number of arc costs are assigned

new values.

Pallottino and Scutellà (2003) proposed a methodology to reoptimize a single-source

SPP on a general network for the case in which the cost on each of any subset of arcs is changed,

either to a lower or a higher value. They generalized the works of Fujishige (1981) and Gallo

(1980), devising a two-phase method. The dual phase reoptimizes arcs with increased cost

sequentially. The primal phase dynamically decomposes the set of arcs with decreased costs into

disjoint subsets and reoptimizes each subset sequentially.

This line of research has not been specialized to the acyclic graph. This dissertation

presents methods to reoptimize RCSP if the costs of any subset of arcs of the input acyclic graph

are changed to values that are either higher or lower than the previous ones.

3.6. Fixed arcs

Arcs in a subproblem graph that are forbidden or prescribed correspond to associated decision

variables that are fixed to either 0 or 1, respectively. This issue arises when a CG/B&B

approach employs RCSP subproblem(s). Typically, existing methods assign a large cost to each

forbidden arc and a small cost to each prescribed arc (e.g., Jaumard et al. (1996)) to induce the

RCSP solution algorithm to exclude or include a decision variable, respectively. However, such

methods have the same complexity, whether arcs are forbidden and prescribed or not, even

though these constraints can be used to reduce the size of RCSP to improve computational

effectiveness. This dissertation presents an algorithm that can detect infeasibility with respect to

resource limitations before solving RCSP and reduce computational burden by exploiting the set

of fixed arcs. Again, this method is suitable for repeatedly solving RCSP, subject to a set of

fixed arcs at a node in the B&B search tree.

 17

3.7. Summary

A number of applications that involve RCSP as a subproblem in CG motivate the development

of methods that are explicitly designed to reoptimize in CG effectively while systematically

incorporating special issues (e.g., preprocessing techniques, reoptimization, and fixed arcs). To

the best of our knowledge, such methods have not been studied. This dissertation studies such a

problem, which involves an acyclic underlying graph, multiple resource constraints, repeated

reoptimization, and fixed arcs as required in CG/B&B applications.

 18

CHAPTER IV

PROBLEM FORMULATION

The following notation is used in the remainder of Part I. Let (,)G V A= be an acyclic digraph

with n V= topologically ordered nodes 1, , nv v" and m A= arcs. An arc from iv to jv is

denoted as either (,)i jv v or (,)i j A∈ . Since nodes of G are topologically numbered, arc

(,)i j A∈ only if 1 i j n≤ < ≤ . Let 1v and nv be source and sink nodes, respectively. An ℜ -

dimensional resource limit vector =T (1T , ,T
ℜ

") is associated with set of nonnegative discrete

valued resources, .ℜ A cost ijc and a discrete-valued resource-requirement vector

ij =u (1 , ,ij ij
u u

ℜ
") are associated with each arc (,)i j A∈ . Traversing arc (,)i j consumes an

amount ijru of resource r∈ℜ . Let path 1 jv v− denote a series of consecutive arcs from 1v to jv

(such a path may not be unique). The consumption (requirement) of resource r on a path is the

sum of the requirements of resource r associated with all arcs on that path. Note that since the

graph is assumed to be acyclic, the solution must be elementary.

RCSP consists of finding a shortest path from source node of 1v to sink node of nv in G

with resource-limitation constraints. Let ijx be a binary decision variable associated with arc

(,)i j A∈ . 1ijx = if arc (,)i j is on the optimal shortest path, 0 otherwise. RCSP can be

formulated as a MIP ()1℘ :

()1℘ min
(,)

ij ij
i j A

z c x
∈

= ∑ (1a)

 s.t.
(,) (,)

1 1
0 2, 1
1

ij jk
i j A j k A

j
x x j n

j n∈ ∈

=⎧
⎪− = = −⎨
⎪− =⎩

∑ ∑ " (1b)

 19

(,)
ijr ij r

i j A
u x T

∈

≤∑ r∀ ∈ℜ (1c)

 {0,1}ijx ∈ (,)i j A∀ ∈ (1d)

Objective function (1a) is to find a shortest path with respect to arc costs, ijc . Constraint (1b)

requires that the solution vector { }ijx=x describes a path from 1v to nv . Constraint (1c)

invokes the resource limitations, requiring that the total consumption of resource r on a 1 nv v−

path be no greater than resource limitation rT . Without constraint (1c), objective (1a) and

constraints (1b) and (1d) define a classical SPP.

SPPRW is to find a shortest nvv −1 path in G with resource-window constraints. Let

jrt be a decision variable representing the cumulative requirement of resource r∈ℜ (CRR-r) at

jv V∈ and 1(, ,)j j j
t t

ℜ
=t " be a CRR vector at jv V∈ . Let [,jr jrt t] be a hard resource window

for resource r∈ℜ at jv . Denote vectors 1(, ,)j j jt t ℜ=t " and 1(, ,)j j jt t
ℜ

=t " . Then, SPPRW

can be formulated as a MIP ()2℘ :

()2℘ min
(,)

ij ij
i j A

z c x
∈

= ∑ (2a)

 s.t. Constraints (1b) and (1d)
 jr jr jrt t t≤ ≤ 1,j n= … , r∀ ∈ℜ (2b)

 (1)ir ijr jr ijt u t M x+ − ≤ − (,)i j A∀ ∈ , r∀ ∈ℜ (2c)

where M is a large number. Objective (2a) is the same as (1a). Constraint (2b) imposes a

resource window on the CRR vector at each jv V∈ . Constraint (2c) requires that CRR-r at jv

must lie within the hard resource window. If CRR- r along a path from 1v to jv is lower than

jrt , it is increased to jrt . The difference between models ()1℘ and ()2℘ is that ()2℘ has

resource-window constraints (2b) and (2c) rather than resource-limitation constraints (1c) in

()1℘ . Later, it is shown that ()1℘ can be transformed to ()2℘ by formulating resource

 20

windows [,j jt t] for each node in G .

When these models arise as subproblems in CG approaches, the objective function

coefficient ijc in (1a) and (2a) is the reduced cost associated with decision variable ijx , and it is a

function of dual variables associated with the master problem. ijc can be negative, zero, or

positive. For each CG iteration, these objective function coefficients are updated using new dual

variables from the master problems, while the resource constraints do not change. This induces

the dynamic property of the problems studied in this dissertation.

This dissertation presents a set of solution algorithms and procedures for a set of

problem types; we designate each using an acronym. For reader convenience, we give an

overview of these acronyms in Table 2. The first category of Table 2 gives the acronyms for

different problem types; the second category, the acronyms for algorithms and procedures; and

the third category, the others.

Table 2. Main acronyms used in Part I of the dissertation

Acronyms for problem types
KP Knapsack problem
MCKP Multiple-choice knapsack problem
MMCKP Multiple-resource, multiple-choice knapsack problem
MRCSP RCSP with multiple resource limitations
RCSP Resource-constrained SPP (with resource limitation(s))
RCkSP Resource-constrained k-SPP
SPP Unconstrained shortest path problem
SPPRW SPP with one or more types of resource windows
SPPTW SPP with one type of resource windows (e.g., time)
SPRCRW SPP with both resource-limitation and resource-window constraints
SRCSP RCSP with one resource limitations

Acronyms for algorithms and procedures

ATSA Adaptation of TSA for solving SPPRW
EGA Expanded-graph approach
EP Expansion procedure used in stage 2 of TSA
GERA EG revising algorithm

GFA Generating 0̂F algorithm

 21

Table 2. Continued

GTSA Generalization of TSA for solving SPRCRW
LSA Label-setting algorithm for solving RCSP
MDFA Method for dealing with fixed arcs
OA Optimizing algorithm used in stage 3 of TSA
ROA Reoptimizing algorithm used in stage 3 of TSA
RP Rounding procedure used in EP
S1A Stage 1 algorithm used in TSA
S1A-A Stage 1 algorithm used in ATSA
S1A-G Stage 1 algorithm used in GTSA
S1A-M Stage 1 algorithm used in TSA for an MMCKP-graph
TSA Three-stage approach
TSA-CG A version of TSA for solving RCSP in CG
TSA-CG/B&B A version of TSA for solving RCSP in CG/B&B

Other acronyms

CRR-r Cumulative requirement of resource r
CRR vector Cumulative resource requirement vector

This dissertation proposes a three-stage approach (TSA), which comprises a preliminary

phase (stages 1 and 2) and an iterative solution phase. We may select algorithms for each stage

for different problem types. For reader convenience, Table 3 gives an overview of the

algorithms we present for each stage of TSA to solve different problem types. Later chapters

discuss each.

Table 3. TSA for different problem types

 RCSP
SRCSP
MRCSP

SPPRW
SPPTW SPRCRW RCkSP

MMCKP
MCKP

KP

Preliminary phase
 Stage 1: (preprocessing) S1A S1A-A S1A-G S1A S1A or S1A-M
 Stage 2: (expanding) EP

 (dealing with
fixed arcs)

MDFA or traditional method

Iterative solution phase
 Stage 3: (solving) OA or ROA Unconstrained

k-SPP algorithm
OA or ROA

 22

CHAPTER V

THREE-STAGE APPROACH

This chapter introduces a new, improved approach (TSA) for solving RCSP and analyses its

complexity. TSA comprises three stages and is especially suitable for iterative reoptimization in

the context of CG. Section 5.1 describes the first stage – preprocessing – in which a network

reduction technique is used repeatedly to delete the nodes and arcs that can not be on any

feasible path. Importantly, tight resource windows are prescribed for each node in the reduced

graph via the preprocessing stage so that RCSP becomes SPPRW on the reduced graph. Section

5.2 presents the second stage – an expanding stage, in which SPPRW on the reduced graph is

transformed into SPP via a special procedure. Since stages 1 and 2 are one-time processes; we

include them both in what we call the preliminary phase. Section 5.3 presents the third stage –

an iterative solution stage that incorporates an algorithm for finding a shortest path with respect

to a given set of arc costs. Following that, Section 5.4 presents a combination of algorithms that

form a TSA for repeatedly solving RCSP in the context of CG. Figure 1 shows a general outline

of TSA. Finally, Section 5.5 gives a summary of this chapter.

Fig. 1. General outline of TSA.

 (RCSP)
 (,)G V A

Stage 1:
delete bottleneck nodes and arcs;
formulate resource windows.

 (SPPRW)
(,)R R RG V A

 (SPP)
(,)E E EG V A

Stage 2:
expand GR

Stage 3:
Solve SPP on GE
iteratively.

Preliminary phase Iterative solution phase

 23

5.1. Preprocessing stage

Stage 1 (preprocessing) uses a resource-based network reduction technique to delete nodes and

arcs that can not be on any feasible (i.e., with respect to the resource limitations) path. This

method does not use any information about arc costs and is, thus, valid for any set of arc costs.

This study does not explore a cost-based reduction because it addresses the dynamic RCSP for

which arc costs are updated at each CG iteration. Further, stage 1 formulates resource windows

for each node in the reduced graph, based on the resource-limitation constraints. In this section,

Subsection 5.1.1 presents the stage 1 algorithm (S1A); following that, Subsection 5.1.2 shows

some properties inferred from S1A; Subsection 5.1.3 analyzes the complexity of S1A; and

Subsection 5.1.4 provides a brief summary of stage 1.

5.1.1. Description of S1A

Before presenting S1A, we define a bottleneck arc (node) as one that can not be on a feasible

1 nv v− path. A bottleneck arc (,)i j is an arc that renders the resource available at jv insufficient

to continue a path to the sink node. A bottleneck node has no arcs incident to it (both incoming

and outgoing arcs) that can be on a feasible path to the sink node. Thus, all arcs incident to a

bottleneck node are bottleneck arcs. Denote (,)R R RG V A= as the reduced graph obtained from

stage 1 by deleting bottleneck nodes and arcs from G . Let ()jFS v and ()jBS v denote the sets

of the successors (forward stars) and predecessors (backward stars) of jv in RG , respectively,

that is, () { : (,) }j i j i RFS v v v v A= ∈ and () { : (,) }j i i j RBS v v v v A= ∈ .

We now introduce additional notation that we use to present S1A. As Figure 2 depicts,

some 1 jv v− path requires the least (most) amount of resource r∈ℜ in comparison with all

other 1 jv v− paths. Let
jr

f (jrf) denote this minimum (maximum) resource requirement.

 24

Similarly, some nj vv − path requires the least (most) amount of resource r over all nj vv −

paths. Let jra (jra) denote the corresponding minimum (maximum) amount of resource r

required for traversing from jv to nv and jr r jrb T a= − (jrjr rb T a= −) denote the corresponding

minimum (maximum) amount of resource r that would be left over (i.e., available) for a 1 jv v−

path.

Fig. 2. Illustration of notation
jr

f , jrf , jra , jra , jrb and jrb .

Figure 3 details S1A, in which steps 1-4 detail the network reduction technique, which

identifies and deletes bottleneck nodes and arcs and step 5 formulates tight resource windows for

each node in RG . Steps 3 - 4 identify and delete bottleneck nodes and arcs iteratively until no

more bottleneck nodes or arcs can be deleted. The backward pass determines jrb , the maximum

amount of resource r left over (i.e., available) for all 1 jv v− paths (for node jv) relative to

resource limitation rT . The forward pass determines
jr

f , the minimum amount of resource r

required over all 1 jv v− paths. In backward pass, node jv with 0jrb < (step 3(i)) is a bottleneck

because the maximum amount of resource r that is available for 1 jv v− paths (jrb) is less than

0; in addition, arc (,)i j with ijr jru b> (step 3(ii)) is a bottleneck because the maximum amount

jv1v nv

The 1 jv v− path with minimum
requirement of resource r (

jr
f)

The j nv v− path with minimum
requirement of resource r (jra)

The 1 jv v− path with maximum
requirement of resource r (jrf)

The j nv v− path with maximum
requirement of resource r (jra)

jrjr rb T a= −

jr r jrb T a= −

 25

of resource r that is available for 1 jv v− paths is less than the resource requirement on arc

(,)i j , so arc (,)i j can not be used. In forward pass, node jv with jr
jr

b f< (step 3(iii)) and arc

(,)i j with
ir

f ijru+ jrb> (step 3(iv)) are bottlenecks for similar reasons. The conditions for

identifying bottleneck nodes and arcs in forward pass are tighter than the ones in backward pass

because
jr

f are calculated in the forward pass.

(Network reduction)
step 1. Topologically sort the nodes of G: 1 , , nv v" .
step 2. Initialize RG G= by setting RV V= and RA A= .
step 3. For 1r = ℜ" ,
 set 0jrb = , 1, , 1j n∀ = −… , nrb rT= and

1
0

r
f = , rjr

f T= , 2, ,j n∀ = … .

 (backward pass) For each \{ }j R nv V v∈ in decreasing jv index,

 calculate { }()
max

j
jr ir jiri FS v

b b u
∈

= − (if ()jFS v =∅ , jr rb T= −);

 (i) if 0,jrb < jv is bottleneck; delete jv and all the arcs incident to it;
 (ii) if jir iru b> , arc (,j iv v) is a bottleneck; delete it.
 If 1v is bottleneck, STOP; RCSP is infeasible.

 (forward pass) For each j Rv V∈ { }1\ v in increasing jv index,

 calculate { }()
min

j
ijrjr iri BS v

f f u
∈

= + (if ()jBS v =∅ , rjr
f T=);

 (iii) if jrb <
jr

f , jv is bottleneck; delete jv and all the arcs incident to it;

(iv) if
ir

f ijru+ jrb> , arc (,i jv v) is a bottleneck; delete it.
 If nv is bottleneck, STOP; RCSP is infeasible.

step 4. If anything was deleted from the graph, go back to step 3.

(Formulate resource windows)
step 5. For 1r = ℜ" ,

set nr rb T= , 1 0rf = .
For each \{ }j R nv V v∈ in decreasing jv index, calculate { }

()
min

j
jr ir jiri FS v

b b u
∈

= − .

For each j Rv V∈ { }1\ v in increasing jv index, calculate { }
()

max
j

jr ir ijri BS v
f f u

∈
= + ;

(i) if jrf > jrb , { }max ,jr jrjr
t f b= and { }min ,jr jr jrt f b= , else jr jr jrt t f= = .

 STOP.

Fig. 3. S1A.

 26

Step 5 establishes the window [,jr jrt t] for each resource r∈ℜ at each node jv that

remains in G after deleting bottleneck nodes and arcs, that is ()R RV G V= . Recall that jrt and jrt

are the lower and upper bounds, respectively, for CRR-r at jv as defined in model ()2℘ . The

window [,jr jrt t] is determined as follows. In step 5(i), if jrf ≤ jrb , then every 1 nv v− path

containing jv is feasible and so .jr jr jrt t f= = If jrf > ,jrb { }min ,jr jr jrt b f= and { }max , .jr jr jr
t b f=

The resource windows established in this way are hard resource windows. That is, any 1 jv v−

path with CRR-r larger than jrt is infeasible; and if CRR-r along a 1 jv v− path is lower than jrt ,

then CRR-r at jv is increased to jrt .

We interpret the calculations of jrt and jrt for the case in which jrf > jrb through a

numerical example. Considering jrt , if 10jrf = and 12jrb = , then { }min 10,12 10jr jrt f= = = and

CRR-r along any 1 jv v− path is less than or equal to .jrt If 10jrf = and 8,jrb = then

{ }min 10,8 8jr jrt b= = = and any 1 jv v− path with CRR-r larger than 8 would not be augmented

to a feasible 1 nv v− path because 8.jrb = For ,jrt if 5jrb = and 7,
jr

f = then

{ }max 5,7 7jr jr
t f= = = and CRR-r along any 1 jv v− path is no less than 7.jrt = If 5jrb = and

3
jr

f = , then { }max 5,3 5jr jrt b= = = and if CRR-r on a 1 jv v− path is less than 5, it is increased

to 5 because 5jrb = , i.e., 5 is enough to traverse from jv to nv on any j nv v− path. Note that,

= =11t t 0 and = =nnt t T . Proposition 5.4, which is proven in the next subsection, establishes

the correctness of step 5.

 27

5.1.2. Properties

Proposition 5.1 can be used to judge whether RCSP is infeasible or not and Proposition 5.2 can

be used to eliminate some resource constraint(s) from the problem.

Proposition 5.1. The following statements are equivalent: (a) 1v is bottleneck; (b) nv is

bottleneck; (c) every node of G is bottleneck; and (d) RCSP is resource infeasible (i.e., no 1 nv v−

path satisfies all resource constraints).

Proof. Straightforward by the definition of bottleneck node. ■

Proposition 5.2. If 1 0rb ≥ or nr rf T≤ , then the limitation of resource r∈ℜ is redundant. If

1 0rb ≥ or nr rf T≤ for all r∈ℜ , then all 1 nv v− paths in RG are feasible with respect to the

resource constraints and RCSP reduces to SPP.

Proof. Recall that 1ra is the maximum requirement of resource r over all 1 nv v− paths. Thus,

1r nra f= . Because 1 1r r rb T a= − , 1 0rb ≥ implies 1r ra T≤ and, equivalently, nr rf T≤ . nr rf T≤

implies every 1 nv v− path is feasible with respect to resource r , thus, the limitation of resource

r∈ℜ is redundant and can be eliminated. If all resource constraints are redundant, then RCSP

reduces to SPP. ■

The next proposition is valid for SRCSP (i.e., 1ℜ =).

Proposition 5.3. For SRCSP, graph G need be traversed only once in the backward direction

and only once in the forward direction to delete all bottleneck nodes and arcs.

Proof. We omit subscript r in this proof because SRCSP entails only one type of resource.

Note that if a node is bottleneck, all the arcs incident to it (both incoming and outgoing arcs) are

bottleneck arcs. Thus, deleting a bottleneck node is equivalent to deleting all arcs incident to it.

Thus, we only need to show that the claim is true for bottleneck arcs.

 28

First, we show that for SRCSP, an arc (,)i j is bottleneck if and only if ij ji
f u b+ > . To

see that, if ij ji
f u b+ > , it follows that iij ri

f u a T+ + > and (,)i j is bottleneck arc. On the other

hand, if arc (,)i j is a bottleneck, then iij ri
f u a T+ + > , i.e., ij ji

f u b+ > . By this observation, to

prove the proposition, it is sufficient to show that the deletion of bottleneck arcs will not change

the
j

f and jb values that have already been established upon the completion of a backward and

a forward pass. The calculation of jb involves only nodes jv ,…, nv , so no bottleneck arc deleted

during the backward pass will change the established jb values; similarly, no bottleneck arc

deleted during the forward pass will change the established
j

f values.

Now, we show that no bottleneck arc deleted during the forward pass will change the

established jb values. Suppose that bottleneck arc (,)i j is identified and deleted during the

forward pass. Since the calculation of pb involves only nodes pv ,…, nv , pb does not change for

any 1,p i n= + … . Now, consider pb for pv (1,p i= …) in the current (perhaps partially)

reduced graph.

By way of contradiction, suppose pb is changed because arc (,)i j is deleted. Then, arc

(,)i j must be on the np vv − path with minimum resource consumption and, consequently,

j ijb u− = ib . Note that iv is not a bottleneck (otherwise pv is a bottleneck and would have been

eliminated to attain the current reduced graph). Since arc (,)i j is a bottleneck arc, ij ji
f u b+ > .

It follows that ii
f b> , so iv is a bottleneck. But since iv is not a bottleneck, pb for 1,p i= …

can not change, which contradicts the supposition. This completes the proof. ■

It is worth mentioning that step 3 of TSA traverses the graph first in the backward

direction then in the forward direction and Proposition 5.3 is only valid for that order of

 29

traversals. Recall that the backward pass determines the maximum amount of each resource left

over (i.e., available) for all 1 jv v− paths (for each node jv) relative to the resource limitation T .

The forward pass determines the minimum amount of each resource required over all 1 jv v−

paths. During the forward pass, some bottleneck nodes and/or arcs may be deleted if the

maximum resource requirement from the backward pass is less than the minimum resource

requirement from the forward pass. If the forward pass were performed first, the minimum

resource requirement would be the smallest possible for each node because none of the original

nodes and arcs would have been deleted from the graph, regardless of the value of T . If this

initial forward pass were then followed by a backward pass that deletes any node or arc, the

minimum resource requirement determined by the forward pass must be updated at each node

between the node where the bottleneck arc ends and the sink node.

Although, for SRCSP, we only need to traverse the graph twice to delete all bottleneck

nodes and arcs, for MRCSP, we may traverse the graph more than twice for each resource type.

To see that, suppose step 3 of S1A completes backward and forward passes for resource r∈ℜ

first and for resource 'r ∈ℜ second, where 'r r≠ . Further, suppose some bottleneck nodes

and/or arcs are identified and deleted due to resource limitation 'rT to revise the reduced graph.

Then, values of
jr

f and jrb may change when they are recalculated relative to this revised

reduced graph. Consequently, it may be possible to identify additional bottleneck nodes and arcs

due to resource limitation rT . Thus, for MRCSP, step 3 should be repeated until no more

bottleneck nodes and arcs can be deleted.

For SRCSP, Proposition 5.3 guarantees that S1A can identify and delete all bottleneck

nodes and arcs. However, for MRCSP, it can not guarantee that it will identify all bottlenecks.

Figure 4 depicts an example of MRCSP in which S1A does not identify all bottleneck nodes and

 30

arcs. This example comprises 5 nodes and 6 arcs with 2 types of resources and 1 2 2T T= = .

Here, label <a,b> on an arc gives the requirements for resources 1 and 2, respectively. The table

on the right side in Figure 4 gives the values of jrb and
jr

f that are calculated by step 3 in S1A.

Arcs (3,4) and (4,5) and node 4 are bottlenecks, but S1A can not identify them as such. The

reason is that S1A identifies bottleneck nodes and arcs based on the values of
jr

f and jrb for

each individual resource. But this is not sufficient for MRCSP. As shown in the example,

neither arc (3,4) nor arc (4,5) can be identified as a bottleneck because 3,4, 4,3,
1 0 1r rr

f u b+ = + = =

and 4,5, 5,4,
1 1 2r rr

f u b+ = + = = , for 1,2r = . But, in fact, either of the two possible CRR vectors

at node 3 – 1,2< > or <2,1> – together with arcs (3,4) and (4,5), result in infeasible 1 5v v− paths

with respect to resource limitations.

Fig. 4. An example of MRCSP.

Proposition 5.4. For each jv in RG , (a) any 1 jv v− path with CRR-r, for r∈ℜ , larger than jrt

can not be on a feasible 1 nv v− path, and (b) if CRR-r associated with a 1 jv v− path is less than

jrt , it can be increased to jrt .

First cycle of step 3 in S1A

jv 1v 2v 3v 4v 5v

1jb 1 1 2 1 2

1j
f 0 0 1 1 1

2jb 1 0 2 1 2

2j
f 0 0 1 1 1

No bottleneck nodes and arcs are
identified and deleted, STOP.

5

<1,2>

1

2 4

3

<0,0> <0,0> <1,1>

<0,0> <2,1>

 31

Proof. For part (a), if jrf ≤ jrb , then jr jrt f= and no 1 jv v− path has a larger CRR-r than jrt ; we

are done. Otherwise, jrt { }min ,jr jrb f= and there are two cases. Case (a1) is that, if jr jrb f≥ ,

then jrt jrf= and no 1 jv v− path has a larger CRR-r than jrt ; we are done. Case (a2) is that, if

jr jrb f< , then jrt jrb= . Suppose there is a 1 jv v− path P with a CRR-r of jrμ with

jrμ > jrt jrb= . Recall that jrjr rb T a= − where jra is the minimum requirement of resource r

over all j nv v− paths. Then jrjr ra Tμ + > (i.e., P can not be a part of any feasible 1 nv v− path).

For part (b), if jrf > jrb , then jrt { }max ,jr jr
b f= and there are two cases. Case (b1) is

that, if jr jr
b f< , then jr jr

t f= and no 1 jv v− path has CRR-r less than jrt ; we are done. Case

(b2) is that, if jr jr
b f> , then jr jrt b= . Suppose there is a 1 jv v− path P with CRR-r of jrμ with

jrμ < jr jrt b= . Recall that jr r jrb T a= − where jra is the maximum requirement of resource r

over all j nv v− paths. Then jr jr ra Tμ + < (i.e., P augmented by any j nv v− path results in a

feasible 1 nv v− path). By setting jrμ to jrμ′ = jr jrt b= , it follows that jr jr ra Tμ′ + = ; that is, P

can still be augmented by any j nv v− path to form a feasible 1 nv v− path. If jrf ≤ jrb , jr jrt f=

and the statement can be proven true by applying an illustration that is similar to that used in

case (b2). This completes the proof. ■

Corollary 5.1. For SRCSP, each node and arc in RG must be on some 1 nv v− path(s) that satisfy

resource windows determined by S1A.

Proof. By Propositions 5.3 and 5.4. ■

By Proposition 5.4, the original RCSP on G is reduced to SPPRW on RG with hard

resource windows [,jr jrt t], for j Rv V∈ and r∈ℜ . Then, the optimal value of RCSP on G is

 32

equal to the optimal value of SPPRW on RG . SPPRW, as depicted by model ()2℘ (Chapter

IV), is to find a shortest path from 1v to nv on acyclic digraph (,)R R RG V A that satisfies the

resource-window constraints.

5.1.3. Computational complexity of S1A

Let γ be the number of times (i.e., cycles) step 3 is repeated.

Proposition 5.5. S1A runs in ()O mγℜ time, where m A= is the number of arcs in G . For

SRCSP, S1A runs in ()O mℜ .

Proof. Assume A | |V n> = . Step 1, topological sorting of nodes, can be done in ()O m time;

step 3 runs in ()O mℜ time for each cycle because every arc in G is processed in constant time

for each resource r∈ℜ ; step 5 runs in ()O mℜ time for the same reason. Thus, the total time

for S1A is ()O mγℜ . For SRCSP, by Proposition 5.3, we have 1γ = ; thus, the run time of S1A

is ()O mℜ . ■

For SRCSP, 1γ = by Proposition 5.3. Theoretically, for MRCSP, A is an upper bound

for γ . Because, in the worst case, each cycle of step 3 identifies and deletes only one bottleneck

arc and the maximum number of bottleneck arcs is A . However, on average, γ is much

smaller than A . Based on the computational results that Chapter VII presents, 1-6 cycles of

step 3 are sufficient for preprocessing MRCSP.

5.1.4. Summary

Stage 1 (i.e., S1A) has two functions. For SRCSP, it deletes all bottleneck nodes and arcs and,

for MRCSP, it deletes some, if not all, of the bottleneck nodes and arcs, using a resource-based

network reduction technique. For MRCSP, step 3 is repeated until no more bottleneck nodes or

 33

arcs can be deleted. In contrast, for SRCSP, Proposition 5.3 shows that steps 3-4 need be

implemented only once to identify and delete all bottleneck nodes and arcs. This network

reduction technique can be included in a preprocessing stage to enhance any algorithm for

solving RCSP on an acyclic graph to help reduce the computational burden.

Second, S1A tightens resource windows at each node in the reduced graph RG . After

stage 1, RCSP on input graph G becomes SPPRW on reduced graph RG . In RCSP, a difficulty

arises because it is not possible to determine if constraints (1c) are satisfied or violated until an

entire path from the source node to the sink node has been defined. Thus, the infeasibility of a

path can only be determined very late in the construction of the path. Changing resource-

limitation constraints (1c) to resource-window constraints (2b) and (2c) by specifying a window

for each resource at each node overcomes this difficulty.

5.2. Expanding stage

Stage 1 of S1A reduces the original RCSP on G to SPPRW on RG with hard resource windows

[,j jt t] for j Rv V∈ . Starting from SPPRW on RG , stage 2 uses an expansion procedure (EP) to

transform SPPRW on RG to SPP on expanded graph EG (,)E EV A= . That is, RCSP on G is

reduced to SPP on EG by stage 2. This section proposes EP for stage 2 and introduces additional

notation in Subsection 5.2.1, presents some properties inferred from EP in Subsection 5.2.2,

analyzes the complexity of EP in Subsection 5.2.3, and gives a brief summary of this section in

Subsection 5.2.4.

 34

5.2.1. Description of EP

EP applies to RG (,)R RV A with resource windows [,j jt t], for j Rv V∈ . Since RV is obtained by

deleting bottleneck nodes from ,V the indices of nodes in RV are still in topological order (i.e.,

arc (,i jv v) RV∈ if and only if i j<) but they may not be consecutive.

Now, we introduce additional notation used to detail EP. Let jS be a set of nodes in

expanded graph EG that is associated with specific node j Rv V∈ in RG . Let k
j j Es S V∈ ⊆ denote

the kth node in set jS , when 1,2, jk S= … . As it expands RG to form EG , EP may define a set

of nodes jS associated with j Rv V∈ in RG . Then,
j R

E jv V
V S

∈
=∪ and 'j jS S∩ =∅ ,

,jv 'j Rv V∈ , 'j j≠ . EG thus comprises RV such sets of nodes. Let { }1 , , jrRL

jr jr jrRL d d= … be an

ordered set, where 1
jrjrd t= , jrRL

jr jrd t= and 1
jr jrd d− <A A , for 2, , jrRL=A … . For each j Rv V∈ in

decreasing order, jrRL is calculated according to:

{ }
{ } { }

, ,

| , , , () , , .
nr r

jr jrjr jr jr ir jir jr jr ir ir i j jr

RL T r

RL d d d u t d t d RL v FS v t t r

= ∀ ∈ℜ

= = − ≤ ≤ ∈ ∈ ∪ ∀ ∈ℜ
 (3)

By way of (3), each element in jrRL represents an amount of resource r∈ℜ left over (i.e.,

available) for 1 jv v− paths and is restricted to lie within window [jrt , jrt]. Expression (3) starts

from the sink node nv and initializes { }nr rRL T= (i.e., the amount of resource r left over for

1 nv v− paths is rT). In decreasing order of j Rv V∈ , expression (3) calculates jrRL until finishing

1rRL for the source node.

Let k
jy 1(,)k k

j j
y y

ℜ
= " be a CRR vector at node k

js jS∈ and jY be the set of CRR vectors

k
jy for k

j js S∈ such that k
j j j≤ ≤t y t . Each node k

js j ES V∈ ⊆ is associated with a unique

 35

k
j jY∈y . Initialize 1 { }Y = =1

1y 0 . For each 1\ { }j Rv V v∈ in increasing order, the calculation of

k
jry involves two steps. First compute

k h
jr ir ijrg y u= + , for h

i iY∈y , (,) Ri j A∈ and r∈ℜ . (4)

Then, the value of k
jrg is rounded up using jrRL to define k

jry according to (5):

1 1

1

if ;

if for some 2, , ;

if .jr

k
jrjr jr jr

k k
jr jr jr jr jr jr

RLk
jr jr jr

d g d t

y d d g d RL

g d t

−

⎧ ≤ =
⎪⎪= < ≤ =⎨
⎪
+∞ > =⎪⎩

A A A A …
(5a)
(5b)
(5c)

Expression (5a) rounds k
jrg up to 1k

jrjr jry d t= = when k
jrg is lower than 1

jrjrd t= (see Proposition

5.4). Expression (5b) rounds all values of k
jrg on the interval 1(,]jr jrd d−A A up to k

jr jry d= A , for

2, , jrRL=A … . Figure 5 illustrates that, if a value of k
jrg corresponding to a 1 jv v− path falls in

interval 1(,]jr jrd d−A A , this 1 jv v− path can be augmented with the same set of j nv v− paths as CRR-

r of jrd A to form feasible 1 nv v− paths. Expression (5c) sets k
jry = +∞ if jrRLk

jr jr jrg d t> = because

k
jrg violates the limitation of resource r (Proposition 5.4) and step 3(iii) of EP (see Figure 6)

will discard it.

Fig. 5. k

jry is calculated using RP (4-5).

