196 research outputs found

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Multiple image watermarking using the SILE approach

    Get PDF
    Digital copyright protection has attracted a great spectrum of studies. One of the optimistic techniques is digital watermarking. Many digital watermarking algorithms were proposed in recent literature. One of the highly addressed issues within the watermarking literature is robustness against attacks. Considering this major issue, we propose a new robust image watermarking scheme. The proposed watermarking scheme achieves robustness by watermarking several images simultaneously. It firstly splits the watermark (which is a binary logo) into multiple pieces and then embeds each piece in a separate image, hence, this technique is termed 'Multiple Images Watermarking'. The binary logo is generated by extracting unique features from all the images which have to be watermarked. This watermark is first permuted and then embedded using SILE algorithm [7]. Permutation is important step to uniformly distribute the unique characteristics acquired from multiple logos. The proposed watermarking scheme is robust against a variety of attacks including Gamma Correction, JPEG, JPEG2000, Blur, Median, Histogram Equalization, Contrast, Salt and Pepper, Resize, Crop, Rotation 90, Rotation 180, Projective, Row Column Blanking and Row Column Copying and Counterfeit attack

    Multiple Content Adaptive Intelligent Watermarking Schemes for the Protection of Blocks of a Document Image

    Get PDF
    Most of the documents contain different types of information such as white space, static information and dynamic information or mix of static and dynamic information. In this paper, multiple watermarking schemes are proposed for protection of the information content. The proposed approach comprises of three phases. In Phase-1, the edges of the source document image are extracted and the edge image is decomposed into blocks of uniform size. In Phase-2, GLCM features like energy, homogeneity, contrast and correlation are extracted from each block and the blocks are classified as no-information, static, dynamic and mix of static and dynamic information content blocks. The adjacent blocks of same type are merged together into a single block. Each block is watermarked in Phase-3. The type and amount of watermarking applied is decided intelligently and adaptively based on the classification of the blocks which results in improving embedding capacity and reducing time complexity incurred during watermarking. Experiments are conducted exhaustively on all the images in the corpus. The experimental evaluations exhibit better classification of segments based on information content in the block. The proposed technique also outperforms the existing watermarking schemes on document images in terms of robustness, accuracy of tamper detection and recovery

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    An Optimized Medical Image Watermarking Approach for E-Health Applications

    Get PDF
    Background: In recent years, information and communication technologies have been widely used in the healthcare sector. This development enables E-Health applications to transmit medical data, as well as their sharing and remote access by healthcare professionals. However, due to their sensitivity, medical data in general, and medical images in particular, are vulnerable to a variety of illegitimate attacks. Therefore, suitable security and effective protection are necessary during transmission. Method: In consideration of these challenges, we put forth a security system relying on digital watermarking with the aim of ensuring the integrity and authenticity of medical images. The proposed approach is based on Integer Wavelet Transform as an embedding algorithm; furthermore, Particles Swarm Optimization was employed to select the optimal scaling factor, which allows the system to be compatible with different medical imaging modalities. Results: The experimental results demonstrate that the method provides a high imperceptibility and robustness for both secret watermark and watermarked images. In addition, the proposed scheme performs better for medical images compared with similar watermarking algorithms. Conclusion: As it is suitable for a lossless-data application, IWT is the best choice for medical images integrity. Furthermore, using the PSO algorithm enables the algorithm to be compatible with different medical imaging modalities

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Image watermarking based on integer wavelet transform-singular value decomposition with variance pixels

    Get PDF
    With the era of rapid technology in multimedia, the copyright protection is very important to preserve an ownership of multimedia data. This paper proposes an image watermarking scheme based on Integer Wavelet Transform (IWT) and Singular Value Decomposition (SVD). The binary watermark is scrambled by Arnold transform before embedding watermark. Embedding locations are determined by using variance pixels. Selected blocks with the lowest variance pixels are transformed by IWT, thus the LL sub-band of 8�8 IWT is computed by using SVD. The orthogonal U matrix component of U3,1 and U4,1 are modified using certain rules by considering the watermark bits and an optimal threshold. This research reveals an optimal threshold value based on the trade-off between robustness and imperceptibility of watermarked image. In order to measure the watermarking performance, the proposed scheme is tested under various attacks. The experimental results indicate that our scheme achieves higher robustness than other scheme under different types of attack. Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved
    corecore