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Abstract

The permutation flowshop is a widely applied scheduling model. In many real-world applica-
tions of this model, a minimum and maximum time-lag must be considered between consecutive
operations. We can apply this model to healthcare systems in which the minimum time-lag could
be the transfer times, while the maximum time-lag could refer to the number of hours patients
must wait. We have modeled a MILP and a constraint programming model and solved them using
CPLEX to find exact solutions. Solution times for both methods are presented. We proposed
two metaheuristic algorithms based on genetic algorithm and solved and compared them with each
other. A sensitivity of analysis of how a change in minimum and maximum time-lags can impact
waiting time and Cmax of the patients is performed. Results suggest that constraint programming is
a more efficient method to find exact solutions and changes in the values of minimum and maximum
time-lags can impact waiting times of the patients and Cmax significantly.

JEL Classification: C44,C61
Keywords: Waiting times of the patients, Healthcare scheduling, Constraint programming,

Genetic algorithm
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1 Introduction

Everyone has availed a healthcare facility, whether for doing a check-up, performing a medical test,
visiting a physician or accompanying a friend; however, a worrisome aspect of visiting healthcare
systems is waiting in a line to receive the necessary care service. Specifically, if a person is
suffering from a severe illness, the resulting pain, anxiety, and inconvenience of waiting in a line
would increase substantially. Furthermore, spending a lot of time in a line has the risk of worsening
the health condition of the patient (Prentice and Pizer, 2007).

Long waiting time increases exposure to pain, but it can increase the mortality rate (Prentice
and Pizer, 2007). Barua, Esmail, and Jackson (2014) suggested in their study that only between
the years 1993 and 2009, waiting has been the cause of death of an estimated range of 25, 456 to
63, 090 female Canadian patients.

Among healthcare stakeholders, patients are not the only group who would prefer to reduce
waiting times. Healthcare decision makers are another group who have the challenge with waiting
times and want to reduce waiting times in healthcare systems, and one of their aims is to provide
better service by shortening waiting times that improve quality of healthcare systems (Nova Scotia
Department of Health andWellness, 2010). In many healthcare systems total or mean waiting times
are estimated as one of the performance criteria of the system and a criterion of patient satisfaction.
However, not only mean waiting time is crucial but variations in waiting time are important, and
they can be explained by characteristics of patient, clinic and provider level (Dansky and Miles,
1997; Dimakou, Parkin, Devlin, and Appleby, 2009).

Although a considerable amount of effort has been put into decreasing waiting times, it is still a
challenge for healthcare decision makers to lower waiting times and the waiting times are not small
numbers; for example, statistics of Health Quality Ontario (2018) suggested that on average each
patient has to wait for 1.5 hours to visit a doctor in the emergency departments after triage nurse
has assessed them for the first time in April 2018 in Ontario. A study for publicly funded hospitals
in Quebec suggested that outpatients who need to receive physiotherapy service have a waiting time
of more than six months for more than 41% of those services (Deslauriers et al., 2017).

Statistics provided by Health Quality Ontario (2018) showed that on average patients who were
admitted to emergency departments had 14.8 hours stay in emergency departments before going
to hospitals. Low-urgency patients who sent home after the first visit by doctors spent 2.5 hours
from the time they were assessed by the triage nurse until the time they left the emergency and went
home. Also, high-urgency patients who sent home after the first visit by doctors spent four hours
from the time triage nurses assessed them until the time they left the emergency and went home
after their first assessment by a doctor; assuming that the 1.5 hours waiting time can be considered
the waiting time for both groups of patients whom doctors sent home, one can conclude that 60%
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and 37.5% of the time of patients after being assessed by triage nurses was wasted for waiting in
line. These statistics and estimates propose that a reduction in waiting time before seeing the doctor
can result in the reduction in the time of the stay in emergency departments significantly.

Negative impact on health and comfort of the patients is not the only detriment of waiting
times. Waiting times can impose heavy costs on healthcare systems. A research that aimed to
study how waiting times impact the Canadian economic system found that only for the first four
priorities out of the five priorities, the cumulative cost of "excess wait" or waiting longer than the
medically allowed waiting is $14.8 billion in the year 2007 (Canadian Medical Association, 2008).
Ministry of Health and Long-Term Care (2008) indicates that the average cost of extra wait for
each patient who needs " total joint replacement surgery" is $26, 400. Besides the costs imposed by
waiting times, there have been huge investments in Canada to reduce waiting times; for example in
2008, a $109 million investment launched in Ontario to reduce waiting times during the three years
period of 2008 − 2011 (Ministry of Health and Long-Term Care , 2008). Despite the investment,
Vermeulen, Stukel, Boozary, Guttmann, and Schull (2016) concluded that the program had "modest
overall benefits for ED length of stay without adversely affecting quality of care".

There are several solutions that decision makers consider to reduce waiting times or to minimize
the negative effects of waiting times on patients (Nova Scotia Department of Health and Wellness,
2010): One solution to manage the flow and reduce waiting times is to streamline patients to special
purpose areas. If it is not possible to reduce waiting times then explain the services available to
the patients, length of stay and the time that patients need to wait in lines to reduce their anxiety
and increase the comfort of the patients (Nova Scotia Department of Health and Wellness, 2010).
Another approach is to prioritize patients based on their need to receive healthcare services (Willcox
et al., 2007). As a result, patients with lower priority are required towaitmore to receive the care they
need, and patients who urgently need to receive the care receive the care they require at the earliest
possible time. This can be helpful in many situations; however, one drawback of this approach is
that low priority patients may feel humiliated and powerless (Dahlen, Westin, and Adolfsson, 2012).
One other approach is to control maximum waiting times (Babashov et al., 2017; Sinko, Nikolova,
Sutton, et al., 2015).

Notwithstanding, there have been different approaches to manage waiting times, many of these
methods have their potential drawbacks (Deslauriers et al., 2017; Sinko et al., 2015). Regardless
of the managerial methods that can play an important role in reducing waiting times, the correct
sequence of the patients in line and true assignment of patients can reduce waiting time; this can
be achieved by developing mathematical models and use of operations research and scheduling
methods and techniques.

One potential solution to minimize waiting time and length of stay is to use operations research
techniques to find the best settings of a healthcare system. Operations research techniques can
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be combined with most other waiting time management systems to reduce waiting times. These
techniques can help to find the best setting of the system. Operations research techniques can help
to improve performance criteria of the system by suggesting the best order and timing of healthcare
systems.

Scheduling has been a traditional field of interest in operations research and operation manage-
ment (Akers, 1956; Bowman, 1956). Applications of scheduling arise in different industries and
sectors such as manufacturing (Rahmani and Ramezanian, 2016) and healthcare (Hancock and Al-
gozzine, 2016; Qu, Peng, Kong, and Shi, 2013). Many studies have used scheduling and operations
research tools to improve the performance of healthcare system in areas such as optimizing appoint-
ment scheduling (Grant, Gurvich, Mutharasan, and Van Mieghem, 2017), optimizing scheduling in
emergency departments (Daldoul, Nouaouri, Bouchriha, and Allaoui, 2018), minimizing waiting
time, improving access of patient to care and improving patient experience (Denton, Viapiano, and
Vogl, 2007; Huang, 2008; Huang and Bach, 2016). Despite a vast range of researches on scheduling
in healthcare, there are still situations that have not been discussed enough in the literature. One
situation is to consider waiting times in a model. Wait Time Alliance provided some wait times
benchmarks for different patients in Canada in different categories such as chronic Pain services,
Arthritis Care and another 14th categories; they provided acceptable wait times for different types
of diagnosis (Wait Time for Canada Wait Time Alliance, 2014).

There exist two types of waiting times for patients in every healthcare system. One kind of
waiting time is the one before showing up of patients in the healthcare system and while making an
appointment to show up in the clinic. The second type of waiting time arises when patients show
up in the healthcare system, and since all healthcare resources such as physicians, nurses and all
types of equipment are seized by other patients, patients have to wait in a line before the medical
services they need to access. In this study, we are studying the second type of waiting times that
occur when the patient attends the healthcare system.

In a situation where a patient must go through consecutive operations there might be a necessity
to consider a minimal time lag or a minimum waiting time between two consecutive operations.
This requirement can be addressed by including a minimal time lag constraint in the model.

Minimal time lags can be a transfer time from one department to another department or the
minimum rest time after a medical test or a time to become ready to perform a surgery. On the
other hand, patients do not like to wait for more than a maximum amount of time between two
consecutive operations. For a patient, waiting for more than a maximum amount of time can cause
discomfort or have some life threats in some cases (Prentice and Pizer, 2007). This requirement can
be explained by adding a maximum time lag constraint to the model.