 × ● … ● × × ● ● … ● ×

 1
jr jrt d= < … < 1

jrd −A < jrd A < 1
jrd +A < … < jrRL

jrd jrt=

"k
jrg

'k
jrg

k
jrg

jrRL :

'k
jr jry d= A
"k

jr jry d= A
1k

jr jry d=
k
jrg ′′′

k
jry ′′′ = +∞

5(a)
5(b)

5(c)

 36

Remark 1. Let jrΛ be a set of values of k
jry for j Rv V∈ and r∈ℜ . If some interval (e.g.,

1(,]jr jrd d +A A in Figure 5), does not have any k
jrg falling in it, then 1

jrd +A will not be in jrΛ . Thus,

jrΛ { }, ,jrjr jrRL t t⊆ ⊆ " and 1jrjr jr jrRL t tΛ ≤ ≤ − + . That is, using jrRL to round k
jrg up to k

jry

reduces the solution space, perhaps significantly. Hereafter, we refer to expressions (4) and (5)

as the rounding procedure (RP).

With this background, Figure 6 details EP. EP processes nodes j Rv V∈ in order of

increasing index, calculating k
jy , associating a node k

js jS∈ with each unique vector

k
jy 1(,)k k

j j
y y

ℜ
= " jY∈ , and connecting h

is to k
js if k

jy is calculated from h
iy (in steps 3(iii-iv)).

step 1. For each r∈ℜ and j Rv V∈ , calculate jrRL according to (3).
step 2. Initialize 1

1 1{ }S s= , 1 { }Y = =1
1y 0 .

step 3. For each j Rv V∈ 1\{ }v in increasing jv index,
 1k = .
 For each ()i jv BS v∈ ,
(i) for each h

i iY∈y ,
(ii) for each r∈ℜ , calculate k

jry according to RP;
(iii) if k

jr jry t> , discard k
jy and go to step 3(i).

 (iv) If k
jy = 'k

jy for 'k
jy jY∈ , add arc '(,)h k

i js s → EA ;
 (v) else add k

jy → jY in lexicographic order; k
js → jS ; (,)h k

i js s → EA ; 1k k← + .
 (vi) Set E E jV V S= ∪ and free the memory used to store jrRL .

step 4. If 1ℜ > , delete the nodes and arcs that are not on any path from 1
1s to 1

ns . STOP.

Fig. 6. EP: expanding (,)R R RG V A to form (,)E E EG V A .

In step 3(v), k
jy is inserted into jY in lexicographic order so that the search in step 3(iv),

which attempts to match k
jy with some 'k

jy in jY , is efficient. A lexicographic order is a total

ordering in that every two vectors are either equal, or one is lexicographically greater than the

other. A nonzero vector is lexicographically positive if its first non-zero coordinate is positive.

 37

The vector x is lexicographically greater than the vector y if x y− is lexicographically

positive, and this defines a lexicographic order in n\ . In EP, once all successors of 1jv V∈ are

processed, set jY can be eliminated, freeing the memory needed to store it.

Step 3(ii) calculates k
jry using RP; it increases the opportunities to find a vector in jY

matching k
jy in step 3(iv) and, consequently, avoids adding a new node in jS in step 3(v). All

nodes associated with j Rv V∈ that have the same CRR vector are represented by a single node

with that CRR vector in EG . RP reduces the size of EG . Further, stage 3 of TSA solves SPP on

EG and the computational effort it requires depends on the size of EG (see the next section);

thus, RP reduces the computational effort that would be required by stage 3. The computational

evaluation in Chapter VII demonstrates the benefits of RP.

 For MRCSP, steps 1-3 may create nodes and arcs that are not on any 1 1
1 ns s− path, thus,

step 4 may be needed to remove such nodes and arcs. Figure 7(a) depicts an example with two

resources and 1 2 2T T= = . After S1A, RG G= . Note that, although arc (1,3) is a bottleneck, S1A

does not identify it as such (see Section 5.1). Let EG′ denote the expanded graph that steps 1-3

of EP create. Figure 7(b) shows EG′ , in which node 3
5s does not have any successor and is not on

any 1 1
1 7s s− path. Thus, for MRCSP, step 4 of EP is needed to delete the nodes and arcs that are

not on any 1 1
1 ns s− path in EG′ . In the example of Figure 7, the subgraph in the dashed box

(including arc),(2
3

1
1 ss) is deleted from EG′ to complete EG .

 We now present several properties that define the structure of EG as created by EP.

 38

5.2.2. Properties

Proposition 5.6. One node in EG corresponds to source node 1v in G ; and another one

corresponds to sink node nv in G ; that is { }1
1 1S s= and { }1

n nS s= .

Proof. Since 1 1 0r rt t= = and nr nr rt t T= = , then { }1 1 0r rRL = Λ = and { }nr nr rRL T= Λ = , r∀ ∈ℜ .

Thus, { }1
1 1Y = =y 0 and { }1

n n rY = =y T , and { }1
1 1S s= and { }1

n nS s= . ■

 By proposition 5.6, 1
1s is the source node and 1

ns is the sink node in EG .

Legend: (a) instance with two resources, the label on each arc is the resource requirement vector; (b) EG
for instance of (a), the label on node k

js is vector k
jy .

Fig. 7. An example of expanded graph EG .

Proposition 5.7. For SRCSP, every node that steps 1-3 of EP create in EG is on some path from

1
1s to 1

ns .

Proof. Consider SRCSP with { }1ℜ = . Note that every node in EG (except the source node 1
1s)

has one or more predecessors because EP constructs EG in increasing order of j Rv V∈ index. By

2

1 3

4

5

6

7
<0,1>

<0,0> <0,0> <0,0> <0,0>

<1,1> <0,2>

<1,0> <2,0>

1
2s1

1s
1
3s 1

4s 1
5s 1

7s

2
5s 1

6s

2
3s 2

4s 3
5s

<0,0> <0,0> <2,0> <2,0> <2,2>

<0,2> <2,2>

<2,2><2,2><1,1>

(a)

(b)

<0,0>

 39

way of contradiction, suppose the proposition is not true. Then, steps 1-3 of EP create a node k
js

that is associated with 1
k
jy and does not have any successor in EG , implying 1 1

k
j jy b> . However,

steps 1-3 create node k
js only if 1 1 1

k
j j jy t b< ≤ , establishing a contradiction. The proof is

completed. ■

 By Proposition 5.7, we do not need step 4 of EP for SRCSP.

5.2.3. Computational complexity of EP

To analyze the numbers of nodes and arcs in EG , define j jr
r

ϑ
∈ℜ

= Λ∏ for j Rv V∈ and

max max{ }
j R

jv V
ϑ ϑ

∈
= . Recall that jrΛ is the set of values of k

jry for j Rv V∈ and r∈ℜ . Then,

j jS ϑ≤ and maxmax
j R

jv V
S ϑ

∈
≤ ; that is, the maximal number of nodes associated with any j Rv V∈ is

bounded by maxϑ . Define ()
j R

j j
v V

FS v ϑ
∈

Ω = ∑ .

Proposition 5.8. The numbers of nodes and arcs in EG are bounded by maxRV ϑ and Ω ,

respectively, where max max{ }
j R

jv V
ϑ ϑ

∈
= and ()

j R
j j

v V
FS v ϑ

∈

Ω = ∑ is of order max()RO A ϑ max()O mϑ= .

Proof. The number of nodes in EG that are associated with node jv in RG is bounded by

maxjϑ ϑ≤ . Thus, the total number of nodes in EG is bounded by maxRV ϑ . Because each node

k
js j ES V∈ ⊆ has at most ()jFS v successors, the total number of arcs in EG is bounded by

()
j R

j j
v V

FS v ϑ
∈

Ω = ∑ , which is of order max()
j R

j
v V

O FS v ϑ
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ max()RO A ϑ= max()O mϑ= . ■

To analyze the complexity of EP, define
(,)

1
R

jrr jr
i j A

t tθ
∈

= − +∑ for r∈ℜ and r
r
θ

∈ℜ

Θ = ∑ .

Recall that 1jrjr jrRL t t≤ − + (see Remark 1). Thus, jrRL for j Rv V∈ , r∈ℜ can be stored in a

 40

one-dimensional array of size (1jrjrt t− +). Using this data structure for jrRL , each k
jy can be

calculated in ()O ℜ time according to RP (4-5) in step 3(ii) of EP.

Proposition 5.9. EP runs in ()maxO mϑℜ +Θ time in the worst-case.

Proof. Constructing sets jrRL for all j Rv V∈ can be done in ()rO θ for each r∈ℜ . Thus,

constructing all sets jrRL for j Rv V∈ , r∈ℜ (step 1) can be done in ()r
r

O θ
∈ℜ
∑ ()O= Θ time.

Considering arc (,)i j Rv v A∈ , each k
jy can be calculated from each h

i iY∈y in ()O ℜ time.

Because iY is of order)(iO ϑ , the calculation of k
jy from all h

i iY∈y can be done in ()iO ϑℜ

time. Inserting all resulting k
jy into jY in lexicographic order can be done in ()jO ϑℜ time,

because vectors h
i iY∈y are stored and processed in lexicographic order. Thus, step 3 can be

done in
(,)

()
R

i j
i j A

O ϑ ϑ
∈

⎛ ⎞ℜ + ℜ⎜ ⎟
⎝ ⎠
∑ ()maxO mϑ= ℜ . For MRCSP, deleting the nodes and arcs that

are not on any connected 1 1
1 ns s− path in step 4 can be done in ()O Ω because EA is bounded by

Ω by Proposition 5.8. Hence, the total run time of EP is ()maxO mϑℜ +Θ . ■

Remark 2. The solution state (CRR vector) is associated with a feasible combination of

resources in set ℜ . Thus, the number of solution states increases with the number of resources,

ℜ . The factors j jr
r

ϑ
∈ℜ

= Λ∏ for j Rv V∈ and max max{ }
j R

jv V
ϑ ϑ

∈
= in Propositions 5.8 and 5.9

increase quickly with the number of resources. On the other hand, it is likely that more

bottleneck nodes and arcs can be identified and deleted to reduce the size of RG as the number of

resources increases. The computational evaluation of Chapter VII investigates this trade-off.

 41

5.2.4. Summary

Via stage 2, SPPRW on RG is transformed to SPP from source node 1
1s to sink node 1

ns on EG .

EG is acyclic and its nodes are in topological order (i.e., arc (,)h k
i js s is in EG if and only if

i j<); note that no pair of nodes in set of jS is connected. The cost on arc (,)h k
i js s EA∈ , for

h
i is S∈ , k

j js S∈ is the cost on arc (,)i jv v A∈ , ijc .

5.3. Iterative solution stage

Stages 1 (S1A in Figure 3) and 2 (EP in Figure 6) of TSA reduce the original RCSP to SPP on

EG with source node 1
1s and sink node 1

ns . The task of stage 3 (iterative solution stage) is to

optimize (or reoptimize) SPP on acyclic graph EG . This section proposes an optimizing

algorithm (OA) for stage 3 and analyzes its computational complexity. Chapter VIII will

propose a reoptimizing algorithm (ROA) that can be used in stage 3 (in place of OA) in CG

applications.

Let ()k
E jFS s and ()k

E jBS s denote the sets of the successors and predecessors of k
js in

,EG respectively. () { : (,) }k h k h
E j i j i EFS s s s s A= ∈ and () { : (,) }k h h k

E j i i j EBS s s s s A= ∈ . Recall that ijc

is the cost on arc (,)i jv v A∈ and arc (,)h k
i js s EA∈ , for h

i is S∈ , k
j js S∈ . The cost of a path is the

sum of the costs associated with the arcs on the path. Let ()k
jsπ be the label on node k

js , that is,

the minimum cost among 1
1

k
js s− paths in EG . Then, the cost of an optimal path is 1()nz sπ=

(since { }1
n nS s= by Proposition 5.6). Let ()k

jp s be the predecessor of k
js on the shortest path

from 1
1s to k

js . Given z , a shortest path can be identified easily by backtracing using 1()np s .

Figure 8 details OA, an algorithm for optimizing SPP on EG .

 42

step 1. Set 1
1() 0sπ = .

step 2. For each j ES V⊆ in the order of increasing index, for each k
js jS∈ , calculate

() min{ () : (,) }k h h k
j i ij i j Es s c s s Aπ π= + ∈ and

 ()k
jp s =

*

*
h
i

s with
* *

* * *() () , ()k h h k
j E ji i j i

s s c s BS sπ π= + ∈ .

step 3. Set 1()nz sπ= .
step 4. Find the shortest path by tracing back using 1()np s . STOP.

Fig. 8. OA.

Proposition 5.10. OA runs in ()EO A ()O= Ω .

Proof. Step 2 of OA processes every arc in EG in constant time, so it can be done in ()EO A

time, where EA is the arc set of EG . Similarly, step 4 of OA traces from the sink node back to

the source node in ()EO A time. By Proposition 5.8, the number of arcs in EG is bounded by

Ω ; thus, OA runs in ()EO A ()O= Ω time. ■

5.4. TSA for repeatedly solving RCSP

Based on the analysis and results in Sections 5.1-5.3, this section states a version of TSA for

solving RCSP repeatedly and analyzes its computational complexity. Figure 9 details TSA,

using iteration to refer to the CG iterations on which an instance of RCSP is solved repeatedly.

Figure 9 shows that the preliminary phase of TSA (stages 1 and 2) is implemented only once in

solving an instance of RCSP. When 1iteration > , only stage 3 is needed.

1 If 1iteration = ,
2 (stage 1): run S1A;
3 (stage 2): run EP;
4 (stage 3): run OA on EG .
5 If 1iteration > ,
6 (stage 3): run OA on EG .

Fig. 9. TSA.

 43

Proposition 5.11. The complexity of TSA is ()maxO m mγ ϑℜ + ℜ +Θ for the first-time

solution (1iteration =). Each subsequent solution (1iteration >) requires ()O Ω time.

Proof. By Propositions 5.5, 5.9 and 5.10, TSA runs in ()max() ()O m O m Oγ ϑℜ + ℜ +Θ + Ω

= ()maxO m mγ ϑℜ + ℜ +Θ time for the first-time solution. Each subsequent solution can be

obtained by stage 3 and thus requires ()O Ω time. ■

The power of TSA is demonstrated when RCSP is solved repeatedly (e.g. in CG). For

each iterative solution, only stage 3 is needed and it runs in ()O Ω max()O mϑ= time. Chapter

VII demonstrates the computational effectiveness of TSA when it is used to repeatedly solve

RCSP.

5.5. Summary

This chapter proposes TSA and gives time complexities of each stage and of the entire approach.

TSA is suitable for solving RCSP repeatedly, for example, when RCSP is a subproblem in CG

and CG/B&B. For each iterative solution, only stage 3 of TSA is needed to solve RCSP and it

runs in ()O Ω max()O mϑ= time.

The next chapter presents another method, which may be preferred for one-time solution

of RCSP; Chapter VII uses it as a benchmark method for comparing computational results.

 44

CHAPTER VI

LABEL-SETTING ALGORITHM

This chapter presents a label-setting algorithm (LSA) for RCSP. Most previous studies chose

various labeling algorithms to solve RCSP subproblem(s) in CG and CG/B&B; thus, this

dissertation uses LSA as a benchmark in its computational evaluation of TSA in Chapter VII.

In this chapter, k
jry is still used to denote CRR-r for r∈ℜ for a 1 jv v− path and

1 ,
(, ,)k k k

j j j
y y

ℜ
=y … is the CRR vector. For each node jv RV∈ , let jD be a set of labels that

comprise all pairs (k
jτ , k

jy) of 1 jv v− path cost k
jτ and CRR vector k

jy such that k
j j≤y t . Then,

the recursion of LSA, by increasing order of j , can be expressed as follows.

1 1 1 1
1 1 1 1 1{(,) : 0, },

{(,) : min{ : calculate according to (4) and (5),

, , , (,) }}.

k k k h k
j j j j i ij j

k h h
j j i i i R

D
D c

D i j A

τ τ
τ τ τ

τ

= = =
= = +

≤ ∈ ∈

y y 0
y y

y t (y)
 (6)

The recursion initializes the cost at the source node of 1v to be zero and its CRR vector to be the

zero vector. For each node jv , set jD is calculated by processing every label in iD for every

predecessor iv of jv . The recursion continues until set nD (i.e., label at the sink node of nv) is

obtained. Note that { }1 1 1(,) :n n n nD τ= =y y T since nr nr rt t T= = and { }nr rRL T= , r∀ ∈ℜ . Thus,

the optimal value is

 1
nz τ= . (7)

Figure 10 details LSA.

 45

1 If 1iteration = ,
2 run S1A and construct jrRL for j Rv V∈ and r∈ℜ according to (3) in Section 5.2.
3 If 1iteration ≥ ,
4 implement recursion (6) by increasing jv RV∈ index;
5 calculate the optimal value (expression (7)).

Fig. 10. LSA.

Before solving RCSP for the first time, LSA uses S1A to remove the bottleneck nodes

and arcs and formulate resource windows [,j jt t], which are used in calculating jD . Line 2

determines ordered sets jrRL (for j Rv V∈ and r∈ℜ) for use in calculating k
jry in recursion (6).

For each iteration, recursion (6) of LSA must run from scratch (lines 4-5 in Figure 10).

Proposition 6.1 establishes the complexity of LSA.

Proposition 6.1. LSA computes a first-time solution (1iteration =) in ()maxO m mγ ϑℜ + ℜ +Θ

in the worst-case. Each subsequent solution (1iteration >) requires ()maxO mϑℜ time.

Proof. By Proposition 5.5, S1A runs in () ,O mγℜ where γ is the number of cycles of step 3 in

S1A. For SRCSP, 1.γ = By Proposition 5.9, jrRL for r∈ℜ and j Rv V∈ can be determined in

()O Θ time and each k
jy can be calculated in ()O ℜ . maxϑϑ ≤≤ jjD , so the total number of

labels is bounded by ()
j R

j j
v V

FS v ϑ
∈

Ω = ∑ , which is of order max()RO A ϑ max().O mϑ= Thus,

recursion (6) runs in ()maxO mϑℜ time. Hence, the total run time of LSA is

()maxO m mγ ϑℜ + ℜ +Θ for a first-time solution. Each subsequent solution can be obtained by

recursion (6), which runs in ()maxO mϑℜ time. ■

By Propositions 5.11 and 6.1, LSA and TSA have the same worst-case complexity for

the first-time solution. However, TSA uses a preliminary phase to facilitate each iterative

 46

solution, and, for each subsequent solution of RCSP, TSA requires max() ()O O mϑΩ = time while

LSA requires ()maxO mϑℜ time. Thus, TSA can be expected to outperform LSA when RCSP is

solved repeatedly. Chapter VII explores this conjecture computationally.

 47

 CHAPTER VII

COMPUTATIONAL EVALUATION OF TSA

This chapter describes computational tests, designed to evaluate the effectiveness of TSA.

Section 7.1 describes test instances and the computation platform. Section 7.2 presents results

comparing TSA and LSA on the test instances. Section 7.3 investigates the effect of resource

limitations on the performance of TSA. Furthermore, Section 7.4 evaluates the effectiveness of

the preliminary phase of TSA.

7.1. Test problems and computational platform

The set of test instances involves acyclic graphs and can be divided into three classes. Class 1

consists of 12 instances from Beasley and Christofides (1989), which are available from the OR-

library. Beasley and Christofides (1989) provided 24 test instances, but 12 instances involve

cyclic graphs; we use the 12 acyclic graphs, which range from 100 nodes and 959 arcs to 500

nodes and 4,868 arcs. Their instances involve either 1 or 10 resources (see Table 5); they

generated resource requirements and arc costs independently from the discrete uniform

distribution on range []0,5 (i.e., []0,5DU).

We generate instances in Classes 2 and 3 randomly. Class 2 comprises SRCSP

instances; and Class 3, MRCSP instances with 4 resources. We generated instances in which

each arc (,)i j is included in the graph with probability p . In order to assure that the optimal

path contains at least n q arcs, for arc (,)i j , j is defined for each integer on

[]1,min(,)i n i q+ + , where we specified q (1 q n< ≤) to restrict the span of arc (,)i j so that

j i q− ≤ (see Remark 4 for the definition of span of an arc). The expected number of arcs in a

 48

graph that is randomly generated in this manner with parameters of n , p and q is

()(1) 2pq n q− + .

Class 2 comprises two types of instances (types 2a and 2b) according to the way we

assign resource requirements to arcs:

type 2a: the resource requirements on arcs are independent, identically distributed

from []1,10DU ;

type 2b: the resource requirement on each arc is positively related to its span, i.e.,

resource requirement on arc (,)i j equals [()]R j i− where []i denotes the nearest

integer and R is generated randomly from ()0.0,1.0U .

Class 3 comprises three types of instances (types 3a, 3b, and 3c) according to the way

we assign resource requirements to arcs:

type 3a: the requirement for each resource is assigned independently as for type 2a;

type 3b: the requirement for each resource is assigned independently as for type 2b;

type 3c: the requirements for resources 1 to 2ℜ (ℜ is an even integer) are mutually

independently drawn from []1,100DU . Requirements of resources 2 1, ,r = ℜ + ℜ…

are inversely related to resource 2r − ℜ ; that is, () . 2
2500 0.0,1.0ijr ij r

u U u
−ℜ

⎡ ⎤= ⎣ ⎦ .

Let min,rT (max,rT) denote the requirements for resource r∈ℜ on the 1 nv v− path(s) that

require the minimum (maximum) amount of resource r . These values can be obtained by

setting ij ijrc u= (ij ijrc u= −) and implementing a classical SPP algorithm for each resource r∈ℜ

on input graph G . For each instance in Classes 2 and 3, the limitation for resource r∈ℜ is

determined by

min, max, min,()r r r rT T T T η= + − × , (8)

 49

where we specify parameter η on (]0,1.0 to control the tightness of resource limitations. For all

instances in Classes 2 and 3, we draw arc costs independently from ()100.0,100.0U − .

Table 4 describes each instance in Classes 2 and 3 in detail. The first column gives a

code that identifies each test instance. A triple (s or m, V , class type) denotes each instance in

Classes 2 and 3, where s indicates a single resource, m denotes multiple resources, and class type

Table 4. Test instances in Classes 2 and 3

instance |ℜ | |V| |A| q p resource 1 resource 2 resource 3 resource 4
 Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax
s-100-2a 1 100 946 25 0.45 10 308 - - - - - -
s-100-2b 1 9 98 - - - - - -
s-200-2a 1 200 2150 50 0.25 8 446 - - - - - -
s-200-2b 1 13 194 - - - - - -
s-500-2a 1 500 5450 125 0.1 9 494 - - - - - -
s-500-2b 1 38 491 - - - - - -
s-700-2a 1 700 6973 140 0.08 10 657 - - - - - -
s-700-2b 1 34 684 - - - - - -
s-1000-2a 1 1000 10435 240 0.05 14 615 - - - - - -
s-1000-2b 1 49 962 - - - - - -
s-2000-2a 1 2000 18913 550 0.02 7 470 - - - - - -
s-2000-2b 1 116 1926 - - - - - -
s-3000-2a 1 3000 29013 750 0.015 10 560 - - - - - -
s-3000-2b 1 153 2888 - - - - - -
s-5000-2a 1 5000 45038 1000 0.01 11 668 - - - - - -
s-5000-2b 1 283 4783 - - - - - -
m-20-3a 4 20 155 20 0.8 3 105 6 73 4 82 3 90
m-20-3b 4 3 19 2 19 2 19 2 19
m-20-3c 4 22 807 43 888 20 3082 9 2548
m-50-3a 4 50 472 40 0.4 4 146 6 171 4 155 5 151
m-50-3b 4 5 48 7 48 2 48 7 49
m-50-3c 4 29 1384 23 1414 31 2748 5 4167
m-100-3a 4 100 946 25 0.45 9 253 8 305 10 312 11 282
m-100-3b 4 9 96 11 99 12 99 14 99
m-100-3c 4 74 2785 44 2939 27 6998 38 11668
m-500-3a 4 500 5450 125 0.1 9 525 12 487 13 487 10 515
m-500-3b 4 29 488 33 486 38 481 32 489
m-500-3c 4 86 4630 59 4740 37 18435 30 16337
m-1000-3a 4 1000 10435 240 0.05 10 572 11 576 11 601 10 599
m-1000-3b 4 61 957 54 969 46 951 65 973
m-1000-3c 4 58 5652 72 5673 32 22210 44 24065

 50

is 2a, 2b, 3a, 3b, or 3c. For example, s-100-2a denotes the SRCSP instance of class type 2a with

100 nodes; m-50-3b denotes the MRCSP instance of class type 3b with 50 nodes. Columns 2

and 3 give V and A , respectively, to record the size of input graph G in each instance.

Columns 4 and 5 are the values of parameters q and p , respectively, that are used to

generate .G Columns 6 and 7 give min,rT and max,rT for 1r = and columns 8-13 give corresponding

values for 2, 3, and 4r = .

We program all algorithms in the C/C++ programming language and conduct all

experiments on a 3.2 GHz Pentium IV PC with 512 Mb of RAM.

7.2. Computational results for TSA and LSA

We solve each instance using both TSA and LSA, each for 100 randomly generated replications

for each set of specified resource limitation(s). Stage 3 of TSA uses OA. At each replication,

we generate a new set of arc costs randomly from []0,5DU for instances in Class 1 (to be

consistent with the cost structure in Beasley and Christofides (1989)) and from

()100.0,100.0U − for instances in Classes 2 and 3.

Tables 5, 6, and 7 give computational results for instances in Classes 1, 2 and 3,

respectively. In these tables, the column that gives γ reports the number of cycles made by step

3 in S1A. Columns of EV and EA record the size of expanded graph EG in each instance. The

run times for stages 1 and 2 of TSA and for LSA preprocessing are recorded separately; these

operations are conducted only once before 100 replications are made. The run times for stage 3

of TSA and for LSA recursion are the total run times for 100 replications (excluding the

preliminary phase of TSA and LSA preprocessing, respectively). The last column gives the

threshold number of replications, which is calculated using

 51

()100 (TSA_preliminary) (LSA_preprocessing)
(LSA_recursion) (stage 3_of_TSA)

cpu cpu
threshold

cpu cpu
⎡ ⎤× −

= ⎢ ⎥−⎢ ⎥
, (9)

where ⎡ ⎤⎢ ⎥i denotes the nearest integer towards infinity. Note that (stage 3_of_TSA)cpu is the

total run time for stage 3 of TSA for 100 replications and does not include the time for the

preliminary phase of TSA; (LSA_recursion)cpu is the total run time for LSA recursion for 100

replications and does not include LSA preprocessing time. The preliminary phase of TSA

requires more run time than LSA preprocessing. However, for each subsequent solution, TSA

requires less run time than LSA. Thus, when the number of replications is greater than or equal

to threshold , TSA is faster than LSA; otherwise, LSA is faster than TSA.

Table 5 presents results of tests on Class 1 instances. Beasley and Christofides (1989)

determined the resource limitations for each instance in Class 1. We calculate the average value

of η over all of resource types for each instance to provide intuition concerning how tight these

resource limitations are. As shown in column 5 of Table 5, the average value of η for all Class

1 instances is less than 0.1, indicating that their limitations are tight. Both TSA and LSA solve

all Class 1 instances, but TSA is much faster than LSA over 100 replications. Actually,

threshold is 3 for all Class 1 instances except rcsp23, which results in a threshold of 5. Note that

both instances rcsp23 and rcsp24 have 500 nodes and 10 resources; however, rcsp24 has many

more bottleneck nodes (411 for rcsp24 versus 127 for rcsp23) and more bottleneck arcs (4,735

for rcsp24 versus 3,545 for rcsp23) so that rcsp24 is solved more quickly than rcsp23.

We test each Class 2 SRCSP instance using three values of { }0.1,0.5,0.9η = , ranging

from tight to loose resource limitation(s); instance sizes range from 100 nodes and 946 arcs to

5,000 nodes and 45,038 arcs. Table 6 gives the results of these tests. Columns 2 and 3 record η

and 1T , respectively. Other columns correspond to those in Table 5.

 52

TSA requires much less run time than LSA for 100 replications, although stage 2 of TSA

may consume some time to expand RG . Actually, for all Class 2 instances, when the number of

replications is larger than or equal to 4, TSA is faster than LSA (see the last column in Table 6).

The complexity analysis of Chapters V and VI shows that run times, for TSA and LSA are

related, not only to the size of an instance but also to the amounts of resources required by arcs.

For example, S1A identifies and deletes the same numbers of bottleneck nodes and arcs in large

instances of type 2a (s-3000-2a) and type 2b (s-3000-2b) with 0.5η = . TSA solves instance s-

3000-2a in a run time of 72.089 seconds. However, TSA runs a long time and terminates due to

low memory while attempting to solve instance s-3000-2b. Because the amounts of resources

required in the instance of type 2b are larger than those in the corresponding instance of type 2a;

it turns out that TSA takes a long time to generate a much larger expanded graph associated with

s-3000-2b than that associated with s-3000-2a and, eventually, runs out of memory to store such

a large graph. Although LSA can solve these instances, it takes 117 seconds for instance s-3000-

2b for just one replication. Another observation is that the total number of labels enumerated by

LSA equals the number of nodes in expanded graph EG , which is created by TSA. Because

TSA and LSA generate the same set of k
jy ; each unique k

jy is associated with a node in EG by

TSA and with a label by LSA. Since type 2a instances have arc resource requirements that are

uniformly distributed and type 2b instances have arc resource requirements that are proportional

to the spans of arcs (so that large values of arc resource requirements may be generated for large

span arcs), type 2b instances have more bottleneck arcs than type 2a instances for the same value

of η ; this difference is especially distinct for 0.1η = . For all test instances, both the size of EG

and the total run time for 0.5η = are much larger than they are for 0.1η = or 0.9η = . The next

section investigates this issue in detail.

 53

 T
ab

le
 5

. R
es

ul
ts

 o
f s

ol
vi

ng
 in

st
an

ce
s i

n
C

la
ss

 1
 fo

r 1
00

 re
pl

ic
at

io
ns

 54

 T
ab

le
 6

. R
es

ul
ts

 o
f s

ol
vi

ng
 in

st
an

ce
s i

n
C

la
ss

 2
 fo

r 1
00

 re
pl

ic
at

io
ns

 55

 T
ab

le
 6

. C
on

tin
ue

d

 56

Table 7 gives the results on MRCSP instances with 4 resources; underlying graphs range

from 20 nodes and 155 arcs to 1,000 nodes and 10,435 arcs. Columns 3-6 give the resource

limitations for resource r = 1, 2, 3, and 4, respectively. Other columns correspond to those in

Tables 5 and 6.

Both TSA and LSA solve small instances (e.g., m-20 series (i.e., m-20-3a, m-20-3b and

m-20-3c)) in reasonable times. They also solve mid-size instances (e.g., m-50 and m-100 series)

for both small and large values of η but their performances degrade with the mid-range value of

η . On large instances (e.g., m-500 and m-1000 series), we test only small and large values of η

because both TSA and LSA take long times to solve each instance with the mid-range value of

η . This is consistent with the complexity analyses of Chapters V and VI. The performances of

TSA and LSA dis-improve on MRCSP instances because the size of the solution space increases

with the number of resources (see Remark 2). Note that, for MRCSP instances, stage 2 of TSA

identifies some bottleneck nodes and arcs that stage 1 of TSA can not identify, as illustrated in

Section 5.1.

Comparing s-100-2a versus m-100-3a and s-100-2b versus m-100-3b, we see that, with

multiple resources, more bottleneck nodes and arcs can be identified and deleted if η is small

(e.g., 0.1η =), but as η increases, the multiple resources do not help identify more bottleneck

nodes and arcs (e.g., 0.5η = and 0.9η =).

