
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr A. Schmid, président du jury
Prof. M. Kayal, directeur de thèse

Dr A. Sanfilippo, rapporteur
Dr F. Lo Conte, rapporteur

Dr S.-R. Cherkaoui, rapporteur

A Scalable and Secure System Architecture
for Smart Buildings

THÈSE NO 7905 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 20 OCTOBRE 2017
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

GROUPE KAYAL
PROGRAMME DOCTORAL EN MICROSYSTÈMES ET MICROÉLECTRONIQUE

Suisse
2017

PAR

Georgios LILIS

What does not kill me, makes me stronger.

— Friedrich Nietzsche

Acknowledgements

The execution of any major project is a considerable undertaking which necessitates

collaboration and support. This research work is certainly not an exemption. There are

remarkable people behind this work to whom I am grateful, and that deserve to be

acknowledged. It was a pleasure to work with, discuss, and receive their support during the

past four years.

First of all, I would like to thank my thesis supervisor Prof. Maher Kayal for the excellent

opportunity to conduct my research under his guidance and support. His trust and the research

freedom throughout this process have been imperative for the success of this multidisciplinary

engineering thesis. Moreover, I would like to acknowledge Dr. Fabrizio Lo Conte and Dr.

Laurent Fabre from eSMART Technologies SA for their practical ideas, insights, and expertise

that greatly assisted my research.

As a member of electronics laboratory, I greatly enjoyed the collaboration and brainstorming

with my fellow colleagues. Firstly, I would like to thank my long-term officemates for the

many moments we shared together while working closely on the Smart Building project,

Gilbert Conus and Nastaran Asadi Zanjani. Secondly, I am especially grateful to Dr. Theodoros

Kyriakidis and Dr. Guillaume Lanz with whom I have had the pleasure to work with; their advice,

support, and the open-ended discussions we shared together are deeply appreciated. I would

also like to mention and thank Olivier Van Cutsem, his research contributions, motivation, and

feedback have been invaluable for the success of my research work. I would like finally to thank

my good friends and former officemates who helped me get a great start in the postgraduate

life: Dr. Lucian Barbut, Dr. Maria-Anna Chalkiadaki, Dr. Farzan Jazaeri, and Dr. Anurag

Mangla.

This thesis would not have been possible without the Greek, Swiss, and international friends

who contributed, each on their own way, to this work. I would like to say to all of you, a strong

"thank you"!

I would also like to thank my partner Evangelia for her constant encouragement and support

to address my concerns, anxieties, and frustration that a Ph.D. journey brings. Thank you for

making this thesis possible.

Finally, I would like to express my deepest gratitude to my family, my sister Anastasia and my

parents Konstantinos and Chrysoula who have supported me, despite the distance. Their love

and guidance are with me in whatever I pursue.

Lausanne, 28 July 2017 G.L.

i

Abstract

Recent years has seen profound changes in building technologies both in Europe and

worldwide. With the emergence of Smart Grid and Smart City concepts, the Smart Building has

attracted considerable attention and rapid development. The introduction of novel

information and communication technologies (ICT) enables an optimized resource utilization

while improving the building performance and occupants’ satisfaction over a broad spectrum

of operations.

However, literature and industry have drawn attention to certain barriers and challenges that

inhibit its universal adoption. The Smart Building is a cyber-physical system, which as a whole

is more than the sum of its parts. The heterogeneous combination of systems, processes, and

practices requires a multidisciplinary research. This work proposes and validates a systems

engineering approach to the investigation of the identified challenges and the development of

a viable architecture for the future Smart Building.

Firstly, a data model for the building management system (BMS) enables a semantic abstraction

of both the ICT and the building construction. A high-level application programming interface

(API) facilitates the creation of generic management algorithms and external applications,

independent from each Smart Building instance, promoting the intelligence portability and

lowering the cost. Moreover, the proposed architecture ensures the scalability regardless of the

occupant activities and the complexity of the optimization algorithms.

Secondly, a real-time message-oriented middleware, as a distributed embedded architecture

within the building, empowers the interoperability of the ICT devices and networks and their

integration into the BMS. The middleware scales to any building construction regardless of

the devices’ performance and connectivity limitations, while a secure architecture ensures

the integrity of data and operations. An extensive performance and energy efficiency study

validates the proposed design.

A "building-in-the-loop" emulation system, based on discrete-event simulation, virtualizes the

Smart Building elements (e.g., loads, storage, generation, sensors, actuators, users, etc.). The

high integration with the message-oriented middleware keeps the BMS agnostic to the virtual

nature of the emulated instances. Its cooperative multitasking and immerse parallelism allow

the concurrent emulation of hundreds of elements in real time. The virtualization facilitates

the development of energy management strategies and financial viability studies on the exact

building and occupant activities without a prior investment in the necessary infrastructure.

iii

Abstract

This work concludes with a holistic system evaluation using a case study of a university building

as a practical retrofitting estimation. It illustrates the system deployment, and highlights how

a currently under development energy management system utilizes the BMS and its data

analytics for demand-side management applications.

Key words: smart building, intelligent building, systems thinking, scalable architectures, energy

management, building management systems, building data model, real-time architectures,

distributed computing, message-oriented middleware, ICT interoperability architectures,

discrete event system, parallel architectures, building emulation

iv

Résumé

Ces dernières années ont connu d’importants changements dans les domaines liés aux

bâtiments, aussi bien en Europe que dans le monde entier. L’émergence des concepts tels que

le réseau électrique intelligent, de la ville intelligente et du bâtiment intelligent a attiré une

attention considérable et, par conséquent, a mené à un développement rapide. Le

développement des nouvelles technologies de l’information et de la communication (TIC)

permet progressivement une utilisation optimisée des ressources tout en améliorant le

rendement énergétique du bâtiment et la satisfaction des occupants sur un large éventail

d’opérations.

Cependant, la littérature et l’industrie ont mis en évidence certains obstacles et défis, qui

empêchent leur adoption universelle. Le bâtiment intelligent est un système cyber-physique

qui, dans son ensemble, représente une entité plus vaste que la somme de ses parties. La

combinaison hétérogène de systèmes, d’algorithmes et d’interactions le constituant nécessite

une recherche multidisciplinaire approfondie. Ce travail propose et valide une approche

d’ingénierie des systèmes visant à répondre aux défis identifiés ainsi que le développement

d’une architecture viable pour le bâtiment intelligent du futur.

Tout d’abord, un modèle de données pour le système de gestion de bâtiments (BMS) a été

développé afin d’abstraire la sémantique des TIC et la structure géométrique du bâtiment.

Une interface de programmation d’applications de haut niveau (API) facilite la création

d’algorithmes génériques de gestion de ressources et d’applications externes. Ces dernières

sont ainsi indépendantes de toute instance du bâtiment intelligent, favorisant la portabilité

de l’intelligence et réduisant de surcroît le coût. En outre, la répartition de charge et la

virtualisation assurent l’élasticité du système, indépendamment des activités des occupants et

de la complexité des algorithmes d’optimisation.

Ensuite, un middleware temps-réel et orienté message assure l’interopérabilité des

périphériques, des réseaux TIC et leur intégration après du BMS. Son architecture embarquée

et distribuée au sein du bâtiment lui confère de nombreuses propriétés indispensables au

bâtiment intelligent du futur. Le middleware s’adapte à n’importe quelle structure de bâtiment,

indépendamment des performances des périphériques et des limitations de connectivité,

tandis qu’une architecture sécurisée garantit l’intégrité des données et des opérations. Une

étude approfondie de l’efficacité énergétique et la performance du BMS valide la conception

proposée.

v

Résumé

Un système d’émulation de « bâtiment-dans-la-boucle » virtualise les éléments dominants du

bâtiment intelligent (par exemple, charges, stockage, génération, capteurs, actionneurs,

utilisateurs, etc.). L’émulateur, basé sur une simulation d’événements discrets, est directement

intégré dans le middleware, garantissant de la sorte une abstraction de la nature virtuelle des

instances émulées vis-à-vis du BMS. Les entités virtuelles évoluent dans un environnement

multitâche coopératif et son important parallélisme permet l’émulation simultanée de

centaines d’éléments en temps réel. Cette virtualisation facilite l’élaboration de stratégies de

gestion de l’énergie et l’étude de viabilité financière en synergie avec le building réel et ses

occupants, évitant ainsi un investissement dans l’infrastructure nécessaire à ces études.

Ce travail se termine par une évaluation du système holistique appliqué à l’étude d’un

bâtiment universitaire, sous forme d’une estimation réaliste de réaménagement. Elle illustre le

déploiement du système et démontre comment un système de gestion de l’énergie pourrait

tirer profit du BMS et de sa capacité de traitement de données, dans le but d’installer une

plateforme de gestion de la demande en énergie du bâtiment.

Mots clefs : bâtiment intelligent, approche systèmes, architectures évolutives, gestion de

l’énergie, systèmes de gestion de bâtiments, modélisation des données du bâtiment,

architecture temps-réel, calcul distribué, middleware orienté message, architectures

d’interopérabilité TIC, système d’événements discrets, architectures parallèles, émulateur de

bâtiments

vi

Contents
Acknowledgements i

Abstract (en/fr) iii

Contents vii

List of figures xi

List of tables xv

List of algorithms xv

Introduction 1

1 Smart Building Perspective 7

1.1 Building Automation . 8

1.2 Smart Building Perspective . 9

1.3 Barriers to Adoption . 12

1.3.1 Interoperability . 12

1.3.2 Security and privacy . 13

1.3.3 Financial . 14

1.3.4 Performance distrust . 14

1.3.5 Reliability . 15

1.3.6 Adaptability . 16

1.3.7 Building diversity and multi-stakeholder environment 16

1.3.8 Complexity . 16

1.4 Stakeholders . 17

1.5 Applications . 18

1.5.1 Demand side management . 19

1.5.2 User engagement . 20

2 Smart Building Modeling and Computational System Core 21

2.1 Introduction . 22

2.2 Motivation . 22

2.3 State of the Art . 24

vii

Contents

2.3.1 Scientific literature on BMS . 24

2.3.2 Open-source and community-supported BMS 25

2.3.3 Commercial systems . 27

2.4 Modeling the Smart Building . 27

2.5 Architecture, and Implementation . 32

2.5.1 System architecture, scalability, and rapid deployment 32

2.5.2 Application server as the BMS core . 34

2.5.3 Real-time server . 38

2.5.4 Databases . 40

2.6 Functional Validation and Use Cases . 41

2.6.1 Simulation-based proactive energy feedback 41

2.6.2 Hybrid, indoors - outdoors occupant localization 50

2.7 Conclusions . 57

3 Distributed Message Oriented Middleware 59

3.1 Introduction . 60

3.2 Requirements . 62

3.3 State of the Art . 65

3.3.1 Surveys and challenges on middleware design 65

3.3.2 Middleware literature for IoT and WSN . 66

3.3.3 Middleware literature for SB . 68

3.4 Middleware Architecture Standards and Specifications 69

3.4.1 Object- and procedure-oriented middleware 69

3.4.2 Service-oriented middleware . 70

3.4.3 Message-oriented middleware . 71

3.4.4 Ideal middleware system and standard . 73

3.5 Middleware Architecture, Implementation, and Operation 75

3.5.1 Middleware as part of the BMS . 75

3.5.2 Middleware nodes . 75

3.5.3 Self-discovery . 80

3.5.4 Security features . 81

3.6 Validation . 88

3.6.1 Evaluated hardware as middleware node platform 88

3.6.2 Performance and validation tests . 88

3.6.3 Middleware node on a x86 architecture machine 91

3.6.4 Middleware node on an ARM architecture machine 96

3.6.5 Middleware node on a MIPS architecture machine 99

3.7 Conclusions . 108

4 Building-in-the-Loop Emulation Engine 109

4.1 Introduction . 110

4.2 Motivation . 111

4.3 State of the Art . 112

viii

Contents

4.4 Theoretical Background . 114

4.4.1 Real time discrete event system specification 114

4.4.2 Building Emulation engine as a DES system 116

4.4.3 Lightweight multithreading mechanism 118

4.5 Emulation Engine Architecture, Implementation, and Operation 120

4.5.1 vMid: the emulation engine as a module of the BMS 120

4.5.2 vEngine: the virtual middleware core . 121

4.5.3 vEntities: the core of emulation . 125

4.5.4 Supervisor: the performance regulator . 137

4.5.5 vNetwork: the embedded network emulator 140

4.6 Emulation Engine Evaluation and Validation . 148

4.6.1 Testing setup . 148

4.6.2 vEngine performance . 151

4.6.3 vNetwork performance . 161

4.6.4 vBuilding: emulator practical assessment 171

4.7 Conclusions . 174

5 Smart Building Case Study 177

5.1 Introduction . 178

5.2 Physical Building and its Challenges . 178

5.3 System Deployment . 180

5.4 Energy Management System . 184

5.5 Conclusions . 186

6 Conclusions 187

Conclusions 187

6.1 Future Work . 189

6.1.1 Short-term extensions . 189

6.1.2 Long-term prospects . 190

Bibliography 211

Abbreviations and Acronyms 213

Curriculum Vitae 215

List of Publications 216

ix

List of Figures
1.1 The Smart Building concept visualization . 12

2.1 Partial UML diagram of the OpenBMS database model 31

2.2 The 4-tier BMS architecture . 33

2.3 BMS architecture overview . 33

2.4 Horizontal stateless scaling of the BMS . 34

2.5 An example frontend as a minimal BMS dashboard 35

2.6 Application server core architecture . 36

2.7 Real-time server core architecture . 38

2.8 Electrical equivalent circuit to represent thermal processes of an internal wall . 44

2.9 Architecture of the thermal simulation platform 46

2.10 Schematic of a hypothetical room used for validation along with the equivalent

R-C network representation . 48

2.11 Comparative accuracy of this platform’s solver vs a state of the art tool 49

2.12 Energy saving recommendations evaluation process 50

2.13 Localization design requirements . 51

2.14 Position estimation using the signal strength information 52

2.15 The main UML sequence diagram for (a) User UUID initialization, (b) IPS tag

scan, (c) HPS fence event . 54

2.16 The indoors localization passive tag . 54

2.17 Outdoors localization performance validation . 56

3.1 The layered approach in smart building system design 60

3.2 Example of the distributed middleware topology in a building 61

3.3 The connectivity advantage of a middleware-enabled system 65

3.4 Middleware communication protocols performance comparison 73

3.5 Broker-enabled versus brokerless MoM . 74

3.6 A directory service of the BMS for addressing the disadvantages of brokerless MoM 75

3.7 Middleware system in relation with the BMS and embedded devices. 76

3.8 Layered middleware node architecture . 77

3.9 UML class diagram for a middleware node . 78

3.10 BMS-side, real-time server, and routing middleware node architectures 79

3.11 Device/network, and micro-database middleware node architectures 80

xi

List of Figures

3.12 UML sequential diagram of a network middleware node interacting with the

BMS and the physical devices. 80

3.13 Encapsulation of MoM inside VPN tunnels, on top of existing network 83

3.14 Embedded MPU boards for hosting the middleware node software and the

physical interfaces. Left: BeagleBone Black (BBB), right: LinkIt Smart 7688 Duo 89

3.15 Measured message latency on the x86 architecture. 94

3.16 Measured message throughout of a subscriber node on the x86 architecture. . . 94

3.17 The effect of programming language on the message latency on the x86

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression. 95

3.18 The effect of programming language on the message throughput on the x86

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression. 95

3.19 Measured message latency on the ARM® architecture. 97

3.20 Measured message throughout of a subscriber node on the ARM® architecture. 98

3.21 The effect of programming language on the message latency on the ARM®

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression. 98

3.22 The effect of programming language on the message throughput on the ARM®

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression. 99

3.23 Measured message latency on the MIPS architecture. 102

3.24 Measured message throughout of a subscriber node on the MIPS architecture. 103

3.25 The effect of programming language on the message latency on the MIPS

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.103

3.26 The effect of programming language on the message throughput on the MIPS

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.104

3.27 Power consumption of Linkit Smart 7688 Duo during the wired and unencrypted

reception of 100k, 500 B messages using a natively compiled binary (C++) and a

SUB socket. 104

3.28 Power consumption of Linkit Smart 7688 Duo during the wireless and

unencrypted reception of 45k, 500 B messages using a natively compiled binary

(C++) and a SUB socket. 105

3.29 Power consumption of Linkit Smart 7688 Duo during the transmission of 20000

500 B messages using Python and a PUB socket over a wireless connection and

without VPN. 105

3.30 Power consumption of Linkit Smart 7688 Duo during OpenWRT booting up and

network initialization. 107

3.31 Power consumption of Linkit Smart 7688 Duo during forced suspend using the

reset (PORST_N) pin. 108

4.1 The proposed building emulation engine as a virtualization technology, in parallel

to, and integrated with, existing physical infrastructure. 110

4.2 The proposed hybrid discrete-event simulation (DES) engine. Px denotes the

processes, Ax the activities and Ex the events . 117

xii

List of Figures

4.3 Representative examples of the virtualized infrastructure using the hybrid

modeling approach . 118

4.4 From left to right: regular process, threaded process, micro-threaded process . 119

4.5 The vMid, pMid, and BMS connectivity scheme 121

4.6 The vEngine architecture: (green) a vE executing, (yellow) vE waiting for the

program control and (grey) vE cooperatively deferred execution 122

4.7 The sequential UML diagram of the vEngine interactions with the rest of the BMS125

4.8 vEntity implementation flowchart and UML diagrams: (0) initialization, (1)

suspended while waiting for an event/timeout, (2) update state, (3) output event,

and (4) adapt suspend time . 127

4.9 Maximum power relative error between the one-diode model simulation and its

linear simplification . 132

4.10 vEntities pool state at any given time. vEntity: green the currently executing, gray

the suspended and blue in standby . 137

4.11 Worst case scenario for 4 vEntities . 138

4.12 The three domains of messages processed by the vNetwork with their paths. (1)

internal, (2) network level, (3) building level . 141

4.13 The core workflow of the network emulation module of the building virtualization

engine . 142

4.14 Pipelined, triple-thread approach for zero additional time delay and high

throughput . 145

4.15 CDF of roundtrip latency, for varying number of vEntities and hardware, for 0.1

commands/sec and 0.1 events/sec for each vEntity 156

4.16 CDF of roundtrip latency, for varying number of vEntities and hardware, for 10

commands/sec and 0.1 events/sec for each vEntity 157

4.17 CDF of roundtrip latency, for varying number of vEntities and hardware, for 0.1

commands/sec and 100 events/sec for each vEntity 158

4.18 CDF of roundtrip latency, for varying number of vEntities and hardware, for 10

commands/sec and 100 events/sec for each vEntity 159

4.19 Isolated latency of events and commands for varying hardware, number of

vEntities, commands/sec, and events/sec . 160

4.20 CDF of latency introduced by vNetwork hosted on varying hardware, for varying

packet/sec and 100 B payload . 164

4.21 CDF of latency introduced by vNetwork hosted on varying hardware, for varying

packet/sec and 500 B payload . 165

4.22 CDF of latency introduced by vNetwork hosted on varying hardware, for 100

packet/sec and varying payload size . 166

4.23 CDF of latency introduced by vNetwork hosted on varying hardware, for 500

packet/sec and varying payload size . 167

4.24 Average latency for each vNetwork pipeline stage, hosted on varying hardware,

for 500 packet/sec and varying payload size . 169

xiii

List of Figures

4.25 Latency over time for each vNetwork stage, running on the BeagleBone, for 100

packet/sec and varying payload size . 170

4.26 Consumption profile of building and its virtual elements 172

4.27 Consumption profile of building with enabled peak power reduction 172

4.28 Practical demonstration of EMS capabilities using virtual generation and storage 174

4.29 Financial benefits predicted by the EMS for real consumption using the virtual

generation and storage . 174

5.1 The EPFL "Smart Grid Campus Project", in green the smart building and orange

the PMU locations . 179

5.2 EPFL ELB building’s 2nd floor plan . 179

5.3 Holistic system architecture . 181

5.4 The eSMART power monitor and load control module 182

5.5 The 6LoWPAN-enabled and PV energy harvesting environmental multi-sensor 183

5.6 The middleware and embedded networks topology on the actual building . . . 184

5.7 System architecture for an energy management enabled building 185

xiv

List of Tables
2.1 Building material and structure specifications . 49

2.2 Energy impact of various location events intervals 56

3.1 RTT and iPerf3 measurements on the maximum achievable bandwidth between

the Intel® Core i5-5300U machine (client C) and the reference hardware (server S). 92

3.2 OpenSSL cryptographic ciphers performance on Intel® Core i5-5300U CPU.

Bigger is better, in KB/sec. 92

3.3 RTT and iPerf3 measurements on the maximum achievable bandwidth between

the ARM® Cortex A8 machine (client C) and the reference hardware (server S). 96

3.4 OpenSSL cryptographic ciphers performance on ARM® Cortex A8 architecture.

Bigger is better, in KB/sec. 97

3.5 RTT and iPerf3 measurements on the maximum achievable bandwidth between

the MIPS architecture (client C) and the reference hardware (server S). 101

3.6 OpenSSL cryptographic ciphers performance on MIPS architecture. Bigger is

better, in KB/sec. 102

4.1 Benchmark metrics using sysbench for the hardware used in the performance

evaluation of emulation. For CPU smaller is better, for Memory bigger is better. . 150

4.2 Mean and standard deviation of total added latency (mean ± std) in ms by the

vNetwork stage for various tests and hardware. 168

4.3 List of emulated elements in the virtual building and their consumption features 171

xv

List of algorithms
1 OpenVPN server configuration . 86

2 OpenVPN client configuration . 87

3 Structure of the simulation parameters transferred from the BMS to the vEntities 128

4 vBlind simulation and model parameters . 130

5 vPVpanel simulation and model parameters . 133

6 vComputer simulation and model parameters . 135

7 vNetwork parameters for network simulation . 143

8 Generating random values from a given histogram 147

9 Bash script for hardware benchmark . 150

xvii

Introduction

More than half of the world, and 74% and 82% of the European and North American populations

respectively, lives in urban areas [1]. The trend of increasing urbanization is expected to

continue in the following decades. Thus, the sustainable development and the wellbeing

enhancement of urban centers are of paramount importance.

The emergence of advanced information and communication technologies (ICT) have led to

the introduction of technologies such as the Internet of Things (IoT) and big data analytics,

which enable real-time monitoring and control, improved services, and efficient decision-

making. In this context, the Smart City is the vision for integrating the ICT and city operations,

services, and infrastructure for addressing urban challenges. Over the years, the concept has

been applied to several areas, such as energy, water, waste management, mobility, public safety,

and critical infrastructure monitoring. Specifically, the initiation of the Smart Grid (SG) vision

made energy management, in particular, the key driver for the Smart City.

Traditionally, energy has been produced in centralized power plants, transmitted, and then

distributed to the cities’ residential, commercial, and industrial consumers. However, there is

now a shift from centralized to decentralized generation, which changes the energy landscape.

Renewable resources, as well as energy storage systems, are increasingly being integrated

into new and retrofitted buildings. In that sense, energy consumers are becoming energy

“prosumers”. Furthermore, residential and tertiary sectors were responsible for around 43%

of total final energy consumption in 2015, according to the EU Reference Scenario 2016 [2].

Therefore, the building domain plays a significant role in the energy policies of a city.

It is evident that building performance has been advancing continuously with regard to

operating efficiency and occupant wellbeing. There are several identified drivers for such

developments, which mostly revolve around increasing the value of the building [3]. This

added value is not only financial. On the contrary, it encapsulates the performance, comfort,

and overall satisfaction for its users. Additionally, there is a shift of interest towards quality and

improved operational costs over the building life, rather than for the initial investment [4]. In

fact, research has shown that nearly 80% of the energy usage in a construction’s lifecycle is

related to the operational stage [5]. Therefore, its longevity, the ability to maintain the value

over an extended period and shifting conditions is a major building performance indicator.

1

Introduction

For the last few decades, the so-called "intelligent building", denoted the conceptual

representation of the future building. The ICT of the last decade have been a major driver of

rapid growth and the realization of such a future building vision. The involved ICT are diverse;

some have already been deployed and validated for years, while others are new but very

promising. Nowadays, the ICT in a building grow beyond the building automation systems and

devices like the sensors, actuators, and controllers. There is now a significant number of

consumer-owned devices available, such as smartphones, digital home assistants, connected

locks, CCTV, smart appliances, intelligent thermostats and lighting, etc.; those are commonly

referred to as IoT. Those will not only provide new sources of data on human activities, but

they will also provide greater granularity for action. Moreover, as the incentives are market,

lifestyle, and wellbeing-oriented, they are more likely to commit to such purchases.

The Smart Building (SB) is, therefore, an evolution of the "intelligent building" concept that

achieves significant value improvement [6] by leveraging the new software algorithms, the

augmented data sources, the new energy generation and storage of the building, as well as

the energy market progression. In that sense, the SB aims beyond the building automation

scope. Practically, a SB is distinguished by the utilization of novel and consumer ICT, the high

adaptability to changing conditions, improved energy management and sustainability, and

occupant interaction and empowerment. Thus, regardless of the technologies and intelligence

in place, a SB should continuously improve on the energy efficiency aspect without jeopardizing

the perceived comfort and satisfaction of those within, while maintaining that over a long time.

Despite the advancements, there are still social, economic, and technological barriers and

challenges that hinder the adoption of SB [7]. In the literature, there are already various

solutions for addressing individually the challenges of, including but not limited to,

interoperability, reliability, complexity, security, privacy, and cost. However, the SB has become

a sophisticated heterogeneous cyber-physical system (CPS); the need for multidisciplinary

research and systems thinking has recently become more evident. Undoubtedly, the

intersection of ICT, energy, and occupants, which define the SB, are strong foundations for

such multidisciplinary research. In fact, it is a necessity for understanding its complex

interactions and the influence of its stakeholders.

A system is more than the sum of its parts. It may exhibit adaptive, dynamic, goalseeking,

self-preserving, and sometimes evolutionary behavior.

Many of the interconnections in systems operate through the flow of information.

Information holds systems together and plays a great role in determining how they operate.

The least obvious part of the system, its function or purpose, is often the most crucial

determinant of the system’s behavior.

Donella H. Meadows [8]

2

Introduction

This work proposes and validates a systems engineering approach to the investigation of

the identified challenges and the development of a viable system architecture for the future

SB. Throughout the chapters of this dissertation, the reader will progress through a series of

ideas, technologies, architectures, and implementations that seek to answer both wide- and

narrow-scope social, technical, and research challenges in a sustainable SB system.

Dissertation Outline

This dissertation is divided into six chapters. Each chapter investigates a discrete aspect of the

SB system design. Chapters 2 - 4 are the three major contributions of this work in the form

of SB subsystems for addressing the challenges identified in Chapter 1. Finally, Chapter 5

concludes and validates the system design with its deployment in a university building as a

case study.

Chapter 1 discusses the concept of intelligent building, its stakeholders, and major

opportunities. The terms of building automation and SB are frequently used

interchangeably. Thus, this chapter presents the current building automation

solutions and compares those with the concept of SB, highlighting the advantages

of the latter. Moreover, the challenges and barriers for SB adoption are investigated.

Finally, several stakeholders are identified, and the chapter concludes with two

prominent SB applications.

Chapter 2 focuses on the core component of any SB, the building management system

(BMS). It presents a model-based approach to the design of the BMS, which

enables a semantic abstraction. A matching application programming interface

(API) is designed by the identified requirements and facilitates the creation of

generic algorithms and applications regardless of the particular building and ICT

characteristics. An event-driven architecture ensures the near real-time operation,

eliminating latency introduction by the BMS. Moreover, the load balancing ensures

the scalability regardless of the occupant activities and the complexity of the

optimization algorithms. Two case studies, an occupant localization system, and

a thermal simulator leverage the BMS-exposed abstractions and API in order to

provide high-level data services, validating the extensibility of the model-based

BMS design.

Chapter 3 addresses the major challenge of interoperability and technology fragmentation

which creates social, financial, and technological barriers as identified in Chapter 1.

The chapter proposes a real-time, message-oriented middleware (MoM) system as

a distributed embedded architecture within the building. This system addresses

the challenges of extendibility, scalability, adaptability, and security of the ICT

systems and integrates them into the BMS. An object-oriented programming

paradigm and a layered architecture for each distributed middleware node ensures

3

Introduction

the expandability in supporting new ICT devices and protocols. A case study on

several platforms, as distributed nodes, investigates the performance and energy

efficiency of such middleware design for SB.

Chapter 4 extends the previous chapter by introducing the real-time virtual middleware

concept. This is a discrete-event simulation scheme as a "building-in-the-loop"

emulation system, which "virtualizes" common SB elements such as loads, storage,

generation, sensors, actuators, users, etc. As the virtual middleware is an extension

of the physical one, the BMS remains agnostic to the virtual nature of the emulated

instances. Thanks to a cooperative multitasking design, hundreds of building

elements are emulated concurrently and in real time. Such a system permits the

validation and optimization of several algorithms in the actual building without a

prior investment in the necessary infrastructure.

Chapter 5 evaluates the proposed SB system as a whole, using a case study of a university

building, as a practical retrofitting assessment. Moreover, it highlights how an

energy management system in development within the research group, leverages

the BMS abstractions and internal data analytics for demand-side management.

Chapter 6 concludes this work, highlights its overall contribution, and suggests possible

future work for improving and extending the proposed architecture.

Research Contributions

This dissertation wishes to provide a system architecture that mitigates some of the barriers in

the SB adoption, cf. Chapter 1. By addressing the challenges, it aspires to catalyze the public SB

adoption as a necessity towards the Smart City and Smart Grid collaborative environments.

The major original contributions of this dissertation are listed below.

• Systemic approach to the intelligent building and identification of the challenges and

barriers that hinder the adoption.

• Development of a model-based BMS as a highly adaptable management system.

• Semantic abstractions in the BMS for reduced complexity and decoupled external

algorithm development.

• Proposal of a flexible load balancing architecture for BMS for facilitated scalability

regardless of the algorithmic complexity, building size, ICT infrastructure, and occupant

activities.

• An event-driven real-time server ensures the low latency requirements without

impacting the functionality.

4

Introduction

• Novel distributed and scalable message-oriented middleware system for SB,

adaptable to any building construction, ICT topologies and capabilities.

• Layered middleware node architecture for easy extensibility of the functionality and

supported ICT.

• Middleware optimized and validated on embedded hardware, reducing the required

investment and energy to run it, while minimizing its visual intrusiveness.

• Middleware augmented with a secure architecture ensuring the data and operations

integrity.

• Innovative SB emulation system based on discrete-event simulation, supporting most

of the contemporary SB elements.

• The real-time operation in parallel with the physical devices and the integration with

the message-oriented middleware makes the BMS agnostic to the virtual nature of the

emulated elements.

• This "building-in-the-loop" emulation tool that can be used for evaluation of energy

management strategies and financial viability studies without a prior investment in the

necessary and costly infrastructure.

• A case study on a physical university building highlights the practical deployment of

the proposed SB architecture for energy management practices.

5

1 Smart Building Perspective

This chapter assesses the potential of advanced technologies in buildings for the transition

towards the Smart Building (SB) era. In fact, nowadays the understanding of an intelligent

building goes beyond automation. The SB is defined as the orchestration of policies,

stakeholders, and novel systems that challenge the traditional practices of building

automation. Such systems are highly heterogeneous due to, among other things, the building,

the investment size, and the current market trends. Some have long-term validated value and

results, while others are only newly introduced but highly promising. This chapter develops

and defines the SB concept and highlights its benefits compared to traditional automation.

Moreover, it explores the barriers that hinder its adoption and highlights the challenges in the

state of the art, some of which are addressed in the following chapters. The chapter concludes

with the major SB stakeholders and applications that leverage its advantages.

7

Chapter 1. Smart Building Perspective

1.1 Building Automation

Building automation systems (BAS) for the monitoring and controlling of building

environments are becoming a standard consideration. They are aimed mainly at energy

efficiency through heating, cooling, ventilation and lighting control.

One can categorize the building automation standards based on their primary domain of

functionality [9]. There are generally three hierarchical levels of functionality in a given

BAS. The management level is where all the information from the entire system is collected,

aggregated and represented in a unified way to the operator. This is where the different

control and management decisions are introduced, either by the operators or by an automated

optimization agent. The long-term data storage, analytics and performance reports are also

generated at this level. On the other hand, the automation level includes all the infrastructure

capable of applying a predefined scenario or maintaining a control set point. On this level, the

automation infrastructure acts as a delegate of the management level to the end devices. This

can be in the form of a sensor values accumulator, control dispatching, data pre-processing,

alarm triggering, etc. Finally, on the field level are all the end devices, communication networks

and in general the infrastructures that interface with the physical environment of the building.

Some prominent BAS are the following:

• BACnet’s popularity has grown over the years and it has become the leading technology

in building automation. It is frequently marketed as the universal building management

and automation standard. It provides the means to manage the building regardless of

its construction characteristics. Specifically, its object-oriented programming (OOP)

approach standardizes the representation of data and processes within the building.

However, it does not define the internal data structures, control logic and configuration

vectors for each field device. Those are left open to their respective manufacturers.

Similarly, neither their data-link nor their physical layers of communication networks

are standardized by the BACnet protocol. Such networks are simply interfaced on the

BACnet’s network layer. This ensures the highest possible interoperability between the

various vendors and heterogeneous devices.

• LonWorks, on the other hand, standardizes the automation and field levels in a BAS. It is

based on the LonTalk communication protocol, a dedicated system-on-a-chip (Neuron

Chip) together with the necessary network management utilities and infrastructure. The

Neuron Chip contains the entire LonTalk protocol stack, as well as the required firmware

and operating system for participation in the LonWorks network. Moreover, the standard

does not require a particular network topology; repeaters, bridges, routers, and gateways

enable peer-to-peer and direct connections between the field devices.

• KNX standardizes, in a similar manner to LonWorks, both the automation and the field

levels. It is the successor of three successful European standards; the EIB, the BatiBus,

and the EHS. On the field level, the standard defines the physical layer that operates over

twisted copper pairs, power line communication (PLC), radio frequency or Ethernet.

8

1.2. Smart Building Perspective

The BACnet and LonWorks systems have achieved considerable adoption worldwide, while the

KNX has a strong European market presence. However, even if the automation market has

gone a long way towards standardization nowadays, such protocols are still focusing primarily

on the automation aspect; however, the Smart Building (SB) notion extends far beyond that.

1.2 Smart Building Perspective

For the past few decades, any conceptual design and proposal representing the future building

was labeled as a smart or intelligent building. Frequently, the terms "smart" and "intelligent"

have been used interchangeably. Together with building automation, they create ambiguity in

their interpretation and understanding for both clients and engineers/researchers.

Buckman [3] and Ghaffarianhoseini [10] discuss this issue, explore the literature for

smart/intelligent building interpretations, and extract the common features leading to a

generic definition. Moreover, the authors of [11] address the ambiguity in smart infrastructure

as enabling technologies. In this study, the authors differentiate between smart and intelligent

infrastructure, as according to them, the former collects and processes the data into actionable

decisions while the latter augments that with autonomous and dynamic adaption to changing

conditions. According to their state of the art study, there is a significant increase in the use of

the term "smart" in place of "intelligent" in recent publications, a shift that can also be

associated with the wide use of the term for heterogeneous technologies, e.g., from Smart City

and Smart Grid (SG) to smartphones.

There are four regions of innovation and performance evaluation which are relevant to SB,

according to [3]. The continuous and concurrent development of those regions highlights the

differentiating aspects of the SB compared to current building automation technologies.

1. Construction: the building’s physical shape and materials for improving its performance.

E.g., improved isolation, phase-changing walls, etc.

2. Control: the process for implementing the intelligence decisions and interacting with

occupants and building environment. These range from a thermostat to a more advanced

BAS maintaining the internal comfort settings.

3. Intelligence: the methods for collecting, analyzing, and responding to incoming data in

order to meet the comfort and energy priorities. E.g., an SB that controls the heating

based on external and internal temperature readings, as well as occupant presence.

4. Enterprise: the augmented methods for creating higher dimensionality data, leveraging

the integration of intelligence with external data sources and systems, in addition to the

processes for leveraging those data in order to improve both energy effectiveness and

comfort accommodation.

As already mention in the introduction, it is the information and communication technology

(ICT) systems, both as software algorithms and Internet of Things (IoT) devices, that enable

9

Chapter 1. Smart Building Perspective

the SB to achieve this significant advantage over common building automation. In fact, the

introduction of advanced ICT solutions, more recently by the IoT, the adaptability to changing

occupant behaviors and their excellent integration, as well as the emergence of big data

and artificial intelligence techniques, have recaptured the public interest in the domain of

intelligent buildings.

Furthermore, the adoption of such a high number of physical environment sensing and acting

infrastructure has enabled creative applications to materialize. This is where occupants, their

personal devices, and their activities get integrated into this SB ecosystem with the ultimate

desire of a more sustainable future while achieving a higher living standard. For example,

literature includes a number of implementations where humans get involved in a continuously

increasing energy and carbon footprint [12, 13, 14, 15, 16, 17].

Apart from the social benefits, the plethora of data sources will enable new business models as

well advancing the management market beyond the means of automation. Such opportunities

could focus, for example, on the data analytics driven by the numerous physical environment

sensing devices. In fact, adaptability to occupants’ behavior changes and preferences has been

largely neglected in current building automation systems. Such business opportunities will not

only revitalize the slightly stagnated building automation market, they will likewise encourage

and fortify the opportunity for new enterprises to enter this market.

It is clear that the SB consists of a rather wide scope concept; the effort to provide a universal

and holistic definition for it is a non-trivial endeavor. What is certain though is that the SB is a

large evolution in building automation with significant value introduction to the building

market [6]. A number of researchers have attempted to give a comprehensive definition of the

SB. In the author’s opinion, the definitions given by Prof. Clements-Croome and Dr. Al Waer

are the most appropriate ones.

An intelligent building is one that is responsive to the requirements of occupants,

organisations and society. It is sustainable in terms of energy and water consumptions

besides being lowly polluting in terms of emissions and waste: healthy in terms of wellbeing

for the people living and working within it; and functional according to the user needs.

Derek Clements-Croome [18]

A sustainable intelligent building can be understood to be a complex system of inter-

related three basic issues People (owners; occupants, users, etc.); Products (materials;

fabric; structure; facilities; equipments; automation and controls; services); and Processes

(maintenance; performance evaluation; facilities management) and the inter-relationships

between these issues.

Husam Al Waer [19]

10

1.2. Smart Building Perspective

The author of this thesis, after extensive state of the art review and brainstorming, concluded

to the visualization and definition of the SB as seen in Fig. 1.1. In the author’s opinion, such

visualization facilitates the understanding of the SB placement and interaction with other

relevant research domains.

Therefore, according to the figure, the SB is the ultimate aggregation of three major factors or

influence poles: the ICT, the occupant, and the physical building construction. All of them are

necessary for its existence, and each one of them are differentiating and contributing to the

SB’s value.

Particularly, what is unique in the conception of such a visualization is its design in the form of

a Venn diagram. Such a scheme effectively highlights the logical relations between the three

different poles, or sets for a Venn diagram. Each set, similar to a Venn diagram, consists of a

finite collection of elements or technologies relevant to that pole.

To begin with, the ICT set includes all the "smart" infrastructure and devices. However, there

exist a finite number of such devices that serve in particular the needs of building management.

The finite number of ICT devices that serve this purpose can be expressed as the intersection

of ICT and building regions in the Venn diagram of Fig. 1.1. This intersection is in fact the

well-understood building automation technologies and systems.

As seen in Fig. 1.1, this set does not include the element of occupant. The latter is in the

intersection of the ICT and occupant regions. The corresponding set indicates the advanced

ambient intelligence and consumer-oriented solutions. These systems’ scope is not necessarily

constrained to the building setting, as they include, for example, smart transportation,

wearables and other cloud services.

The last intersection of occupant and building regions indicates passive energy consumption

optimization solutions. Those include the more energy-efficient construction materials, the

building sustainability policies, strategies for energy use reduction or even energy awareness

and occupant empowerment and integration.

Ultimately, the SB can be described by the final intersection of the regions generated by the

three previous intersections: the building automation, the ambient intelligence, and the energy

consumption, cf. Fig. 1.1. As such, the SB is the collection of technologies and elements that

originate and borrow the characteristics of all three distinct regions.

Finally, the arrows in the figure illustrate their symbiosis and interaction. As such, the occupant

is necessary for financing the investments in ICT infrastructure, which in turn manage the

building according to the defined targets and requirements. In the end, it is the building that

supports and enhances the occupants’ living and wellbeing.

11

Chapter 1. Smart Building Perspective

Energy & Comfort
management

Energy
Management

System
The triplet for next generation

intelligent building
Smart Grid

Occupant

Demand
Respons

e

Smart
Building

Ambient
intelligence

Building
automation

Building

Energy
consumption

ICT Occupant

Finance

Figure 1.1 – The Smart Building concept visualization

1.3 Barriers to Adoption

Despite the advancements in the state of the art and the improved value to the building sector,

there are still social, economic, and technological barriers that hinder the adoption of SB

[7]. Balta-Ozkan [20] explores the social barriers to adoption of SB with literature, experts,

and public opinion assessments. Although an exhaustive study is beyond the scope of this

thesis, the following subsections cluster and present the most prominent difficulties in smart

infrastructure adoption as identified by the author.

1.3.1 Interoperability

One cannot expect a single manufacturer to provide continuous product development and

support. Thus, the only viable approach to reassure the market is the existence of compatible

products from multiple manufacturers.

However, in light of the quickly advancing SB market, major building automation firms

and start-ups alike were quick to introduce solutions as part of their proprietary standards.

While this enabled a quick capture of business opportunities as more parties introduce

their proprietary implementations, it started to become a Tower of Babel where hardly any

integration between existing solutions was possible.

Engineers identified the interoperability concern over a decade ago, which luckily current

building automation systems have resolved to a degree. BACnet Manufacturers Association,

for example, claims that more than 800 unique vendors globally use the standard with an

12

1.3. Barriers to Adoption

increasing trend. The same belief is shared with the LonWorks standard group, claiming a

4000-product range and their devotion to the open standards. As a matter of fact, the literature

even demonstrates designs for multi-protocol devices [21], eliminating the need for specialized

gateways for inter-protocol communication, thus increasing the potential product range

available from each manufacturer. However, the interoperability of current standards comes

at a not-so-evident cost. The fact that the major automation standards are open does not

imply they are offered for free. For example, Echelon®, who governs the LonWorks standard,

requires royalty fees for every device using their Neuron Chip. BACnet International, on the

other hand, does not charge a fee; however, a yearly compatibility certification is necessary [22].

Similarly, for the KNX standard, while there is not a per device fee, the necessary configuration

tool (ETS4) requires a license [23]. All those fees for the small device vendors can be a costly

exercise. Unfortunately, this becomes even more prominent when vendors prefer to develop a

base product on their proprietary protocol and to charge in addition for the inclusion of a

standard interface; thus, by trying to get a market advantage against big players, they further

fuel its fragmentation [24].

All in all, it is apparent that the integration of different and sometimes even the same standard

devices made by various vendors is not always a trivial task. There is a high discrepancy

between the interoperability that they are supposed to have and the actual one. Therefore, the

adoption of universal connectivity standards, as well as the development of interoperability

and integration technologies are critical to overcoming this barrier. Chapter 3 presents such

interoperability enabling technology without impact on functionality, cost, or performance.

1.3.2 Security and privacy

Security and privacy are frequently mentioned as one of the top concerns in SB and smart

infrastructure in general; thus, they are important factors that influence the adoption of SB

technologies. It is therefore imperative to understand the challenges and evaluate the benefits

of an IoT-enabled building. As the IoT devices are communicating over public networks and

well beyond the building environment, there is an increased risk of data compromise. In the

literature, there are several attempts to identify these security and privacy challenges. For

example, Roman and Sicari [25, 26] identified various issues that need to be addressed before

the security and privacy requirements are met.

As a matter of fact, the term of security defines multiple aspects such as integrity, confidentiality,

authentication, authorization, non-repudiation, and availability. Moreover, as the SB is a

cyber-physical system (CPS), the security is not only applicable to data. On the contrary, it is

important to understand that a potential security compromise could jeopardize the building’s

physical safety as well. Nevertheless, security is seen by some experts as a technical problem

that can be addressed by state of the art solutions [27, 28].

Privacy, on the other hand, is a more challenging barrier, as it is highly related to the policies

and legislation in place [29]. Privacy of an SB system requires in general the protection of

13

Chapter 1. Smart Building Perspective

occupants’ private data, patterns, and interactions with other people or objects. Unfortunately,

such privacy challenges in IoT and concerns in big data analytics are only partially addressed.

However, there is an ongoing effort to address those. For example, practical solutions such as

cluster-based anonymization schemes [30] could provide the desired privacy to the individual

without affecting the data analytics benefits and business models.

1.3.3 Financial

Concerns have been also raised by various stakeholders over the high cost of the SB technologies

[20]. Firstly, the purchase and installation cost is a considerable expense that may not be

justified by low to mid-income households and short-term tenants. Secondly, the smart

infrastructure may require specialized maintenance and repairs that are perceived as costly

and a potential financial risk. Moreover, the market fragmentation, the planned obsolescence,

and the lack of interoperability between generations of technologies require frequent and

considerable upgrades which exacerbate the situation.

However, as nearly 80% of a building’s energy use takes place over its operational stage [5],

there are indeed financial benefits from reduced and optimized energy use. Despite the

generally low cost of electricity which could make such systems less attractive, the demand

side management (DSM) with the energy providers could trigger additional incentives through

smart energy contracts. Moreover, depending on the policies and development plans in place,

the governance can also subsidize SB technologies for improved urban energy management

and efficiency. However, those are strongly related to the SB’s final performance delivery, which

is not always the case, as seen in the next subsection.

1.3.4 Performance distrust

This trust barrier mainly relates to the modern SB systems, as their IoT infrastructure is

considered by same as a market trend. This can be blamed on the technical gap between the

promised and the delivered solution’s performance. In fact, poorly implemented systems may

quickly become redundant and unused.

Furthermore, there is still not enough comprehensive research on the profitability and

performance of modern IoT-based SB systems. On the other hand, the majority of the

literature work, reviews, and long-term evaluations have been conducted on the traditional

BAS [31]. This can inhibit industrial and other large-scale projects’ interest in novel SB systems,

as the benefits cannot be easily estimated. Legacy automation standard supporters strongly

emphasize the verified performance of their ecosystems. These systems are much more

mature, and they have been installed and evaluated in varying premises and schemes,

highlighting their effectiveness through multiple case studies. Throughout the years, many

research groups used those standards as the sole means of automation and energy

management evaluation. Those research studies increase the impact and credibility of such

14

1.3. Barriers to Adoption

standards. Furthermore, plenty of their enterprise customers prefer the certified devices and

value the deliberately slow process by which these standards evolve and are refined. The

aftersales service also ranks high on the priorities of the B2B relations, in which the legacy

building automation vendors generally excel.

It is true that the IoT-based system can be somewhat overmarketed nowadays. In fact, Gartner,

a technology research and advisory firm, ranked them at the peak of their inflated expectations

in their Hype Cycle for two consecutive years [32, 33]. The primary concern is the lack of

clear added value for the end consumer, which usually considers them more of a lifestyle

gadget. To make matters worse, many products are named and marketed as IoT when they are

just smartphone-connected devices without demonstrating any of the novel IoT advantages.

Additionally, many building automation specialists believe that there are still not enough

models and algorithms for utilizing the enormous number of data sources generated by the

extensive connectivity and ubiquitous computing of IoT.

However, the research in recent years on IoT and data science has paved the way for new

business models based entirely on the building’s sensors data analytics. Thus, it could take

years for the IoT to solidify, but it will eventually introduce the innovating concepts that would

revolutionize public regard of the building and its energy use. The literature, in fact, proposes

various behavioral analysis solutions for energy recommendations combined with automation.

Thanks to that, the potential scenarios for financial and comfort returns will increase further

in scale. By the end of the day, IoT potential in SB will be demonstrated by the risk-taking

companies that are willing to develop novel products and data services.

1.3.5 Reliability

Due to the intrusive nature of human activities, a key concern for the SB is reliability. Reliability

is different from the performance barrier, as the latter describes how well the system meets the

needs, demands, and preferences, while the former defines the quality of being trustworthy

or performing consistently. Some measures of reliability are, for example, what happens if

things go wrong, and how likely those things are to go wrong. In fact, reliability is a good

measure of the unacceptable, sporadic, stochastic behavior of a system that interferes with

the desired outcomes. In particular, a network of things needs to be adaptive and resilient

to communication errors by providing failsafe mechanisms for information distribution.

Moreover, reliability is defined also by its tolerance not only of internal issues but also of

potential configuration faults by the users.

While reliability is highlighted as one of the major concerns and a deterring factor for SB

solutions [20], consumer-grade systems are not addressing it effectively [34], leading to

frustration and distrust. Nevertheless, some researchers have already recommended some

reliability-enhancing schemes for the smart infrastructure [35, 36] likely to be found in future

SB.

15

Chapter 1. Smart Building Perspective

1.3.6 Adaptability

Buildings, especially large ones, are not static systems. On the contrary, they are dynamically

evolving through their lifecycle based on their occupants’ patterns, behaviors, and preferences.

Any process that aims to adjust and influence the building environment, such as by means of

automation, is intrusive by its nature and can potentially interfere with the occupants. This

can be more pronounced, if for example, their preferences and patterns have diverged over

time from the initial system configuration. As such, adaptability describes the performance of

an SB to anticipate and self-adapt to such changes.

However, while the literature has proposed several schemes for tracking and modeling human

behavior in order to adapt accordingly, commercial products have yet to catch up. Most of the

BAS that have been offered up until now have generally been reactive to changes rather than

adaptive. Therefore, future SB systems need to have adaptability to changing conditions as one

of their design principles in order to differentiate from currently marketed systems.

1.3.7 Building diversity and multi-stakeholder environment

Buildings are not only dynamic but also very diversified systems. Practically, unless they

are part of a specific urban and architectural design, they are unique in aspects such as size

and architecture, materials, users, climate, energy generation and storage infrastructure, and

cabling, as well as heating capacity and isolation.

Therefore, introducing any form of intelligence would require a management system to be

specifically designed for that particular building. This is highly inefficient financially due to

the necessary dedicated design and configuration work hours. Such a workload increases

the overall cost of the installation and deters potential investments in such technologies.

Furthermore, such an approach can impact the reliability as well, as each installation is a newly

designed and realized system with much more limited validation compared to a universal

adaptable design.

However, the literature mainly focuses on the interoperability of the ICT systems rather than on

solutions to address building diversity. This could be justified by the fact that the ICT’s scope is

beyond building management, when in essence it does not always encounter the physical

environment diversity barrier. Nevertheless, this work proposes a distributed middleware

solution, cf. Chapter 3, that can mitigate the impact of building diversity on the design of SB

systems.

1.3.8 Complexity

Another considerable barrier to the adoption of SB lies in their complexity, not only during

the installation but also in operation. As a third party cannot fully anticipate the specifics

of an individual’s needs, frequently the user of a SB system would need to have some level

16

1.4. Stakeholders

of expertise in the system’s operation and management. As the individual may not be able

to adapt to complex systems with frequently difficult interfaces, the performance of the

system would suffer considerably with switching living patterns and priorities. Moreover,

simply collecting and displaying environmental data does not help either; it can even lead to

information fatigue, particularly in elderly individuals. However, an SB targets internal quality

of life improvement rather than the complication of it. Thus, one of the primary drivers and a

barrier to overcome for the SB is its flexibility to changing occupant patterns and ease of use

with engaging interfaces and a high abstraction level of data visualization.

1.4 Stakeholders

Generally, business models and markets are driven by the user-perceived value in a product.

However, unlike traditional solutions, who we define as a user greatly varies in SBs. As a matter

of fact, the entities interacting with SB systems are not only the users or occupants. Throughout

its long lifecycle, the SB needs to be designed, tested, managed, repaired, and even upgraded.

These activities involve a number of parties or stakeholders with financing models providing

the incentives and the ICT tools supporting the objectives’ achievements.

A stakeholder in a system is an individual, group, or organization, having an interest and

an influence in the design, realization and operation lifecycle phases of the system.

As a system of systems, the SB is a multi-stakeholder environment with competing powers

and interests. As the number of them increases, their relationships grow exponentially too.

Incorporating them into the SB means understanding and managing their different roles and

purposes in order to achieve collective goals through collaboration and shared interests. In

fact, a system designed to consider its stakeholders shifts the focus from individual stakeholder

addressing to balancing their relationships optimally.

However, a thorough and holistic stakeholder analysis is beyond the scope of this thesis, as

it requires a systematic gathering and analysis of qualitative information in order to cluster,

determine and prioritize interests and influences. Nevertheless, the SB system design process

has taken the stakeholders’ influence into consideration explicitly and implicitly in order to

identify the requirements and state-of-the-art shortcomings. The following stakeholders, or

clusters of them, are some of the most prominent ones in the SB ecosystem.

Occupants are influenced by the SB not only in terms of comfort, but also design aesthetics,

ambiance, and intrusiveness. This stakeholder controls a large financial aspect of the SB

through consumer participation and interest. Inevitably, it plays the largest role in the

SB’s acceptance and success. Occupants prioritize monetary savings, improved comfort,

convenience, security, and for some, the green ecological footprint. The occupants are also

very sensitive to perceived reliability, operational complexity, and privacy [20, 37, 34].

17

Chapter 1. Smart Building Perspective

Utilities and energy providers consist of the second largest stakeholder when considering

the SB’s scope within an urban energy system. The SB is essential to optimizing energy use,

generation and storage; thus, the energy services offered by the SB systems directly influence

the available business models for the utilities.

Governance and policy-makers are also a significant stakeholder nowadays due to Smart City

initiatives. For this stakeholder, the SB can support not only the energy but also water and

mobility management. Additionally, the policy makers have the power to recommend CO2

targets, and energy and water strategies, while the governance can enforce the regulation and

provide research funding and subsidies for building retrofitting. All those actions can greatly

influence both the overall SB market momentum as well as specific areas of applications.

ICT providers are supplying the solutions for transforming the SB. Those can be anything

from electronics, automation and network infrastructure to software and cloud services. While

this stakeholder’s interests are based mainly on financial models, its influence varies greatly

depending on its market momentum. Most importantly, it is frequently the source of the

technology fragmentation in the SB ecosystem.

Building owners and managers consist of another fairly critical stakeholder group, especially

during the initial design and retrofitting phase. Unlike tenants, this group has the final

control over the decision to invest in a SB system. Unlike an occupant, it is primarily driven

by the monetary gains through efficiency, energy optimization, remote management and

building value improvement. Moreover, an owner may or may not also be an occupant

stakeholder; however, those two stakeholders are not equivalent. The latter focuses on short to

medium-term convenience while the former looks for long-term improvements.