In addition, if the sum of these waiting times or cumulative waiting time in the healthcare system
exceeds a certain amount of time, the patients may feel more inconvenience and being humiliated.
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In addition, if there are several consecutive operations, the sum of individual waiting times between
operations can become a big number and increase the access time to the necessary last operations
and have some health risks for the patients; therefore, to tackle this noisome experience a constraint
of the maximum total wait time of each patient must be considered to model the problem.

By examining all of these constraints, we developed a mixed integer programming model
and corresponding constraint programming permutation flowshop scheduling model to minimize
makespan. In our model, we considered minimal and maximal time lags between consecutive
operations and the maximum waiting time for each patient.

This report is organized as follows: In chapter two, the healthcare optimization literature is
reviewed and research gap is discussed. In chapter three, the developed mixed integer programming
and constraint programming models, parameters and variables are explained. Chapter four is
concentrated on presenting the developed algorithm to solve the model. After that, in chapter five,
calculation results and sensitivity analysis are described. Finally, conclusions and directions for
future research are presented in chapter six.
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2 Literature Review

This chapter addresses different research works in the area of healthcare scheduling in five sections:

• In the first section, a review of healthcare service is presented.

• In the second section, general literature related to healthcare scheduling has been provided.
Different challenges and opportunities that are discussed in the healthcare scheduling are
addressed in this section.

• In the third section, literature related to single and multi-objectives is described.

• In the fourth section, the literature related to optimizing time, cost and utilization of resources
is reviewed.

• In the fifth section, the literature related to stochastic and deterministic approach is reviewed.

• In the sixth section, literature related to inpatient and outpatient is reviewed.

• In the seventh section, the literature related to exact and approximate solution is studied.

• in the eights section, literature related to permuation flowshop is studied.

• In the last section, research gap and the contribution of this research is described.

The papers in this literature review include the ones that intend to model and solve the healthcare
scheduling problem; the focus is on the research works that used integer programming techniques.

2.1 Service Quality in Healthcare

In this section, service quality within the concept of scheduling will be discussed. Service quality
in the healthcare has been measured from different perspectives. Büyüközkan, Çifçi, and Güleryüz
(2011) developed a fuzzy AHP methodology for measuring healthcare service quality. They
investigated various aspects of service quality in healthcare systems, and one of the aspects of
system performance was responsiveness that referred to the ability to provide operations and service
on timeliness. Timeliness can be waiting time or total service time.

Singh and Prasher (2017), used fuzzy AHP to measure the service quality from patients’
perspective; they concluded that reliability and trustworthiness are the most important factors from
the patient’s perspective in measuring healthcare quality.
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2.2 General Healthcare Scheduling literature review

In this section, the literature related to research works that studied different aspects of scheduling
in healthcare is discussed.

Gupta and Denton (2008) examined various aspects, challenges, and opportunities in the ap-
pointment scheduling. They considered three types of environments: First primary care, second
specialty clinics and third surgeries and hospital stays; they argued that required services for patients
in the primary care usually could be provided in the fixed amount of time. In such environments,
service providers would break available time into time slots with the same size. Therefore, appoint-
ment scheduling problem becomes only the straightforward process of assigning appropriate time
among available spots to the patients.

Gupta and Denton (2008) argued that in specialty care, service time has more fluctuations and
making appointments is more complicated than primary care clinics. Because there is not any
standard service time in primary care clinics and scheduler must consider an extra capacity to
manage urgent appointment requests. They suggest that because of the variability of the procedure
times, scheduling of surgical appointments can be more complicated. The requirement for making
several appointments before surgery and the need to have some of the service providers at the same
time, make surgical appointment scheduling more complicated.

Hall (2012) reviewed various aspects of healthcare systems scheduling concerning healthcare
resources such as healthcare providers, rooms, facilities, supplies and organs to patients. Besides, he
discussed capacity planning, nurse scheduling, patients appointments in ambulatory care, operating
theatre planning and scheduling, appointment planning, scheduling in the outpatient procedure
centers, the human and artificial scheduling system for operating rooms, bed assignment and bed
management, queuing networks in healthcare systems, medical supply logistics.

Marynissen and Demeulemeester (2016) did a literature review for the problems of integrated
hospital scheduling. They considered their review only for the integrated hospital scheduling
problem (IHPS) which is the problem when a patient must visit multiple resources in hospital
sequentially; however, their study and their methodology can be applied to other studies in the field
of healthcare scheduling; they considered literature of integrated healthcare, patient flow, resource
scheduling and the appointment scheduling. Marynissen and Demeulemeester (2016) wanted to
find the relation of previous areas with IHPS and proposed the following steps for researchers who
are researching in this area:

1. In the first step, researchers need to select the best setting for their research. The setting
refers to the departments of hospitals that researchers want to study, the decision level at which
decisions are being made and the patient mix that is being investigated; different departments may
need different models such as flowshop, jobshop. Decision levels are divided into three categories of
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strategic, tactical and operational levels; patient mix is the type of patient since decision making can
be done based on inpatient, outpatient, mix of them or without mentioning these types of patients
and emergency departments (Marynissen and Demeulemeester, 2016).

2. In the second step, researchers select the scope of their research. Hence, researchers define
the assumptions, the departments of the hospital that they are going to consider, whether they
want to include nurses or not or whether all patients have care time in each step (Marynissen and
Demeulemeester, 2016).

3. In the third step, the model and the performance metrics to be optimized must be developed
(Marynissen and Demeulemeester, 2016).

4. In the fourth step, researchers need to select how to optimize the problem which includes the
strategy (online or offline) and scheduling methodology, patient classification method and patient
preferences. Since in offline scheduling, the researchers have less time limitation compared to online
scheduling, and there are more chance to use methods such as branch and bound which solution
needs a fair amount of time while in online scheduling the optimization maybe limited to meta-
heuristic methods. In addition, decision about methodology such as IP, MILP or metaheuristics is
made at this stage (Marynissen and Demeulemeester, 2016).

5. In the fifth and the last step, researchers need to consider the appropriate approach for
validating the model, and they need to decide for the model to be tested with fictional data or real
data (Marynissen and Demeulemeester, 2016).

Figure 2.1 presents healthcare scheduling literature categories that are considered in this litera-
ture review:
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Figure 2.1: Healthcare Scheduling Literature Categories

2.3 Number of Objectives

Problems in healthcare scheduling can be categorized based on the number of objectives into single
objective and multi-objective problems. Summary of the papers is presented in table 2.1.

Table 2.1: Number of Objectives
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2.4 Objective function to be optimized

Research studies in healthcare scheduling can be categorized based on the problem parameters;
some studies include one or more time related functions, some include one or more cost-related
functions and other studies include one or more function related to resource utilization. Summary
of the papers is presented in table 2.2.

Table 2.2: Objective function to be optimized research works

2.5 Problem parameters

Research studies can have stochastic or deterministic problem parameters such as constraints,
variables, and objective functions. Stochastic parameters can have a statistical distribution and
deterministic parameters have a fixed value before solving the problem. Summary of research
works that used deterministic approach is presented in the tables 2.3, 2.4, 2.5, 2.6.
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Table 2.3: Problem Parameters selected research works between 1996-2000

Table 2.4: Problem Parameters selected research works between 2000-2010
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Table 2.5: Problem Parameters selected research works between 2011-2015

Table 2.6: Problem Parameters selected research works in recent years

Summary of selected papers is presented in the table 2.7.
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Table 2.7: Selected research works that used stochastic parameters

2.6 Type of the patient

Research studies in the healthcare scheduling can be categorized based on the type of the patient
under study; some studies focus on inpatient and some on outpatient and each onemay need different
criteria. Summary of the papers is presented in the tables 2.8.

Table 2.8: Type of the patient

2.7 Type of the solution

One category that can be considered for the healthcare scheduling research studies is the type of
solution the researchers found. In this section research works that used exact and the research works
that used approximate method are investigated. Summary of the papers is presented in the table 2.9.
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Table 2.9: Type of the Solution

2.8 Permutation Flowshop

In any scheduling problem that a set of n jobs are scheduled on m machines, and all have the same
flow on all machines, the problem is a flowshop one; in a specific case of flowshop problems that
all jobs have the same orders on all machines the problem is considered a permutation flowshop
problem (Nagano, Ruiz, and Lorena, 2008). Johnson (1954) was one of the first researchers who
studied the flowshop problem and proposed a heuristic algorithm for flowshop problems with two
machines or for the flowshop problem with three machines, contingent on specific processing times.