In summary, consistent with our TSA and LSA complexity analysis, the run times

required by TSA and LSA depend not only on the size of the underlying graph but also on the

number of resources and the amounts of resources required by arcs. The run time required by

stage 1 (i.e., S1A) is negligible for almost all of test instances; S1A is indeed efficient. The

number of cycles in S1A, γ , is at most 6 over all MRCSP instances and 1γ = for all SRCSP

 57

Table 7. Results of solving instances in Class 3 for 100 replications

instance η T1 T2 T3 T4 γ NBN NBA |VE| |AE|

m-20-3a 0.1 13 12 11 11 1 17 152 3 3
 0.5 54 39 43 46 1 1 12 1970 5721
 0.9 94 66 74 81 1 1 12 265 1407
m-20-3b 0.1 infeasible - - 1 - - -
 0.5 11 10 10 10 4 2(9) 104(142) 11 14
 0.9 17 17 17 17 1 1 14 523 2349
m-20-3c 0.1 100 127 326 262 1 11 141 8 14
 0.5 414 465 1551 1278 1 1 14 1675 6549
 0.9 728 803 2775 2294 1 1 12 142 1017
m-50-3a 0.1 18 22 19 19 4 22(26) 405(423) 34 60
 0.5 75 88 79 78 1 5 83 244860 794024
 0.9 131 154 139 136 1 5 38 2209 14222
m-50-3b 0.1 infeasible - - 1 - - -
 0.5 26 27 25 28 1 5 163(205) 9617 17167
 0.9 43 43 43 44 1 5 84 4364 24295
m-50-3c 0.1 164 162 302 421 3 36 447 15 27
 0.5 706 718 1389 2086 1 5 85 114474 467701
 0.9 1248 1274 2476 3750 1 5 83 1413 9101
m-100-3a 0.05 21 22 25 24 4 93 938 7 8
 0.1 33 37 40 38 1 6 71(110) 26223 44139
 0.9 228 275 281 254 1 6 71 666279 6162433
 0.95 240 290 296 268 1 6 71 6403 62057
m-100-3b ≤0.2 infeasible - 1 - - - -
 0.25 30 33 33 35 2 6(42) 143(825) 388 492
 0.9 low memory - - - - - -
 0.95 91 94 94 94 1 6 71 44096 369813
m-100-3c 0.05 200 188 375 619 6 22(63) 619(880) 76 104
 0.1 345 333 724 1201 1 6 91(94) 201708 377057
 0.9 2513 2649 6300 10505 1 6 71 554514 5109023
 0.95 2649 2794 6649 11086 1 6 71 6042 56656
m-500-3a 0.05 34 35 36 35 2 66(152) 1136(3829) 5330 8050
 0.95 499 463 463 489 1 45 610 211742 2393833
m-500-3b 0.05 infeasible - 1 - - - -
 0.95 465 463 458 466 1 45 610 270554 2915987
m-500-3c 0.05 313 293 956 845 3 55(97) 1111(2642) 34349 49637
 0.95 4402 4505 17515 15521 1 45 610 50110 631858
m-1000-3a 0.05 38 39 40 39 2 139(263) 1964(6841) 14934 21375
 0.95 543 547 571 569 1 115 1362 1240084 13725213
m-1000-3b 0.05 infeasible - 1 - - - -
 0.95 low memory - - - - - -
m-1000-3c 0.05 337 352 1140 1245 2 134(160) 1929(3331) 179.837 260.888
 0.95 5372 5392 21101 22863 1 115 1362 250552 3090572

 58

Table 7. Continued

instance TSA run time (sec.) NL LSA run time (sec.) threshold
 stage1 stage2 stage3 total prep recursion total

m-20-3a 0 0 0.031 0.031 3 0 0.46 0.46 0
 0 0.531 0.063 0.594 2093 0 21.56 21.56 3
 0 0.078 0.063 0.141 267 0 4.22 4.22 2
m-20-3b - - - - - - - - -
 0 0 0.048 0.048 27 0 0.46 0.46 0
 0 0.156 0.063 0.219 530 0 10.16 10.16 2
m-20-3c 0 0 0.078 0.078 9 0 1.343 1.343 0
 0 0.609 0.093 0.702 1680 0.015 33.344 33.359 2
 0 0.046 0.048 0.094 143 0 3.031 3.031 2
m-50-3a 0 0.016 0.016 0.032 43 0 1.671 1.671 1
 0 3795.9 6.687 3802.61 258093 0.031 176730.4 176730 3
 0 0.719 0.171 0.89 2213 0 40.969 40.969 2
m-50-3b - - - - - - - - -
 0 17.125 0.328 17.453 28061 0 399.69 399.69 5
 0 2.484 0.282 2.766 4370 0 178.13 178.13 2
m-50-3c 0 0.015 0.047 0.062 16 0 1.719 1.719 1
 0 959.8 3.344 963.147 116503 0.156 62289.8 62290 2
 0 0.5 0.14 0.64 1415 0.03 28.61 28.64 2
m-100-3a 0 0.015 0.061 0.076 7 0 1.72 1.72 1
 0 64.797 0.578 65.375 77368 0.094 1513.3 1513.39 5
 0 1963.9 157.25 2121.19 666448 0.046 82676.1 82676.1 3
 0 3.157 0.375 3.532 6404 0.015 186.25 186.265 2
m-100-3b - - - - - - - - -
 0 178.86 0.141 179.002 153969 0.063 2553.15 2553.21 8
 - - - - - - >10 hrs - -
 0 77.61 1.971 79.581 44097 0.015 6284.45 6284.47 2
m-100-3c 0 0.219 0.048 0.267 334 0.172 2.781 2.953 2
 0 2858.2 4.654 2862.89 338557 1.797 100335.3 100337 3
 0 2995.9 27.218 3023.16 554515 0.296 132839.2 132839 3
 0 2.86 0.36 3.22 6043 0.063 177.19 177.253 2
m-500-3a 0 5.813 0.157 5.97 29379 0.344 210.16 210.504 3
 0 155.56 11.608 167.172 211743 0.094 8550.9 8550.99 2
m-500-3b - - - - - - - - -
 0 999.66 16.079 1015.74 270555 0.14 84829.2 84829.3 2
m-500-3c 0 66.391 0.687 67.078 96445 8.781 2088.47 2097.25 3
 0 38.203 2.766 40.969 50111 0.266 2536.59 2536.86 2
m-1000-3a 0 25.25 0.501 25.751 98642 0.75 877.35 878.1 3
 0 3458.2 19516 22974.7 1240085 0.188 105121.7 105122 5
m-1000-3b - - - - - - - - -
 - - - - 1401506 0.439 1045992 1045992 -
m-1000-3c 0 908.22 4.38 912.595 592414 24.516 26429.2 26453.7 4
 0 263.14 16.03 279.173 250554 0.563 17473.65 17474.2 2

 59

instances. For all test instances, the run time of TSA stage 3 is proportional to the size of EG ,

and the run time of LSA is proportional to total number of labels enumerated. TSA and LSA

both solve RCSP effectively; their performances on SRCSP are better than on MRCSP. TSA

takes advantage of its preliminary phase, which is implemented only once for each instance to

make EG available to facilitate subsequent calculation. In contract, LSA must run its recursion

from the beginning for each reoptimization. TSA significantly outperforms LSA on all test

instances that involve repetitive solutions. TSA is most suitable for applications that use RCSP

as a subproblem in CG or CG/B&B, while LSA is preferred for one-time solution.

7.3. Effect of resource limitations on TSA

To demonstrate the effect of resource limitations on TSA performance, we conduct a series of

tests on selected instances: s-500 series and m-50 series with { }0.1, ,1.0η = … . Tables 8 and 9

give computational results on s-500 series and m-50 series, respectively. Columns in Tables 8

and 9 correspond to those in Tables 6 and 7, respectively.

To exemplify performance, Figures 11(a) and 11(b) depict the size of EG and the run

times of stages 2 and 3 as a function of η in instance s-500-2a, respectively. They demonstrate

that both the size of EG and run time increase with η but then decrease as η continues to

increase. Each curve has a single peak occurring around the median value of η . Specifically,

the peak occurs at 0.5η = for s-500-2a, s-500-2b, m-50-3a, and m-50-3c, and at 0.7η = for m-

50-3b. When η takes the mid-range value, the size of EG is large and the run times of stages 2

and 3 are long. If η is small (e.g., 0.1), many bottleneck nodes and arcs can be identified and

deleted and few feasible 1 nv v− paths exist. On the other hand, if η is large (e.g., 0.9), some

 60

paths are always feasible with respect to resource limitations and EG includes them directly

without expanding them. The extreme case is that 1.0η = , for which E RG G= .

Table 8. Results of solving the s-500 series for { }0.1, ,1.0η = …

instance η T1 NBN NBA |VE| |AE| TSA run time (sec.)
 stage1 stage2 stage3 total

s-500-2a 0.1 57 45 610 15005 152044 0 3.703 0.958 4.661
 0.2 106 45 610 28778 319643 0 7.547 1.891 9.438
 0.3 154 45 610 38237 438197 0 9.656 2.560 12.216
 0.4 203 45 610 43551 507481 0 11.422 2.765 14.187
 0.5 251 45 610 44861 526350 0 11.703 2.907 14.61
 0.6 300 45 610 42179 495970 0 10.86 2.625 13.485
 0.7 348 45 610 35070 412773 0 8.375 2.109 10.484
 0.8 397 45 610 23467 275838 0 5.391 1.360 6.751
 0.9 445 45 610 9485 111743 0 2.156 0.562 2.718
 1 494 45 610 455 4840 0 0.171 0.064 0.235
s-500-2b 0.1 83 47 2215 11605 57040 0 1.781 0.455 2.236
 0.2 128 45 896 25744 197345 0 5.437 1.412 6.849
 0.3 173 45 615 36141 333601 0 8.938 2.108 11.046
 0.4 219 45 610 42486 427600 0.016 11.453 2.517 13.986
 0.5 264 45 610 44532 469984 0 12.032 2.767 14.799
 0.6 309 45 610 42468 461333 0 11.421 2.612 14.033
 0.7 355 45 610 36108 399201 0.015 9.031 2.055 11.101
 0.8 400 45 610 25494 285003 0 6.140 1.575 7.715
 0.9 445 45 610 11105 125874 0 2.625 0.671 3.296
 1 491 45 610 455 4840 0 0.171 0.064 0.235

0

20000

40000

60000

80000

100000

120000

0 0.2 0.4 0.6 0.8 1
η

nu
m

be
r

|AE|/5

|VE|

(a)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1
η

se
c.

stage 2

stage 3

(b)

Fig. 11. Instance s-500-2a.

 61

 Table 9 shows that, for MRCSP instances, the size of EG and run time to solve it are

quite sensitive to η . For example, relative to instance m-50-3a, as η increases from 0.1 to 0.5,

the size of EG increases from 34 nodes and 60 arcs to 244,860 nodes and 794,024 arcs and the

run time of stage 2 increases from 0.016 second to 3,795.9 seconds; as η increases further from

0.5 to 0.9, the size of EG decreases to 2,209 nodes and 14,222 arcs and run time of stage 2

decreases to 0.719 second.

Table 9. Results of solving the m-50 series for { }0.1, ,1.0η = …

instance η T1 T2 T3 T4 NBN NBA |VE| |AE| TSA run time (sec.)
 stage1 stage2 stage3 total

m-50-3a 0.1 18 22 19 19 22(26) 405(423) 34 60 0 0.016 0.016 0.032
 0.2 32 39 34 34 5 89(98) 2120 4886 0.015 0.656 0.032 0.703
 0.3 46 55 49 48 5 83 28735 74615 0 52.063 0.733 52.796
 0.4 60 72 64 63 5 83 131222 383115 0 1134.17 3.391 1137.56
 0.5 75 88 79 78 5 83 244860 794024 0 3795.93 6.687 3802.61
 0.6 89 105 94 92 5 83 216061 779777 0.015 2743.45 6.267 2749.74
 0.7 103 121 109 107 5 83 97518 392873 0 359.926 2.685 362.611
 0.8 117 138 124 121 5 83 22647 105654 0 14.875 0.720 15.595
 0.9 131 154 139 136 5 83 2209 14222 0.015 0.719 0.171 0.905
 1 146 171 155 151 5 83 45 389 0 0.016 0.077 0.093
m-50-3b 0.1 9 11 6 11 50 472 infeasible - - - -
 0.2 13 15 11 15 50 472 infeasible - - - -
 0.3 17 19 15 19 32(35) 444(452) 22 29 0 0.016 0.062 0.078
 0.4 22 23 20 23 5(6) 223(345) 491 726 0 0.406 0.078 0.484
 0.5 26 27 25 28 5 163(205) 9617 17167 0 17.125 0.328 17.453
 0.6 30 31 29 32 5 125(142) 78421 173544 0 533.972 1.908 535.88
 0.7 35 35 34 36 5 108 229676 630848 0 3889.15 5.828 3894.98
 0.8 39 39 38 40 5 92 89096 331482 0 520.20 2.406 522.606
 0.9 43 43 43 44 5 84 4364 24295 0 2.484 0.282 2.766
 1 48 48 48 49 5 83 45 389 0 0.031 0.063 0.094
m-50-3c 0.1 164 162 302 421 36 447 15 27 0 0.015 0.047 0.062
 0.2 300 301 574 837 5 97(105) 1793 4426 0 0.688 0.062 0.75
 0.3 435 440 846 1253 5 87 22514 67667 0 32.875 0.639 33.514
 0.4 571 579 1117 1669 5 86 82604 289443 0 474.903 2.156 477.059
 0.5 706 718 1389 2086 5 85 114474 467701 0 959.803 3.344 963.147
 0.6 842 857 1661 2502 5 83 91493 415852 0 556.887 2.563 559.45
 0.7 977 996 1932 2918 5 83 43332 213512 0 105.671 1.373 107.044
 0.8 1113 1135 2204 3334 5 83 8377 50011 0 5.500 0.437 5.937
 0.9 1248 1274 2476 3750 5 83 1413 9101 0 0.500 0.140 0.64
 1 1384 1414 2748 4167 5 83 44 389 0 0.016 0.126 0.142

 62

7.4. Effectiveness of prescribing resource windows and RP in TSA

The goal of this section is to demonstrate the effectiveness of prescribing resource windows in

stage 1 and calculating k
jy with RP in stage 2 of TSA. For this purpose, we adapt EP in

Subsection 7.4.1 to devise an expanded graph approach (EGA). EGA neither prescribes resource

windows and nor uses RP to calculate k
jy . We use the s-500 and m-20 series to compare TSA

and EGA computationally in Subsection 7.4.2.

7.4.1. Description of EGA

Let (,)EGAG W E= be the expanded graph created by EGA ((,)E E EG V A denotes the expanded

graph created by TSA). Let jW be the set of all nodes k
jw W∈ for 1, , jk W= … that are

associated with a specific j Rv V∈ and ijE be the set of all arcs (,)h k
i jw w E∈ associated with a

given arc (,) Ri j A∈ . EGA constructs an expanded graph in a manner similar to that used by EP,

but using resource windows []0,T at each node and calculating k
jry according to

k h
jr ir ijry y u= + , for (,)h k

i jw w E∈ . (10)

That is, EGA does not prescribe tight resource windows as stage 1 of TSA (S1A) does, and it

calculates k
jy without RP.

A sink node 1
1nw + must be included in W and corresponding arcs 1

1(,)h
n nw w + , for h

n nw W∈

must be included in E because nW contains more than one node. Arc (,)h k
i jw w is in E only if

k h
j i ij= +y y u ≤ T , where h

iy and k
jy are CRR vectors associated with h

iw and k
jw , respectively.

EGA can construct EGAG based on the following recursion, which processes nodes j Rv V∈ in

increasing index order:

 63

1
1 1

1
, 1 1

{ : 0},
{ : : , ,(,) },
{(,) : : , , },
{(,) : }.

k k h k h
j j j i ij j i i i j R

h k k h k h k
ij i j j i ij j i i j j

h h
n n n n n n

W w
W w w W v v A
E w w w W w W
E w w w W+ +

= =
= = + ≤ ∈ ∈
= = + ≤ ∈ ∈
= ∈

1
1y

y y u y T
y y u y T

 (11)

To make a fair comparison, the network-reduction technique (steps 1-4 of S1A) is used in

conjunctive with EGA to identify and delete bottleneck nodes and arcs before constructing EGAG .

After constructing EGAG as in (11), the nodes and arcs that are not on any path from 1
1w to 1

1nw +

are deleted to complete EGAG . The optimal value (i.e., minimum cost) and optimal path can be

found using OA. Based on Propositions 5.5, 5.9 and 5.10, the following proposition is

established.

Proposition 7.1. The number of arcs in EGAG is bounded by ()O mϕ . The expanding stage of

EGA constructs EGAG in ()O mϕℜ , where
1

(1)r
r

Tϕ
ℜ

=

= +∏ . The minimum cost and the optimal

path can be computed in ()O E ()O mϕ= time. The total run time for a first-time solution

(1iteration =) is ()O m mγ ϕℜ + ℜ , where term ()O mγℜ represents the time to identify and

delete bottleneck nodes and arcs before constructing EGAG . Each subsequent solution

(1iteration >) requires ()O mϕ time.

Proof. Because ()jW O ϕ= and each node k
jw in EGAG has at most ()jFS v successors, the

number of arcs in EGAG is bounded by () ()
j R

j
v V

O FS v O mϕ ϕ
∈

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑ . Considering arc (,)i j Rv v A∈ ,

k
jy can be calculated from each h

iy for h
i iw W∈ in ()O ℜ time. That is, each node k

jw

(associated with k
jy) can be created in ()O ℜ time. To facilitate the test if a duplicate of k

jy

already exist, we store CRR vectors k
jy for k

j jw W∈ in lexicographic order for j Rv V∈ . Because

 64

()iW O ϕ= , the calculation of k
jy from all h

iy for h
i iw W∈ can be done in ()O ϕℜ time.

Further, resulting k
jy are in lexicographic order because h

iy for h
i iw W∈ are stored and processed

in that order. Thus, inserting all resulting nodes k
jw (associated with k

jy) into jW (()jW O ϕ=)

requires ()O ϕℜ time to check if duplicates of k
jy already exists; simultaneously, all resulting

k
jy can be inserted into established k

jy for k
j jw W∈ in lexicographic order. Thus, the expanding

stage of EGA constructs EGAG in
(,)

()
Ri j A

O ϕ
∈

⎛ ⎞ℜ⎜ ⎟
⎝ ⎠
∑ ()O mϕ= ℜ time. Deleting nodes and arcs

that are not on any 1 1
1 1nw w +− path can be done in ()O mϕ time. By Proposition 5.10, the

minimum cost and the optimal path can be computed in ()O E ()O mϕ= time. Thus, the total

run time for a first-time solution is ()O m mγ ϕℜ + ℜ , where term ()O mγℜ represents the

time to identify and delete bottleneck nodes and arcs before constructing EGAG (see Proposition

5.5). Each subsequent solution can be found using OA in ()O mϕ time. ■

Recall that TSA runs in ()maxO m mγ ϑℜ + ℜ +Θ time for the first-time solution; each

subsequent solution can be obtained by stage 3 and requires max() ()O O mϑΩ = time (see

Proposition 5.10). Note that, in general, r
r
θ

∈ℜ

Θ =∑ ()
(,)

1
R

jr jr
r i j A

t t
∈ℜ ∈

= − +∑ ∑
(,)

(1)
R

r
r i j A

T
∈ℜ ∈

<< +∑ ∑

(1)r
r

m T
∈ℜ

= +∑ mϕ<< ℜ , and
1 1

(1)jrj jr jr
r r

t tϑ ϕ
ℜ ℜ

= =

= Λ << − + <<∏ ∏ for j Rv V∈ , so maxϑ ϕ<< .

Thus, TSA offers much better worst-case performance than EGA. Since EGA does not prescribe

tight resource windows for nodes in RG , it generates many nodes and arcs that eventually are not

on any path from 1
1w to 1

1nw + and must be deleted to complete EGAG . Further, EGA calculates k
jy

using (10) without RP (4-5); thus, it enumerates more distinct values of vectors k
jy and

 65

consequently generates more nodes in EGAG . The shape of EGAG can be imagined as a pyramid;

and the shape of EG as a barrel. These points are demonstrated by the following computational

results (see Table 10).

7.4.2. Computational results

Table 10 shows that EGAG has many more nodes and arcs than EG for every instance. It

turns out that EGAG includes many duplicated partial paths that are not necessary. The density of

EGAG (W E) is almost 100 percent, indicating that EGA merges few nodes as it constructs

EGAG . Since the run time for solving SPP on an expanded graph (either EGAG or EG) in stage 3

depends on the size of expanded graph, the run time for solving an instance on EGAG is longer

than that on EG . Another observation is that the size of EGAG increases with η , while the size of

EG increases with η to a peak and then decreases as η continues to increase (see Section 7.3).

As η increases, the performance of EGA degrades further and further. For example, EGA

solves instance m-20-3a with 0.9η = in 121.56 seconds, generating EGAG with 44,086 nodes and

44,259 arcs, but TSA can easily solve this instance in 0.14 second, generating EG with 265

nodes and 1,407 arcs. In summary, by prescribing resource windows and using RP to calculate

k
jy , TSA expands the partial paths in RG if and only if necessary; thus, TSA is more effective

than EGA. Hence, prescribing resource windows and calculating k
jy using RP are effective and

especially important for TSA.

 66

Table 10. Comparison of TSA and EGA

instance η TSA run time (sec.) EGA: run time (sec.)

 |VE| |AE| stage1 stage2 stage3 total |W| |E| stage1 stage2 stage3 total
s-500-2a 0.1 15005 152044 0 3.703 0.958 4.661 20102 187416 0 4.235 1.232 5.467
 0.5 44861 526350 0 11.70 2.907 14.61 78737 772990 0 16.407 4.689 21.096
 0.9 9485 111743 0 2.156 0.562 2.718 103217 952418 0 21.078 5.719 26.797
s-500-2b 0.1 11605 57040 0 1.781 0.455 2.236 23863 131770 0 3.547 0.877 4.424
 0.5 44532 469984 0 12.03 2.767 14.799 76625 706352 0 18.516 4.550 23.066
 0.9 11105 125874 0 2.625 0.671 3.296 96532 892090 0 24.344 5.301 29.645
m-20-3a 0.1 3 3 0 0 0.031 0.031 3 3 0 0 0.031 0.031
 0.5 1970 5721 0 0.531 0.063 0.594 10083 10127 0 10.657 0.188 10.845
 0.9 265 1407 0 0.078 0.063 0.141 44086 44259 0 120.93 0.625 121.56
m-20-3b 0.1 infeasible - - - - - - - - - -
 0.5 12 14 0 0 0.048 0.048 14 14 0 0.016 0.048 0.064
 0.9 523 2349 0 0.156 0.063 0.219 17161 20677 0 23.235 0.251 23.486
m-20-3c 0.1 8 14 0 0 0.078 0.078 14 14 0 0.015 0.078 0.093
 0.5 1675 6549 0 0.609 0.093 0.702 17142 17142 0 26.828 0.297 27.125
 0.9 142 1017 0 0.046 0.048 0.094 44551 44551 0 91.408 0.515 91.923

 67

CHAPTER VIII

TSA FOR SOLVING RCSP IN CG AND CG/B&B

In this chapter, we consider the special issues that arise when RCSP is used as subproblem(s) in

CG and CG/B&B. In the context of CG, arc costs are updated using the new values of dual

variables at each CG iteration and the subproblem must be reoptimized with respect to these new

arc costs. Section 8.1 proposes ROA that can be used in stage 3 of TSA in CG applications and

presents a version of TSA for solving RCSP subproblem using ROA in CG (TSA-CG). Further,

in the context of CG/B&B, some arcs (,)i j in graph G may be forbidden or prescribed (i.e.,

associated decision variables ijx that are fixed to 0 or 1, respectively, by the branching rule).

Section 8.2 proposes a method for dealing with these fixed arcs (MDFA) and presents a version

of TSA for solving RCSP as a subproblem in CG/B&B (TSA-CG/B&B).

8.1. ROA and TSA-CG

When RCSP is used as a subproblem in CG, the RCSP subproblem must be reoptimized with

respect to the new arc costs at each CG iteration. Of course, OA (Figure 8) can be used to find a

(new) shortest path with respect to the updated arc costs. This section proposes an alternative

method – ROA (Subsection 8.1.1) and analyzes the complexity of ROA (Subsection 8.1.2).

Based on that, Subsection 8.1.3 presents TSA-CG and Subsection 8.1.4 analyzes the complexity

of TSA-CG. Finally, Subsection 8.1.5 shows the computational tests on ROA.

8.1.1. Description of ROA

Rather than solving from scratch to prescribe each iterative solution, ROA only updates the

labels ()k
jsπ that are affected by the new arc costs, using the shortest path tree found at the last

 68

iteration (i.e., using the previous arc costs). A shortest path tree comprises the shortest path from

source node 1
1s to each of the other nodes in EG (i.e., { }11\EV s).

Let B be a set of arcs that have updated (new) costs. These new costs may be smaller or

larger than the old ones. Let ijc denote the old cost on arc (,)i jv v A∈ ; and ijc′ , the new cost on

the arc. Correspondingly, let ()k
jsπ denote the minimum cost among 1

1
k
js s− paths at the last

iteration; and ()k
jsπ ′ , the minimum cost at the current iteration. Recall that ()k

jp s denotes the

predecessor of k
js in the shortest path tree. Let H be a heap that stores a set of arcs in G that

have updated costs; and EH , a heap that stores a set of arcs in EG , in which the tail of each arc

has updated value of ()k
jsπ . Using this notation, Figure 12 details ROA (with respect to B).

ROA is a label-setting algorithm, which is tailored for RCSP on an acyclic graph.

Initialize heap H with the arcs in B (step 1) and the process continues until H =∅ and

EH =∅ (step 2). On each iteration of ROA, the arc with the smallest index j from either H or

EH is selected for preprocessing (step 2(i)). If the selected arc is from H , then steps 2(ii-x)

apply; otherwise, steps 2(xi-xviii) apply. Because arc (,)i j in G might correspond to several

arcs in EG , each with tail in iS and head in jS , respectively, the processing of arc (,)i j in H

involves dealing with all arcs (,h k
i js s) in EG that correspond to (,)i j (see step 2(iv)). In steps

2(v-viii), each arc (,h k
i js s) that corresponds to arc (,)i j in H is processed as follows (j here is

1j in ROA of Figure 12). If ijc′ ijc> and ()k
jp s h

is≠ (step 2(v)), the current shortest path (i.e., the

shortest path prescribed at the last iteration) is still optimal. If ijc′ ijc> and ()k
jp s h

is= (step

2 (v i)) , then ()k
jsπ ′ and ()k

jp s a re updated to be { }min () : ()h h k
i ij i E js c s BS sπ ′ ′+ ∈ and

{ }
()

arg min ()
h k
i E j

h
i ij

s BS s
s cπ

∈

′ ′+ , respectively. If ijc′ ijc< and ()k
jp s h

is≠ (step 2(vii)), and, in addition, if

 69

step 1. Set H B← , EH =∅ , and ()k
jsπ ′ = ()k

jsπ , k
j Es V∀ ∈ .

step 2. While H ≠ ∅ or EH ≠∅ ,
(i) let { }1 min : (,)i jj j v v H= ∃ ∈ and { }2 min : (,)h k

i j Ej j s s H= ∃ ∈ .

(ii) If 1 2j j≤ :
(iii) for each

1
(,)i jv v H∈ ,

(iv) for each
1 1

k
j js S∈ such that

1
()h k

i E js BS s∃ ∈ ,
(v) if

1ijc′
1ijc> and

1
()k

jp s h
is≠ , go to step 2(iv);

(vi) if
1ijc′

1ijc> and
1

()k
jp s h

is= ,

1

()k
jsπ ′ = { }

1 1
min () : ()h h k

i ij i E js c s BS sπ ′ ′+ ∈ =
1

*
* *()h

i i js cπ ′ ′+ ;
1

()k
jp s = *

*
h
is ;

(vii) if
1ijc′

1ijc< and
1

()k
jp s h

is≠ , if
1

()h
i ijs cπ ′ ′+ <

1
()k

jsπ ′ ,
1

()k
jsπ ′ =

1
()h

i ijs cπ ′ ′+ ;

1
()k

jp s = h
is ;

(viii) if
1ijc′

1ijc< and
1

()k
jp s h

is= ,
1

()k
jsπ ′ =

1 1 1
()k

j ij ijs c cπ ′+ − ;

(ix) if
1

()k
jsπ ′

1
()k

jsπ≠ , insert { }
1 1

(,) : ()k h h k
j i i E js s s FS s∈ into EH ;

(x) remove
1

(,)i jv v from H .

(xi) If 2 1j j≤ :
(xii) for each

2
(,)h k

i j Es s H∈ ,
(xiii) if ()h

isπ ′ ()h
isπ> and

2
()k

jp s h
is≠ , do nothing;

(xiv) if ()h
isπ ′ ()h

isπ> and
2

()k
jp s h

is= ,

2

()k
jsπ ′ = { }

2 2
min () : ()h h k

i ij i E js c s BS sπ ′ ′+ ∈ =
2

*
* *()h

i i js cπ ′ ′+ ;
2

()k
jp s = *

*
h
is ;

(xv) if ()h
isπ ′ ()h

isπ< and
2

()k
jp s h

is≠ , if
2

()h
i ijs cπ ′ ′+ <

2
()k

jsπ ′ ,
2

()k
jsπ ′ =

2
()h

i ijs cπ ′ ′+ ;

2
()k

jp s = h
is ;

(xvi) if ()h
isπ ′ ()h

isπ< and
2

()k
jp s h

is= ,
2

()k
jsπ ′ =

2
()h

i ijs cπ ′ ′+ ;

(xvii) if
2

()k
jsπ ′

2
()k

jsπ≠ , insert { }
2 2

(,) : ()k h h k
j i i E js s s FS s∈ into EH ;

(xviii) remove
2

(,)h k
i js s from EH .

step 3. Set 1()nz sπ ′= .
step 4. Find the shortest path by tracing back using 1()np s . STOP.

Fig. 12. ROA.

()h
i ijs cπ ′ ′+ < ()k

jsπ ′ , then ()k
jsπ ′ = ()h

i ijs cπ ′ ′+ and ()k
jp s = h

is ; otherwise, the current shortest path

is still optimal. If ijc′ ijc< and ()k
jp s h

is= (step 2(viii)), then the current shortest path is still

optimal but the optimal cost on the path is decreased by amount of ij ijc c′− . If ()k
jp s is changed

 70

during the processing of (,h k
i js s), all arcs outgoing from k

js are inserted into EH (step 2(ix)).

After it is processed, arc (,)i jv v is removed from H (step 2(x)). A similar analysis applies to

steps 2(xiii-xvii), where ()k
isπ differs from ()k

isπ ′ , but this part of ROA is not detailed to

conserve space.

8.1.2. Computational complexity of ROA

ROA processes each node in iS before any node in jS for j i> . Further, because no pair of

nodes in set iS is connected, heap EH can be stored as an n-dimensional array in which each

element is a linked-list of arcs (unsorted). All arcs with head in iS are inserted into linked-

list []EH i if labels (i.e., the minimum cost ()k
jsπ) on their tails are changed by ROA (step 2(ix)

and (xvii)). With this heap structure EH , heap operations (extraction in steps 2(i) and (x) and

insertion in steps 2(ix) and (xvii)) can be done in constant time. ROA processes arcs in []EH i

before processing arcs in []EH j for j i> . The following proposition establishes the complexity

of ROA.

Proposition 8.1. ROA runs in ()EO A = ()O Ω time in the worst-case.

Proof. Since each operation on heap EH takes a constant amount of time, the processing of

each arc in heap EH is in constant time. In the worst-case, all arcs in EG must be processed

once; thus, the total run time of ROA is ()EO A = ()O Ω in the worst-case. ■

Note that OA and ROA are two methods for solving SPP in stage 3 of TSA. They both

have the same worst-case complexity of ()O Ω . Since ROA must maintain a heap, the implicit

coefficient, ROAc , of Ω is larger than the one, OAc , that is implicit in the expression that

describes the complexity of OA. That is, the worst-case complexity of ROA is ()ROAO c Ω and

 71

that of OA is ()OAO c Ω with ROA OAc c> so that, ROA may require large run time, on average. On

the other hand, the actual run time of ROA relates to set B . In general, the run time of ROA

increases with B . For small B , ROA is more likely to be faster than OA. Section 8.3

presents computational tests that compare ROA and OA.

8.1.3. Description of TSA-CG

Figure 13 details TSA-CG that incorporates ROA in stage 3 to solve RCSP in CG (without fixed

arcs), using iteration to refer to a CG iteration. Figure 13 shows that the preliminary phase of

TSA (stages 1 and 2) is implemented only once in solving an instance of RCSP. When

1iteration > , only stage 3 is needed. λ is a parameter specified by the analyst. If the number of

arc costs that are assigned new values on an iteration is greater than λ , SPP is solved from

scratch using OA; otherwise, SPP is reoptimized using ROA. 0λ = implies OA is implemented

on every iteration. Chapter VII designs experiments to estimate an appropriate value for λ for

the test instances.

1 If 1iteration = ,
2 (stage 1): run S1A;
3 (stage 2): run EP;
4 (stage 3): run OA.
5 If 1iteration > ,
6 (stage 3): If B λ≥ , run OA; else (i.e., B λ<), run ROA.

Fig. 13. TSA-CG.

Remark 3. In implementing TSA to solve RCSP subproblem(s) in CG, the preliminary phase of

TSA can help reduce the size of the overall problem. Let ℑ denote a problem that can be solved

by CG (or CG/B&B) with RCSP subproblem(s). If the preliminary phase identifies arc (,)i j as

a bottleneck, it fixes decision variable ijx to 0. All fixed variables can be removed from problem

ℑ . Thus, the preliminary phase of TSA can reduce the size of ℑ .

 72

8.1.4. Computational complexity of TSA-CG

Proposition 8.2. The worst-case complexity of TSA-CG is ()maxO m mγ ϑℜ + ℜ +Θ for the

first-time solution (1iteration =). Each subsequent solution (1iteration >) requires ()O Ω time.

Proof. Because the complexities of ROA and OA are the same, TSA-CG has the same

complexity as TSA in Figure 9, which is ()maxO m mγ ϑℜ + ℜ +Θ for the first-time solution.

After that, Each subsequent solution can be obtained by either OA or ROA and thus requires

()O Ω time. ■

TSA-CG is suitable for repeatedly solving RCSP as a subproblem in CG. At each CG

iteration, only stage 3 is needed to solve an RCSP subproblem and it runs in ()O Ω max()O mϑ=

time.

8.1.5. ROA tests

This subsection investigates ROA (Figure 12) by comparing it with OA (Figure 8). Recall that

B is the set of arcs in G that are assigned new arc costs. Since stage 2 of TSA expands G , the

number of arcs in the expanded graph EG that are assigned new costs may be much larger than

| |B . Our experiment tests four values of | |B (1, 3, 5 and 10) on two selected series, s-500 and

s-1000. We run 100 replications for each value of | |B on each instance with a specified

{ }0.1,0.5,0.9η = . We number the arcs in G from 1 to A . For each replication, we choose | |B

arcs at random from G by generating | |B unique integers (corresponding to | |B arcs) from

1,DU A⎡ ⎤⎣ ⎦ . For each selected arc, e, we generate a random value Δ from

()100.0, 1.0) (1.0,100.0U − − ∪ and add it to the current cost of arc e. If Δ is negative, the cost

of arc e decreases; otherwise, it increases.

Table 11 presents computational results. The run times in Table 11 do not include the

 73

time for the preliminary phase of TSA because OA and ROA are used only in stage 3 of TSA.