Standard makers consist of a yet another diversified stakeholder. They establish the standards

for operation, monitoring, and interoperability in ICT and between stakeholders. The

stakeholder focus is not necessary limited to SB. The standard makers have the capacity and

interest to resolve some of the social and industrial barriers in SB adoption.

Building designers include anyone involved in the construction of a SB, from architects and

civil engineers to SB system designers.

Researchers are crucial stakeholders that drive innovation in SB environment. Through

their work and collaboration, new advanced technologies, algorithms, simulation tools and

optimization approaches continuously transform the SB space.

1.5 Applications

While the stakeholders’ groups are rather numerous, the SB applications can be clustered

mainly into two groups: firstly, the DSM and the integration of SB in a SG, and secondly, the

user engagement through the integration of people, processes, and products.

18

1.5. Applications

1.5.1 Demand side management

DSM refers to the processes and measures to improve energy delivery on the consumption

side. Such processes can be clustered into two groups. The first group’s solutions aim for

energy efficiency and possibly zero-energy buildings through optimized energy use. The second

group’s solutions have a wider scope; they integrate and control in real time the renewable

energy generation and storage, as well as actively participate in regulating the power exchange

with the SG using demand response (DR). Palensky [38] provides an overview of the domain

and classifies the DSM practices and processes.

There are two major approaches to energy efficiency in a building. The most common one is

the passive approach, which focuses on the improvement of the building’s thermal envelope

by incorporating improved isolation and thermal storage material (e.g., phase changing).

Secondly, it promotes the wide adoption of energy-efficient appliances through sensitization

campaigns. The second approach to energy efficiency calls for active building automation

solutions, which is the most relevant to this thesis.

Furthermore, there is an increase of distributed, renewable energy sources and storage

integrated into the new and retrofitted buildings. Moreover, the DR programs enable an active

change in energy usage by the end customer in response to price changes, incentive payments,

or signals from the energy system operator. Nevertheless, there are still challenges and barriers

to the deployment of such programs as scrutinized in [39, 40, 41].

The available DR programs vary with region and system operator. Han [42] categorizes them as

follows:

1. Incentive-based

(a) Direct load control (DLC): the system operator remotely controls the consumer’s

electrical equipment on short notice in exchange for an incentive payment.

(b) Interruptible/curtailable rates: the consumer receives a discounted rate in exchange

for cooperative load reduction during system contingencies. If the consumer fails

to comply, they can be penalized.

(c) Emergency DR: incentive payments for a reduced load in response to emergency

signals.

(d) Capacity market: consumers agree to provide pre-defined load reduction when the

grid is in need in exchange for guaranteed payments.

(e) Demand bidding programs: large customers can bid for curtailing at specific prices.

2. Time-based rates

(a) Time-of-use (TOU): these policies financially penalize certain periods of time

in order to discourage the use of energy during those periods. As the financial

penalties are usually defined in the contract, there are rarely changed to match

energy generation.

19

Chapter 1. Smart Building Perspective

(b) Critical peak pricing (CPP): similar to TOU but less deterministic, as CPP events can

be triggered by system contingencies. However, the rates are typically pre-defined

and CPP events are not continuous.

(c) Real-time pricing (RTP): those rates vary continuously during the day as the

wholesale market energy prices are reflected. While they are not predetermined

like the CPP, the rates can be communicated ahead of time (e.g., a day ahead) so

the consumer can adapt their energy use accordingly.

1.5.2 User engagement

The definition of a user is not limited solely to the occupant. In fact, the term user denotes

any stakeholder that utilizes an SB system, e.g., occupant, managing firm, owner, etc. Hence,

comfort enhancement denotes accordingly the ease of doing certain building related activities,

such as management, optimization, monitoring, access control, etc.

Energy consumption awareness and recommendations for action can effectively motivate

energy-efficient behavior [12, 13]. Thus, efficiency gains can be realized by inducing behavioral

changes in people through appropriate feedback on their energy consumption. Studies have

shown that it needs to be frequent and over a long time, to use interactive elements, and to be

presented in an appealing way to the occupant [43]. Moreover, feedback in environmental

units and high-level abstraction, e.g., a number of trees to offset the CO2 emissions associated

with the consumption, resulted in a greater reduction compared to direct feedback in energy

units (kWh) [44]. Furthermore, studies have shown that social influence and comparative

feedback has an even greater potential for energy-efficient behavior [14, 15, 16, 17]. However,

some authors have raised concerns as to whether energy consumption feedback with existing

in-home-displays leads to the desired energy reduction, and highlighted the necessity for novel

feedback devices for user engagement and long-term studies [45, 46, 47].

Comfort enhancement without increased energy consumption is the most distinguishing

feature of the future SB, thanks to their increased adaptability and IoT. As occupants’ behavior

has been shown to greatly influence energy consumption, there is an ongoing effort in modeling

their complex and fairly stochastic behavior [48, 49]. In fact, their activities and behavior are

the most important input for energy management systems [50]. Just-in-time heating based

on occupant localization has shown up to 7% energy savings [51]. Others investigated the

trade-off between achievable energy savings and the risk of comfort impact [52]. Moreover,

authors in [53, 54] proposed various solutions of optimizing the compromise between user

comfort and energy consumption by taking into consideration occupant interests as well as

physical energy and power limitations.

Nevertheless, there is an abundance of literature work that addresses various aspects of

intelligent comfort management and energy efficiency maintenance; however, the exhaustive

listing of those studies is beyond the scope of this chapter.

20

2 Smart Building Modeling and
Computational System Core

This chapter addresses the core component of any Smart Building (SB), the building

management system (BMS). Unlike other designs scrutinized in the literature state of the art, a

model-based approach was followed. It facilitates the semantic abstraction of the integrated

information and communication technology (ICT) infrastructure as well as the building

physical architecture. A high-level functional application programming interface (API) creates

such abstraction and enables the development of generic algorithms regardless of the

particular SB instance. Such open and flexible BMS architecture is optimized to any building

by default, without the need for reengineering and custom deployment. Furthermore, the

chapter scrutinizes the design and implementation of an optimized cloud architecture with

inherent support for event-driven communication. The provisioned load balancing ensures

the scalability regardless of the occupant activities and the complexity of the optimization

algorithms. Finally, it concludes with a few case studies, implemented as external API modules,

which leverage the BMS-exposed abstractions and provide high-level services to the SB.

21

Chapter 2. Smart Building Modeling and Computational System Core

2.1 Introduction

This chapter focuses specifically on a critical component of any Smart Building (SB) system,

the centralized computational and operation subsystem, the place that coordinates all the

building assets and houses any intelligence and optimization logic. For convenience, from now

building management system (BMS) term will refer to such component.

The chapter proposes and practically validates an alternative open-source and flexible BMS

design named OpenBMS. To the author’s opinion, it consists of a highly modular and

expandable system without compromising the speed and reliability requirements of any SB

management system. The model-based design and the realization of it using a relational

database creates a modular system that can be easily extended to model new elements.

Additionally, a holistic web application and a real-time application programming interface

(API) was designed for facilitating the development of external software logic that leverage the

BMS functionality. Finally, care has been taken as well for the creation of a highly

computationally efficient implementation with support large buildings, numerous of

occupants, and activities even on commodity hardware.

The rest of the chapter is organized as follows. Section 2.2 describes the motivation for pursuing

this research direction, while Section 2.3 presents the state of the art in BMS architectures and

it compares with the proposed one. Section 2.4 scrutinizes the data and semantic modeling

of the SB while Section 2.5 presents in details the system architecture that fulfills the design

requirements and implements the previous models. Section 2.6 provides a practical validation

of the deployed BMS with two high-level services as case studies that leverage the proposed

system and API. This chapter conclusions with Section 2.7.

2.2 Motivation

A major limitation of current BMS solutions is their monolithic, proprietary, and highly unified

architectures. On the contrary, the community-driven, open source solutions have not gathered

enough momentum outside the hobbyist’s cycles yet. On the other hand, the solutions with

significant market penetration are either constraint to the software and hardware ecosystem of

the manufacturer or hard-configured to that particular building and system revision without

any cost effective upgrade possibility.

Model-based BMS design

Thanks to the building data-model formulated during this research, every aspect it, such

as occupants, external stakeholders, information and communication technology (ICT)

equipment, building structural components and architecture (rooms, floors, walls, windows,

doors, etc.) are associated. Therefore, any building with its unique properties and occupants

can be characterized by such system-level model that describes the relationships between all

22

2.2. Motivation

those assets. Such relationships, described in unified modeling language (UML) diagrams

can be trivially implemented using a relational database management system (RDBMS). The

database implementation is then hosted on the centralized server, which may or may not hold

as well the management and optimization logic.

A key advantage of such open, model-based design is its adaptability to any building

architecture regardless of the complexity and type of it. For example, the same software can be

used without source code modification in industrial, commercial, or residential buildings.

Moreover, it can adapt to the size of the building, from a single apartment to a smart

neighborhood. Thus, the proposed modeling and design can greatly reduce the cost and

complexity and achieve great reutilization of the software modules while designing a BMS

system for a building.

Open BMS API

A direct benefit of the API, is the potential for any building stakeholder to interface the assets

of the building in a standardized and well-documented way. In plain language, this means

that it would not be any more BACnet [55] thermostat, KNX [56] thermostat or even Internet

of Things (IoT) thermometer, rather just a kitchen temperature as a service exposed to all

management software logic. For example, innovative software that optimizes the energy use

while maintaining the user comfort is possible without embedded and network engineering

expertise that would have been otherwise required. A well-defined and documented API can

eventually lead to an ecosystem of cross-building compatible applications that each of the

building stakeholder (inhabitants, designers, energy providers, market regulators) can use for

their aims.

High-efficiency BMS implementation

Finally, the RDBMS and the API application servers were designed with performance in mind

and optimized for both cloud and localized deployment into embeddable micro-server. Such

optimized design is crucial for addressing the adaptability requirements. For example, in the

case of a community housing neighborhood of SB that requires remote administration, a

powerful cloud server bundled with an embeddable locally installed manager, would better

meet the demand of multiple users concurrently requesting for any action or information. On

the contrary, an individual apartment, privacy-sensitive occupants, or a corporation could

prefer the complete BMS functionality to be hosted on their own protected building premises

and communication network.

23

Chapter 2. Smart Building Modeling and Computational System Core

2.3 State of the Art

Due to the importance of the BMS for the SB, there is an abundance of literature and

commercial products on that. This section assesses the comparable solution and highlights the

differences with the proposed one.

2.3.1 Scientific literature on BMS

This subsection assesses several research-oriented proposals for BMS architectures that address

the different challenges identified by each author. Wang in [57, 58] discusses the challenges

of interoperability in a building automation system (BAS). He proposed an alternative to

a unifying protocol for the three hierarchical levels of the BAS, two integration layers are

proposed instead. At the automation level where BACnet [55] and LonWorks [59] have achieved

good interoperability due to their wide adoption, OPC integrates different vendors systems and

connects them with the management level. On the latter, the web services are implemented for

interfacing the OPC networks.

Jarvinen [60] also addresses the interoperability challenge of a SB. The author proposed

ways for interconnecting the non-IP and IP-capable, field level communication protocols

through a standard web server interface. On the other hand, Jung [61] used an IPv6 enabled

service-oriented architecture to integrate the BAS heterogeneous systems. Finally, Kastner [62]

studied the challenges and approaches for seamless integration of legacy BAS and modern IoT.

Alternatively, the authors of [63, 64, 65] used ontology-based BMS for semantic abstraction to

the heterogeneous network infrastructure.

Many publications also focused on the wireless sensor network (WSN) integration and

management. Fortino [66] proposes a framework for managing the WSN to effectively operate

a building, while Farias [67] suggested a decentralized approach for control and decision

making in smart buildings using WSN. Gisbert [68] focused specifically on industrial

applications and proposed an heterogeneous device and network integration platform.

Similarly to this work, Stavropoulos [69] presents a system architecture for a university SB.

Sensor9k [70] instead is a more complex architecture for heterogeneous WSN and Tragos [71]

even presented an IoT-based system, both of which support the development of ambient

intelligence applications. Moreover, iPower [72] is another system managing residential energy

use that combines WSN and appliance control devices; while Weiss [73] demonstrated a

simple web interface and API for controlling power outlets remotely.

Additionally, the energy management and efficiency supporting BMS consists a rather large part

of the literature. Hong [74] proposed a cloud-based solution for building energy management

for supporting large buildings and numerous occupants. Zhao [75] introduced a conceptual

scheme of BMS that focusing on the energy efficiency. Similarly, Gamauf [76] recommended a

building load management agent with a generic communication system that enables loose

couple between the building and the Smart Grid (SG). Identically, the authors of [77, 78]

24

2.3. State of the Art

designed yet another narrow-scope system for energy management. Chen [79] proposed an

architecture that enables the SB infrastructure investments to come in phases while capturing

the returns from energy savings and ensuring the occupants’ comfort. Finally, Copone [80]

presented an architecture that provides a harmonized ecosystem and services for monitoring

and control of home appliances energy consumption.

It is obvious that the number of publications on the domain is enormous and quite diversified.

Unfortunately, despite the willingness of the author, not all of them can be included in this

chapter’s state of the art. Nevertheless, during the scientific literature review, some common

characteristics shared by most of the publications were recognized.

To begin with, most of them present a BMS of a rather narrow scope and mostly for supporting

the specific research objectives (energy management, ambient intelligence, SG interaction,

etc.). To the author’s knowledge, there is a lack of publication on the system design and

implementation of a BMS having conducted beforehand a requirements analysis in a multi-

stakeholder environment like the SB, cf. Chapter 1. Furthermore, numerous papers introduced

concepts of SB and BMS with only a few practical implementations and validations on a scale.

Finally, the papers in the literature can be classified into two major scientific groups based

on their focus. The first one concentrates on the legacy BAS and automation science, while

the second target the contemporary WSN and IoT to provide the ambient intelligence for the

building. However, the author believes that the real value lies in the combination of both and

the systemic approach on the SB design [7].

Therefore, this chapter attempts to address the following three limitations. Firstly, it focuses

exclusively on the design and implementation of a modern BMS, based on the previous system

design and requirements research derived from the SB market and stakeholders analysis.

Secondly, the implementation of such design follows the paradigms, recommendations,

and lessons learned for large cloud applications and servers for a fast, efficient, scalable,

easy-configurable, and cloud deployable architecture. Thirdly, a model-based design and

implementation like the proposed is flexible and extensible enough to serve not only new

constructions and modern ICT infrastructure but also to retrofit old buildings and integrate

legacy automation systems, encompassing and abstracting all those with a common API.

2.3.2 Open-source and community-supported BMS

Unlike the previous subsections that presented mainly scientific work, this subsection collects

and assesses the open-source, and community-supported BMS. Those are not always following

a structured, scientifically-sound approach, nor they are explicitly focusing on advanced

applications such as ambient intelligence or demand response (DR). Nonetheless, they are

well documented, easy to get started with, and eventually have attracted the interest of home

automation hobbyists and even hardware and software developers that prefer not to create a

BMS of their own.

25

Chapter 2. Smart Building Modeling and Computational System Core

OpenHAB [81] is a BMS software platform which is very popular among the home automation

hobbyists. It got traction thanks to the long list of supported devices, interconnecting them

under a single platform while also offering different frontend for the machine and human

interfacing. For someone with only basic development skills, it is relatively easy to connect

devices to the platform and control them remotely. However, it is far from straightforward

practice for a typical user, and in the end, it does not facilitate any advanced energy and

comfort optimization intelligence. Additionally, while its extendability is exceptional and the

compatibility with devices continues to grow, its core architecture does not adequately address

the scalability challenges. Nonetheless, openHAB was designed for home automation and

hobbyists rather than large SB with complex operations and security requirements.

FHEM [82] is a home automation server written in Perl which allows the configuration of

control tasks using home automation devices. It is intended for local deployment in the

building servers and supports a couple of building automation protocols. It is still under active

development and is a valid alternative to openHAB while having a much smaller community of

developers and users.

Domoticz [83] is another popular holistic home automation system for monitoring and control

of various devices. Much like the previous two, the community has integrated a number of

hardware protocols and developed a simple web interface. Its design objectives, and limitations

are very similar to openHAB.

Eclipse SmartHome [84] is open source framework for building home automation systems

envisioning to address the highly fragmented market of IoT solutions for the home. OpenHAB

is based on Eclipse SmartHome project and its difference with it is that the latter is only a

framework to build smart home systems and is not meant to be an end-user solution.

Home Assistant [85] is yet another rising open-source home automation platform for

monitoring and control of various devices without the need of cloud deployment. It is written

in Python and communicates over WebSockets, a real-time web protocol. It is a very modern,

mobile and simplicity-first driven platform that has significant traction in the community as

well. Its design objectives are also very similar to the openHAB.

Volttron [86], a distributed control, and sensing software platform with the support of US

Department of Energy, on the other hand, focuses mainly on the management of the energy

and DR scenarios. It is open, flexible, modular and has various software agents to manage

a broad range of systems like the HVAC, electric vehicles and various building loads. It is

language and device agnostic enabling the engineers to focus solely on the energy management

algorithms and not in interconnection of the various devices. However, this system is mainly

tailored to engineers and thus ranks low in the ease of use and configuration by the consumers.

Finally, the BACnet [55] is a more of a traditional building automation standard with an open

protocol stack library. It is frequently marketed as the universal building management and

automation standard due to its popularity in the domain.

26

2.4. Modeling the Smart Building

This subsection deliberately does not include the open standards at the device and network

layer. Those are not part of the management layer of a SB, even if they can be used as part

of the overall SB system. Examples of such standards are the: ZigBee, 6LoWPAN, Z-Wave,

LoRaWAN, Sigfox, Thread, EnOcean, AllJoyn, MQTT, Thingsquare, the common Wi-Fi, and

possibly many others.

2.3.3 Commercial systems

The last cluster of the BMS solutions are the commercial and proprietary ones that are offered

by major consumer electronics manufacturers or standardized in closed alliances. At the

time of this writing, they have accumulated considerable interest from the public due to their

ecosystem of compatible consumer devices (smartphones, smart entertainment systems, etc.).

Firstly, the Apple HomeKit due to the established ecosystem of smartphone and home

entertainment devices is receiving high visibility and popularity. Similarly, the Samsung

SmartThings system has its own ecosystem of compatible devices and user base. Both of them

are offering a very easy to use and install platform. Despite their ease of use though, they do

not provide any clear benefits on the optimized building management aspect as the user has

complete control with only simplified energy and comfort optimization algorithms.

Some others notable commercial home and building automation systems revealed during the

state of the art study are the following: Belkin WeMo, BuildingOS, Control4, Crestron, Ecobee,

HomeSeer, Insteon, Lowe’s Iris, Nexia, Nubryte, On-Q, Pella Insynctive, Qivicon, Savant, Skylink,

StruxureWare, Switch Automation, Vera, Wink. The list is long and certainly not exhaustive as

new technologies and solutions continue to emerge every day.

Finally, proprietary standards and protocols for the device layer of building automation were

not scrutinized. Those are standardizing wider or narrower areas of building automation,

and they are "open" to various degrees. Some examples for completeness reasons are: KNX,

LonWorks, Modbus, M-BUS, DALI, CEBus, C-Bus, SMI, Profibus, AS-Interface, EtherCAT,

ControlNet, CANopen, IO-Link, MP-Bus, Interbus.

2.4 Modeling the Smart Building

The modeling of the SB was a critical process during the design of the proposed BMS. As it is

already mentioned, the universal data model permits the creation of structured relationships

between the physical and digital elements of the building, enhancing the system’s adaptability

to any type of building and automation ICT infrastructure in place. It enables additionally the

storage of the data which characterize a building in a structured manner using a relational

database. A significant portion of the developed building model is illustrated in Fig. 2.1 in the

form of an UML diagram. The following paragraphs present some key models that form the

complete building data model.

27

Chapter 2. Smart Building Modeling and Computational System Core

Unit and Room models

The core of the building model is built around the notions of ���� and ���� models. Those

two have also been the seed and the initial motivation for a flexible alternative to existing BMS.

���� denotes any form of building construction with defined stakeholders and management

policy. It can be for example the whole building, a building section, an apartment or even a

floor. The ���� is referenced by the ���� model which resembles any independently controlled

area of the building with a defined interest in the ����’s stakeholders. The ���� and ����

models allow the same BMS to manage, integrate and adapt to heterogeneous living and

working quarters and buildings. Building managers can also observe and optimize multiple

buildings they are responsible for as ���� model is not constrained to collocated spaces or

constructions.

Sensor and Actuator models

The second iteration over the realization of the building model involved the ICT devices as

they are highly heterogeneous. Each one offers different features, monitored and controlled

building factors, and performance. The strategy that was chosen in order to normalize and

characterize all those in a relational model was the notion of �	�
�� and �
������ models.

The idea behind is the logical separation of any available sensor and actuator interface (e.g.,

active power, reactive power, temperature, humidity, relay, dimmer, control setpoint, etc.) from

the device’s algorithm. Each �	�
�� or �
������ model not only uniquely characterizes the

particular device interface but also permits its direct addressing. However, each model does

not hold any protocol algorithm for interfacing the device; for this task a dedicated system has

been designed, cf. Chapter 3. On the contrary, each model creates a semantic abstraction of the

ICT devices which allows the BMS to interact with them in the form of sensing and actuation

services as exposed by those models. Thus, the standardized model’s data structures allow the

extension of sensor and actuation capabilities independent of the BMS algorithm logic.

Furthermore, such models hold two types of IDs. The first one is the primary key that uniquely

identifies the sensing or actuation service-provider to the BMS, while the second acts as the

record for the embedded network address (proprietary id, IPv4/6, etc.) of the device. Using the

combination of both ID, a commands is routed to the appropriate device. Therefore, a single

ICT device can be characterized by a portfolio of uniquely configured �	�
�� and �
������

models instances. This composition of model instances is thus characterizing the device as

an entity offering the listed services and thus can be adapted to any device. Moreover, if a

device with some rare functionality (e.g. radioactivity sensor) not provisioned at this stage is

introduced in the future, an update to the �	�
�� or �
������ model would be enough for

the BMS to support such functionality. Finally, each model references a ���� one and thus

provides to the latter environmental monitoring and control capabilities while localizing the

physical ICT instance in the building.

28

2.4. Modeling the Smart Building

Middleware model

The ���������� model has a rather specific scope. It has been developed to support the

middleware system that will be scrutinized in Chapter 3. The middleware is a distributed

architecture that enables a holistic abstraction of the underlying ICT hardware and building

construction to the BMS. Each of the middleware’s distributed nodes is assigned to a range

or performance limited embedded network. Thus, a 	�
��� or
������� model instance

references a ���������� one which represents the distributed node. Hence, based on the

���������� instance properties, the correct middleware node can be addressed, within which,

the embedded network ID stored in 	�
��� or
������� instance will be used to address the

correct device.

Therefore, while the middleware enables the seamless connectivity and physical adaptability,

cf. Section 3.2, the BMS’s model provides the semantic abstraction to those assets and a data

model to store, process, and interface the outputs of the middleware nodes and their devices.

Load, Generation, and Storage models

Besides the ICT infrastructure, the building model provides as well data models for the load,

generation, and storage physical infrastructure of the building. Those models characterize and

store all sorts of information concerning those energy-related entities. The ���� model enables

for example load classification, profiling, and even recognition. IDs are used for uniquely

identifying those to the BMS.

The flexibility power of the building model rises from the dynamic association of the 	�
��� or

������� models IDs with the ones of infrastructure models (����,��
������
,	������). In

that sense, the BMS exposes measurement and action services for a given physical

infrastructure based on the associated ICT models. Thus, loads can move freely, within and

across �
���, and continue to be monitored and controlled transparently for the BMS

intelligence. For example, the process for acting on a load is the following:

• incoming API command on the desired load using its ID or any other uniquely identifying

combination of properties that the API supports;

• retrieve the relevant ���� model instance and the associated and available high level

parameters and services (e.g., load controllability, consumption clusters, power, etc.);

• fetch the associated 	�
��� and
������� in order to perform the required action or

measurement;

• format the request according to middleware protocol and forward it to the relevant

middleware node;

• middleware interfaces the ICT standard and routes the message to the 	�
���/
�������

instance indicated in the model;

• return the result of the operation and through the API, following the reverse process.

29

Chapter 2. Smart Building Modeling and Computational System Core

This approach of disassociating the physical, energy-related infrastructure from the ICT

equipment is an unique advantage compared to state of the art. In fact, it enables even

integrated infrastructure controllers to be modeled as a portfolio of ������/��	
�	��

instances that are associated with a particular ���
,������	���, or �	����� model. Thus the

management algorithms and the API remain the same regardless of infrastructure features.

User model

A holistic building model could not have been complete without the relevant occupant model;

the ���� model serves that role. It references the ���	 model with which the occupant is

related with. It holds all the properties relevant to the occupant such as digital access rights (on

the server), physical access rights (on premises), location information (in coordinates, or by

���� reference), per room environmental preferences, per unit management preferences, etc.

Furthermore, the ���� model provides the data modeling for storing the outputs of machine

learning algorithms and generally the ambient intelligence of the SB. Such data are for example

the interests and comfort priorities of the specific occupant.

Building construction models

This corresponds to a cluster of models that characterizing the physical building construction,

mainly from the material point of view. Those models enables for example the building-

agnostic thermal simulation algorithm. Some models that form this cluster are the: ����,

�������
��, ���
���		���
	�,�������
���		���
	�, ��	������		���
	�. The reader

can refer to Section 2.6 for a use case of high-speed BMS-integrated thermal simulation for

proactive feedback on occupant energy use.

Virtualization model

Finally, the ���	
����	�	� model enables the real-time virtualization of building ICT

equipment, energy infrastructure as well as occupants within an actual physical building and

in parallel with its activities. In that sense it creates a "building-in-the-loop" emulation system.

The model instances store all the necessary data that parametrize the simulation models.

Moreover, depending on the simulated entity, they are referencing the previously presented

models which they augment in essence. Thus, the BMS monitors and controls the building

energy and environmental assets without knowledge of the virtual nature of some of them, cf.

Chapter 4.

Concluding, Fig. 2.1 in the following page and the previous paragraphs are presenting only a

portion building model, yet crucial for understanding the potential of the data modeling for a

flexible and adaptable SB design. However, those models have not been design in one go. They

are the result of incremental updates, extensions, and improvements through continuous

feedback from various building stakeholders involved in the design process.

30

2.4. Modeling the Smart Building

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Te
xt
Fi
el
d

co
m
m
en
t

Fl
oa
tF
ie
ld

cu
rr
en
t_
pr
od
uc
tio
n

Fl
oa
tF
ie
ld

in
te
gr
at
ed
_e
ffi
ci
en
cy

Fo
re
ig
nK
ey

in
te
gr
at
ed
_s
to
ra
ge
_1

Fo
re
ig
nK
ey

in
te
gr
at
ed
_s
to
ra
ge
_2

Fo
re
ig
nK
ey

in
te
gr
at
ed
_s
to
ra
ge
_3

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

no
m
in
al
_p
ow

er

Ch
ar
Fi
el
d

ty
pe

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.G

en
er
at
or

Bm
sA
pp
.m
od
el
s.G

en
er
at
or

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Te
xt
Fi
el
d

co
m
m
en
t

Fl
oa
tF
ie
ld

cu
rr
en
t_
pr
od
uc
tio
n

Fl
oa
tF
ie
ld

in
te
gr
at
ed
_e
ffi
ci
en
cy

Fo
re
ig
nK
ey

in
te
gr
at
ed
_s
to
ra
ge
_1

Fo
re
ig
nK
ey

in
te
gr
at
ed
_s
to
ra
ge
_2

Fo
re
ig
nK
ey

in
te
gr
at
ed
_s
to
ra
ge
_3

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

no
m
in
al
_p
ow

er

Ch
ar
Fi
el
d

ty
pe

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.G

en
er
at
or

Te
xt
Fi
el
d

co
m
m
en
t

Fl
oa
tF
ie
ld

la
tit
ud
e

Fl
oa
tF
ie
ld

lo
ng
itu
de

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

zo
ne
_s
et

Bm
sA
pp
.m
od
el
s.U

ni
t

Bm
sA
pp
.m
od
el
s.U

ni
t

Te
xt
Fi
el
d

co
m
m
en
t

Fl
oa
tF
ie
ld

la
tit
ud
e

Fl
oa
tF
ie
ld

lo
ng
itu
de

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

zo
ne
_s
et

Bm
sA
pp
.m
od
el
s.U

ni
t

Bm
sA
pp
.m
od
el
s.U

ni
t

D
ec
im
al
Fi
el
d

ac
cu
ra
cy

Fo
re
ig
nK
ey

cu
rr
en
t_
lo
ca
tio
n

Ch
ar
Fi
el
d

di
re
ct
io
n

D
ec
im
al
Fi
el
d

di
st
an
ce

In
te
ge
rF
ie
ld

du
ra
tio
n

O
ne
To
O
ne
Fi
el
d

in
t_
us
er

Ch
ar
Fi
el
d

lo
ca
tio
n_
ty
pe

Ch
ar
Fi
el
d

na
m
e

Im
ag
eF
ie
ld

pr
of
ile
_i
m
ag
e

Ch
ar
Fi
el
d

su
rn
am

e

D
at
eT
im
eF
ie
ld

tim
e_
of
_l
oc
at
io
n

Fo
re
ig
nK
ey

un
it

Q
ue
ry
Se
t

us
er
pr
ef
er
en
ce
s_
se
t

U
U
ID
Fi
el
d

uu
id

Bm
sA
pp
.m
od
el
s.U

se
rP
ro
fil
e

Bm
sA
pp
.m
od
el
s.U

se
rP
ro
fil
e

D
ec
im
al
Fi
el
d

ac
cu
ra
cy

Fo
re
ig
nK
ey

cu
rr
en
t_
lo
ca
tio
n

Ch
ar
Fi
el
d

di
re
ct
io
n

D
ec
im
al
Fi
el
d

di
st
an
ce

In
te
ge
rF
ie
ld

du
ra
tio
n

O
ne
To
O
ne
Fi
el
d

in
t_
us
er

Ch
ar
Fi
el
d

lo
ca
tio
n_
ty
pe

Ch
ar
Fi
el
d

na
m
e

Im
ag
eF
ie
ld

pr
of
ile
_i
m
ag
e

Ch
ar
Fi
el
d

su
rn
am

e

D
at
eT
im
eF
ie
ld

tim
e_
of
_l
oc
at
io
n

Fo
re
ig
nK
ey

un
it

Q
ue
ry
Se
t

us
er
pr
ef
er
en
ce
s_
se
t

U
U
ID
Fi
el
d

uu
id

Bm
sA
pp
.m
od
el
s.U

se
rP
ro
fil
e

Fl
oa
tF
ie
ld

cp

Fl
oa
tF
ie
ld

d

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

pBm
sA
pp
.m
od
el
s.M

at
er
ia
lA
tt
rib
ut
e

Bm
sA
pp
.m
od
el
s.M

at
er
ia
lA
tt
rib
ut
e

Fl
oa
tF
ie
ld

cp

Fl
oa
tF
ie
ld

d

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

pBm
sA
pp
.m
od
el
s.M

at
er
ia
lA
tt
rib
ut
e

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Te
xt
Fi
el
d

co
m
m
en
t

Fo
re
ig
nK
ey

ge
ne
ra
to
r

Fo
re
ig
nK
ey

lo
ad

di
ct

lo
ad
_c
ho
ic
es
_u
ni
ts

Ch
ar
Fi
el
d

m
ea
su
re

di
ct

m
ea
su
re
_t
o_
qu
an
tit
y_
al
l

Ch
ar
Fi
el
d

na
m
e

Fo
re
ig
nK
ey

ne
tw
or
k_
m
id
dl
ew
ar
e

di
ct

qu
an
tit
y_
to
_m
ea
su
re
_l
oa
d

di
ct

qu
an
tit
y_
to
_m
ea
su
re
_r
oo
m

In
te
ge
rF
ie
ld

re
f

Fo
re
ig
nK
ey

ro
om

di
ct

ro
om

_c
ho
ic
es
_u
ni
ts

Fo
re
ig
nK
ey

st
or
ag
e

Fo
re
ig
nK
ey

st
or
e_
m
id
dl
ew
ar
e

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.S
en
so
r

Bm
sA
pp
.m
od
el
s.S
en
so
r

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Te
xt
Fi
el
d

co
m
m
en
t

Fo
re
ig
nK
ey

ge
ne
ra
to
r

Fo
re
ig
nK
ey

lo
ad

di
ct

lo
ad
_c
ho
ic
es
_u
ni
ts

Ch
ar
Fi
el
d

m
ea
su
re

di
ct

m
ea
su
re
_t
o_
qu
an
tit
y_
al
l

Ch
ar
Fi
el
d

na
m
e

Fo
re
ig
nK
ey

ne
tw
or
k_
m
id
dl
ew
ar
e

di
ct

qu
an
tit
y_
to
_m
ea
su
re
_l
oa
d

di
ct

qu
an
tit
y_
to
_m
ea
su
re
_r
oo
m

In
te
ge
rF
ie
ld

re
f

Fo
re
ig
nK
ey

ro
om

di
ct

ro
om

_c
ho
ic
es
_u
ni
ts

Fo
re
ig
nK
ey

st
or
ag
e

Fo
re
ig
nK
ey

st
or
e_
m
id
dl
ew
ar
e

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.S
en
so
r

Ch
ar
Fi
el
d

af
fo
rd
ed
_a
ct
io
ns

Fo
re
ig
nK
ey

de
vi
ce

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

po
w
er

Co
m
m
aS
ep
ar
at
ed
In
te
ge
rF
ie
ld

po
w
er
To

Bm
sA
pp
.m
od
el
s.M

od
e

Bm
sA
pp
.m
od
el
s.M

od
e

Ch
ar
Fi
el
d

af
fo
rd
ed
_a
ct
io
ns

Fo
re
ig
nK
ey

de
vi
ce

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

po
w
er

Co
m
m
aS
ep
ar
at
ed
In
te
ge
rF
ie
ld

po
w
er
To

Bm
sA
pp
.m
od
el
s.M

od
e

Ch
ar
Fi
el
d

ap
p_
la
be
l

Ch
ar
Fi
el
d

m
od
el

Co
nt
en
tT
yp
eM

an
ag
er

ob
je
ct
s

Q
ue
ry
Se
t

pe
rm
is
si
on
_s
et

dj
an
go
.c
on
tr
ib
.c
on
te
nt
ty
pe
s.m

od
el
s.C
on
te
nt
Ty
pe

dj
an
go
.c
on
tr
ib
.c
on
te
nt
ty
pe
s.m

od
el
s.C
on
te
nt
Ty
pe

Ch
ar
Fi
el
d

ap
p_
la
be
l

Ch
ar
Fi
el
d

m
od
el

Co
nt
en
tT
yp
eM

an
ag
er

ob
je
ct
s

Q
ue
ry
Se
t

pe
rm
is
si
on
_s
et

dj
an
go
.c
on
tr
ib
.c
on
te
nt
ty
pe
s.m

od
el
s.C
on
te
nt
Ty
pe

Te
xt
Fi
el
d

co
m
m
en
t

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

ro
om

se
tt
in
g_
se
t

Fl
oa
tF
ie
ld

su
rf
ac
e

Fo
re
ig
nK
ey

ty
pe

Fo
re
ig
nK
ey

un
it

U
U
ID
Fi
el
d

uu
id

Bm
sA
pp
.m
od
el
s.R
oo
m

Bm
sA
pp
.m
od
el
s.R
oo
m

Te
xt
Fi
el
d

co
m
m
en
t

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

ro
om

se
tt
in
g_
se
t

Fl
oa
tF
ie
ld

su
rf
ac
e

Fo
re
ig
nK
ey

ty
pe

Fo
re
ig
nK
ey

un
it

U
U
ID
Fi
el
d

uu
id

Bm
sA
pp
.m
od
el
s.R
oo
m

Fl
oa
tF
ie
ld

he
at
po
w
er

O
ne
To
O
ne
Fi
el
d

ro
om

Fo
re
ig
nK
ey

un
it

Fl
oa
tF
ie
ld

vo
lu
m
e

Q
ue
ry
Se
t

zo
ne
bo
rd
er
_r
ig
ht
_s
et

Bm
sA
pp
.m
od
el
s.Z
on
e

Bm
sA
pp
.m
od
el
s.Z
on
e

Fl
oa
tF
ie
ld

he
at
po
w
er

O
ne
To
O
ne
Fi
el
d

ro
om

Fo
re
ig
nK
ey

un
it

Fl
oa
tF
ie
ld

vo
lu
m
e

Q
ue
ry
Se
t

zo
ne
bo
rd
er
_r
ig
ht
_s
et

Bm
sA
pp
.m
od
el
s.Z
on
e

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Te
xt
Fi
el
d

co
m
m
en
t

Fo
re
ig
nK
ey

de
vi
ce

Ch
ar
Fi
el
d

na
m
e

Bo
ol
ea
nF
ie
ld

us
er
_d
riv
en

U
U
ID
Fi
el
d

uu
id

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.L
oa
d

Bm
sA
pp
.m
od
el
s.L
oa
d

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Te
xt
Fi
el
d

co
m
m
en
t

Fo
re
ig
nK
ey

de
vi
ce

Ch
ar
Fi
el
d

na
m
e

Bo
ol
ea
nF
ie
ld

us
er
_d
riv
en

U
U
ID
Fi
el
d

uu
id

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.L
oa
d

Te
xt
Fi
el
d

co
m
m
en
t

Im
ag
eF
ie
ld

de
vi
ce
_i
m
ag
e

Q
ue
ry
Se
t

lo
ad
_s
et

Ch
ar
Fi
el
d

na
m
e

Fo
re
ig
nK
ey

ty
pe

Bm
sA
pp
.m
od
el
s.D

ev
ic
e

Bm
sA
pp
.m
od
el
s.D

ev
ic
e

Te
xt
Fi
el
d

co
m
m
en
t

Im
ag
eF
ie
ld

de
vi
ce
_i
m
ag
e

Q
ue
ry
Se
t

lo
ad
_s
et

Ch
ar
Fi
el
d

na
m
e

Fo
re
ig
nK
ey

ty
pe

Bm
sA
pp
.m
od
el
s.D

ev
ic
e

Q
ue
ry
Se
t

de
vi
ce
_s
et

Ch
ar
Fi
el
d

na
m
e

Bm
sA
pp
.m
od
el
s.D

ev
ic
eT
yp
e

Bm
sA
pp
.m
od
el
s.D

ev
ic
eT
yp
e

Q
ue
ry
Se
t

de
vi
ce
_s
et

Ch
ar
Fi
el
d

na
m
e

Bm
sA
pp
.m
od
el
s.D

ev
ic
eT
yp
e

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Fl
oa
tF
ie
ld

av
er
ag
e_
ef
fic
ie
nc
y

Te
xt
Fi
el
d

co
m
m
en
t

In
te
ge
rF
ie
ld

cu
rr
ec
t_
cy
cl
es

In
te
ge
rF
ie
ld

lif
e_
cy
cl
es

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

no
m
in
al
_c
ap
ac
ity

Fl
oa
tF
ie
ld

st
at
e_
of
_c
ha
rg
e

Ch
ar
Fi
el
d

ty
pe

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.S
to
ra
ge

Bm
sA
pp
.m
od
el
s.S
to
ra
ge

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

Fl
oa
tF
ie
ld

av
er
ag
e_
ef
fic
ie
nc
y

Te
xt
Fi
el
d

co
m
m
en
t

In
te
ge
rF
ie
ld

cu
rr
ec
t_
cy
cl
es

In
te
ge
rF
ie
ld

lif
e_
cy
cl
es

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

no
m
in
al
_c
ap
ac
ity

Fl
oa
tF
ie
ld

st
at
e_
of
_c
ha
rg
e

Ch
ar
Fi
el
d

ty
pe

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.S
to
ra
ge

Q
ue
ry
Se
t

us
er
pr
of
ile
_s
et

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.U

se
r

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.U

se
r

Q
ue
ry
Se
t

us
er
pr
of
ile
_s
et

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.U

se
r

G
en
er
ic
IP
Ad
dr
es
sF
ie
ld

IP

D
ec
im
al
Fi
el
d

PU
B_
po
rt

D
ec
im
al
Fi
el
d

RE
P_
po
rt

Ch
ar
Fi
el
d

m
id
dl
ew
ar
e_
ty
pe

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.M

id
dl
ew
ar
e

Bm
sA
pp
.m
od
el
s.M

id
dl
ew
ar
e

G
en
er
ic
IP
Ad
dr
es
sF
ie
ld

IP

D
ec
im
al
Fi
el
d

PU
B_
po
rt

D
ec
im
al
Fi
el
d

RE
P_
po
rt

Ch
ar
Fi
el
d

m
id
dl
ew
ar
e_
ty
pe

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.M

id
dl
ew
ar
e

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

sh
gc

Fl
oa
tF
ie
ld

uv
al
ue

Q
ue
ry
Se
t

zo
ne
bo
rd
er
_s
et

Bm
sA
pp
.m
od
el
s.W

in
do
w
At
tr
ib
ut
e

Bm
sA
pp
.m
od
el
s.W

in
do
w
At
tr
ib
ut
e

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

sh
gc

Fl
oa
tF
ie
ld

uv
al
ue

Q
ue
ry
Se
t

zo
ne
bo
rd
er
_s
et

Bm
sA
pp
.m
od
el
s.W

in
do
w
At
tr
ib
ut
e

In
te
ge
rF
ie
ld

ac
tio
n_
se
tt
in
g

Te
xt
Fi
el
d

co
m
m
en
t

Bo
ol
ea
nF
ie
ld

fr
i

D
at
eF
ie
ld

fro
m
D
ay

Ti
m
eF
ie
ld

fro
m
Ti
m
e

Fo
re
ig
nK
ey

lo
ad

Ch
ar
Fi
el
d

lo
ad
_a
ct
io
n

Bo
ol
ea
nF
ie
ld

m
on

Bo
ol
ea
nF
ie
ld

sa
t

Bo
ol
ea
nF
ie
ld

su
n

Bo
ol
ea
nF
ie
ld

th
u

D
at
eF
ie
ld

to
D
ay

Ti
m
eF
ie
ld

to
Ti
m
e

Bo
ol
ea
nF
ie
ld

tu
e

Q
ue
ry
Se
t

us
er
pr
ef
er
en
ce
s_
se
t

Bo
ol
ea
nF
ie
ld

w
edBm
sA
pp
.m
od
el
s.L
oa
dS
et
tin
g

Bm
sA
pp
.m
od
el
s.L
oa
dS
et
tin
g

In
te
ge
rF
ie
ld

ac
tio
n_
se
tt
in
g

Te
xt
Fi
el
d

co
m
m
en
t

Bo
ol
ea
nF
ie
ld

fr
i

D
at
eF
ie
ld

fro
m
D
ay

Ti
m
eF
ie
ld

fro
m
Ti
m
e

Fo
re
ig
nK
ey

lo
ad

Ch
ar
Fi
el
d

lo
ad
_a
ct
io
n

Bo
ol
ea
nF
ie
ld

m
on

Bo
ol
ea
nF
ie
ld

sa
t

Bo
ol
ea
nF
ie
ld

su
n

Bo
ol
ea
nF
ie
ld

th
u

D
at
eF
ie
ld

to
D
ay

Ti
m
eF
ie
ld

to
Ti
m
e

Bo
ol
ea
nF
ie
ld

tu
e

Q
ue
ry
Se
t

us
er
pr
ef
er
en
ce
s_
se
t

Bo
ol
ea
nF
ie
ld

w
edBm
sA
pp
.m
od
el
s.L
oa
dS
et
tin
g

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

ro
om

_s
et

Bm
sA
pp
.m
od
el
s.R
oo
m
Ty
pe

Bm
sA
pp
.m
od
el
s.R
oo
m
Ty
pe

Ch
ar
Fi
el
d

na
m
e

Q
ue
ry
Se
t

ro
om

_s
et

Bm
sA
pp
.m
od
el
s.R
oo
m
Ty
pe

Ch
ar
Fi
el
d

na
m
e

G
ro
up
M
an
ag
er

ob
je
ct
s

M
an
yT
oM

an
yF
ie
ld

pe
rm
is
si
on
s

Q
ue
ry
Se
t

us
er
_s
et

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.G

ro
up

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.G

ro
up

Ch
ar
Fi
el
d

na
m
e

G
ro
up
M
an
ag
er

ob
je
ct
s

M
an
yT
oM

an
yF
ie
ld

pe
rm
is
si
on
s

Q
ue
ry
Se
t

us
er
_s
et

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.G

ro
up

Ch
ar
Fi
el
d

ac
tio
n

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

se
t

co
m
bi
na
tio
ns
_s
et

Te
xt
Fi
el
d

co
m
m
en
t

Fo
re
ig
nK
ey

ge
ne
ra
to
r

Fo
re
ig
nK
ey

lo
ad

Ch
ar
Fi
el
d

na
m
e

Fo
re
ig
nK
ey

ne
tw
or
k_
m
id
dl
ew
ar
e

In
te
ge
rF
ie
ld

re
f

Fo
re
ig
nK
ey

ro
om

Fo
re
ig
nK
ey

st
or
ag
e

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.A
ct
ua
to
r

Bm
sA
pp
.m
od
el
s.A
ct
ua
to
r

Ch
ar
Fi
el
d

ac
tio
n

JS
O
N
Fi
el
d

ad
di
tio
na
l_
pa
ra
m
et
er
s

se
t

co
m
bi
na
tio
ns
_s
et

Te
xt
Fi
el
d

co
m
m
en
t

Fo
re
ig
nK
ey

ge
ne
ra
to
r

Fo
re
ig
nK
ey

lo
ad

Ch
ar
Fi
el
d

na
m
e

Fo
re
ig
nK
ey

ne
tw
or
k_
m
id
dl
ew
ar
e

In
te
ge
rF
ie
ld

re
f

Fo
re
ig
nK
ey

ro
om

Fo
re
ig
nK
ey

st
or
ag
e

Q
ue
ry
Se
t

vi
rt
ua
le
nt
ity
_s
et

Bm
sA
pp
.m
od
el
s.A
ct
ua
to
r

Te
xt
Fi
el
d

co
m
m
en
t

Bo
ol
ea
nF
ie
ld

fr
i

D
at
eF
ie
ld

fro
m
D
ay

Ti
m
eF
ie
ld

fro
m
Ti
m
e

Bo
ol
ea
nF
ie
ld

m
on

Fo
re
ig
nK
ey

ro
om

Bo
ol
ea
nF
ie
ld

sa
t

Ch
ar
Fi
el
d

se
t_
qu
an
tit
y

Fl
oa
tF
ie
ld

se
t_
va
lu
e

Bo
ol
ea
nF
ie
ld

su
n

Bo
ol
ea
nF
ie
ld

th
u

D
at
eF
ie
ld

to
D
ay

Ti
m
eF
ie
ld

to
Ti
m
e

Bo
ol
ea
nF
ie
ld

tu
e

Q
ue
ry
Se
t

us
er
pr
ef
er
en
ce
s_
se
t

Bo
ol
ea
nF
ie
ld

w
edBm
sA
pp
.m
od
el
s.R
oo
m
Se
tt
in
g

Bm
sA
pp
.m
od
el
s.R
oo
m
Se
tt
in
g

Te
xt
Fi
el
d

co
m
m
en
t

Bo
ol
ea
nF
ie
ld

fr
i

D
at
eF
ie
ld

fro
m
D
ay

Ti
m
eF
ie
ld

fro
m
Ti
m
e

Bo
ol
ea
nF
ie
ld

m
on

Fo
re
ig
nK
ey

ro
om

Bo
ol
ea
nF
ie
ld

sa
t

Ch
ar
Fi
el
d

se
t_
qu
an
tit
y

Fl
oa
tF
ie
ld

se
t_
va
lu
e

Bo
ol
ea
nF
ie
ld

su
n

Bo
ol
ea
nF
ie
ld

th
u

D
at
eF
ie
ld

to
D
ay

Ti
m
eF
ie
ld

to
Ti
m
e

Bo
ol
ea
nF
ie
ld

tu
e

Q
ue
ry
Se
t

us
er
pr
ef
er
en
ce
s_
se
t

Bo
ol
ea
nF
ie
ld

w
edBm
sA
pp
.m
od
el
s.R
oo
m
Se
tt
in
g

Fl
oa
tF
ie
ld

co
nd
uc
tiv
e_
co
ef
_A

Fl
oa
tF
ie
ld

co
nd
uc
tiv
e_
co
ef
_B

Fo
re
ig
nK
ey

m
at
1

Fo
re
ig
nK
ey

m
at
2

Fo
re
ig
nK
ey

m
at
3

Fo
re
ig
nK
ey

m
at
4

Fo
re
ig
nK
ey

m
at
5

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

th
ic
kn
es
s1

Fl
oa
tF
ie
ld

th
ic
kn
es
s2

Fl
oa
tF
ie
ld

th
ic
kn
es
s3

Fl
oa
tF
ie
ld

th
ic
kn
es
s4

Fl
oa
tF
ie
ld

th
ic
kn
es
s5

Q
ue
ry
Se
t

zo
ne
bo
rd
er
_s
et

Bm
sA
pp
.m
od
el
s.Z
on
eB
or
de
rA
tt
rib
ut
e

Bm
sA
pp
.m
od
el
s.Z
on
eB
or
de
rA
tt
rib
ut
e

Fl
oa
tF
ie
ld

co
nd
uc
tiv
e_
co
ef
_A

Fl
oa
tF
ie
ld

co
nd
uc
tiv
e_
co
ef
_B

Fo
re
ig
nK
ey

m
at
1

Fo
re
ig
nK
ey

m
at
2

Fo
re
ig
nK
ey

m
at
3

Fo
re
ig
nK
ey

m
at
4

Fo
re
ig
nK
ey

m
at
5

Ch
ar
Fi
el
d

na
m
e

Fl
oa
tF
ie
ld

th
ic
kn
es
s1

Fl
oa
tF
ie
ld

th
ic
kn
es
s2

Fl
oa
tF
ie
ld

th
ic
kn
es
s3

Fl
oa
tF
ie
ld

th
ic
kn
es
s4

Fl
oa
tF
ie
ld

th
ic
kn
es
s5

Q
ue
ry
Se
t

zo
ne
bo
rd
er
_s
et

Bm
sA
pp
.m
od
el
s.Z
on
eB
or
de
rA
tt
rib
ut
e

O
ne
To
O
ne
Fi
el
d

ac
tu
at
or

Te
xt
Fi
el
d

co
m
m
en
t

O
ne
To
O
ne
Fi
el
d

ge
ne
ra
to
r

M
an
yT
oM

an
yF
ie
ld

in
te
rn
al
_i
nt
er
es
t

O
ne
To
O
ne
Fi
el
d

lo
ad

Ch
ar
Fi
el
d

na
m
e

O
ne
To
O
ne
Fi
el
d

se
ns
or

M
an
yT
oM

an
yF
ie
ld

se
ns
or
s_
in
te
re
st

JS
O
N
Fi
el
d

si
m
ul
at
io
n_
pa
ra
m
et
er
s

O
ne
To
O
ne
Fi
el
d

st
or
ag
e

O
ne
To
O
ne
Fi
el
d

us
er

Fo
re
ig
nK
ey

vi
rt
ua
l_
m
id
dl
ew
ar
e

Bm
sA
pp
.m
od
el
s.V
irt
ua
lE
nt
ity

Bm
sA
pp
.m
od
el
s.V
irt
ua
lE
nt
ity

O
ne
To
O
ne
Fi
el
d

ac
tu
at
or

Te
xt
Fi
el
d

co
m
m
en
t

O
ne
To
O
ne
Fi
el
d

ge
ne
ra
to
r

M
an
yT
oM

an
yF
ie
ld

in
te
rn
al
_i
nt
er
es
t

O
ne
To
O
ne
Fi
el
d

lo
ad

Ch
ar
Fi
el
d

na
m
e

O
ne
To
O
ne
Fi
el
d

se
ns
or

M
an
yT
oM

an
yF
ie
ld

se
ns
or
s_
in
te
re
st

JS
O
N
Fi
el
d

si
m
ul
at
io
n_
pa
ra
m
et
er
s

O
ne
To
O
ne
Fi
el
d

st
or
ag
e

O
ne
To
O
ne
Fi
el
d

us
er

Fo
re
ig
nK
ey

vi
rt
ua
l_
m
id
dl
ew
ar
e

Bm
sA
pp
.m
od
el
s.V
irt
ua
lE
nt
ity

Fo
re
ig
nK
ey

lo
ad
_s
et
tin
g

Fo
re
ig
nK
ey

ro
om

_s
et
tin
g

Fo
re
ig
nK
ey

us
er

Bm
sA
pp
.m
od
el
s.U

se
rP
re
fe
re
nc
es

Bm
sA
pp
.m
od
el
s.U

se
rP
re
fe
re
nc
es

Fo
re
ig
nK
ey

lo
ad
_s
et
tin
g

Fo
re
ig
nK
ey

ro
om

_s
et
tin
g

Fo
re
ig
nK
ey

us
er

Bm
sA
pp
.m
od
el
s.U

se
rP
re
fe
re
nc
es

Fo
re
ig
nK
ey

bo
rd
er
_a
tt
r

Fo
re
ig
nK
ey

l_
zo
ne

Fo
re
ig
nK
ey

r_
zo
ne

Fl
oa
tF
ie
ld

su
rf
ac
e

Fo
re
ig
nK
ey

w
in
do
w

Fl
oa
tF
ie
ld

w
in
do
w
_s
ur
fa
ce

Bm
sA
pp
.m
od
el
s.Z
on
eB
or
de
r

Bm
sA
pp
.m
od
el
s.Z
on
eB
or
de
r

Fo
re
ig
nK
ey

bo
rd
er
_a
tt
r

Fo
re
ig
nK
ey

l_
zo
ne

Fo
re
ig
nK
ey

r_
zo
ne

Fl
oa
tF
ie
ld

su
rf
ac
e

Fo
re
ig
nK
ey

w
in
do
w

Fl
oa
tF
ie
ld

w
in
do
w
_s
ur
fa
ce

Bm
sA
pp
.m
od
el
s.Z
on
eB
or
de
r

Ch
ar
Fi
el
d

co
de
na
m
e

Fo
re
ig
nK
ey

co
nt
en
t_
ty
pe

Q
ue
ry
Se
t

gr
ou
p_
se
t

Ch
ar
Fi
el
d

na
m
e

Pe
rm
is
si
on
M
an
ag
er

ob
je
ct
s

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.P
er
m
is
si
on

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.P
er
m
is
si
on

Ch
ar
Fi
el
d

co
de
na
m
e

Fo
re
ig
nK
ey

co
nt
en
t_
ty
pe

Q
ue
ry
Se
t

gr
ou
p_
se
t

Ch
ar
Fi
el
d

na
m
e

Pe
rm
is
si
on
M
an
ag
er

ob
je
ct
s

dj
an
go
.c
on
tr
ib
.a
ut
h.
m
od
el
s.P
er
m
is
si
on

1

0.
.*

1

1 0.
.*

1

0.
.*

1

0.
.*

1 0.
.*

1

1

1

1

1 0.
.*

1

1

1

0.
.*

1

0.
.*

0.
.*

0.
.*

1

0.
.*

1

0.
.*

1

0.
.*

0.
.*

0.
.*

1

0.
.*

1
0.