The permutation flowshop scheduling problem (PFSP) with more than three machines is NP-
hard (Garey, Johnson, and Sethi, 1976); therefore, it is impossible to find an approach for finding
exact solutions for the permutation flowshop problem; however, many heuristics and meta-heuristics
have been developed to find a quality solution (Nawaz, Enscore Jr, and Ham, 1983; Rahman, Sarker,
and Essam, 2015; Rajendran, Rajendran, and Leisten, 2017). Heuristics can be categorized into
two categories: Constructive heuristics that build a feasible solution based on specific rules and
improvement heuristics that improves the feasible solution (Govindan, Balasundaram, Baskar, and
Asokan, 2017). Nawaz et al. (1983) proposed Nawaz-Enscore-Ham (NEH) heuristic algorithm
algorithm that was one of the most efficient heuristics to solve permutation flowshop problems.
Most of heuristics are adjusted types of NEH algorithm (Fernandez-Viagas, Ruiz, and Framinan,
2017). For PFSP many meta-heuristics have been developed and algorithms such as Ruiz and
Stützle (2007) could improve previous meta-heuristics (Fernandez-Viagas et al., 2017).

A more specific type of PFSP that has many applications in different industries, is the problem
with minimum and maximum time lags. One example can be food industry that there must be
a maximal time lag after finishing of cooking and before the start of chilling down (Hodson,
Muhlemann, and Price, 1985).

In the healthcare setting, maximal time lags can be preference of patients that do not want
to wait more than specific time. Minimal time-lags can be transport time in both manufacturing
and healthcare setting. Fondrevelle, Oulamara, and Portmann (2006) proved that the problem
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with minimal and maximal time lags is strongly NP-hard; they developed a branch and bound
algorithm to solve m machine PFSP with minimal and maximal time lags with the objective of
minimizing makespan and proposed several lower and upper bounds for the problem. Hamdi and
Loukil (2011) proposed a genetic algorithm to solve m machine PFSP with time lags. They adopted
the algorithm to calculate the minimum of makespan for a given permutation π from Fondrevelle
et al. (2006) paper. Dhouib, Teghem, and Loukil (2013) proposed several simulated annealing
algorithms for minimizing hierarchically the number of tardy jobs and makespan. Wang, Huang,
and Li (2018) proposed a two-stage constructive heuristic to solve permutation flowshop with
minimal and maximal time lags and tested their algorithm for small-scale problems.

2.9 Research Gap

In this section, research gaps have been highlighted. In the literature, different aspects of scheduling
in healthcare systems have been discussed.

One area that needs more research is optimizing cost in healthcare systems. The cost is
critical for healthcare system providers and minimizing cost can improve the services for patients.
Minimization cost of healthcare systems because of minimizing the cost of nurses and/or physicians
is an area that has not been studied. Cost factor can be minimized along with minimizing of
makespan or minimizing waiting time of patients.

Another area that has not been examined in the literature is minimizing of waiting time and/or
makespan with a mix of outpatient and inpatient that use the same resource in healthcare systems
as a multi-objective problem with the Pareto front. This can be a multi-objective optimization
function with one objective for each type of patients and one objective for waiting time of staffs.
One other area that has not been considered in the literature is considering the whole problem as a
bi-objective problem. One objective is optimizing the cost of staffs such as nurses, residents and
another objective is minimizing waiting time of patients.

Based on the healthcare literature, there is a lack of enough research that consider minimization
of Cmax with considering waiting time of patients. The problem under consideration in this thesis,
is minimizing waiting times before each job. Throughout this document, the word job refers to each
patient and machines refers to the provider’s resources such as physicians, nurses and staffs.

The general assumptions of the problem are as follows: a) the problem is assumed to be a
permutation flow shop problem in which preemption is not allowed; b) All jobs have a predefined
order of execution; c) The processing times are assumed to be deterministic, and it is assumed that
the jobs arrive on time; d) each job must be processed by a maximum of one machine at a time.
Also machines can process at most one operation at any moment in time; e) all of the processing
times are nonzero and positive; f) it is assumed that in each day there is a fixed number of hours and
intermediate storage is unlimited.
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This problem can be denoted as Fm | |Cmax; note that Fm | |Cmax does not consider any limitations
between the waiting times of the operations of the jobs. Although this is how the healthcare
providers treat the patients, long waiting times between the consecutive operations of the care result
in reduced satisfaction of the care receivers.

Figure 2.2 presents a healthcare system in which there are three resources. Once the first patient
has completed his/her work at machine one, he/she needs to wait for (t2− t1)+ (t4− t3). The proposal
of this thesis is that this waiting time should not exceed a pre-specified amount. To consider this
constraint, the problem of Fm | |Cmax may be converted to Fm |Ti j |Cmax (Graham, Lawler, Lenstra,
and Kan, 1979).

Figure 2.2: Waiting time of J1, i.e., patient one

Fm |Ti j |Cmax limits the waiting times between the operations i and i+1 of the job j to a minimum
of T1

i j and a maximum of T2
i j . In other words, Fm |Ti j |Cmax considers a minimum and a maximum

bound for the waiting time of patient j between the operations i and i+1 planned for his/her visit; the
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minimum bound is shown by T1
i j , and the maximum bound is represented by T2

i j . T1
i j can be obtained

from hospital and T2
i j can represent patient preference and can be obtained from the patients. A real

world example can be a person who goes to meet a dentist. Many patients in the dental clinic go
through the same process. There are typically four steps while visiting a dentist. At the first step,
the patient meets reception; then dental hygienist performs initial checking. An x-ray is taken after
that. Then cleaning is done and finally, the dentist examines the patient. Before each step, usually
there some delays or waiting times for the patients. This is an example of permutation flowshop in
healthcare. The job represents each patient, and in each step, every patient deals with a resource
such as a hygienist or receptionist in which each resource is a machine. In the dental clinic, before
each step, there might be delays. These delays are waiting times of the patients that are modeled in
this research work.
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3 Problem description

In this section, the problem, variables and parameters are presented. The problem formulation is
presented based on mixed integer linear programming and Constraint Programming formulations.
First, mixed integer linear programming formulation is presented and then constraint programming
is presented.

3.1 Mixed Integer Linear Programming Model

It is assumed that there are m resources or machines to process n jobs or patients. The variables
and parameters of the model are defined below:

m Number of machines
n Number of jobs
Jj Job j

pi j Processing time of ith operation of Jj .
Cmax Completion time of the last job before leaving the system.
xi j k A binary variable; its value is equal to one if Jk is scheduled immediately

after Jj on machine i, and zero otherwise.
si j Starting time of operation i of Jj .
T1

i j Minimum time lag between the completion time of operation i and starting
time of operation (i + 1) of Jj .

T2
i j Maximum time lag or maximum allowed waiting time between the comple-

tion time of operation i and starting time of operation (i + 1) of Jj .
Fj = smj + pmj Finish time of the last operation of Jj .
wi j The waiting time between the completion time of the ith operation and the

starting time of the (i + 1)th operation of Jj .
w j =

∑m−1
i=1 wi j Sum of waiting times between all of the operations of Jj .

W Maximum acceptable waiting time for all of the operations of Jj .

Equations (3.1)-(3.17) denote the model formulation:
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min Cmax (3.1)

Cmax ≥ smj + pmj j = 1, ..., n (3.2)
n∑

j=1
xi j k ≤ 1 i = 1, ...,m k = 1, ..., n (3.3)

n∑
k=1

xi j k ≤ 1 i = 1, ...,m j = 1, ..., n (3.4)

n∑
j=1

n∑
k=1

xi j k = n − 1 i = 1, ...,m (3.5)

xi j k + xik j ≤ 1 i = 1, ...,m j, k = 1, ..., n (3.6)

xi j j = 0 i = 1, ...,m j = 1, ..., n (3.7)

sik + M(1 − xi j k) ≥ si j + pi j i = 1, ...,m j, k = 1, ..., n (3.8)

s(i+1) j −
(
si j + pi j

)
= wi j i = 1, ...,m − 1 j = 1, ..., n (3.9)

T1
i j ≤ wi j i = 1, ...,m − 1 j = 1, ..., n (3.10)

T2
i j ≥ wi j i = 1, ...,m − 1 j = 1, ..., n (3.11)

m−1∑
i=1

wi j = w j j = 1, ..., n (3.12)

w j ≤ W j = 1, ..., n (3.13)

xi j k = x(i+1) j k i = 1, ...,m − 1 j, k = 1, ..., n (3.14)

wi j ≥ 0 i = 1, ...,m − 1 j = 1, ..., n (3.15)

si j ≥ 0 i = 1, ...,m j = 1, ..., n (3.16)

xi j k ∈ {0, 1} i = 1, ...,m j, k = 1, ..., n; (3.17)
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Constraint (3.1) describes objective function. Constraint (3.2) ensures that Cmax is feasible.
Constraints (3.3) to (3.7) ensure that all jobs appear only once in the sequence. Constraints (3.8)
ensures that the jobs do not overlap. Constraint (3.9) calculates the waiting time between the
operations i and (i + 1) of Jj . Constraints (3.10) and (3.11) guarantee that the waiting time between
any two consecutive operations of Jj falls within the required minimum and maximum time lags.
Constraints (3.12) calculates the total waiting time of any job j. Constraint (3.13) ensures that the
waiting time of each job is not more than the maximum acceptable waiting time threshold. Finally
constraint (3.14) ensures that the problem is permutation problem.