Note that the run time for OA does not depend on set B ; the run times for OA in column 6 are

the average run times per replication over 100 replications. However, the run time for ROA

depends on the number of arcs in B and their locations in the graph. Table 11 demonstrates this,

giving the average, standard deviation, minimum, and maximum values, of run times for 100

replications (columns 7-10). The last column in Table 11 gives the ratio of the average run time

for one replication of ROA to one of OA.

Columns 7-10 in Table 11 show that ROA run time differs significantly as a function of

the arcs in set B , even for the same value of | |B . For all test instances, the minimum run time

of ROA can be 0 second if the arcs in B do not alter the current shortest path tree. However, the

maximum run time of ROA can be large, much larger than OA if the arcs in B affect a large

portion of EG (especially if the arcs in B affect the entire graph). Consequently, the standard

deviations (column 8) are large, even much larger than average run times of ROA.

Furthermore, Table 11 shows that, on average, if | | 3B ≤ , ROA is faster than OA, except

for instance s-500-2b with 0.9η = , which has the smallest expanded graph (9,484 nodes and

11,173 arcs) among all test instances. However, on average, if | | 5B ≥ , ROA is slower than OA

for most instances except for s-1000-2b with 0.1, 0.5,η = or 0.9. These results are consistent

with expectations. Basically, ROA may save time by resolving only portions of EG that are

effected by the arcs in B . In general, the portion of the graph that is affected increases with

| |B , and may even encompass the entire graph. On the other hand, ROA must maintain an

additional heap to store the portion of EG that has been affected and heap operations require

additional run time. This trade-off balances at some value of | |B , on average. For most of the

test instances, the value of | |B balances at 3~5.

 74

Table 11. Comparison of OA and ROA

instance η |VE| |AE| |B| OA run time ROA run time (×10-3sec.) ratio
 (×10-3sec.) mean stdev min max

s-500-2a 0.1 15004 152044 1 10.32 2.02 6.88 0 47 0.196
 3 10.31 2.96 6.528 0 31 0.287
 5 10.62 10.93 24.993 0 171 1.029
 10 10.31 17.66 33.586 0 235 1.713
 0.5 44860 526350 1 30.01 9.85 55.121 0 531 0.328
 3 30.15 24.53 79.526 0 531 0.814
 5 29.99 93.28 268.432 0 1656 3.110
 10 30.15 152.02 310.131 0 1688 5.042
 0.9 9484 11173 1 6.87 1.08 3.958 0 16 0.157
 3 6.88 7.18 34.411 0 250 1.044
 5 6.72 18.43 59.442 0 344 2.743
 10 6.72 29.69 62.745 0 344 4.418
s-500-2b 0.1 11604 57040 1 5.47 1.09 3.995 0 16 0.199
 3 6.09 1.88 5.602 0 32 0.309
 5 5.01 5.62 10.798 0 63 1.122
 10 5.15 7.84 12.08 0 63 1.522
 0.5 44531 469984 1 28.59 7.82 47.27 0 469 0.274
 3 28.59 15.62 52.036 0 359 0.546
 5 28.76 59.84 168.558 0 1078 2.081
 10 28.59 116.87 232.379 0 1094 4.088
 0.9 11104 125874 1 7.97 1.72 6.251 0 47 0.216
 3 7.82 3.82 6.766 0 31 0.488
 5 7.96 10.15 35.046 0 296 1.275
 10 7.97 19.53 38.727 0 188 2.450
s-1000-2a 0.1 38268 378134 1 24.22 1.87 5.548 0 31 0.077
 3 24.54 7.65 22.729 0 157 0.312
 5 24.06 25.63 101.882 0 922 1.065
 10 24.06 39.53 82.868 0 719 1.643
 0.5 111871 1239797 1 70.62 8.29 50.864 0 500 0.117
 3 70.16 29.21 107.244 0 781 0.416
 5 71.25 97.81 332.752 0 2282 1.373
 10 72.34 251.42 562.565 0 2765 3.476
 0.9 21039 239205 1 12.19 1.88 7.437 0 62 0.154
 3 12.03 5.31 19.904 0 172 0.441
 5 12.34 17.35 71.108 0 563 1.406
 10 12.18 44.54 90.218 0 484 3.657
s-1000-2b 0.1 37378 177380 1 13.6 1.25 4.798 0 31 0.092
 3 13.14 3.44 7.863 0 31 0.262
 5 12.19 9.06 19.116 0 125 0.743
 10 12.03 12.81 20.488 0 109 1.065
 0.5 173034 1761164 1 109.53 15 75.526 0 656 0.137
 3 109.54 28.13 79.775 0 703 0.257
 5 110.47 103.9 357.198 0 2844 0.941
 10 109.38 349.07 742.203 0 3485 3.191

 75

Table 11. Continued

instance η |VE| |AE| |B| OA run time ROA run time (×10-3sec.) ratio
 (×10-3sec.) mean stdev min max

s-1000-2b 0.9 40906 447040 1 22.66 2.02 6.518 0 47 0.089
 3 21.73 9.53 20.153 0 140 0.439
 5 22.35 16.09 48.137 0 422 0.720
 10 21.87 56.88 93.649 0 437 2.601

8.2. MDFA and TSA-CG/B&B

When RCSP is used as a subproblem in CG that is incorporated in a B&B scheme, some arcs

(,)i j in the graph may be fixed. Solving RCSP with fixed arcs poses opportunities to specialize

TSA to gain effectiveness.

Let 0F (1F) be the set of arcs that correspond to the binary variables fixed to 0 (1) at a

node in the B&B tree. Then, 0F is the set of the forbidden arcs on G which are not allowed on

the optimal path; and 1F is the set of the prescribed arcs that must be on the optimal path. At

each B&B node 0F and 1F are fixed and RCSP subproblem(s) is(are) solved at each CG

iteration. Thus, it is worth taking some time to revise EG based on 0F and 1F before solving

RCSP subproblem(s). The revised graph is smaller than EG and the resulting problem can be

solved using either OA (Figure 8) or ROA (Figure 12) on the revised graph.

This section contains five subsections. Subsection 8.2.1 investigates properties related

to forbidden (0F) and prescribed arcs (1F) and proposes MDFA to exploit them. Subsection

8.2.2 presents TSA-CG/B&B, a version of TSA for solving RCSP in CG/B&B, and Subsection

8.2.3 analyzes its complexity. Subsection 8.2.4 presents a computational evaluation of MDFA.

Finally, Subsection 8.2.5 summarizes this section and discusses some issues related to

implementing TSA-CG/B&B.

 76

8.2.1. Description of MDFA

To avoid confusion, we assume that the preliminary phase of TSA deletes bottleneck arcs from

G . Define implied forbidden arcs in G as the arcs that can not be on connected 1 nv v− paths

that contain all arcs in 1F and do not contain any arc in 0F . All arcs in EG corresponding to

forbidden (including implied forbidden) arcs in G can be removed from EG .

Theorem 8.1. If arc (,)i j in acyclic graph G is prescribed (i.e., ijx =1), then any arc (', ')i j

with (a) 'i i< and 'j i> , or (b) 'i i= and 'j j≠ , or (c) 'i i j< < is an implied (type 1) forbidden

arc.

Proof. If arc (,)i j is prescribed, then any arc (', ')i j identified by cases (a), (b) and (c) can not

be on a 1 nv v− path together with arc (,)i j (see Figure 14). ■

 By the above theorem, the following corollary is straightforward.

Corollary 8.1. Suppose 1F ≠ ∅ , if prescribed arcs in 1F can not be sorted as

{ }1(,), 1,2, | |
k ki jv v k F= … such that k ki j< and 1k kj i +≤ , (12)

then, RCSP subject to the set of prescribed arcs 1F is infeasible because prescribed arcs conflict.

Fig. 14. Dashed arcs ((a), (b) and (c)) are forbidden due to prescribed arc (,)i j .

v1 vi vj

(c) arcs (',' ji) with 'i i j< < are implied forbidden arcs.
(b) arcs (',' ji) with 'i i= and 'j j≠ are implied forbidden arcs.
(a) arcs (',' ji) with 'i i< and 'j i> are implied forbidden arcs.

vn

prescribed arc (,)i j

 77

By invoking Theorem 8.1, additional implied (type 2) forbidden arcs may be found.

After removing implied (type 1) forbidden arcs (', ')i j in cases (a), (b) and (c) for each 1(,)i j F∈

and arcs in 0F from G , some of the remaining nodes and arcs may no longer be on any 1 nv v−

path, and so become implied (type 2) forbidden arcs. Let 0̂F be a set of all of forbidden arcs

including i) forbidden arcs in 0F ; ii) implied (type 1) forbidden arcs stated in Theorem 8.1 for

each 1(,)i j F∈ :
1(,) ' ' , ' ' , '

(', ') (', ') (', ')
i j F i i j i i j j i i j i

i j i j i j
∈ < < = ≠ < >

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ ∪∪ ∪ ∪ ∪ in which the three terms in

parentheses are associated with cases (a), (b) and (c), respectively; iii) implied (type 2) forbidden

arcs that are not on any 1 nv v− path after removing the forbidden arcs in i) and ii). Given 0F and

1F , the algorithm detailed in Figure 15 – GFA – generates 0̂F in ()O m time.

step 1. Set 0̂F =
1(,) ' ' , ' ' , '

(', ') (', ') (', ')
i j F i i j i i j j i i j i

i j i j i j
∈ < < = ≠ < >

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ ∪∪ ∪ ∪ ∪ 0F∪ .

 For 1 j n≤ ≤ ,

 ()jBS v′ { }0̂() : (,)i j i jv BS v v v F= ∈ ∉ and ()jFS v′ { }0̂() : (,)i j j iv FS v v v F= ∈ ∉ .

step 2. For j in increasing order from 2 to n ,
 if ()jBS v′ = ∅ and ()jFS v′ ≠ ∅ ,

 () () \ { }i i jBS v BS v v′ ′= , ()i jv FS v′∀ ∈ ; 0̂F = 0̂F { }(,) : ()j i i jv v v FS v′∪ ∈ ; ()jFS v′ = ∅ .
step 3. For j in decreasing order from n -1 to 1,
 If ()jFS v′ = ∅ and ()jBS v′ ≠ ∅ ,

 () () \ { }i i jFS v FS v v′ ′= , ()i jv BS v′∀ ∈ ; 0̂F = 0̂F { }(,) : ()i j i jv v v BS v′∪ ∈ ; ()jBS v′ = ∅ .

step 4. If any 1(,)i j F∈ has ()iBS v′ = ∅ or ()jFS v′ = ∅ , STOP;
 the problem is infeasible because the remaining graph is disconnected.
step 5. Return 0̂F .

Fig. 15. GFA: generating 0̂F algorithm.

Step 1 of GFA initializes 0̂F with arcs in 0F and implied forbidden arcs of type 1. Steps

2 and 3 identify implied forbidden arcs of type 2. Step 4 checks to determine if the remaining

graph, denoted as RFG , is connected. Note that, if RFG is connected, every prescribed arc in RFG

 78

is a bridge, that is, an arc such that the connected graph becomes disconnected if it is removed

from the graph. Thus, removing implied forbidden arcs is equivalent to fixing prescribed arcs.

Now, based on 0̂F , the algorithm detailed in Figure 16 – GERA – can identify and

remove all forbidden arcs in EG . Let EFG be the resulting graph, that is, EFG is formed from EG

by removing all forbidden arcs in EG . EFG is a subgraph of EG and we call it the revised graph.

Let ()k
E jFS s′ be a subset of ()k

E jFS s that denotes a set of successors in EFG ; and ()k
E jBS s′ be a

subset of ()k
E jBS s that denotes a set of predecessors in EFG . Note that arc (,)i j 0̂F∈ implies

that arcs (,h k
i js s) with h

i is S∈ and k
j js S∈ are forbidden in EG . GERA removes all forbidden

arcs of EG that correspond to arcs in 0̂F (step 1). Then, it identifies and removes the arcs in the

remaining graph that can not be on any 1 1
1 ns s− path (steps 2 and 4). If 1()E nBS s′ = ∅ (step 3) or

1
1()EFS s′ = ∅ (step 5), EFG is disconnected so STOP; otherwise, return EFG defined by ()k

E jBS s′

and ()k
E jFS s′ , for k

j Es V∈ (step 6). Figure 16 details this procedure.

step 1. Set ()k

E jBS s′ = ()k
E jBS s , ()k

E jFS s′ = ()k
E jFS s , k

j Es V∀ ∈ .

 For each arc (,)h k
i j Es s V∈ ∋ 0̂(,)i j F∈ ,

 () () \{ }k k h
E j E j iBS s BS s s′ ′= and () () \{ }h h k

E i E i jFS s FS s s′ ′= .
step 2. For each 1

1\ { }k
j Es V s∈ in increasing j index order from 2 to n ,

 if ()k
E jBS s′ = ∅ and ()k

E jFS s′ ≠ ∅ ,
 () () \{ }h h k

E i E i jBS s BS s s′ ′= , ()h k
i E js FS s′∀ ∈ ; ()k

E jFS s′ = ∅ .
step 3. If 1()E nBS s′ = ∅ , STOP. The problem is infeasible because EFG is disconnected.
step 4. For each 1\{ }k

j E ns V s∈ , j in decreasing order from 1n − to 1,
 if ()k

E jFS s′ = ∅ and ()k
E jBS s′ ≠ ∅ ,

 () () \{ }h h k
E i E i jFS s FS s s′ ′= , ()h k

i E js BS s′∀ ∈ ; ()k
E jBS s′ = ∅ .

step 5. If 1
1()EFS s′ = ∅ , STOP. The problem is infeasible because EFG is disconnected.

step 6. Return ()k
E jBS s′ and ()k

E jFS s′ , k
j Es V∀ ∈ .

Fig. 16. GERA: EG revising algorithm.

 79

After revising EG to EFG , either OA or ROA can be applied to EFG to find an optimal

solution by replacing ()k
E jFS s with ()k

E jFS s′ and ()k
E jBS s with ()k

E jBS s′ , respectively, in Figures

8 and 12. In addition, ROA replaces B with 0̂\B F because arcs in 0̂F do not appear in EFG .

Remark 4. Define the span of arc (,)i j as j i− , assuming that the nodes are topologically

numbered. Based on Theorem 8.1, it is appropriate to select a branching variable ijx whose

corresponding arc (,)i j has a large span, so that it will generate more implied forbidden arcs and

cause EFG to be smaller than if the branching variable has a small span.

8.2.2. Description of TSA-CG/B&B

Figure 17 details TSA-CG/B&B, which incorporates MDFA in the first iteration of CG at each

B&B node (except the root node). At the root node of the B&B tree (1 0F F= =∅), RCSP is

solved using TSA-CG in Figure 13 (line 1). At each other node in the B&B tree some arcs are

fixed. The first CG iteration (line 2 of Figure 17), sorting 1F according to expression (12) (see

Theorem 8.1) (line 3) if 1F ≠∅ . GFA then generates 0̂F (line 4), and GERA revises EG to form

EFG (line 5) before OA optimizes SPP on EFG (line 6). MDFA is the method that deals with

fixed arcs as specified in lines 3-5. For subsequent iterations (1iteration >), only stage 3, which

applies either OA or ROA (line 8), is needed. Note that the preliminary phase (involved in TSA-

CG in line 1) is conducted only once for the entire problem while MDFA is conducted once for

each B&B node (except at root node).

 80

1 If root node of B&B tree, apply TSA-CG; else
2 If 1iteration = ,
3 (MDFA): sort arcs in 1F according to expression (12) if 1F ≠ ∅ .
 If this is not possible, STOP; the problem is infeasible.
4 run GFA (to generate 0̂F);
5 run GERA (to revise EG to EFG).
6 run OA on EFG .
7 If 1iteration > ,
8 if 0̂\B F λ≥ , run OA on EFG ; else run ROA on EFG with set 0̂\B F .

Fig. 17. TSA-CG/B&B.

8.2.3. Computational complexity of TSA-CG/B&B

Proposition 8.3. TSA-CG/B&B runs in ()maxO m mγ ϑℜ + ℜ +Θ time for the first-time

solution (1iteration =) and each subsequent solution (1iteration >) requires () ()EFO G O= Ω

time, where EFG denotes the number of arcs in EFG .

Proof. In comparison to TSA-CG, TSA-CG/B&B adds MDFA operations in lines 3-5. Line 3,

which sorts arcs in 1F according to expression (12), can be done in () ()O A O m= time; line 4

implements GFA, which generates 0̂F and runs in () ()O A O m= ; and line 5 applies GERA,

revising EG to form EFG and running in () ()EO A O= Ω because each arc in EG is processed in

constant time. Since the worst-case complexity of TSA-CG is ()maxO m mγ ϑℜ + ℜ +Θ

(Proposition 8.2), the run time of TSA-CG/B&B is ()max () ()O m m O m Oγ ϑℜ + ℜ +Θ + + Ω

()max .O m mγ ϑ= ℜ + ℜ +Θ By Propositions 5.10 and 8.1, the second part is straightforward. ■

8.2.4. MDFA tests

This section describes tests of MDFA. We choose the traditional method for dealing with fixed

arcs as a benchmark; it assigns large costs to forbidden arcs and small costs to prescribed arcs

 81

and then applies OA with respect to these adjusted arc costs. This section studies instance s-

1000-2a, using a factorial experiment design with four specified sets of 1F and two specified sets

of 0F , as shown at the bottom of Table 12.

Table 12 shows results related to all (1 0,F F) combinations. Columns 5-8 give the

specified sets of 1F and 0F . Column 9 denotes the cardinality of 0̂F . Columns 10 and 11 give

the number of nodes in EFG and ratio EF EV V , respectively; columns 12 and 13 give the

number of arcs in EFG and ratio EF EA A , respectively. Columns labeled (a), (b), (c) and (d)

are specified at the bottom of Table 12. Stage 3 of TSA uses OA to solve SPP on EFG . The last

column in Table 12 gives the break even number of replications for which the run times for

MDFA and the traditional method are the same. If the number of replications is larger than this

value, the total run time for MDFA is less than that of the traditional method; otherwise, the

traditional method is faster than MDFA. The break even is calculated using

100 (MDFA)
(traditional method) (stage 3_of_TSA)

cpubreakeven
cpu cpu

×
=

−
. (13)

 MDFA consumes run time to identify and remove forbidden arcs from EG , but this “set

up” time is off set by reducing the size of EG significantly (for most of the tests, the graph is

reduced more than 40% and 50%; even 86% and 96% (test21 and test22), in terms of the number

of nodes and arcs, respectively), reducing run time correspondingly. This set up time is incurred

once in revising EG but a time saving that results from the smaller graph accrues at each

replication. For 100 replications, the total time for MDFA (revising EG to EFG plus solving SPP

on EFG for 100 replications) is less than that for the traditional method. breakeven ranges from 4

to 23 for this set of tests.

 82

Another observation relates to 0̂F . Table 12 shows that 0̂F can be calculated very

quickly (0 seconds). It is worth mentioning the cardinality of 0̂F (0̂F) because a large 0̂F

results in a small EFG . Table 12 shows that 0̂F is large for all the tests (0̂ 4,050F ≥) although

1F and 0F are either 1 or 4, respectively, small numbers in comparison to 10,435A = . When

1 set 3F = and 0 set 6F = , 0̂ 9,456F = , that is, 91% of the arcs in G are forbidden

(10,435A =). Further, 0̂F is much larger when { }1 set 1 (273,504)F = = than when

{ }1 set 2 (503,504)F = = (6,870 versus 4,050 for 0 set 5F = ; 6,872 versus 4,052 for 0 set 6F =),

because the span of arcs (273,504) and (503,504) are 231 and 1, respectively; the former is

much larger than the latter. Tests with 1 4F = (i.e., 1 set 3F = and 1 set 4F =) give similar

results. These observations validate Remark 4, which notes that it is likely that many implied

forbidden arcs can be identified if the spans of prescribed arcs are large. Next, consider tests

using { }1 set 1 (273,504)F = = and 1 set 4F = { }(382,503),(503,504),(504,512),(512,546)= .

Although set 1 prescribes only one arc and set 4 prescribes four arcs, 0̂F is larger for set 1 than

for set 4. Because the span of arc (273,504) is 231 504 273= − , larger than the total span of

path 382-503-504-512-546, which is formed by the arcs in set 4 , which is 164 546 382= − .

Note that the value of 0̂F is not as sensitive to the set of prescribed arcs as it is to the set of

forbidden arcs.

 83

 T
ab

le
 1

2.
 R

es
ul

ts
 o

f i
ns

ta
nc

e
s-

10
00

-2
a

w
ith

 fi
xe

d
ar

cs

 84

8.2.5. Summary and discussion

As shown in this section, TSA-CG/B&B incorporates MDFA to deal with fixed arcs; it detects

infeasibility caused by fixed arcs in three steps: sorting arcs in 1F detects infeasibility with

respect to prescribed arcs (Corollary 8.1); GFA detects infeasibility due to RG being

disconnected; and GERA detects infeasibility due to EG being disconnected.

 MDFA is designed for application in which RCSP is solved repeatedly. It requires some

computational time to remove all forbidden arcs from EG , but each solution on the resulting

graph EFG can be found in much less time than on EG because the run time required to solve

SPP depends on the size of input graph and EFG is smaller than EG . The computational results

show that if RCSP is solved repeatedly, MDFA outperforms the traditional method (Jaumard et

al. (1996)), which is to assign a large cost to each forbidden arc and a small cost to each

prescribed arc before solving SPP on EG with respect to these adjusted arc costs.

Remark 5. Implied forbidden arcs must receive correct treatment in selecting branching

variables. Consider a node in the B&B search tree with specified sets 1F , 0F , and generated 0̂F .

Decision variables corresponding to arcs in 0̂F should not be selected as branching variables,

because, for each, the right child node (fixing the branching variable to 1) would be infeasible,

and the left child node (fixing the branching variable to 0) would be the same as its parent node,

which already forbids this arc (i.e., fixes the branching variable to 0). In the implementation of

CG/B&B, 0̂F should be stored in association with each active node of the B&B tree to avoid

such ineffectiveness. Note that the construction of 0̂F can be expedited by starting with the 0̂F

constructed by GFA at its parent node.

 85

Remark 6. In the implementation of a B&B approach, in which RCSP is a subproblem in

CG/B&B, bottleneck arcs are forbidden at all nodes in the B&B tree. Thus, the variables

corresponding to bottleneck arcs have zero values permanently and can be removed by fixing

them to zero at root node.

 86

CHAPTER IX

THREE EXTENSIONS OF TSA

This chapter presents extensions of TSA to solve SPPRW and a generalized resource-constrained

SPP with both resource-limitation and resource-window constraints (SPRCRW) (Section 9.1);

resource-constrained k-SPP (RCkSP) (Section 9.2); and multiple-resource, multiple-choice

knapsack problem (MMCKP) (Section 9.3). Section 9.4 presents an application of MMCKP in a

international assembly system design problem.

9.1. SPPRW and SPRCRW

TSA can be adapted to solve SPPRW, for which resource windows are given for each node but

may not be tight. Thus, an adaptation of TSA (ATSA) for solving SPPRW uses stage 1 to

tighten resources windows that are given initially. Desrochers et al. (1992) introduced a

technique for tightening time windows (i.e., with only one type of resource) that has been widely

used and proven to be effective in practice. We generalize this technique for SPPRW (i.e., to

deal with multiple types of resource windows) and use it in stage 1 of ATSA. Figure 18 details

our stage 1 algorithm in ATSA (S1A-A). At the end of S1A-A, it is likely that some arcs can be

deleted. We refer the reader to Desrochers et al. (1992) for an illustration of their technique.

Stages 2 and 3 of ATSA are exactly the same as stages 2 and 3 of TSA.

 87

step 1. for each resource r∈ℜ , for each jv V∈ in increasing order of j ,
 apply the following four conditions to tighten resource windows:

(i) compute minimal resource requirement from predecessors:
 { }{ }{ }(,)max ,min ,minjr jr irjr i j A ijrt t t t u∈= + ;

(ii) compute minimal resource requirement from successors:
 { }{ }{ }(,)max ,min ,minjr jr irjr j i A jirt t t t u∈= − ;

(iii) compute maximal resource requirement from predecessors:
 { }{ }{ }(,)min ,max ,maxjrjr jr i j A ir ijrt t t t u∈= + ;

(iv) compute maximal resource requirement from successors:
 { }{ }{ }(,)min ,max ,maxjrjr jr j i A ir jirt t t t u∈= − ;

until no more reductions are possible.

Fig. 18. S1A-A: stage 1 algorithm of ATSA.

 This approach can be generalized to SPRCRW (i.e., SPP with both resource-limitation

constraints and resource-window constraints). Let 1ℜ be the set of resources limited by

constraint (14b) and 2ℜ be the set of resources constrained by resource windows (14c)-(14d).

Then, 1 2ℜ =ℜ ∪ℜ . Let 1 2ℜ =ℜ ∩ℜ . Using the notation introduced in Chapter IV, a formal

description of SPRCRW can be stated as MIP (3)℘ :

(3)℘ min
(,)

ij ij
i j A

z c x
∈

= ∑ (14a)

 s.t. Constraints (1b) and (1d)

(,)
ijr ij r

i j A
u x T

∈

≤∑ 1r∀ ∈ℜ (14b)

 jr jr jrt t t≤ ≤ 1,j n= … , 2r∀ ∈ℜ (14c)
 (1)ir ijr jr ijt u t M x+ − ≤ − (,)i j A∀ ∈ , 2r∀ ∈ℜ . (14d)

In SPRCRW, resource r∈ℜ involves both resource limitation (14b) and resource window

constraints (14c)-(14d) if ℜ ≠∅ . If 2ℜ =∅ , (3)℘ reduces to (1)℘ , RCSP; and if 1ℜ =∅ ,

(3)℘ reduces to (2)℘ , SPPRW. A typical application of model (3)℘ is as the subproblem used

in CG to solve VRPTW, in which multiple resource constraints represent vehicle capacity

constraints (14b) and time-window constraints (14c)-(14d). A generalization of TSA (GTSA)

 88

can solve SPRCRW. Figure 19 details our stage 1 algorithm for GTSA (S1A-G), which is

designed specifically to solve SPRCRW.

step 1. For 1r∈ℜ , apply S1A to formulate the window of resource r at each node ;
step 2. For r∈ℜ , form the union of the resource window that results from step 1 and the

resource window that is given in model (3)℘ as the initial resource window for
resource r at each node;

step 3. For r∈ℜ , apply S1A-A to tighten the resource window for each node.

Fig. 19. S1A-G: stage 1 algorithm of GTSA.

In Figure 19, S1A-G transforms resource-limitation constraint (14b) to resource-window

constraints (14c)-(14d) using S1A and then tightens the resource windows, if possible, using

S1A-A. For r∈ ℜ (then 1r∈ℜ), step 1 transforms constraint (14b) to a resource-window at

each node, then step 2 takes the union of the resource window from step 1 and the resource

window that is given initially in model (3)℘ for each node, and, finally, step 3 applies S1A-A to

tighten the resulting resource windows. Stages 2 and 3 of GTSA are exactly the same as stages 2

and 3 of TSA.

TSA can be adapted easily to deal with RCSP, SPPRW and SPRCRW by adapting stage

1 appropriately. Stages 2 and 3 are applicable to each of these problems.

9.2. RCkSP

A k-SPP is to find the first k shortest paths. Efficient algorithms for k-SPPs were proposed by

Yen (1971) for general graphs; Katoh et al. (1982) for undirected graphs; and Fox (1978),

Eppstein (1998) and Lawler (1976) for acyclic paths. Eppstein (1998) gives a recent survey on

k-SPP. In contract, RCkSP has not been studied. TSA can be adapted to solve RCkSP. Recall

that the preliminary phase of TSA relaxes resource constraints by generating expanded graph

EG . The preliminary phase of TSA can transform RCkSP into an unconstrained k-SPP on the

 89

expanded graph EG . Thus, by incorporating a classical unconstrained k-SPP algorithm in stage

3 of TSA (e.g., Lawler’s algorithm), TSA can solve RCkSP on an acyclic graph and is suitable

for solving RCkSP repeatedly as in CG.

9.3. MMCKP

This section shows that TSA can solve MMCKP, in particular, when MMCKP is a subproblem

in CG or CG/B&B. We illustrate this point after presenting a formal description of MMCKP.

Given κ sets 1 , ,H Hκ… of items to pack in a knapsack with multiple capacity

constraints (i.e., resource limitations) 1 , ,T T
ℜ

… and that each item ij H∈ has profit ijc− and

resource requirement vector { }1 , ,ij ij iju u
ℜ

=u … , MMCKP is to choose exactly one item from

each set so that the total profit is maximized without exceeding resource limitations rT , r∈ℜ .

MMCKP may thus be formulated as model (4)℘ :

(4)℘ max
1 i

ij ij
i j H

z c x
κ

= ∈

= −∑∑ (15a)

s.t.
1 i

ijr ij r
i j H

u x T
κ

= ∈

≤∑∑ r∀ ∈ℜ (15b)

 1
i

ij
j H

x
∈

=∑ 1, ,i κ= … (15c)

 {0,1}ijx ∈ 1, , ,i κ= … ij H∈ . (15d)

All coefficients ijru and rT are positive, discrete values; coefficients ijc are unrestricted; and sets

1, ,H Hκ… are mutually disjoint with iH having cardinality of ih . The total number of items

that are available to choose is 1 iim hκ

=
= ∑ .

If 1ℜ = , MMCKP reduces to the classical multiple-choice knapsack problem (MCKP),

which is defined as a 0-1 knapsack problem (KP) with additional, disjoint multiple-choice

constraints (15c). MCKP is NP-hard as it contains KP as a special case, but it can be solved in

 90

pseudo-polynomial time using DP (Dudzinski and Walukiewicz (1987)). The problem has a

wide range of applications: capital budgeting (Nauss (1978)), for which only one project may be

selected from some subset of projects, subject to a single, scarce resource limitation; determining

which components should be linked in series in order to maximize fault tolerance (Sinha and

Zoltners (1979)); and menu planning (Sinha and Zoltners (1979)). MCKP often arises as a

subproblem in CG (e.g., Wilhelm et al. (2005b) and Fisher (1981)). Algorithms available to

solve MCKPs are typically based on B&B (Nauss (1978), Sinha and Zoltners (1979)) and DP

(Dudzinski and Walukiewicz (1987) and Pisinger (1994)). Research on MMCKP is sparse.

TSA gives a new and effective algorithmic approach to solve MMCKP (MCKP); in addition, it

is suitable for solving MMCKP repeatedly as a subproblem in CG and CG/B&B.

Fig. 20. Representation of MMCKP on an acyclic graph: (a) multigraph; (b) MMCKP-graph.

MMCKP can be represented as RCSP on an acyclic graph. Figure 20(a) uses an acyclic

multigraph (with parallel arcs connecting certain pairs of nodes) to formulate MMCKP with

parallel arc 1(,) j
i iv v + representing item j in set iH . Such a special multigraph has node set V

with 1V κ= + ; each arc has tail at iv and head at 1iv + , 1, ,i κ= … . Arc 1(,) j
i iv v + appears in the

graph if and only if there is a corresponding decision variable ijx in MMCKP. To avoid parallel

(a)

vκ+1vκ v1 v2 vi vi+1

1
1 2(,)v v

1
1 2(,)hv v

1
1(,)i iv v +

1
1(,)v vκ κ+

1(,) ih
i iv v + 1(,)hv v κ

κ κ+

vκ+1vκ v1 v2 vi vi+1

11
e

11h
e

11h
e�

11
e�

1i
e

hiie
#

hiie�

1i
e�

1
eκ

h
e

κκ

h
e

κκ
�

1
eκ
�

 (b)

1
vκ
�

h
v

κκ
�

1i
v�

hiiv�

11
v�

11h
v�

 91

arcs, we construct an equivalent simple graph G (i.e., with no parallel arcs) by adding node
jiv�

in the middle of arc 1(,) j
i iv v + , as shown in Figure 20(b). Such a node is called an arc-node and

the set of all arc-nodes is denoted V� . The node set of graph G become V V+ � with

1V V m κ+ = + +� . G comprises two types of arcs: type 1 arcs, denoted as
jie , point from node

iv to arc-node
jiv� ; type 2 arcs, denoted as

jie� , point from arc-node
jiv� to node 1iv + for 1, ,i κ= … .

These two types of arcs appear in pairs. The arc set of G is denoted A with 2A m= . The

resource requirement vector and the cost associated with
jie are iju and ijc , and the resource

requirement vector and the cost associated with
jie� are the zero vector and zero, respectively.

Such a special graph (,)G V V A+ � is called an MMCKP-graph because MMCKP as defined in

model (4)℘ is equivalent to RCSP on this graph with the arc costs and resource requirement

vectors as defined above. The equivalent RCSP is to find a shortest path from 1v to 1vκ+ with

respect to ijc so that the total requirement of resource r observes its limit rT for r∈ℜ . The

optimal value of MMCKP is the negative of the minimum cost for RCSP. The following

propositions relate to the application of TSA to solve RCSP on the MMCKP-graph.

Proposition 9.1. Three conditions are equivalent: (a) arc
jie is bottleneck; (b) arc

jie� is

bottleneck; and (c) arc-node
jiv� in V� is bottleneck.

Proof. If any of arcs
jie ,

jie� , or arc-node
jiv� is a bottleneck, then the other two are not on any

1 1v vκ+− path. Thus, they all must be bottlenecks. ■

 By Proposition 9.1, it is sufficient to check whether arc
jie is a bottleneck without

checking arc
jie� and arc-node

jiv� . Once arc
jie is judged to be a bottleneck, Proposition 9.1

 92

establishes that arc
jie� and arc-node

jiv� are bottlenecks. Bottleneck arcs
jie and

jie� and arc-node

jiv� can all be deleted from the graph.