.*

0.
.*

0.
.*

1

1

1

0.
.*

1

0.
.*

1

0.
.*

1

0.
.*

1

0.
.*

1

0.
.*

1

1

1

0.
.*

1 0.
.*

0.
.* 0.
.*

1

1

1

0.
.*

1

0.
.*

1

0.
.*

1

0.
.*

1

1

1

0.
.*

1 0.
.*

1

1

1

0.
.*

1
0.

.*

0.
.*

F
ig

u
re

2.
1

–
Pa

rt
ia

lU
M

L
d

ia
gr

am
o

ft
h

e
O

p
en

B
M

S
d

at
ab

as
e

m
o

d
el

31

Chapter 2. Smart Building Modeling and Computational System Core

2.5 Architecture, and Implementation

This sections studies the architecture and implementation of the BMS which is responsible for

multiple activities within the proposed SB system such as:

• implementation and operation of the designed building model using a RDBMS;

• design of a web application with a dashboard frontend for SB configuration and

demonstration purposes;

• creation and hosting of both a RESTful and a real-time API that exposes the control and

measuring services of the SB;

• dedicated, real-time server handling the heterogeneous SB events;

• efficient time series database (TSDB) for recording efficiently the raw real-time data of

the ICT devices and occupants. Those data are retrieved by the API for post-processing

(data mining, machine learning, energy optimizations).

2.5.1 System architecture, scalability, and rapid deployment

The architecture of the BMS was designed with horizontal and vertical scalability in mind. The

system is based on the concept of SB-centered microservices, instead of a single monolithic

BMS. Hence, specific services or functionalities are scaled up individually during the life-cycle

of the building, which facilitates the close match to the BMS computational load. This section

presents the overall BMS architecture and highlights how the proposed design meets a growing

computational demand by scaling accordingly.

The BMS can be abstracted as a 4-tier architecture as seen in Fig. 2.2. Each tier corresponds to

a specific operation of the overall digital system and covers multiple of technologies. Firstly,

the Presentation tier covers all the technologies for interfacing clients of the BMS either users

(human interface device (HID)) or algorithms (API). The Delivery tier handles the distribution

of the information in the most efficient way possible, ensuring the performance of the system

despite of any variation in utilization load and patterns. The Logic tier is responsible for the

functional management of the SB and hosts the building’s optimization software algorithms.

Finally, the Service tier corresponds to any internal and external services that are crucial for the

Logic tier technologies.

The overall architecture as a collection of subsystems and microservices is illustrated in Fig.

2.3. The primary component in the proposed BMS is the application server for managing the

building and providing the synchronous API. A real-time server is also provisioned for the

event-driven processes and external applications. Both of them are interfaced with a reverse

proxy handling the traffic. Other external databases and the middleware, cf. Chapter 3, are

also illustrated. Finally, Docker technology facilitates the rapid deployment, updatability, and

management of a large number of BMS servers.

32

2.5. Architecture, and Implementation

resentation tier

Web frontend
Mobile clients

IoT
API

Delivery tier
Load balancing across machines

Caching content
Ensures performance and scalability

ogic tier

Application server
Real-time server

Models and data management
Building management and optimization logic

Service tier

RDBMS
TSDB

Distributed middleware
Microservices and third-party services

Figure 2.2 – The 4-tier BMS architecture

User, Software

Engineer

Supervisor

Reverse
proxy

WSGI
server

Web
Application

Real-time
Server

Static
files

http

websocket

Unix socket

Unix socket

WSGI

ORM

RDBMS

TSDB

Middleware

Monitors

Controls

NGINX Gunicorn Django

Tornado

Application server
Docker container

Docker container

Docker container

Distributed nodes

Figure 2.3 – BMS architecture overview

Most BMS in the literature aim to meet the computational demand using a large number of

isolated BMS servers to fragment the load, for example per apartment, building, neighborhood.

The servers do not share neither the same application logic nor the same data and building

states, thus limiting potential optimization benefits from coordinated management of large

areas of living spaces.

On the contrary, the author has followed a scalable approach. In that sense, there is a single,

yet distributed, BMS server logic to handle the demand. Fig. 2.4 illustrates such scalable design.

The horizontal scaling is achieved using a load balancer distributing the incoming real-time

and synchronous request to the pool of dedicated application and real-time servers. The

vertical scaling, on the other hand, is achieved by migrating the Docker containers to more

capable hardware in case of a dedicated server, or by allocating more resources in case of a

virtual private server (VPS).

33

Chapter 2. Smart Building Modeling and Computational System Core

The scalability of those computational servers is trivial as they remain stateless. On the other

hand, they are sharing the database resources and of course the distributed middleware which

represent the stateful side of the BMS. In fact, the middleware, as a cluster of distributed nodes

itself, can interface multiple application and real-time servers without an issue due to its

queues and asynchronous nature, covered in detail in Chapter 3.

Application,
real-time servers

RDBMS

TSDB

Distributed
middleware

Load
balancer

http

websocket

Application,
real-time servers

Application,
real-time servers

Application,
real-time servers Horizontal

scalingMachine 1

Machine 2

Machine ...

Machine N

Configuration manager

Figure 2.4 – Horizontal stateless scaling of the BMS

The following subsections scrutinize the key subsystems illustrated in Fig. 2.3. Those focus

mainly on the Logic (application and real-time server) and Service (databases) tiers of the 4-tier

BMS architecture; the final validation section covers some use case of the Presentation tier as

well.

2.5.2 Application server as the BMS core

The application server handles all operations between the building resources users (occupants,

algorithms) and the backend components (databases, SB middleware, etc.). It hosts the RDBMS

for the building models, provides the RESTful API and the minimal building management and

data aggregation functionality together with the simple frontend configuration and monitoring

dashboard, Fig. 2.5. More sophisticated, management algorithms and frontend interfaces

leveraging the exposed SB resources can be implemented using the API.

The web application is based on the well know, feature-rich web framework named Django. It

is based on Python and follows the model-view-template architectural pattern. Its rich toolset

and the Python programming language has enabled the rapid development of the designed

system architecture within a research project time-budget. Moreover, Django is the framework

of choice not only for prototyping but also for thousands of production environments in a

critical system and web application.

34

2.5. Architecture, and Implementation

Figure 2.5 – An example frontend as a minimal BMS dashboard

Besides the rapid prototyping and development, Django also has several other advantages that

were leveraged for the efficient BMS implementation:

• integrated object-relational mapping (ORM);

• content caching functionality for significant performance gains;

• extensible authentication system;

• built-in template language;

• middleware hooks to alter request or response objects after creation (not to be confused

with the proposed SB middleware of Chapter 3).

Architecture

Fig. 2.6 illustrates the core architecture of the application server. The operation is similar to

any large scale application server. On an incoming request, the URL dispatcher, depending on

the URL, invokes the proper View function. Depending on the nature of the request, the View

either renders a frontend template with the dynamic content or JSON-serializes data from the

35

Chapter 2. Smart Building Modeling and Computational System Core

TSDB or models. The former process is used, for example, when a user requests a frontend view

while the latter in the case of an API request. In both cases, the Caching framework ensures

that identical requests and dynamic data would be fetched from memory rather than rendered

or serialized once again.

Concerning the dynamic data, the application server supports multiple sources and external

services due to the nature of the BMS. The Model corresponds to the semantic abstractions

and the ORM through which any data stored in the RDBMS and characterizes the building

and its ICT devices is retrieved. Examples of such data as combinations of models are: �����

per ����, �	
���� per ����, all the temperature �	
���� in �

�, installed �	
	���
�
 in

�

�, all the ����� in the �

�, etc. Those can be used either for creating dynamic frontend

depending of the installed service in the SB or for replying to specific API requests.

Furthermore, the TSDatamanager is responsible for storing and retrieving the real-time

sampling data (sensors, actions, occupant locations, etc.) that are placed into the TSDB. It is

invoked by the View after the Model invocation that returns the proper IDs from the RDBMS.

Using those IDs the TSDatamanager retrieves and stores the data samples on the correct

timeseries streams. This step in crucial as the TSDB does not store any relational data or

unstructured data that characterize the semantic meaning of the stored streams.

Finally, when it comes to interacting with the physical environment through the ICT devices,

or for any other reason requiring to communicate with the distributed middleware, the View

invokes the ModeltoBackend. This process takes place again after the the Model invocation in

order to retrieve from the RDBMS the internal IDs of the devices, their functionality as well as

the middleware node that they belong. The ModeltoBackend connects with the middleware

using the ZeroMQ protocol and a request(REQ)-reply(REP) socket pair. The algorithmic request

of the View instance is converted to the proper middleware-compatible message. Last but not

least, theModeltoBackend and the Model act as the middleware directory service required for

the self-discovery functionality discussed in Chapter 3.

URL
dispatcher

View Model RDBMS

TSDBTSDataManager

ModeltoBackend Distributed
middleware

Caching
framework

Template

Serializer

request

reply

Web application External services

Figure 2.6 – Application server core architecture

36

2.5. Architecture, and Implementation

Object-relational mapping

The integrated ORM is a considerable advantage of Django framework as indicated before.

It automates the conversion of data stored in relational databases into software objects for

use in application code. This high-level of abstraction to any supported RDBMS allows the

interfacing with scalar data using only Python code instead of merging SQL within. This not

only speeds up the development facilitating the management of complex data structures but

also permits the switching between various RDBMS without modifying the application code.

Hence, the ORM was used for both implementing and interfacing the data of the SB models

studied in Section 2.4. The implementation corresponds to class definitions in Python that

follow a relational data model; the committing of the object-oriented models to the relational

database tables and relationships is performed with a process called Migration. The interfacing

of the data corresponds on any use of the ORM in the Python code for combining, filtering,

sorting, and any other data operations for retrieving the correct information from the RDBMS.

Django follows a lazy evaluation strategy for improving the database performance. Using the

ORM for a database query, the object query is created, passed around, modified, and extended

without incurring any database activity. It is only when the query gets evaluated that the final

database query is formulated and send to the RDBMS for retrieving the data. Therefore, in the

BMS all the database related requests are performed through the ORM which improves the

performance overall and mitigates potential poor programming overheads.

API

The holistic API is crucial for exposing to external entities and stakeholders the full length of

interaction services of the SB in a trivial and standardize manner. A good API should remain

functional, structured, granular yet minimal, and self-explanatory for anyone outside the

BMS designers team. Concerning the particular implementation in the proposed system, the

API covers all information that can be extracted from the BMS. The implemented list of API

resources is reaching 100. All the URLs are well documented with the Swagger library and can

be tested directly within a dedicated application web page.

An API can be designed by following various paradigms and implementation schemes. A

modern approach for APIs is a REST based API. REST stands for representational state transfer

web services and the concept was first introduced in the Ph.D. thesis of Fielding [87]. The

REST as a paradigm of web design and not a standard can not be directly compared with

established web services standards. Nevertheless, Pautasso et al. [88] illustrated the conceptual

and technical differences between the RESTful and the alternative SOAP protocol.

External applications and algorithms have already used the API successfully for many cases

such as energy management and optimization, occupant activities and their optimal comfort

learning, thermal simulations, mobile applications, and user engaging HID for improved

energy awareness.

37

Chapter 2. Smart Building Modeling and Computational System Core

Security

Django integrates an extensible authentication system. While it is designed for ensuring the

access rights to the web application, in the proposed model, the (occupant) is uniquely

associated with the internal models of the authentication system. Thus, physical (building)

and digital (web application) access rights are unified and co-managed, which enhances the

security and transparency. Finally, Django framework has built-in mitigation techniques for

cross-site request forgery, cross-site scripting, SQL injection, password cracking and other

typical web attacks.

2.5.3 Real-time server

The real-time server enables event-driven processes and external applications to operate over

standardized communication patterns without any software engineering tricks. Unlike the

synchronous RESTful transactions of the application server, the real-time server interacts using

asynchronous messages over the WebSocket standard. This enables an enormous amount of

building stakeholders to be updated in real-time with the latest samples from the monitored

variables and assets.

Real-time web communication requires long-lived, yet idle, connections to each user of the

real-time API. A traditional synchronous server would have required a thread (or micro-thread if

supported) to be devoted to each client, an expensive and inefficient practice when thousands

of them remain idle.

In order to overcome those challenges, the real-time server integrates a Tornado server. The

Tornado is a Python framework and asynchronous high performance networking library.

Thanks to its non-blocking I/O scheme, it supports tens of thousands of open network

connections without latency degradation. The latter makes it an ideal solution for any

application requiring long-lived connections such as the real-time server of the BMS. Fig.

2.7 represents the architecture of the real-time server and illustrates the modules that are

described in the following paragraphs.

websocket

long-polling
fallback

Tornado
server

User, Software

Event-based
logic Model RDBMS

Application server

Tornado IOLoop

ZMQ IOLoop
Distributed
middleware

zmq msg

External services

install()

Duplex: cl ients can also publish
events (e.g. local ization)

Real-time server

ZMQStream

on_message()broadcast()

Figure 2.7 – Real-time server core architecture

38

2.5. Architecture, and Implementation

Firstly, the non-blocking element of the server is called Tornado IOLoop and consists of an I/O

event loop for non-blocking communication sockets such as the WebSockets. This event loop

minimizes the cost of keeping a large number of concurrent connections. Concerning the

backend connectivity, the real-time server interfaces the middleware using the ZeroMQ library.

It creates a publish(PUB)-subscribe(SUB) socket pair and communicates asynchronously with

the middleware nodes. The ZMQStream instance registers callbacks for the socket messages’

reception. Those callbacks from the ZeroMQ sockets are handled by the ZMQ IOLoop. This

secondary event loop is intelligently integrated within the main Tornado IOLoop. The latter

acts now as a universal IOLoop for both ZeroMQ and WebSocket messages, treating any event

source with same priority and latency.

The core of the real-time server is pictured in Fig. 2.7 as Event-based logic. This module is

responsible for processing both sources of events in order to perform the necessary actions.

The processing refers to the conversion of the middleware and WebSocket API protocols to the

high-level semantic abstractions used by the application server. To achieve that it interfaces

the Model module of the application server using the common ORM in order to acquire all

the model instances necessary to the semantic abstraction. For example, it can convert the

message of a power sensor from the middleware and sensor_id combination to the actual load

object that consumes it; then it broadcasts that high-level message to all the subscribed API

clients. In an alternative example, a WebSocket localization event from a mobile application

can be processed, bundled with the matching ���� profile, and then forwarded again to all

location events subscribers and external logic for appropriate action (e.g. energy management,

comfort, etc.)

Therefore, for the current infrastructure implementation, the real-time server must coexist

in the same cloud instance with the application server in order to make use of its ORM for

fetching the necessary model instances.

API

From Fig. 2.7 and the previous paragraphs, it is clear that the bidirectional API of the real-time

server is over the modern WebSocket protocol, with a fallback unidirectional long-polling

support. The real-time API is complimentary to the RESTful one which is primarily used by the

client applications when events are not critical to their logic.

More specifically, the WebSocket is a computer communications protocol for bidirectional

communication links over a single TCP connection. This TCP-based protocol over common

web ports is a benefit for strictly controlled networks. Nevertheless, it is independent of

the HTTP protocol which is only used for the initial handshake with the server. Although it

is designed for web browsers and web applications, WebSocket can be used by any client

software.

39

Chapter 2. Smart Building Modeling and Computational System Core

2.5.4 Databases

The databases are crucial for both the models and their state storage as well as for keeping

track of all the real-time sample data generated within the building. Due to the heterogeneous

nature of those two groups of data, a universal database management system is not suitable.

Hence, two discrete database management systems have been used and already referred to in

the previous sections of the chapter. The following subsections attempt to provide additional

background information of those database systems and the rational behind their selection.

Relational database management system

The application server thanks to the Django framework is compatible with a number of different

backend RDBMS to better suit individual deployment needs, such as MySQL, PostgreSQL,

Oracle, and SQLite. Regardless of choice, the application code does not need modification as

the ORM will take care of the actual database queries. It is thus to the discretion of the system

engineer to pick the one that better fits the size and topology requirements of the BMS.

For example, the SQLite is a quite powerful implementation of RDBMS ideal for embedded

applications and low power platforms. The SQLite database is saved in a single file on a

non-volatile memory. The MySQL, on the other hand, is a very popular RDBMS that can be

hosted on a server and accessed from multiple web application, hence ideal for load balancing

designs. Moreover, the PostgreSQL is an advanced and yet SQL-compliant, object-relational

database. Lastly, despite their potential, the author did neither assess nor implement any

distributed databases for the purpose of the relational data of the SB. The reason was time

constraints as well as the fact that the computational load on this the RDBMS backend, in this

application, was never a bottleneck that a vertical scaling could not address.

Time series database

Raw real-time data are always stored in a TSDB. Those NoSQL type of databases outperform

the relational ones when they operate on a stream of data advancing over time. Additionally,

most TSDB integrate functionality for data aggregation (mean, max, min, etc.), data slicing,

and other facilitating the processing of a stream of data monitoring a single variable.

The implementation and characteristics of a TSDB are beyond the scope of this research.

Nevertheless, few systems and schemes have been tested for clustering their features and

proposing the more suitable ones based on the requirements of the SB.

To begin with, InfluxDB [89] is an open source, self-contained, TSDB. It is fairly simple to setup

and is interfaced using its HTTP API. It is also fairly fast and aims to provide the requested data

in near real-time manner. InfluxDB is the ideal TSDB for medium to large building sizes and

activities. It can be deployed as well in clusters of computing nodes as per load balancing

requirements. The OpenTSDB [90] is another large scale TSDB which is written on top of the

40

2.6. Functional Validation and Use Cases

Apache HBase, a Hadoop database for distributed, scalable, big data storage. The OpenTSDB is

ideal for a massive amount of time series data written even to a millisecond precision. Thus, it

is ideal for recording data from clusters of buildings, whole neighbors and even smart cities.

The previous two TSDB are ideal for cloud or centralized management systems. A lighter

version of TSDB has been considered for embedded and locally distributed BMS. It is ideal also

for short term, cache- and backup-like storage until the data is pushed to the cloud server.

The RRDtool (round-robin database tool) [91] facilities the recording of time series data in

a circular buffer form. However, it requires the data to arrive a predefined interval or else it

interpolates any submitted data. Moreover, it aggregates past data with increasing time step.

Thus, in conjunction with the circular buffers for all the aggregation levels, the RRDtool keeps

the storage footprint constant over time at the cost of the past data granularity. Lastly, an even

simpler approach that was considered is the CSV (comma-separated values) files where each

file stores a single parameter and each line of the file is data sample. Apparently, while simple

to handle as a storage solution, the overhead of file writing is not ideal for a large number of

monitored parameters.

2.6 Functional Validation and Use Cases

This section serves as a functional validation with few BMS-agnostic case studies leveraging

the provided API and utilizing the exposed SB assets in order to create more elaborate services.

Nevertheless, for a more holistic case study on the whole SB system introduced in this thesis,

the reader can refer to Chapter 5.

2.6.1 Simulation-based proactive energy feedback

A significant amount of energy in the buildings can be saved by inducing efficient occupant’s

behavior [12]. The occupant’s awareness tools that have been shown to be effective in achieving

energy efficiency gains depend on various computational and estimation algorithms. A model-

based, energy feedback scheme was developed for building thermal simulation in order

to identify the areas for efficiency improvement. By leveraging the specific mathematical

formulation of those models and a dedicated open-source solver, improved computational

speed, reduced cost, and enhanced interoperability are obtained. Those combined with the

BMS integration through the API, they permit a real-time feedback and facilitate the creation

of energy awareness tools with improved accuracy since they rely on validated thermal model

simulation and real-time data.

Introduction

There are two strategies for active energy management using the SB infrastructure. While

the first leverages the automation to achieve an optimal operation, the second attempts to

41

Chapter 2. Smart Building Modeling and Computational System Core

bring “user in the loop” for improved energy efficiency, by facilitating user awareness through

targeted feedback on his consumption [92]. This study focuses on the development of such a

platform.

At the heart of all the energy feedback-based tools lies a computational algorithm, the

complexity of which varies considerably depending on the approach, the nature of feedback

provided and the available ubiquitous computing at the occupants’ living spaces [93]. Recent

years have seen the rise of data science-based tools to deliver personalized energy saving

reports for the occupants [94, 95, 96]. These techniques mostly deploy disaggregation

algorithms on smart metering data to achieve appliance level energy consumption awareness.

However, these techniques necessitate the existence of a usually large input dataset. Moreover,

they frequently involve complex calculations in order to extract various patterns from this data,

thereby requiring considerable computational power and time, nowhere near the capabilities

of currently embedded electronics. Therefore, a fundamental limitation of these solutions is

that such information is provided after a significant gap of time and after the energy has been

consumed, limiting the potential for action.

This subsection presents an integrated simulation-based platform for providing proactive

energy savings recommendations to building occupants with regards to their heating

equipment. It leverages the power of ICT enabled sensing technologies, various validated

thermal models and an optimized simulation engine built for this purpose.

Background theory

The ability of this integrated tool to deliver accurate feedback rests on the underlying thermal

model. It needs to be tailored to the physical properties of the building in question and hence

should be able to capture the interactions between physically connected spaces in the building.

A typical construction is made up of ceilings, floors, facades, internal walls, as well as windows.

All those different elements store heat and transfer it through various mechanisms. Apart

from those elements, room air and other masses (ex. furniture) also participate in the thermal

process. So a useful representation is to model the heat storage using capacitors and the

heat transmission using resistors. This work is built on the well-studied and proved lumped

capacitance method. [97, 98]. The choice of this particular model has been motivated by the

following considerations:

• The resulting model should be descriptive enough to capture all the relevant dynamics

to provide reliable and accurate results. For this, it was necessary to model each room

and wall with at least one node.

• It should have reasonable data needs and be computationally efficient to allow for near

real-time applications.

• Finally, it should be dynamically customizable for various buildings with minimal

overhead.

42

2.6. Functional Validation and Use Cases

An equivalent electrical network of resistances and capacitances has been developed to

represent the thermal processes in the building. For this, each node is assigned to every room

and wall (if the wall has multiple layers then an equal number of nodes can be allocated to the

wall), which is then connected to the ground via a capacitor, C.

Heat transfer in a typical building takes place through three processes: conduction, convection,

and radiation. Heat conduction across walls under steady state condition can be described by

Eq. 2.1. Qcond is the conductive heat transfer rate, k is the thermal conductivity, A and L are

the area and the thickness of the wall accordingly, with T1 & T2 the temperatures on the two

sides of the wall. Convective heat exchange also takes place from the surface of the walls and

the room air. This rate of heat transfer is given by Eq. 2.2 where Qconv is the convective heat

transfer rate, h is the convective heat transfer coefficient, Ts is the surface temperature and

Tai r is the temperature of the surrounding air.

Qcond = k · A · (T2 −T1)

L
(2.1)

Qconv = h · A · (Ts −Tai r) (2.2)

In addition to these, heat transfer also takes place via radiation exchange that occurs between

the internal surfaces of the wall, the facades surfaces and the sky and irradiation from the sun.

The heat exchange between the internal surfaces of the walls is neglected. This is justified since

walls of rooms are almost at the same temperature and therefore net heat exchange between

them can be neglected. Further, long-wave radiation exchange with the sky can be modeled

using a combined convective and radiative heat transfer coefficients for the external surfaces

as it has been proposed in [99]. Heat gain from solar radiation can be modeled as direct heat

inputs to room air and wall surfaces.

All the above mentioned heat transfer mechanisms, can now be represented using an electrical

analogy. In such a model, voltage source plays the role of the temperature of a building element

or room, whereas current represents the heat flow. Since resistance is defined as the ratio of

potential difference over current, the resistance associated with conduction is given by Eq. 2.3

and the one associated with convection by Eq. 2.4.

Rcond = (T2 −T1)

Qcond
= L

k · A
(2.3)

43

Chapter 2. Smart Building Modeling and Computational System Core

Rconv = (Ts −Tai r)

Qconv
= 1

h · A
(2.4)

Furthermore, heat storage capacity of walls and rooms can be represented using heat

capacitance of capacity Eq. 2.5 where m is the mass and cp is the specific heat capacity.

C = m · cp (2.5)

Furthermore, external and internal heat gains can be trivially added to the model. Internal heat

gains and radiators can be modeled as direct power inputs to the room node. This translates

into an appropriate current source at the room nodes. For a detailed description for modeling

other heat gains, the reader can refer to [100].

It is important to note that in deriving this model, the following assumptions were taken:

• Heat transfer across the walls has been assumed to take place perpendicular to the

surface. Thus, there is no variation in temperature over a surface.

• Spatial variations in the temperature of the room have been ignored; therefore, one node

is sufficient to represent a complete room.

• The heat capacity of room air has been assumed to be constant at 1.007 k J/kg ·K . This is a

justified assumption since this value is 1.006 k J/kg ·K and 1.0007 k J/kg ·K at 250K and 300K

respectively.

Figure 2.8 – Electrical equivalent circuit to represent thermal processes of an internal wall

Fig. 2.8 demonstrates the modeling procedure using a test case. In this example, there is an

internal wall of area A, thickness L and thermal conductivity k. The heat transfer coefficient

44

2.6. Functional Validation and Use Cases

on the side of room 1 is h1 and that on the side of room 2 is h2. In an equivalent thermal

circuit, there are three different nodes with potentials T1, T2 and Tw that correspond to the

temperatures of air in both the rooms and the wall respectively. Note that the node for the wall

temperature has been assigned to the centerline of the walls.

These nodes are connected to the ground via the capacitors Eq. 2.6 and Eq. 2.7. Eq. 2.6

represents the heat storage capacity of air in both rooms and Eq. 2.7 corresponds to the heat

storage capacity of the wall. For the equations, ρw represents the density and cw the specific

heat capacity of the wall, ρa , ca are the respective ones for the air and v1,2 the volume of each

room.

C1,2 = ρa · v1,2 · ca (2.6)

Cw = ρw · A ·L · cw (2.7)

The heat transfer across the wall has been modeled using the resistances Eq. 2.8 and Eq. 2.9.

Eq. 2.8 represents the convective thermal resistance and Eq. 2.9 corresponds to the conductive

thermal resistance. This resistance of the wall has been split across the centerline resulting into

two thermal resistances of Rw/2.

Rh;1,2 =
1

h1,2 · A
(2.8)

Rw = L

k · A
(2.9)

A significant advantage of using the above model and approach is that all of the electrical

components in the network as well as their parameters have physical interpretations. This

direct relation enables the analysis of the effect on any a physical building thermal element by

modifying the matching parameter in the electrical network.

45

Chapter 2. Smart Building Modeling and Computational System Core

Architecture

However, the simulation as mentioned earlier is computationally heavy, and the simulators

commonly used in the literature are built for use in specialized mathematical software like

Matlab® . As a result, the control and automation modules built around those simulation

libraries are also written in the same software language [101]. The shortcoming with the use

of such proprietary software packages is that the tools developed in those environments are

restricted to just lab level research projects and do not achieve commercial adoption.

This study presents an alternative approach for providing the same thermal simulation outputs

regarding the accuracy but with increased performance and usability. The dedicated numerical

simulation library of the literature is replaced by a circuit-based simulation engine. Since the

problem and model formulation fits excellently with the purpose of the circuit simulator, an

increase in simulation performance is expected along with a reduction in overall cost due to

the free availability of the circuit solver software.

The integrated tool presented in this case study is composed mainly of the following four

discrete agents: the weather related estimation agent, the BMS, the simulation engine and the

feedback agent. Fig. 2.9 demonstrates the complete platform architecture.

Retrieved
building data

BMS

Estimation
Agent

Weather
forcast Estimated future

datapoints

Construction
information

Spice
circuit
solver

Output
converter

Feedback
agent

invoke solver

voltages-currents

Input data
model

converter

Coordination
Agent

thermal-oriented data

Energy feedback
updates

HID

TSDB

1 3

4
1'

2

5

Simulation engine

RDBMS

Sensor data

Figure 2.9 – Architecture of the thermal simulation platform

The weather estimator provides the important future environmental data of the neighboring

simulated zones for use in the thermal simulation model. To generate the appropriate outputs

it takes into consideration the historical values of the zones and the weather prediction from

external sources. Using an experimental solar heat gains model, it is possible to estimate

within an acceptable error the future temperature data-points of the neighbor zones.

The feedback agent generates intelligent insights and recommendations for the occupant by

analyzing the data provided by the simulation engine. As an input, it receives the predicted

time series temperature data from the simulation engine and runs the appropriate analysis

on them. Its task is to provide the high abstraction level outputs that could be leveraged by

46

2.6. Functional Validation and Use Cases

the user devices and in-house displays in order to provide the desired user awareness. The

feedback agent is completely decoupled from the inner-workings of the simulation engine.

Moreover, it is completely independent from the particular structure of the building and its ICT

devices thanks to the BMS. This facilitates the creation or reuse of universal energy awareness

applications that have been already proposed or implemented in the literature.

Finally, the core of this work focuses on the design and validation of the simulation engine

illustrated in Fig. 2.9. This simulation engine is comprised of the dedicated circuit simulator,

a software utility to convert the output of the solver into a usable format, and am engine

coordinator agent.

The coordinator agent firstly retrieves data from BMS’s RDBMS in order to create the resistance-

capacitance thermal model of the building; it automatically synthesizes all its parameters

from the building data model. Subsequently, it gathers the environmental data from the

weather estimator and TSDB of BMS and creates the dynamically controlled electrical sources

of the circuit. The output at this stage is a netlist file compatible with the circuit solver

(Spice); it describes the circuit to be simulated in full detail. In the next stage, the coordinator

agent launches an LTspice [102] console instance and supplies the generated netlist file to

perform circuit simulation. Once the simulation terminates, the coordinator agent invokes the

conversion utility to convert back the circuit related raw outputs to physically meaningful ones.

Eventually, the feedback agent pulls these outputs to run its analysis and generate insights for

the occupants. The various stages and actions of the coordination are numbered in Fig. 2.9.

Therefore, with the help of the agents developed in this work, the platform can provide

proactive energy savings recommendations to the occupants. To use the platform in a new

building, the building structure has to be stored in the BMS and the building to be supplied

with the necessary ICT devices. Once the system is ready, the occupant only interacts with

the platform through the mobile interface by using the feedback agent which returns the

recommendations for action. The simulator engine is invoked automatically and the entire

process mentioned above is executed.

Results

In order to validate the model, the author performed a comparison of the results of the model

with that of state of the art and Matlab-based building resistance-capacitance modeling

(BRMC) tool [101]. This tool has been experimentally validated over several months for model

predictive control on a real and fully operational office building within the OptiControl-II

project [103]. Thus, it provides a sound basis to validate the accuracy of the newly proposed

platform.

A test room, Zone 4, has been defined as shown in Fig. 2.10. Two other rooms and a corridor

surround this room. Further, for the sake of simplicity floor and ceilings are assumed to

have adiabatic boundary conditions. However, they can also be simulated if need be, by two

47

Chapter 2. Smart Building Modeling and Computational System Core

Figure 2.10 – Schematic of a hypothetical room used for validation along with the equivalent
R-C network representation

additional circuit branches of capacitances and resistances using the building material and

structure specifications of the floor and ceiling.

The temperature profiles of these rooms and corridor along with the outside temperature have

been used as boundary conditions for the corresponding walls. This timeseries temperature

data was collected from the sensors deployed in one of the EPFL’s campus buildings for the

month of September 2015. Further, the room is assumed to be unoccupied, with no furniture

and no forced ventilation. The material properties used for the simulation are listed in Table

2.1. A window was on wall four which connected the zone under consideration to the external

environment. The U-Value of the window was 0.51 W/K ·m2 with an area of 6.43 m2. Furthermore,

a radiator was present in the room which is modeled as a current source to the room node.

The results of the simulation are shown in the Fig. 2.11 which demonstrates the comparable

accuracy of the platform with respect to the state of the art tool. The combination of the

free circuit solver with the integrated BMS provides a low cost, yet accurate environment

for developing third party applications to realize energy savings through targeted occupant

48

2.6. Functional Validation and Use Cases

feedback. These applications can leverage the feedback agent analysis and the near real-time

and efficient thermal simulation engine.

Table 2.1 – Building material and structure specifications

Wall 1 Wall 2 Wall 3 Wall 4

Specific heat capacity (J/kg ·K) 1000 1000 1000 1000

Specific resistivity (m·K/W) 4.76 4.76 4.76 1.49

Density (kg/m3) 700 700 700 1600

Thickness (m) 0.1 0.1 0.1 0.27

Area (m2) 13.40 13.40 9.19 9.19

Figure 2.11 – Comparative accuracy of this platform’s solver vs a state of the art tool

A specific agent, called "time to temperature" has been implemented. It leverages the ability

of this platform and demonstrates its usage. It provides an estimate of the time needed by a

specific building zone to achieve the desired temperature. A mobile application is used as a

frontend to the user desired temperature set-point. The feedback agent invokes the simulator

engine through the REST API and receives the timeseries of the predicted temperature data. It

then looks up desired temperature and the delay it took for the building zone to reach it which

is displayed to the user. The execution time of the entire process is in the order of 1sec and

hence fast enough for such application.

This particular agent can also be leveraged by third-party applications to generate several

insights for the user. For instance, the information of the time it takes to achieve the desired

temperature can help occupants save energy since they tend to set higher set-point

temperatures believing that it leads to faster heating [51]. This inevitably leads to energy waste

if the temperature is not turned down.

Another application envisioned in this work is an energy savings recommendation engine. It

invokes the simulator agent multiple times and finds the most optimal control set-points and

49

Chapter 2. Smart Building Modeling and Computational System Core

actuator positions. It achieves that through sequential thermal simulations for all the different

cases and by calculating the energy consumption in each one with the help of a the "time to

temperature" agent. The most efficient configuration is recommended to the occupant. Fig.

2.12 visualizes such process in order to calculate the energy saving and best possible scenario

for actionable feedback.

Figure 2.12 – Energy saving recommendations evaluation process

2.6.2 Hybrid, indoors - outdoors occupant localization

Localizing, identifying and authenticating the individual occupants is of paramount

importance for the future intelligent buildings. Although the performance of outdoor

positioning systems is sufficiently good, the indoor ones have still to converge to a universal

technology. This case study proposes a hybrid, unified localization architecture for indoor and

outdoor tracking of the building occupants. By taking advantage of the smartphones and their

recent near field communication (NFC) capabilities, a low cost, accurate and scalable

localization solution is proposed. This system offers location awareness to the presented BMS.

It is already deployed in medium scale trial and thus the self-energy use, reliability, ease of use

and the privacy requirements are of paramount importance.

Introduction

Despite the advancement in the building intelligence, its performance and optimization

potential is bounded by the unpredictability of the occupants. Multiple solutions have been

proposed to better understand the residents’ usage patterns and reduce the uncertainty. In

order to achieve that, it is necessary to know their whereabouts.

However, the available solutions are insufficient, with few if any, holistic and interoperable

solutions to accurately monitor occupants’ activities. Most of the localizing agents are either

custom made, serving a different purpose or are hardly integrated into the existing BMS. In

addition, they are exclusively designed either for indoors or outdoors operation. All those

50

2.6. Functional Validation and Use Cases

make them highly complex, unable to offer a sustainable and future-proof solution and usually

require numerous hours of retrofitting for each BMS.

This subsection presents a unified and efficient localization approach for both indoors and

outdoors in order to overcome those challenges and functionally validate the BMS.

Localization methods

The solutions providing localization information can be grouped into four types: the physical,

the symbolic, the absolute and the relative location information providers [104]. Regardless of

those, they are also characterized based on the particular user and engineering requirements.

Fig. 2.13 highlights numerous localization requirements defined by Mautz [105]. Meeting those

is a nontrivial task due to the high dimensionality of the technology and its applications. This

work’s primary aims are the reduced cost, increased integrity, scalability, and privacy. The

secondary requirements are met on the best effort basis.

Figure 2.13 – Localization design requirements

The outdoor localization of this module belongs to the physical location type, expressed in

geographic coordinates (degree/minutes/seconds). To acquire them, high sensitivity, global

navigation satellite system (GNSS) are required. Recently, they have also been enhanced by

the Wi-Fi-based positioning systems (WPS) and other positioning identifiers like cell towers

IDs and Bluetooth sensors. Those localization systems are mentioned in general under the

umbrella term hybrid positioning system (HPS). Well known HPS are the Fused Location

Provider by Google® , the gpsOne [106] by Qualcomm® and the Skyhook [107]. The advantages

of the HPS are the relatively high accuracy outdoors in urban and rural areas alike, rapid

localization and good power efficiency, especially compared to GNSS-only solutions.

The literature includes the algorithms for those type of systems [108]. In general, they are

based on the multi-lateration principles. One commonly used method is the received signal

51

Chapter 2. Smart Building Modeling and Computational System Core

strength indicator (RSSI) using the attenuation model in Eq. 2.10 where PR the received signal

strength, d the estimated distance from the emitter, PT the transmitted power, p the path loss

exponent and GR ,GT the antenna gains of receiver and transmitter respectively. To estimate

the position of the receiver, multiple emitters and their respective path loss are considered as

seen in Fig. 2.14.

PR ∝ PT · GT GR

4πd p (2.10)

T1 T2

T4
T3

PR{1 4}

p1
p2

p3p4

d1

d4
d3

d2

Figure 2.14 – Position estimation using the signal strength information

The HPS has become the ubiquitous positioning method since it is independent of geographical

characteristics. However, it does not perform satisfactorily indoors, a tracking principle that was

raised in importance the recent years, especially in the domain of SB. Various studies applied

the RSSI method in that direction; one has rigorously assessed the localization performance

and the causes of its indoors degradation [109]. In summary, the main issues of the RSSI

method indoors are the severe path fading, the signal reflections and shadowing. As a result,

the perceived reception path losses are very different from the modeled values in Eq. 2.10.

Additionally, the variance of parameter p is not only affected by the location in the building but

also by the materials involved [109]. In the end, it is not only the accuracy of the system that

suffers but also the availability, robustness, and integrity since the GNSS module frequently

fails to acquire a satellite lock.

To overcome those limitations, specialized methods and systems have been introduced. They

are commonly referred as indoor positioning system (IPS). The IPS can be classified by the

medium used for determining the location: infrared, ultrasound, radio frequencies and optical

analysis. The literature includes a comprehensive survey on the evaluation criteria for the

existing IPS [110]. In particular, unlike the low cost passive radio frequency identification

(RFID) for which the tracked object is tagged [111] and the active RFID for which the tracked

tag is a transceiver [112], the author proposes a middle-ground solution which merges both

technologies and inherits the benefits. The numerous RFID readers functionality is replaced by

the NFC capability of the modern smartphones.

52

2.6. Functional Validation and Use Cases

Nonetheless, a holistic solution to the localization of the building occupant will require a

combination of both indoor and outdoor technologies. This work integrates, enhances them

and proposes unified tool as a module of the BMS. An intelligent building must regulate fast,

medium and slow relative to time, components. Those demand to change time granularity

in tracking and reporting. For example, a heating system would benefit from the long range,

outdoor localization and time to arrive knowledge, whereas the light control and physical

security would benefit from the low latency, indoor tracking. The proposed localization module

gradually and transparently shifts from long range low granularity tracking HPS to the IPS for

fine indoor tracking even in the most complex buildings. The details of the implementation

and design are scrutinized in the following subsection.

Architecture

The ���� model of the BMS includes many configurable parameters and comfort settings, cf.

Section 2.4 and Fig. 2.1. The part of it that is relevant to this case study is the universally unique

identifier (UUID). This ID is exchanged between the BMS and the localization agent bundled

with the location information. Using that the server can recognize and associate the user with

his comfort settings for the appropriate actions. Fig. 2.15 demonstrates the initialization and

association phase of the mobile application with a ���� model on the BMS side.

The UUID is not a randomly assigned number to each user. Instead, the system uses the UUID

stored in one of the user’s personal RFID tags. It is up to the user to select one to be identified

with. Those can be for example credit card or building access cards that each user possess or

will most probably do in the future. For this case study and BMS validation, the university

supplied and NFC-capable student cards were used. Due to the sensitive nature of the UUID,

all the transactions are conducted through a secured protocol.

Passive RFID tags are placed on or in the walls, on desks or other commonly used places. By

the time a user arrives or places his device on one of those, the UUID of both the passive tag

and the user stored in the mobile application are transmitted to the BMS server for recognition,

authentication, and appropriate action. The sequential diagram describing these client-server

transactions and internal operations are visible in Fig. 2.15. This scheme is feasible due to the

relational BMS data model that allows the symbolic association of the per-configured, wall

embedded, tag location, with the users’ UUID leading to a room-level tracking.

A challenge in this design is the choice of the appropriate passive tags that meet the localization

design requirements. The NFC is a subset of RFID in the sense that supports mainly the

communication standards of ISO 14443 and ISO 15693 on the 13.56 Mhz carrier. On the other

hand, the RFID in general supports three different frequency bands, LF (125 - 134 khz), HF

(13.56 Mhz) and UHF (856 - 960 Mhz), in addition to various other proprietary protocols. With

the cost and the range of communication considered the ISO 15693 standard was chosen. The

exact family of integrated circuit (IC) is the Tag-it HF-I Standard by TI® . Fig. 2.16 illustrates the

tag with its antenna and dimensions.

53

Chapter 2. Smart Building Modeling and Computational System Core

Occupant
:NFCGhostService

OS check
connectivity()

:restAPI RDBMS TSDB

SELECT FROM
USER TABLEvalidateUser

USER ROW
userProfile

:ProfileUI

Initialize

scan personal card

render()
view

Server

IPS module

scan place tag
ACTION_NDEF_DISCOVERED

updateActivi ty()

ACTION_NDEF_DISCOVERED

UUID
getUserUUID

check
connectivity()

reportAssociation

SELECT FROM
ROOM TABLE

ROOM ROW
store

Management
modules

inform

roomInfo

HPS module

cross fence
GEO FENCE_TRANSITION_ENTER/EXIT

"create"

:GeoFenceService

UUID

getUserUUID

check
connectivity()

reportLocationDetails
store

Management
modules

informsuccess

write()

render()

view updateActivi ty()

write()

view updateActivi ty()

render() ref

ref

Figure 2.15 – The main UML sequence diagram for (a) User UUID initialization, (b) IPS tag
scan, (c) HPS fence event

Figure 2.16 – The indoors localization passive tag

The HPS software agent used for the outdoor tracking is based on the

[113] by Google Location Services. It merges and manages the

location providers for each device and provides a simplified abstraction layer to the

programming user-space. In that manner, the agent’s responsibility is to manage in close

collaboration with the BMS the interest points of the user (buildings, workplace, city locations),

and to report the location events with low latency.

Furthermore, the HPS agent utilizes a second element called [114]. It permits

the creation of radius-based virtual map fences from the previously acquired points of interest.

When the device crosses them, even without the application active, the operating system

(OS) launches an intent (OS level interrupt) with the current location, accuracy, point of

interest that triggered the event, the direction of the fence crossing and expected time to

arrive if the direction is inward. The application activates and captures it, informing the

BMS promptly. Thanks to this event-driven software design, an accurate outdoor localization

and identification can be achieved without battery performance degradation. The relevant

54

2.6. Functional Validation and Use Cases

sequence diagram that describes this procedure technically can be seen in Fig. 2.15.

Finally, during the test phase, it was observed that the airplane mode and the restart of the

device would erase all fences and nullify any event triggering. Thus, special care was taken to

capture the additional events in order to reinitialize the background service and restore all

fences. Additionally, in depleted memory situations, the service was developed so that it can

freely stop and restarted on demand by the OS memory management unit without any side

effects on the localization module state. Finally, one can imagine that the smartphones may

experience limited connectivity for example commuting on the subway. Thus the service is

designed to locally log the pending events and report them in a batch when it is back online.

Results

To begin with, due to the event-based design principles the IPS module demonstrated zero

power and computational impact. The application is only invoked when a location tag is

present in the NFC field. Additionally, the IPS validation is a trivial task since it is easy to

observe the success of the NFC tag reading in software. Experiments using state of the art

smartphones demonstrated an average read range of 3cm when the two magnetic coils (tag

and reader) were well coupled (parallel magnetic lines) and of 1cm in angled (≈ 60◦) coils. In all

situations, the results are acceptable for everyday use with even quick and careless scanning.

To validate the accuracy of the HPS agent in accordance to the BMS requirements, various

predefined outdoor paths were followed. Then the reporting time and geographical coordinates

were extracted from the database and were appended to the predefined paths and fences

radius. An example of the route and location reports is visible in Fig. 2.17. The configuration of

the agent is in power balanced mode with 5min location requests interval. As it is illustrated,

by the green and red markers of entry and exit accordingly, the agent captures the events on

time. However, this highly depends on the location request interval, the radius of the inner

fence and of course the object speed. Thus, the fences’ radius size should be meticulously

chosen to improve the localization accuracy.

As already mentioned, the battery impact is of paramount importance as the HPS module is

continuously active on the users’ device. Therefore, battery usage tests have been conducted

for different intervals of location requests. This agent also allows completely passive operation

where no explicit location requests are performed. On the contrary, it relies on the location

updates requested by other foreground applications, e.g., Maps. As seen in Table 2.2, after a

certain threshold in the location requests interval, the energy savings levels off. This is due to

the fact that location updates are anyway initialized more frequently by other applications

running in the foreground which trigger this module.

Finally, during the validation phase of the system, trial applications leveraging the close

integration of the location agent with the BMS were developed. The potential of location

awareness in the thermal energy savings has been highlighted before [51, 115]. They

55

Chapter 2. Smart Building Modeling and Computational System Core

Figure 2.17 – Outdoors localization performance validation

Table 2.2 – Energy impact of various location events intervals

Request Interval Sleep ratio Wakeup count Time spent in 1h

30 s 4.4 % 226 2 min 40 s

1 min 2.1 % 131 1 min 15 s

5 min 0.5 % 57 24 s

15 min 0.6 % 42 20 s

30 min 0.7 % 50 23 s

Passive 0.5 % 54 18 s

demonstrated improvements that did not require any change, neither in the occupant

behavior nor in their comfort level. Moreover, they overcame the limits in the per-configured

thermal scenarios when the occupant’s patterns tend to diverge from the initial ones.

To demonstrate the potential of the localization service for improved energy use, the previous

thermal building simulation engine was used. As both are modules of the BMS they are sharing

the same data model and API which facilitates their interaction. Therefore, the localization

module is tracking the occupant based on the event that are triggered by the HPS module. The

later is returning in fact the estimated time to arrive thanks to the inherent support by the

Google Location Services. On the other hand, the thermal simulation engine estimates the

required time it would need for the space to heat up to the desired temperature stored in the

���� model. By combining both, the BMS is intelligently controlled for just in time heating

and thermal comfort, minimizing the pre-heating and adapting automatically to occupants’

living patterns.

56

2.7. Conclusions

2.7 Conclusions

This chapter focused on the SB semantic modeling and abstractions through a dedicated

flexible data model. Secondly, it scrutinized the required BMS architecture that implements

the data model and the core functionality of the SB. The proposed scalable cloud architecture,

with inherent support for event-driven communication, maintains its performance and

functionality regardless of the occupant activities and the complexity of the optimization

algorithms. Up to the time of this writing, the state of the art did not reveal any comparable

work, neither in research nor in industrial setting.

The work of this chapter provided an innovative model-based approach on characterizing

and interfacing the ICT of the SB. The resulting semantic abstraction architecture is a viable

solution for addressing the technology fragmentation of the current market. It is the initial

proposal for a system that facilitates the creation of a universal ecosystem of management and

optimization algorithms regardless of the particular physical building instance and integrated

ICT. In a similar manner to the smartphone platforms, regardless of the mobile hardware, the

applications maintain their functionality and portability, increase their public reach, reduce

their cost, and guarantee their performance.

57

3 Distributed Message Oriented
Middleware

In the era of the Internet of Things (IoT) and heterogeneous information and communication

technology (ICT) systems, monolithic and proprietary Smart Building (SB) systems are unable

to address the challenges of extendibility, scalability, adaptability, and security. Improved

integration and interoperability of existing and proposed technologies are essential for

overcoming the social and financial barriers of SB adoption. This chapter proposes a real-time,

brokerless message-oriented middleware (MoM) system for interfacing and interconnecting

the digital and physical assets of the SB. It provides a holistic abstraction to the building

management system (BMS) of the underlying device protocols and building construction

properties, simplifying the design and reducing the overall system cost. Its distributed design

adapts and scales to any building construction regardless of the devices performance and

connectivity limitations. The expandability is ensured using object-oriented programming

paradigms and a layered architecture for each distributed middleware node. A secure

architecture ensures the integrity of data and operations, while an extensive performance and

energy efficiency study validate the proposed design.

59

Chapter 3. Distributed Message Oriented Middleware

3.1 Introduction

Nowadays, with the technological advancements in ubiquitous computing and automation

technologies, Smart Building (SB) has grown beyond wireless sensor networks [116]. The next

generation of SB are complex cyber-physical system (CPS) [117, 118]. A unique characteristic

of SB’s CPS is its extreme variance in topology, scale and involved technologies. This not only

complicates the design and development, but it can jeopardize the reliability and efficiency of

the management system as well.

Traditionally, embedded systems have always been considered to have better reliability and

predictability compared to general-purpose computing [119]. As a matter of fact, the embedded

components of CPS introduce requirements largely different from those in general-purpose

computing. Therefore, their reliability and predictability should be maintained regardless of the

system complexity. Moreover, there are still crucial limitations in their performance, range, and

functionality. Another key challenge, especially in Internet of Things (IoT)-based automation

systems, is their extreme market fragmentation [120, 7]. There exists a nearly infinite number

of competing, non-interoperable solutions without easily identifiable advantages. To make

matters worse, those expensive investments become obsolete within a year or two. Additionally,

each building’s construction is unique and the occupant activities are even more diverse

[48, 121, 52]. The topology of the monitoring and control devices [122] as well as the occupant

requirements will differ from building to building. However, it is not cost-efficient to design

systems, protocols, and solutions with such narrow specifications.

Figure 3.1 – The layered approach in smart building system design

Therefore, any solution effectively addressing the reliability, interoperability, and design

adaptability requirements is of high value for sustainable and market competitive building

management system (BMS) designs, and above all for the future of SB in general. In fact,

Lee [123] scrutinizes the challenges of CPS and how important is the design abstractions.

60

3.1. Introduction

This chapter proposes a viable solution for addressing those challenges with a middleware

communication system. Fig. 3.1 visualizes the concept of middleware within a layered

SB design. It provides a universal, flexible and scalable information and communication

technology (ICT) abstraction for the high-level entities like the BMS, energy management

system (EMS), and any other intelligence algorithms.

The middleware is a well-understood terminology which enables the efficient management of

the complexity and heterogeneity of distributed and cloud computing environments. SB

systems have similar, yet smaller in scale, challenges and thus the author was intrigued by the

possibility of an SB-specialized middleware. Specifically, this work assessed the feasibility of a

distributed message-oriented middleware (MoM) architecture. Fig. 3.2 illustrates such

distributed middleware deployment across a building floor in order to interconnect

incompatible or range and performance limited device networks. Each middleware node,

denoted in brown, interfaces one or more device networks for which it implements their

protocol stack. They communicate in a peer-to-peer manner over relatively high-performance

computer networks, e.g., Wi-Fi, Ethernet, etc. The protocol that governs such communication

is universal regardless of the interfaced standard, thus, the middleware enables a

protocol-agnostic communication between heterogeneous networks and the BMS. Finally, a

low latency and secure distributed communication architecture eliminates the impact of the

introduced middleware layer.

Office 1 Office 2

Office 3
Office 4

Meeting Room

Break Room

S

S S S

S
M

M

S

I
I

BMS
M

M
I

S Wireless sensor network 1
S Wireless sensor network 2

M Middleware node

Wired load metering network 1L

LLLL L L L

L

L LL L

I

L L L L L

Wired load metering network 2L

Figure 3.2 – Example of the distributed middleware topology in a building

The rest of this chapter is organized as follows. Section 3.2 analyses the specific requirements of

such middleware, which is also the rationale for investing in such technology in SB applications.

Section 3.3 assess the state of the art in middleware solutions in general applications as

well as specifically for the SB. Section 3.4 dives into the theory behind middleware systems,

architecture, and standards. Section 3.5 scrutinizes the proposed middleware design in the

scope of SB and analyses the security features of the proposed system. Finally, Section 3.6

presents a detailed validation study on the performance and energy use of the proposed

architecture on selected hardware platforms. This chapter finishes with conclusions in Section

3.7.

61

Chapter 3. Distributed Message Oriented Middleware

3.2 Requirements

In general, the target of any middleware is to support large-scale, heterogeneous and distributed

architectures. Thus, the requirements for SB middleware reflect the desired functionality of

any modern middleware. In this section, these desired features are not only presented but

also correlated with SB system requirements in general. By demonstrating in that way the

alignment of both, a reader can better understand the motives behind adopting a middleware

solution for SB designs.

Interoperability, heterogeneity

The interoperability challenge is well understood for both legacy automation system and

newer IoT-based ones. The interoperability with the proposed middleware is achieved by

interfacing both specific protocols and abstracting them with a universal data model specifically

developed for the needs of SB. The software adaptation layer makes the protocol and data

model translation between the two domains. Using this universal data model and internal

routing tables, the participating devices are interconnected without any static-configured

gateways. Moreover, it enables a complete technology agnostic BMS, as the middleware

exposes the monitoring and control capabilities of the building infrastructure. Finally, to

further improve interoperability, the middleware is built on open standards which are platform

and language independent.

Asynchronous, event-driven communication

All communication is asynchronous with the help of messages and queues, which decouples

not only the data model but also the time domain of each interconnected device and network.

The latter enables the participation of even the most heterogeneous type of devices. The

middleware can provide this event-driven communication without latency or throughput

penalty thanks to the high-performance communication layer and libraries.

Mobility, dynamic network topology

The SB is a highly dynamic environment with elevated mobility not only for its occupant but

also from the ICT devices if the wearables, entertainment, and intelligent loads are considered

as parts of the SB. The middleware enables a dynamic topology where self-discovery, internal

addressing protocol, and routing elements allow such functionality. Thus, the continuous

operation is guaranteed without BMS reconfiguration.

62

3.2. Requirements

Scalability, adaptability

A distinct advantage of the particular middleware, as already mentioned, is its distributed

nature. Each node of the middleware is distributed in various locations of the building based

on the design requirements and the capabilities of the device networks. Those nodes and their

interconnection make up the so-called middleware. This distributed design enables a scalable

and adaptable solution to any type of building construction, overcoming the embedded

network range or design limitations. Additionally, if higher throughput and lower latency are

desired from a given embedded network topology, the network can be fragmented into two

different middleware nodes for interfacing. Since the middleware nodes communicate over

generally superior computer networks, the partitioning of the embedded networks nearly

multiplies the overall performance of the initial topology.

