99 research outputs found

    Feasibility of LoRa for Smart Home Indoor Localization

    Get PDF
    With the advancement of low-power and low-cost wireless technologies in the past few years, the Internet of Things (IoT) has been growing rapidly in numerous areas of Industry 4.0 and smart homes. With the development of many applications for the IoT, indoor localization, i.e., the capability to determine the physical location of people or devices, has become an important component of smart homes. Various wireless technologies have been used for indoor localization includingWiFi, ultra-wideband (UWB), Bluetooth low energy (BLE), radio-frequency identification (RFID), and LoRa. The ability of low-cost long range (LoRa) radios for low-power and long-range communication has made this radio technology a suitable candidate for many indoor and outdoor IoT applications. Additionally, research studies have shown the feasibility of localization with LoRa radios. However, indoor localization with LoRa is not adequately explored at the home level, where the localization area is relatively smaller than offices and corporate buildings. In this study, we first explore the feasibility of ranging with LoRa. Then, we conduct experiments to demonstrate the capability of LoRa for accurate and precise indoor localization in a typical apartment setting. Our experimental results show that LoRa-based indoor localization has an accuracy better than 1.6 m in line-of-sight scenario and 3.2 m in extreme non-line-of-sight scenario with a precision better than 25 cm in all cases, without using any data filtering on the location estimates

    Design and performance analysis of an indoor position tracking technique for smart rollators

    Full text link

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    A technique to enable the tracking of people for domestic energy monitoring applications

    Get PDF
    Domestic energy consumption has increasingly become a cause for concern for governments, energy suppliers, and individual householders. Issues surrounding gas and electricity used in the home relate to the increasing cost of fuel, the rise in the incidence of fuel poverty, carbon dioxide emissions from fossil fuels contributing to climate change, security of supply due to geo-political disagreement and the age and condition of the existing energy infrastructure.While buildings and appliances have become more energy-efficient, usually driven by legislation, the energy-consuming behaviour of individuals is very difficult to change. Domestic energy monitoring has so far only been carried out at a household level, while the behaviour of individuals within households has remained ambiguous. There is a gap in current knowledge about how people use energy at home, mainly because it is very difficult to capture everyday behaviour without influencing the behaviour being observed. Initiatives and campaigns targeting domestic energy-consuming behaviour have been based on assumptions of how people use energy in their homes, and have been found to be ineffective. There is a need for an unobtrusive method of capturing domestic energy behaviour.This research presents a technique to deliver this requirement by enabling the tracking of people in their homes with a small number of cost-effective RFID (Radio Frequency ID) devices. Using this technique the location of multiple individuals wearing RFID tags can be determined, thereby creating an unobtrusive RTLS (Real Time Location System). This technique has been extensively evaluated through a series of tests within a typical 1940ā€™s semi-detached house in North West England, and has been found to be able to successfully locate individuals to room level. If this RTLS data is matched with appliance level energy data, energy-consumption can be attributed to the individuals responsible, and personalised everyday energy-consuming behaviour can be established

    Inferring Activities of Daily Living of Home-Care Patients Through Wearable and Ambient Sensing

    Get PDF
    There is an increasing demand for remote healthcare systems for single person households as it facilitates independent living in a smart home setting. Much research eļ¬€ort has been invested to develop such systems to monitor and infer if the person is able to perform their routine activities on a daily basis. In this research study, two diļ¬€erent methods have been proposed for recognizing activities of daily life (ADL) using wearable and ambient sensing respectively. The thesis presents a novel algorithm for near real-time recognition of low-level micro-activities and their associated zone of occurrence within the house by using just the wearable as the lone sensor data. This is achieved by gathering location information of the target person using a wearable beacon embedded with magnetometer and inertial sensors. A hybrid three-tier approach is adopted where the main intention is to map the location of a person performing an activity with pre-deļ¬ned house landmarks and zones in the oļ¬„ine labeled database. Experimental results demonstrate that it is possible to achieve centimeter-level accuracy for recognition of micro-activities and a classiļ¬cation accuracy of 85% for trajectory prediction. Furthermore, addi-tional tests were carried out to assess whether increased antenna gain improves the ranking accuracy of the ļ¬ngerprinting method adopted for location estimation. The thesis explores another method using ambient sensors for activity recognition by integrating stream reasoning, ontological modeling and probabilistic inference using Markov Logic Networks. The incoming sensor data stream is analyzed in real time by exploring semantic relationships, location context and temporal rea-soning between individual events using a stream-processing engine. Experimental analysis of the proposed method with two real-world datasets shows improvement in recognizing complex activities carried out in a smart home environment. An average F-measure score of 92.35% and 85.75% was achieved for recognition of interwoven activities using this method

    Internet of Things (IoT) for Automated and Smart Applications

    Get PDF
    Internet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader understand the principle of using IoT in such applications

    DRONE DELIVERY OF CBNRECy ā€“ DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy ā€“ DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) ā€“ how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    A Scalable and Secure System Architecture for Smart Buildings

    Get PDF
    Recent years has seen profound changes in building technologies both in Europe and worldwide. With the emergence of Smart Grid and Smart City concepts, the Smart Building has attracted considerable attention and rapid development. The introduction of novel information and communication technologies (ICT) enables an optimized resource utilization while improving the building performance and occupants' satisfaction over a broad spectrum of operations. However, literature and industry have drawn attention to certain barriers and challenges that inhibit its universal adoption. The Smart Building is a cyber-physical system, which as a whole is more than the sum of its parts. The heterogeneous combination of systems, processes, and practices requires a multidisciplinary research. This work proposes and validates a systems engineering approach to the investigation of the identified challenges and the development of a viable architecture for the future Smart Building. Firstly, a data model for the building management system (BMS) enables a semantic abstraction of both the ICT and the building construction. A high-level application programming interface (API) facilitates the creation of generic management algorithms and external applications, independent from each Smart Building instance, promoting the intelligence portability and lowering the cost. Moreover, the proposed architecture ensures the scalability regardless of the occupant activities and the complexity of the optimization algorithms. Secondly, a real-time message-oriented middleware, as a distributed embedded architecture within the building, empowers the interoperability of the ICT devices and networks and their integration into the BMS. The middleware scales to any building construction regardless of the devices' performance and connectivity limitations, while a secure architecture ensures the integrity of data and operations. An extensive performance and energy efficiency study validates the proposed design. A "building-in-the-loop" emulation system, based on discrete-event simulation, virtualizes the Smart Building elements (e.g., loads, storage, generation, sensors, actuators, users, etc.). The high integration with the message-oriented middleware keeps the BMS agnostic to the virtual nature of the emulated instances. Its cooperative multitasking and immerse parallelism allow the concurrent emulation of hundreds of elements in real time. The virtualization facilitates the development of energy management strategies and financial viability studies on the exact building and occupant activities without a prior investment in the necessary infrastructure. This work concludes with a holistic system evaluation using a case study of a university building as a practical retrofitting estimation. It illustrates the system deployment, and highlights how a currently under development energy management system utilizes the BMS and its data analytics for demand-side management applications
    • ā€¦
    corecore