Let iH ′ be a subset of iH that is formed by removing item j from iH if arcs
jie and

jie�

are bottlenecks and have been deleted from the MMCKP-graph. Let { }
1

min
i

r ijrj Hi
M u

κ

′∈=

= ∑ and

{ }
1
max

i
r ijrj Hi

M u
κ

′∈=

= ∑ for r∈ℜ . Define r r rM TΔ = − and rr rT MΔ = − . Using the notation of

Section 5.1, we have the following proposition.

Proposition 9.2. For the MMCKP-graph, ir ir rb f= − Δ and ir rir
b f= + Δ for iv V∈ , r∈ℜ .

Proof. By induction in decreasing order of i . When 1i κ= + , 1,rfκ+ = rM ;
1, rr

f M
κ+

= , so the

statement is true. Suppose the statement is true for i k> and consider the case for which i k= ;

then, (1) { }1, max
k

k r kr kjrj H
f f u+ ′∈

= + ; (2) { }
1,

min
k

kjrk r kr j H
f f u

′+ ∈
= + ; (3) { }1, min

k
kr k r kjrj H

b b u+ ′∈
= − ; and (4)

{ }1, max .
k

kr k r kjrj H
b b u+ ′∈

= − By (1) and (4), we have 1,k rb + = 1, ()krk r krf b f+ + − and by induction

kr kr rb f− = −Δ . Thus, 1,k rb + = 1,k r rf + − Δ . Similarly, by (2) and (3), we can prove

1, 1,k r rk r
b f+ +

= + Δ . This completes the proof. ■

Proposition 9.3. If { }min
i

ijr ijr rj H
u u

′∈
> + Δ for some r∈ℜ , then arc

jie is a bottleneck.

Proof. By S1A, arc
jie is a bottleneck if ijr jrir

f u b+ > for some r∈ℜ . By Proposition 9.2,

jr rjr
b f= + Δ ; thus, arc

jie is a bottleneck if ijr rjr ir
u f f> − + Δ { }min

i
ijr rj H

u
′∈

= + Δ . ■

Proposition 9.4. If 0rΔ ≤ , the thr knapsack capacity constraint is redundant; and if 0rΔ ≤ ,

r∀ ∈ℜ , the optimal solution is 1
iijx = for { }arg min

ii j H ijj c′∈= , 1, ,i κ∀ = " .

 93

Proof. 0r r rM TΔ = − ≤ implies r rM T≤ . This proves first part. If all knapsack capacity

constraints are redundant, then the optimal solution will be 1
iijx = for { }arg min

ii j H ijj c′∈= ,

1, ,i κ= " , by the greedy argument. ■

Proposition 9.5. If any node in V of MMCKP-graph is a bottleneck, then MMCKP is

infeasible relative to knapsack capacity constraints (15b).

Proof. If any node in V of the MMCKP-graph is a bottleneck, then there is no connected path

from 1v to 1kv + . ■

Corollary 9.1. For MCKP (i.e., 1ℜ =), if rrT M≥ , r∈ℜ , then arc
'jie with { }arg min

i
ijr

j H
j u

∈

′ =

can not be a bottleneck.

Proof. If arc
'jie is a bottleneck, then node iv is a bottleneck and, by Proposition 9.5, MCKP is

infeasible with respect to resource limitations, contradicting the fact that rrT M≥ , r∈ℜ . ■

Based on Propositions 9.1-9.5, Figure 21 details a specialized S1A (S1A-M) for TSA for

solving RCSP on the MMCKP-graph. S1A-M is specialized for the MMCKP-graph. Step 2(i)

assures that the problem is feasible; otherwise, the algorithm stops at step 2. Step 2(i) also

checks and removes redundant resource constraints using Proposition 9.4 and, if all resource

constraints are judged to be redundant during the iterative process (steps 2 and 3), the greedy

algorithm prescribes the optimal solution in step 3. Step 2(ii) uses Proposition 9.3 to detect arcs

that are bottlenecks relative to each resource; according to Propositions 9.1 and 9.2, we do not

need to test for bottleneck nodes. Step 3 iterates step 2 until no reduction is possible. After

deleting bottleneck arcs, steps 4(i-ii) use Proposition 9.2 to further simplify the calculations of

irb and
ir

f for nodes in V . Step 4(iii) calculates ,,
,

jj
i ri r

f b , , ,,
j ji r i rf b ,

,ji rt and
,ji rt for nodes in V�

easily because the in- and out-degrees of each node in V� are 1.

 94

step 1. Initialize graph RG by assigning RV V V= + � and RA A= .
step 2. For 1r = ℜ" ,
(i) calculate rΔ and rΔ . If 0rΔ < (i.e., rrT M<), STOP; the problem is infeasible.
 If 0rΔ ≤ , resource constraint r is redundant and removed from the model.

 (ii) For each iv V∈ { }1\ vκ+ , if ijru { }min
i

ijr rj H
u

′∈
> + Δ , for ij H ′∈ , delete

jie ,
jie� , and

jiv� .

step 3. If 0rΔ ≤ for all r∈ℜ , the optimal solution is given by Proposition 9.4, STOP;
otherwise, if anything was deleted from the graph in step 2, go back to step 2.

step 4. For 1r = ℜ" ,

 set
1

0
r

f = , 1 0rf = , 1,rbκ+ rT= , and 1,r rb Tκ+ = .

 (i) For each iv V∈ { }1\ vκ+ in decreasing iv index, calculate irb { }1, min
i

i r ijrj H
b u+

′∈
= − .

 (ii) For each iv V∈ { }1\ v in increasing iv index, calculate { }1, max
i

ir i r ijrj H
f f u− ′∈

= + ,

ir ir rb f= − Δ , ir rir
f b= − Δ , { }max ,ir irir

t f b= and { }min ,ir ir irt f b= .

 (iii) For each
jiv� V∈ � , calculate ,ji r ir ijrf f u= + ,

,j
ijri r ir

f f u= + , , 1,ji r i rb b += , , 1,ji r i rb b += ,

 { }, ,,
max ,

j jj
i r i ri r

t f b= and { }, , ,min ,
j j ji r i r i rt f b= .

 STOP.

Fig. 21. S1A-M: S1A specialized for the MMCKP-graph.

After stage 1, stages 2 and 3 of TSA can be applied. TSA is suitable for solving RCSP

on an MMCKP-graph repeatedly; thus, it is suitable for solving MMCKP as in CG.

9.4. An application of MMCKP

In this section, we apply TSA to solve a MMCKP subproblem repeatedly in a branch-and-price

(CG/B&B) approach, which is used to solve a real problem called NAFTAP, and demonstrate

the performance of TSA by a numerical example. NAFTAP is to prescribe a strategic design of

an assembly system and its supporting supply chain in the international business environment; it

was formulated specifically to model the terms under the North American Free Trade Agreement

(NAFTA). The strategic design problem is to prescribe a set of facilities, including their

locations, technologies, and capacities, as well as strategic aspects of its supporting supply chain,

 95

selecting suppliers; locating distribution centers; planning transportation modes; and allocating

target levels (i.e., amounts) for production, assembly, and distribution (Wilhelm et al. (2005b)).

The objective is to maximize after-tax profits. Our previous paper (Wilhelm et al. (2005b))

presents a comprehensive MIP that models this complicated international design problem. It

deals with multiple time periods, multiple (end) products with bills-of-materials (BOMs) that

have multiple echelons, and multiple countries but focuses on the relationship between the U.S.

and Mexico that was established by NAFTA. It also investigates international business issues

raised by NAFTA, such as border crossing, transfer price, exchange rate, local content rule, safe

harbor rules, etc. We refer the reader to Wilhelm et al. (2005b) for a detailed description of

NAFTAP and the model.

The NAFATP model in Wilhelm et al. (2005b) was designed for a CG approach. CG

applies Dantzig-Wolfe decomposition (Dantzig and Wolfe (1960); Bazaraa et al. (1990)) to the

linear relaxation of the model and exploits the block angular structure to obtain a subproblem of

type 1 (SP1) for each end product E
ep P∈ (EP is a set of end products). SP1s associated with

E
ep P∈ are mutually independent of each other. SP1 associated with E

ep P∈ (1 ()SP e)

prescribes a system design for a single end product ep , including production, assembly and the

supply chain, by selecting a subset of alternative facilities. To facilitate presentation, we use the

term “component” to indicate raw material, an in-process-part, end product, or an end product in

the distribution subsystem. Correspondingly, we use the term “alternative facility” to indicate a

unique location and a set of technologies and capacities for each supplier,

manufacturing\subassembly facility, assembly facility, or distribution center. We use the term

“process” to indicate outsourcing, production, assembly, or stocking operations. Thus, we

represent supplier, production, assembly, and distribution decisions in a common way.

 96

Let eP be the set of components that are required to assembly and distribute end product

E
ep P∈ and pF be the set of alternative facilities that can process component p . For an end

product E
e Pp ∈ ,)(1 eSP involves only binary decision variables e

pfy for ep P∈ and pf F∈ .

e
pfy equals 1 if facility pf F∈ is open for processing ep P∈ in assembly of end product ep ;

otherwise 0. With this notation,)(1 eSP can be formulated as follows.

)(1 eSP : min 1

e p

SP e e
e pf pf

p P f F
Z yψ

∈ ∈

= ∑ ∑ (16a)

 s.t.
p

e
pf

f F
y

∈
∑ = 1 ∀ raw material ep P∈ (16b)

p

e
pf

f F
y

∈

−∑ ≤ 1− ∀ non raw-material ep P∈ (16c)

e p

O e
pf pf

p P f F
G y

∈ ∈
∑ ∑ ≤ eL (16d)

e
pfy { }0,1∈ ep P∀ ∈ , pf F∈ . (16e)

The objective function (16a) minimizes the total reduced cost associated with decision

variables e
pfy where e

pfψ denotes the reduced cost associated with e
pfy . Equality (16b) assures

that a solution prescribes exactly one supplier to provide the raw material required by local

content rules under NAFTA. Inequality (16c) assures that a solution prescribes at least one

facility (distribution center) to manufacture each component (store the end product), allowing

facility flexibility (e.g., one component may be processed in several facilities). Inequality (16d)

invokes a budget (resource) limitation, assuring that the total fixed cost associated with

prescribing facilities for end product ep does not exceed an investment budget of eL dollars.

Parameter O
pfG represents the fixed cost of opening pf F∈ to process ep P∈ . This budget

limitation is appropriate because each ep may be viewed as a profit center that serves a unique

market segment. Finally, constraints (16e) give binary restrictions.

 97

Note that if we can transform inequality (16c) to an equality,)(1 eSP becomes MCKP as

defined in Section 9.3 and can be solved as a RCSP on an MMCKP-graph using TSA. For this

purpose, let pS be a set of all nonempty subsets of pF for ep P∈ if p is not a raw material; and

pS be a set of singleton subsets of pF if p represents a raw material. Then, | |2 1pF

pS = − if p

is not a raw material and p pS F= if p is a raw material. Define binary variable e
psy (for

ep P∈ and ps S∈) that equals 1 if a set of facilities ps S∈ is prescribed to process p ; otherwise

0. Let ps ps
f s

ψ ψ
∈

= ∑ and O O
ps pf

f s
G G

∈

= ∑ for ps S∈ . Then,)(1 eSP can be reformulated as 1()SP e ,

which is MCKP and can be solved as RCSP on an MMCKP-graph using TSA.

1 ()SP e : min 1

e p

SP e e
e ps ps

p P s S
Z yψ

∈ ∈

= ∑∑ (17a)

 s.t.
p

e
ps

s S
y

∈
∑ = 1 ep P∀ ∈ (17b)

e p

O e
ps ps

p P s S
G y

∈ ∈
∑∑ ≤ eL (17c)

e
psy { }0,1∈ ep P∀ ∈ , ps S∈ . (17d)

Intuitively, we can construct the corresponding MMCKP-graph from the BOM network,

which defines relationships amongst components that constitute end product ep . In the BOM

network, an arc connecting one node to another node means that the tail component is used to

produce or assemble the arrowhead component. We offer an example (Figures 22) to help

interpret the construction of the MMCKP-graph. The example deals with a single end product

5ppe = , with the BOM network shown in Figure 22(a). The example assumes two alternative

facilities for each component. In an actual application, there may be many alternative facilities.

Starting with a BOM network, we first construct a network – the BOM with alternative

facilities (BAFN) – by adding nodes Dp and D after node ep , and by adding parallel arcs with

each arc representing a set of alternative facilities in pS in which each tail component can be

 98

processed. Figure 22(b) depicts BAFN and shows that, for example, component 4p can be

manufactured in alternative facilities 5f , 6f , or both. Nodes in level 1 always represent raw

materials, which are, by assumption, outsourced, and corresponding arcs represent their

respective, alternative suppliers. Node Dp represents end product ep in the distribution

subsystem, arcs from nodes ep to Dp represent alternative final assembly facilities, node D

represents all customer demands for the end product, and arcs from nodes Dp to D represent

alternative DC facilities to store the end product ep .

Fig. 22. An example of SP1: (a) example of BOM restrictions; (b) example of BAFN; and (c)
example of SBAFN.

Then, we revise BAFN, forming a serial network (SBAFN) in which each node still

represents a component and each arc represents a specified set of alternative facilities for

processing the tail component, as shown in Figure 22(c). SBAFN includes one copy of every

node p in BAFN. The nodes are sequenced according to the topological order in BAFN.

(c)

(a)

(b)

p1 p2

p4

pe=p5

p3

------Level 1

------Level 2

------Level 3

------Level 4

f1

f8,f9

f3,f4

f9

f1

f5,f6

f8

f6,f7

f2 f3

p1 p2

p4

pD=p6

pe=p5

p3

D

------Level 5

------Level 6

f4

f4

f3

f3

f3,f4 f6
f5

f7f6

f8

f6

f2

f3

f3

f5

f1

f1

p2

p3

D

p4

p1

f8,f9

f6,f7

f5,f6

f3,f4 f4

f6

f7

p5

f9

p6

 99

Actually, the nodes can be sequenced in any order. SBAFN is compatible with the multigraph in

Figure 21(a). We can obtain the MMCKP-graph from SBAFN, by adding an arc-vertex in each

arc in SBAFN. Associating the resource requirement O
psG and cost psψ to the appropriate arc

(that has the tail at node p and represents ps S∈) as illustrated in Section 9.3, 1 ()SP e (i.e.,

)(1 eSP) can be solved as RCSP on the specified MMCKP-graph using TSA. The optimal

solution prescribes an optimal system design for end product ep that observes budget limits.

We carried out a preliminary numerical example which involves two end products (1e

and 2e) representing two types of laptop computers. These two end products have the same

BOM and each end product has 12 raw materials (each with 3 alternative facilities), 3 in-process-

parts (each with 4 alternative facilities), one end product (each with 4 alternatives facilities), and

in addition, four alternative distribution centers, totally entailing 56 binary variables e
pfy ,

equivalently, 111 binary variables e
psy . The example has a planning horizon comprising three

time periods and specifies cost parameters and demands randomly.

Branch-and-price solves this laptop example in 26.938 seconds, exploiting 27 B&B

nodes. It calls TSA to solve 1 1()SP e and 1 2()SP e each 274 times and the total run time to obtain

these 548 solutions is only 1.538 seconds. The total run time of the preliminary phases of the

two SP1s is 0.016 second. The resulting expanded graph has 24(24) nodes and 58(58) arcs for

each of these two SP1s. The performance of TSA in solving SP1s in this laptop example is quite

satisfactory. More computational results will be provided in a later working paper. This

example demonstrates that TSA can be used to effectively solve subproblems in CG/B&B.

 100

CHAPTER X

INTRODUCTION TO SCHEDULING PROBLEMS WITH SDS

Most practical scheduling problems involve setup times (costs). In general, setup includes work

required to prepare a machine (or process) to produce parts of a given type, including setting jigs

and fixtures, adjusting tools, and provisioning material. Because of their prevalence in, and

importance to, industry and because of the challenges they present to solution methodologies,

scheduling problems that involve sequence-dependent setup (SDS) have attracted the interests of

many researchers. Lot-sizing is intimately related to scheduling and a significant body of

literature deals with integrating these issues (Haase (1994), Potts and van Wassenhove (1992),

Drexl and Kimms (1997), Karimi et al. (2003)). Typical studies seek to prescribe the schedule

as well as lot sizes to minimize the average setup cost over all jobs and holding cost over the

entire schedule.

Specific objectives of this dissertation research on reviewing the scheduling problems

that involve SDS are: (i) an overview with emphasis on recent results, (ii) an integrated view of

lot-sizing and SDS scheduling, (iii) a perspective of this line of research, and (iv) fertile

opportunities for future research.

The problem of prescribing a sequence, even for a single machine with SDS with

makespan as the objective, is equivalent to the traveling salesman problem (TSP) and is,

therefore, NP-hard (Pinedo (2002)). This difficulty has motivated a number of solution methods,

including optimizing methods (B&B, branch-and-cut (B&C), DP, and MIP solvers), hybrids

(methods that combine B&B, DP, or MIP solvers with a heuristic), and heuristics (meta-

heuristics such as genetic algorithms (GA), simulated annealing (SA), tabu search (TS), and

greedy randomized adaptive search procedure (GRASP); methods based on TSP algorithms,

 101

greedy algorithm; decomposition; dispatching rules; simulation; list scheduling). Each approach

has unique characteristics that suit it for specific problems.

Several earlier papers have reviewed research related to setup times (e.g., Allahverdi et

al. (1999) and Yang and Liao (1999)). In particular, Allahverdi et al. (1999) cited nearly 200

references that deal with setup issues, but most were published before the 1990’s. They

categorized setup as sequence-independent or sequence-dependent as well as batch and non-

batch. Batch setups involve times (or costs) that are typically much larger between batches (i.e.,

“major”) than those between jobs within a batch (i.e., “minor”). Batches are also called

families. They addressed traditional configurations (single machine, parallel machines, flow

shops, and job shops) and emphasized that future research should focus on objectives related to

due dates.

Other review papers have focused on specific machine configurations. Cheng et al.

(2000) reviewed research on flow shop scheduling problems with setup times. They presented a

complexity hierarchy and classified research into four categories that involved sequence

independence and dependence relative to both job and family setup times (see also Monma and

Potts (1989)). Kim and Bobrowski (1994) categorized early (before 1988) job shop scheduling

research relative to the job arrival pattern and listed only four references that dealt with SDS.

Yet other papers have focused on combined lot-sizing and scheduling. Potts and van

Wassenhove (1992) reviewed work that combined batching, lot-sizing and scheduling, stressing

that, up to 1992, few studies had considered this important set of inter-related decisions. Drexl

and Kimms (1997) summarized more recent work by presenting MIP formulations for different

single- and multi-level lot-sizing and scheduling problems. But these formulations do not

incorporate SDS.

 102

Table 13. Three-field notation γβα ||

The α field specifies the machine configuration:
 1 single machine

 Fm m-machine flow shop
 FFc flexible flow shop with c stages in series, each with a set of identical machines in
 parallel

 FJc flexible job shop with c work centers, each with a set of identical machines in parallel
 Jm m-machine job shop in which each job has its own predetermined routing

 Pm m identical machines in parallel
 Qm m uniform machines in parallel, each operating at a different speed
 Rm m unrelated machines in parallel, each with a unique processing time for a job.
The β field specifies any processing restrictions and constraints that may be relevant:
 block blocking can occur in a flow shop because buffers have limited capacities
 brkdwn breakdown or shutdown of machines
 ijbs ()ijkbs sequence-dependent batch setup time (or cost) (on machine k)

 ()jj dd jobs have due dates (deadlines)

 d (d) all jobs have a common due date (deadlines), dd j = (dd j =)
 Mj not all m machines in parallel are capable of processing job j
 nwt jobs cannot wait between operations in a flow shop
 prmp jobs can be preempted
 prec precedence constraints relate jobs
 prmu a permutation sequence is used in a flow shop

 jr jobs have known release dates
 recrc jobs may recirculate to be processed on the same machine several times
 ()ijkij ss sequence-dependent setup time (cost) for job j immediately after job i (on machine k)

The γ field describes the objective to be minimized:
 maxC makespan
 maxL maximum lateness
 maxT maximum tardiness
 jj Cw)(∑ total (weighted) completion time

 jj Tw)(∑ total (weighted) tardiness

 jj Uw)(∑ (weighted) number of tardy jobs

 jj TE ∑+∑ total earliness / tardiness

 jj TwEw ′′∑+′∑ total weighted earliness / tardiness

 jjjj TwEw ′′∑+′∑ total weighted earliness / tardiness with unique penalties

 ijijkij bsss ∑∑∑ ,, or ijkbs∑ total setup time (cost) with respect to ijs , ijks , ijbs , or ijkbs

 ℜ any regular measure of performance (see Pinedo (2002))
 γ any measure of performance
 Π minimize cost
 'Π minimize sum (or average over time horizon) of setup and holding cost.

 103

This dissertation contributes by focusing on recent results, providing a perspective of

SDS scheduling research, integrating lot-sizing and SDS scheduling, and suggesting fertile

opportunities for future research. Throughout, we use the three-field notation γβα || (Graham

et al. (1979)) given in Table 13 to denote scheduling problems. For example, max||1 Csij

designates a single-machine configuration with SDS and the objective of minimizing makespan;

jjijk CwsprmuFm ∑|,| designates an m machine flow shop configuration with SDS requiring a

permutation sequence that minimizes total weighted completion time. We use standard

terminology (e.g., Pinedo (2002)) in which a “sequence” is an ordering of jobs and a “schedule”

is the set of starting and ending times for setup and production of every job. Symbols jp~ , jr~

and ijs~ denote random processing, arrival and SDS, respectively.

This part of the dissertation has been organized in six chapters. Chapters X-XIV review

studies related to the single machine, parallel machine, flow shop, and job shop configurations,

respectively. We discuss research related to each configuration in detail, including solution

methods, problem complexities, and combined lot-sizing and scheduling. Chapter XV presents

our perspective, gives our conclusions, and suggests research opportunities.

 104

CHAPTER XI

THE SINGLE MACHINE CONFIGURATION

Since the single machine represents a building block for more complex configurations,

researchers have dealt with it in some detail. A fundamental issue is the inherent difficulty of

single-machine scheduling problems that involve SDS. Research has established the complexity

of most single machine problems; for example, Pinedo (2002) showed that max||1 Csij is strongly

NP-hard. For the case of batch SDS times, Monma and Potts (1989) showed that max||1 Cbsij ,

jjij Cwbs ∑||1 , max||1 Lbsij , and jij Ubs ∑||1 are polynomial solvable when the number of

batches is fixed and that max||1 Cbsij , max||1 Lbsij , and jij Ubs ∑||1 are NP-hard for an

arbitrary number of batches; Ghosh (1994) showed that jij Cbs ∑||1 and jjij Cwbs ∑||1 are

strongly NP-hard for an arbitrary number of batches, even when the jobs within a batch have the

same processing time and weight, and proposed a DP formulation; Chen (1997) proved that

jjjjij TwEwbs ′′∑+′∑||1 is NP-hard, even for the case with two batches of jobs and a common

due date and weight for all jobs in each batch and for the case with large due dates that do not

restrict the solution.

This section reviews the extensive research on single machine scheduling problems that

involve SDS. Section 11.1 reviews optimizing and hybrid methods and Section 11.2 considers

heuristics. Section 11.3 discusses the combined lot-sizing and scheduling problem.

11.1 Optimizing and hybrid methods

Even though complexity analysis is not encouraging, researchers have developed approaches,

typically based on B&B, DP, or MIP solvers, to prescribe optimal solutions.

 105

As an early work, Barnes and Vanston (1981) combined B&B with DP to solve

ijjjij sCws ∑+∑||1 . For max|,|1 Lsprec ij , Uzsoy et al. (1991) proposed a B&B algorithm, for

which run times increased rapidly for problems with more than fifteen operations, and Uzsoy et

al. (1992) developed DP algorithms for max|,|1 Lsprec ij and jij Usprec ∑|,|1 where precedence

constraints comprise a number of strings (i.e., chains). Coleman (1992) formulated a MIP for

jjij TwEws "'||1 ∑+∑ and solved it to optimality using LINDO. Chen (1997) introduced DP

algorithms for jjjjij TwEwbs ′′∑+′∑||1 with an unrestrictively large, common due date for all

jobs (i.e., in all batches), for jjjjij TwEwbs ′′∑+′∑||1 jjdβ∑+ with common due date for all

jobs, where the term jjdβ represents a penalty assessed for the due date prescribed by decision

variables jd for each batch; and for jjjjij TwEwbs ′′∑+′∑||1 jjdβ∑+ with two batches of jobs.

Rabadi et al. (2003) reported a B&B algorithm for jjij TEsd ∑+∑|,|1 . Asano and Ohta

(1996) studied jijjj Esrd ∑|,,|1 , detailing a B&B algorithm that included a dominance

relationship to derive a strong lower bound. The branching rule and the strong lower bound

enhanced computational effectiveness, but run time increased exponentially with the number of

jobs (as to be expected), making it impractical to optimize large-scale instances (for example, a

30-job instance required about 30 minutes to solve). Asano and Ohta (1999) initiated a B&B

algorithm to solve max|,,|1 Tsrbrkdwn ijj optimally for the case in which a set of break downs are

pre-specified (e.g., representing preventative maintenance) and a post-processing procedure to

delay a shutdown by prescribing its starting time with the goal of reducing maxT . This work

extended that of Leon and Wu (1992), which treated sequence-independent setup times. Tan et

al. (2000) compared B&B (Ragatz (1993)) with three heuristics for jij Ts ∑||1 (see also Section

11.2) and indicated that B&B may be preferred in solving smaller problems.

 106

Only one paper has addressed rescheduling in single machine scheduling problems that

involve SDS. Unal et al. (1997) rescheduled jjjjij Cwrdbs ∑|,,|1 and max|,,|1 Crdbs jjij in a

make-to-order environment with batch setup, inserting newly arrived jobs into a given sequence

of existing jobs without making existing jobs tardy, without modifying the sequence of existing

jobs relative to each other, and without incurring any additional setups. They related an exact,

polynomial time algorithm for the maxC problem; and, after showing that the jjCw∑ problem is

strongly NP-hard, described two heuristics with data-dependent worst-case error bounds.

Several hybrid approaches have combined an optimizing method with a heuristic to

resolve some portion of the problem. Ozgur and Brown (1995) suggested a two-phase hybrid for

applications with a symmetric batch setup matrix { }ijbs (i.e., with jiij bsbs = , nji ,,1, …=); in

application to an automated cable-assembly machine, their hybrid posted good results. Their

first phase classifies products into families using cluster analysis and obtains an efficient

sequence for each family by solving a TSP. Their second phase sequences families using a

special-purpose B&B algorithm. Roslöf et al. (2002) combined a MIP solver with an iterative

heuristic for solving jijj TwCwsr "'|,|1 max ∑+ .

11.2. Heuristics

The fact that SDS typically results in problems that are NP-hard has motivated many researchers

to devise heuristics that prescribe “good” solutions within “reasonable” run times.

max||1 Csij and max||1 Cbsij can be modeled as TSPs in which each node (city)

represents a job and each directed arc gives the travel time (or distance) between the nodes it

connects. Ozgur and Brown (1995) described a two-phase TSP heuristic (Section 11.1). Choi et

al. (2003) considered a GA for applications with an asymmetric { }ijs matrix. Spina et al. (2003)

 107

presented an approach that integrated Constraint Logic Programming and a GA in application to

a process that produced sheets for catalytic converters. In their tests, their approach converged

rapidly to a “near-optimal” solution but performed well only under certain conditions; in

particular, it required pre-processing techniques to reduce the size of the solution space. In an

application involving CC assembly on a single machine, Rossetti and Stanford (2003) used

clustering methods to group CCs and a nearest–neighbor heuristic to sequence groups, requiring

CCs in a group to be processed consecutively.

Numerous researchers have studied problems with objectives related to due-dates. For

jij Ts ∑||1 , Alidaee et al. (2001) applied a generalized greedy algorithm and França et al. (2001)

were able to prescribe good solutions using a memetic algorithm (see Moscato (1989, 1999)), a

GA combined with a local improvement procedure. Tan et al. (2000) compared four methods

(B&B (Ragatz (1993)), GA (Rubin and Ragatz (1995)), SA (Tan and Narasimhan (1997a)), and

random-start pair wise interchange (Rubin and Ragatz (1995))) for jij Ts ∑||1 . Their

experiments suggested that SA and random-start pair wise interchange can yield good solutions

for large-scale instances and that B&B may be preferred in solving smaller problems (see also

Section 11.1).

To solve jjij Tws ∑||1 , Kim et al. (1995) and Lee et al. (1997) used the Apparent

Tardiness Cost with Setups (ATCS) heuristic (see Lee et al. (1992)). Kim et al. applied a feed-

forward neural network to determine values of the look-ahead parameters in ATCS rules; their

tests showed that, on average, their heuristic improved 19%-50% over Raman et al. (1989) and

9%-22% over Lee et al. (1992). Lee et al. (1997) used pre-determined parameters in ATCS rules

and incorporated a local improvement procedure to further refine the schedule prescribed by the

ATCS rule. Their experimental results showed that the ATCS dispatching rule is, on average,

better than Raman’s rule by more than 30% when the number of jobs is large (more than 40).

 108

Ovacik and Uzsoy (1994b) developed heuristics for application on a rolling horizon

basis to a case of max|,|1 Lsr ijj that arose as a sub-problem in a job shop model of semiconductor

production. At any time when a scheduling decision was to be made (e.g., when a machine

completed service), they used B&B to solve max|,|1 Lsr ijj for the set of jobs on hand as well as

those with ready times within a specified horizon. To deal with dynamic job arrivals, they

processed only the first job scheduled, then re-applied their method at the next decision point.

Their tests showed that the rolling horizon approach can consistently give better schedules than

dispatching rules in combination with local improvement procedures. Other heuristics include

one based on Lagrangian relaxation for 2|,|1 jjijj Twsr ∑ (Sun et al. (1999)) and TS for Π||1 ijs

(Laguna and Glover (1993), Laguna (1999), Kolahan et al. (1995), Kolahan and Liang (1998))

and Π||1 ijbs (Woodruff and Spearman (1992)), where Π denotes some setup related cost

function (Table 14), and GRASP for ijjjij sCws ∑+∑||1 (Feo et al. (1996)) (Section 11.1,

which discusses an early paper by Barnes and Vanston (1981)).

Relative to problems with multiple objectives, Tan and Narasimhan (1997b) used SA to

minimize jj Tw)(∑ and ijs∑ . Gupta and Sivakumar (2004) investigated a multi-objective

problem in semiconductor manufacturing and employed simulation to minimize average cycle

time and average tardiness while maximizing machine utilization. They introduced the concept

of conjunctive simulated scheduling, in which discrete event simulation is used to evaluate

scheduling criteria. When a machine becomes available, the simulator uses scheduling criteria to

select the job for its next operation and then advances its clock to the next decision instance.

They used compromise programming, which combines multiple objectives into one in making

each decision.

 109

11.3. Combined lot sizing and SDS scheduling

The problem of lot-sizing and scheduling on a single machine has received considerable

attention. Six variations of this problem have been studied and are known to be NP-hard (Drexl

and Kimms (1997)):

(1)economic lot scheduling (ELS) in which the planning horizon is infinite;

(2)capacitated lot-sizing (CLS), also called the large bucket model, identifies lots of
several part types to be processed each period, then schedules jobs in each period
separately;

(3)discrete lot-sizing and scheduling (DLS), also called the small bucket model,
subdivides macro periods of CLS into micro periods in which only one part type may be
processed at full capacity;

(4)continuous setup lot-sizing (CSL) adapts DLS, allowing at most one part type each
period but using less than full capacity;

(5)proportional lot-sizing and scheduling (PLS) adapts CSL, allowing unused capacity to
process a second part type in a period;

(6)general lot-sizing and scheduling GLS) incorporates a user-defined parameter to
restrict the number of lots per period.

In particular, the case involving sequence-independent setup has been studied at some length

(Thizy and van Wassenhove (1985), Dobson et al. (1987), Trigeiro et al. (1989), Fleischmann

(1990), Cattrysse et al. (1993), Blocher et al. (1999)), for example, using B&B (Blocher et al.

(1999)) and a heuristic based on column generation for a set-partitioning formulation (Cattrysse

et al. (1993)). The case involving SDS has also attracted attention as discussed below.

Recently, Wagner and Davis (2002) developed a heuristic for ELS with SDS. Similar to

the methods of Delporte and Thomas (1977) and Maxwell (1964), their heuristic imposes a

cyclic schedule, which sequences all jobs in a cycle and then repeats the cycle indefinitely. They

evaluated sequences using a nonlinear program and showed that their heuristic can outperform

Dobson’s heuristic (1992) when utilization is high and SDS time (cost) is significant. Dobson’s

 110

heuristic is based on a Lagrangian relaxation that leads to two types of sub-problems: one

prescribes lot size; and the other, sequences by solving a TSP.

Haase and Kimms (2000) and Gupta and Magnusson (2005) studied CLS with SDS in

which setups may be carried over from one period to the next and are preserved over idle

periods. Haase and Kimms formulated a MIP that considered only efficient sequences. (An

efficient sequence is one that no other sequence dominates. Sequence A is said to dominate

sequence B if the total setup cost of A is less than that of B, A and B comprise exactly the same

set of jobs, and the first and last jobs of the two sequences are the same.) They indicated that the

size of solvable instances ranged from 3 products and 15 periods to 10 products and 3 periods

and solved instances within this range optimally using B&B, incorporating a tailor-made

enumeration method. Gupta and Magnusson (2005) also formulated a MIP and recounted a

heuristic that solved test instances to within 10%-16% of optimum, depending on the size of the

instance. Earlier work by Haase (1996) devised a heuristic priority rule for the case with SDS

costs (but zero times) and used a local search to derive appropriate values of parameters for use

by the priority rule. Miller et al. (1999) formulated a MIP that allowed backlogs (i.e.,

backorders) and introduced a GA that incorporated a hill-climbing technique to solve it.