Fondrevelle et al. (2006) have proved that the PFSP with minimal and maximal time-lags is
NP-hard, and in the current problem if W is considered a very large number, then the constraint
number 13 become non-binding and the problem can be converted to a PFSP with minimal and
maximal time-lags.

3.2 Constraint Programming Model

It is possible to develop a constraint programmingmodel for the problem to compare the performance
of the constraint programming model with that of MILP. The constraint programming model has
been developed and the model and constraints will be presented. The variables and parameters are
described as follows:

m Number of machines
n Number of jobs
Jj Job j
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pi j Processing time of ith operation of Jj .
Cmax Completion time of the last job before leaving the system.
Si j Interval variable that denotes the start time and end time of operation i of

Jj . Each interval variable can be used to represent an activity in scheduling
problems. Interval variables can be used to describe jobs in scheduling
problems. These interval variables have three characteristics: start time,
end time and duration of the Job; therefore, we can use this variable in our
CP model

T1
i j Minimum time lag between the completion time of operation i and starting

time of operation (i + 1) of Jj .
T2

i j Maximum time lag or maximum allowed waiting time between the comple-
tion time of operation i and starting time of operation (i + 1) of Jj .

wi j The waiting time between the completion time of the ith operation and the
starting time of the (i + 1)th operation of Jj .

w j =
∑m−1

i=1 wi j Sum of waiting times between all of the operations of Jj .
SequenceVari Sequence variable that denotes the order of jobs in all machines. The

variable is used to ensure the order of jobs in all machines are the same and
there is a permutation flowshop problem

W Maximum acceptable waiting time for all of the operations of Jj .

Equations (3.18)-(3.29) denote the model formulation:

min Cmax (3.18)

Cmax ≥ End o f Smj j = 1, ..., n (3.19)

No Overlap (Si j) i = 1, ...,m j = 1, ..., n (3.20)

End o f (Si j) + T1
i j ≤ Start o f (S(i+1) j) i = 1, ...,m − 1 j = 1, ..., n (3.21)

Start o f (S(i + 1) j) − End o f (Si j) ≤ T2
i j i = 1, ...,m − 1 j = 1, ..., n (3.22)

Size o f (Si j) = pi j i = 1, ...,m j = 1, ..., n (3.23)

No Overlap (SequenceVari) i = 1, ...,m (3.24)

Same Squence(SequenceVar1, SequenceVari) i = 1, ...,m (3.25)

Start o f (S(i + 1) j) − End o f (Si j) = wi j i = 1, ...,m − 1 j = 1, ..., n (3.26)
m−1∑
i=1

wi j = w j j = 1, ..., n (3.27)

w j ≤ W j = 1, ..., n (3.28)

wi j ≥ 0 i = 1, ...,m − 1 j = 1, ..., n; (3.29)
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The objective function is described using the constraint (3.18). Constraint (3.19) ensures that
Cmax is feasible. Constraint (3.20) ensures that there is no overlap among processing of jobs in
machines and each machine processes one job at each time. Constraint (3.21) ensures that minimal
time lag constraint is feasible. Feasibility of the maximal time-lag constraint is ensured using the
constraint (3.22). Processing time of the (i)th operation of Jj is calculated using constraint (3.23).
Constraint (3.24) ensures that sequence variables do not overlap. The constraint (3.25) ensures that
all jobs in all machines have the same permutation and the model is a permutation flowshop model.
The constraint 3.27 calculates waiting time of each job. The waiting time of each job is equal to
the sum of the waiting times of a job in all machines. The constraint (3.28) ensures that the waiting
time of each job is less than or equal to the maximum acceptable waiting time of each job. Finally,
the constraint (3.29) ensures that the waiting time of each operation is non-negative.
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4 Proposed Solution Algorithm

In this chapter, proposed algorithm is presented. The algorithms that are used include genetic
algorithm, Lagrangian relaxation and the intensification algorithm.

4.1 Pseudo-code of the algorithm

Procedures required before beginning the genetic algorithm are explained as follows: Define Class
Chrome for keeping population properties and class problem for keeping problem parameters.

Getting required number of iterations.
Reading problem parameters and setting size of vectors.
Step 01: Giving initial values to the problem parameters.
While (number of generations<iterations)
Step02: Assign the order of jobs in the population and compute fitness value Cmax.
Step 03: If crossover probability is greater than the generated random number then do crossover.
Step 04: If mutation probability is greater than the generated random number then do mutation.
Step 05: Selecting top 50% of chromosomes from new population and top 50% of chromosomes

from the old population.
Step 06: Go to Step 03
End
Lagrangian relaxation is performed for the model. The objective function would become to the

form of min Cmax+ λ
∑n

j=1 (w j −W). In the objective function, the penalty term ( w j −W) is equal
to zero if for each j w j <W . The coefficient λ can be considered as the patient dissatisfaction of
waiting. In the calculations, this coefficient is considered to be equal to one; however, in real world
patients may give a bigger value to this coefficient.

4.2 Permutation Flow shop Scheduling based on GA

4.2.1 Encoding of Flowshop Problem

Each solution is represented by a two-dimensional string. If there exist m machines and n jobs in
the problem, first dimension represents the machines and second dimension represents the jobs.
Therefore, if there are five jobs in the sequence, a sample chromosome for the machine i can be
presented in the form of {54321}. This representation suggests that job five gets processed first in
all machines and then fourth job is processed and the order continues till job one. Each job is called
a gene and a string of genes or a sequence is called a chromosome.
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4.2.2 Initialization

The first step would be initialization. At this step, a number of populations or randomly generated
sequences are generated. In each population, a number between one to J is assigned to each job,
and the number is the order of job at initialization. Therefore, the job that is assigned randomly
number one would be the first job and so on. The number of generated populations is equal to
population size.

4.2.3 Calculating values

For updating values, first step is to update values for the first job at the first machine. Then the
values for the other jobs at the first machine are assigned based on the predetermined orders of the
jobs. Start time of the second job is equal to the finish time of the first job at the first machine
plus minimum waiting time. After that, the finish time of each job is equal to the start time of the
previous job plus corresponding minimum waiting time.

At the second step, values of waiting time, start time and completion time related to all machines
after the first machine would be calculated. Therefore, start time of the first job in machine i where
i > 1 is equal to finish time of the job on previous machine plus minimum waiting time. For each
job j after the first job in i where i > 1, start time is equal to finish time of previous job (job j−1)
based on the predefined order. If finish time of previous job job j−1 in the machine i where i > 1 is
less than finish time of job j in machinei−1+minimum required waiting time of the operation, then
start time of job j on machine i is equal to the finish time of job j in machinei−1+minimum required
waiting time of the operation.

In case job j in machine i has a start time greater than the finish time of the job j in
machinei−1+minimum waiting time of the operation, then the waiting time of corresponding oper-
ation would be updated with the new value which is greater than minimum waiting time. In case
waiting time of a job is more than the maximum waiting time T2

i j then the start time of first job in
the sequence will increase until the waiting time gets equal to the T2

i j .

4.2.4 Selection

At the next step, selection would be performed. To do the selection, at the first, chromosomes are
sorted based on the fitness values of their chromosomes which is their Cmax. We use a selection
method based on the Truncation selection method (Blickle and Thiele, 1995). These chromosomes
are the ones that were modified by crossover and mutation. New population if made up of top
50% of previous population plus top 50% of population after crossover and mutation. At the first
iteration, these two populations are the same.
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4.2.5 Cross over

The next step would be crossover. Crossover would be implemented if generated random number
is less than crossover probability. To do crossover a number of parents should be selected and to do
that, each chromosome with the index i, does crossover with chromosome with the index i + 1 and
these two chromosomes are called parents.