Lower cost

The BMS to be installed in residential buildings should remain price competitive. The efficient

source code of the middleware and communication libraries guarantees the optimal execution

even on the cheapest of embedded hardware. Thus, the introduction of middleware does not

increase the cost of the overall system. On the contrary, the interoperability layer seamlessly

integrates the existing infrastructure during a retrofitting, reducing the investment size.

Moreover, the abstraction layer reduces the development work-hours for the BMS, as it needs

to support only the middleware protocol. Finally, the adaptability of the system requires few if

any re-engineering to the overall design between different deployments. All those features

introduced by the middleware can greatly reduce the overall investment cost and reduce the

payback period.

Extendability, ease of development

The SB will continue to evolve over its lifetime and new ICT will eventually be introduced.

The term extendability refers to the ease of creating new types of middleware nodes for

supporting newer building automation protocols, IoT devices, and wireless networks. More

specifically, the software design of the middleware facilitates the extendability of the system

using object-oriented programming (OOP) principles and software templates. Therefore,

the developer of a middleware protocol node is not required to know how the distributed

architectures and messaging communications operate.

Fault tolerance

The middleware nodes can in addition implement localized, narrow scope, control intelligence.

In case of a catastrophic failure on the BMS end, the localized management of the premises,

for example, the security and safety, will continue to be enforced. In this case, it acts as the

backbone of the SB, and the last resort in case of failure. Furthermore, the middleware nodes

63

Chapter 3. Distributed Message Oriented Middleware

can be replicated for redundancy at the middleware level. Lastly, the middleware also mitigates

the data loss problem due to interrupted BMS connectivity by locally caching the monitoring

data, even without explicit support by the embedded network.

Security

While the security is not exclusive to this middleware, it features some key components towards

that direction. Unlike legacy automation systems, the IoT leads the transition from close

network topologies to communication over public Internet. The list of potential adversaries

ranges from poorly trained personnel or competitors to hackers and other cyber-criminals.

The assets and occupants should be protected at all times using validated and standardized

technologies and protocols instead of custom proprietary solutions. Thus, the middleware

nodes’ network is compliant with the security policies in place in order to keep the environment

secure at different levels.

Privacy

Ubiquitous computing, despite its advantages, is fairly intrusive to everyday activities.

Additionally, the public is fairly privacy-sensitive nowadays. The middleware can implement

local data aggregation, anonymization, or even a local management entity without sensitive

data leaving the occupants’ premises for processing in a centralized BMS server.

Self-discovery, ease of configuration

A key challenge in fully-distributed MoM architectures is the self-discovery of the participating

nodes and their services. The absence of a traditional message broker deprives the distributed

nodes of a single point of reference. The proposed solution is able to overcome this limitation

with the help of the BMS, cf. Chapter 2. The latter serves as a directory and a point of reference

for all the middleware nodes. During startup, each node collects the information concerning

its peers (e.g. services offered, IP address, ports, etc.). Unlike designs with a dedicated message

broker, the directory is involved only during startup. After the self-discovery phase, the nodes

continue autonomously and are fully distributed. Hence, this design effectively addresses the

discovery challenges of a brokerless MoM while maintaining its benefits, which are scrutinized

in Section 3.4.

64

3.3. State of the Art

WITHOUT MIDDLEWARE

4

3

2

1

M
id

dl
ew

ar
e

4

3

2

1

WITH MIDDLEWARE

Figure 3.3 – The connectivity advantage of a middleware-enabled system

3.3 State of the Art

To the author’s knowledge, the literature does not propose any distributed MoM designed

specifically for SB. Although requirements like scalability and interoperability are usually

addressed by traditional middleware, reliability and usability, essential for the SB, are largely

ignored. This section aims to disseminate the middleware technology landscape and better

isolate the distinct advantages of the proposed solution.

3.3.1 Surveys and challenges on middleware design

The design and implementation of a middleware system for CPS is not a trivial effort. Kopetz

in his textbook [124] focuses on the design of distributed, real-time embedded systems. It is

the tight integration with the physical world that complicates the process. In fact, multiple

of researchers have already documented the challenges and approaches for middleware,

especially for wireless sensor network (WSN). Hadim [125] investigated for the first time

the middleware state of the art, challenges, and approaches for WSN. Hadim also identified

the scalability, dynamic network topology, security, and data aggregation as well as the

heterogeneity as the key challenges for a successful middleware layer. Moreover, he introduces

the concept of virtual database system where the middleware provides an interface for users to

extract sensor data. A modified virtual database approach is also shared in this paper using

distributed micro-databases for localized data storage service.

Wang et al. [126] proposed a reference framework for analyzing the functionalities of WSN

middleware regarding the abstraction and the provided services while classifying the desired

features of a WSN middleware. They finally categorize existing work based on this taxonomy

and compare their features. Thus, this paper forms a comprehensive state of art and

classification for WSN middleware systems.

Ngu et al. [127] in their recent paper focused on the challenges of IoT middleware. They

identify the middleware as the key technology of seamless realization of an IoT system tightly

65

Chapter 3. Distributed Message Oriented Middleware

integrated with the physical world. The authors also identify the challenges and features

for IoT-oriented middleware such as being a light-weight, application-generic, secure and

semantic-enabled design. However, the authors do not focus on SB use of middleware but

rather on wearables and health related IoT.

In another recent middleware state of the art review paper [128] the authors studied a very

large number of middleware systems, not limited for IoT, on the basis of features such as

abstraction, interoperability, context-awareness, adaptivity, service-oriented, computational

cost and other. In this paper, the middleware solutions are classified based on the design

approaches such as event-, VM- or agent-based, service- or database-oriented, tuple-space, and

application-specific. Hence, it provides an interesting overview of the middleware landscape

as of 2016.

Chaqfeh [129] for IoT and authors in [130, 131] for WSN studies similarly the challenges

and design principles for middleware; in addition, [131, 129] analyze some existing work

on the domain. Moreover, Freitas [132] focuses exclusively on the adaptable enhancement

of the middleware on WSN, with detailed study and comparisons for a selected number of

middleware systems. Finally, Mohamed [133] studies several approaches for service-oriented

middleware (SoM) and identifies their requirements and challenges.

Pietzuch in his publication [134] and dissertation [135] presented a scalable, event-driven

middleware aiming for distributed computing applications. The research work focuses

exclusively on the event-driven middleware design, and thus it is rather holistic in every aspect

of a middleware development process. The author studies the requirements for distributed

computing, some of which align well, despite the scale difference, with the embedded

computing of SB. He presents the concept of overlay networks aiming the abstraction using the

logical application-level network on top of the IP topology. Additionally, he introduces the

notion of type- and attribute-based publish/subscribe to provide better context awareness and

message routing capabilities; those features also adopted to this work. Nevertheless, there are

two major differences with the work of Pietzuch; firstly is not addressing the SB or CPS in

general, and secondly it is mainly event- and not message-oriented.

Understandably, the number of different middleware solutions, the requirements and their

challenges that largely vary depending on the application, requires a considerable effort

for analysis. Liu et al. [136] proposed a scenario-based evaluation method for middleware

architectures.

3.3.2 Middleware literature for IoT and WSN

The previous subsection documented the review papers on middleware systems, their

challenges, and design principles. This subsection lists the primary middleware solutions for

IoT and WSN and compares them with the proposed one.

To begin with, Impala [137] is a middleware architecture for application modularity and

66

3.3. State of the Art

adaptation at run time. Applications are transferred to the nodes in native code and linked

dynamically during execution in cooperation with other applications. The node can host

multiple ad-hoc applications and change between them. The authors of Impala claim easier

updates, energy efficiency, and scalability. However, Impala does not support heterogeneity in

terms of hardware support.

The MiLAN [138] is another application-oriented middleware, for dynamic management of

networks and sensors. It supports service discovery, recognizing newly introduced nodes

efficiently. MiLAN architecture expands on the network protocol stack and, like the proposed

work, it can operate on top of multiple physical networks. The abstraction is achieved using

network specific plug-ins that convert the network packets to MiLAN-compatible messages.

The TinyDB [139] and Cougar [140] are database-inspired approaches to middleware design.

Their focus is on architectures for data management for sensor networks using the notion

of a distributed database. Both systems support a query language for data streaming. They

introduced a distributed query processor at each sensor. However, according to [125], TinyDB

is only partially scalable and open to new features since that would require reprogramming of

the query processor on all middleware nodes. SINA [141] is another middleware based on

a query processing database. Its main feature, over Cougar for example, is the hierarchical

clustering of the sensor nodes, aiming for scalability and further energy savings.

The LinkSmart [142] was developed within the Hydra EU project [143] for networked embedded

systems. It proposes a middleware that allows developers to integrate heterogeneous physical

devices and create ambient intelligence applications using web services for managing the

wireless devices.

The SensorWare [144] is another middleware framework for abstracting the sensor runtime,

thanks to dynamically defined services. It defines lightweight control scripts for efficient use of

WSN computing, communication, and sensing resources. SensorWare is based on the concept

of the virtual devices for service abstraction. However, in the author’s opinion, SensorWare is

not that suitable for resource-constrained hardware.

The Mires [145] is a MoM for sensor networks based on the publish/subscribe communication

pattern. It is built on top of TinyOS for addressing the embedded hardware heterogeneity. It is

an interesting solution because it is one of the few that has successfully demonstrated a MoM

for WSN. It has similarities to this work due to the message-oriented nature. However, it lacks

the self-discovery feature, better scalability and most importantly the abstraction capability for

more than just embedded sensors.

Finally, the SenseWrap [146], TinySOA [147] and Servilla [148] are three SoM systems for WSN.

With those middleware systems, the sensors appear as services to the application level. More

specifically, SenseWrap supports service discovery through Zeroconf and uses the notion of

virtual sensors for providing communication interfaces over UDP/TCP sockets. TinySOA offers

high-level abstraction and service discovery so that applications can access the sensor over an

67

Chapter 3. Distributed Message Oriented Middleware

application programming interface (API). Through that, they can achieve high programming

language integration and excellent software interoperability. The disadvantage of TinySOA is

the monolithic design that requires not only sensors reprogramming, but also a dedicated

gateway, registry, and server. The Servilla is a more recent proposal, the innovation of which is

in the concept of in-network service. Instead of hosting the service-oriented logic on external,

gateway-like, hardware, each node implements a different part of the middleware and still

collectively interact using services.

Finally, it is worth noting that there are some popular message-queue protocols, like the MQTT,

which are used mainly for sensors and machine-to-machine (M2M). However, since those are

protocols supporting interoperable communication and not middleware for WSN, they are

studied in next Section 3.4.

Concluding the state of the art on WSN middleware, it is clear that all of the proposed

solutions have a rather narrow application scope. Their focus is solely on addressing the

challenges of sensor networks and improving their interoperability. The SB, however, is more

than a collection of sensors, actuators, and in general IoT devices. An ideal SB middleware

should also consider other potential data sources, e.g. localization data, automation systems,

wearables, entertainment and security systems. Additionally, all the above solutions require

the middleware as an abstraction layer preprogrammed in the embedded device flash. The

proposed solution overcomes this limitation and allows it to be reconfigurable at runtime.

Most importantly, this design is not limited to open source WSN like the state of the art, since

the core software of the middleware resides in the distributed nodes.

3.3.3 Middleware literature for SB

This subsection collects and analyzes the middleware architecture found in the literature that

target a more systemic approach.

Wang [149] follows a web-oriented approach in middleware design. His aim is to integrate

heterogeneous, legacy building automation system (BAS) such as the BACnet, LonWorks, etc.

However, the solution reads more like a gateway/translator for interconnecting the different

protocols rather than a true scalable middleware. Similarly, work in [150, 151, 152] read as

in-house interoperability solution rather than a true middleware with many of the identified

advantages. Furthermore, LeGuilly et al. [152] used the RESTful architectural principle for

providing interoperability. While this is excellent for web services and API implementations, its

HTTP base is not suitable for low latency applications.

Patti [153] follows a more interesting systemic approach to middleware for energy efficient

buildings. His design and implementation is event-driven, inspired from the LinkSmart

middleware described in above. The paper includes also a case study on aggregating data from

heterogeneous, software and hardware, sources. While the use of LinkSmart middleware for

event-driven communication certainly gives additional value to the paper, the author preferred

68

3.4. Middleware Architecture Standards and Specifications

to emphasize the building energy-efficiency aspect instead of being an application agnostic

middleware for SB.

3.4 Middleware Architecture Standards and Specifications

The middleware concept is well understood, documented and deployed for diverse applications,

even from the emergence of the Internet era. Indeed, Banavar [154] praised its integration

capabilities for independent applications back in 1999. This section documents and reviews

the relevant research work on middleware technologies up to the time of this writing. Those

have been the inspiration and scientific guidance for the research and development of the

proposed design. A couple of those recent developments have been integrated, and many of

the challenges identified in the literature have been addressed.

The following subsections organize the different middleware specifications and literature

categorized by middleware type as also documented by [155]. Unlike the state of the art, cf.

Section 3.3 which presented final middleware designs or their review papers, this section

provides a background overview on middleware architecture standards that govern the

development of any middleware system.

3.4.1 Object- and procedure-oriented middleware

The object- and procedure-oriented middleware are usually the most mature ones in the

literature. They are mostly open source and are suitable for high-performance distributed

computing. It is relevant in comparison to the proposed solution due to their performance and

excellent programming language support. However, they are less scalable, more complex and

tightly coupled, unlike the MoM presented in a following subsection.

To begin with, Common Object Request Broker Architecture (CORBA) [156] is a very popular

and mature middleware solution for distributed computing. It is platform and language

independent with an object-oriented architecture and excellent programming language

integration. The Object Management Group (OMG) has released the specifications as an open

standard for accelerating the adoption and interoperability between vendors. Being a mature

and established standard has inspired many of the recent work and CORBA-compliant software

libraries. However, the standard is inherently complex and extensive. Additionally, according

to [135], many-to-many communication pattern is not supported by its broker and has to be

simulated by less efficient object services. On the contrary, while this work is featuring neither

the same level of popularity nor equivalent programming language integration, it is a much

more computationally efficient using messages. This enables the utilization of embedded

system for its execution, reducing both cost and energy consumption.

Internet Communications Engine (Ice) [157] is an open source object-oriented middleware. It

is influenced by CORBA with which it shares a similar concept. It improves upon the CORBA

69

Chapter 3. Distributed Message Oriented Middleware

object model and provides new features like the asynchronous method dispatch, built-in

security and other. It is a rather comprehensive and mature with many programming languages

support. However, while it is a high-performance middleware, it is a type of remote procedure

call (RPC) framework, and thus it does not meet the low complexity requirement.

Java Remote Method Invocation (RMI) specification [158] is a type of object-oriented RPC

framework that synchronously invokes methods of remote objects in different Java Virtual

Machines (JVMs) using request/reply communication. Unlike CORBA that focuses on

heterogeneous, multi-language deployments and features language-neutral objects; Java RMI

assumes the homogeneous environments of JVMs and Java object models. While this enables

language-specific optimizations, the developers are constrained to a single programming

language.

Microsoft’s Distributed Component Object Model (DCOM) is a proprietary technology for

distributed objects. It builds on an earlier Component Object Model (COM) architecture for

application interoperability in Windows OS environments. The COM models the objects of

components, and it uses the distributed computing environment and RPC, together with

additional security features, to create standardized network packets conforming to the DCOM

standard. Functionally DCOM and CORBA are similar. However, DCOM is proprietary and

unlike CORBA, exclusive in Windows OS environment. Despite having closed specifications,

DCOM evolves faster, for example, compared to CORBA, due to lack of time-consuming politics

involved in generating the next version of specifications [159].

3.4.2 Service-oriented middleware

The SoM on the other hand is based on the notion of providing services remotely through

standardized protocols and data models. This type of middleware is a more modern one.

Papazoglou [160] studies the state of the art and documents the research challenges in that

domain. The vision of the SoM is to provide loosely coupled network services to applications

and end-users that create flexible and dynamic processes and agile applications.

The service-oriented middleware shares many advantages with the MoM as it can also use

messages for providing those services. However MoM is more suitable for SB needs since the

BMS acts already as the service provider for the building, and the middleware nodes need to be

as efficient as possible. Nevertheless Al-Jarrodi [161] reviews couple of them, and assesses

them versus the service-oriented requirements.

Thrift [162] has been initially developed by Facebook, but now it is an open source project in

Apache Software Foundation. This SoM provides the desired interoperability and loose

coupling between the nodes. According to [163], it has small memory footprint, asynchronous

communication, and adequate performance. Service-Oriented Context-Aware

Middleware(SOCAM) [164] is another service-oriented middleware that primarily aims the

context-awareness.

70

3.4. Middleware Architecture Standards and Specifications

3.4.3 Message-oriented middleware

The MoM are of particular interest because the proposed design is of that type. A shared

attributed of all MoM is their strong decompiling in communication while maintaining the

heterogeneous systems abstraction. There are usually three key subsystems in any MoM:

• Messages: They are packets of data exchanged between the middleware nodes; they can

be notifications, events, requests for more data or even binaries. There is no hard limit

on the size of the message unless it is enforced by the middleware. It is the responsibility

of the middleware to fragment the message in network packet payloads for network

transportation.

• Message queues: messages are exchanged between the nodes with the help of

intermediate message queues that decouple the data and execution flow. They hold the

sequence of messages waiting to be processed and they provide the asynchronous

communication between messaging parties.

• Message broker: message broker is an intermediary, centralized server existing in most

MoM which coordinates the exchange of messages between parties. A message broker

itself has queues for receiving messages but in addition it can perform message validation,

translation, and routing.

Thus, the MoM enables loosely coupled distributed software by means of asynchronous

messages. The loose coupling of communicating parties has several advantages for a

publish/subscribe scheme [165]:

• Synchronization decoupling: The sender code does not need to block and wait until the

remote code returns. It can proceed regardless of the state of the message and the other

node.

• Time decoupling: Communicating parties do not need to be active at the same time to

participate in the message exchange.

• Logic decoupling: They do not need to know each other’s software methods in order to

exchange information.

• Space decoupling: They do not even need to know each other; knowledge of the broker

location is enough (broker-enabled MoM).

There are several wire-level protocols for facilitating the development of a MoM, the most

prominent of which are the AMQP, MQTT, and STOMP. Those are not MoM systems rather than

just messaging protocols. The actual MoM and systems that implement those protocol share

many of their features. However, their analysis does not bring any scientific interest in this

manuscript. A widespread fault encountered in the literature was the mixing of standards from

heterogeneous domains. It is fundamentally different a networking protocol for messages (e.g.

WebSockets) with a messaging standard (e.g. AMQP), or a MoM system (e.g. Apache Kafka).

The author decided only to scrutinize and compare the major messaging protocols and just

71

Chapter 3. Distributed Message Oriented Middleware

reference the MoM systems that utilize them, skipping the network protocols and language

libraries (except ZeroMQ) used for implementing MoM.

AMQP stands for Advanced Message Queuing Protocol, an open specification standard

for entities involved in a MoM. AMQP is a binary-based wire protocol designed for high

performance messaging and as an interoperable replacement to proprietary messaging

standards. It became popular in the corporate world due to its reliability, with hundreds of

critical systems relying on it. An AMQP based middleware consists of a broker for routing

the messages between the communicating parties and a client library which implements the

AMQP protocol. It performs better than other designs with an equivalent feature set, but not as

fast as others, as it remains relatively complex and over-sized [166]. RabbitMQ, StormMQ,

Apache Qpid, ActiveMQ and Apollo are only some of the messaging libraries that speak the

AMQP protocol and support many languages and platforms.

MQ Telemetry Transport, also now known as MQTT, is an open source publish/subscribe

protocol specification, originally developed by IBM. What differentiates it from the rest is

its design for resource-constrained devices on unreliable, low bandwidth, and high latency

networks. Its small footprint on the device cannot be otherwise achieved using the full-featured

messaging standards. Its simplicity, low power, and binary packet payload make it an excellent

wire-level protocol for integrating the end devices (sensor, actuators, wearables, etc.) with the

message broker without additional protocol gateways. RabbitMQ, HiveMQ, Mosquito, Apache

ActiveMQ and Apollo are only some of the message brokers that support the popular MQTT

protocol.

STOMP stands for Simple/Streaming Text Oriented Message Protocol, a text-based wire

protocol. It standardizes the message header and frame body to create a simple and

interoperable MoM. STOMP is simple to implement, lightweight and has a wide language

support. RabbitMQ, HornetQ, Apache ActiveMQ and Apollo are some messaging systems

supporting STOMP.

Finally, the other notable messaging protocols are the Constrained Application Protocol

(CoAP), the Extensible Messaging and Presence Protocol (XMPP), and the Web Application

Messaging Protocol (WAMP). CoAP is a text-based protocol, similar to HTTP, that is designed

for resource-constrained devices. It is best fit for M2M applications like the MQTT, but unlike it,

CoAP is primarily a one-to-one protocol. XMPP and WAMP are mainly web-oriented messaging

protocols. Despite their popularity to become the IoT protocol of choice, they are not as

attractive for large and scalable MoM systems.

Concluding, those standards can be summarized as AMQP and STOMP being suitable for high

performance middleware, , MQTT and CoAP being better for embedded devices, and WAMP

and XMPP for web services (including resource-capable IoT).

72

3.4. Middleware Architecture Standards and Specifications

3.4.4 Ideal middleware system and standard

Previous subsections provided a comprehensive overview of the best protocols, standards and

middleware systems. However, SB requirements as a CPS and an evolution of traditional BAS

do not perfectly align with any of those. The most important difference in SB applications,

unlike WSN or distributed computing, is that the system designer is most probably not the

developer of the ICT and thus has limited control over their software and data flow. The SB will

feature heterogeneous ICT systems that more often than not are of close specification (legacy

of the BAS); at best, they may provide a proprietary gateway for external interfacing.

Nevertheless, the author followed a different approach for creating the SB-driven middleware by

using the ZeroMQ [167] distributed messaging library and concurrency framework. ZeroMQ is

written in C++ and provides the sockets through which messages can be exchanged. It supports

multiple transport protocols like in-process, inter-process, TCP, and multicast. The sockets

connect in an N-to-N manner with communication patterns such as request(REQ)-reply(REP),

publish(PUB)-subscribe(SUB), fan-out, and task distribution. Thanks to the inherent queues,

it is asynchronous and scalable to multi-core applications. The documentation, API, and

programming language integration are excellent. A distinct feature of the library is its superior

message-exchange performance that surpasses many competing and mature middleware

protocols, cf. Fig 3.4 [163]. A key characteristic of ZeroMQ is the absence of a broker. Its

absence enables the very low latency and high bandwidth. Additionally, it is open source and

computationally light, making it an ideal candidate not only for distributed computing but

also for CPS. Moreover, the source code of ZeroMQ was successfully ported by the author to

even low cost, low power MIPS architecture, which enables a definite advantage over other

middleware systems. With all those advantages considered, ZeroMQ was a rational choice for a

middleware enabling protocol. The architectural details and implementation are scrutinized in

Section 3.5.

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

RDA Ice Thrift ZeroMQ YAMI4 Qpid

M
es
sa
ge
s/
se
c

C++ Java

Figure 3.4 – Middleware communication protocols performance comparison

Broker vs brokerless MoM

As a key distinction of ZeroMQ is the brokerless design, it is beneficial for the reader to

understand the advantages and disadvantages of this design principle, as well as how the

73

Chapter 3. Distributed Message Oriented Middleware

author overcame some of its limitations.

To begin with, a broker-enabled architecture, illustrated in Fig. 3.5(a), has several advantages.

Adv1: Each communicating node does not need to know neither where the others are located,

nor how to reach them (space decoupling). The knowledge of the broker is enough. Adv2:

Enhanced time decoupling. The two nodes do not need to be active at the same time; even

their sockets (thus the entire process) may not concurrently exist. The broker can cache and

queue the messages. Adv3: The broker can do more than message routing and queuing. It can

perform protocol translations, message validation and routing as well.

However, it has also some disadvantages for SB applications. Dis1: Increased network

communication, as messages must first transition through the message broker before they

arrive at the designated receiver. This design could be counterproductive if the receiver is on

the same layer or shares the same data model (sensor to sensor, sensor to actuator, etc.) as no

data frame modification or message routing is necessary. This would be the case, for example,

when two similar WSN are interconnected over the middleware, because the embedded

network has reached its range or performance limits. Dis2: The broker consists of a single

point of failure and does not ideally address the requirement for a distributed and possibly

localized management of the building.

Publisher Broker Subscriber Subscriber 2

queues

messages

(a) With broker

Publisher Subscriber Subscriber 2

queues

messages

statically
programmed

(b) Brokerless

Figure 3.5 – Broker-enabled versus brokerless MoM

On the other hand, brokerless architectures illustrated in Fig. 3.5(b), are considerably more

complex to manage and organize. However, besides the desired full-distributed nature, they

have one more key advantage. They are able to maintain very low latencies of communication

since there is no intermediary party. This is of paramount importance considering the physical

world interaction (CPS) and the various soft real-time control and automation processes taking

74

3.5. Middleware Architecture, Implementation, and Operation

place through the middleware.

For this work, a modified brokerless middleware design has been adopted. In order to replace

some of the centralized broker functionality, a directory service module has been improvised.

Its purpose is to provide a single point of reference for all the middleware nodes as illustrated

in Fig. 3.6. The middleware nodes are only pre-configured to search and reach this directory

service. This, in turn, has a repository of all the services and nodes of the middleware. Hence, it

enables a self-discovery functionality for the proposed middleware. At the same time, the

messages continue to be communicated directly between the nodes, retaining their low latency.

In the author’s opinion, such a design is ideal, as it combines the merits of a brokerless system

while addressing the self-discovery challenge of it. The details on the implementation of this

directory service are in Section 3.5.

Publisher Subscriber Subscriber 2

queues

messages

Directory
(openBMS)

services
discovery

Figure 3.6 – A directory service of the BMS for addressing the disadvantages of brokerless MoM

3.5 Middleware Architecture, Implementation, and Operation

3.5.1 Middleware as part of the BMS

Middleware architectures usually serve the needs of a greater scope system. For the proposed

solution, this is the BMS, named openBMS, cf. Chapter 2. A simplified overview is illustrated

in Fig. 3.7. The middleware is composed of a number of low power electronics forming the

previously mentioned middleware nodes. Those modules are distributed in the building and

communicate using the TCP transport and IP network. The data link layers can be either wired

802.3 (100BASE-TX/1000BASE-T Ethernet) or wireless 802.11 (n/ac Wi-Fi). Each middleware

node software architecture is analyzed in the following subsection 3.5.2.

3.5.2 Middleware nodes

In order to meet the reduced complexity and easy development requirements identified in the

literature as important features for any middleware, a layered software architecture has been

followed. The main layers by means of functionality are depicted in Fig. 3.8. The advantage

75

Chapter 3. Distributed Message Oriented Middleware

Middleware
Nodes

ICT devices

aa

s

a
s

s

BMS
Application server Events server

RestfulAPI Websocket

Node
NodeDistributed

hardware

Node
NodeDistributed

hardware

TCP/IP network

Advanced energy and comfort
management algorithms

Gateway
connectivity

Figure 3.7 – Middleware system in relation with the BMS and embedded devices.

of a layered approach is that for new protocol support, only the 3 bottom layers need to be

developed while maintaining the developed top layers related to middleware communication.

This enables high reusability of the code, eliminates bug introduction in the middleware

connectivity aspect, and minimizes the workhours required for developing a compatibility for

a new standard, thus meeting the extendability requirement defined in Section 3.2.

Each node layer performs a specific functionality as described below:

• Sockets: the ZeroMQ sockets that are responsible for interfacing with the rest of the

middleware nodes as well as the BMS. They are the frontend of the node to the

middleware common data space. Each node has 4 of these sockets of different types:

– PUB-socket: a publisher socket is used for low latency events dispatching to any

middleware subscriber for such events. Those can be other nodes that engage in

automation, a distributed micro-database, or for example, the BMS which needs

to collect and analyze any sensing values. The publishing socket binds to the

[IP:PORT] pair as it is configured in the directory service. Thus, this port should be

available on the node and also reachable by all its subscribers.

– SUB-socket: with the subscriber socket, each node can connect to one or more

76

3.5. Middleware Architecture, Implementation, and Operation

Node
specific

Middleware
generic

Adaptation

Communication

Physical

Sockets

Protocol
La

ye
re

d
ar

ch
ite

ct
ur

e

Figure 3.8 – Layered middleware node architecture

publishers to receive events. Data is published along with a topic that lets the

subscribers filter the information according to their needs. For this middleware, by

definition the subscription topic is the middleware node ID.

– REQ-socket: this is a request type of socket used for synchronous communication.

It forms a pair with the reply socket type. The pair is in lockstep, meaning that the

socket blocks until a reply returns. However, blocking the port does not necessitate

a middleware program flow block; a ZeroMQ Poller provides a timeout mechanism

for checking if a reply has been received before resuming execution, only to check

again in a future time interval.

– REP-socket: the reply socket counterpart for providing requested data. Unlike the

publish/subscribe pair, which aims for low latency communication, the request-

reply pair is used for reliable bulk data transfers, ensuring the delivery of the

payload.

• Communication layer: it manages all the communication, synchronization, message

encoding, and state maintenance of the node as a participant into the middleware

topology. It is an integral part of the middleware node; together with the socket layer they

form the middleware data exchange frontend. The software class that implements this

layer executes in a dedicated thread in order to respect the timing requirements of the

middleware. Additionally, and most importantly, it communicates with the middleware

directory service for acquiring the information of the rest of the middleware nodes.

The internal operation of this layer, thus the middleware connectivity, is hidden from

the other node layers’ developers. They just need to use its methods for requesting

or submitting high-level data in order to implement the protocol integration or the

distributed node-level intelligence.

• Adaptation layer: it is the first layer that is responsible for the engineering that extends

the middleware functionality or supported standards. The scope of the adaptation layer

is to perform the data translation from the node specific to the middleware generic. This

layer is necessary for enabling the universal message data standard for heterogeneity

between the nodes, regardless of their supported protocol or intelligence. The proposed

system provides only the abstract classes that the adaptation engineer should inherit

77

Chapter 3. Distributed Message Oriented Middleware

and implement. The abstraction also standardizes the methods and callbacks that

are invoked by the communication layer on incoming middleware messages or by the

protocol layer for incoming network data frames. Furthermore, if any form of distributed

intelligence is desired, it can be developed on top of the adaptation layer using the

middleware generic data protocol.

• Protocol layer: it is the equivalent of the communication layer for the physical connection.

It implements the complete protocol of the device, network, or database it interfaces. It is

independent from the rest of the layers, as its sole responsibility is the state management

and coordination of the communication with the physical interface. The design of the

protocol layer is left open in order to remain compatible with the maximum number

standards, as it is the adaptation layer that defines the data flow between the protocol

and the communication layers. Moreover, using multiple protocol layers and physical

interfaces, a single hardware can support similar networks and storage backends.

• Physical layer: as the name suggests, this is the actual hardware interface to the specific

backend entity (device, network, database). It is highly specific to the application and

not standardized by any means in the proposed system.

The above text description is summarized and visualized in the unified modeling language

(UML) diagram of Fig. 3.9; italic font denotes the abstract classes and methods that need to

be implemented. Dark gray depicts an instance of a middleware node which may support

one or more protocols or functionality as well as the standardized middleware connectivity.

The following paragraphs represent some of the node instances that have been implemented

during this work for overall validation of the middleware and BMS integration.

communicationClass

serialize(payload: Dict): String
publish(payload: Dict)
subcribe(mid_node, topic): Callback
processCommand(cmd: Dict)

zmqInterface

sock: zmq.Context.socket
createSock(sock_config: Dict)
connectSock(sock)
receiveMsg(): String
sendMsg(json_str: String)

localStorageClass

buffer: Dict
createBuf(String fileno): file
restoreBuf(String fileno): file
saveBuf()
appendBuf(data: Dict)

middleware_node_core

initialize()
spawnThreads()
mainLoop()
exitSequence()

openBMS

node_configuration: DB
middleware_nodes: DB

adaptationClass

initializeInterfaces(config: Dict)
processFramePhy(str: String): Dict
processFrameMiddleware(obj: Dict): Tuple
executeCommand(phy_str:String, address: Int)
phyReceiveCallback(phy_str: String): String

protocolClass

initializePhy()
receivePhy()
forwardPhy()
monitorPhy()
getNodes()

phyInterface

1.
.4

<<node_instance_name>>

selfDiscovery
network_state

new thread

new thread

implements

inherits implements

<<develops>>

1..*

<<develops>>

Figure 3.9 – UML class diagram for a middleware node

78

3.5. Middleware Architecture, Implementation, and Operation

Firstly, the BMS-side node, cf. Fig. 3.10(a), is the gateway of the BMS server into the middleware

topology. The backendAPI layer interprets the server and building-oriented semantics to the

equivalent middleware ones. Additionally, it interprets the incoming events and links them

to matching building model instances as defined in the BMS. Finally and most importantly,

enabled by the openBMS’s relational database management system (RDBMS), this node

implements the directory service as introduced previously.

The real-time server node, cf. Fig. 3.10(b), is using only a PUB/SUB socket pair. It is responsible

for the low latency events and commands coordination across the building. It interconnects

and translates the middleware data to the BMS, publishing the events using the Websocket

protocol.

The routing node, cf. Fig. 3.10(c), helps to overcome limitation of IP networks like firewalls,

NAT, and other network restrictions. More frequently than not, the PUB and REQ nodes

port bindings are not accessible from external networks and the cloud hosted BMS. This

necessitated the creation of this, externally hosted, routing node. Due to public hosting, its port

binding is always accessible. Thus both building located nodes, and BMS can access it. While

not always necessary (depends on the system desired architecture), this node acts as a simple

message broker for the middleware for the messages needed to traverse a restricted network.

BackendAPI

Communication layer

openBMS logic

Directory
service

Middleware sockets

(a) BMS-side node

Adaptation layer

Communication layer

rtserver logic

Middleware sockets

(b) Real-time server node

Routing Layer

Communication Layer

Middleware sockets

Communication Layer

Middleware sockets

(c) Routing node

Figure 3.10 – BMS-side, real-time server, and routing middleware node architectures

The device/network node, cf. Fig. 3.11(a), is the primary node of the middleware and its

inspiration. It handles the data flow and interconnection of the range and energy-limited

embedded networks. Moreover, there is a provision for in-network data aggregation, filtering,

and minimal preprocessing. At the time of this writing, nodes have already been developed with

interfacing capabilities to power line communication, Z-Wave, 6loWPAN and Lora networks.

Finally, the micro-database node, cf. Fig. 3.11(b), is responsible for implementing the

on-premises data storage and management. While a cloud hosted, centralized and high

performance time series database (TSDB) could perfectly serve the design aims, the distributed

one has advantages in data privacy and location. Currently, two data storage solutions

have been tested successfully, the CSV and the RRD. Those are lightweight enough even for

embedded hardware nodes.

79

Chapter 3. Distributed Message Oriented Middleware

Adaptation layer

Communication
layer

Network interface

Network manager

Distributed
intelligence

Distributed
storage

Middleware sockets

(a) Device/network node

Adaptation layer

Database connection

Database driver

Communication
layer

Middleware sockets

Data
aggregator

(b) Micro-database node

Figure 3.11 – Device/network, and micro-database middleware node architectures

Concluding this subsection, Fig. 3.12 illustrates the sequential UML diagram that describes the

network middleware node’s main interactions with the BMS and the physical devices. Dark red

denotes the startup and self-discovery sequence, a process also shared by the other types of

nodes. Black shapes denote the recurring processes of the node and of the BMS.

alt

: commLayer

: restfulAPI: midNodeCore

Midddleware Node

request configuration

node config
nodes locations/services

create sockets

<<spawn thread>>: adaptLayer

: backendAPI

pass configuration

REQ

evt_hex

: protocolLayer

Phy Net

cmd_hex

phy management

adapt msg

commands_obj

events_obj

adapt msgcommands_enc

opt
PUB

REP

alt & loop

[intelligence,
aggregation]

alt

BMS

events_enc

Figure 3.12 – UML sequential diagram of a network middleware node interacting with the BMS
and the physical devices.

3.5.3 Self-discovery

The self-discovery feature of the middleware has been mentioned before on multiple occasions.

This challenge is encountered as soon as larger distributed architectures are provisioned.

Hard-coding the network architecture on each node and manually updating it when a new

node is introduced is a valid option. However, this is a fragile and not scalable practice. Imagine

a situation with few publishers and hundreds of subscribers. The publishers’ IPs are static

while the subscribers are dynamic, thus you configure the publishers’ addresses for each

subscriber. While a new subscriber will share the same configuration, when a new publisher is

80

3.5. Middleware Architecture, Implementation, and Operation

introduced, all the subscribers need to get configuration updates. Therefore, the author chose

to implement a different approach with the use of a directory service.

The role of the directory as mentioned is handled by openBMS. It hosts in a RDBMS, records

for each middleware node. Each record includes not only the IP address but also the four

socket information (PUB, SUB, REQ, and REP) as well as the service that it provides for those.

Additionally, it stores all the node IDs that the record node needs to subscribe to. Using the

node IDs and traversing the DB relationships, the information on the rest of the nodes can

be acquired; the complete configuration is then transmitted to the requesting node. For

example, a micro-database node fetches not only its configuration for its binding sockets but

also the nodes it has to subscribe to in order to collect their sensing data. Concluding the

self-discovery, it is by far not the most elaborate self-discovery system. Nevertheless, to the

author’s knowledge, it is adequate for the complexity and requirements of SB.

3.5.4 Security features

Security of data and infrastructure is of paramount importance for SB with their inherent

pervasive nature of CPS. Security is in fact the most challenging of all the requirements;

malicious attacks would have a significant impact in an IoT-enabled physical world. Therefore,

the system design must not only support the requirements of heterogeneity, scalability,

efficiency and anywhere-anytime access, but it is also important to ensure that the security

and integrity of the system and data are maintained.

In fact, researchers are very active in the field of IoT security and they have already documented

in multiple review studies the security challenges and requirements [27, 28, 26]. Additionally,

Roman et al. [25] focused specifically on the distributed IoT which is enhanced with various

middleware technologies. However, analyzing specific security frameworks for WSN and IoT is

beyond the scope of this work; thus, Sharma et al. [168] work is an excellent overview of the

security frameworks for such applications.

Security has a rather large context with, but not limited to, the following characteristics.

• Authentication: the process of verifying that someone is who claims he is.

• Authorization: the process of ensuring that only the right parties have access to the

assets.

• Confidentiality: it ensures that the data remain hidden from anyone without the right

credentials, using encryption schemes.

• Protocol and network level security: describes the mechanics acting within the network

to ensure trusted operation while maintaining the power and latency budget.

• Integrity: it verifies the reliability of data and refers to the ability to confirm that a

message has not been tampered during the transmission.

81

Chapter 3. Distributed Message Oriented Middleware

• Availability and fault tolerance: it ensures that the protected assets will continue to offer

services even under unfavorable conditions.

• and lastly privacy: it refers to a variety of techniques and technologies deployed for

protecting sensitive and private data, and communications.

As a matter of fact, the middleware transports the bulk of information in the building and thus

can be the weakest point for exploitation by adversaries. Al-Jaroodi et al. [169] review some

security middleware techniques and highlighted their characteristics, and challenges.

Some security oriented middleware are the following:

• a security middleware architecture for heterogeneous pervasive devices [170];

• a security management middleware architecture for ubiquitous computing applications

[171];

• a middleware for securing the access and control in smart homes [172];

• a secure by design middleware for pervasive computing environments [173];

• and a trust-based middleware for authentication requirements in ubiquitous mobile

environments [174];

However, designing a security subsystem from zero requires profound knowledge in the specific

domain and years of validation and verification in non-critical systems. The decision has

been made to rely on established security standards, architectures and implementations,

customizing them for the needs of SB and middleware. The use of validated technologies

instead of in-house ones enhances security, reduces risk and promotes an easier security

uptake.

The technology that was able to meet most of the security requirements of the specific SB

application was the virtual private network (VPN), extended with additional software logic

at the middleware node level. The idea behind it is rather simple to understand, yet very

effective. Every node connects through an encrypted tunnel to the VPN servers hosted on some

designated middleware nodes. The nodes are selected based on their hardware computational

power and their location in the distributed topology.

Fig. 3.13 illustrates the scheme and how the VPN is used to support the secure message

exchange. The bottom layer is the network topology consisting of hosting hardware, switches,

access points, and routes which ensure the physical connectivity of the nodes. The topology is

not necessary a local private network since it can extend over public networks (Internet) and

to a cloud server if they exist. The second layer, is the virtual network instantiated on top of

the underlying network infrastructure. All the message packets are forwarded to the virtual

network interfaces of the nodes and exchanged through the VPN servers, also securing the

message exchange with the cloud server. The virtual interfaces and thus the nodes behave like

82

3.5. Middleware Architecture, Implementation, and Operation

they are on the same network regardless of the public or private underlying networks. The

middleware logic operates on top of this virtual network like usual.

Network topology

node
node

Node

Node

node
Router

Router
Switch

Access
point

Switc
h

Encrypted
tunnelsVPN server

VPN architecture

Software nodes

Middleware nodes

Software defined
network

MoM

Figure 3.13 – Encapsulation of MoM inside VPN tunnels, on top of existing network

Since all the messages are exchanged over the VPN, it ensures the confidentiality and integrity

requirements at all times. The authentication and authorization requirements are ensured by

the VPN server accepting the connections. Moreover, using the virtual networks, the designer

has the freedom to statically configure the addressing space and packets routing regardless

of the network layer, enhancing the mobility of nodes and the networking flexibility of the

middleware. The disadvantage is the partial negation of the "no single point of failure" design

priority, as messages have to eventually pass through their assigned VPN server node. A failure

of such a node would require the served nodes to fall back to their secondary assigned VPN

server node, should it exist. Moreover, the VPN overlay may introduce additional delays and

requires a capable hardware on the middleware nodes that implement the server.

Regarding the choice of VPN protocol, there are a couple of technologies available which have

been considered. Each of them offers a different level of ease of deployment, security, and

platform support for addressing different requirements. The article [175] studies the most

popular, as of 2004, VPN solutions for Linux systems and compares their network performance.

• PPTP: The Point-to-Point Tunnelling Protocol was developed by a vendor consortium

founded by Microsoft, Ascend Communications, 3Com, and others. While still popular,

it is an obsolete method, published in July 1999 as RFC 2637, for implementing VPN due

83

Chapter 3. Distributed Message Oriented Middleware

to many security issues. The protocol implements only the virtual network and requires

additional methods to provide authentication security such as the PAP, CHAP, MS-CHAP

v1/v2. The PPTP comes built-in in most operating system (OS)s. Despite the maximum of

128bit encryption keys, security vulnerabilities have been discovered. The most serious,

the infamous unencapsulated MS-CHAP v2 authentication exploit required patching

through the use of PEAP authentication; Microsoft actively recommends alternative VPN

protocols [176]. Moreover, Schneier [177] demonstrated the vulnerability of bit-flipping

attack when using the RC4 encryption.

– Advantages: platform built-in, ease of deployment, the fastest of all protocols

[178, 179].

– Disadvantages: only basic encryption, known vulnerabilities.

• L2TP/IPSec: The Layer 2 Tunnelling Protocol, published in 1999 as RFC 2661, does not

provide on its own any encryption of the tunneled traffic. It is usually implemented

with the Internet Protocol Security (IPSec) for encryption and confidentiality. The

L2TP packet is sent withing a UDP datagram, while the negotiation of IPSec security

association is carried out over port 500. The lack of support for an alternative port

may complicate the deployment behind network address translation (NAT) devices

and firewalls. IPSec is still secure without any known vulnerabilities. However, the

L2TP provides the tunnel while IPSec ensures a secure channel of communication

inside that tunnel, thus L2TP/IPSec encapsulates data twice which may reduce the

performance of VPN. Nevertheless, due to the recent instruction set extensions, the

hardware can now accelerate the AES encryption implementations. The white paper

of Intel® demonstrated a 400% throughput performance gain in IPSec connection

in AES-optimized microarchitecture [180]. Finally, L2TP/IPSec does not require any

additional software since it comes built-in with many platforms.

– Advantages: secure, easy to deploy, platform built-in, second faster behind PPTP

[181, 178, 179] with multi-threaded kernel support.

– Disadvantages: double encapsulation, restrictive on usable ports.

• OpenVPN : It is an open source technology which uses the OpenSSL encryption library

and SSL/TLS for key exchange. It offers possibly the highest security customization with

peers authenticating each other using a username/password, a pre-shared secret key, or

digital certificates. OpenVPN operates over either UDP or TCP transports and multiplexes

the SSL/TLS authentication and key exchange session with the encrypted tunnel data

stream. OpenSSL library to provides encryption for both data and control channels

and supports several cryptographic algorithms (e.g. AES, Blowfish, 3DES, and others).

OpenVPN is fast, but with lower performance compared to the previous two [181, 179] as

its current version runs as a single-threaded process. Nevertheless, OpenVPN is highly

reliable and stable even on high latency links or over wireless networks. However, while

OpenVPN is widely supported, it needs its client to be installed on the system.

84

3.5. Middleware Architecture, Implementation, and Operation

– Advantages: highly configurable, very secure, bypass firewall and NAT device

limitations, many encryption ciphers.

– Disadvantages: requires client installation, more complicated to deploy.

• SSTP: The Secure Socket Tunneling Protocol provides means to transport PPP traffic over

an SSL/TLS channel similarly with OpenVPN. The use of the standard SSL/TLS TCP port

443 overcomes firewall and other network limitations. Unlike OpenVPN though, it is a

proprietary protocol developed and owned by Microsoft® .

– Advantages: very secure when using strong ciphers, good integration with Windows

platform, bypass firewall.

– Disadvantages: not very suitable for other platforms, proprietary.

• IKEv2: Internet Key Exchange (version 2) is a tunneling protocol based on the IPSec. It is

a fairly new standard that was co-developed by Microsoft® and Cisco® . Recent versions

of Windows support it, and it exists various open source implementations for Linux.

IKEv2 has advantages for mobile users in particular due to its capacity to re-establish the

VPN tunnel when parties temporarily lose network connection. Security-wise, IPSec is as

good, if not superior, the L2TP/IPSec standard. Performance-wise, according to [182],

IKEv2 and SSTP demonstrate similar throughput and jitter very close to non-VPN tests.

– Advantages: faster than other protocols avoiding double encapsulation, very stable

with mobile clients, very secure.

– Disadvantages: not supported in many platforms, server deployment is not trivial.

Considering the above, the decision was to go with the OpenVPN solution primarily for its

customization ability and extensive documentation. The somewhat inferior throughput

performance [179] is less critical for the mainly low latency but low bandwidth requirements of

SB middleware. According to measurements in the next section and in [181, 179] the resulting

latency and jitter due to the OpenVPN layer are not significant for building’s ICT operations

time domain.

Configuring an OpenVPN server for high security is not trivial due to the numerous available

parameters and is beyond the scope of this work. Listing 1 displays the exact configuration of

the OpenVPN server as a reference to the reader. By default, the OpenVPN server dynamically

assigns the client addresses. However, due to the self-discovery requirements, the VPN

clients should have a static IP configured according to the directory service. To address

these requirements, the parameter ����������	�
���� defines the folder which contains

the configuration files matching the nodes’ common name (CN). Each file contains a single

line: �	���	�
�
��� �������� ��������, where 10.8.X.X is the desired IP of the node and

255.255.0.0 the subnet mask.

Security-wise, the server is configured using a PKI (public key infrastructure) instead of a

username/password, defined by the SSL/TLS root certificate (ca), certificate (cert), and private

85

Chapter 3. Distributed Message Oriented Middleware

���� ����

����� �	�

	
� ���

�	��� �

������ �

��������
���
�

��
� �������� �����������

���
����������	�� �
�����
�������	

��
� ��
	��
������
��� 	
�� ����

�	����

��
� �	���������� !" ��#�������

$

�����
 �� ���

��%���&�

�
�
�
��$
�

�
�
�
�����

����
 ��
�����
����
����

�
�� '

� �������	
��������

�� ������

�
��

��
�����

$
�

��
��$
�

�����
���� �����
%

	� 	���
%

����
� ()"���*�+,+

��
����� ���$
� �

Listing 1 – OpenVPN server configuration

key (key). While "cert" and "key" are unique to each client and server, they share the "ca". In

bidirectional authentication using certificates, the client can also authenticate the server’s

certificate, much like how a server authenticates the client before mutual trust is established,

mitigating man-in-the-middle attacks. An additional advantage of PKI over static keys is that a

server can disable access to any compromised middleware node without reissuing new keys

for the rest. The ���������	 defines such a certificate revocation list (CRL).

Furthermore, for performance reasons communication in the established tunnel is conducted

using symmetric encryption. Hence, Diffie-Hellman (dh) parameters are necessary for the

symmetric key exchange. Moreover, the ephemeral Diffie-Hellman (DHE) method provides

perfect forward secrecy, unlike the plain RSA public key cryptosystem. Perfect forward secrecy

is the desired property of a highly secure communication system for which a compromise of a

present session key does not compromise past transmitted sessions. The ��
��� defines the

desired symmetric cryptography algorithm; OpenVPN supports many of those as seen below.

• DES-CBC, DES-EDE(3)-CBC, DESX-CBC

• AES-(128/192/256)-CBC

• RC2-CBC, RC2-(40/60)-CBC

• BF-CBC

• CAST5-CBC

• SEED-CBC

86

3.5. Middleware Architecture, Implementation, and Operation

• CAMELLIA-(128/192/256)-CBC

However, as expected they are neither equally secure nor computationally efficient. In Section

3.6, some of those cipher effects on the middleware performance have been studied. This led

to the selection of ���������	� as the best combination of performance and security. Finally,

the
���
�
� defines an additional static pre-shared key (PSK) for a HMAC signature to all

SSL/TLS handshake packets enabling integrity verification. Any packet without this signature

is dropped, mitigating denial-of-service attempts.

Each middleware node gets a VPN client configuration together with its unique private key

(key) and certificate (cert) as well as the shared root certificate (ca). The symmetric cipher

algorithm should match the server’s and thus cannot easily change after deployment.

������

��� �	�

���� 	�

���	� �

����	� �

������ ��������������������� �� !

��
���"����# ��������

������

��
�
�"$�#

��
�
�"�	�

������"����"��

�����

���
"�%�

����� �
� ����$"�	�
���"��

$�#"��������� �

���� &

� �������	
��������

�' �'(���

���� ��������)*+(���

$�# ��������)*+($�#

��
,�� ���"-./"�0�

��
"'	�, �'($�# �

Listing 2 – OpenVPN client configuration

Concluding, for completeness reasons, an alternative security technology considered was the

CurveZMQ. It implements perfect forward security between two ZeroMQ sockets over a TCP

connection while maintaining good performance and high security. Curve is a protocol

enabling authentication and encryption. It uses short-term session keys for every connection

for perfect forward security. The implementation of CurveZMQ also addresses replay,

amplification and key theft attacks. However, the VPN option was selected on the basis of its

ability to protect against traffic analysis, the ability to secure more than just ZeroMQ traffic,

and the author’s experience in the field of VPN.

87

Chapter 3. Distributed Message Oriented Middleware

3.6 Validation

The previous sections presented the architecture, implementation, and operation of the

proposed middleware design. This section uses that design and deploys it on an embedded

hardware for validating the middleware functionality and design requirements.

3.6.1 Evaluated hardware as middleware node platform

Three very different hosting hardware were selected for the purpose providing an holistic

testing procedure.

• Intel® Core i5-5300U CPU @2.90Ghz with 16GB DDR3 memory, a x86-64 architecture

machine. It used mainly for benchmarking reasons and for setting the absolutely

maximum attainable performance record since that capable, yet not very energy and

cost efficient hardware, do not meet the requirements of distributed middleware inside

buildings. Linux Debian OS was installed at the time of testing.

• BeagleBone Black (BBB), featuring a single-core ARM® Cortex-A8 MPU @1Ghz with

512MB of LPDDR3 memory. This hardware is in the middleground between the high

performance computer and the ultra low cost, power and performance embedded

electronics. Console-only Linux Debian image was used as the OS during the testing

phase. The cost of it is on average $50. The module can be seen in Fig. 3.14, on the left,

with attached the USB Wi-Fi interface.

• LinkIt Smart 7688 Duo is a micro-board built around the MediaTek MT7688, a 580 MHz

MIPS 24KEc microprocessor unit (MPU), bundled with 128MB memory and a mere

32MB of flash storage. The MIPS system on a chip (SOC) integrates a 1T1R 802.11 b/g/n

transceiver and an Ethernet switch. This version is combined on the same board with an

ATmega 32U4 microcontroller unit (MCU). The latter greatly enhances the I/O ports and

digital communication pins (e.g. I2C, SPI, UART, etc.) while off-loading the main MPU

from the real time creating sampling and embedded network management tasks. The

MPU and MCU communicate over high-speed UART, thus inter-communication is not

an issue. It runs a highly stripped-down GNU/Linux-based firmware that is commonly

used in network router hardware called OpenWRT. Moreover, it includes a microSD

interface, a handy feature for a micro-database node functionality. At the time of this

writing, the cost of this board is $16; a very competitively priced solution considering its

capabilities. Fig. 3.14, on the right, pictures the module without the Ethernet breakout

board for providing the RJ45 connector.

3.6.2 Performance and validation tests

In order to assess the performance, various benchmarks have been conducted as follows. The

tests have been performed for each of the proposed hardware for comparison reasons and for

88

3.6. Validation

Figure 3.14 – Embedded MPU boards for hosting the middleware node software and the
physical interfaces. Left: BeagleBone Black (BBB), right: LinkIt Smart 7688 Duo

validating the presented design.

• Round-trip time (RTT) and maximum TCP throughput assessment of a network link

between the embedded hardware and a reference one, an Intel® Core i7-6700 CPU

@ 4.00Ghz with 32GB DDR4 memory. This test defines the reference values for best

latency and throughput that can be achieved with the given hardware and network. It is

essentially crucial for evaluating and normalizing the middleware performance of this

configuration.

• Middleware message throughput and latency assessment for unencrypted

communication.

• Cryptographic performance evaluation on this resource-constrained node. Those tests

are necessary for understanding the performance degradation as a result of the additional

VPN layer.

• RTT and maximum TCP throughput assessment of the encrypted tunnel defining the

encrypted latency and throughput.

• Middleware message throughputs and latency tests repeated over the encrypted tunnel.

89

Chapter 3. Distributed Message Oriented Middleware

• The section concludes with an energy assessment and the effect of programming

language on the performance of the middleware node.

Algorithm 1, developed in both C++ and Python, was used to assess the latency. It is measured

using a REQ/REP socket pair by sending and echoing back several messages. The round-trip

time average calculates the latency; divided by two, it provides the average latency for a packet

transmission.