Some research has addressed DLS with SDS. These DLS-SDS models subdivide the

planning horizon into many short time periods (e.g. shifts or days), and require the processing of

each lot to take several full time periods - the so-called “all-or-nothing” assumption.

Fleischmann (1994) formulated this problem as a TSP with time windows and devised a

procedure to determine lower bounds using Lagrangean relaxation in combination with a

heuristic. He reported computational results for problems with up to 10 products and 150

periods. Salomon et al. (1997) developed an exact solution method by applying a DP algorithm

to the problem formulated as a TSP with time windows and was able to optimize instances of

 111

moderate size. Jordan and Drexl (1998) offered a B&B algorithm, employing specialized

bounding and dominance rules.

Meyr (2000) extended the GLS of Fleischmann and Meyr (1997) to deal with SDS

times. He formulated a MIP and proposed an approach that combined a dual algorithm to re-

optimize sub-problems with a local search heuristic. He applied this approach to GLS with SDS

by embedding a dual network flow algorithm into threshold accepting and SA, respectively. He

used local search procedures (threshold accepting and SA) to fix the setup sequence and solved a

network flow sub-problem for each candidate setup sequence to determine the lot sizes and

holding costs associated with each candidate. Network flow sub-problems can be re-optimized

quickly by using information about the current solution to evaluate a new candidate if these two

solutions differ only slightly. He also applied this approach to the corresponding, parallel

machine problem (Meyr (2002)) (Section 12.3).

 112

CHAPTER XII

THE PARALLEL MACHINE CONFIGURATION

Production systems employ various types of parallel machine configurations and a substantial

literature has focused on identifying the complexity of related problems (Monma and Potts

(1989), Cheng and Chen (1994), Ghosh (1994)). This section reviews the research related to

parallel-machine scheduling problems that involve SDS. Section 12.1 reviews optimizing and

hybrid methods and Section 12.2 addresses heuristics. Section 12.3 discusses the combined lot-

sizing and scheduling problem.

12.1. Optimizing and hybrid methods

Regrettably, little research has been directed to developing optimizing methods for the parallel

machine configuration. Balakrishnan et al. (1999) formulated jjjjijkj TwEwsrQm "'|,| ∑+∑

as a MIP with substantially fewer zero-one variables than required by typical formulations.

They successfully applied their model to solve small instances and suggested use of Bender’s

decomposition to solve larger instances by separating their formulation into an integer master

problem, which prescribes job assignments to machines and the sequence at each machine, and a

linear programming sub-problem, which prescribes the exact completion time of each job.

One hybrid addressed a problem in the chemical industry that involved an order of

magnitude difference between small and large setup times. Bitran and Gilbert (1990) formed a

network to represent setup cost, a B&B algorithm to deal with the large setup times, and a

heuristic to sequence within families. In another hybrid, Yalaoui and Chu (2003) described a

heuristic for max|| CsPm ij with job-splitting (i.e., each job can be split into segments that can be

processed in parallel on different machines). They first decomposed the problem into

 113

independent max||1 Csij problems, which they modeled as TSPs and solved by the B&B

algorithm of Little et al. (1963). Subsequently, they employed a step-by-step improvement

methodology, taking setup times and job-splitting into account.

12.2. Heuristics

Most of the research on the parallel machine configuration has focused on heuristics. Guinet

(1993) formulated a MIP for max|| CsPm ij (and another for jij CsPm ∑||)) to show that it is a

vehicle routing problem and, thus, NP-hard. He proposed a heuristic based on the assignment-

problem algorithm. For max|| CsPm ij , França et al. (1996) proposed a three-phase heuristic

based on TS. Gendreau et al. (2001) devised lower bounds and a “divide and merge” heuristic

that proved to be much faster than the heuristic of França et al. (1996) while providing solutions

of similar quality. Mendes et al. (2002) compared two meta-heuristics for max|| CsPm ij : a

heuristic based on TS (adapted from França et al. (1996)) and a memetic, which combines a GA

with local search procedures. Results showed that the memetic was superior when setup times

are small compared to processing times but TS excelled on instances with large setup times and

many machines (6 or 8 machines in their tests).

Other research has addressed variations of max|| CsPm ij . For example, Kurz and Askin

(2001) presented a MIP for max|,| CsrPm ijj and applied four heuristics based on earlier work

(Papadimitriou and Steiglitz (1998), Johnson and Papadimitriou (1985), Reinelt (1994), and

Coffman et al. (1978)). Weng et al. (2001) described and tested seven heuristics for

jjij CwsRm ∑|| .

 114

Researchers have developed various heuristics to solve (weighted) tardiness problems:

jjij TwsPm)(|| ∑ , jjijk TwsQm)(|| ∑ , and jjijk TwsRm)(|| ∑ . Following Lee et al. (1997), Lee

and Pinedo (1997) offered a three-phase heuristic for jjij TwsPm ∑|| ; it comprises three phases:

(1) a pre-processing procedure to calculate due-date related factors; (2) an ATCS dispatching

rule to construct seed sequences; and (3) a SA heuristic that starts from a seed solution generated

by the second phase. Based on Lee et al. (1992), Lee et al. (1997), and Kim et al. (1995), Park et

al. (2000) extended the ATCS rule for jjij TwsPm ∑|| , utilizing a neural network to determine

values of the look-ahead parameters employed by the rule. Using a simulation model, they

showed that their approach improved the objective by an average of 6% over the ATCS rule of

Lee et al. (1997). Kim et al. (2003) adapted a TS heuristic for jjij TwsPm ∑|| , categorizing

jobs in accordance with due-dates. Their computational testing showed that, in general, the

performance of their heuristic improved as the number of machines increased and dis-improved

as the number of jobs increased. Bilge et al. (2004) applied TS to jijkj TsrQm ∑|,| and Kim et

al. (2002) used SA for jijk TsdRm ∑|,| . The computational tests of Kim et al. (2002) showed

that their heuristic achieved significantly better total tardiness values than a neighborhood search

did.

Researchers have also studied the total (weighted) earliness and tardiness problem.

Heady and Zhu (1998) solved jjjjij TwEwsPm ′′∑+′∑|| using a greedy heuristic, and

Radhakrishnan and Ventura (2000) employed SA to solve jjij TEsPm ∑+∑|| . Both

Balakrishnan et al. (1999) (see Section 12.1) and Sivrikaya-Serifoglu and Ulusoy (1999)

investigated jjijkj TwEwsrQm "'|,| ∑+∑ . Sivrikaya-Serifoglu and Ulusoy (1999) assumed

ww ′′≠′ and composed two GAs, one with a crossover operator and one without. Tests on 960

 115

randomly generated instances indicated that their GAs were effective; that a neighborhood-

exchange search gave relatively better results in small and easy instances; that GA with the

crossover operator was best in application to larger, more difficult instances; and that the

recombinative power of GA with the crossover operator improved with increasing problem size.

For max|,| LsrPm ijj , Ovacik and Uzsoy (1995) extended the rolling-horizon heuristic

they initiated for max|,|1 Lsr ijj (Ovacik and Uzsoy (1994b) (Section 11.2)). Their tests showed

that their heuristic outperformed the EDD dispatching rule combined with local search methods.

Kim and Shin (2003) solved max|,| LsrRm ijj using a TS that restricts changes in job sequence,

allowing only the jobs that can change the position of the job that defines maxL in the current

schedule to change sequence position. Their tests showed that their restricted TS prescribed

better solutions more quickly than the rolling horizon procedure of Ovacik and Uzsoy (1995) for

max|,| LsrPm ijj , and outperformed basic TS (Glover (1989, 1990)) and SA (Kirkpatrick et al.

(1983)) for max|,| LsrRm ijj .

List-scheduling algorithms are one-pass heuristics that are widely used to prescribe

schedules. The “standard” list-scheduling algorithm constructs a schedule by assigning each job

in listed order to the machine that becomes idle first. Ovacik and Uzsoy (1993) showed that, for

max|| CsPm ij and max|| LsPm ij , list schedules need not be dominant (A set of schedules is

called dominant if it contains at least one optimal schedule). They also derived worst-case error

bounds for the standard list-scheduling algorithm applied to max|| CsPm ij and max|| LsPm ij ,

assuming that setup times are bounded by processing times. Schutten (1996) studied a list-

scheduling algorithm for ℜ|,| ijj srPm in which each job is assigned in listed order to the

machine that can finish it at the earliest time (i.e., start its processing (not its setup) as early as

 116

possible). He proved that this algorithm yields dominant list schedules for ℜ|,| ijj srPm . In

contrast, Hurink and Knust (2001) showed that no list-scheduling algorithm can efficiently

prescribe dominant schedules for max|,| CsprecPm ij .

Dhaenens-Flipo (2001) investigated Π|,| ijksdQm in which Π is the sum of

production, distribution, and setup costs. They relaxed deadline constraints by incorporating

them in the objective function, which became a linear combination of two criteria, deadlines and

cost, and then solved their model with a heuristic. In an application involving CC assembly on

non-identical parallel machines, Hop and Nagarur (2004) proposed a composite GA to solve

weighted, multiple objectives by dealing with workload balancing, CC similarities, and total

setup time.

Several studies have addressed environments in which uncertainty must be considered

explicitly; Aytug et al. (2005) reviewed this work. Arzi and Raviv (1998) modeled a

workstation as γ|~,~| ijj srRm . They suggested several dispatching rules that proved, through

simulation tests, to give good average values of several objective functions designated by γ :

though put, total setup time, and work-in-process (WIP) level. Anglani et al. (2005) studied

| , |j ij ijPm p s s∑� in which SDS involved costs (but zero times). They formulated a fuzzy

mathematical programming model and solved an approximate version of that model to minimize

ijs∑ .

12.3. Combined lot sizing and SDS scheduling

Several studies have addressed combined lot sizing and SDS scheduling on parallel machines.

Kang et al. (1999) investigated Π|| ijsRm , which holds the objective, Π , of minimizing the

sum of setup and holding costs minus sales revenue. They assumed that the demand for each

 117

product must be satisfied in each time period but sales could exceed demands and that SDS

involved costs but zero times. Their hybrid column generation approach implements B&B in a

heuristic manner, chaining sub-sequences for a time period, then time periods for the scheduling

horizon to form a sequence. One heuristic truncates the B&B tree based on the number of

fractional variables in the optimal solution at a node; the other heuristic iteratively executes local

search to find improvements in the neighborhood of an incumbent solution. Their computational

tests showed that their heuristics required lengthy run times but prescribed good solutions with

machine utilizations of 70% and 95% but poor solutions at higher utilizations (e.g., 99%). Meyr

(2002) generalized the problem, allowing non-zero SDS times. This study extended Meyr’s

earlier work (Meyr (2000)), describing heuristics that combined dual re-optimization with either

SA or threshold accepting. Meyr showed that his two heuristics prescribed solutions that were

competitive with those prescribed by the approach of Kang et al. (1999) but that they required

very long run times.

 118

CHAPTER XIII

THE FLOW SHOP CONFIGURATION

The flow shop configuration is common in many manufacturing and assembly facilities; it

comprises a series of machines that process on each job as it progresses down the line. For

example, the typical CC assembly line can be modeled as a flow shop or flexible flow shop with

SDS (Kurz and Askin (2003, 2004)).

An optimal permutation sequence, which uses one of the possible !n permutations of

jobs to order them at all machines, is typically sought. The alternative would be to prescribe a

different sequence at each machine, but this would require searching over mn)!(sequences to

prescribe an optimal solution, a truly daunting task. Unless otherwise noted, all flow shop-

scheduling studies we review deal with permutation schedules.

Gupta (1986) proved that γ|| ijksFm is NP-Hard. Gupta and Darrow (1986) proved

that max||2 CsF ijk is NP-hard, and that permutation schedules for this problem do not always

minimize maxC .

This section reviews the rather copious research on flow shop scheduling that involves

SDS. Section 13.1 addresses optimizing and hybrid methods and Section 13.2 reviews

heuristics. Section 13.3 discusses several variations of the flow shop with SDS. Section 13.4

reviews the scheduling of CC assembly, an important industrial application of the flow shop with

SDS. Finally, Section 13.5 discusses the combined lot-sizing and scheduling problem.

 119

13.1. Optimizing and hybrid methods

A substantial literature has focused on versions of max|| CsFm ijk , especially using permutation

schedules max|,| CsprmuFm ijk . For max|,| CsprmuFm ijk and max|,| CsnwtFm ijk , Stafford and

Tseng (2002) presented two MIP models, designated WST and SGST. WST utilizes 2n (where

n is the number of jobs) binary variables to assign jobs to sequence positions in a manner

analogous to the classical assignment problem, and SGST uses pairs of disjunctive constraints

and 2/)1(−nn binary variables to prescribe which job in each pair of jobs is sequenced ahead of

the other. They compared these two models using a 12-cell experimental design and concluded

that the models were competitive in solving instances with 7≤n , and that the WST model

proved significantly better for instances with 8≥n .

Rios-Mercado and Bard (1998a) studied the convex hull of the set of feasible solutions

for both a TSP-like MIP (in which binary variables prescribe whether one job is an immediate

predecessor of another or not) and the formulation of Srikar and Ghosh (1986) (in which binary

variables prescribe whether one job is a predecessor of another or not) (Stafford and Tseng

(1990) reported a minor error in constraint formulation). They developed several classes of valid

inequalities, showed that some of the inequalities are indeed facet-defining for the two different

formulations, and implemented a B&C approach to test the effectiveness of the valid

inequalities.

Rios-Mercado and Bard (1999a) devised a hybrid B&B algorithm with a partial

enumeration strategy to find an approximate (or, with luck, an optimal) solution for

max|,| CsprmuFm ijk . They derived a lower bound based on machine completion times in partial

schedules and their tests showed this bound was more effective than that given by the linear

relaxation of their model. To further improve their algorithm, they applied dominance rules in

 120

B&B and used GRASP (Rios-Mercado and Bard (1998b)) and a TSP-based heuristic (Rios-

Mercado and Bard (1999b)) to find good feasible solutions that provide upper bounds.

Relative to objectives based on due dates (jjijkj TEsMFFc ∑+∑|,| and

jijkjj EsrMFFc ∑|,,|), Hui et al. (2000) and Mendez et al. (2001), respectively, gave MIP

formulations for the case in which each stage contains non-identical parallel machines.

13.2. Heuristics

Recently, Ruiz et al. (2005) presented an advanced GA and a hybrid GA for

max|,| CsprmuFm ijk that applied a local search in an improvement phase. As a basis of

comparison to evaluate the performance of their two GAs, they adapted the five flow shop

heuristics that are considered the most capable in solving max|| CprmuFm : SA (Osman and

Potts (1989)), TS (Widmer and Hertz (1989)), GA (Reeves (1995)), iterated local search (Stutzle

(1998)), and a GA originally proposed for the no-wait flow shop (Aldowaisan and Allahverdi

(2003)). They tested four sets of 120 instances each that were based on the instances studied by

Taillard (1993). These instances ranged from 20 jobs and 5 machines to 500 jobs and 20

machines and included SDS times published by Vallada et al. (2003). Test results showed that

their two GAs outperformed the other heuristics and they concluded that their two GAs are the

most effective methods available for solving max|,| CsprmuFm ijk . Simons (1992), Das et al.

(1995), and Rios-Mercado and Bard (1998b, 1999b) have described other heuristics for

max|,| CsprmuFm ijk . Additionally, Norman (1999) devised a TS heuristic for

max|,,| CsprmublockFm ijk with finite buffers. Bianco et al. (1999) formulated

max|,,| CsrnwtFm ijkj as an asymmetric TSP with time window constraints and developed two

greedy heuristics to solve it.

 121

Several researchers have studied objectives based on due dates. Parthasarathy and

Rajendran (1997a, 1997b) introduced SA for)max(|,| jjijk TwsprmuFm and

nTwsprmuFm jjijk /)(|,| ∑ . Extending their earlier work (Rajendran and Ziegler (1997)),

Rajendran and Ziegler (2003) recently related a heuristic for jjjjijk TwCwsprmuFm '|,| ∑+∑

that constructs a “good” sequence using two preference relations and then applies an

improvement scheme. In their tests, their heuristic was faster and prescribed solutions of higher

quality than either a random search or a greedy local search.

13.3. Variations of the flow shop

Researchers have devised heuristics to address a number of variations of the flow shop. One

variation of the traditional flow shop allows certain jobs to skip some stages. Kurz and Askin

(2003, 2004) investigated max|| CsFFc ijk with this variation, proposing a MIP and comparing

four heuristics: a naive greedy approach, a multiple machine-insertion TSP heuristic, Johnson’s

Rule, and a GA with random-keys. In their tests, the GA with random-keys was very effective.

Pugazhendhi et al. (2004) investigated max|| CsFm ijk and jjijk CwsFm ∑|| , modifying a set of

recursive equations to account for skipped operations in calculating the timetable for permutation

schedules and developing a simple heuristic to derive non-permutation schedules from a given

permutation sequence. Tests showed that the resulting non-permutation schedules consistently

gave better maxC values than the associated permutation schedules. However, non-permutation

schedules did not make significant improvements on average in minimizing jjCw∑ .

Another variation allows the reentry of jobs, which occurs, for example, in the

production of integrated circuits. Pearn et al. (2004) presented three fast network algorithms for

 122

ijkjijk bsrecrcdbsFFc ∑|,,| based on a case study of integrated-circuit final testing. Hwang and

Sun (1997, 1998) addressed a version of max1 |,|2 CsrecrcF ij in which SDS times on the first

machine depend, not on the immediately preceding job, but on the job that is two sequence

positions ahead of it and suggested a hybrid that combines DP and a GA. For

max|,| LsrecrcFFc ijk , Demirkol and Uzsoy (2000) studied decomposition methods (Ovacik and

Uzsoy 1997)), and Ovacik and Uzsoy (1994a) investigated dispatching rules that consider jobs

available at the machine as well as others that will become available within a certain future time

window.

Extending their previous work (Hwang and Sun (1997, 1998)), Sun and Hwang (2001)

investigated a variation of max2 ||2 CsF ij in which only the second machine has SDS times and

they depend, not on the immediately preceding job, but on the job that is k sequence positions

ahead. This version was motivated by a case study that involved machining a cylinder head.

They solved this problem optimality using a DP algorithm, which utilized a dominance

condition, and also proposed a GA heuristic.

13.4. CC assembly

In CC assembly, setup is time-consuming (Rossetti and Stanford (2003), Maimon et al. (1993),

Hashiba and Chang (1991)) and sequence-dependent because different types of CCs share

different subsets of component types. Thus, SDS must be considered explicitly in scheduling

CC assembly. McGinnis et al. (1992) provided an overview of the essential elements of CC-

assembly technologies as well as a framework for process-planning. Some applications involve

CC assembly on a single machine (e.g., Rossetti and Stanford (2003)) or parallel machines (e.g.,

Hop and Nagarur (2004)). Rossetti and Stanford (2003) enumerated a method to estimate SDS

 123

time based, not only on an existing setup, but also on all preceding setups. They identified

component placement as a bottleneck in the CC assembly line and used a single machine to

model all placement operations. Based on estimated SDS times, they used clustering methods to

group CCs and a nearest–neighbor heuristic to sequence groups. Hop and Nagarur (2004)

modeled a CC assembly process as a set of non-identical parallel machines and discussed a

composite GA to solve it.

CC assembly has been well studied (e.g., Feo et al. (1995), Shailendra et al. (1996),

Rajkumar and Narendran (1998), and Wilhelm and Tarmy (2003)). The typical CC assembly

line can be modeled as a flow shop (e.g., Maimon et al. (1993), Kim et al. (1996), Logendran et

al. (2003), and Schaller et al. (2000)) in which SDS setup involves provisioning each component

type at the machine that places it on the CC. Some research on flow shop with SDS can be

applied directly to schedule CC assembly (e.g., Kurz and Askin (2003, 2004)).

Maimon et al. (1993) modeled a CC assembly process as a two-machine flow shop and

devised two scheduling methods that were based on component commonality among CC types.

Their first method, GUB, sets up component types that are common among two or more CC

types only once and assembles them onto their respective CC types; it then sequentially sets up

and assembles remaining component types for each CC type. Their second method, SDSM,

schedules CC types so that each is followed (immediately) in the schedule by the CC type with

which it shares the largest number of component types. They gave a numerical example, which

showed that GUB resulted in a higher throughput but also a higher WIP level than SDSM. Kim

et al. (1996) allowed a job to start on the following (placement) machine before it is completed

on the current (placement) machine, representing time lags appropriately because each job

comprises a batch of identical CCs. They proposed several heuristics, including TSs and SAs,

with the objective of minimizing mean tardiness. Schaller et al. (2000) modeled CC assembly as

 124

max|,| CprmubsFm ijk with family setup times and required all CC types within each family to

be assembled before starting the next family. They assumed that the families of different CC

types were pre-determined and resorted to a heuristic. Logendran et al. (2003) modeled a CC

assembly process as a two-machine flow shop and sequenced families of CC types using TS with

the objective of minimizing mean flow time.

13.5. Combined lot sizing and SDS scheduling

Researchers have also investigated the problem of integrating lot-sizing and sequencing

decisions in the flow shop. Sikora et al. (1996) considered a variation with limited intermediate

buffer space and deadlines, and they studied the objectives of minimizing maxC and inventory

holding costs. They integrated the Silver-Meal lot-sizing heuristic (Silver and Meal (1973)),

which they modified to deal with lot splitting, with Palmer’s flow shop heuristic (Palmer

(1965)), which they augmented with an improvement procedure, and demonstrated the efficacy

of their approach by scheduling an actual CC assembly line.

In another paper, Sikora (1996) presented a GA that used separate crossover and

mutation operators for lot-sizing and sequencing decisions. He compared this GA (Sikora

(1996)) with the integrated approach (Sikora et al. (1996)) and found that the GA that used a

population size of 10 prescribed much better schedules with significantly less run time than the

integrated approach. However, the performance of the GA was sensitive to the selection of

parameter values and it was difficult to determine effective values.

 125

CHAPTER XIV

THE JOB SHOP CONFIGURATION

The job shop scheduling problem – even without SDS – is NP-hard (Pinedo (2002)). Only a few

papers have addressed job shop scheduling with SDS over the last decade. Kim and Bobrowski

(1994) emphasized the impact of SDS on job shop scheduling performance.

This chapter reviews the limited research on job shop scheduling that involves SDS.

Section 14.1 addresses optimizing and hybrid methods and Section 14.2 reviews heuristics. To

our knowledge, over the last decade no research has been directed towards the combined lot-

sizing and scheduling problem.

14.1. Optimizing and hybrid methods

Only one early paper investigated B&B in the job shop configuration; Gupta (1982) formulated a

model for ijkijk ssrecrcJm ∑|,| but (as to be expected) B&B can solve only small instances

because run time increases rapidly with problem size.

Luh et al. (1998) studied a facility that produced a variety of gas-insulated switch gears,

each in small volume. Some stations required no setup; others required batch setups with longer

setup time between dissimilar products than between similar products. They developed a MIP

and a hybrid that used Lagrangian relaxation to relax machine capacity constraints, leading to

several sub-problems for which they devised DP algorithms and heuristics with the goal of

obtaining “near optimal” solutions.

 126

14.2. Heuristics

GAs (Candido et al. (1998)), dispatching rules (Ovacik and Uzsoy (1994a)), and simulation

(Kim and Bobrowski (1994)) models have been used to schedule job shops with SDS. Low

(1995) related a heuristic and showed that it prescribed a more realistic solution than approaches

that treat the problem as having either independent or no setups.

Zoghby et al. (2005) adapted the disjunctive graph model (Balas (1969)) to address

reentry and introduced new features of this adapted disjunctive graph (Roy and Sussman (1964))

for γ|,| ijsrecrcJm . They found that the traditional method (Balas (1969)) used to avoid

infeasible solutions – reversing a disjunctive arc on the critical path – does not suffice, and

presented an algorithm to remove infeasibilities. They further discussed potential applications of

their results in meta-heuristics and decomposition methods (such as the shifting bottleneck

method) to solve γ|,| ijsrecrcJm . (The shifting-bottleneck procedure was originated by Adams

et al. (1988) for max|| CJm .)

To reschedule max|,| LsrJm ijj , Artigues and Roubellat (2002) proposed a polynomial

algorithm to insert a new operation into an existing schedule without changing previously

scheduled operations. They suggested that their insertion algorithm could be used to improve

the performance of some job-shop scheduling methods. For example, it could be used to

generate a search neighborhood in a local search procedure simply by omitting a critical

operation, using a simple heuristic to prescribe an initial schedule, and then reinserting the

critical operation to construct a complete schedule.

To solve max|| CsJm ijk , Cheung and Zhou (2002) devised a heuristic, which combines a

GA with a modified shortest-processing-time rule that accounts for SDS. Their computational

results showed that this method can generate better solutions than the method of Choi and

 127

Korkmaz (1997) but that it required much longer run times. Choi and Choi (2002) studied a

variation of max|| CsJm ijk that allowed alternative operations; they formulated a MIP with the

objective of minimizing maxC and devised a local search procedure that substantially enhanced

the performance of several greedy dispatching rules. Hertz and Widmer (1996) devised a TS for

max|| CsJm ijk and Sun et al. (2003) proposed a GA for the related max|,| CsrecrcJm ijk .

With the goal of promoting on-time delivery in a semiconductor fabrication facility,

Mason et al. (2002) investigated a specialization of jjijkj TwsrrecrcFJc ∑|,,| , which included a

batching machine that processed several jobs simultaneously. They presented a disjunctive

graph to model this complex job shop and proposed a modified shifting-bottleneck heuristic to

deal with the added complexity of batching machines, parallel machines, SDS, and reentrant

flow of jobs.

Kim and Bobrowski (1997) investigated the impact of uncertainty on sequencing

decisions, considering stochastic processing, arrival, and SDS times while modeling SDS times

as independent, normally distributed random variables. Their nine-machine job shop simulation

tests showed that stochastic setup time had a negative impact on shop performance but did not

diminish the advantages of sequencing rules (e.g., Wilbrecht and Prescott (1969) and Kim and

Bobrowski (1994)) that deal explicitly with setup.

 128

CHAPTER XV

PERSPECTIVES ON SDS SCHEDULING RESEARCH

This chapter provides perspectives on SDS scheduling research. We give two tables that provide

broad perspectives. Table 14 gives a taxonomy of studies, categorized according to the four

machine configurations and combined lot-sizing and scheduling. The three columns in Table 14

give the reference, designate the specific problem studied, and note the solution method,

respectively. This taxonomy provides a useful structure by which studies on specific problem

types can be related and a framework that shows relationships among studies.

Table 14. A taxonomy of SDS scheduling literature published over the last decade

Single machine Criterion (specializations) Solution Method
Monma and Potts (1989) 1|bsij|Cmax,

1|bsij|Lmax,
1|bsij|ΣwjCj,
1|bsij|ΣUj.

Complexity and DP formulation

Ghosh (1994) 1|bsij|Σ(wj)Cj Complexity and DP formulation
Chen (1997) 1|bsij|Σwj′Ej+Σwj′′Tj

1|bsij|Σwj′Ej+Σwj′′Tj+Σβjdj
(common due date for each
batch)

Complexity and DPs

Ozgur and Brown (1995) 1|bsij|Cmax Two-stage B&B/TSP heuristic
Spina et al. (2003) 1|sij|Cmax Hybrid: GA + Constraint Logic

Programming
Rossetti and Stanford (2003) 1|bsij|Cmax Nearest-neighbor heuristic
Unal et al. (1997) 1|rj,bsij, jd |Cmax (rescheduling)

1|rj,bsij, jd |ΣwjCj (rescheduling)

Polynomial algorithm (optimal)

Proved strongly NP-hard; gave 2
heuristics

Rubin and Ragatz (1995) 1|sij|ΣTj GA

Tan and Narasimhan (1997a) 1|sij|ΣTj SA
Tan et al. (2000) 1|sij|ΣTj B&B, GA, SA and pairwise exchange
França et al. (2001) 1|sij|ΣTj Memetic (GA combined with local

improvement)
Alidaee et al. (2001) 1|sij|ΣTj Generalized best-in greedy heuristic
Kim et al. (1995) 1|sij|ΣwjTj Heuristic using ATCS rule and neural

networks
Lee et al. (1997) 1|sij|ΣwjTj Three-phase heuristic involving ATCS

rule

 129

Table 14. Continued

Single machine Criterion (specializations) Solution Method
Barnes and Vanston (1981) 1|sij|ΣwjCj+Σsij Hybrid B&B/DP
Laguna and Glover (1993) 1|sij|ΣwjCj+Σsij Integrated target analysis and TS
Feo et al. (1996) 1|sij|ΣwjCj+Σsij GRASP
Coleman (1992) 1|sij|Σwj′Ej+Σwj′′Tj MIP
Asano and Ohta (1996) 1| jd ,rj,sij|ΣEj B&B incorporating dominance relation

Sun et al. (1999) 1|rj,sij|ΣwjTj
2 Heuristic based on Lagrangian

relaxation
Rabadi et al. (2003) 1|d,sij|ΣEj+ΣTj B&B

Woodruff and Spearman (1992) 1|bsij, jd |Π′ TS

Kolahan et al. (1995) 1|sij|II1 TS
Kolahan and Liang (1998) 1|sij|II2 with variable pj Adaptive TS
Laguna (1999) 1|sij|Π′ MIP and TS
Roslöf et al. (2002) 1|rj,sij|w′Cmax+Σw′′Tj MIP solver combined with an iterative

heuristic
Asano and Ohta (1999) 1|brkdwn,rj,sij|Tmax B&B
Uzsoy et al. (1991) 1|prec,sij|Lmax B&B
Uzsoy et al. (1992) 1|prec,sij|Lmax

1|prec,sij|ΣUj
DP
DP and heuristic

Ovacik and Uzsoy (1994b) 1|rj,sij|Lmax Rolling horizon procedure
Tan and Narasimhan (1997b) 1|sij|MO(ΣwjTj & Σsij) SA
Gupta and Sivakumar (2004) 1|sij|MO(ΣCj/n, ΣTj/n, & Cmax) Simulation
Parallel Machines (PM) Criterion (specializations) Solution Method
Monma and Potts (1989) P2|prmp,bsij|Cmax,

P2|prmp,bsij|Lmax,
P2|prmp,bsij|ΣwjCj,
P2|prmp,bsij|ΣUj.