A crossover point would be randomly selected. It is a number between one to n or number of
jobs. After selecting the point, all jobs between one to crossover-point would be copied into one
new chromosome in the next population. This chromosome is called offspring. The remaining
vacant positions for the jobs would be filled by copying jobs after crossover-point to the end of
chromosome from the other parent.

Therefore, if each parent one has eight genes and it has a sequence of jobs equal to {12345678},
and the parent two has job sequence equal to {43218765} and randomly generated crossover-point
is equal to four, then the selected genes from the first parent of the first offspring would be {1234|}
and the second part of chromosome from the second parent would be {8765|}. After assigning the
values related to the second part, the offspring is equal to {1234|8765} and the same procedure
but with the jobs after cross-over point in the parent one and jobs before cross-over point in the
parent two gives the second offspring would be {4321|5678}. In case there are some common jobs
between the selected parts for an offspring, for each common job, crossover point would shift one
point to the right.

4.2.6 Mutation

After crossover, mutation would be performed. In each iteration, for mutation, a random number
would be generated which is called the random job. It suggests the position of the job that the
corresponding order must be swiped with another job in the machine. The next job would be found
using the deduction of random job from number of jobs. Therefore, if there are eight jobs and
random job is equal to three, then the third gene would be selected and it is swiped with the gene
= 8 − 3 = 5. This process continues until the iterations finish.

4.3 Intensification

As size of problem increases solving scheduling problem with m machines and n jobs become
more difficult and complex; however, the output of a genetic algorithm a problem with n jobs and
m machines where n = n1 + n2 + .. + nk can be improved by replacing optimal order of jobs for
the problem of (m, ni) where i = 1, 2, .., k. An algorithm called intensification is designed and
implemented to take advantage of this property. In the algorithm, the number of jobs for the small
problem is defined and then for all jobs, starting from job one to number of jobs in the small problem
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is optimized. This process continues until the last job is considered. The flowchart of the algorithm
is presented at Figure 4.1.

Figure 4.1: Intensification Algorithm
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5 Computational Results

5.1 Exact solutions

In this part exact solutions of the problem are presented. Table 5.1 presents the output for exact
solution. The results are obtained after running both MILP and CP models in CPLEX 12.7.1. The
outputs suggest that CP outperformsMILP in terms of solution time and the solution time is quicker
in CP. Processing times are generated from a uniform integer distribution of [20, 50]. Minimal
times are generated randomly from uniform integer distribution of [0, 7] and maximal time lags are
generated from the the uniform integer distribution of [T1

i j, 14]. Results are the average of five runs
that are rounded to the nearest integer number. In each run, if solutions take more than one hour of
solving time then the letter L is put in the table.

Table 5.1: CP and MILP results of the outputs of exact solutions of MILP and CP models

5.1.1 Comparison of solutions for the permutation flowshop problem

The permutation flowshop model can be obtained after relaxing the constraints related to minimum
and maximum time-lags. The MILP model for the resulting permutation flowshop with the time-
lags model can be obtained after dropping the constraints (3.9), (3.10), (3.11), (3.12), (3.13) and
(3.15) from the proposed MILP model.

The resulting constraint programming permutation flowshop with time lags model can be ob-
tained after dropping the constraints (3.21), (3.22), (3.27), (3.28) and (3.29) from the proposed
constraint programming model.

The solutions of theMILP and CP permutation flowshopmodels are compared with 13 instances
of the test problems provided byVallada, Ruiz, and Framinan (2015). The test problems have a lower
and upper bound. Vallada et al. (2015) ran the test problems with the maximum run-time of ma-
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chines*jobs*60/1000 seconds. In this section, the solving time is set to the machines*jobs*60/1000
seconds. The results are presented in the table 5.2. The columns under VRF present the upper
bound and lower bound reported by Vallada et al. (2015). The columns under MILP reports upper
bound and lower bound found by MILP model after running the model in CPLEX. The columns
under CP report upper bound and lower bound found by the constraint programming model.

Table 5.2: Comparison of results for the model without time-lags

Upper bounds are presented in figure 5.1. The outputs suggest that CP outperforms MILP for
all problems. For problems with the small number of jobs and machines both VRF and CP provide
the same upper bound; however, for the problems with ten machines and more than thirty jobs VRF
provides lower upper bound. For the minimization problem, this is desired.
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Figure 5.1: Comparison of upper bounds of the CP, MILP and VRF

On the other hand, comparison of lower bounds can be of interest. As figure 5.2 suggests, CP
provides a higher value of upper bound compared to both VRF and MILP. Lower bounds of VRF
provided by Vallada et al. (2015) are very close to the CP, but all of the upper bounds of the CP are
higher than VRF.
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Figure 5.2: Comparison of lower bounds of the CP, MILP and VRF

5.1.2 Comparison of solutions for the permutation flowshop with time lags model

Another case for the analysis of the problem would be considering the problem without W . The
practical implication would be when the total waiting time of each patient in the system is not
considered. This model would be in the form of a permutation flowshop with time-lags. The
MILP model for the resulting permutation flowshop with the time-lags model can be obtained
after dropping the constraints (3.12) and (3.13) from the proposed MILP model. The resulting
constraint programming permutation flowshop with time lags model can be obtained after dropping
the constraints (3.27), (3.28) and (3.29) from the proposed constraint programming model.

MILP and CP models are compared using CPLEX. Four different combinations of machines
and jobs are selected for the test. Problems with:

• Five Machines and fifteen jobs.

• Three machines and fifteen jobs.

• Five machines and twelve jobs.

• Ten machines and fifteen jobs.
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For each problem, four different combinations of T1
i j and T2

i j are randomly generated using uniform
distribution in the interval of [0, T1

i j] and [0, T2
i j ]. The following combinations of T1

i j and T2
i j are

used:

• (7, 14)

• (7, 200)

• (40, 60)

• (100, 200)

Processing times are generated randomly using uniform distribution of [20, 50]. The results are
presented as follows:

Table 5.3: Comparison of MILP and CP for the model without W
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Data are run in the CPLEX. The maximum run-time is 300 seconds. After 300 seconds the best
objective value is reported. The results suggest that the CP significantly outperforms the MILP. The
MILP almost did not solve any problem to optimality.

5.2 Sensitivity Analysis for the values of T1
i j and T2

i j for the exact solution

In this section, a sensitivity analysis is performed on how the changes in the values of T1
i j and T2

i j

can impact the values of Cmax , the average waiting times of the patients and the variance of the
waiting times of the patients for the exact problem. One observation after multiple solving and
running of the model in the CPLEX studio is that the solution time of the model is vulnerable to
a small change in the values of W , and solution time may increase from less than two seconds
to hours by decreasing the value of W by one or two units. Another observation is that although
random numbers were generated to do sensitivity analysis, the solution times for the randomly
generated numbers within one range of T1

i j or one range of T2
i j were not homogeneous; for example

for the randomly generated numbers for T1
i j in the range of [0, 3], while holding values of all other

parameters constant, one observation was the vast range of the changes in the solution times of
two different randomly generated instances of one range; to tackle this problem, a value for W was
selected such that CPLEX can find the exact solution in a small amount of time for all problems.
For each of the considered intervals of T1

i j and T2
i j , five sets of random numbers are generated and

solved in CPLEX 12.7.1.
In the sensitivity analysis section, the impact of changes in the values of T1

i j and T2
i j on the values

of Cmax and the waiting time of each patient is discussed. Five problem sets with different sizes are
examined. The problems include the following:

• Seven machines and seven jobs.

• Three machines and twelve jobs.

• Five machines and twelve jobs.

• Five machines and nine jobs.

• Six machines and ten jobs.

5.2.1 Changes in the values of T1
i j

For testing the change in the values of the T1
i j , the interval of [0, 14] is broken down into five equally

sized intervals including the intervals of [0, 2], [3, 5], [6, 8], [9, 11] and [12, 14], and for each interval,
uniform random numbers are generated from each of the uniform distributions. For the values of
processing times, uniform random numbers are generated from the uniform distribution of [20, 50],
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for the values of the T2
i j , uniform random numbers are generated from the uniform distribution of

[14, 16], and W is considered based on the table 5.4. W is considered after doing a number of trials
and errors for each problem. The W is developed such that the problem in different intervals can
be solved in a reasonable amount of time. For each uniform distribution of T1

i j , five sets of uniform
random numbers for T1

i j are generated, and finally, the average values for each generated number are
considered.