Algorithm 1 Message latency assessment

1: procedure M S G _ E C H O(ur l ,msgcount)
2: s ←C R E A T E _ S O C K E T(Z MQ_REP)
3: Z M Q _ B I N D(s,ur l) � binds, should be run before connect
4: while msg ← R E C V _ M S G(s) do
5: S E N D _ M S G(s,msg)
6: end while
7: C L O S E _ S O C K E T(s)
8: end procedure
9: procedure L A T E N C Y _ T E S T E R(ur l ,msgsi ze ,msgcount)

10: s ←C R E A T E _ S O C K E T(Z MQ_REQ)
11: Z M Q _ C O N N E C T(s,ur l)
12: t0 ← t i menow

13: while i < msgcount do
14: S E N D _ M S G(s,msgi)
15: msg ← R E C V _ M S G(s) � blocking receive
16: asser t : msgi = msg
17: end while
18: C L O S E _ S O C K E T(s)
19: el apsed ← t i menow − t0

20: l atenc yms ← el apsed / (msgcount ∗2)
21: end procedure

Algorithm 2, on the other hand, describes the procedure for measuring the throughput.

Throughput is defined as the capability of the design to transport that number of bits in the

form of payloads inside message packets. To measure the throughput performance, a PUB/SUB

socket pair was used. The publisher hosted on the reference hardware continuously pushes

messages with a configurable payload size. The subscriber on the tested node collects the

messages as fast as its hardware allows and calculates the average throughput.

90

3.6. Validation

Algorithm 2 Message throughput assessment

1: procedure T H R O U G H P U T _ T E S T E R(ur l ,msgcount t)
2: s ←C R E A T E _ S O C K E T(Z MQ_SU B)
3: Z M Q _ B I N D(s,ur l) � binds, should be run before connect
4: msgs ← R E C V _ M S G(s) � blocks until first message
5: t0 ← t i menow

6: while i < msgcount do
7: msgi ← R E C V _ M S G(s) � non-blocking receive
8: i ++
9: end while

10: C L O S E _ S O C K E T(s)
11: thr oug hputMbps ← (msgcount ∗msgsi ze ∗8) / el apsed
12: end procedure
13: procedure M S G _ P U B L I S H E R(ur l ,msgsi ze ,msgcount)
14: s ←C R E A T E _ S O C K E T(Z MQ_PU B)
15: Z M Q _ C O N N E C T(s,ur l)
16: while i < msgcount do
17: S E N D _ M S G(s,msgi)
18: end while
19: C L O S E _ S O C K E T(s)
20: end procedure

3.6.3 Middleware node on a x86 architecture machine

The firsts stage of validation involved a regular x86 architecture for evaluating of the full range of

functionality, validating the architecture of the middleware and its successful communication

with the BMS. Furthermore, the performance results on this strong hardware sets the record

and the reference for follow-up comparisons with the rest and more suitable architectures in

the following subsections.

Performance evaluation

To begin with, Table 3.1 lists the RTT and maximum achievable throughput. The iPerf3

performance of a 1000BASE-T switched Ethernet servers as the absolute reference for the

validation section as it is the most performing combination of network and hardware. In fact,

the first row (non VPN) serves as the reference performance of the network infrastructure.

However, all the middleware nodes are not expected to be wired. Thus, the table presents in

addition the same performance metrics over Wi-Fi 802.11n links.

Table’s column TCP C_to_S is the throughput from the test (Client) to the reference (Server)

machine, while TCP S_to_C denotes the reverse direction. The dedicated tests per link direction

is more applicable to the rest of the hardware platforms; due to their RF-hardware design and

computational capabilities limitations, reception and transmission do not perform equally.

91

Chapter 3. Distributed Message Oriented Middleware

Table 3.1 also illustrates the differences in performance between a non VPN communication,

two VPN ones using AES-128-CBC and AES-256-CBC cipher with LZO data-stream compression,

and a VPN connection lacking the data-stream compression.

The reason behind those benchmarks is to assess the effect of the encryption complexity,

computational compression overhead, and overall the effect on the VPN layer on the raw

performance of the middleware hardware. While those tests are not presenting the middleware

performance, they are useful for referencing and evaluating the behavior of the middleware

that operates over those networks.

Table 3.1 – RTT and iPerf3 measurements on the maximum achievable bandwidth between the
Intel® Core i5-5300U machine (client C) and the reference hardware (server S).

Link type RTT TCP C_to_S TCP S_to_C

802.3 1Gbps

No VPN 0.148 ms 934 Mbps 945 Mbps

AES-128-CBC cipher + LZO 0.636 ms 879 Mbps 869 Mbps

AES-256-CBC cipher + LZO 0.576 ms 839 Mbps 715 Mbps

AES-256-CBC cipher 0.635 ms 876 Mbps 889 Mbps

802.11n 300Mbps

No VPN 0.84 ms 171 Mbps 210 Mbps

AES-128-CBC cipher + LZO 1.23 ms 165 Mbps 145 Mbps

AES-256-CBC cipher + LZO 1.23 ms 158 Mbps 120 Mbps

Table 3.2 – OpenSSL cryptographic ciphers performance on Intel® Core i5-5300U CPU. Bigger
is better, in KB/sec.

Block size

Cipher 16 B 64 B 256 B 1024 B 8192 B

DES-CBC 64234.95 66960.94 67590.62 68051.16 67893.94

DES-EDE3-CBC 25466.24 25785.23 25835.28 25877.55 25961.76

RC2-CBC 42807.51 43872.77 44123.47 44261.93 44195.03

BF-CBC 104741.28 112803.18 114666.27 115759.33 115826.90

AES-128-CBC 110153.12 121826.92 124652.36 122825.73 124552.36

AES-192-CBC 88292.13 99244.99 103397.56 104542.14 104439.26

AES-256-CBC 81587.32 87219.84 89016.90 89443.40 89449.51

Table 3.2 presents the cryptographic cipher performance for the Intel® machine that is obtained

using the OpenSSL library. The results are given in KB/sec for encrypting data blocks of 16, 64,

256, 1024, 8192 B. Moreover, the tests are run in single-threaded processes to better match

92

3.6. Validation

the single-threaded process of OpenVPN server and to facilitate the comparison with the

single-core architectures. The table facilitates the understanding of the encryption cipher

impact over the VPN tunnel. Additionally, as it will be proven when the other architecture

tests will be introduced, there is not a universally bad or good cipher, performance-wise. It

highly depends on the machine architecture and the existence or not of a cipher hardware

acceleration. For example, authors in [183, 184] rank Blowfish (BF) as the best performing

cipher, followed by the DES and the AES finishing last. However, Table 3.2 pictures a different

situation on a AES hardware-accelerated core. The AES cipher has comparable performance to

the Blowfish and surpasses the DES, despite that the latter is using smaller encryption keys.

Moreover, despite the difference in key size in the three AES ciphers, due to the hardware

acceleration, a doubling of key size does not considerable impact the performance.

The observations of Table 3.2 are validated in fact also by the previous Table 3.1. Increasing

the cipher’s key size from 128 to 256 bits did not considerably reduce. As a matter of fact, the

performance degradation is observed immediately with the introduction of the VPN layer. For

example, VPN connection over the 1Gbps link reduced the throughput to nearly half compared

to the non VPN variant. Nerveless, with the more restricted bandwidth over Wi-Fi, the effect of

the VPN is much less pronounced. Moreover, the high-speed compression algorithm enhances

the throughput with minimal latency impact. The positive effect of the compression is better

observed in the following figures, where the middleware messages benefit considerably from

such data-stream compression.

Fig. 3.15 illustrates the measured latency across a REQ/REP socket pair. The measurements

are collected using the Algorithm 1. The horizontal lines denote the reference raw latency

as measured during the RTT tests, cf. Table 3.1. Since the message latency is measured per

direction, RT T
2 is used in this figure. The Y-axis denotes the latency in microseconds on a

logarithmic scale, while the X-axis denotes the message’s payload size. There is not an absolute

limit on the message size. However, a range of 5 B to 100 KB was considered wide enough

for any particular middleware application within SB scope. In fact, messages of sensors and

actuators range is on average around 50 to 250 B, including the middleware-specific data

encoding and formatting. The figure plots the measurements for four different connections:

Ethernet non-encrypted, Ethernet encrypted, Wi-Fi non-encrypted, and Wi-Fi encrypted.

One can observe in the figure that for payloads as large as 50 B, the latency is not more than

the reference one in the raw connection. As a matter of fact, the latency of payloads ≤ 10 KB

for Ethernet and ≤ 1 KB for Wi-Fi, traveling in a VPN tunnel, is even less than the reference

latency. This is explained by the fact that ZeroMQ keeps the TCP connection alive between

messages and thus eliminates the connection overhead which is more noticeable in high

latency networks or through the VPN. Nevertheless, even for the maximum payload of 100 KB,

the latency is acceptable for the time domain of building operations.

Fig. 3.16 plots the message throughput in Mbps versus payload size for the same four

connections. The throughput is measured using a PUB/SUB socket pair, at the subscriber side.

93

Chapter 3. Distributed Message Oriented Middleware

40

160

640

2560

10240

5 1 0 2 5 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

La
te

nc
y

(u
s)

Message Payload Size

Ref Eth Ref WiFi Ref Eth VPN Ref WiFi VPN Eth WiFi Eth VPN WiFi VPN

Figure 3.15 – Measured message latency on the x86 architecture.

It counts how fast the subscriber can successful receive and interpret the incoming message, cf.

Algorithm 2. The subscriber node may aggregate many publishers in a 1-to-n manner, thus, the

performance of the subscriber is important to be evaluated. As expected due to the tunnel

overhead, the message throughput for both VPN enabled Ethernet and Wi-Fi is reduced,

compared to the unencrypted ones. However, an interesting behavior can be seen on the

message throughput on the VPN and it is noticeable on the Wi-Fi enabled VPN. The message

throughput surpassed even the maximum TCP throughput as measured with the iPerf3 tool, cf.

Table 3.1. To the author’s opinion, this is the effect of the data-stream compression algorithm

of the tunnels and the high compressive ratio of the middleware messages. The latter is the due

to the standardized message encoding and the sharing of a significant portion of those

metadata between subsequent messages. Finally, generally for payloads ≥ 100 B the

throughput over individual messages reaches or even surpasses the absolute maximum

achievable of the given connection, highlighting the zero-overhead aspect on the proposed

middleware design.

20

40

80

160

320

640

1280

5 1 0 2 5 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

Th
ro

ug
hp

ut
 (M

bp
s)

Message Payload Size

Ref Eth Ref WiFi Ref Eth VPN Ref WiFi VPN Eth WiFi Eth VPN WiFi VPN

Figure 3.16 – Measured message throughout of a subscriber node on the x86 architecture.

Fig. 3.17 and Fig. 3.18 illustrate the effect of the programming language on the latency and

throughput of the middleware respectively. This evaluation is critical because while the

middleware nodes for performance evaluation were designed purely in C++, the middleware

94

3.6. Validation

nodes, developed for proof of concept into an actual building, were written in Python.

Justification for that was the reduced development time in the scope of this dissertation for

rapid usability and functionality evaluation. Python have improved considerably compared to

past but still due to its dynamic nature, it is noticeably less computationally efficient. Despite

that, the reader can observe in the figures that the latency is not affected by the particular

language. Similarly, its throughput is only inferior for the smallest of the payloads, where a

large number of messages need to be exchanged and Python source code to be looped.

In reality, the similar performance of both Python and C++ implementation of middleware

nodes is easy to explain. While Python interpreter is relatively slow, the Python-ZeroMQ

library is simply a language binding to a compiled version of the socket library. Therefore, the

proposed middleware design, the communication library, and the various language bindings

serve equally well the requirements of adaptability and expandability without sacrificing the

performance.

128

256

512

1024

2048

5 1 0 2 5 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

La
te

nc
y

(u
s)

Message Payload Size

Ref Eth VPN Eth VPN C++ Eth VPN Python

Figure 3.17 – The effect of programming language on the message latency on the x86
architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.

0

200

400

600

800

1000

5 1 0 2 5 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

Th
ro

ug
hp

ut
 (M

bp
s)

Message Payload Size

Ref Eth VPN Eth VPN C++ Eth VPN Python

Figure 3.18 – The effect of programming language on the message throughput on the x86
architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.

95

Chapter 3. Distributed Message Oriented Middleware

3.6.4 Middleware node on an ARM architecture machine

The BeagleBone Black (BBB), as a candidate ARM® architecture machine, was considered as an

embedded, reduced cost and yet capable enough, alternative to the x86 machine. Despite the

embedded design, it is capable or running any Linux software compiled for the particular

architecture. Moreover, a hard-float ABI ARM (armhf) kernel was used to enable the integrated

hardware floating point unit and instructions of the MPU. Finally, the version of Linux kernel

has been shown to contribute significantly to the performance of such embedded systems.

Thus, the test system uses the most recent kernel based on the Texas Instruments codebase,

version 4.9.13 revision 24 (4.9.13-ti-r24).

Performance evaluation

To begin with, Table 3.3 illustrates the raw TCP communication performance of the embedded

board for both wired and wireless communication. Additionally, the performance of VPN

communication using different ciphers and compressions is also presented. The reader

could observe, that unlike the powerful x86 machine, cf. Table 3.1, the overhead of secured

communication is much more pronounced, especially in the wired communication. The

throughput becomes nearly one-third of the unencrypted (≈ 94 −→≈ 35) and the RTT increases

five-fold (≈ 0.38 −→≈ 1.97). Yet, for the smaller throughput of wireless connection, the MPU

can meet the computational demands of encryption layer without a drop in throughput

performance (even an small increase due to the compression) and only with a slight increase

in latency.

Table 3.3 – RTT and iPerf3 measurements on the maximum achievable bandwidth between the
ARM® Cortex A8 machine (client C) and the reference hardware (server S).

Link type RTT TCP C_to_S TCP S_to_C

802.3 100Mbps

No VPN 0.38 ms 93.6 Mbps 94.1 Mbps

AES-128-CBC cipher + LZO 1.627 ms 31.2 Mbps 34.3 Mbps

AES-256-CBC cipher + LZO 1.97 ms 29.5 Mbps 34.7 Mbps

AES-256-CBC cipher 1.61 ms 31.4 Mbps 34.1 Mbps

802.11n 75Mbps

No VPN 9.77 ms 9.77 Mbps 10.1 Mbps

AES-128-CBC cipher + LZO 12.4 ms 12.1 Mbps 13 Mbps

AES-256-CBC cipher + LZO 12.18 ms 10 Mbps 12.7 Mbps

Table 3.4 is the cryptographic cipher performance for the ARM® architecture similar to the

X86 one, cf. Table 3.2. The procedure to obtain it is the same. The observations are also

valid with this hardware architecture. Despite the complexity, the AES-based algorithms

96

3.6. Validation

seem to outperform their counterparts, while the impact of the key length on performance is

smaller than the expected. Table 3.3 on the actual TCP throughput confirms the cryptographic

performance, too.

Table 3.4 – OpenSSL cryptographic ciphers performance on ARM® Cortex A8 architecture.
Bigger is better, in KB/sec.

Block size

Cipher 16 B 64 B 256 B 1024 B 8192 B

DES-CBC 15754.81 17847.52 18172.07 18336.11 18337.48

DES-EDE3-CBC 6363.79 6581.06 6632.28 6624.60 6652.23

RC2-CBC 12393.01 13257.12 13502.93 13558.24 13575.71

BF-CBC 25976.29 29053.20 30124.44 30395.33 30469.31

AES-128-CBC 36864.23 42537.38 44559.93 44950.19 45209.43

AES-192-CBC 31715.56 35657.44 37104.33 37452.37 37592.79

AES-256-CBC 28478.60 31579.52 32770.83 33050.88 33105.00

Fig. 3.19 illustrates the measured latency across a REQ/REP socket pair on the ARM®

architecture. The process to collect those values is the same as before. The findings, although

similar, have some differences. Analogous to the x86 hardware the latency is acceptable in the

time domain of interest. The latency of payloads ≤ 2.5 KB over Ethernet and in the VPN tunnel,

is even smaller than the reference RTT tests. In fact, even the unencrypted Ethernet exhibits

same behavior for payloads ≤ 50 B. On the contrary, the messages through the wireless link,

show greater latency, especially as the payload increases.

100

1000

10000

100000

5 1 0 25 50 100 2 50 5 00 1K 2. 5 K 5K 1 0K 2 5K 5 0K 10 0K

La
te

nc
y

(u
s)

Message Payload Size

Ref Eth Ref WiFi Ref Eth VPN Ref WiFi VPN Eth WiFi Eth VPN WiFi VPN

Figure 3.19 – Measured message latency on the ARM® architecture.

Fig. 3.20 plots the message throughput in Mbps, versus payload size for the same four

connections, using a PUB/SUB socket pair similar to before. It is interesting to observe that

while the message throughput is notably smaller than the one of x86 platform, the messages

through the encrypted and compressed channel can outperform the reference TCP throughput.

97

Chapter 3. Distributed Message Oriented Middleware

5

10

20

40

80

160

5 1 0 25 50 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

Th
ro

ug
hp

ut
 (M

bp
s)

Message Payload Size

Ref Eth Ref WiFi Ref Eth VPN Ref WiFi VPN Eth WiFi Eth VPN WiFi VPN

Figure 3.20 – Measured message throughout of a subscriber node on the ARM® architecture.

Fig. 3.21 and Fig. 3.22 illustrate now the effect of the programming language on the latency and

throughput of the middleware respectively. This time, the Python creates a small but noticeable

increase in the message latency. Additionally, the throughput performance is decreased by 10

Mbps or more compared to pure C++ implementation.

400

1600

6400

25600

5 1 0 2 5 50 100 250 500 1K 2. 5K 5K 10K 25K 50K 100K

La
te

nc
y

(u
s)

Message Payload Size

Ref Eth VPN Eth VPN C++ Eth VPN Python

Figure 3.21 – The effect of programming language on the message latency on the ARM®

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.

Regardless of the physical network and encryption, this low cost, size, and power board can

achieve and surpass the middleware design requirements. Its message, latency and throughput,

performance is by adequate for sensible communication during regular and emergency

building operations.

98

3.6. Validation

0

10

20

30

40

50

60

5 1 0 25 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

Th
ro

ug
hp

ut
 (M

bp
s)

Message Payload Size

Ref Eth VPN Eth VPN C++ Eth VPN Python

Figure 3.22 – The effect of programming language on the message throughput on the ARM®

architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.

3.6.5 Middleware node on a MIPS architecture machine

LinkIt Smart 7688 Duo as a hardware platform is of particular interest for its extreme low cost

and power while maintaining a high level of functionality. The SB designer can thus create a

fully distributed middleware using a large number of such open-source hardware for the nodes.

Different network interfaces, micro-databases, micro-controllers, and other management and

intelligent services can be distributed within the building and across heterogeneous networks.

The research revealed significant advantages of such MIPS MPU architecture for meeting the

demands and motivation of the middleware. For example, this small MIPS core is not only very

efficient but also powerful enough to network live stream a USB camera feed.

Additionally, unique configurations and software libraries have been implemented during that

time for the adaptation of such embedded micro-OS and the successful compilation of all the

node software to the proper MIPS architecture, thus supporting the full functionality of the

node communication layer.

Most of the test and adaptation software development has been implemented on the LinkIt

Smart 7688 Duo platform. Nevertheless, the implemented codebase could be reused for any

MIPS-enabled embedded electronics system that supports the OpenWRT micro-OS. The choice

of LinkIt Smart 7688 Duo as a representative of the MIPS family of devices was justified because

of its low cost, wireless connectivity, a large number of externally accessible GPIO, microSD

interface, sufficient RAM, and integrated MCU. The MCU can take over all the real-time and

time-critical processes of the protocol layer, Fig. 3.8, while the MPU and micro-OS handle the

high-level communication, protocol adaptation, and any distributed intelligence. Finally, as

this device is open-source hardware, any ICT systems designer can easily modify and extend it

according to their needs.

99

Chapter 3. Distributed Message Oriented Middleware

Preparation of the LinkIt Smart 7688 for the tests

While for the first two hardware the setup preparation was pretty straightforward, the MIPS

MPU, the limited RAM, and the restricted capabilities of OpenWRT make the initial setup

deployment a challenging process. However, the cost versus the offered real-time performance

and physical connections outweighs the burden of developing a middleware node on a MIPS

MPU architecture.

Compiling any software, let alone a full library like the ZeroMQ, on Linkit Smart requires

additional tools, configurations, and a long period of experimentation. Unlike x86-64 and

ARM® machines that support native compiling of source code, there is neither enough memory

and disk space nor processing power to install a building environment and compile the code

natively; a "cross-compile" of the code on a computer is necessary. The "cross-compiling"

building environment suitable for this architecture is the OpenWRT SDK. The SDK is enabled

through a list of Makefiles and patches to create the toolchain for a given MPU architecture. The

toolchain is a set of linked development tools for performing complex software development

tasks. It is then used for building the software code and together with additional scripts to

create the firmware OS image of the embedded device.

For compiling a single source file without dynamic libraries, the process is relatively easy.

Firstly, the path of the compiled toolchain binaries that match the desired architecture should

be added to the ���� environment variable. Secondly, the �������	
�� variable should point

to the path of the toolchain directory. Finally, �
��������������
������� for C code, and

�
��������������
������� for C++ compilers can be used for building the source code.

The situation is far more complicated when multiple source code files need to be compiled and

linked against other libraries. In this case, a Makefile defines the procedure to be taken. It takes

into consideration the dependencies on third-party libraries, the multiple source and header

files, as well as any dynamic and statically compiled libraries. The latter approach was used for

developing the benchmark software of this section and integrating the ZeroMQ library (.so and

.h files) into the OpenWRT firmware image.

The auxiliary tools, for example, the iPerf3, the OpenVPN client and the Python interpreter,

were also compiled and integrated. Unlike the libraries and tools, the actual middleware

node sources are kept separate from the firmware image and in the user space. This enables

continuous updates to the node software without the need to compile and flash a full embedded

OS image.

Concluding, cost-, connectivity-, and functionality-wise the MIPS based board is indisputably

an excellent fit for the requirements of the middleware designed for SB. The subsection

continues with studying, the performance, and energy efficiency potential, for an exhaustive

assessment of this promising software-hardware synergy.

100

3.6. Validation

Performance evaluation

Table 3.5, much like the previous two hardware platforms, provides the reference

communication performance of the evaluated device. Right away, one can observe two things.

Firstly, the non-encrypted wired and wireless communication is superior to the more

expensive ARM® board. Secondly, the encrypted tunnels have a significant performance

impact on this less powerful hardware; the throughput is up to 7 times less on an Ethernet

connection. Reducing the cipher key length only insignificantly improves the throughput

performance. The real-time compression algorithm has no adverse effect on the TCP

throughput despite the less capable MPU. The latency is tripled similarly to the ARM® one.

Nonetheless, the throughput and latency are adequate for the needs of a middleware node

under realistic communication activities. However, for the data concentrators and intelligence

nodes, a more capable hardware is necessary; as the MT7688 and the 24KEc in general, lack a

floating point unit hardware.

Table 3.5 – RTT and iPerf3 measurements on the maximum achievable bandwidth between the
MIPS architecture (client C) and the reference hardware (server S).

Link type RTT TCP C_to_S TCP S_to_C

802.3 100Mbps

No VPN 0.43 ms 94.3 Mbps 94.1 Mbps

AES-128-CBC cipher + LZO 1.58 ms 13.9 Mbps 14.5 Mbps

AES-256-CBC cipher + LZO 1.58 ms 12.8 Mbps 13.6 Mbps

AES-256-CBC cipher 1.56 ms 12.9 Mbps 13.6 Mbps

802.11n 150Mbps

No VPN 2.49 ms 24.7 Mbps 42.1 Mbps

AES-128-CBC cipher + LZO 3.22 ms 11.1 Mbps 11.7 Mbps

AES-256-CBC cipher + LZO 3.35 ms 9.8 Mbps 11.3 Mbps

Table 3.6 illustrates the cryptographic cipher performance of this MPU. The reader also can

confirm the findings of researchers [183, 184] who ranked Blowfish (BF) as the best performing

cipher. However, given the complexity of AES and the limited core, the performance of AES

ciphers stands out. That is because this specific MT7688 MIPS core has an integrated AES-

128/256-CBC encryption engine, accelerating the cryptographic process. Due to only minor

differences in measured TCP throughput, cf. Table 3.5, the AES-256-CBC cipher was also the

best choice for the encryption and performance needs.

Fig. 3.23 illustrates the measured message latency, for the MIPS® architecture using Algorithm

1. In this case, especially for the encrypted communication, the latency increases considerably

for large payloads. However, for payloads ≤ 1 KB, the message latency remains close to the

reference RTT measures. Moreover, the reader can observe that even with this less powerful

MPU architecture, the latency remains reasonable even for payloads as large as 100 KB. Thus,

101

Chapter 3. Distributed Message Oriented Middleware

for the most probable payload sizes and despite the limited MPU, the Linkit Smart 7688 can

effectively address the latency requirements.

Table 3.6 – OpenSSL cryptographic ciphers performance on MIPS architecture. Bigger is better,
in KB/sec.

Block size

Cipher 16 B 64 B 256 B 1024 B 8192 B

DES-CBC 4830.23 4906.68 4902.96 5034.08 4967.78

DES-EDE3-CBC 6363.79 6581.06 6632.28 6624.60 6652.23

RC2-CBC 4847.14 5014.49 5082.84 5110.03 5076.31

BF-CBC 8739.50 9482.95 9703.52 9684.85 9657.79

AES-128-CBC 7253.09 7887.45 8102.61 8122.03 8148.16

AES-192-CBC 6331.75 6823.83 6987.26 7044.30 7006.89

AES-256-CBC 5603.30 6025.31 6139.72 6189.36 6144.00

128

512

2048

8192

32768

131072

5 1 0 2 5 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

La
te

nc
y

(u
s)

Message Payload Size

Ref Eth Ref WiFi Ref Eth VPN Ref WiFi VPN Eth WiFi Eth VPN WiFi VPN

Figure 3.23 – Measured message latency on the MIPS architecture.

The throughput capabilities of such hardware are plotted in Fig. 3.24. The expected encrypted

tunnels performance degradation is observed on the message-oriented tests. On Ethernet the

payload through VPN are only able to transport at least one order of magnitude compared to

unencrypted transfer. Nevertheless, unless it is a critical data routing or a concentrator node,

the encrypted throughput of down to 16 Mbps (wireless) is more than enough.

Finally, Fig. 3.25 and Fig. 3.26 demonstrate the effect of programming language on latency

and throughput of the middleware respectively. In that regard, Python increases the message

latency slightly compared to native C++ implementation. On the other hand, the throughput is

severely reduced for most payload sizes. The author believes that while a Python-developed

middleware node will still remain functional, the performance impact on this hardware is

significant enough to recommend a native alternative. However, the latter has a significant

drawback. Since the MIPS platform is unable to compile the code natively, for every software

update, the cross-compiler environment should be used. Interpreted Python code, on the

102

3.6. Validation

other hand, needs simply a file update.

Concluding, it is clear that a MIPS-enabled board cannot match the previous ones. However,

the reduced cost and energy use and the relaxed communication performance requirements

fully justifies it as a middleware node hardware.

2

4

8

16

32

64

128

5 1 0 25 50 100 250 500 1K 2. 5K 5K 10K 25K 50K 100K

Th
ro

ug
hp

ut
 (M

bp
s)

Message Payload Size

Ref Eth Ref WiFi Ref Eth VPN Ref WiFi VPN Eth WiFi Eth VPN WiFi VPN

Figure 3.24 – Measured message throughout of a subscriber node on the MIPS architecture.

400

1600

6400

25600

102400

5 10 25 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

La
te

nc
y

(u
s)

Message Payload Size

Ref Eth VPN Eth VPN C++ Eth VPN Python

Figure 3.25 – The effect of programming language on the message latency on the MIPS
architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.

103

Chapter 3. Distributed Message Oriented Middleware

0

5

10

15

20

25

5 10 2 5 5 0 1 0 0 2 5 0 5 0 0 1 K 2 . 5 K 5 K 1 0 K 2 5 K 5 0 K 1 0 0 K

Th
ro

ug
hp

ut
 (M

bp
s)

Message Payload Size

Ref Eth VPN Eth VPN C++ Eth VPN Python

Figure 3.26 – The effect of programming language on the message throughput on the MIPS
architecture over a VPN tunnel using AES-256-CBC cipher and LZO compression.

Energy evaluation

To measure accurately and in real time the current used by the module, an ultra-high accuracy

(0.1% max gain error and 10 uV max offset) current monitor chip was used. This type of device

is frequently found in embedded designs that require real-time power consumption data. More

specifically, the device records the shunt voltage of a 0.1 Ohm resistor; together with the 16-bit

resolution of its ADC, it yields a current least significant bit (LSB) of 0.025 mA and a maximum

measurable current of 819.2 mA.

To begin with, Fig. 3.27 illustrates the current use on receiving a burst of 100k messages of 500

B, without VPN and using the Ethernet connection. The test also includes the loading time

of the compiled binary from the flash memory as illustrated between the two first markers,

taking ≈ 0.4 sec. The time between the last two markers denotes the burst reception time, the

calculated throughput of 85.1 Mbps confirms the previous tests. It illustrates the real-time

current consumption during the high activity reception, averaging 160 mA.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Cu
rr

en
t (

m
)

Time (sec)

Start of recep on End of burst recep on

500B x 8bit x 100k msg
4.7

85.1

Run binary

Figure 3.27 – Power consumption of Linkit Smart 7688 Duo during the wired and unencrypted
reception of 100k, 500 B messages using a natively compiled binary (C++) and a SUB socket.

Fig. 3.28 is very similar to the previous one, except a wireless instead of a wired connection and

104

3.6. Validation

the number of received packets. The reception lasts ≈ 4.2 sec with a calculated throughput of

43 Mbps. The current consumption during that time is higher than before, on average 190 mA.

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10

Cu
rr

en
t (

m
)

Time (sec)

Start of recep on End of burst recep on

500B x 8bit x 45k msg
4.2

43

Run binary

Figure 3.28 – Power consumption of Linkit Smart 7688 Duo during the wireless and unencrypted
reception of 45k, 500 B messages using a natively compiled binary (C++) and a SUB socket.

Finally, Fig. 3.29 reflects the effect of Python on the energy use by this particular middleware

node. An interpreted language like Python requires far more resources compared to compiled

code. While performance-wise the impact is acceptable when it comes to energy use, the

results are far from ideal. Unlike the fast startup of the compiled binary, the Python script

requires a preliminary loading of the Python interpreter, a demanding process for this small

core. Moreover, even if the script is loaded only once, each line of code requires more

processor cycles and thus consumes more energy. Thus, a Python-based middleware node,

although desirable extendability-wise, when it comes to energy use, the compiled languages

should be preferred. This particular figure illustrates the energy consumption during wireless

transmission (PUB socket) of 20k messages of 500 B.

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cu
rr

en
t (

m
)

Time (sec)

Start of
transmission

End of burst transmission

500B x 8bit x 20000 msg
3.4

23

Start of python
script

Figure 3.29 – Power consumption of Linkit Smart 7688 Duo during the transmission of 20000
500 B messages using Python and a PUB socket over a wireless connection and without VPN.

Unfortunately, the amount of energy required to operate this module is far more when

considering battery-only deployments. However, since the middleware node may have to

control critical loads and monitor environmental data, it should remain functional despite

any power supply disturbances. Thus, the potential operation under a backup battery was

105

Chapter 3. Distributed Message Oriented Middleware

evaluated in order to maintain the critical functionality, therefore improving the fault tolerance

of the system despite the environmental conditions.

Two approaches are generally available for achieving energy-efficient operation under a

constrained power budget. Firstly, the passive approach involves energy efficient hardware

such as this MIPS board, compiled binaries, and deactivation of any unused communication

interfaces at the kernel level. Secondly, a more aggressive active approach required placing the

MPU in low power mode and shutting down internal and external to the SOC peripherals.

Unfortunately, OpenWRT OS lacks proper power management support such as "suspend to

RAM" (sleep mode). In order to conserve energy and artificially "suspend" the MPU, its power

supply rail must be deactivated. In fact, this module has an interesting property. Thanks to the

dedicated MCU, the artificial suspend and resume process can be automated.

In a prolonged interrupted power scenario, for example, the MCU continues to collect

measurements from the interfaced network and temporarily store those raw values. Every time

interval, it activates the MIPS MPU and transfers to the OpenWRT user space the vector of raw

values using their physical UART connection. The MPU on its behalf will implement the

necessary protocol adaptation and then communicate the collection of messages to the whole

middleware as usual. After completing its task, it notifies the MCU to deactivate the MPU

power rail again.

Concerning the message queue at the communication layer of the node, messages of the SUB

socket are dropped when it is suspended. However, a REQ-REP pair queues the messages on

the sender side, thus when the middleware node comes online it can serve all the requests

in the receive queue. The previous fact is an additional reason for having two functionally

different socket pairs.

Luckily, despite the lack of an integrated supply rail electronic switch, the reset pin of the

MT7688 (PORST_N) is accessible. By connecting that to an available GPIO on the MCU, the

latter can control the activation and deactivation of the MIPS core by keeping it in the reset

state, which draws only minimal supply current. While it is not ideal, it is still functional

without hardware modification.

As the MPU resets, the full booting up and initialization process energy and time should be

taken into consideration. Fig. 3.30 plots the current used and the time required by the module

during booting up and network initialization. The boot sequence can be seen with the plot

markers denoting the important completed steps of the process:

• Bootloader: the bootloader from flash gets executed, performing the necessary low-level

hardware initialization. Then it decompresses the kernel from the flash memory into the

RAM. Finally, it executes the decompressed kernel image, passing it the pre-configured

options.

• Kernel: the kernel also starts with hardware and low-level software initialization. Then

106

3.6. Validation

it mounts the read-only firmware partition (SquashFS). At this stage, the module can

begin basic communications over Ethernet using network configuration burned into

the read-only firmware image. Following the read-only partition mounting, the kernel

mounts the rest of the now writable partition under "rootfs’. At this stage the custom

network and module configuration are loaded in memory and available for initialization.

Finally, it executes the init process, initializing the OS user space.

• Init: at this stage the wired and wireless network initialization begins according to the

provided configuration. The OS executes the start-up scripts and brings up all the

foreground and background services necessary for a fully functional OS. Preparing

the network interfaces, device drives and setting up all the services is the most time-

consuming part of the booting up process.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45

Cu
rr

en
t (

m
)

Time (sec)

Bootloader Kernel start Kernel load
nished

Ethernet connected Wi-Fi connectedSta c
net
con g
ready

Networks ini alized
Boot complete, star ng
middleware node SWUserspace

ready

Dynamic net
con g ready

Figure 3.30 – Power consumption of Linkit Smart 7688 Duo during OpenWRT booting up and
network initialization.

Fig. 3.31 illustrates that transition from the power-on phase to the reset phase initialized by

the MCU pulling the PORST_N pin to 0. While in the reset state, the combination of MCU

and MPU consumes much less energy. The figure features two plots. The highest current

represents the wireless connectivity while the wired one not only operates with less current but

also during reset it uses less than half of the wireless one.

The wired connection allows the board to operate from as low as 3.75V on the 5V input,

suggesting an excellent fit for wiring it directly to a backup Li-ion secondary cell with a rated

voltage of 3.8V, defeating the need for additional voltage regulator and hardware modifications.

Alternatively, using the exposed 3.3V unregulated supply pin, an external high quality, low

dropout power measurement unit (PMU) can be utilized. It can also drive the board from

even lower input voltages (better utilizing the cell) and provide battery charging functionality.

In fact, when supplied using the unregulated 3.3V rated input, the modules continues to

communicate over Ethernet down to 2.85V, allowing it to utilize the energy of a secondary

Li-ion cell completely.

Nonetheless, it is clear that even with the passive approach to energy efficiency, the module

can maintain full functionality for a entire day even using a single Li-ion cell of 2000 mAh. With

107

Chapter 3. Distributed Message Oriented Middleware

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cu
rr

en
t (

m
)

Time (sec)

Current Wi-Fi

Current Ethernet

Current Ethernet 3.75V

92ma

PORST_N = 0

13ma 6ma

135ma

95ma

4ma

Figure 3.31 – Power consumption of Linkit Smart 7688 Duo during forced suspend using the
reset (PORST_N) pin.

a more aggressive active approach to energy management, the autonomy extends to a few days

of limited middleware functionality.

3.7 Conclusions

This chapter introduced the major challenges inhibiting the creation of a generic and scalable

BMS. It then proposed a middleware-enhanced approach for addressing these difficulties. The

middleware acts as an interface between the physical world, embedded devices, and networks

and the high-level management and building intelligence services. The motivation and aims

of such a middleware system were studied and used as input requirements for its design.

Moreover, a comprehensive literature review proved that while some middleware systems exist,

they are either not suitable for SB or they are not addressing the design requirements set by the

author.

The proposed solution’s unique characteristic is the distributed nature allowing the middleware

to adapt to the physical features of the building, abstracting the BMS from the physical

world particularities. The communication is based on the MoM approach for asynchronous

communication and high decoupling between the distributed middleware nodes. The lack

of a centralized middleware node (broker) increases the robustness and the speed of the

system, while a centralized node directory addresses the nodes’ self-discovery challenge. A

VPN provides a security layer, offering a standardized and validated approach for securing all

middleware communications. Finally, the chapter concludes with extensive performance

and energy assessment of 3 unique hardware architectures for hosting the middleware node

software.

108

4 Building-in-the-Loop Emulation
Engine

Many aspects of information and communication technology (ICT) system and energy-related

infrastructure of a Smart Building (SB) are not expected to be ready for implementation in the

first few incarnations of the SB. However, both computer science and energy management

literature already anticipate such infrastructure. This chapter proposes and validates a holistic

software system based on discrete-event simulation (DES) for the SB real-time emulation. This

engine enables the virtualization of building components and their transparent integration

into the existing system while the building management system (BMS) remains agnostic to the

virtual nature of the emulated infrastructure. Some unique features of the emulator include its

micro-treading core and the high-performance communication layer based on asynchronous

messaging. Those permit a highly optimized, concurrent emulation of hundreds of building

elements (e.g., loads, batteries, generators, sensors, actuators, users, etc.) on commodity

hardware, in real time. The modular design of the core ensures a scalable architecture, both

regarding the type of emulated models and their number. The decoupled model running

enables an on-demand emulation accuracy/performance adjustment. Candidate applications

include the financial and energy gains evaluation using virtual infrastructure, high-speed

simulation tools for the research and development of energy management algorithms, and

finally, support of occupant-oriented behavioral studies.

109

Chapter 4. Building-in-the-Loop Emulation Engine

4.1 Introduction

While the Smart Building (SB) is not a new notion to the building sector, recent developments

uncovered features that grow beyond the automation domain. The new SB have become some

of the most complex systems of interconnected information and communication technology

(ICT) devices, energy-related elements, and various heterogeneous stakeholders.

Nevertheless, considerable steps have been taken towards technology interoperability for

catalyzing their market adoption. However, the ICT systems are still a considerable investment

upfront without guaranteeing improved energy performance or financial gains [7]. In order to

improve these technologies and integrate services leveraging them, many simulation tools

have been developed. These tools enable the user to estimate the performance of a building

and analyze whether a retrofitted investment in passive or active SB technologies is justified.

The majority of these simulators are either designed to execute offline, in an ahead-of-time

manner, or dedicated to specific aspects (heating, occupancy, etc.), which limits their

application potential. They are frequently proprietary and expensive. On the other hand,

literature proposes various solutions for building simulation; however, these tools are focused

mainly on the modeling and accuracy innovations, while the optimized software

implementation is frequently secondary. Because research primarily focuses on proof of

concept studies, there is little available information relevant to the development of practical,

large-scale simulators.

This chapter proposes a new building virtualization software solution. It is based on a custom

emulation engine and simulation models for SB infrastructure, ICT systems, and occupants.

The aim is for this tool is to be integrated into the existing building management system (BMS)

[185], cf. Chapter 2, in order to provide real-time emulation capabilities, as seen in Fig. 4.1.

Emulated
networks

Embedded
networks

Ph
ys

ica
l E

nv
iro

m
en

t

Loads Generation Storage

Emulated infrastructure

Digital
sensors

actuators

Emulated
sensors

actuators

Emulated occupant

Occupant

Bu
ild

in
g

M
an

ag
em

en
t Big data analytics

Energy efficiency

Remote
administration

Safety / Security

Distributed
energy resources

Real Equipment

Virtualized Equipment
Chapter focus

Figure 4.1 – The proposed building emulation engine as a virtualization technology, in parallel
to, and integrated with, existing physical infrastructure.

The rest of this chapter is organized as follows. Section 4.2 describes the motivation for pursuing

this research topic, Section 4.3 presents the state of the art in building simulation as compared

with this solution, while Section 4.4 dives into the theoretical background and formulates the

110

4.2. Motivation

theory on which this work is based. Section 4.5 scrutinizes the system architecture, detailed

implementation and model aspects of the emulation engine. Finally, Section 4.6 assesses the

performance as a virtualization solution and highlights it using a realistic case study. This

chapter finishes with conclusions in Section 4.7.

4.2 Motivation

From the BMS point of view, the virtualization functionality is abstracted. Hence, the

management system interfaces both real and virtual equipment using the common

middleware, presented in Chapter 3. The proposed solution is to use the BMS application

server to represent its emulated components with the existing data models presented in

Chapter 2. Using this, the management and optimization algorithms continue to function

without re-engineering when their physical counterparts in incremental investments replace

the virtual components.

An advantage of this work, compared to literature, is the integrated, embedded network

emulation seen in Fig. 4.1. The integration of the virtualization functionality into an existing

BMS and its real-time requirements necessitates the creation of such network emulator system

between the virtual devices and management server. The network module is emulating the

constraints, such as packet losses and delays, that typically hamper the real physical monitoring

and control devices. It empowers the incremental investment in real equipment while still

maintaining the same BMS and intelligent services configuration.

The proposed work goes beyond studying the simulation models. It implements an optimized

emulation engine based on high parallelism architecture, which features a micro-threading

technology. This allows an emulation of each virtual component in a dedicated micro-thread.

As a result, a large number of SB devices can be emulated in real-time, in low-cost commodity

hardware.

Scientifically speaking, there is a strong interest in virtualization technology as a means to

assess, optimize and validate advanced energy management algorithms without a prior

investment in an inventory of costly infrastructure. With additional software modules, the

proposed technology can also provide value to investment’s financial analysis and energy

performance estimation studies before committing to expensive building retrofitting.

Consequently, financial gains can be estimated not only through energy efficiency but also

with the support of demand side management (DSM), where utility activities in the Smart Grid

(SG) interact with the SB’s generation and storage services [186, 187].

This emulation engine is currently being used as a testbench for DSM research projects. Such

projects are leveraging the potential of virtualizing complex and expensive energy generation

and storage infrastructure without costly investments; the purchase would follow only after

successful validation of the DSM algorithms. The adoption of this work as the "de facto"

simulation mechanism by follow-up research project highlights the scalability and integration

111

Chapter 4. Building-in-the-Loop Emulation Engine

advantages and asserts its emulation accuracy.

Finally, the support of user models in the virtualization engine allows occupant-oriented

studies to test various scenarios of user behavior and its impact on the energy consumption.

Multiple behavioral parameters could be tested ahead of time and the ones to yield the best

results to be returned as accurate and personalized energy feedback.

4.3 State of the Art

The SB is classified as a cyber-physical system (CPS) [117, 118]. This implies a seamless synergy

of both the physical and digital components in a mutual existence environment. The CPS

domain scope exceeds the embedded systems of today, enabling improved security, safety,

extended capabilities and scalability potential.

A shortcoming of the CPS in general lies on their complexity, not only during the design and

simulation but also for their operation. Firstly, they interface two fundamentally different

sectors of engineering, the physical and the digital one. Unlike the continuous time modeling

of the physical systems, digital ones are modeled predominately in discrete forms and time

scales. Additionally, digital sub-systems communicate concurrently over non-deterministic

and frequently heterogeneous networks.

Hence, creating an entire CPS simulator is not a trivial task. Palensky in [188] discusses

those challenges and methods involved. Moreover, Talcott in [189] documents the event-

based semantics in the CPS context and highlights the challenges of a human-centric system.

Some other solutions proposed in the literature include the generic co-simulation [190], and

the energy-aware CPS simulator [191]. This work is comparable with those on the aspect

of asynchronous event processing thanks to the discrete-event simulation (DES) driven

architecture.

Researchers in [117] modeled a modern building entirely as an energy CPS for joint optimization

of the energy use by its occupants and ICT equipment. The authors in [118] describe how

the CPSs can provide rapid access to information and decision-making enabling buildings to

interact with the SG autonomously. Moreover, the [192] presents a co-simulation toolchain

with a case study on the heating system of a SB. Finally, [193] is a state of the art review for

Matlab based simulation tools focusing on buildings and their HVAC systems. Such models

and simulation tools had provided the inspiration and motivation of creating the presented

emulation engine which also features high integration with the BMS.

A comparable with this work study is the [194]. The authors present a rather flexible residential

energy simulator and scheduling setup. They enable the integration of both renewable energy

resources and battery storage. Moreover, their simulated loads are considered "smart

appliances" which allow rescheduling. Similar to that study, this work enables various

interactive scenarios for the emulated building components. However, unlike that work with

112

4.3. State of the Art

its predefined datasets, the proposed one is integrated into an existing BMS, enabling realistic

interaction with non-simulated physical infrastructure. More specifically, the data generated

by this engine are displayed and stored in the BMS cloud infrastructure. Last but not least, the

study mentioned did not investigate the software architecture for implementing such

simulations. On the contrary, an optimized emulation engine of this work targets and achieves

large parallelization of numerous components even on the weakest hardware.

Another related work is the context-aware simulation system for smart homes by the authors

of [195]. Although their scope is also to virtualize the smart home devices like sensors and

actuators; they do not implement virtualization of load schedules, behavior of users, energy

generation, and storage installed in the building, unlike this work. Furthermore, similar to the

previous literature mentions, no attempt was made for optimized engine design which enables

real-time and continuous operation within existing building management infrastructure.

A service-oriented approach to building simulation is conducted by researchers in [196]. Their

distinctive feature is the modularity of the open platform which allows different users to

participate and contribute to the development. The service-like architecture permits an

effective and simplified introduction of new services without entangling the developers with

the complexity of the BMS. Their simulation design integrates both real and simulated devices

like the architecture presented in this work; however, they only do so at the web service

level. In addition, that work does not study the simulation models but solely defines the

service-oriented framework, leaving the model design to the developers. On the contrary, this

work proposes an optimized, yet scalable and expandable solution for integrating real devices

along with simulated ones at the network, instead of the web layer. Additionally, it not only

defines the models’ architecture but also implements and validates a comprehensive list of

models.

Although the studies mentioned above characterize and model the CPS and the SB as a whole,

state of the art includes additionally dedicated virtualization approaches for sensors and

actuators. Due to their low power design and limited network performance, they are mostly

in suspend mode until an external or internal event triggers them. The authors of [197]

modeled those events and created event virtualization services accessible through the Internet.

Furthermore, the literature provides a couple of studies on creating virtual sensors. Firstly,

Merentitis et al. in [198] defend the sensor infrastructure virtualization as the driver towards

the evolution of Internet of Things (IoT). Additionally, a sensor oriented middleware with

virtualization capabilities over UDP/TCP is presented in [146]. Finally, the wireless sensor

network (WSN) virtualization can go as far as embedded battery storage simulation [199] or

even emulation of the physical RF channel in body area networks [200]. Last but not least, the

functional virtualization of sensors and actuators, like the one in this work, should not be

confused with the WSN virtualization like the proposed one in [201]. The latter performs a

logical abstraction of the physical computing resources which enables, for example, many

embedded applications to share the same WSN.

113

Chapter 4. Building-in-the-Loop Emulation Engine

Finally, the studies of multi-agent systems like the [202, 203, 53] are simulating based on

the "actors" of an SB. Those can either be the occupants or the automation systems which

interact and possibly compete in various ways. While this work includes a user virtualization

functionality that can act based on modeled profiles and schedules; it is not focused on creating

collaborative or competitive user-agent models similar to the ones in the multi-agent systems.

On the contrary, each emulated component is responding to various events by changing states

and internal activities.

Consequently, to the author’s knowledge, it does not exist a virtualization solution that can

emulate at the same time and platform, not only the energy driven infrastructure but also

the occupants and the ICT systems. The tight semantic parallelism between the physical and

the virtual objects enable their seamless cooperation under various ambient intelligence and

management supervision as part of the BMS operations. Lastly, the majority of the modeling

and simulation approaches in the literature seek and favor the accuracy rather than efficiency

in the computational algorithms, limiting their potential for commercial building automation

solutions.

4.4 Theoretical Background

Simulation is the procedure that recreates the behavior of a system under various condition

and parameters, in continuous or discrete manner. System simulations fall into one of the

following categories: DES, Continuous Simulation or Agent-Based Simulation. However, many

implementations tend to be designed as a combination of those, hence defined as hybrid

simulator. In such cases, continuous varying models coexist with discrete ones driven by

events.

The proposed emulation engine follows a hybrid simulation approach based on DES. This

section presents the mathematical background, the engine design foundation along with the

computational technologies for realizing a highly concurrent, real-time emulation engine.

4.4.1 Real time discrete event system specification

The discrete event specification (DEVS) formalism was initially presented by [204] to

mathematically describe any system whose models change states by reacting on discrete

external or internal events. An extension of the former, the real-time discrete event

specification (RTDEVS) associates an activity to each state of the model, due to its real-time

execution [205]. Considering hierarchical event-based models that can be broken down into

more basic ones, any entity is described by the real-time atomic model (RT AM) of the RTDEVS

formalism as seen in Eq. 4.1.

The RT AM describes the transitions between internal states S due to incoming events X that

produces output events Y . Whenever an event is externally received, δext defines how the

114

4.4. Theoretical Background

states should change, while δi nt deals with state changes due to internal events. The time

advanced function t a(s) specifies the duration up to which an internal event can be triggered.

When expired, the output function λ indicates the output that has to be generated. If an

external event is received before the completion of t a(s), the new state s′, computed by δext ,

sets a new t a(s′).

RT AM = < X ,S,Y ,δext ,δi nt ,λ, t a, t i ,ψ,A>

wher e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X : a set of input events

S : a sequential state set of the model

Y : a set of output events

δext : an external transition function, Q ×X → S

where Q is the total state set of M = {(s,e)|s ∈ S and 0 ≤ e ≤ t a(s)}

δi nt : an internal transition function S → S

λ : an output function S → Y

t a : a time advance function, S →R+

t i : a time interval function, S →R+×R+

where t i (s)|mi n ≤ t (a) ≤ t i (s)|max , t i (s)|mi n ≤ t a(s) ≤ t i (s)|max ,

s ∈ S, a =ψ(s) ∈A, and t (a)is the execution time of an activity a

ψ : an activity mapping function, S →A

A : a set of activities, a|t (a) ∈R+, a ∉ {X ?,Y ?,S =}

where X ? is the action of receiving data from X ,

Y ? is the action of sending data through Y ,

and S = is the action of modifying a state in S

(4.1)

For the DEVS, time changes only when the t a(s) function is called by the simulator. The

RTDEVS formalism introduces more parameters aiming to enhance those time-advances with

executable activities. On that regard, the function ψ maps a state to an activity a ∈A. The

t a in the case of RTDEVS also verifies the correctness of the mapping and compensates for

the non-deterministic events’ time discrepancies. The latter is bounded by the time interval

function t i which expresses the time range that the execution of the activity a, and the t a

should respect.

The discrete-event based model consists of an interconnection of those basic RT AMs. A

real-time coupled model (RT CM) interconnects the various events from each atomic models

and other coupled models as seen in Eq. 4.2.

115

Chapter 4. Building-in-the-Loop Emulation Engine

RT C M = < D, {Mi }, {Ii }, {Zi , j } >

wher e

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D : a set of component names

{Mi } : a set of component basic RTDEVS models, ∀i ∈ D

{Ii } : a set of influences of i , ∀i ∈ D

{Zi , j } : the i -to- j output translation, Yi → X j , ∀ j ∈ Ii

(4.2)

The set D lists the names of the components Mi , which are either RT AM or RT CM. Their

coupling is specified by the influences Ii and i -to- j output translation Zi , j . There are three

types of coupling specification. The first two external coupling types, connect the input or

output events of the coupled model to one or more input or output events of its components

respectively. The third internal coupling type connects the output events of the components to

the input events of other components.

4.4.2 Building Emulation engine as a DES system

DES design approaches and principles

The subsection 4.4.1 studied the theoretical background and formalism on the models

governing the discrete event systems. To become simulations, they require an algorithmic

approach for their execution. The past was dominated by general purpose simulation-oriented

languages like SIMULA and GPSS. Recent decades effort has focused towards enabling

simulation architectures using conventional languages such as C++ [206], Java [207] and

Python [208] using additional software libraries. Regardless of the language of choice, there are

three main approaches for simulating the discrete event models [208, 209].

Firstly, in the event-based approach, the collection of events triggers state changes and generate

follow-up events and actions to be executed. The event models specify that behavior of the

system. The event-based approach is the simplest and one of the most commonly encountered.

For example, a user activates a device or changes a setting and the system timely responds;

thus this approach excels in modeling the non-deterministic behavior of a system.

Secondly, the activity-based approach simulates the system behavior as a collection of activities.

Each activity model represents a time-consuming, specific action performed by that entity.

The behavior is based on time schedules where activities start, last a given amount of time

and end with appropriate actions in each phase. For example, the building heating using

hot water radiators can be such an example of activity. With the activity start, the burner

starts to warm the water. When the water reaches a configured temperature T1, the flow

in the heating elements begins while the burner extinguishes when the water reaches the

configured temperature T2,T2 ≥ T1. The flow action continues until desired air temperature is

reached, while the burner may repeat the ignition/extinguishing phase in order to keep the

116

4.4. Theoretical Background

water temperature close to T2.

The third and last approach for DES is the process-based one. In that case, the model is a

collection of processes that represent an entity throughout its life cycle as a sequence of actions

and reactions driven by logically related activities. An example of such model is the building’s

battery storage for which a collection of three activities can be envisioned as a model. Besides

the idling activity where no energy is exchanged, a discharge activity and a charge activity

model the power flow while enforcing the battery’s energy capacity limits. The process-based

paradigm of DES simulation is easier to comprehend since it resembles real-world objects.

According to Perumalla et al. [210] a pure process-oriented paradigm is following all the

features, F1 to F5, listed below. The features F1 - F3 denote that a programming style can

be created using conventional programming languages, whereas the F4 and F5 which are

regulating the time, require special software architecture design and provisioning.

• F1: procedures can declare and use local variables.

• F2: procedure calls can be nested.

• F3: procedures can be recursive and re-entrant.

• F4: primitives for advancing simulation time can be invoked in any procedure.

• F5: primitives for advancing simulation time can be invoked wherever a conditional,

looping or other statements can appear.