Complexity

Cheng and Chen (1994) P2|bsij|ΣCj Complexity
Ghosh (1994) Pm|bsij|Σ(wj)Cj Complexity and DP formulation
Guinet (1993) Pm|sij|Cmax

Pm|sij|ΣCj
MIP and a heuristic

França et al. (1996) Pm|sij|Cmax TS-based, three-phase heuristic
Gendreau et al. (2001) Pm|sij|Cmax Divide and merge heuristic
Mendes et al. (2002) Pm|sij|Cmax TS-based and memetic heuristic
Kurz and Askin (2001) Pm|rj,sij|Cmax MIP and GA, multiple insertion (TSP),

slicing (TSP) and multiple MULTI-FIT
heuristics

Hurink and Knust (2001) Pm|prec,sij|Cmax List scheduling algorithm
Yalaoui and Chu (2003) Pm|sij|Cmax with job-splitting B&B based heuristic
Schutten (1996) Pm|rj,sij|ℜ List scheduling algorithm

Weng et al. (2001) Rm|sij|ΣwjCj Proposed and tested seven heuristics
Lee and Pinedo (1997) Pm|sij|ΣwjTj 3-phase ATCS heuristic to generate SA

seed

 130

Table 14. Continued

Parallel Machines (PM) Criterion (specializations) Solution Method
Park et al. (2000) Pm|sij|ΣwjTj Heuristic using ATCS rule and neural

networks
Kim et al. (2003) Pm|sij|ΣwjTj TS-based Heuristic
Bilge et al. (2004) Qm|rj,sijk|ΣTj TS
Kim et al. (2002) Rm|d,sijk|ΣTj SA
Heady and Zhu (1998) Pm|sij|Σwj′Ej+Σwj′′Tj Greedy heuristic
Sivrikaya-Serifoglu and Ulusoy (1999) Qm|rj,sijk|Σw′Ej+Σw′′Tj Two GAs (one with crossover operator)
Balakrishnan et al. (1999) Qm|rj,sijk|Σwj′Ej+Σwj′′Tj MIP
Radhakrishnan and Ventura (2000) Pm|sij|ΣEj+ΣTj SA
Ovacik and Uzsoy (1993) Pm|sij|Cmax

Pm|sij|Lmax
Worst-case error bound of list schedules

Ovacik and Uzsoy (1995) Pm|rj,sij|Lmax Rolling horizon procedure
Kim and Shin (2003) Rm|rj,sij|Lmax Restricted TS
Bitran and Gilbert (1990) Pm|bsij,prmp|Σbsij B&B/heuristic
Dhaenens-Flipo (2001) Qm| ,d sijk|II, sum of setup and

production-distribution costs

Heuristic

Hop and Nagarur (2004) Qm|sijk|MO(workload balancing,
board similarities, Σsijk)

Composite GA

Arzi and Raviv (1998) Rm| jr~ , ijks~ |throughput, Σsijk and
WIP

Dispatching rules

Anglani et al. (2005) Pm| jp~ ,sij|Σsij Fuzzy mathematical programming +
heuristic

Flow shop (FS) Criterion (specializations) Solution Method
Gupta (1986) Fm|sijk|γ Complexity
Gupta and Darrow (1986) F2|sijk|Cmax Proved NP-complete and prmu not

optimal
Srikar and Ghosh (1986) Fm|prmu,sijk|Cmax MIP
Stafford and Tseng (1990) Fm|prmu,sijk|Cmax Correction of Srikar and Ghosh’s MIP
Simons (1992) Fm|prmu,sijk|Cmax 2 dispatching rules and 2 TSP-based

heuristics
Das et al. (1995) Fm|prmu,sijk|Cmax Saving index heuristic
Rios-Mercado and Bard (1998a) Fm|prmu,sijk|Cmax B&C
Rios-Mercado and Bard (1998b) Fm|prmu,sijk|Cmax GRASP
Rios-Mercado and Bard (1999a) Fm|prmu,sijk|Cmax B&B heuristic with partial enumeration
Rios-Mercado and Bard (1999b) Fm|prmu,sijk|Cmax Enhanced TSP-based heuristic
Schaller et al. (2000) Fm|bsijk,prmu|Cmax Heuristic
Stafford and Tseng (2002) Fm|prmu,sijk|Cmax

Fm|nwt,sijk|Cmax
Two MIPs

Ruiz et al. (2005) Fm|prmu,sijk|Cmax Two GAs
Kurz and Askin (2003) FFc|sijk|Cmax Greedy & TSP-insertion heuristics,

Johnson’s rule
Kurz and Askin (2004) FFc|sijk|Cmax Above + MIP and random keys GA

 131

Table 14. Continued

Flow shop (FS) Criterion (specializations) Solution Method
Pugazhendhi et al. (2004) Fm|sijk|Cmax

Fm|sijk|ΣwjCj
Heuristic

Norman (1999) Fm|block,prmu,sijk|Cmax TS
Bianco et al. (1999) Fm|nwt,rj,sijk|Cmax Greedy heuristics
Rajendran and Ziegler (1997) Fm|prmu,sijk|ΣwjCj Heuristic with an improvement scheme
Mendez et al. (2001) FFc|Mj,rj,sijk|ΣEj (batch plant) Continuous-time MIP
Hui et al. (2000) FFc|Mj,sijk|ΣEj+ΣTj (batch plant) Continuous-time MIP
Parthasarathy and Rajendran (1997a) Fm|prmu,sijk|max wjTj

Fm|prmu,sijk|ΣwjTj
SA

Parthasarathy and Rajendran (1997b) Fm|prmu,sijk|(ΣwjTj)/n SA
Rajendran and Ziegler (2003) Fm|prmu,sijk|ΣwjCj+Σw′jTj Heuristic with an improvement scheme
Pearn et al. (2004) FFc|bsijk, jd ,recrc|max total

machine workload

Network algorithms

Ovacik and Uzsoy (1994a) FFc|recrc,sijk|Lmax Dispatching rule based heuristic
Demirkol and Uzsoy (2000) FFc|recrc,sijk|Lmax Decomposition method
Hwang and Sun (1997) F2|recrc,sij1|Cmax DP
Hwang and Sun (1998) F2|recrc,sij1|Cmax DP and GA
Sun and Hwang (2001) F2|sij2|Cmax DP and GA
Maimon et al. (1993) F2|sijk|throughput and WIP Two scheduling methods
Logendran et al. (2003) F2|bsijk|(ΣwjTj)/n Lower bound and TS
Kim et al. (1996) Fm|sijk|(ΣTj)/n (time-lag) Heuristics (e.g., TS, SA)
Job shop Criterion (specializations) Solution Method
Candido et al. (1998) Jm|sij|ℜ GA-based heuristic

Hertz and Widmer (1996) Jm|sijk|Cmax TS
Choi and Korkmaz (1997) Jm|sijk|Cmax MIP and a heuristic
Cheung and Zhou (2002) Jm|sijk|Cmax Hybrid GA heuristic with SPTS rule
Choi and Choi (2002) Jm|sijk|Cmax MIP and a local search scheme
Sun et al. (2003) Jm|recrc,sijk|Cmax Hybrid GA and heuristics
Ovacik and Uzsoy (1994a) Jm|sijk|Lmax Dispatching rule based heuristic
Artigues and Roubellat (2002) Jm|rj,sij|Lmax (insertion problem) Insertion algorithm
Gupta (1982) Jm|recrc,sijk|Σsijk B&B
Low (1995) Jm|rj,sijk|mean flow time, mean

tardiness, mean machine idle
Heuristic

Kim and Bobrowski (1994) Jm|sijk|γ Simulation
Zoghby et al. (2005) Jm|recrc,sij|γ Meta-heuristics and disjunctive graph
Kim and Bobrowski (1997) Jm| ijks~ |γ (stochastic jr~ , jp~ , ijks~) Dispatching rules

Luh et al. (1998) FJc|block,bsijk,rj|Σwj′Ej
2+Σwj′′Tj

2 MIP and hybrid: Lagrangian relax, DP
+ heuristic

Mason et al. (2002) FJc|recrc,rj,sij|ΣwjTj (batch plant) Modified shifting bottleneck heuristic

 132

Table 14. Continued

Combined lot-sizing Criterion (specializations) Solution Method
Dobson (1992) Π′ (ELSP: single machine) Lagarangian relaxation based heuristic
Wagner and Davis (2002) Π′ (ELSP: single machine) Heuristic
Miller et al. (1999) min sum of setup, inventory and

backlog cost (CLSP: single
machine)

MIP and GA with hill-climbing local
search

Haase (1996) Π′ (CLSP: single machine) Heuristic priority rule
Haase and Kimms (2000) Π′ (CLSP: single machine) MIP and B&B with a tailor-made

enumeration
Gupta and Magnusson (2005) Π′ (CLSP: single machine) MIP and heuristic
Fleischmann (1994) Π′ (DLSP: single machine) Formulation (TSP with time windows)

+ heuristic
Salomon et al. (1997) Π′ (DLSP: single machine) DP
Jordan and Drexl (1998) Π′ (DLSP: single machine) B&B
Meyr (2000) Π′ (GLSP: single machine) MIP & dual re-optimization + heuristic
Meyr (2002) min sum of setup, holding and

production costs (non-identical
parallel machines)

Dual re-optimization + heuristic
(SA or threshold accepting)

Kang et al. (1999) min sum of setup, holding and
production costs minus sales
revenue (parallel machines)

Hybrid column generation\B&B +
heuristic

Sikora et al. (1996) Fm|block, jd ,sijk|bi-objective
(Cmax & min holding cost)

Integrated heuristic approach

Sikora (1996) Same as above GA with crossover and mutation
operators

II1 – sum of setup, defective part, tool and machining costs
II2 - sum of earliness and tardiness penalties and compression and extension costs
MO – multi-objective

Table 15 lends further perspective by tallying the number of studies cited that deal with

each combination of methodology (Column 1) and machine configuration (Columns 2-5). The

first methodology involves formulation of SDS problems. Most formulations are MIP models;

few papers report computational experience because run times tend to be excessive for these NP-

hard problems, even for instances of modest size. The second methodology, which involves

analyzing the complexity of different types of problems, is typically based on a DP formulation

(e.g., Monma and Potts (1989), Ghosh (1994), and Chen (1997)).

 133

Table 15. Summary of research methodologies for SDS scheduling

Methodologies Single
machine

Parallel
machine

Flow shop Job shop

Formulation 2 (4) 4 6 3

Complexity analysis 3 3 1

Optimizing methods

B&B 6 (2) 1
B&C 1
DP 3 (1) 3
MIP solver 1 1 5

Hybrid optimizing-and-heuristic methods
 Based on B&B, DP, or MIP solver 2 2 (1) 1 1

Heuristics

GA (hybrid GA) 4 (1) 4 4 (1) 3
SA 3 (1) 4 (1) 3
TS 5 5 3 1 Meta-heuristic

GRASP 1 1
Methods based on TSP heuristics 1 1 4
Greedy algorithm 1 1 3
Decomposition 1 1 1 1
Dispatching rules 2 3 2 3
Simulation 1 1
List scheduling 3

Note: The number in each cell gives the number of studies that applied the methodology to the machine
configuration excluding combined lot-sizing, which is tallied as the number in parentheses.

The third methodology, optimizing methods, includes B&B, B&C, DP, and MIP solvers.

Most papers have focused on the single machine configuration; few have studied the parallel

machine and job shop configurations. B&B has been used extensively to optimize the single

machine configuration; only one early study (Gupta (1986)) applied B&B to the job shop

configuration and none have applied B&B to the parallel machine and flow shop configurations.

Only one paper, Rios-Mercado and Bard (1998a), has applied B&C to SDS; it addressed a flow

shop problem, max|,| CsprmuFm ijk . DP has been applied rather extensively to single machine

and flow shop configurations but not to parallel machine and job shop configurations. MIP

 134

solvers (e.g., LINDO (Coleman (1992), Balakrishnan et al. (1999), and Stafford and Tseng

(2002)) and CPLEX (Mendez et al. (2001))) have been used primarily in application to the flow

shop configuration but they can only solve problems of small-to-modest size.

The fourth methodology, hybrid methods, combines an optimizing method (e.g., B&B,

DP, or MIP solvers) and a heuristic, which either prescribes a solution found early in the search

process or resolves some portion of the problem. For example, Ozgur and Brown (1995) and

Bitran and Gilbert (1990) sequenced jobs in each family using heuristics and sequenced families

using B&B for max||1 Cbsij and ijij sprmpbsPm ∑|,| , respectively; Roslöf et al. (2002)

augmented a MIP solver with an iterative heuristic for jijj TwCwsr ′′∑+′ max|,|1 ; and Rios-

Mercado and Bard (1999a) used B&B with partial enumeration to approximate

max|,| CsprmuFm ijk . Actually, the rolling horizon method in Ovacik and Uzsoy (1994b)

belongs to this class; it uses B&B to determine the next job to process and applies it in a

heuristic fashion, solving the dynamic scheduling problem by applying B&B at each time a

scheduling decision must be made.

The fifth methodology, heuristics, is rather expansive because heuristics are motivated

by the inherent difficulty of SDS scheduling problems. Although heuristics may provide good

approximate solutions in reasonable run time, few give performance guarantees for problems

involving SDS.

Table 15 shows that meta-heuristics have been widely used for all machine

configurations. In particular, GA and TS have been the most favored approaches for a variety of

objective functions, including makespan (maxC) as well as those related to due dates (e.g., maxL ,

jT∑ , jjTw∑). Interestingly, França et al. (1996) and Kim et al. (2003) reported that the

performance of TS improved with the number of machines in the parallel machine configuration.

 135

SA places third, close behind GA and TS. In contrast, researchers have applied GRASP in only

two recent papers.

Since SDS is intimately related to TSP - for example, max||1 Csij is, in fact, TSP -

heuristics based on TSP algorithms have been evolved for the single machine (e.g., Ozgur and

Brown (1995) for max||1 Cbsij), parallel machine (e.g., Kurz and Askin (2001) for

max|,| CsrPm ijj), and flow shop (e.g., Rios-Mercado and Bard (1999b) for

max|,| CprmusFm ijk) configurations. A feature that is common to these papers is that they have

all addressed the objective of minimizing maxC .

Other heuristics – greedy algorithm; decomposition; dispatching rules; simulation; list

scheduling; and heuristics based on TSP algorithms – have all been used, but by fewer

researchers. Decomposition divides an intractable problem into smaller, less challenging sub-

problems, develops solutions for the sub-problems, and assembles them into a schedule for the

original problem. An effective implementation requires fast procedures to obtain high-quality

solutions to the sub-problems. Recent applications of decomposition include rolling horizon

heuristics for max||1 Lsij (Ovacik and Uzsoy (1994b)) and max|| LsPm ij (Ovacik and Uzsoy

(1995)) and a modified shifting bottleneck procedure for jjijj TwsrrecrcFJc ∑|,,| (Mason et al.

(2000)). Dispatching rules, which are typically tested using a simulation model, are popular

because they reflect how decisions are made in many practical cases. Neural networks have

been used to determine the parameters required by ATCS rules (Kim et al. (1995) for

jjij Tws ∑||1 and Park et al. (2000) for jjij TwsPm ∑||). List scheduling algorithms offer an

advantage in that they have been shown to provide worst-case error bounds for max|| CsPm ij and

max|| LsPm ij (Ovacik and Uzsoy (1993)) and dominant schedules for ℜ|,| ijj srPm (Schutten

 136

(1996)) but it is known that they cannot generate a set of dominant schedules for

max|,| CsprecPm ij (Hurink and Knust (2001)). We present our conclusions in the next chapter.

 137

CHAPTER XVI

CONCLUSIONS AND FUTURE RESEARCH

16.1. Conclusions on the RCSP research

To solve RCSP, this dissertation proposes TSA, which comprises two phases: a one-time

preliminary phase (stages 1 and 2) and an iterative solution phase (stage 3), as shown in Figure

1. TSA requires less computational effort for each subsequent solution than the first-time

solution and is especially suitable for solving RCSP repeatedly, for example, as a subproblem in

CG and CG/B&B. Computational results demonstrate the effectiveness of TSA and show that it

outperforms a method we devised for benchmarking purpose (i.e., LSA) in the context of CG.

TSA incorporates several specialized algorithms for dealing with particular issues (e.g.,

preprocessing, reoptimizing and fixed arcs); computational results demonstrate the effectiveness

of these algorithms.

TSA is a unified approach comprising three stages. By applying adaptations of stage 1,

it can solve RCSP, SPPRW and SPRCRW. Stages 2 and 3 are applicable to each of these

problems. By incorporating a classical unconstrained k-SPP algorithm in stage 3, TSA can solve

RCkSP on an acyclic graph. Further, TSA can be applied to MMCKP, recasting it as RCSP on

the MMCKP-graph. Since TSA is suitable for solving RCSP repeatedly, each of these

extensions is suitable for solving the corresponding problem repeatedly.

This dissertation research shows that algorithms for solving subproblems in CG (e.g.,

RCSP) should explicitly consider issues related to repeated solution. If possible, a preliminary

phase can be used to reduce the computational burden incurred by repeated solutions. Moreover,

if the algorithms are used to solve a subproblem in CG/B&B, then effective methods for dealing

with fixed variables should also be considered when designing the algorithms. For CG/B&B, the

 138

branching strategy of B&B should be considered together with algorithms for solving

subproblem(s) to obtain good overall performance. For example, if the subproblem is RCSP and

we use TSA to solve it, it is appropriate to choose a branching variable whose corresponding arc

has a large span (see Remark 4) and it is not good to choose the one that has an associated arc

that can be relegated to set 0̂F (see Remark 5).

16.2. Conclusions on the SDS scheduling literature review

This dissertation contributes by achieving its purpose of reviewing SDS scheduling research as a

guide for future research. It also achieves its objectives, providing (i) an overview with

emphasis on recent results, (ii) an integrated view of lot-sizing and SDS scheduling, (iii) a

perspective of this line of research, and (iv) fertile opportunities for future research (Section

16.3). The perspective is enhanced by a taxonomy that classifies research according to machine

configuration with an emphasis on problem type studied and by tallying of studies according to

the methodology applied to the machine configuration. Overall, the perspective emphasizes that

SDS is relevant to virtually all machine configurations. We address the fourth objective of this

part of dissertation research in the next section, discussing fertile research opportunities.

16.3. Future research on SDS scheduling problems

The taxonomy (Table 14) shows that SDS is attracting an increasing amount of interest and

Table 15 shows that a variety of methods have been considered for each machine configuration.

Despite this amount of attention, no solution approach is widely recognized as providing

superior capability to resolve problems in this class. We suggest that research would be further

stimulated by establishing a set of test instances that would allow rigorous comparison of

solution methods. This section discusses research opportunities relative to optimizing methods,

 139

heuristics, objectives related to due dates, bi- or multi-objectives, machine configurations,

combined lot sizing and scheduling, rescheduling, stochastic scheduling, and CC assembly.

16.3.1. Optimizing methods

This review shows clearly that optimizing methods for SDS scheduling have not enjoyed the

steady - and sometimes dramatic – progression of improvements that have enhanced integer-

programming methodologies over the last decade. Future research could bridge this gap, more

fully exploring opportunities to adapt methods like B&P and B&C to SDS scheduling.

16.3.2. Heuristics

Most existing methods are heuristics. Although they may provide good approximate solutions in

reasonable run time, few give performance guarantees. Researchers have proposed numerous

heuristics with little theoretical underpinnings. A significant challenge for future research is,

then, to analyze worst-case error bounds for heuristics. Several studies have proposed

approaches to determine parameter values upon which heuristics depend (e.g., TS and SA (Kim

et al. (1996)), GA (Sikora (1996)), ATCS rule (Lee et al. (1992), Kim et al. (1995), Park et al.

(2000)), and priority rule (Haase (1996))) but future research is needed to establish an integrated

knowledge base for specifying effective parameter values. In addition, future research should be

directed toward devising formal structures that incorporate local search methods to exploit the

diversification of GAs in combination with intensification of local searches (e.g., Miller et al.

(1999), Mendes et al. (2002), França et al. (2001), Moscato (1989, 1999), Spina et al. (2003),

and Ruiz et al. (2005)).

16.3.3. Objectives related to due dates

Most papers address the objective of minimizing maxC , especially for flow shops and job shops:

this review cites 22 papers that deal with maxC and only 7 that address due-date objectives for

 140

the flow shop and 7 papers that deal with maxC compared with only 3 papers that address due-

date objectives for the job shop. Motivated by the need for just-in-time production, a few

researchers have investigated the total (weighted) earliness and tardiness objective for the single

machine (Coleman (1992), Rabadi et al. (2004)), parallel machine (Heady and Zhu (1998),

Radhakrishnan and Ventura (2000), Sivrikaya-Serifoglu and Ulusoy (1999), Balakrishnan et al.

(1999)), flow shop (Hui et al. (2000), Rajendran and Ziegler (2003)), and job shop (Luh et al.

(1998)) configurations. Fertile opportunities are thus available for future research to address

due-date related objectives.

16.3.4. Bi- or multi-objectives

In many real-world applications, it may be necessary to consider several objectives

simultaneously and a schedule that is acceptable relative to one criterion may be unacceptable

relative to another. Relatively few papers have dealt with bi- or multi-objectives (e.g., single

machine (Tan and Narasimhan (1997b), Gupta and Sivakumar (2004)), parallel machines (Hop

and Nagarur (2004)), and flow shop (Sikora (1996), Sikora et al. (1996)), leaving further

opportunities for the future.

16.3.5. Machine configurations

The single machine configuration has received the bulk of attention due to its relative simplicity.

A modest amount of research has addressed the parallel machine and flow shop configurations.

Most flow shop research has dealt with permutation schedules (this review cites only one paper

(Pugazhendhi et al. (2004)) that dealt with non-permutation schedules) but they are not

necessarily optimal for the flow shop with SDS (except for the no-wait flow shop (Gupta

(1986))); this issue poses research challenges. Relatively few studies have investigated the job

 141

shop configuration and, to our knowledge, none has studied its combined lot-sizing and

scheduling problem with SDS.

16.3.6. Combined lot-sizing and scheduling

Most research related to combined lot-sizing and scheduling problems with SDS has focused on

the single machine configuration. Research on other configurations is sparse. Only two papers

(Kang et al. (1999), Meyr (2002)) studied the parallel machine configuration and two others

(Sikora (1996), Sikora et al. (1996)) studied the flow shop configuration; to our knowledge, none

has considered the job shop configuration. Most research on combined lot-sizing and scheduling

has not considered backordering; one exception relates to the single machine configuration

(Miller et al. (1999)).

16.3.7. Rescheduling

As part of a current trend, two papers have dealt with rescheduling problems in dynamic

environments (e.g., Artigues and Roubellat (2002) for max|,| LsrJm ijkj and Unal et al. (1997) for

jjijjj Cwsrd ∑|,,,|1 or maxC). Rescheduling is an important issue for all machine configurations

and objectives since it is important to be able to respond to unforeseen events.

16.3.8. Stochastic scheduling

Few researchers have considered stochastic scheduling problems with SDS. Three papers have

dealt with uncertain processing, setup and/or arrival times: two (Arzi and Raviv (1998), Anglani

et al. (2005)) dealt with the parallel machine configuration; and one (Kim and Bobrowski

(1997)), with the job shop configuration. Thus, stochastic scheduling with SDS is another fertile

opportunity for future research.

 142

16.3.9. CC Assembly

This review discusses four papers that model CC assembly as a flow shop; one, as a set of

parallel machines; and one, as a single machine. In all cases, SDS times are substantial,

emphasizing the need for effective solution methods. Optimizing methods have not been

investigated extensively for CC assembly, even though the CC industry is in need of effective

scheduling methods. In addition, little progress has been made on stochastic models for

scheduling CC assembly.

 143

REFERENCES

Adams, J., Balas, E. and Zawack, D. (1988) The shifting bottleneck procedure for job shop
scheduling. Management Science, 34, 391-401.

Aldowaisan, T. and Allahverdi, A. (2003) New heuristics for no-wait flow Shops to minimize
makespan. Computers & Operations Research, 30, 1219-1231.

Alidaee, B., Kochenberger, G.A. and Amini, M.M. (2001) Greedy solutions of selection and
ordering problems. European Journal of Operational Research, 134, 203-215.

Allahverdi, A., Gupta, J.N.D. and Aldowaisan, T. (1999) A review of scheduling research
involving setup considerations. Omega, 27(2), 219-239.

Aneja, Y.P., Aggarwal, V. and Nair, K.P.K. (1983) Shortest chain subject to side constraints.
Networks, 13, 295-302.

Anglani, A., Grieco, A., Guerriero, E. and Musmanno, R. (2005) Robust scheduling of parallel
machines with sequence-dependent set-up costs. European Journal of Operational
Research, 161, 704-720.

Artigues, C. and Roubellat, O. (2002) An efficient algorithm for operation insertion in a multi-
resource job-shop schedule with sequence-dependent setup times. Production Planning
& Control, 13(2), 175-186.

Arzi, Y. and Raviv, D. (1998) Dispatching in a workstation belonging to a re-entrant production
line under sequence-dependent set-up times. Production Planning & Control, 9(7), 690-
699.

Asano, M., and Ohta, H. (1996) Single machine scheduling using dominance relation to
minimize earliness subject to ready and due times. International Journal of Production
Economics, 44(1-2), 35-43.

Asano, M. and Ohta, H. (1999) Scheduling with shutdowns and sequence dependent setup times.
International Journal of Production Research, 37(7), 1661-1676.

Avella, P., Boccia, M. and Sforza, A. (2004) Resource constrained shortest path problems in
path planning for fleet management. Journal of Mathematical Modelling and Algorithms,
3, 1-17.

Aytug, H., Lawley, M.A., McKay, K., Mohan, S. and Uzsoy, R. (2005) Executing production
schedules in the face of uncertainties: A review and some future directions. European
Journal of Operational Research, 161, 86-110.

Babonneau, F., Merle, O.du and Vial, J.-P. (2004) Solving large scale linear multicommodity
flow problems with an active set strategy and Proximal-ACCPM. Working Paper.

 144

Balakrishnan, N. (1993) Simple heuristics for the vehicle routing problem with soft time
windows. Journal of Operational Research Society, 44, 279-287.

Balakrishnan, N., Kanet, J.J. and Sridharan, S.V. (1999) Early/tardy scheduling with sequence
dependent setups on uniform parallel machines. Computers & Operations Research,
26(2), 127-141.

Balas, E. (1969) Machine sequencing via disjunctive graphs: an implicit enumeration approach.
Operations Research, 17, 941-957.

Bard, J.F. and Miller, J.L. (1989) Probabilistic shortest path problems with budgetary constraints.
Computers & Operations Research, 16(2), 145-159.

Barnes, J.W. and Vanston, L.K. (1981) Scheduling jobs with linear delay penalties and sequence
dependent setup costs. Operations Research, 29, 146-154.

Barrett, C., Jacob R. and Marathe M. (2000) Formal-Language-constrained path problems. SIAM
Journal on Computing, 30(3), 809-837.

Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D. (1990) Linear Programming and Network Flows,
John Wiley & Sons, New York, 320-350.

Beasley, J.E. and Christofides, N. (1989) An algorithm for the resource constrained shortest path
problem. Networks, 19, 379-394.

Bellman R.E. (1958) On a routing problem. Quart. Appl. Math, 16, 87-90.

Berman, O., Einav, D. and Handler, G. (1990) The constrained bottleneck problem in network.
Operations Research, 38(1), 178-181.

Bianco, L., Dell’Olmo, P. and Giordani, S. (1999), Flowshop no-wait scheduling with sequence-
dependent setup times and release dates. INFOR, 37(1), 3-19.

Bilge, U., Klrac, F., Kurtulan, M. and Pekgü, P. (2004) A tabu search algorithm for parallel
machine total tardiness problem. Computers & Operations Research, 31(3), 397-414.

Bitran, G.R. and Gilbert S.M. (1990) Sequencing production on parallel machines with two
magnitudes of sequence-dependent setup cost. Journal of Manufacturing Operations
Management, 3, 24-52.

Blocher, J.D., Chand, S. and Sengupta, K. (1999) The changeover scheduling problem with time
and cost considerations: analytical results and a forward algorithm. Operations Research,
47(4), 559-569.

Bodin, L.D., Golden, B.L., Assad, A.A. and Ball, M.O. (1982) Routing and scheduling of
vehicles and crews: the state of the art. Computers & Operations Research, 10, 63-211.

Bramel, J. and Simchilevi, D. (1996) Probabilistic analyses and practical algorithms for the
vehicle routing problem with time windows. Operations Research, 44, 501-509.

 145

Buriol, L.S., Resende, M.G.C. and Thorup, M. (2003) Speeding up dynamic shortest path
algorithms. AT&T labs Research Technical Report, TD-5RJ8B, Florham Park, NJ.

Candido, M.A.B., Khator, S.K. and Barcia, R.M. (1998) A genetic algorithm based procedure for
more realistic job shop scheduling problems. International Journal of Production
Research, 36(12), 3437-3457.

Cattrysse, D., Salomon, M., Kuik, R. and van Wassenhove L.N. (1993) A dual ascent and
column generation heuristic for the discrete lotsizing and scheduling problem with setup
times. Management Science, 39(4), 477-486.

Chen, G.-H. and Hung, Y.-G. (1994) Algorithms for the constrained quickest path problem and
the enumeration of quickest paths. Computers & Operations Research, 21(2), 113-118.

Chen, Y.L. and Tang, K. (1997) Shortest paths in time-schedule networks. International Journal
of Operations and Quantitative Management, 3, 157-173.

Chen, Y.L. and Yang, H.H. (2000) Shortest paths in traffic-light networks. Transportation
Research Part B, 34, 241-253.

Chen, Y.L. and Yang, H.H. (2003) Minimization of travel time and weighted number of stops in
a traffic-light network. European Journal of Operational Research, 144, 565-580.

Chen, Z.-L. (1997) Scheduling with batch setup times and earliness-tardiness penalties.
European Journal of Operational Research, 96, 518-537.

Cheng, T.C.E. and Chen, Z.-L. (1994) Parallel machine scheduling with batch setup times.
Operations Research, 42(6), 1171-1174.

Cheng, T.C.E., Gupta, J.N.D. and Wang, G. (2000) A review of flowshop scheduling with setup
times. Production and Operations Management, 9(3), 262-282.

Cheung, W. and Zhou H. (2002) Using generic algorithms and heuristics for job shop scheduling
with sequence-dependent setup times. Annals of Operations Research, 107, 65-81.

Choi, I. and Choi, D. (2002) A local search algorithm for jobshop scheduling problems with
alternative operations and sequence-dependent setups. Computers & Industrial
Engineering, 42(1), 43-58.

Choi, I.C. and Korkmaz O. (1997) Job shop scheduling with sequence-dependent setups. Annals
of Operations Research, 70, 155-170.

Choi, I., Kim, S. and Kim, H. (2003) A genetic algorithm with a mixed region search for the
asymmetric traveling salesman problem. Computers & Operations Research, 30(5), 773-
786.

Christofides, N., Mingozzia, A. and Toth, P. (1981) Exact algorithms for the vehicle routing
problem, based on spanning trees and shortest path relaxations. Mathematical
Programming, 20, 255-282.

 146

Coffman, Jr., E.G., Garey, M.R. and Johnson, D.S., (1978) An application of bin-packing to
multiprocessor scheduling. SIAM Journal on Computing, 7, 1-17.

Coleman, B.J. (1992) A simple model for optimizing the single machine early/tardy problem
with sequence-dependent setups. Production and Operations Management, 1(2), 225-
228.

Dantzig, G.B. and Wolfe, P. (1960) Decomposition principle for linear programs. Operations
Research, 8, 101-111.

Das, S.R., Gupta, J.N.D. and Khumawala, B.M. (1995) A saving index heuristic algorithm for
flowshop scheduling with sequence-dependent setup times, Journal of the Operational
Research Society, 46, 1365-1373.

Daul, G. and Gouveia, L. (2004) On the directed hop-constrained shortest path problem.
Operations Research Letters, 32, 15-32.

Delporte, C.M. and Thomas, L.J. (1977) Lot sizing and sequencing for N products on one facility.
Management Science, 23(10), 1070-1079.

Demetrescu, C. (2001) Fully Dynamic Algorithm for Path Problems on Directed Graphs. PhD
thesis, Department of Computer and Systems Science, University of Rome “La
Sapienza”.

Demirkol, E. and Uzsoy, R. (2000) Decomposition methods for reentrant flow shops with
sequence-dependent setup times. Journal of Scheduling, 3(3), 155-177.

Deo, N. and Pang, C. (1984) Shortest path algorithms: taxonomy and annotation. Networks, 14,
275-323.

Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M.M. and Soumis, F.
(1997) Crew pairing at Air France, European Journal of Operational Research, 97, 245-
259.

Desaulniers, G., Desrosiers, J. and Solomon, M.M. (2002) Accelerating strategies in column
generation methods for vehicle routing and crew scheduling problems. in Essays and
Surveys in Metaheuristics, Ribeiro, C.C. and Hansen, P. (eds), Kluwer, Norwell, MA,
309-324.

Desrochers, M. (1988) An algorithm for the shortest path problem with resource constraints.
Technical Report G-88-27, GEARD, Ecole des H.E.C., Montreal, Canada.

Desrochers, M., Desrosiers, J. and Solomon, M. (1992) A new optimization algorithm for the
vehicle routing problem with time windows, Operations Research, 40(2), 342-354.

Desrochers, M. and Soumis, F. (1988a) A reoptimization algorithm for the shortest path problem
with time windows. European Journal of Operational Research, 35, 242-254.

 147

Desrochers, M. and Soumis, F. (1988b) A generalized permanent labeling algorithm for the
shortest path problem with time windows. INFOR, 26, 193-214.

Desrochers, M. and Soumis, F. (1989) A column generation approach to the urban transit crew
scheduling problem. Transportation Science, 23, 1-13.

Desrosiers, J., Dumas, Y. and Soumis, F. (1988) The multiple vehicle dial-a-ride problem. in
Computer-Aided Transit Scheduling, Daduda, J.R. and Wren, A. (eds), Lecture Notes in
Economics and Mathematical System 308, Springer, Berlin, 15-27.

Desrosiers, J., Dumas, Y., Solomon, M.M. and Soumis, F. (1993) Time Constrained Routing and
Scheduling, North-Holland, Amsterdam, The Netherlands.

Desrosiers, J., Soumis, F. and Desrochers, M. (1984) Routing with time windows by column
generation. Networks, 14, 545-565.

Dhaenens-Flipo, C. (2001) A bicriterion approach to deal with a constrained single-objective
problem. International Journal of Production Economics, 74, 93-101.

Dijkstra, E.W. (1959) A note on two problems in connection with graphs. Numerische
Mathematik, 1, 269-271.

Dobson, G. (1992) The cyclic lot scheduling problem with sequence-dependent setups.
Operations Research, 40(4), 736-749.

Dobson, G., Karmarkar, U.S. and Rummel, J.L. (1987) Batching to minimize flow times on one
machine. Management Science, 33, 784-799.

Dolgui, A., Guschinsky, N. and Levin, G. (2004) A special case of transfer lines balancing by
graph approach. European Journal of Operational Research, In press.

Drexl, A. and Kimms, A. (1997) Lot sizing and scheduling – survey and extensions. European
Journal of Operational Research, 99, 221-235.

Dror, M. (1994) Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5), 977-978.

Dudzinski, K. and Walukiewicz, S. (1987) Exact methods for knapsack problem and its
generalizations. European Journal of Operational Research, 28, 3-21.

Dumas, Y., Desrosiers, J. and Soumis, F. (1991) The pickup and delivery problem with time
windows. European Journal of Operational Research, 54, 7-22.

Dumitrescu, I. and Boland, N. (2001) Algorithm for the weight constrained shortest path
problem. ITOR, 8, 15-30.

Dumitrescu, I. and Boland, N. (2003) Improved preprocessing, labeling and scaling algorithms
for the weight-constrained shortest path problem. Networks, 42(3), 135-153.

 148

Elimam, A.A. and Kohler, D. (1997) Two engineering applications of a constrained shortest-path
model. European Journal of Operational Research, 103, 426-438.

Eppstein, D. (1998) Finding the k shortest paths. SIAM Journal on Computing, 28(2), 652-673.

Feillet, D., Dejax, P., Gendreau, M. and Gueguen, C. (2004) An exact algorithm for the
elementary shortest path problem with resource constraints: application to some vehicle
routing problems. Networks, 44(3), 216-229.

Feo, T.A., Bard, J.F. and Holland, S.D. (1995) Facility-wide planning and scheduling of printed
wiring board assembly. Operations Research, 43(2), 219-230.

Feo, T.A., Sarathy, K. and McGahan, J. (1996) A grasp for single machine scheduling with
sequence dependent setup costs and linear delay penalties. Computers & Operations
Research, 23(9), 881-895.

Fisher, M.L. (1981) The Lagrangian relaxation method for solving integer programming
problems. Management Science, 27, 1-18.

Fleischmann, B. (1990) The discrete lot-sizing and scheduling problem. European Journal of
Operations Research, 44, 337-348.

Fleischmann, B. (1994) The discrete lot-sizing and scheduling problem with sequence-dependent
setup costs. European Journal of Operational Research, 75(2), 395-404.

Fleischmann, B. and Meyr, H. (1997) The general lotsizing and scheduling problem. OR
Spektrum, 19(1), 11-21.