Table 5.4: Values of W for the problem of sensitivity analysis of the change of T1
i j

One system performance criterion that enhances with the increase in the values of T1
i j is the

Cmax . Figure 5.3 suggests how changes in the values of T1
i j influence the Cmax for different intervals

ofT1
i j in different problems. As figure 5.3 suggests, for all problems, theCmax grows asT1

i j increases.
It was already discussed that T1

i j is a necessary time lag; therefore, this increase in the Cmax is a
result of the increase in the waiting times of the jobs in each machine and consequently the increase
in the finish time of each job J. The Cmax does not increase with the same slope at all intervals.
It is observed that for the last interval which is the closest interval to the values of T2

i j , the slope
increases. This rise in the slope can be a result of the decrease in the feasible space. For the problem
of five machines and nine jobs, it is observed that there is not any change. One other observation is
that for the problem with three machines and twelve jobs, Cmax increases with smaller slope; this
slow increase can be a result of the smaller number of machines.
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Figure 5.3: Sensitivity of Cmax to the changes of T1
i j

Table 5.5 presents the sensitivity of Cmax with the change in the values of T1
i j for different

problems. As shown in figure 5.3, as the number of machines increase, the Cmax increases. The last
column of the table shows the difference between the average of Cmax for the random generated T1

i j

with the smallest average, that is [0, 2], and the random generated T1
i j with the largest average, that

is [12, 14].
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Table 5.5: Sensitivity of change of Cmax to the change of T1
i j

Figure 5.4, suggests the effect of changes in the values of T1
i j on the average waiting time of each

patient for different problems. The figure indicates that as T1
i j or the minimum time-lag increases,

as it is expected, the average waiting time of each patient increases. This implication is predictable
since when T1

i j increases, this value is a compulsory waiting time per se, and it directly increases the
average and the total waiting time of each patient. Although the average waiting time per patient
increases for different problems, there is a difference between the slopes of different problems.
Figure 5.4 suggests that as the number of machines rises the slope of the average waiting time of
each patient increases. The lowest value of the increase is for the problem with three machines
and twelve jobs. The problem with seven machines and seven jobs has the highest slope. In the
healthcare systems this can be helpful in that when a patient needs to go through a longer sequence
of medical operations such as more physicians, more medical tests, etc., by increase in each of T1

i j

there would be further increase in the average waiting time of patients. Another observation is that
we do not observe a specific trend of changes in the values of Cmax based on the changed in the
number of jobs or machines

34



Figure 5.4: Sensitivity of average waiting times per patient on the changes of the values of T1
i j

Table 5.6 provides the data for changes in the values of T1
i j for different problems. As shown in

figure 5.4, as the number of machines increases, the average waiting time per patient increases. The
last column of the table implies that the highest increase in the average waiting time corresponds to
the problem with seven machines and seven jobs and the problem with three machines and twelve
jobs has the lowest value of the average waiting time.

Table 5.6: Sensitivity of change of average waiting time to the change of T1
i j
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It was discussed in chapter one that variations in waiting time can be explained by patients,
clinic and provider level (Dansky and Miles, 1997; Dimakou et al., 2009). Therefore, it would
be interesting to study the variances of the waiting times sensitivity in different problems. One
observation after changing the values of T1

i j in the output of waiting times is the trend in the variance
of waiting time of each interval. As figure 5.5 suggests, there is a decline in the variance of waiting
times of each interval. With the increase in the values of T1

i j , the values of the variance of waiting
times decrease. Therefore, in healthcare systems and for small values of T1

i j , it can be expected
that there is more variation in the waiting times of the patients, and there are patients who wait for
long hours while some patients receive their service very quickly. This phenomenon might not be
favorable for healthcare decision makers and can increase dissatisfaction of those patients who have
to go through long waiting times.

Another observation is that for smaller values of T1
i j , the largest value of the variance of waiting

time is for the problem with seven machines and seven jobs and the smallest value of variance is
for the problem of three machines and twelve jobs. This suggests an increase in the machines can
increase the variance of waiting time when there is enough feasible space. Therefore, if the number
of resources that a patient wants to visit increases, decision makers can expect more variations in
waiting times if there is a gap between the values of minimal and maximal time lags.

It can be observed that with the rise of T1
i j , in all problems the variance tends to zero. This

observation implies that regardless of the size of the problem, with the decrease in the gap between
T1

i j and T2
i j and decrease in feasible space, there are fewer variations in waiting times of the patients.
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Figure 5.5: Sensitivity of variance of waiting times to the changes of the values of T1
i j

Results of the sensitivity analysis of figure 5.4 and figure 5.3 suggest that any increase in the
values of T1

i j can result in the increase in both Cmax and the average waiting time of each patient;
therefore, if decision makers try to decrease this time they can improve both performance metrics of
average waiting time of each patient and Cmax while they can expect that there are more variations
in the variance of waiting times of patients. One other implication of high values of variance is
that high values of variance can make it difficult to forecast future waiting times. This fact suggests
that in higher values of T1

i j it is easier to forecast possible waiting times of the patients. One
other important statistical property of variance of waiting times arises if we want to consider a
distribution, such as normal distribution, for waiting times. Kurtosis is defined as µ4

σ4
, and smaller

values of kurtosis makes forecasting of the values of a distribution less reliable (Joanes and Gill,
1998). If µ is fixed then higher values of variance (σ2) decreases the kurtosis and makes it more
difficult to forecast the values of the waiting times.

Table 5.7 presents numerical values ofCmax versus total waiting time of the patients for different
problems in different intervals of T1

i j .
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Table 5.7: Changes of Total waiting time V.S changes of Cmax for different intervals of the T1
i j

The table suggests that for all problems the trend of the change is very similar although for the
problem with seven machines and seven jobs the total waiting time does not change similarly to the
others. This can be due to the low number of jobs and a large number of machines compared to
other problems.

Table 5.7 suggests that the problem with six machines and ten jobs has the highest total waiting
time and the largest value of the change in total waiting time. Therefore, this problem is the most
sensitive to the changes of T1

i j .

5.2.2 Changes in the values of T2
i j

A procedure similar to that of sensitivity analysis of T1
i j is followed to study the effect of the changes

in the values ofT2
i j onCmax , the average waiting time of each patient and the variance of waiting time

of each patient. For processing times, uniform random numbers are generated from the uniform
distribution of [20, 50]; for generating values for T1

i j , uniform random numbers are generated from
the uniform distribution of [0, 6], and to generate values for T2

i j , the interval of [7, 21] was broken
down into five intervals of [7, 9], [10, 12], [13, 15],[16, 18], [19, 21] and [22, 24]. Values for W are
based on the table 5.4. Uniform random numbers are generated for each of the intervals of T2

i j , and
then the average of each of the five observations are calculated and compared.

Figure 5.6 shows the impact of the changes in the values of T2
i j on Cmax in different problems. It

can be observed that an increase in the values of T2
i j can lead to decrease in Cmax . This is completely

in contrast to the case of the changes in the values of T1
i j . One implication is that an increase in the

values of T2
i j can increase the feasible space. This increase can improve and decrease the Cmax . The
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largest improvement in the Cmax can be obtained when T2
i j increases from the range of [7, 9] to the

range of [10, 12]. The range of [7, 9] is the closest range to [0, 6] which is the range that is used for
generating the random numbers for the values of T1

i j . Therefore, with an increase in the values of
T2

i j , feasible space, and the solution increases.

Figure 5.6: Sensitivity of Cmax to the changes of T2
i j

Values of the change are presented in table 5.8. The table suggests that as T2
i j increases, more

decrease in Cmax is achieved.
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Table 5.8: Sensitivity of change of Cmax to the change of T2
i j

Figure 5.7 presents how the changes in the values of T2
i j impact the average waiting time of each

patient. The figure suggests an increase in the values of T2
i j increases the average waiting time of

each patient. The increase in the waiting times holds true for all problems. One implication can
be that any increase in the values of T2

i j (or maximum waiting times) would increase the potential
waiting times. This increase in maximumwaiting times before each machine can help the algorithm
to find the best values of decision variables for minimizing makespan. It is observed that generally
if patients increase the maximum waiting times between successive operations, the average time
they wait would increase. Another observation is that the slope of the average waiting time of each
patient changes in different intervals and in the values close to the T1

i j , an increase of the values of
T2

i j results in greater increase in the average waiting time.
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Figure 5.7: Sensitivity of average waiting time of each patient to the changes in the values T2
i j

Numerical values of the average waiting times have been calculated and presented in table
5.9. The percentage of increase in average waiting time after increasing T2

i j is presented in the last
column. The values suggest that the lowest value of the decrease is for the problem with seven
machines and seven jobs and the highest value in the increase in average waiting time is for the
problem with six machines and six jobs.