Emulation engine design concept

This research work proposes an innovative solution by introducing a hybrid DES paradigm,

based on the three design approaches mentioned above, as illustrated in Fig. 4.2.

P2 A2A1 An

P1 A2A1 An

EnE2E1

Pn A2A1 An

Figure 4.2 – The proposed hybrid DES engine. Px denotes the processes, Ax the activities and Ex

the events

To begin with, the whole building is simulated as a collection of process-based models,

117

Chapter 4. Building-in-the-Loop Emulation Engine

each one representing a real world object, for example, an energy-related infrastructure, a

sensor/actuator or an occupant. They execute concurrently, and they support all the features

mentioned by Perumalla et al. in [210]. Those individual processes are named virtual entities

(vEntities). Internally, each vEntity implements a dual, activity and event-driven approach

depending on the capabilities and configuration of their model. Therefore, the state of each

vEntity (process-based) changes based on the model (activity-based) or external and internal

triggers (event-based).

Fig. 4.3 presents the logic of the process, activity, and events for some representative virtualized

building components. The vEntities are studied in great detail in the subsection 4.5.3.

Battery
(Storage) Idle Charging Discharging Idle

Start charge

Idle

Battery full

Energy
demand

Terminate
energy delivery

Idle Idle

Luminosity levels

PV
(Generation)

Idle HeatWater Heater
(Load) Idle H

Request for
heating

Water temperature maintenance

esired room
temperature

Low
threshold

High
threshold

High
threshold

Idle

Figure 4.3 – Representative examples of the virtualized infrastructure using the hybrid modeling
approach

Concluding, even though the building simulation might seem to be designed as an agent-based

simulation (ABS), the frontier with DES is actually thin [211]. In ABS, an agent typically

holds intelligence such as rule-based decisions or local optimization algorithms. Its aim is to

maximize the benefits for him or its team in case of collaborating agents. Therefore, the overall

evolution of the system depends on those agents interaction. On the contrary, vEntities are

configured dynamic models, characterized by their activities and various states, while their

interactions are solely in the form of events.

4.4.3 Lightweight multithreading mechanism

While literature proposes many solutions for emulating buildings, few if any tackle the aspect

of computational efficiency. The novelty of the proposed solution is the BMS integrated and

optimized emulation engine. This creates an efficient virtualization system for continuous

118

4.4. Theoretical Background

operation.

For improving the performance, instead of operating system (OS) processes handling the DES

models, this work utilizes the coroutines. Those can meet the requirements, F1 - F5, in a much

lighter and efficient way.

As micro-thread (uTread) is named the software implementation of such coroutines; it

resembles, in fact, a tiny version of a thread. Unlike threads though, the uTreads share most of

their memory stack and thus can run with minuscule inherent resource requirements. That

enables hundreds of non-CPU bound coroutines to execute in single, common kernel thread.

The context switching between uTreads is done explicitly and cooperatively; the uTread’s

scheduler passes the control to the next one in a round-robin manner, without any OS kernel

involvement. The latter together with the high proportion of shared memory stacks enable an

ultra-fast context switching, requiring far fewer resources compared to other parallelism

architectures [212]. Fig. 4.4 illustrates the difference between an OS process, thread, and

uTread.

Process

Process
Control
Block

Process
emory

Kernel Stack

User Stack

Process

Kernel Stack

User Stack

Thread
Process

Process
Control
Block

Process
emory

Process
Control
Block

Process
emory

μThread

μThread

μThread

μThread

μThread

μThread

Kernel Stack

μThread Manager

Kernel Stack

User Stack

Thread
User Stack

User Stack

User Stack

User Stack

User Stack

User Stack

Figure 4.4 – From left to right: regular process, threaded process, micro-threaded process

The pseudo-concurrency offered by those coroutines is not a new notion in the computer

science. The micro-threading architecture is extensively used in web-servers and cloud

applications due to their I/O bound operation. This micro-threading design is known to

outperform the conventional architectures in high concurrency workloads [213, 214].

The similarity in the program flow of process-based DES models and the loads encountered by

the web servers, inspired the preliminary testing of uTreads for DES purposes. Similar to the

I/O bound operations of web-servers, the DES processes are governed by their activities which

most of their time remain in the state until an internal or external event triggers a change.

The initial testing and the validation to be found in Section 4.6 justified the choice, enabling

hundreds of DES processes to execute, communicate and interact concurrently.

An alternative to uTreads would have been the asynchronous software design, using an event

loop and event handlers. Although this approach can achieve the same objectives in addressing

119

Chapter 4. Building-in-the-Loop Emulation Engine

the hybrid DES requirements, it breaks the logical activity flow of the vEntities. The model

development becomes more complex to manage, and the modularity of the engine is greatly

impacted. Finally, managing local and shared variables of the vEntities requires additional

software routines and data structures.

Concluding, the coroutines, for some workloads, show significant advantage compared to

regular processes, threads as well as asynchronous designs. In fact, this makes them suitable

for actualizing the current theoretical, hybrid DES engine design.

4.5 Emulation Engine Architecture, Implementation, and

Operation

This section studies the architecture and implementation of the building emulation engine

after being theoretically defended in the previous section. The section is organized in four

individual subsections. Firstly, in subsection 4.5.2 the architecture of the building emulator

is presented with its core components and their interconnections. Secondly, subsection

4.5.3scrutinizes the modeling and algorithmic design of the solution. Thirdly, subsection

4.5.4 introduces the performance regulation module for enabling the real-time operation.

The section concludes with the subsection 4.5.5 that presents a unique, real-time embedded

network emulation module.

4.5.1 vMid: the emulation engine as a module of the BMS

The BMS named OpenBMS, cf. Chapter 2, supporting the emulation engine of this work,

consists of an end-to-end, layered and event-driven architecture. The key advantage of the

particular BMS architecture is the distributed middleware.

The term middleware, cf. Chapter 3, refers to a dynamic pool of low power electronics,

distributed in the building for exchanging information crucial for its management. They

are essentially acting as intelligent agents of the SB. They not only enforce the optimization

functionality but also interconnect the various technologies and protocols found in the current

generation of SB. The middleware acts as a delegate and abstraction layer of the underlying

control and measurement devices (sensors, actuators), for the management and intelligence

services.

The part of the middleware integrating the physical devices and protocols is rightly called

physical middleware (pMid). The emulation engine is forming a type of virtual middleware

similarly to the pMid. This subset of middleware is called virtualization middleware (vMid).

Both physical and virtual subsets of middleware share the same data model of the messages,

as well as communication patterns, sockets, and libraries. Therefore, the pMid and vMid

components are completely interoperable between each other and abstracted from upper

120

4.5. Emulation Engine Architecture, Implementation, and Operation

layers of building management and services without any additional adaptation layer.

Fig. 4.5 highlights the connectivity scheme for vMid, pMid, and BMS. The latter interfaces both

types of middleware through the same zeroMQ module, remaining unaware of the exact nature

of the devices. Similarly, the real time server (rtServer) handles both types of incoming events

without modifications. Finally, the energy management system and the ambient intelligence

can evaluate advanced algorithms by incorporating physical and nonexisting, virtual devices in

the same data structures.

Application server Events server

openBMSzeroMQ

SensorsActuators SensorsActuators SensorsActuators vSensorsvActuators
SensorsActuators SensorsActuators SensorsActuators SensorsActuators

vMid pMid

vStorvGen

vLoads

vStorvGen

vLoads

vStorvGen

vLoad

vStorvGen

vLoads

vStorvGen

vLoads

StorageGenerator

Load

Energy Management
System Ambient Intelligence

Smart Grid Occupants

Intelligent
Agents

restfulAPI websocket

Figure 4.5 – The vMid, pMid, and BMS connectivity scheme

4.5.2 vEngine: the virtual middleware core

vEngine architecture

Virtualization engine (vEngine) refers to the core component of the vMid architecture and

it is responsible for implementing the emulation of the various vEntities. Fig. 4.6 depicts

its architecture. It consists mainly of three discrete modules, the vMiddleware manager, the

vNetwork emulator and the vEntities pool.

Each of those modules is implemented in an individual process for isolation. This offers better

parallelization in multi-core architectures and improved scalability using network-distributed

processes.

The communication between the three modules and internally in the vEntities pool is achieved

121

Chapter 4. Building-in-the-Loop Emulation Engine

using the ZeroMQ sockets and patterns. The software library is the same to the one used

by middleware for interfacing the BMS. The high-performance ZeroMQ library is an ideal

candidate even for high throughput, inter-process communication.

For implementation purposes, Python was used as a high-level, general-purpose programming

language. According to the preliminary testing, it does not introduce any significant overhead

to the emulator. This is justified by the fact that most of the core libraries have been written in

C++ while the event-driven models are not CPU-bound. Indeed, several high-performance web

servers share the same observations, with Python as their programming language of choice.

On the other hand, Python’s straightforward and expressive syntax and dynamic typing

minimize the implementation time for the emulated models. In addition, its scalability, while

remaining scientific oriented, makes it a unique fit for such system targeting a scientifically

proven, yet product-oriented emulation tool.

This subsection introduces the architecture of the vEngine and scrutinizes the vMiddleware

manager. The vNetwork emulator and the vEntities pool are detailed in the separate subsections

4.5.5 and 4.5.3 respectively.

Message router

vE1

SUB/PUB

vE2

SUB/PUB

vE3

SUB/PUB

vEn

SUB/PUB

vEn-1

SUB/PUB

Supervisor
Module

vEngine
Manager

SUB/PUB

PUB REP

vM
id

dl
ew

ar
e

m
an

ag
er

...

vE
nt

iti
es

 p
oo

l 2

n

222 2

SUB

PUB SUB

PUB

n

vN
et

w
or

k
em

ul
at

or

SUB

vE events
Commands

External events

Figure 4.6 – The vEngine architecture: (green) a vE executing, (yellow) vE waiting for the
program control and (grey) vE cooperatively deferred execution

122

4.5. Emulation Engine Architecture, Implementation, and Operation

vMiddleware manager

The vMiddleware manager is the primary module of the engine and handles both the

communication and coordination aspects of the engine. It is thanks to its adaptation layer that

the vEngine participates seemingly into the middleware concept. The compatibility with the

middleware requires specific data structures and ZeroMQ sockets which are both handled by

the message router visible in Fig. 4.6.

The message router features various types of communication sockets depending on the type

and scope of the exchanged messages:

• a socket of PUB type for publishing events to the middleware;

• a socket of SUB type for receiving external events;

• a socket of REP type for receiving synchronous commands from the BMS;

• a SUB/PUB socket pair for inter-process communication with the vEntities pool.

While the vMid maintains external compatibility with the pMid, the internal data model of

the messages between the vMiddleware manager and the vEntities pool is customized to the

needs of emulator. Internally, a type of multiple-frame packet format is used, called multi-part

message. Its 4 parts are specified as follows:

1. a message recipient, as vEntity ID or vMiddleware manager gateway ID;

2. a message sender, as vEntity ID or vMiddleware manager gateway ID;

3. a UNIX timestamp;

4. an actual payload encoded in JSON notation, similar to the middleware messages’

payload.

The multi-part messages have several performance advantages for high data-volume designs

like the emulator.

• It keeps the information required for routing such as the sender and receiver, in a

separate frame. Hence, deep copy and parsing of the packet is avoided during the various

routing stages. This allows a zero-copy approach for high-volumetric communication

simply by passing the payload as a reference to a memory location. On the contrary, in

monolithic messages, the body must be copied into a temporary memory buffer and

parsed in order to extract the data required for the routing.

• The message rerouting leaves the original payload untouched, avoiding expensive

de-/serialization operations.

• The routing algorithms are simplified and agnostic to the payload since all the addressing

information are found in a separate part of the message.

• It enhances the expandability of the messaging data models since additional parts can

be chained on the multi-part message by intermediate brokers and routers without

123

Chapter 4. Building-in-the-Loop Emulation Engine

violating the primary protocol.

• Finally, while from the application point of view, the message parts are logically

independent; on the transport network layer, they are transferred as a single entity. This

guarantees the delivery either of all or none of the parts, avoiding synchronization

issues.

The coordination aspect of vMiddleware manager is handled by the vEngine Manager visible in

Fig. 4.6. Its tasks include: the instantiation of vEntities pool according to the models configured

in the BMS database, the configuration of the vNetwork emulator and finally, the startup,

shutdown and state backup of each vEntity. Finally, the vMiddleware manager is also the

execution entry point of the engine and the instance which forks the threads and processes for

each module of the vMid.

Each single vEntity gets its model and simulation parameters upon thread spawning. One

of them, the relative time expansion parameter kd t ≥ 1 is defining a relative time space for

the simulated activity. When kd t = 1, the virtualization executes in real time with its physical

counterparts, thus emulating the virtual components. Whereas, when kd t > 1, the emulation is

accelerated relatively to the pMid. This simulation mode utilizes the vEngine independently

from the CPS of the SB.

Fig. 4.7 illustrates the interactions of the vEngine with the rest of the BMS in the form of a

sequential unified modeling language (UML) diagram. The diagram illustrates the startup and

continuous operation sequence which are described below.

The initialization sequence is colored with red in the UML diagram. During startup, the

vMiddleware manager performs an application programming interface (API) request to the

building managing server. The reply includes the parameters of each vEntity that are configured

on the server. Additionally, it includes all the information crucial for the vMid operations, such

as its IP:port combinations, socket configurations as well as the IP locations of the rest of the

pMid modules. The latter enables the distributed communication and self-discovery features

of the middleware. Hence, only the location of the management server is statically defined; the

middleware topology is fetched and dynamically created and modified during runtime.

A major part of the UML diagram is colored with green and illustrates the continued operation

of the engine. The "par vEntity" denotes the parallel executing uTreads of the vEntities pool.

The "loop", on the other hand, denotes the continuous vMiddleware manager operation.

Hence, it handles the commands processing, the events forwarding as well as the performance

regulation.

Furthermore, with blue is colored the external, and physical events originating from the pMid

and the users. There are two types of events. Firstly, the user and API ones pass through the

application server which converts them to synchronous action requests to the vMiddleware

manager. Secondly, there are also the asynchronous events originating from the sensor

networks and other agents of the pMid. For those type of events, a dedicated thread monitors

124

4.5. Emulation Engine Architecture, Implementation, and Operation

store

: vMidManager

restfulAPI : Server DB

: vEntitiesPool

vEngine openBMS

request configuration

vMid config
vEntities config

create sockets

<<create>>

par vEntity

exec()

exec()

exec()

exec()

Physical Events:
Thread

RealTime : Server

Occupant

Physical
Sensors

commands

DB_rep

user actions

send configuration

commands

events

loop

TSDB

eventsevents

store

connect sockets

loop

events

health check

health report

connect sockets connect sockets

DB_query

Figure 4.7 – The sequential UML diagram of the vEngine interactions with the rest of the BMS

the appropriate sockets and receives the external events. It then converts them to the data

model used by the vEntities pool before pushing them to it.

4.5.3 vEntities: the core of emulation

vEntity architecture

The fundamental elements of the vEngine are the virtual components called vEntities. They

are implementing the component models for creating the emulation. Practically implemented

as uTreads, they form a "pool" connected to the vMiddleware manager through the vNetwork

for the events exchange purposes. The vEntities are both generators and receivers of events.

Thus, they interact with each other for commands and events exchange.

Due to the disparate types of entities, a standardization of their process, activities, events, and

125

Chapter 4. Building-in-the-Loop Emulation Engine

configuration is required. By doing so, a universal initialization, execution, and algorithmic

model design approach can be followed. Moreover, this universal structure is compatible with

of the DES framework according to the formalism introduced in Section 4.4. Fig. 4.8(a) displays

the flowchart and Fig. 4.8(b) presents the sequential UML diagram that each vEntity features.

Each block in the flowchart represents a specific activity of the vEntity:

(0) Set up the parameters, variables and states of the entity’s model. This step gives a unique

identity to the vEntity.

(1) Sleep for Δt seconds while waiting for external events.

(1’) If an event from the vMiddleware manager has triggered the awakening, process this

message by updating specific variables.

(2) Computations based on the model aim to update internal variables and states due to

events or model activities.

(3) Based on specified thresholds, the vEntity assesses whether its internal state has

considerably changed.

(3’) In case of a significant change, the vEntity sends the corresponding event to the virtual

network (vNetwork).

(4) The vEntity self-adapts its suspend time according to an estimation until the next event

triggers or the internal activity changes.

The sequential UML diagram, on the other hand, illustrates in a self-explanatory way the

functionality of each vEntity, throughout its life-cycle. The "loop" denotes the continuous and

it is equivalent to (1) to (4) flowchart blocks. During that time, the uTread remains suspended,

unless an event triggers it, for "recv timeout"=Δt seconds. Additionally, the functionality in

"opt" is activated only if there is a state change. Finally, the "alt" triggers the shutdown and

state saving of each vEntity when requested by the manager. The latter eventually enables a

"snapshot" of the vEngine state to be taken. Hence, restarting, scaling up, and even transferring

to different hardware can be executed without downtime.

The aforementioned flowchart forms a common wrapper for each vEntity that facilitates their

intercommunication and their monitoring from the upper layer manager. The latter takes

advantage of the ability of any entity to dynamically adapt its suspend time and hence, free up

engine’s resources.

Moreover, as the computations step (Q), cf. Fig. 4.8(a), might be computationally heavy, it

should be designed in a way that the running uTreads cannot consecutively use the CPU more

than a given quantum time qx where

Q =
N∑

x=1
qx (4.3)

126

4.5. Emulation Engine Architecture, Implementation, and Operation

Wait for MSG
(timeout = Δt)

Timeout

1

Get MSG Process
MSG 1'

Computation q1

Computation q2

...

Up
da

te
 m

od
el

va

ria
bl

es
 &

 st
at

e

Computation qN
2

sleep

sleep

sleep

Adapt
Δt

4

Model SETUP
0

No YesSignificant
changes?

3

Send
state

3'

START

command

event

(a) Flowchart

: VEntity

apply action

vEntity : exec()

configuration

event

loop

initialize model

{recv timeout}

evaluate new state

save state

confirm stop

command

alt

[cmd=action]

[cmd=shutdown]

process message

break loop

opt

[state change]

(b) Sequential UML diagram

Figure 4.8 – vEntity implementation flowchart and UML diagrams: (0) initialization, (1)
suspended while waiting for an event/timeout, (2) update state, (3) output event, and (4) adapt
suspend time

In between these quantum execution blocks, the program control is returned; the next vEntity

can now acquire it. That design technique enables a cooperative parallelism without limiting

the complexity of model’s algorithm.

As soon as a vEntity is instantiated, it retrieves both the simulation parameters and the

simulation model from the BMS. On the one hand, the simulation configuration holds the list

of values to parameterize the aforementioned steps from (1) to (4), regardless of the entity type.

On the other hand, the simulation model links the variables to the states and goes through the

specific software-class logic. As the vEntity itself can control its wake up frequency, continuous

time models may run along with the DES ones, leading to a hybrid simulation.

Listing 3 shows the typical structure of the simulation parameters transferred to each vEntity as

part of the initial configuration. The most important element is the . It indicates to

the vMiddleware manager which algorithm logic has to be executed for that particular model.

The parameter defines the Δt timeout used to control the awakening frequency in

(1). The user has the freedom to use a statistical probability density function (PDF) to generate

it, although a fixed value may also be used. The PDF one is mainly to mimic the event-based

127

Chapter 4. Building-in-the-Loop Emulation Engine

nature of many sensors which send a measurement asynchronously instead of sampling over

time intervals. The field ��������� lists the interface’s variables (input/output), whereas

the ���	
��
�������	 and �����

�
���� bridge the vEntity to the rest of the pool. The

former indicates to the vMiddleware manager how to match the input variables with the events

produced by other vEntities, or any external source (physical sensors, static file, etc). Referring

to the RTDEVS formalism, these fields define the sets X ,Y , Z of the RT AM and RT CM models,

directly or indirectly. The �����

�
���� refers to the output variable change threshold for

the vEntity to trigger an event, cf. Fig. 4.8(a). Detailed in Section 4.5.4, the last optional field

�����
���
 characterizes the influence threshold of an output change over the suspend

time Δt .

�

�������		�
 ����		���
���

������
�����
 ������������ ���������
���

���������	�
 �

����
 ����������������������������

�����
 �����������������������������

��

������	�����������
 �

����������
 ��	�������������������������

����

����������
 ��	�������������������������

��

�������������	�
 �

�����������
 ��������������

����

�����������
 ��������������

��

�����	�������
 �

�������������
 �������

����

�������������
 �������

�

�

Listing 3 – Structure of the simulation parameters transferred from the BMS to the vEntities

Virtual ���
 model

The model class given by �������� implements the steps (0, 2, 4) of the described flowchart.

Referring to the DEVS formalism, the setup phase (0) defines the internal and external transition

functions δi nt and δext . Whenever possible, the model designer might as well define how the

suspend time Δt should be adapted based on internal or external variables, in order to reduce

unnecessary awakenings. As many building components, and thus models, share simulation

features, the notion of parent classes has been created. Child classes are implementing a

particular feature, are inheriting them in order to customize and extend them, without the

need to redefine the standardized features, including the vEntity’s communication frontend.

The following subsections describe some implemented vEntity models for validating the

building virtualization solution. In future work, or with the help of the open-source community,

128

4.5. Emulation Engine Architecture, Implementation, and Operation

the parent classes can be used for designing more elaborate and accurate representation

of building components. The scope of this work was primarily to present the innovative

architecture of the engine and highlight its features, rather than to promote simulation models

that are ahead of state of the art.

Virtual ambient sensors and actuators: ������� & ��	
��
��

The future SB essentially relies on a broad network of sensors and actuators, enabling data

analytics. The ambient sensors mainly collect room temperature, humidity, and luminosity,

along with human presence. Concerning the actuators, various functions may be envisioned,

such as automatic window blinds, doors and locks, light dimmers, and any local controllers.

To begin with, their virtualization model doesn’t differ much from the generic vEntity parent-

class. Their primary functionality consists in interconnecting and reacting on outputs of other

physical or virtual entities. For example, a virtual motion sensor may be configured to trigger

when the luminosity (physical sensor) of the room abruptly increases. Similarly, a virtual

dimmer can trigger a virtual load when a physical motion sensor detects movement in the

room. Furthermore, besides the reactions to external stimulus, the virtual ambient sensors and

actuators can operate based predefined values (e.g. static values file).

Hence, the vSensor and vActuator classes offer the possibility to linearly associate output

variables with input events or static values, cf. Listing 3. The Algorithm 3 describes the

procedure for the vSensor.

Algorithm 3 vSensor parent-class logic

1: procedure S E T U P _ M O D E L(vSensorcon f)
2: c ← vSensor.coe f f i ci ent s
3: end procedure
4: procedure P R O C E S S _ M S G(msg) � message from other vEntity
5: vi ← msg ["payload"] � match to an input variable
6: end procedure
7: procedure U P D A T E _ S T A T E S

8: for all vo ∈ var _out_l i st , vi ∈ var _i n_l i st do
9: vo ←∑

c(vo , vi)∗ vi

10: S E N D _ M S G(vmi daddr , vo) � forward upwards
11: end for
12: end procedure

The separate vSensor and vActuator entities instead of an integrated functionality into the

root model has an important advantage. The discrete cyber (vSensor, vActuator) and physical

(vLoad, vStorage, vGeneration) entities combination is a more realistic representation of the

architectures used in the SB. Thus, the models and functionality that describe each type of

infrastructure is better isolated.

129

Chapter 4. Building-in-the-Loop Emulation Engine

For example, the emulated powers and states of a vLoad are internally transferred to a vSensor,

which models the process of sampling and transmission of the data. The thresholds for event

creation, the possible systematic or random errors in measurements, the digital networks

particularities and others, are only part of the vSensor model.

Listing 4 reveals the vEntity configuration parameters for controllable window blinds which

influence the room luminosity. Firstly, the configuration defines the actual entity class to

be used. The internal variables of interest are the requested blinds angle and the outside

irradiance. The output value is the calculated luminance which is then transferred to a

luminosity vSensor. Besides the generic simulation parameters, "���������", it includes

additionally the "��	
�������" ones. As the name suggests, the latter configures the exact type

of blinds output luminosity, as a weighted influence of their angle and the outside irradiance.

�

�������	���
 �

����
�����
 ���
�����	��

���	�������
 �

����
 ��������� ��		��� �����
 �������

��

�������������	����
 �

�������
 ������	�� �
��������

��

���	�������	���
 � �����
 �� �

��

���������	���
 �

���������
 �

�����
 � �������
 � ��� ��		�
 ��

�

�

�

Listing 4 – vBlind simulation and model parameters

Virtual energy storage systems: �
�����

The storage system model all the infrastructure able to store any form of energy, which they

release it afterward. They play a significant role in facilitating the energy management strategies.

A characteristic vStorage entity is the notion of state of charge (SoC). It defines the percentage

of the total energy capacity that is currently available in the virtual component. Due to storage

system particularities, the SoC varies based on the requested power P . Moreover, the available

power P depends on the current SoC. These make the storage simulations a challenging task.

Finally, depending the combination of SoC and the power flow direction the storage system

can be in four states: ["charge", "discharge", "empty", "full"].

Algorithm 4 summarizes the logic vStorage class. The upd ateSOC () function definition is

leaving the implementation to the sub-class designer. The ΔSOC thr es on the other hand

governs the output events frequency.

While any form of energy can be represented with the vStorage sub-classes, the lithium-ion

130

4.5. Emulation Engine Architecture, Implementation, and Operation

battery is a excellent solution for residential energy storage. Its update of the SoC over Δt

according to [215] is

SOC (t +Δt) = SOC (t)+η ·P · Δt

C
(4.4)

where η is the electrical-to-chemical efficiency, C the total capacity, and P the power flow. The

parameter η depends on both SoC and P while varying over time; its characterization thought

is beyond the scope of this work.

Algorithm 4 vStorage parent-class logic

1: procedure S E T U P _ M O D E L(vStor ag econ f , saved_st ate)
2: if saved_st ate then
3: SOC ← saved_st ate.soc
4: else
5: SOC ← 0
6: end if
7: Pactual ← 0
8: end procedure
9: procedure U P D A T E _ S T A T E S(Pr eq) � requested ± power

10: if (SOC = 0 and Pr eq < 0) or (SOC = 100 and Pr eq > 0) then
11: Pactual ← 0
12: end if
13: SOC ← upd ateSOC (Pactual ,SOC)
14: end procedure
15: procedure A D A P T _ D T

16: d t ← C
Pactual

∗ΔSOC thr es

17: end procedure

Virtual energy production: ���������	�

A virtual generation system vGeneration has been designed for modeling any sort of electricity

production in the building, most commonly in the form of renewable resources. Very similar to

the implementation of vSensor, it gathers instantaneous environmental data for emulating the

output power.

In order to illustrate type of vEntity, the sub-class vPVpanel is presented. It emulates the

events of a power sensor connected to a photovoltaic system. More specifically, it is composed

of a photovoltaics (PV) array whose power depend on the current irradiance G(t) the cell

temperature T (t). The power curves and maximum power point can be computed from the

one-diode model [216]. However, this requires demanding mathematical operations which do

not fit in this cooperative, real-time engine.

Hence, the linearization [217], as seen in Eq. 4.5, of the output power of the PV panel has been

131

Chapter 4. Building-in-the-Loop Emulation Engine

used instead .

Pmax
(
G(t),T (t)

) = G(t)

GSTC
·
(
PSTC +Pmax

(
T (t)

))−kloss ·PSTC

= G(t)

GSTC
·
(
PSTC +PSTC ·Cp · (T (t)−TSTC)

)
−kl oss ·PSTC

= PSTC ·
(G(t)

GSTC
· (1+Cp · (T (t)−TSTC)

)−kl oss

)
(4.5)

where PSTC is the power at standard test conditions (STC), GSTC is the irradiance at STC,

Cp is the power temperature coefficient, TSTC is the reference STC temperature, and kloss

represents the losses coefficient. The PV cell manufacturer provides those data, and with those,

a linearized value of Pmax can be obtained. The STC correspond to irradiance at 1000W /m2,

cell temperature at 25 °C, and air mass coefficient of l.5.

Fig. 4.9 validates the proposed formula by plotting the maximum power relative error between

the one-diode model simulation, and its linear simplification. For solar irradiance above 200

W /m2, the model linearization yields sufficient precision (≤ 10% relative error). Under 200

W /m2, the error increases until eventually reaching 100%. Given the low energy production at

these irradiance levels, the absolute error remains in the order of few W at t per cell.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Irradiance (W/m2)

10-1

100

101

102

R
el

at
iv

e
er

ro
r

of
 P

m
ax

T = -15°C
T = -5 °C
T = 5 °C
T = 15 °C
T = 25 °C
T = 35 °C
T = 45 °C

Figure 4.9 – Maximum power relative error between the one-diode model simulation and its
linear simplification

Listing 5 shows the simulation and model parameters of the MaxPower CS6X-310P PV panel.

The nominal PSTC is 310 W , the power temperature coefficient −0.43%/◦C and the losses 1%.

132

4.5. Emulation Engine Architecture, Implementation, and Operation

�

�������	���
 �

����
�����
 �����������

���	�������
 �

����
 ���		���������� �����
 �����

��

�������������	����
 �

��		�
 �����������	�� ��		���

������
 �����������	�� �������

��

���	�������	���
 � ���
 � �

��

���������	���
 �

�����
�
 �� � �!���
�
 "#� �$���
�
 � �

�%���
 & ' (�� �)������
 ' �

�

�

Listing 5 – vPVpanel simulation and model parameters

Virtual energy consumers: �����

Any device that consumes power is part of the vload category; for instance, a lighting system, a

computer or a heat pump. Each device of this type inherits the vLoad class that handles the

events generation and virtual power consumption. The characterization of that power profile

over time is achieved with the notion of load profile (LP), a structure composed of three sets:

1. Modes (mode): a list of load power ranges, linked to the various operational states of the

load e.g. normal mode, sleep mode, washing cycle, etc.

2. Sequences (seq): a set of structures that statistically describes the mode power values

and its transitions.

3. Activities (act): an ordered list that describes the deterministic or externally triggered

state changes of the load.

The vLoad uses the above structures to emulate the virtual power. A part of the vLoad’s logic,

seen in Algorithm 5, describes the process of emulation for the above sets 1 and 2. Nevertheless,

the emulated power is finally transferred to a vSensor type of entity for implementing the

power events.

Any sub-classes of vLoad, for instance a virtual lamp, a heat pump, a heater, etc., leverage and

fine-tune this LP parameters. Hence, the vLoad entity can emulate any type of device from the

power use point of view.

Listing 6 reveals the vEntity configuration parameters for a virtual computer, vComputer. The

listing indicates that vComputer is triggering state events following a normal distribution

N(μ, σ2) =N(10,5), while generating a virtual power "P" with an accuracy of 1 W at t and

expecting commands from a virtual user vUser . The model parameters configure two modes

of operation [70 ; 150] W at t and [180 ; 240] W at t . The first one lasts for minimum N{20,10}

133

Chapter 4. Building-in-the-Loop Emulation Engine

minutes with a probability of mode change equal to 0.15. Similarly, the second one lasts for

minimum N{10,2} minutes with a probability of returning to first mode equal to 0.85.

Algorithm 5 vLoad parent-class logic

1: procedure S E T U P _ M O D E L(vLoadcon f , saved_st ate)
2: seq_l i st ← vLoad .sequences
3: mode_l i st ← vLoad .modes
4: if saved_st ate then
5: l oad .st ate ← saved_st ate � restore load’s state
6: P O W E R _ V A L U E S(load .st ate)
7: else
8: P O W E R _ V A L U E S(vLoad .i ni t i al _st ate)
9: end if

10: end procedure
11: procedure P R O C E S S _ M S G(msg) � message from load’s actuator
12: l oad .st ate ← msg ["command"]
13: P O W E R _ V A L U E S(load .st ate)
14: end procedure
15: procedure P O W E R _ V A L U E S(st ate) � power values of load state
16: mode ← r etr i eve_mode(mode_l i st , st ate)
17: seq ← r etr i eve_sequence(seq_l i st ,mode)
18: power _values ← g ener ate_power _values(seq)
19: power _i ndex ← 0 � indexes current power value
20: end procedure
21: procedure U P D A T E _ S T A T E S

22: if power _i ndex < leng th(power _values) then
23: P ← power _values(power _i ndex)
24: addr ← l oad .sensor � get connected sensor
25: S E N D _ M S G(addr, P)
26: else � get new random powers
27: P O W E R _ V A L U E S(load .st ate)
28: end if
29: power _i ndex ← power _i ndex +1
30: end procedure

134

4.5. Emulation Engine Architecture, Implementation, and Operation

�

�������	���
 �

����
�����
 ��������

������������
 �������� ���� ����

���	�������
 �

����
 ���
���� �����
 �� ��

!�

�������������	����
 �

��
��
 ���"��	�� �
��������

!�

���	������#	���
 � � �
 � !

!�

���������	���
 �

������
 �

���$�
 �%�� ����� �#�&#�
 ��'�� ()��

!�

���*�
 �

���+�����
 ���$��

���$�
 ����	�
 �(�� ���� �#�&#�
 �,��!�

�#�&#�
 ����	�
 ���� (�� ���$�
 �,'�!

!�

��
��
 ��'�)�� ��-,��),���

!

!

Listing 6 – vComputer simulation and model parameters

Virtual occupant activities: �����

The vUser is the final major type of vEntity. It enables the emulation of virtual occupant

behavior by acting on the vActuators. The logic governing this entity is described in Algorithm 6.

A vUser retrieves from the BMS the LP activities, act (3), of each of the virtual loads it controls.

It subsequently triggers the appropriate vActuators for each individual virtual load based on

the the activities set.

The current model of vUser is limited to predefined actions and scenarios. Nonetheless,

dynamic models could extend it, taking into account several external signals such as actual

human presence in the building, historical data on their activities and other. This way, the

advanced behavioral studies, mentioned at the beginning of the chapter, can be implemented.

135

Chapter 4. Building-in-the-Loop Emulation Engine

Algorithm 6 vUser parent-class logic

1: procedure S E T U P _ M O D E L(vUsercon f)
2: vLoad s ← vUser.load s
3: for all vLoad ∈ vLoad s do
4: act_l i st ← act_l i st .append(vLoadact) � user activities on all loads
5: end for
6: end procedure
7: procedure U P D A T E _ S T A T E S

8: for all act ∈ act_l i st do
9: tn ← t i me_now()

10: if tn ≥ act .st ar t then � start time passed
11: A C T I V A T E(act.actions) � apply actions of activity
12: end if
13: if tn ≥ act .end then � stop time passed
14: D E A C T I V A T E(act.actions) � restore actions of activity
15: end if
16: end for
17: end procedure
18: procedure A C T I V A T E(actions_list)
19: for all acti on ∈ acti ons_l i st do
20: acti on.r un ← True
21: load ← acti on.l oad
22: addr ← l oad .actuator � get connected actuator
23: cmd ← acti on.cmd � specific actuation command
24: S E N D _ M S G(addr, cmd)
25: end for
26: end procedure
27: procedure D E A C T I V A T E(actions_list)
28: for all acti on ∈ acti ons_l i st do
29: acti on.r un ← False
30: load ← acti on.l oad
31: addr ← load .actuator � get connected actuator
32: cmd ← "r estor e" � restore actuator state
33: S E N D _ M S G(addr, cmd)
34: end for
35: end procedure
36: procedure A D A P T _ D T

37: tn ← t i me_now()
38: d t ← mi n(next_act .st ar t ,next_act .end)
39: end procedure

136

4.5. Emulation Engine Architecture, Implementation, and Operation

4.5.4 Supervisor: the performance regulator

In order to monitor the real-time operation of the vEngine, a supervisor module was created, cf.

Fig. 4.6. It acts as a performance regulator, especially for the limited capabilities hardware.

In fact, the cooperative nature of the vEntities execution model necessitate such monitoring

module for guaranteeing the computational fairness. The execution model of the vEntities

pool is seen in Fig. 4.10. A vEntity can be in one of the states: executing (green), suspended

(gray), standby (blue). In this queue-like design, since only one entity can execute at any given

time, long computational step (Q) by any of them will impact the whole pool. To make matters

worse, unless there are adequate moments of inactivity for the pool to catch-up, the delays will

create a cascade effect impairing the operation of the engine.

vE1 vE2 vE3 vEnvEn-1...

Figure 4.10 – vEntities pool state at any given time. vEntity: green the currently executing, gray
the suspended and blue in standby

Ideally, there should is plenty of time between the moment that a vEntity releases the CPU

and the moment another one requests it, as the vEntities spend most of their time suspended.

However, the cooperative nature does not guarantee the absence of overlapping CPU requests.

In fact, the amount of them increases with the number of executing vEntities.

The supervisor module is periodically monitoring the vEntities pool for assessing the following

features for each entity vEi ,∀i ∈ [1,n]:

• Qi : the execution time interval, from entity resume to the CPU execution release;

• Δti : the requested suspend time interval;

• Δt a
i : the actual suspend time interval, from the CPU execution release to subsequent

CPU acquiring.

• d̄i moving average of the experienced delay.

Those quantities are computed by each individual vEntity within a specified time window

and collected by the monitoring module. The aforementioned delay is defined as: (Δt a
i −

Δti) ∈ [0,d max
i]. The worst case scenario appears when the wake up events of the vEntities

synchronize and thus, all of them wait for the CPU execution. The resulting delay is calculated

using Eq. 4.6 for vEi ,∀i ∈ [1,n].

d max
i = max(Δt a

i −Δti) =
n∑

j �=i
Q j ∀i ∈ [1,n] (4.6)

137

Chapter 4. Building-in-the-Loop Emulation Engine

Fig. 4.11 illustrates a hypothetical 4-vEntities execution time-frame in which overlapping

requests can influence the real time operation. The time-frame starts at marker 1 with the vE1

having the control. Before the end of its computational step, the vE3 timeouts and requests the

CPU at t =Δt3 |Δt3 <Q1. However, the CPU control is passed only at t =Δt a
3 with a delay of

d3 =Δt a
3 −Δt3. In the meantime, vE4 at t =Δt4 |Δt3 <Δt4 <Q1 requests also the CPU, thus

waiting in second position. The vE4 execution eventually begins on marker 2 and terminates

at marker 3, having been delayed for d4 =Δt a
4 −Δt4. On the positive side, after the vE4 finishes

no other vEntity is in standby, thus the vE2 can start on marker 4 with no delay.

vE1

vE2

vE3

t0

Δt3

Δt2

Δt1

1

2

4

Δta
3

Q1

Q3

Q2

Δt3

Δt4

3

Q4
Δt4

Δta
4

vE4

Figure 4.11 – Worst case scenario for 4 vEntities

As d max
i depends on the entity models, their population, and the hosting hardware, the

supervisor module must dynamically ensure that the delays experienced by any vEi stay below

a certain threshold d th
i . This value is dynamically configured depending on the emulation

interests and scenarios. A higher value allows a larger number of vEntities to run even on the

weakest of hardware in exchange for relaxed timings. On the other hand, a lower threshold

ensures a real-time and highly responsive emulation engine.

Besides the delays monitoring, the supervisor acts also as cooperative performance regulator.

The chosen solution consists of a punishment algorithm. The unfair entities lose priority

whenever they might entail excessive delays to their peers. To this end, the per vEntity relative

CPU use αi , mean relative CPU use μα, and mean CPU use μQ metrics are introduced by

Equations 4.7a, 4.7b, and 4.7c accordingly.

αi = Qi

Qi +Δt a
i

∀i ∈ [1,n] (4.7a)

138

4.5. Emulation Engine Architecture, Implementation, and Operation

μα =
∑n

i αi

n
(4.7b)

μQ =
∑n

i Qi

n
(4.7c)

The logic of the engine supervisor is deterministic. Instead of directly penalizing the

computationally heavy entities, it dynamically determines whether the set UvE of unfair

entities has an impact on the others due to resources shortage. An entity is determined as

unfair by any of the two conditions:

• if the vEi relative CPU use αi exceeds the mean relative CPU use μα by more than σα,

(αi −μα) ≥σα;

• if the vEi CPU use Qi exceeds the mean CPU use by more than σQ , (Qi −μQ) ≥σQ .

Algorithm 7 illustrates in detail the regulation process. If it exists at least one unfair entity, the

inflicted delay, d̄ , to its peers is checked. The impact is considered significant if ∃ i : d max
i ≥ d th

i .

To mitigate the impact, either the engine hardware should be upgraded or the offending entity

to become more cooperative. The latter can be achieved in three ways. Firstly the vEntity can

dynamically adapt its model complexity if it is supported. Secondly, it can distribute in time

the computational burden Q into qx blocks ,cf. Fig. 4.8(a). The vEntity thus releases the CPU

execution giving the opportunity to the rest of the vEntities pool to perform their activities.

This approach allows some vEntities to implement mathematically complex models without

impacting the rest of the pool. As a final resort, vEntity can increase its suspend time interval,

the new one is computed by Eq. 4.8.

α′
i = μα ⇔

Qi

Qi +Δt ′ai
= μα ⇔

Δt ′i � Δt ′ai = Qi

μα
− Qi ∀i ∈UvE

(4.8)

139

Chapter 4. Building-in-the-Loop Emulation Engine

Algorithm 7 Health Check module logic

1: procedure M O N I T O R _ P O O L

2: n ← |vE |
3: UvE ← {i | (αi −μα) ≥σαor (Qi −μQ) ≥σQ }

4: FvE ← U�
vE

5: if UvE �= � then
6: for all j ∈FvE do
7: if d̄ j ≥ d th

j then
8: E N F O R C E _ F A I R N E S S(∀i , i ∈UvE)
9: M O N I T O R _ P O O L

10: end if
11: end for
12: end if
13: end procedure
14: procedure E N F O R C E _ F A I R N E S S(x)
15: if vEx has a simpler model then
16: R E D U C E _ C O M P L E X I T Y(x)
17: else if vEx has a quantized model then
18: E N F O R C E _ Q U A N T I Z A T I O N(x)
19: else
20: Δtx ← Qi

μα
− Qi

21: end if
22: end procedure

4.5.5 vNetwork: the embedded network emulator

While the models of subsection 4.5.3 simulate the infrastructure from the behavioral and

activity point of view, they ignore the sensor and actuator network characteristics. For example,

although a load behavior can be modeled, the feedback of the monitoring and the resulting

actions are not performed instantaneously. Most of the time, performance limited, consumer

grade, computer and embedded networks are involved in the transmission of the digital

packets. The latter leads to additional delays and possible packet losses unforeseen by the load

model.

Hence, research and development time has been allocated for also emulating the behavior and

uncertainties introduced by the ICT systems. The vNetwork is the result of such effort. It is a

kernel process which emulates the performance bounded networks, and it acts as an integral

module of the virtualization engine.

The vNetwork functions as an intermediate message broker between the vEntities pool and

the vMiddleware manager as already seen in Fig. 4.6 and better highlighted with Fig. 4.12.

Depending on the digital packet type and routing (source, destination) the appropriate network

characteristics are applied to packets. As a matter of fact, there are three different type of

messages illustrated in Fig. 4.12 with the three colored and numbered arrows.

140

4.5. Emulation Engine Architecture, Implementation, and Operation

OS Process 1

vEntities Pool
OS Process 3

vE2

vE3

vE1

Network
Sim.

Message
Manager

(1)

(2)

(3)
vNetwork

OS Process 2

vMiddleware Manager

Figure 4.12 – The three domains of messages processed by the vNetwork with their paths. (1)
internal, (2) network level, (3) building level

The �������� �	
 (cf. Fig. 4.12) messages are the ones exchanged between the vEntities.

They are intended for internal communication purposes of the coupled models and thus are

not emulated by the vNetwork. For example, a virtual PV panel model requires data from an

external luminosity sensor to emulate the appropriate power. In reality, however, the power

produced by the panel and the luminosity are physically associated due to the photovoltaic

effect. As a result, no physical or virtual network is involved in this process.

The ������
 ����� ��
 (cf. Fig. 4.12) messages on the other hand are exchanged between

control and sensing devices over their network. For example, a wireless motion sensor activates

the wireless light bulbs when a user enters the room. This is the most frequently encountered

communication type in the current fully integrated home automation systems.

Finally, the �������� ����� ��
 (cf. Fig. 4.12) messages are exchanged between different

networks, algorithms and systems in general. This type of interaction enables the next

generation of adaptive SB. The vNetwork, following the emulation task, passes those types of

packages to vMiddleware manager for uplink forwarding.

Developing a network simulator requires various simulation models and tools and is a complex

process, both from the mathematical representation and the computational execution points

of view. The authors in [218] attempt to overcome this limitation using a hybrid emulation

architecture based on both physical and simulated network nodes. Additionally, numerous,

mature network simulation tools exist such as ns-2 [219] and ns-3 [220], OMNeT++ [206],

OPNET [221, 222], GloMoSim [223], BRITE [224] and SSFNet [225, 226]. Finally, literature also

includes comparative studies between these tools in [227, 228, 229].

Fundamentally, network simulator extracts the statistical distributions that govern the

simulated network topology and activity. There are various network parameters that can be

141

Chapter 4. Building-in-the-Loop Emulation Engine

configured in those tools including, but not limited to, the following:

• Link capacity

• Bandwidth

• Response time

• Latency

• Routing protocol used

• Protocol overhead

• Frame size

• Dropped frame rate

Preprocessor
(FNSS)

1. Parameters

BMS

Simulation
engine

(OMNeT, NS-2, etc)

2. Exported
scenario

vNetwork

3. Output
network statistics

vNetwork
data & statistics

Uplink / Downlink
messages

vEntities
messages

Offline, execution ahead of time Online, real-time execution

Initialization

Figure 4.13 – The core workflow of the network emulation module of the building virtualization
engine

The present work leverages the statistical analysis outputs of the tools mentioned above as an

input for the vNetwork. The primary task of the vNetwork is to enforce the simulation tool’s

analyses on its own emulated networks. As it is illustrated in Fig. 4.13, two independent activity

domains make up the vNetwork. The offline activity executes ahead of time, whereas the online

activity runs continuously along with the virtualization engine.

The offline activity is responsible for extracting the network statistics based on configuration

hosted on BMS servers and the use of dedicated network simulation tools. Fig. 4.13 highlights

that process through a series of steps. Nonetheless, configuring a network simulation tool for

a given topology and traffic scenario varies significantly depending on the simulation tool.

Hence, a pre-processing step was introduced before invoking the network simulator. The FNSS

[230] is a toolchain that can parse and generate various topologies, assign desired network

parameters and generate traffic matrices or event schedules for various network simulators.

The use of a pre-processing toolchain, like the FNSS, allows the vNetwork design to become

independent from the network simulator employed.

More specifically, the offline activity execute in the following phases:

142

4.5. Emulation Engine Architecture, Implementation, and Operation

�

�������� ����	
��
������
�������������

������� �
�������

���
��������� �

������������
��� �

������� ���������

���������� ���

��

��� �����!��� �

������� �����"����

���������� �

��

���������������������� �

������� �����"����

���������� �

��

������#��������� �

������� �����"����

���������� �

��

��
�
�
"�������� �

������� ������"��

�
��$ �� % ��	
������� ��&���������� ��&
�#��

� �������&�� ������� ����"�� ������ '

��

����	
����
#���������� �

������� �����"����

���������� �

��

���� �����&�#����� �

������� �
�������

�
��$ ��%

�� �(������������� � �������� �����"���� ��

���
���
����"���� � �������� �����"���� � '

�

�

�

Listing 7 – vNetwork parameters for network simulation

1. HTTP request to the BMS server for acquiring the initial network setup parameters such

as: network node number, topology type, node send/receive buffer size, link capacity

and traffic schedule. The response is a JSON formatted string validated by the schema in

Listing 7.

2. The python based script uses the FNSS in order to extract the scenario for use in the

dedicated network simulator.

3. Perform the offline simulation using the exported scenario and the network simulation

tool. Retrieve the statistics required for the vNetwork which are the following:

• packet loss

• packet delay

4. Store the results of the analysis in the BMS database, thus characterizing each vEntity

communication behavior.

Subsequently, the online activity, also visible in Fig. 4.13, operates in real time and enforces the

143

Chapter 4. Building-in-the-Loop Emulation Engine

network particularities based on the data from the offline activity. Thus, it enables a real-time

network emulation with acceptable accuracy even on the thinnest of hardware or numerous

vEntities in the pool.

The packet loss probability for an emulated node is modeled with a Bernoulli distribution,

a discrete probability distribution as a special case of the binomial distribution with the

probability mass function (PMF) of Eq. 4.9. The packet is modeled as a successfully delivered

with n = 1 or lost with n = 0 out of a single trial N = 1.

Pp (n|N) =
(

N

n

)
pn(1−p)N−n ,n ∈ {0,1}, N = 1 (4.9)

The packet delays for an emulated node, depending on the network simulator output, can be:

• A mean delay in milliseconds to be applied to all the packets of the specific node.

• A common distribution such as normal, Poisson etc. that all delay samples follow.

• An output histogram of delays for each node. The random delays are drawn from each

bin based on its calculated weight compared to the rest.

• A delay distribution described by a continuous PDF. In this case, the cumulative

distribution function (CDF) should be initially obtained from the PDF. The inverted CDF

when provided with uniform random numbers outputs the delays following that original

PDF.

Following the presentation of vNetwork’s system architecture, its software design and

implementation are illustrated in Fig. 4.14. It consists of three threads in a single process. The

vNetwork executes in a pipelined manner thanks to this multi-threaded design. The latter

enables a higher throughput of packets compared to a non-pipelined execution. The choice of

dedicated process for the vNetwork instead of sharing the vEngine one was taken for allowing a

scale-up possibility. In that case, the latency sensitive vNetwork process can easily be spawned

in different hardware without design reconsideration.

The network emulation cycle for each packet is broken down into a series of steps: receive,

emulate loss, emulate delay, and forward, as depicted in Fig. 4.14. As long as each thread

is processing every packet for about the same average time compared to others, the packet

throughput is increased compared to a sequential algorithm. The packets pass through the

vNetwork stages in a stream-like fashion. Each stage has an input, an output and a dedicated

task for treating the packets according to the conditions derived from the source or destination

of the packet.

Additionally, each stage has its time and data flow decoupled from the previous ones using

asynchronous communication sockets (Thread 1), thread-safe queues (Thread 2) or an

144

4.5. Emulation Engine Architecture, Implementation, and Operation

IN OUT

Twisted
reactor

Thread 3

t4t3'

Packet delay
emulation

Thread 2

t3t2'

Packet loss
emulation

Thread 1

t1 t2

thread queue asynczeromq zeromq

t5t0

Figure 4.14 – Pipelined, triple-thread approach for zero additional time delay and high
throughput

asynchronous callback framework (Thread 3). Unlike the synchronous pipelines where all the

stages have to execute in-sync with the slowest among them (critical path), the interleaving of

pipeline stages (threads) and asynchronous elements (sockets, queues, callbacks) enables an

asynchronous pipelined execution. In it clear that the network emulation module has been

designed to enable each thread/stage to produce and consume data packets as fast as it can

without constraining its performance to the previous or next thread/stage.

The asynchronous elements permit a significant advantage over conventional pipelines where

all the stages have to execute in time equal to the slowest among them amount. In hardware

designs, it is achieved with slower clock speeds, whereas in software the previous stage cannot

process a new input before the next one receives its output. Therefore, in the synchronous

pipelines, the slowest stage eventually dictates the speed of the whole pipeline.

Algorithm 8 vNetwork threads initialization algorithm

1: procedure I N I T I A L I Z E(n)
2: if n = None then
3: for all n ∈ net wor ks do
4: net_values[n] ← g ener ate_values
5: net_i d x[n] ← 0
6: end for
7: else
8: net_values[n] ← g ener ate_values
9: net_i d x[n] ← 0

10: end if
11: end procedure

More specifically, the Thread 1 and Thread 2 hold an array of numbers for each of the network

they emulate. The arrays values depended on the scope of the thread and each emulated

network; for example, it can be an array of packet delays or an array of 0 and 1 denoting the

packet loss. Those arrays are populated during the start-up of the threads in order to minimize

the latency and computational cost during the real-time operation. Each array is unique to the

145

Chapter 4. Building-in-the-Loop Emulation Engine

Algorithm 9 Packet loss thread algorithm

1: procedure E M U L A T E _ L O S S

2: while loss_queue.l en > 0 do
3: pop the top of loss_queue to packet
4: sour ce ← source of packet
5: n ← network index of sour ce
6: msg _success ← net_values[n][net_i d x[n]]
7: if msg _success then
8: push packet to del ay_queue
9: end if

10: net_i d x[n] ← net_i d x[n]+1
11: if net_i d x[n] ≥ net_values[n].l en −1 then
12: I N I T I A L I Z E(n)
13: end if
14: end while
15: end procedure

emulated network and the emulation task of each thread. The start-up initialization procedure

in shown in Algorithm 8. The n is the network index and the net_values is the two-dimensional

array. The first dimension denotes the network emulated and the second stores the arrays of

the simulated output values over time. The algorithm for both Thread 1 and Thread 2 is similar

except for the generate_values function.

To begin with, the Thread 1 is populating the array using the ��������	���	�
 function, a

member of the Python’s numPy mathematical library. The function’s argument "p" is the

probability of packet success as generated by the network simulator when the number of trials

equals one, as a special case of binomial distribution. The size of the array produced, function

argument "size", is not strictly defined and varies based on the design requirements, packet

quantity, and accuracy. The main procedure of the Thread 1 is shown in Algorithm 9. As seen,

when a packet arrives, the source network is identified and the value pointed by the net_idx

index is taken from the relevant array. Depending on its boolean value, the packet is either

dropped or pushed to the Thread 2 queue. Then the index is increased pointing to the next

value in the network values array. Thus, since the array is following the theoretical distribution,

the packets would also do after a while. Lastly, if the index reaches the end of the array, a new

one is generated with the index pointing to position 0.

The principle of operation of Thread 2 is shown in Algorithm 10. The algorithm as expected is

comparable with the one of Thread 1. The primary difference is in the way the array of delays

(net_values) is generated. As it was mentioned earlier, unlike the packet loss algorithm which

accepts a probability of packet success; the delay algorithm supports various statistical inputs

and thus requires different procedures for the generation of the delay arrays.

In the first case where only a mean delay is provided, the array is populated only with this value

146

4.5. Emulation Engine Architecture, Implementation, and Operation

Algorithm 10 Packet delay thread algorithm

1: procedure E M U L A T E _ D E L A Y

2: while del ay_queue.len > 0 do
3: pop the top of del ay_queue to packet
4: sour ce ← source of packet
5: n ← network index of sour ce
6: ms_del ay ← net_values[n][net_i d x[n]]
7: S E N D _ T O _ T W I S T E D(packet , ms_del ay)
8: net_i d x[n] ← net_i d x[n]+1
9: if net_i d x[n] ≥ net_values[n].l en −1 then

10: I N I T I A L I Z E(n)
11: end if
12: end while
13: end procedure

and all packets are thus delayed equally.Secondly, where a typical distribution is provided,

such as Gaussian or Poisson, the ������������� or �������	�
���� numPy functions are

used respectively to generate the new random delays.