Ford, L., Jr. (1956) Network Flow Theory. The Rand Corporation, Santa Monica, CA, P-923.

Ford, L.R. and Fullkerson, D.R. (1958) A suggested computation for maximal multi-commodity
network flows. Management Science, 5, 97-101.

Fox, B.L. (1978) Data structure and computer science techniques in operations research.
Operations Research, 26, 686-717.

França, P.M., Gendreau, M., Laporte, G. and Muller, F.M. (1996) A tabu search heuristic for the
multiprocessor scheduling problem with sequence dependent setup times. International
Journal of Production Economics, 43(2-3), 79-89.

França, P.M., Mendes, A. and Moscato, P. (2001) A memetic algorithm for the total tardiness
single machine scheduling problem. European Journal of Operational Research, 132,
224-242.

Fujishige, S. (1981) A note on the problem of updating shortest paths. Networks, 11, 317-319.

Gallo, G. (1980) Reoptimization procedures on shortest path problems. Riv. Mat. Sci. Econom.
Social, 3, 3-13.

 149

Gallo, G. and Pallottino, S. (1986) Shortest path methods: A unifying approach. Mathematical
Programming Study, 26, 38-64.

Gamache, M., Grimard, R. and Cohen, P. (2005) A shortest-path algorithm for solving the fleet
management problem in underground mines. European Journal of Operational Research,
166, 497-506.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco.

Gendreau, M., Laporte, G. and Guimarces, E.M. (2001) A divide and merge heuristic for the
multiprocessor scheduling problem with sequence dependent setup times. European
Journal of Operational Research, 133(1), 183-189.

Ghosh, J.B. (1994) Batch scheduling to minimize total completion time. Operations Research
Letter, 16, 271-275.

Gilmore, P.C. and Gomory, R.E. (1961) A linear programming approach to the cutting-stock
problem. Operations Research, 9, 849-859.

Glover, F. (1989) Tabu search—Part I. ORSA Journal on Computing, 1, 190-206.

Glover, F. (1990) Tabu search—Part II. ORSA Journal on Computing, 2, 40-42.

Glover, F., Klingman D.D. and Phillips, N.V. (1985a) A new polynomials bounded shortest path
algorithm. Operations Research, 33(1), 65-73.

Glover, F., Klingman, D.D., Phillips N.V. and Schneider, R.F. (1985b) New polynomial shortest
path algorithms and their computational attributes. Management Science, 31(9), 1106-
1128.

Golden, B.L. and Magnanti, T.L. (1977) Deterministic network optimization: a bibliography.
Networks, 7, 149-183.

Gopalan, R., Batta, R. and Karwan, M.H. (1990) The equity constrained shortest path problem.
Computers & Operations Research, 17(3), 297-307.

Goto, S. and Sangiovanni-Vincentelli, A. (1978) A new shortest path updating algorithm.
Networks, 8, 341-372.

Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1979) Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5, 287–326.

Guinet, A. (1993) Scheduling sequence-dependent jobs on identical parallel machines to
minimize completion criteria. International Journal of Production Research, 31, 1579-
1594.

 150

Gupta, A.K. and Sivakumar, A.I. (2004) Single machine scheduling with multiple objectives in
semiconductor manufacturing. The International Journal of Advanced Manufacturing
Technology.

Gupta, D. and Magnusson, T. (2005) The capacitated lot-sizing and scheduling problem with
sequence-dependent setup costs and setup times. Computers & Operations Research,
32(4), 727-747.

Gupta, J.N.D. (1986) Flowshop schedules with sequence dependent setup times. Journal of
Operations Research Society of Japan, 29, 206-219.

Gupta, J.N.D. and Darrow, W.P. (1986) The two-machine sequence dependent flowshop
scheduling problem. European Journal of Operational Research, 24, 439-446.

Gupta, S.K. (1982) n jobs and m machines job-shop problems with sequence-dependent setup
times. International Journal of Production Research, 20(5), 643-656.

Haase, K. (1994) Lotsizing and scheduling for production planning. Lecture Notes in Economics
and Mathematical Systems, Springer-Verlag Publisher.

Haase, K. (1996) Capacitated lotsizing with sequence dependent setup costs. Operations
Research Spektrum, 18, 51-59.

Haase, K. and Kimms, A. (2000) Lot sizing and scheduling with sequence-dependent setup costs
and times and efficient rescheduling opportunities. International Journal of Production
Economics, 66(2), 159-169.

Handler, G.Y. and Zang, I. (1980) A dual algorithm for the constrained shortest path problem.
Networks, 10, 293-310.

Hashiba, S. and Chang, T.C. (1991) PCB assembly set-up reduction using Group Technology.
Computers & Industrial Engineering, 21(1-4), 453-457.

Hassan, M.M.D. (1992) Network reduction for the acyclic constrained shortest path problem.
European Journal of Operational Research, 63, 124-132.

Hassin, R. (1992) Approximation schemas for the restricted shortest path problems. Mathematics
of Operations Research, 17(1), 36-42.

Heady, R.B. and Zhu, Z. (1998) Minimizing the sum of job earliness and tardiness in a
multimachine system. International Journal of Production Research, 36(6), 1619-1632.

Hertz, A. and Widmer, M. (1996) An improved tabu search approach for solving the job shop
scheduling problem with tooling constraints. Discrete Applied Mathematics, 65, 319-345.

Holmberg, K. and Yuan, D. (2003) A multicommodity network-flow problem with side
constraints on paths solved by column generation. Informs Journal of Computing, 15(1),
42-57.

 151

Hop, N.V. and Nagarur, N.N. (2004) The scheduling problem of PCBs for multiple non-identical
parallel machines. European Journal of Operational Research, 158, 577-594.

Houck, Jr., D.J., Picard, J.C., Queyranne, M. and Vemuganti, R.R. (1980) The traveling
salesman problem as a constrained shortest path problem: Theory and Computational
Experience. Opsearch, 17, 93-109.

Hui, C., Gupta, A. and van der Meulen, H.A.J. (2000) A novel MILP formulation for short-term
scheduling of multistage multi-product batch plants. Computers & Chemical
Engineering, 24(2-7), 1611-1617.

Hurink, J. and Knust, S. (2001) List scheduling in a parallel machine environment with
precedence constraints and setup times. Operations Research Letters, 29(5), 231-239.

Hwang, H. and Sun, J.U. (1997) Production sequencing problem with reentrant work flows and
sequence dependent setup times. Computers & Industrial Engineering, 33(3-4), 773-776.

Hwang, H. and Sun, J.U. (1998) Production sequencing problem with re-entrant work flows and
sequence dependent setup times. International Journal of Production Research, 36(9),
2435-2450.

Ioachim, I., Gélinas, S., Soumis, F. and Desrosiers, J. (1998) A dynamic programming algorithm
for the shortest path problem with time windows and linear node costs. Networks, 31,
193-204.

Jaffe, J.M. (1984) Algorithms for finding paths with multiple constraints. Networks, 14, 95-116.

Jaumard, B., Semet, F. and Vovor, T. (1996) A two-phase resource constrained shortest path
algorithm for acyclic graphs. Les Cahiers du GERAD G-96-48, École des Hautes Études
Commerciales, Montréal, Canada, H3T 2A7.

Jaumard, B., Semet, F. and Vovor, T. (1998) A generalized linear programming model for nurse
scheduling. European Journal of Operational Research, 107, 1-18.

Johnson, D.S. and Papadimitriou, C.H. (1985) Computational complexity. in The Traveling
Salesman Problem, Lawler, E.L., Lenstra, J.K., Rinnooy, A.H.G. and Shmoys, D.B.
(eds), Wiley, Chichester, UK, 37-85.

Joksch, H. C. (1966) The shortest route problem with constraints. Journal of Mathematical
Analysis and Applications, 14, 191-197.

Jordan, C. and Drexl, A. (1998) Discrete lotsizing and scheduling by batch sequencing.
Management Science, 44(5), 698-713.

Kang, S., Malik, K. and Thomas, L. (1999) Lotsizing and scheduling on parallel machines with
sequence-dependent setup costs. Management Science, 45(2), 273–289.

Karimi, B., Fatemi Ghomi, S.M.T. and Wilson, J.M. (2003) The capacitated lot-sizing problem:
a review of models and algorithms. Omega, 31, 365-378.

 152

Katoh, N., Ibaraki, T. and Mine, H. (1982) An efficient algorithm for k shortest simple paths.
Networks, 12, 411-427.

Kim, C.O. and Shin, H.J. (2003) Scheduling jobs on parallel machines: a restricted tabu search
approach. The International Journal of Advanced Manufacturing Technology, 22(3-4),
278-287.

Kim, D., Kim, K., Jang, W. and Chen, F.F. (2002) Unrelated parallel machine scheduling with
setup times using simulated annealing. Robotics and Computer-Integrated
Manufacturing, 18(3-4), 223-231.

Kim, S.C. and Bobrowski, P.M. (1994) Impact of sequence-dependent setup time on job shop
scheduling performance. International Journal of Production Research, 32(7), 1503-
1520.

Kim, S.C. and Bobrowski, P.M. (1997) Scheduling jobs with uncertain setup times and sequence
dependency. Omega, 25(4), 437-447.

Kim, S.-S., Shin, H.J., Eom, D.-H. and Kim, C.-O. (2003) A due date density-based categorising
heuristic for parallel machines scheduling. The International Journal of Advanced
Manufacturing Technology, 22(9-10), 753-760.

Kim, S.-Y., Lee, Y.-H. and Agnihotri, D. (1995) A hybrid approach to sequencing jobs using
heuristic rules and neural networks. Production Planning & Control, 6(5), 445-454.

Kim, Y., Lim, H. and Park, M. (1996) Search heuristics for a flow shop scheduling problem in a
printed circuit board assembly process. European Journal of Operational Research,
91(1), 124-143.

King, V. and Thorup, M. (2001) A space saving trick for directed dynamic transitive closure and
shortest path algorithms. in Proceedings of the 7th Annual International Computing and
Combinatorial Conference COCOON in LNCS 2108, 268-277, Springer-Verlag.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing.
Science, 220, 671–680.

Kolahan, F. and Liang, M. (1998) An adaptive TS approach to JIT sequencing with variable
processing times and sequence-dependent setups. European Journal of Operational
Research, 109, 142-159.

Kolahan, F., Liang, M. and Zuo, M. (1995) Solving the combined part sequencing and tool
replacement problem for an automated machine center: a tabu search approach.
Computers & Industrial Engineering, 28, 731-743.

Kolen, A., Rinnooy Kan, A. and Trienekens, H. (1987) Vehicle routing with time windows.
Operations Research, 35, 266-273.

 153

Kurz, M.E. and Askin, R.G. (2001) Heuristic scheduling of parallel machines with sequence-
dependent set-up times. International Journal of Production Research, 39(16), 3747-
3769.

Kurz, M.E. and Askin, R.G. (2003) Comparing scheduling rules for flexible flow lines.
International Journal of Production Economics, 85(3), 371-388.

Kurz, M.E., and Askin, R.G. (2004) Scheduling flexible flow lines with sequence-dependent
setup times. European Journal of Operational Research, 159, 66-82.

Laguna, M. (1999) A heuristic for production scheduling and inventory control in the presence
of sequence-dependent setup times. IIE Transactions, 31(2), 125-134.

Laguna, M. and Glover, F.W. (1993) Integrating target analysis and tabu search for improved
scheduling systems. Expert Systems with Applications, 6, 287-297.

Lavoie, S., Minoux, M. and Odier, E. (1988) A new approach for crew pairing problems by
column generation with application to air transportation. European Journal of
Operational Research, 35, 45-48.

Lawler, E.L. (1976) Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
&Winston, New York, NY.

Lee, Y.H., Bhaskaran, K. and Pinedo, M. (1992) A heuristic to minimize the total weighted
tardiness with sequence dependent setups. Technical Report, IEOR Dept., Columbia
University, New York.

Lee, Y.H., Bhaskaran, K. and Pinedo, M. (1997) A heuristic to minimize the total weighted
tardiness with sequence-dependent setups. IIE Transactions, 29(1), 45-52.

Lee, Y.H. and Pinedo, M. (1997) Scheduling jobs on parallel machines with sequence-dependent
setup times. European Journal of Operational Research, 100, 464–474.

Leon, V.J. and Wu, S.D. (1992) On scheduling with ready-times, due-dates and vacations. Naval
Research Logistics, 39, 53-65.

Little, J.D.C., Murty, K.G., Sweeney, D.W. and Karel, C. (1963) An algorithm for the traveling
salesman problem. Operations Research, 11, 972-989.

Logendran, R., Gelogullari, C.A. and Sriskandarajah, C. (2003) Minimizing the mean flow time
in a two-machine group-scheduling problem with carryover sequence dependency.
Robotics and Computer Integrated Manufacturing, 19, 21-33.

Lorenz, D.H. and Raz, D. (2001) A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letter, 28, 213-219.

Low, C. (1995) Job shop scheduling heuristics for sequence dependent setups. Computers &
Industrial Engineering, 29(1-4), 279-283.

 154

Luh, P.B., Gou, L., Zhang, Y., Nagahora, T., Tsuji, M., Yoneda, K., Hasegawa, T., Kyoya, Y.
and Kano T. (1998) Job shop scheduling with group-dependent setups, finite buffers and
long time horizon. Annals of Operations Research: Mathematics of Industrial Systems,
76, 233-259.

Maimon, O.Z., Dar-El, E.M. and Carmon, T.F. (1993) Set-up saving schemes for printed circuit
boards assembly. European Journal of Operational Research, 70, 177-190.

Mason, S.J., Fowler, J.W. and Matthew W.C. (2002) A modified shifting bottleneck heuristic for
minimizing total weighted tardiness in complex job shops. Journal of Scheduling, 5(3),
247-262.

Maxwell, W.L. (1964) The scheduling of economic lot sizes. Naval Research Logistics
Quarterly, 11(2-3), 89-124.

McGinnis, L.F., Ammons, J.C., Carlyle, M., Cranmer, L., Depuy, G.W., Ellis, K.P., Tovey, C.A.
and Xu, H. (1992) Automated process planning for printed circuit card assembly. IIE
Transactions, 24(4), 18-30.

Mehlhorn, K. and Ziegelmann, M. (2000) Resource Constrained shortest paths. in 7th Ann
European Symp on Algorithms (ESA 2000), Paterson, M. (ed), LNCS 1879, Springer-
Verlag, Heidelberg, Berlin, 326-337.

Mendes, A.S., Müller, F.M., França, P.M. and Moscato, P. (2002) Comparing meta-heuristic
approaches for parallel machine scheduling problems. Production Planning & Control,
13(2), 143-154.

Mendez, C.A., Henning, G.P. and Cerde, J. (2001) An MILP continuous-time approach to short-
term scheduling of resource-constrained multistage flowshop batch facilities. Computers
& Chemical Engineering, 25(4-6), 701-711.

Meyr, H. (2000) Simultaneous lotsizing and scheduling by combining local search with dual
reoptimization. European Journal of Operational Research, 120(2), 311-326.

Meyr, H. (2002) Simultaneous lotsizing and scheduling on parallel machines. European Journal
of Operational Research, 139(2), 277-292.

Miller, M.D., Chen, H.-C., Matson, J. and Liu, Q. (1999) A hybrid genetic algorithm for the
single machine scheduling problem. Journal of Heuristics, 5, 437-454.

Mingozzi, A., Boschetti, M.A., Ricciardelli, S. and Bianco, L. (1999) A set partitioning approach
to the crew scheduling problem. Operations Research, 47(6), 873-888.

Minoux, M. and Ribeiro, C. (1984) A transportation of hard (Equality constrained knapsack
problems into constrained shortest path problems. Operations Research Letters, 3, 211-
214.

Mokotoff, E. (2001) Parallel machine scheduling problem: a survey. Asia-pacific Journal of
Operational Research, 18, 193-242.

 155

Monma, C.L. and Potts, C.N. (1989) On the complexity of scheduling with batch setup times.
Operations Research, 37(5), 798-804.

Moscato, P. (1989) On evolution, search, optimization, genetic algorithms and martial arts:
towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report
826.

Moscato, P. (1999) Memetic algorithms: a short introduction. in New Ideas in Optimization,
Corne, D., Dorigo, M. and Glover F. (eds), McGraw-Hill, London, 219-234.

Nauss, R.M. (1978) The 0-1 knapsack problem with multiple choice constraint. European
Journal of Operational Research, 2, 125-131.

Norman, B.A. (1999) Scheduling flowshops with finite buffers and sequence-dependent setup
times. Computers & Industrial Engineering, 36(1), 163-177.

OR-library, RCSP instances, http://people.brunel.ac.uk/~mastjjb/jeb/orlib/rcspinfo.html.
Accessed April, 2005.

Osman, I.H. and Potts, C.N. (1989) Simulated annealing for permutation flow-shop scheduling.
Omega, 17(6), 551–557.

Ovacik, I.M. and Uzsoy, R. (1993) Worst-case error bounds for parallel machines scheduling
problems with sequence-dependent setup times. Operations Research Letters, 14, 251-
256.

Ovacik, I.M. and Uzsoy, R. (1994a) Exploiting shop floor status information to schedule
complex job shops. Journal of Manufacturing Systems, 13(2), 73-84.

Ovacik, I.M. and Uzsoy, R. (1994b) Rolling horizon algorithms for a single-machine dynamic
scheduling problem with sequence-dependent setup times. International Journal of
Production Research, 32(6), 1243-1263.

Ovacik, I.M. and Uzsoy, R. (1995) Rolling horizon procedures for dynamic parallel machine
scheduling with sequence-dependent setup times. International Journal of Production
Research, 33(11), 3173-3192.

Ovacik, I.M. and Uzsoy, R. (1997) Decomposition Methods for Complex Factory Scheduling
Problems, Kluwer Academic Publishers, Dordrecht, MA.

Ozgur, C.O. and Brown, J.R. (1995) A two-stage traveling salesman procedure for the single
machine sequence-dependent scheduling problem. Omega, 23(2), 205-219.

Pallottino, S. and Scutellà, M.G. (2003) A new algorithm for reoptimizing shortest paths when
the arc costs change. Operations Research Letters, 31, 149-160.

Palmer, D.S. (1965) Sequencing jobs through a multistage process in the minimum total time - a
quick method of obtaining a near optimum. Operational Research Quarterly, 16(1), 101-
107.

 156

Papadimitriou, C.H. and Steiglitz, K. (1998) Combinatorial Optimization: Algorithms and
Complexity, Dover, Mineola, NY.

Park, Y., Kim, S. and Lee, Y. (2000) Scheduling jobs on parallel machines applying neural
network and heuristic rules. Computers & Industrial Engineering, 38(1), 189-202.

Parthasarathy, S. and Rajendran, C. (1997a) An experimental evaluation of heuristics for
scheduling in a real-life flowshop with sequence-dependent setup times of jobs.
International Journal of Production Economics, 49(3), 255-263.

Parthasarathy, S. and Rajendran, C. (1997b) A simulated annealing heuristic for scheduling to
minimize mean weighted tardiness in a flowshop with sequence-dependent setup times
of jobs-a case study. Production Planning & Control, 8(5), 475-483.

Pearn, W.L., Chung, S.H., Chen, A.Y. and Yang, M.H. (2004) A case study on the multistage IC
final testing scheduling problem with reentry. International Journal of Production
Economics, 88(3), 257-267.

Pinedo, M. (2002) Scheduling: Theory, Algorithms and Systems, 2nd edn., Prentice Hall,
Englewood Cliffs, NJ.

Pisinger, D. (1994) A minimal algorithm for the multiple-choice knapsack problem. Technical
Report 94/25, DIKU, University of Copenhagen, Denmark.

Potts, C.N. and van Wassenhove, L.N. (1992) Integrating scheduling with batching and lot-
sizing: a review of algorithms and complexity. Journal of Operations Research Society,
43(5), 395-406.

Pugazhendhi, S., Thiagarajan, S., Rajendran, C. and Anantharaman, N. (2004) Generating non-
permutation schedules in flowline-based manufacturing systems with sequence-
dependent setup times of jobs: a heuristic approach. The International Journal of
Advanced Manufacturing Technology, 23(1-2), 64-78.

Rabadi, G., Mollaghasemi, M. and Anagnostopoulos, G.C. (2004) A branch-and-bound
algorithm for the early/tardy machine scheduling problem with a common due-date and
sequence-dependent setup time. Computers & Operations Research, 31, 1727-1751.

Radhakrishnan, S. and Ventura, J.A. (2000) Simulated Annealing for parallel machine
scheduling with earliness-tardiness penalties and sequence-dependent set-up times.
International Journal of Production Research, 38(10), 2233-2252.

Ragatz, G.L. (1993) A branch-and-bound method for minimum tardiness sequencing on a single
processor with sequence dependent setup times, in Proceedings: twenty-fourth annual
meeting of the Decision Sciences Institute, 23(4), pp. 346-354.

Rajendran, C. and Ziegler, H. (1997) A heuristic for scheduling to minimize the sum of weighted
flowtime of jobs in a flowshop with sequence-dependent setup times of jobs. Computers
& Industrial Engineering, 33(1-2), 281-284.

 157

Rajendran, C. and Ziegler, H. (2003) Scheduling to minimize the sum of weighted flowtime and
weighted tardiness of jobs in a flowshop with sequence-dependent setup times.
European Journal of Operational Research, 149(3), 513-522.

Rajkumar, K. and Narendran, T.T. (1998) A heuristic for sequencing PCB assembly to minimize
setup times. Production Planning & Control, 9(5), 465-476.

Ramalingam, G. and Reps, T. (1996) An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms, 21, 267-305.

Raman, N., Rachamadugu, R.V. and Talbot, F.B. (1989) Real time scheduling of an automated
manufacturing center. European Journal of Operational Research, 40, 222-242.

Reeves, C.R. (1995) A genetic algorithm for flowshop sequencing. Computers & Operations
Research, 22(1), 5–13.

Reinelt, G. (1994) The Traveling Salesman: Combinatorial Solutions for TSP Applications,
Springer-Verlag, Berlin.

Ribeiro C.C. and Minoux M. (1985) A heuristic approach to hard constrained shortest path
problems. Discrete Applied Mathematics, 10, 125-137.

Rios-Mercado, R.Z. and Bard, J.F. (1998a) Computational experience with a branch-and-cut
algorithm for flowshop scheduling with setups. Computers & Operations Research,
25(5), 351-366.

Rios-Mercado, R.Z. and Bard, J.F. (1998b) Heuristics for the flow line problem with setup costs.
European Journal of Operational Research, 110(1), 76-98.

Rios-Mercado, R.Z., and Bard, J.F. (1999a) A branch-and-bound algorithm for permutation flow
shops with sequence-dependent setup times. IIE Transactions, 31(8), 721-731.

Rios-Mercado, R.Z., and Bard, J.F. (1999b) An enhanced TSPbased heuristic for makespan
minimization in a flow shop with setup times. Journal of Heuristics, 5(1), 57-74.

Roslöf, J., Harjunkoski, I., Westerlund, T. and Isaksson J. (2002) Solving a large-scale industrial
scheduling problem using MILP combined with a heuristic procedure. European Journal
of Operational Research, 138, 29-42.

Rossetti, M.D. and Stanford, K.J.A. (2003) Group sequencing a PCB assembly system via an
expected sequence dependent setup heuristic. Computers & Industrial Engineering,
45(1), 231-254.

Roy, B. and Sussman, B. (1964) Les problèmes d’ordonnancement avec contraintes disjonctives,
in Proceedings of SEMA, Montrouge, France.

Rubin, P.A. and Ragatz, G.L. (1995) Scheduling in a sequence dependent setup environment
with genetic search. Computers & Operations Research, 22(1), 85-99.

 158

Ruiz, R., Maroto, C. and Alcaraz, J. (2005) Solving the flowshop scheduling problem with
sequence dependent setup times using advanced metaheuristics. European Journal of
Operational Research, 165, 34-54.

Russell, R.A. (1995) Hybrid heuristics for the vehicle-routing problem with time windows.
Transportation Sciences, 29, 156-166.

Salomon, M., Solomon, L., van Wassenhove, L.N., Dumas, J. and Dauzere-Peres, S. (1997)
Solving the discrete lotsizing and scheduling problem with sequence dependent set-up
costs and set-up times using the Traveling Salesman Problem with time windows.
European Journal of Operational Research, 100, 494-513.

Schaller, J.E., Gupta, J.N.D. and Vakharia, A.J. (2000) Scheduling a flowline manufacturing cell
with sequence dependent family setup times. European Journal of Operational Research,
125(2), 324-339.

Schutten, J.M.J. (1996) List scheduling revisited. Operations Research Letters, 18(4), 167-170.

Shailendra, J., Eric, J.M. and Fereydoon, S. (1996) Implementing setup optimization on the shop
floor. Operations Research, 44(6), 843-851.

Sherali, H.D., Hobeika, A.G., and Kangwalklai, S. (2003) Time-dependent, label-constrained
shortest path problems with applications. Transportation Science, 37(3), 278-293.

Shin, W.S., Hart, S.M. and Lee, H.F. (1995) Strategic allocation of inspection stations for a flow
assembly line: a hybrid procedure. IIE Transactions, 27, 707-715.

Sikora, R. (1996) A genetic algorithm for integrating lot-sizing and sequencing in scheduling a
capacitated flow line. Computers & Industrial Engineering, 30(4), 969-981.

Sikora, R., Chhajed, D. and Shaw, M.J. (1996) Integrating the lot-sizing and sequencing
decisions for scheduling a capacitated flow line. Computers & Industrial Engineering,
30(4), 659-679.

Silver, E.A. and Meal. H.C. (1973) A heuristic selecting lot size requirement for the case of a
deterministic time varying demand rate and discrete opportunities for replenishment.
Production and Inventory Management, 14, 64-74.

Simons, Jr. J.V. (1992) Heuristics in flow shop scheduling with sequence dependent setup times.
Omega, 20(2), 215-225.

Sinha, A. and Zoltners, A.A. (1979) The multiple-choice knapsack problem. Operations
Research, 27, 503-515.

Sivrikaya-Serifoglu, F. and Ulusoy, G. (1999) Parallel machine scheduling with earliness and
tardiness penalties. Computers & Operations Research, 26(8), 773-787.

 159

Spina, R., Galantucci, L.M. and Dassisti, M. (2003) A hybrid approach to the single line
scheduling problem with multiple products and sequence-dependent time. Computers &
Industrial Engineering, 45(4), 573-583.

Srikar, B.N. and Ghosh, S. (1986) A MILP model for the n-job, M-stage flowshop, with
sequence dependent setup times. International Journal of Production Research, 24(6),
1459-1472.

Stafford, Jr. E.F. and Tseng, F.T. (1990) On the Sriker-Ghosh MILP model for the N×M SDST
flowshop problem. International Journal of Production Research, 28(10), 1817-1830.

Stafford, Jr. E.F. and Tseng, F.T. (2002) Two models for a family of flowshop sequencing
problems. European Journal of Operational Research, 142(2), 282-293.

Stojković, M. and Soumis, F. (2001) An Optimization Model for the Simultaneous Operational
Flight and Pilot Scheduling Problem. Management Science, 47(9), 1290-1305.

Stutzle, T. (1998) Applying iterated local search to the permutation flow shop problem.
Technical Report, AIDA-98-04, Darmstadt, Germany.

Sun, J.U. and Hwang, H. (2001) Scheduling problem in a two-machine flow line with the N-step
prior-job-dependent set-up times. International Journal of Systems Science, 32(3), 375-
385.

Sun, J.U., Yee, S.R. and Hwang, H. (2003) Job shop scheduling with sequence dependent setup
times to minimize makespan. International Journal of Industrial Engineering – Theory
Applications and Practice, 10(4), 455-461.

Sun, X., Noble, J.S. and Klein, C.M. (1999) Single-machine scheduling with sequence
dependent setup to minimize total weighted squared tardiness. IIE Transactions, 31(2),
113-124.

Taillard, E. (1993) Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64, 278–285.

Tan, K.C. and Narasimhan, R. (1997a) Minimizing tardiness on a single processor with
sequence-dependent setup times: a simulated annealing approach. Omega, 25(6), 619-
634.

Tan, K.C. and Narasimhan, R. (1997b) Multi-objective sequencing with sequence dependent
setup times. International Journal of Operations and Quantitative Management, 3, 69-
84.

Tan, K.C., Narasimhan, R., Rubin, P.A. and Ragatz, G.L. (2000) A comparison of four methods
for minimizing total tardiness on a single processor with sequence dependent setup times.
Omega, 28(3), 313-326.

 160

Thizy, J.M. and van Wassenhove, L.N. (1985) Lagrangean relaxation for the multi-item
capacitated lot-sizing problem: a heuristic implementation. IEE Transactions, 17(4),
308-313.

Trigeiro, W.W., Thomas, L.J. and McClain, J.O. (1989) Capacitated lot sizing with setup times.
Management Science, 35(3), 353-366.

Unal, A.T., Uzsoy, R. and Kiran, A.S. (1997) Rescheduling on a single machine with part-type
dependent setup times and deadlines. Annuals of Operations Research, 70, 93-113.

Uzsoy, R., Lee, C.Y. and Martin-Vega, L.A. (1992) Scheduling semiconductor test operations:
minimizing maximum lateness and number of tardy jobs on a single machine. Naval
Research Logistics, 39, 369-388.

Uzsoy, R., Martin-Vega, L.A., Lee, C.Y. and Leonard, P.A. (1991) Production scheduling
algorithms for a semiconductor testing facility. IEEE Transactions on Semiconductor
Manufacturing, 4, 270-280.

Vallada, E., Ruiz, R. and Maroto, C. (2003) Synthetic and real benchmarks for complex flow-
shop problems. Technical Report, Universidad Politécnica de Valencia, Valencia,
España, Grupo de Investigatión Operativa GIO.

van den Akker, J.M., Hurkens, C.A.J. and Savelsbergh, M.W.P. (2000) A time-indexed
formulation for single-machine scheduling problems: column generation. INFORMS
Journal on Computing, 12(2), 111-124.

Villeneuve, D. and Desaulniers, G. (2005) The shortest path problem with forbidden paths.
European Journal of Operational Research, 165(1), 97-107.

Wagner, B.J. and Davis, D.J. (2002) A search heuristic for the sequence-dependent economic lot
scheduling problem. European Journal of Operational Research, 141(1), 133-146.

Weng, M.X., Lu, J. and Ren, H. (2001) Unrelated parallel machine scheduling with setup
consideration and a total weighted completion time objective. International Journal of
Production Economics, 70(3), 215-226.

White, L.S. (1969) Shortest route models for the allocation of inspection effort on a production
line. Management Science, 15, 249-259.

Widmer, M. and Hertz, A. (1989) A New heuristic method for the flow shop sequencing
problem. European Journal of Operational Research, 41, 186-193.

Wilbrecht, J.K. and Prescott, W.B. (1969) The influence of set-up time on job shop performance.
Management Science, 16, B274-B280.

Wilhelm, W.E. (1999) A column-generation approach for the assembly system design problem
with tool changes. The International Journal of Flexible Manufacturing Systems, 11,
177-205.

 161

Wilhelm, W.E. (2001) A technical review of column generation in integer programming.
Optimization and Engineering, 2(2), 159-200.

Wilhelm, W.E., Arambula, I. and Choudhry, N.N. (2005a) A model to optimize picking
operations on dual-head placement machines. IEEE Transactions on Automation Science
and Engineering, forthcoming.

Wilhelm, W.E., Choudhry, N.D. and Damodaran, P. (2004) A model to optimize placement
operations on dual-head placement machines. In review.

Wilhelm, W.E., Damodaran, P. and Li, J. (2003) Prescribing the content and timing of product
upgrades. IIE Transactions, 35 (7), 647-664.

Wilhelm, W.E., Liang, D., Bulusu, S., Warrier, D., Zhu, X. and Vasudeva, B.R.T. (2005b)
Design of international assembly systems and their supply chains under NAFTA.
Transportation Research E, in press.

Wilhelm, W.E. and Tarmy P.K. (2003) Circuit card assembly on tandem turret-type placement
machines. IIE Transactions, 35, 627-645.

Woodruff, D.L. and Spearman, M.L. (1992) Sequencing and batching for two classes of job with
deadlines and setup times. Production and Operations Management, 1, 87-102.

Yalaoui, F. and Chu, C. (2003) An efficient heuristic approach for parallel machine scheduling
with job splitting and sequence-dependent setup times. IIE Transactions, 35, 183-190.

Yang, W.H. and Liao, C.J. (1999) Survey of scheduling research involving setup times.
International Journal of system Science, 30(2), 143-155.

Yen, J.Y. (1971) Finding the k shortest loopless paths in a network. Management Science, 17,
712-716.

Zoghby, J., Barnes, J.W. and Hasenbein, J.J. (2005) Modeling the reentrant job shop scheduling
problem with setups for metaheuristic searches. European Journal of Operational
Research, 167, 336-348.

 162

VITA

The author of this dissertation, Xiaoyan Zhu, graduated from Tsinghua University, Beijing,

China, in June 2000 with a Bachelor of Engineering degree in thermal power engineering. Her

outstanding academic performance made it possible for her to join the Singapore-Massachusetts

Institute of Technology Alliance (SMA), which is provided by Massachusetts Institute of

Technology, Boston, and Nanyang Technological University, Singapore, to pursue her first

Master of Science degree in innovation in manufacturing systems and technology. She

graduated from this program in June 2001.

She received her second Master of Science degree from Texas A&M University, College

Station, in industrial engineering in December 2002. She received her Doctor of Philosophy

degree from Texas A&M University, College Station, in industrial engineering in December

2005.

 Her permanent address is #1 Yangluo Main Street, XinZhou District, Wuhan City,

Hubei Province 430415, China.

The typist for this dissertation was Xiaoyan Zhu.