Table 5.9: Sensitivity of change of the Average Waiting Time to the change of T2
i j

41



Figure 5.8 shows how the variance of waiting times for patients changes as T2
i j increases. As

the figure suggests, generally the variance increases with the increase in the values of T2
i j . One

reason for the increase can be the rise in the values of T2
i j that increases the gap between T1

i j and
T2

i j . Increase of this gap can increase feasible space, and therefore it can cause more variations in
the waiting times among different patients. There are some changes in the behaviour of variance;
the most significant change is for the problem with seven jobs and seven machines. This change in
the trend can be a result of some irregular waitings for some of the jobs when T2

i j is generated from
uniform distribution of [16, 18].

Figure 5.8: Sensitivity of variance of waiting times to the changes in the values of T2
i j

Figures 5.6 and 5.7 suggest that an increase in the values of T2
i j would not improve both

performance metrics of Cmax and the average waiting time of each patient at the same time. It is
shown that while an increase in the values of T2

i j can improve the Cmax , it does not improve the
average waiting time and the variance of waiting times.

Table 5.10 presents numerical values Cmax versus total waiting time of the patients plot for
different problems in different intervals of T2

i j .

42



Table 5.10: Changes of total waiting time V.S changes of Cmax for different intervals of the T2
i j

In table 5.10, total waiting time is used to present the total waiting time of the system. For all
problems, the table suggests that the trend of the change is very similar although for the problem
with seven machines and seven jobs the total waiting time does not change similar to others. This
can be due to the low number of jobs and a large number of machines compared to other problems.

5.3 Metaheuristic solutions

In this section, the solution to themetaheuristic model is presented. At the first step, parameters need
to be tuned, then a genetic algorithm, intensification using MILP (GA_MILP) and intensification
using CP (GA_CP) are compared to find the algorithm with the best performance for each problem
size. Taguchi method is used to set the parameters (Montgomery, 2017). Population size, crossover
probability, and mutation probability are tuned using the Taguchi method. The parameters used and
their corresponding levels are presented in table 5.11.

Table 5.11: Parameter levels used in parameter setting

For each problem, three randomly generated datasets are used. Each dataset is run five times
and the average value of the total 15 runs is used in experimental design. L9 orthogonal array is
used for the purpose of experimental design. Table 5.12 shows the layout of the L9 Orthogonal
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array for the problem of 10 machines and 60 jobs. The response column presents average values of
Cmax .

Table 5.12: Layout of L9 orthogonal array for the problem of 10 machines and 60 jobs

S/N ratio with the condition of smaller is better is used to test the model. S/N ratio measures
the change of response variable relative to the noise variables and it is calculated using the equation
(Haleh, Maghsoudlou, Hadipour, and Nabovati, 2017):

S/Nration = −10log(
1
N

N∑
j=1

y2
i ) (5.1)

Where i is the number of experiment, yi is the response value and N is the total number of
experiments. After analyzing the outcomes, the findings of the study are as follows:
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Figure 5.9: S/N ratios of the parameters for the problem of 10 Machines and 60 Jobs
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Figure 5.10: Mean of the response for the parameters for the problem of 10 Machines and 60 Jobs

Higher values of S/N ratio imply better response. These values suggest that the best value of
crossover probability is 0.5, the best value of mutation probability is 0.75 and the best population
size is 100. For each problem, a similar procedure is followed. Table 5.13 presents a summary of
the outputs.
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Table 5.13: Summary of the best parameters after DOE

After setting the parameters, a comparison of result is performed to investigate the performance
of algorithm. Table 5.14 presents a summary of the outputs. GA is run for 500 iterations. The
small problem of the intensification for the GA_MILP and GA_CP is considered with three jobs.
Maximum run-time is 100 seconds. For each problem, two runs, in five different datasets are run
and the average values of five runs is recorded.

Table 5.14: Comparison of metaheuristics

The results suggest that GA_CP model outperforms GA_MILP. As problem size increases the
competitiveness of GA_CP becomes more significant due to its speed solution advantage.
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5.3.1 Comparison of the solutions for the permutation flowshop problem

In this section, the solutions of the GA_MILP and GA_CP permutation flowshop models are
compared using four instances of the test problems provided by Vallada et al. (2015). The test upper
bounds of problems are presented. The algorithms used here are the ones used after relaxing the
relevant time-lag constraints.

Each dataset has been run three times and the number suggests the average of three runs. Each
dataset is run using genetic algorithm. All problems of proposed algorithms had run-time less than
the one considered by Vallada et al. (2015). For the small problem of five machines and ten jobs
and the problem of five machines and forty jobs, the genetic algorithm improves the upper bounds;
however, for other larger sizes the algorithms used by Vallada et al. (2015) have better performance.

Table 5.15: Comparison of results for the metaheuristic models without time-lags

In this section, a sensitivity analysis is performed on how the changes in the values of T1
i j and

T2
i j can impact the values of Cmax and the average waiting times of the patients.

Four problem sets with different sizes are examined. The problems include the following:

• Five machines and ten jobs.

• Ten machines and forty jobs.

• Ten machines and sixty jobs.

• Ten machines and 100 jobs.
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• Six machines and ten jobs.

The sensitivity analysis is performed using GA_CP algorithm since it had better performance
that GA_MILP algorithm.

5.3.2 Changes in the values of T1
i j

For testing the change in the values of the T1
i j , the intervals similar to the intervals and random

numbers that were considered in the exact part are studied. Only W is considered equal to 100.
For each uniform distribution of T1

i j , five sets of uniform random numbers for T1
i j are generated, and

finally, the average values for five generated numbers are considered.
Figure 5.3 suggests how changes in the values of T1

i j influence on the Cmax for different intervals
of T1

i j in different problems. As figure 5.3 suggests, for all problems, the Cmax increases as T1
i j

increases. As discussed earlier, this increase in the Cmax is a result of the increase in the waiting
times of the jobs in each machine and consequently the increase in the finish time of each job J. The
Cmax does not increase with the same slope at all intervals. It is observed that for the last interval
which is the closest interval to the values of T2

i j , the slope increases. This rise in the slope can be
a result of the decrease in the feasible space. For the problem of five machines and nine jobs, it
is observed that there is not any change. One other observation is that for the problem with three
machines and twelve jobs, Cmax increases with smaller slope; this slow increase can be a result of
the smaller number of machines.
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Figure 5.11: Sensitivity of Cmax to the changes of T1
i j in metaheuristic solutions

Table 5.16 presents the sensitivity of Cmax on the change of the values of T1
i j for different

problems. It is observed that in figure 5.3, as the number of machines increase, the Cmax increases
that is similar to the exact solution. The last column of the table shows the difference of the average
of Cmax for the random generated T1

i j in the range of [0, 2], with the random generated of T1
i j in

the range of [12, 14]. These findings can have implications in healthcare systems how a change
in the necessary waiting times between operations can increase the Cmax of the patients. Increase
in necessary waiting time, from [0, 2] to [12, 14] can increase the Cmax in the ranges of 12 to 25
percent.
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Table 5.16: Sensitivity of change of Cmax to the change of T1
i j in metaheuristic solutions

Figure 5.12 suggests the effect of changes in the values of T1
i j on the average waiting time of each

patient for different problems. The figure indicates that as T1
i j or the minimum time-lag increases,

as it is expected, the average waiting time of each patient increases. This implication is predictable
since when T1

i j increases, this value is a compulsory waiting time per se, and it directly increases the
average and the total waiting time of each patient. Although the average waiting time per patient
increases for different problems, there is a difference between the slopes of different problems.
Figure 5.4 suggests that as the number of machines increases the slope of the average waiting time
of each patient rises. In the healthcare systems this can be helpful in that when a patient needs to go
through a longer sequence of medical operations such as more physicians, more medical tests, etc.,
by increase in each of T1

i j there would be greater increase in the average waiting time of patients.
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Figure 5.12: Sensitivity of average waiting times per patient on the changes of the values of T1
i j for

metaheuristic solutions

Table 5.17 provides the data for changes in the values of T1
i j for different problems. As it was

already indicated in table 5.12 as the number of machines increases, the average waiting time per
patient increases. The last column of the table implies that the highest percentage increase in the
average waiting time belongs to the problem with ten machines and forty jobs and the problem with
five machines and ten jobs has the lowest value of the average waiting time. We can observe that
an increase of T1

i j from [0, 2] to [12, 14] can result in increase of at minimum 190.45% in average
waiting times. This is a large increase in average waiting times.
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Table 5.17: Sensitivity of change of average waiting time to the change of T1
i j for metaheuristic

solutions

5.3.3 Changes in the values of T2
i j

A procedure similar to that of sensitivity analysis of T2
i j in exact solutions is followed to study the

effect of the changes in the values of T2
i j on Cmax and the average waiting time of each patient for

metaheuristic solutions.
Figure 5.6 shows the impact of the changes in the values of T2

i j on Cmax in different problems. It
can be observed that an increase in the values of T2

i j can lead to decrease in Cmax . This is completely
in contrast to the case of the changes in the values of T1

i j . One implication is that an increase in the
values of T2

i j can increase the feasible space. This increase can improve and decrease the Cmax .
The largest improvement in the Cmax can be obtained when T2

i j increases from the range of [7, 9]
to the range of [10, 12]. The range of [7, 9] is the closest range to [0, 6] which is the range that is
used for generating the random numbers for the values of T1

i j . Therefore, with an increase in the
values of T2

i j , the feasible space and the solution increases.
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Figure 5.13: Sensitivity of Cmax to the changes of T2
i j

The values of the change are presented in table 5.18. The table suggests that as T2
i j increases,

more decrease in Cmax is achieved. Improvements are from 3.42 to almost 12 percent.