If instead a histogram or a sample of delays to be replicated are provided, the new random

delays are drawn from each bin based on its calculated weight the ��������
�
�� numPy

function. An example code snippet for achieving that functionality is seen in Listing 8.

������ ����	
� ��

�
� �
������	�������
���
�� �����������

��������� � ����������
���
���
��������������

����������
��	�
�������
����

�
�����������������������

�
���
������
���
������
����������
����� !�"��
���
���
������
������

�
���� �
���
������
���
�

Listing 8 – Generating random values from a given histogram

Finally, if a continuous PDF is provided, an inverse transform sampling should be performed.

This is called non-uniform random variate generation. Devroye in [231] introduced the

theorem which is used as the basis for generating the random numbers.

"Theorem: Let F be a continuous distribution function on IR with inverse F−1 defined by

F−1(u) = i n f { x : F (x) = u, 0 < u < 1 }. If U is a uniform [0,1] random variable then F−1(U)

has distribution function F . Also, If X has distribution function F , then F (X) is uniformly

distributed on [0,1]"

More specifically, the author at [232] elaborates on the exact procedure for inverse transform

sampling. The steps to be followed are:

147

Chapter 4. Building-in-the-Loop Emulation Engine

1. Normalize the given PDF, f (x), if it is not already normalized; the PDF is normalized if∫+∞
−∞ f (x)d x = 1.

2. Integrate the normalized PDF in order to compute the CDF, F (x) =∫x
−∞ f (t)d t .

3. Invert the F (x) which results in the inverse CDF, F−1(u).

4. Generate a uniform random variable U ∈ [0,1] and substitute it into the F−1(u).

The final Thread 3, cf. Fig. 4.14, is the Twisted reactor, a high-performance event-loop and the

core of the Twisted network library. Although it is highly versatile as a tool, it serves a single

purpose in this work. It has to handle a high number of packets and defer their transmission

with minimum inherent latency. The Twisted reactor runs in the main thread of the process,

and it is called from the packet delay module thread using ���������	�
�� for thread-safe

operation. Following that it schedules the delayed transmission of the packets using the

������

� instruction. Finally, the txZMQ Python library closely integrates the ZeroMQ

sockets inside the Twisted event loop for minimum additional latency and increased flexibility

Concluding this section, the evaluation and performance validation of the vNetwork module

is in Section 4.6. It features several hosting hardware, packet throughput, and payload size

scenarios.

4.6 Emulation Engine Evaluation and Validation

The previous sections presented the theory and implementation of the innovating building

emulation engine based on the DES concepts. This section assesses the emulation engine

performance in various case studies. Subsection 4.6.2 focuses on the vEngine while subsection

4.6.3 scrutinizes the vNetwork module performance. The section 4.6.4 concludes with a

case study of virtualized components integration within existing infrastructure and building

construction.

4.6.1 Testing setup

The aim of the work is a flexible architecture for different emulation scenarios. The

requirements change not only along the emulation models but also concerning the preferred

hosting hardware.

A setup was designed and tested for evaluating the emulation engine design and operation on

many realistic scenarios. The setup is comprised of:

1. hosting hardware for the computational execution;

2. modified Debian Linux distribution for software and library support;

3. custom software logic that supervises the evaluation process and automates the

measurements;

148

4.6. Emulation Engine Evaluation and Validation

4. custom algorithms for statistical analysis and plotting of the measurements;

5. the enabling BMS for enabling the CPS properties;

6. and finally, the source code of the emulator.

The diversified hardware enables the evaluation of dissimilar use cases such as: as an offline

simulation tool, as an online and cloud-hosted emulator or even by mean of

building-distributed micro-emulators. The representative hardware fitting these scenarios are

the following:

1. powerful modern machine, featuring an Intel® Core i7-6700 CPU @ 4.00Ghz with 32GB

DDR4 memory;

2. mainstream hardware, featuring an Intel® Core i5-4570 CPU @3.60Ghz with 8GB DDR3

memory;

3. last generation hardware, featuring an Intel® Core 2 Quad Q9650 @3.00Ghz with 8GB

DDR2 memory;

4. an inexpensive, cloud-hosted virtual private server (VPS), featuring a shared Intel®

E5-2630L CPU and 512MB RAM;

5. a capable and last generation micro-computer, the Raspberry Pi 3 (Rasp3), featuring a

quad-core ARM® Cortex-A53 MPU @1.2Ghz with 512MB LPDDR2 memory;

6. finally, an industrial, embedded, low-power Linux board, the BeagleBone Black (BBB),

featuring a single-core ARM® Cortex-A8 MPU @1Ghz with 512MB of LPDDR3 memory.

It is worth noting that due to memory size limitations, the machines equipped only with 512MB

of RAM cannot support more than 100 vEntities. Hence, the VPS, Raspberry, and BeagleBone

related graphs in the following subsections do not include the tests of more than 100 vEntities.

To assess and normalize the hardware regarding performance capacity, the open-source

�������� utility have been used. While it supports several tests, for this work, only the CPU

and RAM had been tested. Those two components, unlike the storage IOPS, significantly

influence the performance of the emulation engine. Specifically, a series of three tests, for each

hardware, has been performed.

1. Single-threaded CPU benchmark; the benchmark consists in timing the calculation of

prime numbers up to 10000.

2. Multi-threaded CPU benchmark; the same configuration with the previous but using 8

threads.

3. RAM speed benchmark; single-threaded, sequential write test for 1 GByte of data with 1

KByte block size.

Listing 9 displays the exact �������� arguments that had been used. The results of the test are

found in the Table 4.1. The results provide helpful preliminary insights on the anticipated

149

Chapter 4. Building-in-the-Loop Emulation Engine

performance of the engine. Firstly as expected, the multi-core architectures significantly

benefit from multi-threaded computations. As the emulation engine is also a multi-threaded

architecture, the benefits are assumed to appear also in the emulation related benchmarks.

Secondly, while the memory speeds varied significantly, the realistic engine results did not

reveal any strong correlation between memory speed and emulation performance. Finally, the

computational heavy, multi-threaded benchmark exhibits a significant contrast in performance

(e.g. ≈ 252 : 1 for i7-6700 vs BeagleBone) of the hardware; this enables the evaluation of the

engine on the two extreme ends of hardware spectrum.

����������	

�
���	
��� �	� ��� ������
����

�������� ��	��	
���
��

�
���	
��� �	� �	������ ��� ������
����

�������� ��	��	
��� ������	�
����
�
��

�
���	
��� �	�
�
��� ������
����

�������� ��	��	
����
� ������
��	�	�������
��
��

Listing 9 – Bash script for hardware benchmark

Table 4.1 – Benchmark metrics using sysbench for the hardware used in the performance
evaluation of emulation. For CPU smaller is better, for Memory bigger is better.

Sysbench Results

Hardware Configuration CPU 1-thread CPU 8-threads Memory

Intel® i7-6700, 32GB DDR4 7.35 sec 1.15 sec 3990 MB/sec

Intel® i5-4570, 8GB DDR3 8.6 sec 2.28 sec 3830 MB/sec

Intel® Q9650, 8GB DDR2 8.4 sec 2.12 sec 2250 MB/sec

Intel® E5-2630L (Shared), 512MB DDR3 12.35 sec 12.84 sec 692 MB/sec

Raspberry Pi 3, 512MB LPDDR2 182.6 sec 45.72 sec 318 MB/sec

BeagleBone Black, 512MB LPDDR3 289.4 sec 289.8 sec 155 MB/sec

To normalize the testing hardware for the software point of view, a clean installation of the

Debian "jessie" has been used. Additionally, all unnecessary background services had been

suspended during the tests. This step is necessary for reducing externally induced variance on

the results.

The majority of the results in the following subsection are in the form of CDF diagrams.

They have several advantages over histograms. Firstly, all the key values like minimum and

maximum, median and percentiles can be directly read from the diagram. Histograms illustrate

the minimum and maximum of the samples as values in the first or last bin accordingly. On the

contrary, the minimum is the CDF diagram is the point where the curve meets the x-axis, while

the maximum is where it reaches the y = 1. The percentiles can easily be read using the x-axis.

Secondly, outliers in histograms stretch the bins and make it difficult to recognize distribution

150

4.6. Emulation Engine Evaluation and Validation

patterns quickly. The outliers for the CDF on the other hand can be seen through the tails of

the curves. While harder than with histograms, the clusters of values can be read from the

CDF diagrams as well. A decrease of the curve slope followed with an increase again denotes a

group of samples with values read on the x-axis. Finally and most importantly for the scope of

this section, the CDF diagrams are much more suitable for comparison of several datasets. An

arbitrary number of CDF curves can be plotted in the same figure for direct comparison.

4.6.2 vEngine performance

To begin with, in high activity periods of the vEntities pool due to the cooperative design

of the emulation engine, computation and communication overhead may be encountered.

During these demanding times, sockets have to receive and transmit hundreds to thousands

of messages per second. Despite the regulation services by the supervisor module, with

this subsection, the author validates the design against unfavorable conditions. The section

illustrates the capability of the engine to cope with a large number of concurrent computation

and communication activities.

A special purpose vEntity called vBenchmark is implemented for evaluating that capability.

Unlike the various vEntities presented in subsection 4.5.3, this model class allows precise

configuration of the activity patterns. Examples of configurable elements include the message

size (L), the sleep unless interrupted interval (Δti), the time interval of uninterpretable

computations (Qi), and finally the frequency of generated events (F ev t) and received

commands (F cmd). Additionally, the number (n) of vBenchmark-type of vEntities running

concurrently is also adjustable.

More specifically, to isolate and study the inherent overhead of the engine rather than of the

models, the computational time Qi parameters for all the vBenchmarks was set to zero. In that

case, the main workload Wp is caused by the various sockets (cf. Fig. 4.6) in the engine. The

workload over a period of time [t0, t1] is calculated by Eq. 4.10, where F x (t) is the frequency of

messages over time, Lx (t) the size of message over time. The superscript x denotes the type of

the message.

Wp =
∫t1

t0

Lx (t)·F x (t)d t , x ∈ {ev t ,cmd } ∀zmq socket (4.10)

The workload of each vEntity is given by Eq. 4.11. The Lev t
i (t) and F ev t

i (t) functions define

the events from vEi . The Lcmd
i (t) and F cmd

i (t) functions characterize the external commands

151

Chapter 4. Building-in-the-Loop Emulation Engine

from BMS to the specific vEi .

WvEi = W ev t
vEi

+W cmd
vEi

=
∫t1

t0

Lev t
i (t)·F ev t

i (t)d t +
∫t1

t0

Lcmd
i (t)·F cmd

i (t)d t
(4.11)

The workload of the complete pool on the other hand is defined by Eq. 4.12 as a sum of all

vEntities.

W al l
vE =

n∑
i=1

WvEi (4.12)

Combining Eq. 4.12 and Eq. 4.11 results in the total workload of the vEntities pool given by Eq.

4.13.

W al l
vE =

n∑
i=1

W ev t
vEi

+
n∑

i=1
W cmd

vEi

=
n∑

i=1

∫t1

t0

Lev t
i (t)·F ev t

i (t)d t +
n∑

i=1

∫t1

t0

Lcmd
i (t)·F cmd

i (t)d t

(4.13)

The workload of vMiddleware manager sockets is defined as the sum of workloads at events

and commands sockets as illustrated by Eq. 4.14.

Wv Mi d =W ev t
v Mi d +W cmd

v Mi d (4.14)

Specifically, Eq. 4.15 defines the workload on events sockets, where p denotes additionally the

probability of a message to be forwarded to BMS instead of being forwarded to other entities

(internal message).

W ev t
v Mi d =W ev t

r e +p ·W ev t
f wB MS

+ (1−p)·W ev t
f wpool

, p ∈ [0,1] (4.15)

152

4.6. Emulation Engine Evaluation and Validation

Since the workload at any socket is the same, using Eq. 4.10, the events workload on the receive

and forward sockets of the vMiddleware manager are given by Eq. 4.16.

W ev t
r e = W ev t

f wB MS
=W ev t

f wpool
=

n∑
i=1

W ev t
i

=
n∑

i=1

∫t1

t0

Lev t
i (t)·F ev t

i (t)d t

(4.16)

Additionally, Eq. 4.17 defines the workload on commands sockets, where W cmd
r eB MS

relates to

commands reception from BMS and W cmd
f wpool

to their forwarding to entities pool.

W cmd
v Mi d =W cmd

r eB MS
+W cmd

f wpool
(4.17)

For Lcmd
B MS(t) and F cmd

B MS(t) functions which characterize the commands from BMS to any vEi :

W cmd
r eB MS

=W cmd
f wpool

=
∫t1

t0

Lcmd
B MS(t)·F cmd

B MS(t)d t (4.18)

Therefore, combining Equations 4.15, 4.16, 4.17, 4.18 results in the final vMiddleware manager

given by Eq. 4.19

Wv Mi d = W ev t
r epool

+p ·W ev t
f wB MS

+ (1−p)·W ev t
f wpool

+ W cmd
r eB MS

+W cmd
f wpool

= 2·W ev t
r e_ f w +2·W cmd

r e_ f w

= 2·
n∑

i=1

∫t1

t0

Lev t
i (t)·F ev t

i (t)d t +2·
∫t1

t0

Lcmd
B MS(t)·F cmd

B MS(t)d t

(4.19)

Concluding the workload calculations, the total workload of the virtual engine, WvEng , over a

153

Chapter 4. Building-in-the-Loop Emulation Engine

period of time [t0, t1] is given by Eq. 4.20.

WvEng = W al l
vE +Wv Mi d

= 3·
n∑

i=1

∫t1

t0

Lev t
i (t)·F ev t

i (t)d t +
n∑

i=1

∫t1

t0

Lcmd
i (t)·F cmd

i (t)d t

+ 2·
∫t1

t0

Lcmd
B MS(t)·F cmd

B MS(t)d t

(4.20)

To quantify the performance, the author chose the roundtrip latency as the key metric. This

latency measures the total delay for a message to be acknowledged by the vEntity (commands-

relevant) and for the vMiddleware manager to receive the reply (events-relevant). The delay for

a vEntity to acknowledge the message is due to the cooperative nature of the vEntities pool. It

had been already mentioned in the subsection 4.5.4 of the supervisor as di =Δt a
i −Δti . On the

other hand, the delay of the vMiddleware manager to acknowledge the reply, expresses the

overall load of the engine manager that is responsible for numerous other tasks besides the

vEntities events reception.

Fig. 4.15 to 4.19 illustrate the evaluation results using the customized vBenchmark class. Each

curve or bar in the figures represents a single test. The colors in each figure represent a different

size of vEntities pool as defined by their legend.The test executes until a hundred of commands

and equal number events per vEntity have been collected. While the roundtrip latency is the

dependent variable of the statistical analysis, the independent variables are:

1. commands/sec, denotes the frequency of generated messages (commands) by the

vMiddleware manager addressed to a single vEntity;

2. events/sec, denotes the frequency of generated messages (events) by each vEntity;

3. number of vEntities, as the name suggests, it is the number of parallel uTreads;

4. hardware, indicates the hosting hardware as described above.

Starting with Fig. 4.15, it represents a low activity scenario for the emulation engine. The

middleware receives a command every 10 seconds, while each vEntity sends an event also

every 10 seconds. In this scenario, it is obvious that the number of uTreads do not influence

the performance of the engine. For the capable hardware of Fig. 4.15(a)-(d) the latencies are

proven to be superb and within the timing error, even with ≤ 1ms latency. For the embedded

hardware of Fig. 4.15(e)-(f) the latencies are also excellent for any potential use-case.

Fig. 4.16 displays the cluster of tests that increases the commands activity to 10 commands per

second while keeping the events at the same frequency. Despite the increase in the activity on

the vMiddleware manager side due to greater command workload, the roundtrip latency for all

the tests remain unaffected.

154

4.6. Emulation Engine Evaluation and Validation

Fig. 4.17 displays the cluster of tests with increased frequency of events at 100 per second while

the commands remain at the modest number of one every 10seconds. This level of activity is

understandably fairly unrealistic in real-life deployment. Nobody could envision a lot of

building infrastructure that produces hundreds of events per seconds. Nevertheless, this

scenario is critical for evaluating the absolute limits of the engine. Unlike the unobserved

impact of increased commands activity in the previous figure, the number of events certainly

affects the real-time operation of the engine. To begin with, while the performance in Fig.

4.17(a)-(e) remains excellent, the advantage of the superior hosting hardware becomes

noticeable. In fact, BeagleBone in 4.17(f) shows some considerable delays when loaded with

more than 50 vEntities.

Fig. 4.18 are the last CDF figures illustrating the vBenchmark tests. The figures feature the

maximum activity scenario tested, 100 events per seconds and 10 commands per second.

The observation of previous test are confirmed with this figures as well. Similar to Fig. 4.16,

the increase of commands frequency does not affect the performance of the engine. On the

other hand, similar to Fig. 4.17, the increase of events per seconds considerably impacts the

real-time operation.

Fig. 4.19 illustrates a different data analysis. The latency is separated now in event-related (evt)

and command-related (cmd) ones. That analysis highlights and facilitates the identification of

the message type that contributes in the increased latency under high activity scenarios. The

amplitude of the histograms represents the mean value of the samples population, while color

depicts the number of vEntities. Each subfigure relates to the previous scenarios of Fig. 4.15 to

4.18. It is apparent that the cause of the roundtrip latency is on command direction of the

message; meaning that the message is queued at the vEntities socket until it has the chance to

acknowledge and timestamp it. Obviously, a raise in a number of active vEntities sharing the

same process increases the chance of overlapping requests for CPU that need to be queued

and sequentially served.

It is important to notice that the memory size, rather than its speed, is crucial for a large

number of emulated infrastructure. For example, the VPS has still computational capacity for

more uTreads while being limited by its memory size. The considerable memory is due to the

loaded vEntity class objects. Even though only one model (for each running engine) executes

at a time, their data structures, variables, and program code are kept and not purged every time

the control of uTread is relinquished. Hence, as vBenchmark is a relatively simple model, the

effects of limited memory will be more prominent for more advanced models. Nevertheless,

due to a single uTread memory stack being active at any point, long-suspended vEntities

can be swapped and memory reused by other processes. However, this paging operation

by the memory management unit will undeniably introduce delays that need to be further

investigated. Finally, for hardware architecture with many small cores, e.g. Raspberry Pi 3, a

second parallel vEntity pool can be spawned as an additional process. The uTreads are then

shared between the two. This trivial procedure enables improved utilization of multiple CPU

cores.

155

Chapter 4. Building-in-the-Loop Emulation Engine

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.15 – CDF of roundtrip latency, for varying number of vEntities and hardware, for 0.1
commands/sec and 0.1 events/sec for each vEntity

156

4.6. Emulation Engine Evaluation and Validation

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.16 – CDF of roundtrip latency, for varying number of vEntities and hardware, for 10
commands/sec and 0.1 events/sec for each vEntity

157

Chapter 4. Building-in-the-Loop Emulation Engine

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.17 – CDF of roundtrip latency, for varying number of vEntities and hardware, for 0.1
commands/sec and 100 events/sec for each vEntity

158

4.6. Emulation Engine Evaluation and Validation

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.18 – CDF of roundtrip latency, for varying number of vEntities and hardware, for 10
commands/sec and 100 events/sec for each vEntity

159

Chapter 4. Building-in-the-Loop Emulation Engine

0.1

1

10

evt cmd evt cmd evt cmd evt cmd evt cmd evt cmd

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

vE10 vE25 vE50 vE100 vE250 vE500

(a) 0.1 commands/sec 0.1, events/sec

0.1

1

10

evt cmd evt cmd evt cmd evt cmd evt cmd evt cmd

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

vE10 vE25 vE50 vE100 vE250 vE500

(b) 10 commands/sec 0.1, events/sec

0.01

0.1

1

10

100

1000

evt cmd evt cmd evt cmd evt cmd evt cmd evt cmd

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

vE10 vE25 vE50 vE100 vE250 vE500

(c) 0.1 commands/sec 100, events/sec

0.01

0.1

1

10

100

1000

evt cmd evt cmd evt cmd evt cmd evt cmd evt cmd

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

vE10 vE25 vE50 vE100 vE250 vE500

(d) 10 commands/sec 100, events/sec

Figure 4.19 – Isolated latency of events and commands for varying hardware, number of
vEntities, commands/sec, and events/sec

160

4.6. Emulation Engine Evaluation and Validation

4.6.3 vNetwork performance

The subsection 4.5.5 introduced the design and implementation of the vNetwork module.

Similar to the core engine, the cooperative nature of the design does not enforce the execution

timings. The vNetwork’s pipeline follows a "best effort" approach. Hence, in situations of a

large number of emulated nodes with high messaging activity, moments of congestion and

increased latency could arise. Therefore, an evaluation of vNetwork’s performance under load

was carried out. Similarly to the engine performance analysis, some variables have been used

for evaluating the vNetwork module. Unlike the vBenchmark scenarios though, in vNetwork

there is not differentiation between events or commands since its pipeline is unidirectional, cf.

Fig. 4.14.

Since vNetwork module emulates real networks, a metric of interest is the throughput Bt of

processed packets as defined by Eq. 4.21 where Nt denotes the number of packets. The steady

state throughput B is calculated by Eq. 4.22 [233].

Bt = N tot al
t

t
= N ev t

t +N cmd
t

t
(4.21)

B = lim
t→∞Bt = lim

t→∞
N ev t

t +N cmd
t

t
(4.22)

The mean size of the packet is given by Eq. 4.23 where Li the size of each packet excluding the

zmq header.

Lp =
∑Nt

i=1 Li

Nt
(4.23)

The Wv Net , given by Eq. 4.24, is the average workload due to the two, receive and forward,

sockets of the vNetwork pipeline. The internal computational work of vNetwork is negligible.

The pl denotes the probability of a packet to be emulated as "lost" and thus not to require

submission, Wr e relates to the reception socket and Wf w to the forward one.

Wv Net = Wr e + (1−pl)·Wf w (4.24)

161

Chapter 4. Building-in-the-Loop Emulation Engine

Given that the workload per socket is defined by

Wr e = Wf w = Lp ·B (4.25)

the total workload of vNetwork becomes:

Wv Net = Lp ·B + (1−pl)·(Lp ·B)

= 2·Lp ·B −pl ·Lp ·B , p ∈ [0,1]
(4.26)

Similarly to the vBenchmark subsection, in order to assess the performance the author tested

the vNetwork versus a number of variables such as:

• incoming packet frequency;

• packet size;

• hosting hardware.

Fig. 4.20 to 4.25 and Table 4.2 illustrate the performance of vNetwork on different evaluation

scenarios. Specifically, there were performed two series of tests for the vNetwork module.

The first one involves a fixed packet size and varying packet throughput, while the second

uses varying packet size and fixed packet throughput. Additionally, both of them have been

repeated on the six hosting hardware of the previous subsection. To yield accurate results,

a population of 50000 latency samples, for each test, has been collected for the statistical

analysis.

Unlike the vEntities benchmark, where a degree of latency can be tolerated, for vNetwork it is

not the case. The emulated networks have inherent latencies of only a few dozens of ms. Hence,

the delay introduced by the vNetwork module should be at least one order of magnitude

smaller. It is therefore obvious that the real-time performance of the network emulator is

critical for the overall accuracy of the engine.

Starting with Fig. 4.20, the network emulation module is evaluated with a fixed message

payload size of 100 B with packet frequency ranging from 1 packets/sec to 2500 packets/sec.

Each colored curve represents a different packet frequency. As the figure shows, for this payload

size, the powerful machines, Fig. 4.20(a)-(c) encounter no trouble whatsoever, with most

packets traversing the pipeline with latency of ≤ 1ms. The cloud-based solution, as well as

the Raspberry Pi 3, are introducing minimal latency for nearly all the packet throughputs. An

exaggerated situation in pictured in Fig. 4.20(f) for the BeagleBone which is able to sustain

only up to 100 packets/sec.

162

4.6. Emulation Engine Evaluation and Validation

The previous test of varying packet throughput is repeated for a payload size of 500 B. It permits

the performance assessment when emulating large frame network protocols. The resulting

CDF diagrams are visible in Fig. 4.21. Even with the increased payload, large core architectures

can cope with the increased throughput, cf. Fig. 4.21(a)-(d), with only exception the case of

2500 packets/sec on the cloud VPS. The quad-core Raspberry Pi maintained surprisingly good

performance even for 2500 packets/sec. The BeagleBone’s limitations are also appearing in this

scenario, necessitating less than 100 packets/sec to operate in near real time.

Fig. 4.22 and 4.23 illustrate scenarios with fixed frequency and varying payload size. Those

tests enable the study of packet size, rather than throughput, impact on the operation of the

engine. More specifically, the two tests now feature a fixed packet frequency of either 100 or

500 packets/sec and a varying payload size of 5 B to 10 KB. It is worth noting that payloads ≥ 1

KB are rather unrealistic for the relevant device networks in the building, and they serve only

the assessment process.

Fig. 4.22(a)-(d) reveals the great performance regardless of the payload size for all the large

core architecture, even for the shared CPU core of the VPS. While not in the same performance

scale, the Raspberry Pi 3 can sustain the performance with up to 5 KB payload. On the other

hand, the BeagleBone can maintain the same performance with up to 1 KB payload.

Fig. 4.23 reveals a different situation. While the three first large core architectures, cf. Fig.

4.23(a)-(c), are not affected by the increased throughput, that is not the case for the less

powerful hardware, cf. Fig. 4.23(d)-(f). The VPS and Raspberry Pi 3 start to show signs of

performance degradation from 5 KB payload. Even worse, the BeagleBone is unable to provide

real time network emulation even for payloads as low as 5 B. This proves in fact that for

vNetwork module, real time operation highly depends on the packet throughput capabilities of

the hardware.

For holistic comparison reasons Table 4.2 is provided. It includes the mean and standard

deviation statistical data for all the tests conducted during the evaluation of vNetwork. The

table middle-rules separate the four test series as mentioned above, while the color denotes

the unacceptable latencies for realistic network emulation.

163

Chapter 4. Building-in-the-Loop Emulation Engine

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.20 – CDF of latency introduced by vNetwork hosted on varying hardware, for varying
packet/sec and 100 B payload

164

4.6. Emulation Engine Evaluation and Validation

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.21 – CDF of latency introduced by vNetwork hosted on varying hardware, for varying
packet/sec and 500 B payload

165

Chapter 4. Building-in-the-Loop Emulation Engine

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.22 – CDF of latency introduced by vNetwork hosted on varying hardware, for 100
packet/sec and varying payload size

166

4.6. Emulation Engine Evaluation and Validation

(a) i7-6700 (b) i5-4570

(c) Q9650 (d) VPS-Xeon

(e) Rasp3 (f) BBB

Figure 4.23 – CDF of latency introduced by vNetwork hosted on varying hardware, for 500
packet/sec and varying payload size

167

Chapter 4. Building-in-the-Loop Emulation Engine

Table 4.2 – Mean and standard deviation of total added latency (mean ± std) in ms by the
vNetwork stage for various tests and hardware.

Configuration Hardware

size freq i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

100 B 1 p/s 1.02±0.12 0.72±0.13 0.27±0.03 1.18±0.20 2.13±0.12 5.87±2.06

100 B 5 p/s 1.02±0.12 0.66±0.13 0.26±0.02 1.41±0.18 2.04±0.14 5.75±1.48

100 B 10 p/s 1.03±0.11 0.55±0.20 0.25±0.02 1.00±0.38 2.02±0.15 5.68±1.64

100 B 50 p/s 1.02±0.12 0.52±0.18 0.25±0.07 0.76±0.27 1.83±0.25 3.71±1.41

100 B 100 p/s 1.01±0.13 0.46±0.18 0.24±0.09 0.66±0.21 1.71±0.46 4.21±1.82

100 B 500 p/s 0.66±0.18 0.25±0.19 0.27±0.16 0.70±0.34 1.10±0.41 38.2±58.6

100 B 1k p/s 0.38±0.12 0.19±0.06 0.32±0.37 0.96±0.65 1.47±0.65 4.4k ±2.6k

100 B 2.5k p/s 0.20±0.07 0.16±0.10 0.39±0.41 2.80±3.18 1.88±1.09 7.1k ±4.3k

500 B 1 p/s 1.19±0.13 0.71±0.26 0.39±0.03 1.44±0.30 3.30±0.25 7.87±2.96

500 B 5 p/s 1.20±0.12 0.86±0.13 0.37±0.02 1.38±0.24 3.13±0.28 7.71±2.15

500 B 10 p/s 1.22±0.12 0.85±0.14 0.37±0.02 1.51±0.29 3.10±0.22 7.62±2.29

500 B 50 p/s 1.20±0.14 0.74±0.20 0.35±0.03 1.21±0.30 3.07±0.28 4.79±1.38

500 B 100 p/s 1.20±0.16 0.52±0.24 0.37±0.12 0.98±0.40 3.21±0.62 5.80±3.12

500 B 500 p/s 0.69±0.16 0.29±0.09 0.40±0.28 1.01±0.50 1.98±0.71 925±575

500 B 1k p/s 0.51±0.17 0.24±0.05 0.48±0.56 1.74±0.92 2.90±2.28 6.4k ±3.5k

500 B 2.5k p/s 0.29±0.08 0.22±0.07 0.57±0.68 30.3±57.7 4.06±2.28 6.9k ±5.5k

5 B 100 p/s 0.66±0.09 0.46±0.17 0.22±0.02 0.55±0.22 1.58±0.28 3.81±1.65

10 B 100 p/s 0.67±0.09 0.44±0.17 0.21±0.01 0.49±0.18 1.61±0.26 3.87±1.63

50 B 100 p/s 0.70±0.09 0.47±0.17 0.24±0.03 0.67±0.38 1.78±0.25 4.07±1.77

1 KB 100 p/s 0.98±0.14 0.69±0.31 0.53±0.04 1.18±0.40 4.50±1.15 7.79±3.86

5 KB 100 p/s 2.20±0.35 1.22±0.60 1.78±0.12 3.80±1.32 9.69±2.04 108±25.3

10 KB 100 p/s 3.53±0.72 1.75±0.63 3.33±0.31 7.34±3.33 19.8±4.25 9.5k ±5.5k

5 B 500 p/s 0.55±0.13 0.22±0.07 0.23±0.17 0.63±0.16 1.10±0.39 8.48±0.56

10 B 500 p/s 0.56±0.14 0.21±0.05 0.24±0.19 0.62±0.18 0.95±0.29 8.31±0.66

50 B 500 p/s 0.56±0.13 0.23±0.07 0.26±0.22 0.63±0.39 1.09±0.35 24.4±16.7

1 KB 500 p/s 0.83±0.20 0.36±0.10 0.56±0.23 1.51±0.71 3.36±1.09 6.0k ±3.5k

5 KB 500 p/s 1.79±0.83 0.90±0.19 1.83±0.50 14.2±15.3 22.2±9.84 20k ±11k

10 KB 500 p/s 2.85±1.48 1.60±0.36 3.57±1.22 1.3k ±837 63.3±33.6 37k ±21k

168

4.6. Emulation Engine Evaluation and Validation

0.01

0.1

1

10

100

1000

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

La
te

nc
y

(m
s)

Hardware

1 2

(a) 100 B payload

0.01

0.1

1

10

100

1000

10000

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

La
te

nc
y

(m
s)

Hardware

T1T2 T2T3 T3T4 T4T5

(b) 1 KB payload

0.01

0.1

1

10

100

1000

10000

100000

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

La
te

nc
y

(m
s)

Hardware

(c) 5 KB payload

0.01

0.1

1

10

100

1000

10000

100000

i7-6700 i5-4570 Q9650 VPS Rasp3 BBB

La
te

nc
y

(m
s)

Hardware

T1T2 T2T3 T3T4 T4T5

(d) 10 KB payload

Figure 4.24 – Average latency for each vNetwork pipeline stage, hosted on varying hardware, for
500 packet/sec and varying payload size

As mentioned in subsection 4.5.5 the vNetwork consists of various stages in an asynchronous

pipeline. When the flow of packets through it is consistent, each stage execution introduces

comparable latency. On the contrary, due to different algorithm complexity in each stage, in

high load situations, not all of the stages are stressed equally. Hence, their contribution in

overall latency does not increase linearly with the load.

Fig. 4.24 proves this fact on different hardware for 500 packets/sec of varying payload size. The

tn tn−1 designators refer to the time difference tn−1 − tn where ti the timestamp at step i of the

pipeline as seen in the figure 4.14. As expected, the powerful machines are not affected by

the increased payload size. However, the VPS, Raspberry, and BeagleBone show significant

delays, mainly on the t3t4 time frame. This corresponds to the Twisted thread which cannot

keep up with the increasing load. However, on the date of this writing, the exact cause of

this accumulating delay on the Twisted reactor is still unclear. A valid assumption is that the

microprocessor units are unable to handle the computational complexity of the Twisted library

in high load scenarios. An additional interesting observation is that for the Raspberry Pi the

Twisted latency is increasing in much smaller rate compared to the other two.

Final analysis for the vNetwork module is visible in Fig. 4.25. The three figures plot the samples

of the latencies over time for three payload sizes while running on the BeagleBone. The plotting

versus time enables the observation of the transient phenomena in the network simulation

169

Chapter 4. Building-in-the-Loop Emulation Engine

module. The t3t4 time frame continues to be of interest. Although in Fig. 4.25(a) and 4.25(b)

the added latency is bounded; in Fig. 4.25(c) of the largest payload, a latency accumulating

effect is observed. Thus, the Twisted reactor accumulated messages in the input faster than it

can push them.

Concluding, the vNetwork in conventional and not benchmarking loads is highly efficient even

on low-power hardware such as the BeagleBone. Additionally, if need be, thanks to the modular

and socket based design, multiple processes can be launched, better leveraging multi-core

architectures or even distributed nodes topologies. A load balancer can allocate the packets

accordingly enabling both horizontal and vertical scaling.

0.1

1

10

100

La
te

nc
y

(m
s)

Samples in time

(a) 1 KB payload

0.1

1

10

100

1000

La
te

nc
y

(m
s)

Samples in time

(b) 5 KB payload

0.1

1

10

100

1000

10000

100000

La
te

nc
y

(m
s)

Samples in time

(c) 10 KB payload

Figure 4.25 – Latency over time for each vNetwork stage, running on the BeagleBone, for 100
packet/sec and varying payload size

170

4.6. Emulation Engine Evaluation and Validation

4.6.4 vBuilding: emulator practical assessment

The vEngine allows an existing BMS to collect data from the virtual infrastructure much like its

physical counterpart. In reverse, the BMS can transfer downstream commands to the virtual

middleware, emulating their control. This creates the opportunity for the energy management

system (EMS) to develop energy management strategies by integrating both physical and

virtual future devices in the actual building. Enabled by the BMS services, the EMS remains

agnostic to the underlying components and communication protocols while it can experiment

with non-existing, virtual infrastructure.

In order to evaluate the practical functionality of the vEngine, a virtual building has been

created with the elements listed in Table 4.3. The vUser triggers the activities of nearly all the

loads during the day based on its model. The EMS on the other hand controls the vHeater,

vBattery and vWasher while efficiently managing the energy.

Table 4.3 – List of emulated elements in the virtual building and their consumption features

Power range

Name Element Regular use Peak use

vUser Occupant - -

vBase Baseline consumption [220, 240] [340, 350]

vComputer1 Computer 1 [50, 80] [110, 130]

vComputer2 Computer 2 [50, 80] [110, 130]

vLight Dimmable Ceiling lights [10, 100] [100, 100]

vHeater Heating system [50, 600] [600, 600]

vWasher Washing machine [450, 650] [800, 1200]

vBattery Storage battery [0, 330] [330, 330]

Fig. 4.26 illustrates the virtual building powers throughout the day. It highlights the high

potential the engine as an auxiliary tool for simulating a building in real time and improving

the EMS. Easy reconfigurability of the vEngine, allows the EMS to test many scenarios and

configurations without costly investments.

The resulting flexibility is leveraged by the EMS for meeting the energy objectives, reducing

energy bill and providing ancillary services to the grid. Fig. 4.27 illustrates, for example,

the reduction of the power peak demand with the help of the EMS. The first column of

figures denotes the original consumption profile. In the second column the EMS performs

a load shifting by postponing the vWasher cycle about 5 hours later which results in much

smoother building power profile. If the virtual building also supports battery storage like in the

third column, the EMS mitigates the peak by introducing energy from the battery without

rescheduling the vWasher. While both techniques can be used in traditional demand response

(DR) scenarios, the research is now progressively moving towards real-time pricing (RTP) and

171

Chapter 4. Building-in-the-Loop Emulation Engine

critical peak pricing (CPP) programs [234, 235, 236]. Those pilot programs demonstrated that

consumers adjust their electricity usage in response to price changes [237]. The EMS could

facilitate the process and increase the financial gains by charging the battery low price periods

and to discharging it when it’s financially profitable. Hence, the building emulator and the

vBattery in particular, can be used as practical and realistic financial gains simulation tools and

research-supporting technologies for improving the EMS algorithms.

0 4 8 12 16 20 24
Time (h)

0

50

100

150
Ceiling light

0 4 8 12 16 20 24
Time (h)

0

500

1000

1500

P
ow

er
 (W

)

Washer
0 4 8 12 16 20 24

0

200

400

600

800
Heater

0 4 8 12 16 20 24
200

250

300

350

400

P
ow

er
 (W

)

Baseline

0 4 8 12 16 20 24
Time (h)

0

50

100

150
Computer 2

0 4 8 12 16 20 24
0

50

100

150
Computer 1

0 4 8 12 16 20 24

Time (h)

0

500

1000

1500

2000

2500

P
ow

er
 (W

)

Building consumption

Figure 4.26 – Consumption profile of building and its virtual elements

0 4 8 12 16 20 24
Time (h)

0

500

1000

P
ow

er
 (W

)

Washer

0 4 8 12 16 20 24
0

500

1000

1500

2000

2500

P
ow

er
 (W

)

Building consumption

0 4 8 12 16 20 24
0

500

1000

1500

2000

2500
Building consumption

0 4 8 12 16 20 24
Time (h)

0

500

1000

Washer

0 4 8 12 16 20 24
0

500

1000

1500

2000

2500
Building consumption

0 4 8 12 16 20 24
Time (h)

0

0.1

0.2

0.3

E
ne

rg
y

(k
W

h)

Battery

Figure 4.27 – Consumption profile of building with enabled peak power reduction

Moreover, the EMS may leverage the virtual infrastructure for evaluating the energy

optimization potential within physical buildings, actual occupants and real infrastructure.

Using the virtual energy-flexible entities (e.g. battery, PV panel), the EMS can provide energy

and financial performance estimates justifying or not a candidate retrofitting investment.

To evaluate this closely integrated cyber-physical functionality of the vEngine in the context of

the EMS, an actual university campus building has been augmented with the vEngine. The

virtual elements complement the already installed sensor and actuator network. Those virtual

devices are a vPVpanel and a vBattery which are enough for testing simplified peak power

mitigation techniques.

172

4.6. Emulation Engine Evaluation and Validation

Since the vPVpanel is using the same model described in subsection 4.5.3, it gathers the outside

luminosity and temperature in real time and emulates the appropriate power production

for each specific day. An alternative approach would have been to create two vSensors with

values extracted from the Measurement and Instrumentation Data Center’s online databases.

The model of vPVpanel is using the parameters of Solar‘s DIAMOND CS6X-310P cell. The

vBattery is also using the already introduced model with simplified parameters: {C apaci t y :

3kW h;Power : 3.3kW ;e f f i ci enc y : 95%}.

The EMS controls the storage system in order to mitigate the peak power and flatten the profile

of the power purchased from the SG, using the logic of Eq. 4.27, where PB is the power of the

battery, PL is the building consumption, PG the generated power and {P mi n
th ;P max

th } are set to

{1.5;2.2}kW .

PB =

⎧⎪⎨
⎪⎩

P mi n
th −PL +PG if (PL −PG) < P mi n

th
P max

th −PL +PG if (PL −PG) > P max
th

0 otherwise

(4.27)

Finally, Fig. 4.28 shows a realistic demonstration of EMS capabilities using virtual generation

and storage and physical power sensors as recorded on the 3r d of August 2016. The load

consumption is, in fact, the real measurement as recorded by the smart meter. The simple EMS

intelligence manages the battery in a way that a reduced amount of energy is purchased from

the network.

Fig. 4.29 visualizes the use of such building-in-the-loop tool for investigating potential

investment. The area between the two graphs denotes the reduction of purchased energy

in a single day. A payback period analysis, cf. Eq. 4.28, or even better a discounted payback

period can then estimate the number of days required to recover the cost of the investment in

storage and generation. At the end of this period, the investor not only will reduce the carbon

footprint but also start to make money from the electric bill. Therefore, despite this been an

oversimplified financial analysis of the investment, the benefits remain clear. The critical

data to be extracted accurately is the emulated reduction in energy as a result of the virtual

generation and/or storage. The rest is a matter of the used financial model for calculating the

investment potential.

Payback Per i od = Cost o f i nvestment

Reducti on i n ener g y bi l l
(4.28)

173

Chapter 4. Building-in-the-Loop Emulation Engine

0 4 8 12 16 20 24
Time (hour)

0

1

2

3

4

5

P
ow

er
 (

kW
)

Power purchased
Power consumpted
Energy stored (bat)
Power generated (PV)

Figure 4.28 – Practical demonstration of EMS capabilities using virtual generation and storage

0 4 8 12 16 20 24
Time (hour)

0

1

2

3

4

5

P
ow

er
 (

kW
)

Power purchased
Power consumpted

$

Figure 4.29 – Financial benefits predicted by the EMS for real consumption using the virtual
generation and storage

4.7 Conclusions

The SB is more than ever in a transitional phase due to the introduction of IoT, novel energy

storage technologies, improved energy generation infrastructure and highly intelligent

algorithms. Nevertheless, all these technologies will not be ready or financial advantageous at

the early stages.

This chapter presented an innovative SB emulation system for integration in a BMS. The

emulator can be used either in real-time along with existing infrastructure, or offline as a

software simulator tool. The potential of this tool for supporting SB energy management

research has been presented. Moreover, the practical application of financial analysis on

retrofitting investments has also been justified. In fact, such tool could mitigate the burden of

retrofitting, and the risk of fragmented IoT market by easing the adoption of new technologies.

The DES theory and the unique design formulation developed in this work, enables the

implementation of a lightweight, highly concurrent general purpose emulation engine. It is

proven to offer high performance on various hosting hardware, including embedded platforms.

174

4.7. Conclusions

The system can accurately emulate several different SB elements including its occupants and

embedded networks based on literature-proved models. Its software design is not only scalable

on distributed infrastructure but also expandable regarding supported emulation models.

The emulator can be used either in real-time along with existing infrastructure, or offline

as a software simulator tool. The potential of this mechanism for supporting SB energy

management research has been presented. Moreover, the practical application of financial

analysis on retrofitting investments has also been justified. In fact, such tool could mitigate the

burden of retrofitting, and the risk of fragmented IoT market by easing the adoption of new

technologies.

175

5 Smart Building Case Study

The proposed architecture has been validated in the previous chapters on a per subsystem

basis. However, the analysis and the scope of a systems-thinking dissertation would not have

been complete without a holistic system evaluation. This short chapter serves that purpose,

and presents a realistic case study of the proposed Smart Building (SB) system architecture.

The application of the case study is on a university campus building in which the proposed

system has been installed. Firstly, it effectively demonstrates how some commercial and

experimental information and communication technology (ICT) devices can be interconnected

and leveraged for their sensing and actuation abilities. Secondly, it showcases the deployment

and the resulting advantages of the distributed middleware architecture in this building

construction. Finally, the chapter illustrates how an energy management system (EMS) is

leveraging the exposed SB system services for monitoring and control of the building, in order

to enable the demand side management (DSM) strategies.

177

Chapter 5. Smart Building Case Study

5.1 Introduction

Previous chapters explored the various software and hardware architectures which were

segmented, designed, and implemented as part of the complete Smart Building (SB) system

architecture. Each chapter included a narrow-scope validation either through targeted case

studies or via a performance evaluation procedure. This chapter aspires to provide closure to

this heterogeneous design endeavor. It presents a holistic case study on the potential of the

proposed deployed in a physical building for intelligent energy management and Smart Grid

(SG) integration.

The case study offers a practical illustration of a building retrofitting using the proposed

architecture, coupled with a selected number of information and communication technology

(ICT) devices. Moreover, such a case study highlights how the energy management system

(EMS), which is currently under development in the research group, connects to such a system

and how it can leverage the system for providing ancillary services to the SG through demand

response (DR) schemes.

The research study of this dissertation was part of a broader scope "Smart Grid Campus" project

in École polytechnique fédérale de Lausanne (EPFL). The goal of this project was distribution

energy grid modernization by monitoring in real time the consumption, production, and

storage for several buildings on the campus. Fig. 5.1 illustrates this project. For most buildings,

the distributed phasor measurement unit (PMU) monitoring systems collect and time align

asynchronous power data. Those are then transmitted to a centralized control server with

minimum latency and high security. However, for one of those locations, c.f. Fig 5.1 2.ELB, an

alternative approach was followed. Instead of a PMU monitoring with aggregated power data,

the concept of SB has been adopted. The vision behind this decision was the evaluation of the

potential of the SB as an interactive participant in the coordination of the distribution energy

network.

5.2 Physical Building and its Challenges

The selected building on the university campus where the system has been deployed is a

4-floor construction. The second floor has been selected as the main target for retrofitting. Fig.

5.2 illustrates the floor plan. As with many office-oriented constructions, there are several

similar rooms adjacent to each other, and some common larger spaces used as laboratories

and meeting places. Despite the second floor being the prime target for the system installation,

for simplicity’s sake and without loss of generality, this chapter extends the analysis to the

complete building.

This campus building is an excellent representation of an office-commercial building in a

rather old construction. Moreover, the occupants’ patterns are less stochastic, as they follow

the usual work and classroom hours. Thus, it is an ideal candidate for retrofitting not only

for automation, but also for evaluation of more advanced ambient intelligence and energy

178

5.2. Physical Building and its Challenges

Figure 5.1 – The EPFL "Smart Grid Campus Project", in green the smart building and orange
the PMU locations

M

LAB

WC
ELEVATORSTAIRS

HALL

HALL HALL STAIRS

SERVICE SHAFT
WC

WORKSHOP LAB

LAB LAB

OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE

Figure 5.2 – EPFL ELB building’s 2nd floor plan

management systems in a more deterministic environment. However, the conversion of the

particular building construction to a "smart" one has revealed numerous challenges along the

way, which are due to the particular building architecture, the selected ICT devices, and the

internal existing cabling design. The main challenges are listed below.

• As is easily observable in Fig. 5.2, the building is disproportionately long in one

dimension. It requires similarly proportioned ICT networks in order to completely

monitor the internal living spaces. However, retrofitting additional cables solely for the

purpose of sensor communication was not an option. Thus, many building automation

standards that require this physical medium of communication have been excluded.

The alternative viable option was to use wireless communication standards. However,

unless the point-to-point range of such sensors is long enough to for a star topology to

cover the whole floor, a mesh topology is a more appropriate choice. Still,

179

Chapter 5. Smart Building Case Study

communication latency can become significant if a message between two

communicating sensors needs to be relayed by several nodes in between. If one also

considers the low power operation of such relays, the latency can be detrimental to the

real-time management of the building. Moreover, for battery-powered relay nodes, this

would also create a considerable impact on their autonomy, due to their relaying activity.

• Due to floor construction materials, wireless performance across floors has been found

to be unreliable and low performing for building management.

• Alternatively, the use of power line communication (PLC) for load monitoring and

control was also tested. However, the building has a peculiar electrical cabling for the

three power phases; for example, a single room may have up to three different phases

behind the electrical outlets. Thus, PLC-enabled devices could not communicate within

the same room without additional phase bridging electronics.

• Furthermore, the high population of always connected loads with switching power

supplies (e.g., computers, servers, screens, etc.), severely impacts the physical

performance of the PLC physical medium. The reasons for such performance

degradation, while shortly investigated, are beyond the scope of this dissertation.

• Finally, as with most large office buildings, there is a high density of loads, occupants,

and their activities. This generates an enormous number of events and data by the ICT

that need proper management with the least possible latency.

Those challenges are equally significant for both retrofitting with management technologies

and for efficiently operating them throughout the lifecycle of the building. The alternative,

legacy building automation system (BAS) based solutions, would need considerable workhours

for adaptation to this particular building. This process significantly increases the overall cost

and possibly jeopardizes the performance and reliability of the system. It is in this non-ideal

building setup that the proposed system architecture of this dissertation shows significant

advantages. The purpose of the following sections is to highlight such benefits in a realistic

environment of a practical SB retrofitting.

5.3 System Deployment

The proposed system design would vary depending on the stakeholders’ particular priorities in

each subsystem. Nevertheless, the primary system architecture remains the same as seen in

Fig. 5.3.

The EMS scrutinized in the following Section 5.4, acts as the interface between the SB and the

SG. It is essentially the SG stakeholder in the building as it provides to the former ancillary

services through an array of DR scenarios. As the building management system (BMS) provides

a web and real-time application programming interface (API), the EMS can be a local or a

remote software system. For the purpose of this case study, the EMS is hosted on the local

computer of the researcher developing it.

180

5.3. System Deployment

EMS

Service 1 Service 2 Service n

None 1 Node 2 Node n

ICT 1 ICT 2 ICT n

Smart Grid
openADR

Standardized API

BMS

(v)Middleware

Standardized middleware API

ICT specific protocol

Figure 5.3 – Holistic system architecture

On the other hand, the BMS application and real-time server are both hosted on the cloud,

on a single virtual private server (VPS). A second VPS hosts the time series database (TSDB).

A single, non-distributed BMS is preferred, given the size of the building and the activities

within. In the case of increased future computational demand, the VPS can easily scale to

accommodate the demand. Concerning the modeling aspect as presented in Chapter 2, the

whole building is represented by a model, and each room, naturally, with a model.

The thermal and localization modules, used for the validation section of the same chapter,

provide high-level data, critical for optimal EMS operation. Thus, when available, wall and

window material models are enabled for the thermal simulator models. Finally, a fallback BMS

server is provisioned on the building premises which runs on a single Raspberry Pi 3 hardware

in case there are connectivity problems with the cloud-hosted BMS.

As the overall project seeks to modernize power distribution across the university campus,

high granularity of load measurement capability within the building is of paramount

importance. However, the available ICT systems for sensing/monitoring and

actuation/controlling capabilities of the building loads are vast and heterogeneous.

Nonetheless, as most of them serve to share the same scope, for this specific case study, some

ICT systems were subjectively selected in order to meet most of the application requirements.

To monitor and control the appliances of the building, the ICT device designed and built by

eSMART, a Swiss company, was selected. As seen in Fig. 5.4, those modules can monitor the

power of two loads at the same time. They also offer a means of actuation over the loads

with dimming and switching capabilities. However, the aspect that sets them apart from

the competition is their distributed communication through the building powerlines. This

eliminates the inconvenience of any additional wiring infrastructure installation, reducing

the overall cost and time for retrofitting. Moreover, the lack of communication over the

air mitigates the ISM band congestion, an important aspect considering the amount of

continuously communicating Internet of Things (IoT) devices to exist in each SB. Besides

181

Chapter 5. Smart Building Case Study

power measuring, their favorable size, thanks to microelectronics innovations, allows this

miniature device to be installed behind regular wall sockets. Therefore, they are completely

transparent to the occupant, having zero visual impact on the architecture and interior design

of the building.

MCU

48mm

PLC
modem

L

Power monitor

Load control

Power monitor

Load control

Ch1 Ch2

Figure 5.4 – The eSMART power monitor and load control module

For the environmental monitoring data, a 6LoWPAN-capable, PV energy harvesting multi-

sensor developed within the scope of the overall project was used. Those multi-sensors were

introduced in key locations in the building, where there was adequate solar energy for powering

them. Fig. 5.5 illustrates this: on the left is the block schematic diagram of this multi-sensor,

and on the right is the 3D model of the final product. The device embeds the following sensors:

temperature, humidity, pressure, luminance, air quality, motion (PIR) and a microphone. The

multi-sensor system is built around an ARM® Cortex-M3 with integrated IEEE 802.14.5 2.4Ghz

transceiver as a system on a chip (SOC). Except for the microphone and the PIR, all sensors

communicate through an I2C interface to the SOC. Through the I2C power switch, the SOC

directly controls the power supply lines of each sensor interface, eliminating any power drain,

even quiescent current, when they are not necessary, improving the overall autonomy. Finally,

a USB connection is available for quick battery charging and configuration via a serial terminal.

The power measurement unit (PMU) harvests with nearly 80% efficiency the energy from the

PV panel to recharge the battery and power the system. Finally, to actively manage the energy

budget, a voltage and current measurement chip is embedded, which measures both solar and

battery input power.

Concerning the data modeling and representation of those sensors and actuators within the

BMS, the recommendations of Chapter 2 were followed. Each eSMART device is modeled as

two and two models, one for each module’s channel. The energy harvesting

multi-sensor modules were also modeled as a collection of models, one for each

physical or virtual sensor interface, including for example the internal battery level.

Nonetheless, each model instance has a primary unique ID and shares the same secondary ID

which identifies the specific physical ICT instance. Based on what the hardware could control

182

5.3. System Deployment

7

SOLAR PANEL
PMU

BQ25504 802.14.5 SOC
CC2538

Humidity,
Temperature

SHT21

BATTERY

I2C

Buf. Cap.
VBAT is OK

Sensor interfaces

USB

Pressure
BMP280

CO2, TVOC
CCS811

PIR
LHI968

Microphone
ICS-40310

Voltage
Regulator

10
Shunt
resitor

uminance
TSL2561

Sensors

I2C Power
Switch

V-I measurement
INA3221

Power

Power
Power sense

2.4Ghz

Figure 5.5 – The 6LoWPAN-enabled and PV energy harvesting environmental multi-sensor

and measure, the model instances were configured accordingly for exposing the semantic

abstractions through the BMS API.

As already mentioned in the relevant chapter, the middleware is not only providing abstraction

to the ICT standards, but also low-level connectivity where the embedded networks reach

their performance and range limits. Practical tests have proven that a single middleware

node is not enough to cover the whole floor. For this reason, five middleware nodes have

been provisioned and placed across each floor according to the connectivity needs. Fig. 5.6

illustrates the middleware topology for a single floor, and how it interconnects the various

embedded networks. In the figure, with dark blue are illustrated the middleware nodes and

their connections. Additionally, each electrical phase gets its own color and the ICT for load

measurement and control are labeled with "L". Finally, the green cycles with the "S" letter,

denote the wireless environmental sensors. The following paragraph scrutinizes how the

middleware overcame the deployed ICT devices’ limitations.