Table 5.18: Sensitivity of change of Cmax to the change of T2
i j

Figure 5.14 presents how the changes in the values ofT2
i j impact the average waiting time of each

patient for metaheuristic solutions. The figure suggests an increase in the values of T2
i j increases the

average waiting time of each patient. The increase in the waiting times holds for all problems. One
implication can be that any increase in the values of T2

i j (or maximum waiting times) would increase
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the potential waiting times. This increase in maximum waiting times before each machine can help
the algorithm to find the best values of decision variables for minimizing makespan. It is observed
that generally if patients increase the maximum waiting times between successive operations (T2

i j),
the average time they wait would increase. Another observation is that the slope of the average
waiting time of each patient changes in different intervals and in the values close to the T1

i j , an
increase in the values of T2

i j results in greater increase in the average waiting time.

Figure 5.14: Sensitivity of average waiting time of each patient to the changes in the values T2
i j

Numerical values of the average waiting times have been calculated and presented in table 5.19.
The percentage of increase in the average waiting time after increasing T2

i j is presented in the last
column. The values suggest that an average increase in the range of 71 to 76 % is calculated as the
increase in average waiting time.
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Table 5.19: Sensitivity of change of the Average Waiting Time to the change of T2
i j
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6 Future Research and Conclusions

6.1 Simulation optimization

Simulation is an approach to address stochastic behavior in different systems. Any optimization
problem can be described as follows (Jian and Henderson, 2015) :

Min f (x)

x ∈ Θ

Where f is the objective function to optimize decision variable x subject to constraint x ∈ Θ. If
at least one of the objective function, decision variables and constraints are not deterministic then
the problem is a simulation optimization problem. In the problem under study, some cases that can
make the problem a simulation optimization are as follows:

1. By using the objective function of the current problem, if processing times and/or minimal
and maximal time lags are stochastic variables, then simulation optimization can be used. Then one
approach in solving the problem is to use the expected values of stochastic variables. In the current
scenario, it can be assumed that arrival times are deterministic.

2. Since in the real world, arrival times are stochastic, one other potential scenario would be to
consider stochastic arrival times for the patients. Then the problem consists of potential n types
of the patients and m machines, and objective functions can be the maximizing utilization of each
machine and/or the minimizing average Cmax for each of patients, minimizing tardiness of each
machine. In this case, the sequence of the machines or the ideal time-lags can be tested by the
model. Utilization of each machine, in which in many cases are physicians, or high paying staffs can
provide valuable information to the healthcare decision makers. Analysis of physician utilization
can significantly decrease the system costs by balancing the number of resources or help decision
makers to make better decisions by designing the system and assigning the resources in such a way
that no resource is overused or have high idle times.

6.2 Other exact methods

One other approach can be applying more exact solutions to the problem. One desirable method
can be logic-based Benders decomposition by combining MILP and CP to investigate other exact
solutions (Hooker and Ottosson, 2003). Some other techniques that can be used are Benders
Decomposition (Benders, 1962) and Column Generation method (Barnhart, Johnson, Nemhauser,
Savelsbergh, and Vance, 1998). An improvement in the solutions may be achieved if these methods
are used. It is possible to investigate heuristics that can solve the model under study.
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6.3 Multi-objective models

In the current research work, the objective function was optimizing only one objective function;
however, other objective functions may be considered with makespan to develop a multi-objective
optimization function. Objective functions such as minimizing of maximum waiting time of job J,
maximizing utilization of each machine or minimizing idle time of each machine. There might be
a need to make some adjustments in the current model such as adding more constraints to develop
a multi-objective model. The outcome of the multi-objective optimization can be a Pareto front of
the best dominant solutions.

The analytic Hierarchy Process(AHP) method is a method that finds the weights of different
criteria using multiple comparison (Saaty, 2008). AHP can be used to measure weights for a
weighted sum multi-objective model. We can change the multi-objective problem into a single
objective optimization model.

6.4 Other scheduling models

In this research, it is assumed that the model is a permutation flowshopmodel and some assumptions
were proposed to support the permutation flowshop. Permutation flowshop needs the same flow of
jobs in all machines, but in healthcare systems, there might be situations that patients do not follow
up the same flow in different healthcare resources. A flowshop model that jobs can have different
orders on different machines can be an interesting and highly applicable problem to investigate. The
advantage of flowshop is that it can be applied to many systems that patients do not follow the same
procedure. Also, a flowshop model can provide a better solution, but there are systems that need to
consider permutation flowshop models. Other scheduling models such as openshop or job shop are
other potential models that tackling them will need huge computational works, and solving them
may require developing new meta-heuristic or heuristic algorithms.

6.5 Test the models with real data

One potential promising research is to test all of the models proposed in this research and the
ones proposed in the future research with the real data. One of the limitations of this research is
the lack of real data. In this research, because of the time limitation and the issues to access to
real data, real data were not used; but testing the proposed model with real data, for example a
sample of data collected in a clinic or a hospital is a really interesting area of research that can
result in very practical and theoretical research outcomes. By applying the model in a real problem,
specially, measuring different values of T1

i j , a parameter mostly determined by decision makers and
T2

i j , a subjective parameter mostly determined by patients, the effect of changes of constraints of the
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system and preferences of decision makers and patients can be calculated in a real world problem.

6.6 Application of the model in other sectors

The model with minimal and maximal time lags and a maximum waiting time of each job is
developed in this research. The model is developed mainly for healthcare systems, but there
are other sectors that their decision makers try to minimize the makespan of the customers or
other stakeholders of their systems with the constraints of minimal and maximal time lags and a
maximum waiting time for each customer. Sectors such as transportation systems, banks, different
organizations or manufacturing systems are other areas of the application of the proposed model in
this research.

6.7 Conclusions

In this report, initially, healthcare scheduling problems were reviewed. Generally, research studies
in the area of scheduling in healthcare can be divided into the following five categories"

• Number of objectives

• Type of patients

• Objective function to be optimized

• Problem parameters

• Type of solution

Then constraint programming and MILP models that consider minimum and maximum time-
lags and constraint for the total waiting time of the patient were proposed. For solving the models,
a genetic algorithm is developed and solved. The algorithm considered patient dissatisfaction
coefficient in the objective function as a penalty to the Cmax . In this study, the coefficient was
considered as 1. Two intensification algorithms based on the genetic algorithm and using MILP and
constraint programming were developed. These algorithms can improve the results of the genetic
algorithm. The intensification algorithm was developed by breaking down the problem into the
smaller problems, and after finding the optimal sequence in the small problems, the sequence of the
large problem was updated. The findings in this report suggest that an improvement of the results
of genetic algorithm can be achieved by using the intensification.

After solving the models, a sensitivity analysis is constructed on how the changes in the values
of minimum and maximum time-lags impact the performance metrics of a healthcare system such
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as the effect of their change on the values of Cmax and average waiting time and the variance of
waiting times.

In the sensitivity analysis, for the exact solutions, five different small problems and for the
metaheuristic solutions, four different problems of different sizes are considered. The findings
suggest that as minimum time-lag increases, the Cmax and the average waiting time of each patient
increases. The minimum time-lag is the necessary waiting time of each patient between consecutive
operations, and the maximum time-lag is the preference or the needs of the patient who do not
desire to wait for more than specific amount of time. An increase in maximum time-lag can cause a
decrease in the Cmax and increase in the average waiting time. Another finding is generally, that the
variance of waiting times of the patients increases as maximum time-lag increases and decreases
as minimum time-lag increases. This can have practical implications for decision-makers of the
healthcare systems.
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