Firstly, in order to overcome the inherent limitations of the PLC physical medium, a couple

of middleware nodes are interfacing with the different power phases of the building. Thus,

even if the PLC modules are unable to communicate over different power phases, they are

interconnected and abstracted over the middleware layer. Moreover, in order for the energy

harvester sensors to remain battery efficient, a star network topology was adopted. In this case,

the middleware nodes are acting as a border router to the 6LoWPAN network and enable their

connectivity over the middleware layer. Regardless of the interfaced embedded network, all of

the nodes’ software is running on the tested LinkIt Smart 7688 hardware and communicate

using the onboard Ethernet interface and cabling of the building. Lastly, to improve the security,

as scrutinized in Chapter 3, each middleware node communicates within a virtual private

network (VPN) tunnel with its peers and the BMS.

Finally, due to the age of the construction, the building lacks any generation and storage

183

Chapter 5. Smart Building Case Study

S

M

M

S

S

S

S

S

MS

S
S

S

S

M M

S S S S S S S S

LLLLLLLLLLLLLLL

L L L

L L

L L L L

L

L

L

L

L

L L

L L

L

LLLLLLLLLLLLL L

LLLLLL

S S S

S

LAB

WC
ELEVATOR

HALL

HALL HALL

SERVICE SHAFT
WC

WORKSHOP LAB

LAB LAB

OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE

Figure 5.6 – The middleware and embedded networks topology on the actual building

infrastructure. However, the EMS-oriented studies in the research group require such

capabilities. It is therefore necessary to have such services exposed by the SB management

system in order to test and validate the energy optimization algorithms. The

"building-in-the-loop" system, as introduced in Chapter 4, is a viable solution. Therefore,

thanks to the real-time sensor data and this virtualization engine, the generation and storage

capacity of the building can be emulated in parallel with the real environmental, occupancy,

and load patterns. Based on this array of heterogeneous data, the EMS can interact with the

physical load, the virtual storage and generation, as well as the SG, for applying the

appropriate energy strategies.

5.4 Energy Management System

The EMS, like any other intelligence algorithm, connects on top of the BMS using the extensive

API. This enables the interaction of any external systems with the semantically exposed

elements of the building as modeled in Chapter 2. This section introduces the EMS and

elaborates on the future architecture of the SB with enhanced energy management capabilities

and demand side management (DSM) support. Fig. 5.7 illustrates such system architecture.

In Fig. 5.7, a red shape denotes the BMS core which integrates both the application and

the real-time servers with the relevant data storage systems, cf. Chapter 2. At this level, the

middleware provides the distributed connectivity abstraction to the monitoring and controlling

infrastructure installed in the building. In the same figure, blue shapes denote the advanced

intelligence modules that leverage the BMS core services. These modules are exposed as

high-level data, compared to the primary ones of the BMS core, and they are essential for

implementing the advanced energy management strategies.

To begin with, the grid communication modules handles, as the name suggests, the required

184

5.4. Energy Management System

Occupant forecast

Load forecast

Environmental forecast

Grid communication

Energy-based
modeling

BMS high-level data providersEMS

Smart Grid

Power controller
(MPC)

Power planner

External

data sources

Building real-time events and data

openADR

High-level
data

BMS core

Energy
management

actions

InfrastructureMiddleware

Figure 5.7 – System architecture for an energy management enabled building

knowledge exchange with the SG. The protocol selected for that purpose is the Open Automated

Demand Response (OpenADR) [238]. The standard supports fully automated management

of the load based on specific signals from an energy utility and provides direct connectivity

to customers’ energy management systems. In fact, OpenADR is a prominent standard and

the foundation for DR interoperability. The grid communication module is stateful, and thus

stores all the relevant information and communication states essential for an automated

demand response (ADR) process to succeed. Those data are then fetched in real time by the

EMS depending on the executing optimization scenario. Thus, the EMS remains not only

agnostic to the building’s ICT infrastructure, thanks to the BMS core, but it remains also generic

regarding the DSM standard used by the energy utility of a particular building.

The environmental forecast module is generating insights on the building living environment

based on external input, for example the weather forecast, and internal ICT sensed data.

Those insights relate, for example, to the internal temperature or luminosity. On the other

hand, the occupant forecast provides insights on the activities within the living spaces. It

leverages the raw data inputs, such as the localization events, or some external sources, such as

public transportation schedules, in order to generate the high-level analytics of current and

future occupant activity. Similarly, the load forecast leverages the data from the previous two

forecasters, in addition to the load monitoring data, and provides load power estimates either

per load or for the whole building. This module is critical for the energy management and

optimization functionality of the EMS.

At the time of this writing, the EMS is in its infancy. Therefore, the associated researchers

expect extensive development, redefinition of the key modules, and even redirection of the

core aims in the following years. Nevertheless, it is still worth it to introduce its early stage

implementation and main functionality for the completeness of this case study. The EMS is

illustrated in Fig. 5.7 in green.

The energy-based modeling is a secondary data model internal to the EMS. Such a data structure

185

Chapter 5. Smart Building Case Study

is used by the EMS for its optimization process; it is a fusion of energy-relevant data from

the BMS and additional ones generated by the EMS. It allows, for example but not limited to,

the EMS to categorize certain loads according to their degree of controllability or to store the

machine learning extracted load profiles. Examples of energy-relevant data retrieved from the

BMS are:

• building geometry and rooms arrangement, e.g., locations, sizes, features, etc.;

• for each room: its sensors, actuators and load objects;

• for each load, the available data, e.g., mean power, profile, etc.;

• other energy related infrastructure models: building’s generation, storage;

• occupants’ data and their preferences.

The active management of the energy is divided mainly into two phases. In the planning

phase, cf. Fig 5.7 power planner, the estimated data are used for optimization over a long-term

horizon, generally over 24 hours. The aim of the planning phase is to minimize the overall

energy cost while maintaining acceptable occupant comfort. Thanks, to this phase, the EMS

can communicate to the SG the estimated building-wide consumption profile, for example

over the following day, week or any other appropriate time frame. On the other hand, the

power controller MPC corresponds to the online optimization phase, which manages in real

time the power consumption, generation, and storage. To do so, it takes into account the event

data from the building ICT, the energy-based modeling data, as well as any signals from the

grid communication module.

In particular, the model predictive control (MPC) module optimizes an objective function by

taking into account relevant models, forecasts, and existing constraints. A building thermal

model, a solar generation model, or energy consumption profile are only some examples

of such applicable models. The forecast data over a certain time horizon are supplied to

the MPC module for generating corrective actions on the controllable elements of the SB.

The constraints are taken into account in that process and reflect the building stakeholders’

requirements. Finally, real-time events, either from the high-level data providers or the BMS,

are used to trigger the matching MPC functionality.

5.5 Conclusions

In conclusion, the proposed system architecture adaptability and deployment have been

demonstrated in a challenging university campus building. Moreover, the vision of utilizing the

system for advanced energy management practices has been introduced. Finally, it was shown

how the currently in development EMS enables active energy management in coordination

with various SG policies.

186

6 Conclusions

The Smart Building (SB) will certainly be the next step in building evolution, improving value

and long-term performance in resource usage and occupant satisfaction. However, at the time

of this writing, the social, financial, and technological barriers are still hindering its widespread

adoption. Moreover, the concept of "smart building" is frequently used interchangeably with

"building automation" without a clear distinction between the two; this creates ambiguity and

confusion in the market.

In order to overcome such challenges both in research and in the market, this dissertation

approached the SB on a systemic basis. The output of such an endeavor is the research, design,

implementation, and finally validation of a secure and scalable SB architecture that addresses

several of the challenges and barriers identified in Chapter 1. That chapter assessed and defined

the modern SB, highlighted its dissimilarity to contemporary building automation systems,

and identified its major stakeholders and applications. Thus, the findings of that chapter have

been the driver and motivation for this dissertation and the engineering implementation that

followed.

The systems thinking required the segmentation of the holistic SB architecture into

individually identified sub-systems; each one was addressed in their respective chapters. In

fact, with the exception of the case study chapter, they can be considered as independent

research studies on their respective domains. For each, the scientific approach has followed a

similar pattern. Firstly, the chapter introduces the addressed challenges and justifies the

research motivation. Then, following a detailed literature review and comparison with other

designs, it suggests a novel architecture that extends the specific state of the art. The chapter

continues with a detailed design and implementation, while an experimental setup, defines

the assessment metrics and measures the performance for validation in accordance with the

design requirements.

An architecture to reduce complexity, improve adaptability, and enhance the scalability of the

SB is proposed in Chapter 2. The modeling of the building and the semantic abstraction not

only enables the trivial expansion with new semantics, but also decouples the intelligence and

187

Chapter 6. Conclusions

management software logic from information and communication technology (ICT). This

portability and reutilization of the algorithms is a major step towards a shared ecosystem of

algorithms and management software compatible with any SB, similar to the current state of

mobile applications. Most importantly, the reduced complexity and improved extendability do

not inhibit the scalability and adaptability of the system. A scalable and efficient architecture

maintains the SB’s performance and reliability regardless of the building’s internal and external

activities (event generators).

On multiple occasions, the literature has highlighted interoperability as a significant barrier to

the adoption of smart infrastructure in general, and of SB in particular. This work has also

identified physical construction diversity as a key challenge in the design of a universal SB with

an attractive cost brought by the economies of scale. Those barriers were the motivation for

the original research on a middleware solution for SB in Chapter 3. To the author’s knowledge,

this is the first time a distributed middleware for SB has been proposed, and one of the few

to consider middleware as a solution to the interoperability challenge of embedded and

ICT devices. The power of the proposed distributed middleware is its extendability with

new standards and its adaptability to physically different buildings without hindering the

expected behavior and performance of the SB system. A commonly practiced approach would

have required several protocol translation gateways and a manual configuration in other to

interconnect the heterogeneous devices and communication standards. On the contrary, the

chapter validated how even a few low-cost and power embedded electronics can be leveraged

as distributed middleware nodes within the building. In the end, such middleware acts as an

ICT protocol and topology abstractor to the ICT-agnostic SB management system.

On the primary goals of Chapter 4 was the creation of a virtualization software architecture for

real-time emulation of SB. This tool proved that energy management and analytics algorithms

in existing building structures could be assessed even without the necessary infrastructure

investments. Such software facilitates the financial analysis and energy performance estimation

for justifying costly building retrofitting. Hence, the author aims to mitigate the distrust in

SB investments with simulation-supported studies on the actual emulated buildings and

occupant activities. Unlike the ahead-of-time simulation tools, the emulator executes in real

time with building and occupant activities and events and feeds several such inputs in its

emulation models. To this day, models of loads, batteries, generators, sensors, actuators, and

users have been validated successfully, while others are continuously investigated within the

research group. The highlight of this chapter is certainly the immerse parallelism achieved

using a cooperative multitasking engine and the emulation theoretical background based on

discrete event simulation studies.

Finally, Chapter 5 offers an overview of the entire "Smart Grid Campus Project" and the

integration of the SB within. The chapter also assesses how current research on energy

management system (EMS) is extending this dissertation’s building management system

(BMS) for participation in demand side management (DSM) strategies. Therefore, this chapter

highlights the great potential of future adaptable SB within the Smart Grid (SG) context.

188

6.1. Future Work

6.1 Future Work

The SB has a bright future ahead, one that will fundamentally revolutionize the way society

considers buildings and urban development in general. The SB will meet the needs of occupants

and businesses in a flexible and adaptive manner for sustainable, comfortable, and healthy

living spaces. Technological advancements, especially in Internet of Things (IoT), big data, and

cybersecurity, coupled with the eventual cost reduction, will catalyze the transformation.

While many aspects of the SB design have been addressed extensively in this dissertation, there

exists a couple of elements which merit further investigation and research. Hence, this section

proposes several future extensions. They are clustered into two subsections. The short term

suggests improvements to the proposed sub-systems architectures, while, the long term one

recommends future work as a strategic system-level expansion to the overall SB architecture, in

order to further improve its perceived value and address more of the challenges identified in

Chapter 1.

6.1.1 Short-term extensions

Smart building modeling and computational system core

To begin with, Chapter 2, which developed the data model of the building, would merit several

model extensions. A more detailed model of building generation and storage as well as an

extension of the sensor and actuator models are recommended. Furthermore, the chapter

demonstrated two modules that are generating high-level data insights: an occupant location

tracker and a high-speed thermal simulator for just-in-time heating and energy awareness.

These integrated intelligent services should be extended and exposed through the application

programming interface (API). Ideal examples of similar intelligent services offer by the SB

system are, for example, forecasting of the internal building environment (e.g., temperature,

humidity, luminosity, etc.), occupant activity and behavior estimating, load profile forecasting,

etc. Finally, an API extension with openADR protocol support is crucial for communication

with the energy supplier as required by the EMS.

Distributed message oriented middleware

The proposed distributed middleware architecture is optimized and meets the requirements

defined at the beginning of the chapter. Nevertheless, there are still some opportunities for

improvement. Firstly, the reliability of the communication can be increased and guaranteed

using, when necessary, a delivery acknowledgment scheme. Secondly, the messaging payload

formatting, while universal amongst the middleware nodes, is not yet exhaustive. A more

standardized version is necessary for defining a comprehensive, holistic, and expandable

language for exchanged middleware messages. Finally, while a couple of protocol abstractions

have been developed for testing and validation purposes, a practical middleware would require

189

Chapter 6. Conclusions

a bigger "library" of such protocol abstraction modules implemented within the proposed

layered software architecture principles.

Building-in-the-loop emulation engine

The building emulator presented in Chapter 4 is a bottom-up, interdisciplinary approach and a

holistic solution to SB emulation with real-time physical data input. Multiple software libraries,

theoretical models, and design rules were used in the realization of the system. At the time of

this writing, the research includes the theoretical background, the design concept, the software

architecture and implementation as well as a thorough validation. Nevertheless, there is still

room for expansion of such a promising system and the idea of real-time building emulation.

The most notable improvement is the research on superior models compatible with this engine.

The object-oriented design of the emulation engine and the models’ inheritance facilitate the

development of more accurate and elaborate models. Therefore, the author has released the

source code of the system [239] for initiating follow-up collaboration and expansion within

and beyond the research group. Moreover, a quantitative comparison against other building

simulation systems, beyond the qualitative one of the state of the art, would significantly

highlight the contribution of this work to simulation science in general.

6.1.2 Long-term prospects

It was beyond the scope of this thesis to investigate and develop the management intelligence

of the SB. Nevertheless, the author quickly recognized energy providers and occupants as the

two prominent actors and stakeholders in the SB’s design and operation.

Therefore, while not covered in detail in this dissertation, an advanced EMS is vital for

autonomously managing the building’s energy while communicating in real time with the

energy providers. Such a system is currently in development within the research group and

plans to take advantage of the installed BMS in order to optimize the short- and long-term

energy consumption and storage while ensuring the comfort of the occupants. In the end, it

would be this EMS that would empower integration into the SG and participation in the DSM

strategies.

However, managing the occupants’ comfort is a nontrivial task. An improved ambient

intelligence system, in the form of an occupant preferences and behavior machine learning

approach, should be provisioned for extracting the inhabitant-driven parameters and their

satisfaction priorities. Those data, combined with the real-time monitored data from the BMS,

would be the input to the EMS for augmented decision making and comfort reassurance.

190

6.1. Future Work

Final thoughts

Finally, as already scrutinized in this dissertation, it is the combination of ambient intelligence,

building automation, and energy management that empowers, differentiates, and improves

the SB compared to current systems and solutions. The author wishes and hopes that with this

systems-thinking dissertation, he has contributed to the literature and the market state of art,

not only by means of scientific research, but also with the development and realistic validation

of the proposed designs of deployable, scalable, and secure system architectures. Such systems

that focus on the mitigation of challenges that hinder SB adoption can ultimately bring the

domain’s state of the art one step closer to the envisioned and ideal definition of the SB for a

sustainable future and urban development.

191

Bibliography

[1] P. D. United Nations, Department of Economic and Social Affairs, “World Population

Prospects: The 2015 Revision, Data Booklet. ST/ESA/SER.A/377,” p. 20, 2015.

[2] European Commission, EU Reference Scenario 2016: Energy, transport and

GHG emissions trends to 2050. European Commission, 2016. [Online]. Available:

https://ec.europa.eu/energy/en/data-analysis/energy-modelling

[3] A. Buckman, M. Mayfield, and S. B.M. Beck, “What is a Smart Building?” Smart and

Sustainable Built Environment, vol. 3, no. 2, pp. 92–109, 2014.

[4] D. Clements-Croome, “Editorial,” Intelligent Buildings International, vol. 3, no. 4, pp.

221–222, oct 2011.

[5] O. Bozdag, M. Secer, L. Braganca, M. Pinheiro, S. Jalali, R. Mateus, R. Amoeda, and M. C.

Guedes, “Energy consumption of RC buildings during their life cycle,” Portugal Sb07 -

Sustainable Construction, Materials and Practices: Challenge of the Industry For the New

Millennium, Pts 1 and 2, pp. 480–487, 2007.

[6] D. Clements-Croome, Intelligent buildings: design, management and operation. ICE

Publishing, 2013.

[7] G. Lilis, G. Conus, N. Asadi, and M. Kayal, “Towards the next generation of intelligent

building: An assessment study of current automation and future iot based systems with

a proposal for transitional design,” Sustainable Cities and Society, 2016.

[8] D. H. Meadows, Thinking in systems: A primer. Chelsea Green Publishing, 2008.

[9] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Communication

systems for building automation and control,” Proceedings of the IEEE, vol. 93, no. 6, pp.

1178–1203, 2005.

[10] A. Ghaffarianhoseini, U. Berardi, H. AlWaer, S. Chang, E. Halawa, A. Ghaffarianhoseini,

and D. Clements-Croome, “What is an intelligent building? analysis of recent

interpretations from an international perspective,” Architectural Science Review, vol. 59,

no. 5, pp. 338–357, 2016.

193

Bibliography

[11] R. I. Ogie, P. Perez, and V. Dignum, “Smart infrastructure: an emerging frontier for

multidisciplinary research,” Proceedings of the Institution of Civil Engineers - Smart

Infrastructure and Construction, vol. 170, no. SC1, pp. 8–16, 2017.

[12] Z. J. Yu Zhun Jerry, F. Haghighat, B. C. M. Fung, E. Morofsky, and H. Yoshino, “A

methodology for identifying and improving occupant behavior in residential buildings,”

Energy, vol. 36, no. 11, pp. 6596–6608, 2011.

[13] N. N. Kang, S. H. Cho, and J. T. Kim, “The energy-saving effects of apartment residents’

awareness and behavior,” Energy and Buildings, vol. 46, pp. 112–122, 2012.

[14] P. W. Schultz, M. Estrada, J. Schmitt, R. Sokoloski, and N. Silva-Send, “Using in-home

displays to provide smart meter feedback about household electricity consumption: A

randomized control trial comparing kilowatts, cost, and social norms,” Energy, vol. 90,

pp. 351–358, 2015.

[15] G. Peschiera, J. E. Taylor, and J. A. Siegel, “Response-relapse patterns of building occupant

electricity consumption following exposure to personal, contextualized and occupant

peer network utilization data,” Energy and Buildings, vol. 42, no. 8, pp. 1329–1336, 2010.

[16] J. Mankoff, S. R. Fussell, T. Dillahunt, R. Glaves, C. Grevet, M. Johnson, D. Matthews, H. S.

Matthews, R. Mcguire, R. Thompson, A. Shick, and L. Setlock, “StepGreen.org: Increasing

Energy Saving Behaviors via Social Networks,” Proceedings of the International AAAI

Conference on Weblogs and Social Media (ICWSM 2008), no. 2008, pp. 106–113, 2010.

[17] R. K. Jain, R. Gulbinas, J. E. Taylor, and P. J. Culligan, “Can social influence drive energy

savings? Detecting the impact of social influence on the energy consumption behavior

of networked users exposed to normative eco-feedback,” Energy and Buildings, vol. 66,

pp. 119–127, 2013.

[18] D. Clements-Croome, “Sustainable intelligent buildings for people: A review,” Intelligent

Buildings International, vol. 3, no. 2, p. 67, 2011.

[19] H. Alwaer and D. Clements-Croome, “Key performance indicators (kpis) and priority

setting in using the multi-attribute approach for assessing sustainable intelligent

buildings,” Building and Environment, vol. 45, no. 4, pp. 799–807, 2010.

[20] N. Balta-Ozkan, R. Davidson, M. Bicket, and L. Whitmarsh, “Social barriers to the

adoption of smart homes,” Energy Policy, vol. 63, pp. 363–374, 2013.

[21] W. Granzer, W. Kastner, and C. Reinisch, “Gateway-free integration of BACnet and KNX

using multi-protocol devices,” IEEE International Conference on Industrial Informatics

(INDIN), pp. 973–978, 2008.

[22] BACnet International, “BACnet Certification,” 2015. [Online]. Available: http:

//www.webcitation.org/6b69SRwwN

194

Bibliography

[23] KNX Association, “KNX ETS4 licence,” 2015. [Online]. Available: http://www.webcitation.

org/6b68x0s3f

[24] A. McMillan. (2010) The Cost(s) of BACnet. [Online]. Available: http://www.webcitation.

org/6axEpwc30

[25] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security and privacy

in distributed internet of things,” Computer Networks, vol. 57, no. 10, pp. 2266–2279,

2013.

[26] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in

Internet of Things: The road ahead,” Computer Networks, vol. 76, pp. 146–164, 2015.

[27] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and K. Wehrle, “Security

challenges in the IP-based Internet of Things,” Wireless Personal Communications,

vol. 61, pp. 527–542, 2011.

[28] X. Teng, J. B. Wendt, and M. Potkonjak, “Security of IoT systems: Design challenges

and opportunities,” in Computer-Aided Design (ICCAD), 2014 IEEE/ACM International

Conference on, 2014, pp. 417–423.

[29] R. H. Weber, “Internet of Things - New security and privacy challenges,” Computer Law

and Security Review, vol. 26, no. 1, pp. 23–30, 2010.

[30] J. Cao, B. Carminati, E. Ferrari, and K. L. Tan, “CASTLE: Continuously anonymizing data

streams,” IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 3, pp.

337–352, 2011.

[31] J. K. W. Wong, H. Li, and S. W. Wang, “Intelligent building research: A review,” Automation

in Construction, vol. 14, pp. 143–159, 2005.

[32] Gartner, “Gartner’s 2014 Hype Cycle for Emerging Technologies Maps the Journey to

Digital Business,” 2014. [Online]. Available: http://www.webcitation.org/6b5yJycdt

[33] ——, “Gartner’s 2015 Hype Cycle for Emerging Technologies Identifies the

Computing Innovations That Organizations Should Monitor,” 2015. [Online]. Available:

http://www.webcitation.org/6b5yriXxV

[34] A. B. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon, “Home automation

in the wild,” Proceedings of the 2011 annual conference on Human factors in computing

systems - CHI ’11, p. 2115, 2011.

[35] L. Li, Z. Jin, G. Li, L. Zheng, and Q. Wei, “Modeling and analyzing the reliability and cost

of service composition in the IoT: A probabilistic approach,” Proceedings - 2012 IEEE

19th International Conference on Web Services, ICWS 2012, pp. 584–591, 2012.

195

Bibliography

[36] H. Madsen, G. Albeanu, B. Burtschy, and F. Popentiu-Vladicescu, “Reliability in the utility

computing era: Towards reliable fog computing,” International Conference on Systems,

Signals, and Image Processing, pp. 43–46, 2013.

[37] A.-G. Paetz, E. Dütschke, and W. Fichtner, “Smart Homes as a Means to Sustainable

Energy Consumption: A Study of Consumer Perceptions,” Journal of Consumer Policy,

vol. 35, no. 1, pp. 23–41, 2012.

[38] P. Palensky and D. Dietrich, “Demand Side Management: Demand Response, Intelligent

Energy Systems, and Smart Loads,” Industrial Informatics, IEEE Transactions on, vol. 7,

no. 3, pp. 381–388, 2011.

[39] S. Nolan and M. O’Malley, “Challenges and barriers to demand response deployment

and evaluation,” Applied Energy, vol. 152, pp. 1–10, 2015.

[40] N. Oconnell, P. Pinson, H. Madsen, and M. Omalley, “Benefits and challenges of electrical

demand response: A critical review,” Renewable and Sustainable Energy Reviews, vol. 39,

pp. 686–699, 2014.

[41] B. T. Samad, E. Koch, and P. Stluka, “Automated Demand Response for Smart Buildings

and Microgrids: The State of the Practice and Research Challenges,” Proceedings of the

IEEE, vol. 104, no. 4, pp. 726–744, 2016.

[42] J. Han and M. a. Piette, “Solutions for summer electric power shortages : Demand

Response and its applications in air conditioning and refrigerating systems,”

Refrigeration, Air Conditioning, & Electric Power Machinery, vol. 29, no. 1, pp. 1–4,

2008.

[43] C. Fischer, “Feedback on household electricity consumption: A tool for saving energy?”

Energy Efficiency, vol. 1, no. 1, pp. 79–104, 2008.

[44] R. K. Jain, J. E. Taylor, and P. J. Culligan, “Investigating the impact eco-feedback

information representation has on building occupant energy consumption behavior and

savings,” Energy and Buildings, vol. 64, pp. 408–414, 2013.

[45] K. Buchanan, R. Russo, and B. Anderson, “The question of energy reduction: The

problem(s) with feedback,” Energy Policy, vol. 77, pp. 89–96, 2015.

[46] A. Nilsson, C. J. Bergstad, L. Thuvander, D. Andersson, K. Andersson, and P. Meiling,

“Effects of continuous feedback on households’ electricity consumption: Potentials and

barriers,” Applied Energy, vol. 122, pp. 17–23, 2014.

[47] L. Pereira, F. Quintal, M. Barreto, and N. J. Nunes, “Understanding the limitations of

eco-feedback: A one-year long-term study,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

7947 LNCS, pp. 237–255, 2013.

196

Bibliography

[48] Z. Yu, B. C. Fung, F. Haghighat, H. Yoshino, and E. Morofsky, “A systematic procedure to

study the influence of occupant behavior on building energy consumption,” Energy and

Buildings, vol. 43, no. 6, pp. 1409–1417, jun 2011.

[49] T. Hong, S. C. Taylor-Lange, S. D’Oca, D. Yan, and S. P. Corgnati, “Advances in research and

applications of energy-related occupant behavior in buildings,” Energy and Buildings,

vol. 116, pp. 694–702, 2016.

[50] T. A. Nguyen and M. Aiello, “Energy intelligent buildings based on user activity: A survey,”

Energy and Buildings, vol. 56, pp. 244–257, 2013.

[51] M. Gupta, S. S. Intille, and K. Larson, “Adding GPS-control to traditional thermostats:

An exploration of potential energy savings and design challenges,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 5538 LNCS, pp. 95–114, 2009.

[52] W. Kleiminger, F. Mattern, and S. Santini, “Predicting household occupancy for smart

heating control: A comparative performance analysis of state-of-the-art approaches,”

Energy and Buildings, vol. 85, pp. 493–505, 2014.

[53] L. Klein, J. Y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakantham,

and M. Tambe, “Coordinating occupant behavior for building energy and comfort

management using multi-agent systems,” Automation in Construction, vol. 22, pp.

525–536, mar 2012.

[54] R. Missaoui, H. Joumaa, S. Ploix, and S. Bacha, “Managing energy Smart Homes according

to energy prices: Analysis of a Building Energy Management System,” Energy and

Buildings, vol. 71, pp. 155–167, 2014.

[55] S. T. Bushby, “BACnet™: a standard communication infrastructure for intelligent

buildings,” Automation in Construction, vol. 6, no. 5-6, pp. 529–540, 1997.

[56] KNX Association, “KNX Specifications version 2.1,” 2014. [Online]. Available:

http://www.knx.org/

[57] S. Wang, Z. Xu, H. Li, J. Hong, and W. Z. Shi, “Investigation on intelligent building

standard communication protocols and application of IT technologies,” Automation in

Construction, vol. 13, no. 5, pp. 607–619, sep 2004.

[58] S. Wang and J. Xie, “Integrating Building Management System and facilities management

on the Internet,” Automation in Construction, vol. 11, no. 6, pp. 707–715, oct 2002.

[59] D. Loy, D. Dietrich, and S. Hans-Joerg, Open Control Networks: LonWorks/EIA 709

Technology. Kluwer Academic Publishers, 2001.

[60] H. Jarvinen, A. Litvinov, and P. Vuorimaa, “Integration platform for home and building

automation systems,” 2011 IEEE Consumer Communications and Networking Conference

(CCNC), no. PerNets, pp. 292–296, 2011.

197

Bibliography

[61] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri, “Building Automation and Smart

Cities: An Integration Approach Based on a Service-Oriented Architecture,” 2013

27th International Conference on Advanced Information Networking and Applications

Workshops, pp. 1361–1367, 2013.

[62] W. Kastner, M. Kofler, M. Jung, G. Gridling, and J. Weidinger, “Building automation

systems integration into the Internet of Things the IoT6 approach, its realization and

validation,” 19th IEEE International Conference on Emerging Technologies and Factory

Automation, ETFA 2014, 2014.

[63] C. Reinisch, W. Granzer, F. Praus, and W. Kastner, “Integration of heterogeneous building

automation systems using ontologies,” in 2008 34th Annual Conference of IEEE Industrial

Electronics. IEEE, nov 2008, pp. 2736–2741.

[64] J. Han, Y. Jeong, and I. Lee, “Efficient building energy management system based on

ontology, inference rules, and simulation,” in International Conference on Intelligent

Building and Management, 2011.

[65] J. Ploennigs, B. Hensel, H. Dibowski, and K. Kabitzsch, “BASont - A modular, adaptive

building automation system ontology,” IECON Proceedings (Industrial Electronics

Conference), pp. 4827–4833, 2012.

[66] G. Fortino, A. Guerrieri, G. M. P. Ohare, and A. Ruzzelli, “A flexible building management

framework based on wireless sensor and actuator networks,” Journal of Network and

Computer Applications, vol. 35, no. 6, pp. 1934–1952, 2012.

[67] C. Farias, H. Soares, L. Pirmez, F. Delicato, I. Santos, L. F. Carmo, J. Souza, A. Zomaya, and

M. Dohler, “A control and decision system for smart buildings using wireless sensor and

actuator networks,” Transactions on Emerging Telecommunications Technologies, vol. 25,

no. 1, pp. 120–135, 2014.

[68] J. R. Gisbert, C. Palau, M. Uriarte, G. Prieto, J. A. Palazón, M. Esteve, O. López, J. Correas,

M. C. Lucas-Estañ, P. Giménez, A. Moyano, L. Collantes, J. Gozálvez, B. Molina, O. Lázaro,

and A. González, “Integrated system for control and monitoring industrial wireless

networks for labor risk prevention,” Journal of Network and Computer Applications,

vol. 39, no. 1, pp. 233–252, 2014.

[69] T. G. Stavropoulos, A. Tsioliaridou, G. Koutitas, D. Vrakas, and I. Vlahavas, “System

architecture for a smart university building,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 6354 LNCS, pp. 477–482, 2010.

[70] A. De Paola, S. Gaglio, G. Lo Re, and M. Ortolani, “Sensor 9k: A testbed for designing

and experimenting with WSN-based ambient intelligence applications,” Pervasive and

Mobile Computing, vol. 8, no. 3, pp. 448–466, 2012.

198

Bibliography

[71] E. Z. Tragos, M. Foti, M. Surligas, G. Lambropoulos, S. Pournaras, S. Papadakis, and

V. Angelakis, “An IoT based intelligent building management system for ambient assisted

living,” 2015 IEEE International Conference on Communication Workshop (ICCW), pp.

246–252, 2015.

[72] L. W. Yeh, Y. C. Wang, and Y. C. Tseng, “iPower: an energy conservation system for

intelligent buildings by wireless sensor networks,” International Journal of Sensor

Networks, vol. 5, p. 1, 2009.

[73] M. Weiss and D. Guinard, “Increasing energy awareness through web-enabled power

outlets,” Proceedings of the 9th International Conference on Mobile and Ubiquitous

Multimedia - MUM ’10, pp. 1–10, 2010.

[74] I. Hong, J. Byun, and S. Park, “Cloud computing-based building energy management

system with ZigBee sensor network,” Proceedings - 6th International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2012, pp. 547–551,

2012.

[75] P. Zhao, M. G. Simoes, and S. Suryanarayanan, “A conceptual scheme for cyber-

physical systems based energy management in building structures,” 2010 9th IEEE/IAS

International Conference on Industry Applications - INDUSCON 2010, pp. 1–6, 2010.

[76] T. Gamauf, T. Leber, K. Pollhammer, and F. Kupzog, “A generalized load management

gateway coupling smart buildings to the grid,” in IEEE AFRICON Conference, 2011, pp.

1–5.

[77] G. Anastasi, F. Corucci, and F. Marcelloni, “An intelligent system for electrical energy

management in buildings,” International Conference on Intelligent Systems Design and

Applications, ISDA, pp. 702–707, nov 2011.

[78] H.-Y. Huang, J.-Y. Yen, S.-L. Chen, and F.-C. Ou, “Development of an Intelligent Energy

Management Network for Building Automation,” IEEE Transactions on Automation

Science and Engineering, vol. 1, no. 1, pp. 14–25, 2004.

[79] H. Chen, P. Chou, S. Duri, H. Lei, and J. Reason, “The design and implementation of

a smart building control system,” Proceedings - IEEE International Conference on e-

Business Engineering, ICEBE 2009; IEEE Int. Workshops - AiR 2009; SOAIC 2009; SOKMBI

2009; ASOC 2009, pp. 255–262, 2009.

[80] A. Capone, M. Barros, H. Hrasnica, and S. Tompros, “A new architecture for reduction of

energy consumption of home appliances,” in TOWARDS eENVIRONMENT, European

conference of the Czech Presidency of the Council of the EU, 2009, pp. 1–8.

[81] “openHAB,” 2017. [Online]. Available: https://www.openhab.org/

[82] “FHEM: home automation server.” [Online]. Available: http://fhem.de/fhem.html

199

Bibliography

[83] “Domoticz: home automation.” [Online]. Available: https://domoticz.com/

[84] Eclipse IoT, “Eclipse Smarthome: A Flexible Framework for the Smart Home,” 2015.

[Online]. Available: https://www.eclipse.org/smarthome/

[85] “Home Assistant: open source home automation.” [Online]. Available: https:

//home-assistant.io/

[86] Pacific Northwest National Laboratory, “Volttron Platform,” 2016. [Online]. Available:

http://transactionalnetwork.pnnl.gov/volttron.stm

[87] R. T. Fielding, “Architectural styles and the design of network-based software

architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[88] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs. "big"’ web

services,” Proceeding of the 17th international conference on World Wide Web - WWW ’08,

p. 805, 2008.

[89] InfluxData, “InfluxDB - Open-Source Time Series Database,” 2017. [Online]. Available:

https://github.com/influxdata/influxdb

[90] “OpenTSDB - A Distributed, Scalable Monitoring System,” 2017. [Online]. Available:

http://opentsdb.net/

[91] T. Oetiker, “RRDtool,” 2016. [Online]. Available: http://oss.oetiker.ch/rrdtool/

[92] F. Mattern, T. Staake, and M. Weiss, “ICT for green – How Computers Can Help Us to

Conserve Energy,” Proceedings of the 1st International Conference on Energy-Efficient

Computing and Networking - e-Energy ’10, p. 1, 2010.

[93] A. Spagnolli, N. Corradi, L. Gamberini, E. Hoggan, G. Jacucci, C. Katzeff, L. Broms, and

L. Jonsson, “Eco-feedback on the go: Motivating energy awareness,” Computer, vol. 44,

no. 5, pp. 38–45, 2011.

[94] M. Zeifman, “Disaggregation of home energy display data using probabilistic approach,”

IEEE Transactions on Consumer Electronics, vol. 58, no. 1, pp. 23–31, 2012.

[95] C. Chen and D. J. Cook, “Behavior-based home energy prediction,” Proceedings - 8th

International Conference on Intelligent Environments, IE 2012, pp. 57–63, 2012.

[96] B. J. Birt, G. R. Newsham, I. Beausoleil-Morrison, M. M. Armstrong, N. Saldanha, and I. H.

Rowlands, “Disaggregating categories of electrical energy end-use from whole-house

hourly data,” Energy and Buildings, vol. 50, pp. 93–102, jul 2012.

[97] M. Maasoumy, A. Pinto, and A. Sangiovanni-Vincentelli, “Model-Based Hierarchical

Optimal Control Design for HVAC Systems,” ASME 2011 Dynamic Systems and Control

Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1,

pp. 271–278, 2011.

200

Bibliography

[98] G. Fraisse, C. Viardot, O. Lafabrie, and G. Achard, “Development of a simplified and

accurate building model based on electrical analogy,” Energy and Buildings, vol. 34, pp.

1017–1031, 2002.

[99] D. Gyalistras and M. Gwerder, “Use of weather and occupancy forecasts for optimal

building climate control (OptiControl): Two years progress report,” ETH, Zurich, Tech.

Rep. September, 2009.

[100] B. Lehmann, D. Gyalistras, M. Gwerder, K. Wirth, and S. Carl, “Intermediate complexity

model for Model Predictive Control of Integrated Room Automation,” Energy and

Buildings, vol. 58, pp. 250–262, 2013.

[101] D. Sturzenegger, D. Gyalistras, V. Semeraro, M. Morari, and R. S. Smith, “BRCM Matlab

Toolbox : Model Generation for Model Predictive Building Control,” American Control

Conference, 2014.

[102] Linear Technology, “LTspice,” 2015. [Online]. Available: http://www.linear.com/

designtools/software/

[103] M. Gwerder and D. Gyalistras, “Final Report : Use of Weather And Occupancy Forecasts

For Optimal Building Climate Control – Part II : Demonstration (OptiControl-II),” ETH

Zürich, Tech. Rep. September, 2013.

[104] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning

techniques and systems,” IEEE Transactions on Systems, Man and Cybernetics Part

C: Applications and Reviews, vol. 37, no. 6, pp. 1067–1080, 2007.

[105] R. Mautz, “Indoor Positioning Technologies,” p. 127, 2012.

[106] Qualcomm, “gpsOne Hybrid Position Location Technology.”

[107] Skyhook Wireless, “Skyhook,” 2015. [Online]. Available: http://www.skyhookwireless.

com/

[108] S. Zirari, P. Canalda, and F. Spies, “WiFi GPS based combined positioning algorithm,”

Wireless Communications, Networking and Information Security (WCNIS), 2010 IEEE

International Conference on, no. Ea 4269, pp. 684–688, 2010.

[109] M. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. Christensen, and K. Grønbæk, “Indoor

positioning using GPS revisited,” Pervasive Computing, vol. 45, no. 1, pp. 38–56, 2010.

[110] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless

personal networks,” IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp.

13–32, 2009.

[111] S. S. Saad and Z. S. Nakad, “A standalone RFID indoor positioning system using passive

tags,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1961–1970, 2011.

201

Bibliography

[112] L. Ni and A. Patil, “LANDMARC: indoor location sensing using active RFID,” Proceedings

of the First IEEE International Conference on Pervasive Computing and Communications,

2003. (PerCom 2003)., pp. 407–415, 2003.

[113] Google Inc., “Fused Location Provider Api,” 2015. [Online].

Available: https://developers.google.com/android/reference/com/google/android/

gms/location/FusedLocationProviderApi

[114] ——, “Geofencing Api,” 2015. [Online]. Available: https://developers.google.com/

android/reference/com/google/android/gms/location/GeofencingApi

[115] C. Koehler, B. Ziebart, J. Mankoff, and A. Dey, “TherML: occupancy prediction for

thermostat control,” Proceedings of the 2013 . . . , pp. 103–112, 2013.

[116] F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “From wireless sensor networks towards cyber

physical systems,” Pervasive and Mobile Computing, vol. 7, no. 4, pp. 397–413, 2011.

[117] J. Kleissl and Y. Agarwal, “Cyber-physical energy systems: Focus on smart buildings,”

Design Automation Conference (DAC), 2010 47th ACM/IEEE, pp. 749–754, 2010.

[118] A. Savvides, I. Paschalidis, and M. Caramanis, “Cyber-physical systems for next

generation intelligent buildings,” ACM SIGBED Review, vol. 8, no. 2, pp. 35–38, 2011.

[119] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-Physical

Systems. Dordrecht: Springer Netherlands, 2011.

[120] J. Wong and H. Li, “Development of a conceptual model for the selection of intelligent

building systems,” Building and Environment, vol. 41, no. 8, pp. 1106–1123, 2006.

[121] U. Wilke, F. Haldi, J.-L. Scartezzini, and D. Robinson, “A bottom-up stochastic model

to predict building occupants’ time-dependent activities,” Building and Environment,

vol. 60, pp. 254–264, feb 2013.

[122] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare: Transforming sensor

networks into multi-application sensing infrastructures,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 7158 LNCS, pp. 65–81, 2012.

[123] E. A. Lee, “Cyber Physical Systems: Design Challenges,” Proc. of 11th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC’08), pp. 363–369, 2008.

[124] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications.

Springer US, 2011.

[125] S. Hadim and N. Mohamed, “Middleware: Middleware challenges and approaches for

wireless sensor networks,” IEEE Distributed Systems Online, vol. 7, no. 3, pp. 1–23, 2006.

202

Bibliography

[126] M. Wang, J. Cao, J. Li, and S. Dasi, “Middleware for wireless sensor networks: A survey,”

Journal of Computer Science and Technology, vol. 23, no. 2006, pp. 305–326, 2008.

[127] A. H. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and M. Z. Sheng, “IoT Middleware: A

Survey on Issues and Enabling technologies,” IEEE Internet of Things Journal, vol. X,

no. X, pp. 1–1, 2016.

[128] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware for internet of

things: A survey,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70–95, 2016.

[129] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware solutions for the internet of

things,” in Proceedings of the 2012 International Conference on Collaboration Technologies

and Systems, CTS 2012, 2012, pp. 21–26.

[130] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Issues in designing middleware for wireless

sensor networks,” IEEE Network, vol. 18, no. 1, pp. 15–21, 2004.

[131] M. M. Molla and S. I. Ahamed, “A survey of middleware for sensor network and

challenges,” in 2006 International Conference on Parallel Processing Workshops

(ICPPW’06), 2006, pp. 6 pp.–228.

[132] E. P. D. Freitas, “A survey on adaptable middleware for wireless sensor networks,”

Halmstad University, no. August, pp. 9–52, 2008.

[133] N. Mohamed and J. Al-Jaroodi, “A survey on service-oriented middleware for wireless

sensor networks,” Service Oriented Computing and Applications, vol. 5, no. 2, pp. 71–85,

2011.

[134] P. Pietzuch and J. Bacon, “Hermes: a distributed event-based middleware architecture,”

in Proceedings of 22nd International Conference on Distributed Computing Systems

Workshops, 2002.

[135] P. R. Pietzuch, “Hermes: A scalable event-based middleware,” Ph.D. dissertation,

University of Cambridge, 2004.

[136] Y. Liu, I. Gorton, L. Bass, C. Hoang, and S. Abanmi, “MEMS: A method for evaluating

middleware architectures,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4214

LNCS, p. 9, 2006.

[137] M. Martonosi and T. Liu, “Impala : A Middleware System for Managing Autonomic ,

Parallel Sensor Systems,” ACM SIGPLAN Notices, vol. 38, no. 10, pp. 107–118, 2003.

[138] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo, “Middleware to support

sensor network applications,” IEEE Network, vol. 18, no. 1, pp. 6–14, 2004.

203

Bibliography

[139] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and U. C. Berkeley, “TinyDB: An

Acquisitional Query Processing System for Sensor Networks 1,” Database, vol. V, no. 212,

2004.

[140] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sensor

networks,” ACM SIGMOD Record, vol. 31, no. 3, pp. 9–18, 2002.

[141] J. R. Votano, M. Parham, and L. H. Hall, “Sensor Information Networking Architecture

and Applications,” IEEE Personal Communications, vol. 1, no. August 2001, pp. 52–59,

2001.

[142] “LinkSmart Middleware.” [Online]. Available: https://www.linksmart.eu/redmine

[143] M. Eisenhauer, P. Rosengren, and P. Antolin, “A development platform for integrating

wireless devices and sensors into Ambient Intelligence systems,” in 2009 6th IEEE Annual

Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and

Networks Workshops, SECON Workshops 2009, vol. 00, no. c, 2009, pp. 1–3.

[144] A. Boulis, C. C. Han, R. Shea, and M. B. Srivastava, “SensorWare: Programming sensor

networks beyond code update and querying,” Pervasive and Mobile Computing, vol. 3,

no. 4, pp. 386–412, 2007.

[145] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and J. Kelner,

“Mires: A publish/subscribe middleware for sensor networks,” Personal and Ubiquitous

Computing, vol. 10, no. 1, pp. 37–44, 2006.

[146] P. Evensen and H. Meling, “Sensewrap: A service oriented middleware with sensor

virtualization and self-configuration,” in 2009 International Conference on Intelligent

Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, Dec. 2009, pp.

261–266.

[147] E. Avilés-López and J. A. García-Macías, “TinySOA: A service-oriented architecture for

wireless sensor networks,” Service Oriented Computing and Applications, vol. 3, no. 2, pp.

99–108, 2009.

[148] C. L. Fok, G. C. Roman, and C. Lu, “Servilla: A flexible service provisioning middleware

for heterogeneous sensor networks,” Science of Computer Programming, vol. 77, no. 6,

pp. 663–684, 2012.

[149] S. Wang, Z. Xu, J. Cao, and J. Zhang, “A middleware for web service-enabled integration

and interoperation of intelligent building systems,” Automation in Construction, vol. 16,

no. 1, pp. 112–121, jan 2007.

[150] P. Arjunan, N. Batra, H. Choi, and A. Singh, “SensorAct : A Privacy and Security Aware

Federated Middleware for Building Management,” BuildSys ’12, pp. 80–87, 2012.

204

Bibliography

[151] L. F. Ducreux, C. Guyon-Gardeux, S. Lesecq, F. Pacull, and S. R. Thior, “Resource-based

middleware in the context of heterogeneous building automation systems,” in IECON

Proceedings (Industrial Electronics Conference), 2012, pp. 4847–4852.

[152] T. Le Guilly, P. Olsen, A. P. Ravn, J. B. Rosenkilde, and A. Skou, “HomePort: Middleware

for heterogeneous home automation networks,” in 2013 IEEE International Conference

on Pervasive Computing and Communications Workshops, PerCom Workshops 2013, no.

March, 2013, pp. 627–633.

[153] E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto, R. Tomasi, D. Rabourdin, J. Virgone,

and E. Macii, “Event-driven user-centric middleware for energy-efficient buildings and

public spaces,” Systems Journal IEEE, vol. 99, no. 3, pp. 1–10, 2014.

[154] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A Case for Message Oriented

Middleware,” Distributed Computing – 13th International Symposium, DISC’99, pp. 1–17,

1999.

[155] W. Emmerich, “Software Engineering and Middleware : A Roadmap,” Communications

of the ACM,, p. 11, 2000.

[156] OMG, “CORBA: Common Object Request Broker Architecture,” 2013. [Online]. Available:

http://www.corba.org/

[157] M. Henning, “A new approach to object-oriented middleware,” IEEE Internet Computing,

vol. 8, no. 1, pp. 66–75, 2004.

[158] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java System,” in

COOTS’96 Proceedings of the 2nd conference on USENIX Conference on Object-Oriented

Technologies, vol. 9, no. 4, 1996.

[159] A. T. Campbell, G. Coulson, and M. E. Kounavis, “Managing Complexity: Middleware

Explained.” IT Professional, vol. 1, p. 22, 1999.

[160] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented computing:

State of the art and research challenges,” Computer, vol. 40, no. 11, pp. 38–45, 2007.

[161] J. Al-Jaroodi and N. Mohamed, “Service-oriented middleware: A survey,” Journal of

Network and Computer Applications, vol. 35, no. 1, pp. 211–220, 2012.

[162] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-language services

implementation,” Facebook White Paper, p. 8, 2007.

[163] A. Dworak, P. Charrue, F. Ehm, W. Sliwinski, and M. Sobczak, “Middleware Trends

And Market Leaders 2011,” in 13th International Conference on Accelerator and Large

Experimental Physics Control Systems (ICALEPCS 2011), vol. C111010, 2011, p. 4.

205

Bibliography

[164] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented middleware for building context-

aware services,” Journal of Network and Computer Applications, vol. 28, no. 1, pp. 1–18,

2005.

[165] P. T. H. Eugster, P. a. Felber, A.-m. Kermarrec, R. Guerraoui, and A.-m. Kermarrec, “The

Many Faces of Publish / Subscribe,” Computing, vol. 35, no. 2, pp. 114–131, 2003.

[166] P. Hintjens, “What is wrong with AMQP,” 2008. [Online]. Available: http:

//www.imatix.com/articles:whats-wrong-with-amqp/

[167] ——, ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013.

[168] G. Sharma, S. Bala, and A. K. Verma, “Security Frameworks for Wireless Sensor Networks-

Review,” Procedia Technology, vol. 6, pp. 978–987, 2012.

[169] J. Al-Jaroodi, I. Jawhar, A. Al-Dhaheri, F. Al-Abdouli, and N. Mohamed, “Security

middleware approaches and issues for ubiquitous applications,” Computers and

Mathematics with Applications, vol. 60, no. 2, pp. 187–197, 2010.

[170] Z. Liu and D. Peng, “A security-supportive middleware architecture for pervasive

computing,” Proceedings - 2nd IEEE International Symposium on Dependable, Autonomic

and Secure Computing, DASC 2006, pp. 137–144, 2006.

[171] Z. Jiang, K. Lee, S. Kim, H. Bae, S. Kim, and S. Kang, “Design of a security

management middleware in ubiquitous computing environments,” Parallel and

Distributed Computing, Applications and Technologies, PDCAT Proceedings, vol. 2005, pp.

306–308, 2005.

[172] A. Marín, W. Mueller, R. Schaefer, F. Almenarez, D. Díaz, and M. Ziegler, “Middleware for

secure home access and control,” in Proceedings - Fifth Annual IEEE International

Conference on Pervasive Computing and Communications Workshops, PerCom

Workshops 2007, 2007, pp. 489–494.

[173] S. I. Ahamed, M. M. Haque, and K. M. I. Asif, “S-MARKS: A middleware secure by design

for the pervasive computing environment,” in Proceedings - International Conference on

Information Technology-New Generations, ITNG 2007, 2007, pp. 303–308.

[174] M. Zhang, S. Zhu, B. Yang, and W. Zhang, “Trust-based distributed authentication

middleware in ubiquitous mobile environments,” in Proceedings - Third International

Conference on Natural Computation, ICNC 2007, vol. 5, no. Icnc, 2007, pp. 814–818.

[175] S. Khanvilkar and A. Khokhar, “Virtual private networks: An overview with performance

evaluation,” IEEE Communications Magazine, vol. 42, no. 10, pp. 146–154, 2004.

[176] “Unencapsulated MS-CHAP v2 Authentication Could Allow Information Disclosure,”

2012. [Online]. Available: https://technet.microsoft.com/en-us/library/security/

2743314.aspx

206

Bibliography

[177] B. Schneier and Mudge, “Cryptanalysis of Microsoft’s point-to-point tunneling protocol

(PPTP),” in 5th ACM Conference on Computer and Communications Security, 1998, pp.

132–141.

[178] S. Narayan, S. S. Kolahi, K. Brooking, and S. de Vere, “Performance Evaluation of

Virtual Private Network Protocols in Windows 2003 Environment,” in 2008 International

Conference on Advanced Computer Theory and Engineering, 2008, pp. 69–73.

[179] A. A. Joha, F. B. Shatwan, and M. Ashibani, “Performance evaluation for remote access

VPN on Windows server 2003 and fedora core 6,” in 8th International Conference on

Telecommunications in Modern Satellite, Cable and Broadcasting Services, TELSIKS 2007,

Proceedings of Papers, 2007, pp. 587–592.

[180] A. Hoban, “Using Intel ® AES New Instructions and PCLMULQDQ to Significantly

Improve IPSec Performance on Linux,” Intel Corporation, no. August, pp. 1–26, 2010.

[181] I. Kotuliak, P. Rybár, and P. Trúchly, “Performance comparison of IPsec and TLS based

VPN technologies,” in ICETA 2011 - 9th IEEE International Conference on Emerging

eLearning Technologies and Applications, Proceedings, 2011, pp. 217–221.

[182] J. B. R. Lawas, A. C. Vivero, and A. Sharma, “Network performance evaluation of VPN

protocols (SSTP and IKEv2),” 2016 Thirteenth International Conference on Wireless and

Optical Communications Networks (WOCN), pp. 1–5, 2016.

[183] T. Nie and T. Zhang, “A study of DES and Blowfish encryption algorithm,” in TENCON

2009. IEEE, nov 2009, pp. 1–4.

[184] A. Ramesh and A. Suruliandi, “Performance analysis of encryption algorithms for

Information Security,” in 2013 International Conference on Circuits, Power and

Computing Technologies (ICCPCT). Institute of Electrical and Electronics Engineers

(IEEE), mar 2013, pp. 840–844.

[185] G. Lilis, G. Conus, and M. Kayal, “A distributed, event-driven building management

platform on web technologies,” in 1st International Conference on Event-Based Control,

Communication, and Signal Processing, 2015.

[186] L. Gelazanskas and K. A. A. Gamage, “Demand side management in smart grid: A review

and proposals for future direction,” Sustainable Cities and Society, vol. 11, pp. 22–30,

2014.

[187] C. W. Gellings and J. H. Chamberlin, Demand-side management : concepts and methods.

Fairmont Press, 1993.

[188] P. Palensky, E. Widl, and A. Elsheikh, “Simulating cyber-physical energy systems:

Challenges, tools and methods,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 44, no. 3, pp. 318–326, 2014.

207

Bibliography

[189] C. Talcott, “Cyber-physical systems and events,” in Software-Intensive Systems and

New Computing Paradigms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

101–115.

[190] A. T. Al-Hammouri, “A comprehensive co-simulation platform for cyber-physical

systems,” Computer Communications, vol. 36, no. 1, pp. 8–19, Dec. 2012.

[191] A. Banerjee, J. Banerjee, G. Varsamopoulos, Z. Abbasi, and S. K. S. Gupta, “Hybrid

simulator for cyber-physical energy systems,” 2013 Workshop on Modeling and

Simulation of Cyber-Physical Energy Systems, MSCPES 2013, pp. 1–6, May 2013.

[192] B. Wang and J. S. Baras, “Hybridsim: A modeling and co-simulation toolchain for

cyber-physical systems,” Proceedings - IEEE International Symposium on Distributed

Simulation and Real-Time Applications, pp. 33–40, 2013.

[193] P. Riederer, “Matlab/simulink for building and hvac simulation - state of the art,” IBPSA

2005 - International Building Performance Simulation Association 2005, pp. 1019–1026,

2005.

[194] J. Venkatesh, B. Aksanli, J. C. Junqua, P. Morin, and T. S. Rosing, “Homesim:

Comprehensive, smart, residential electrical energy simulation and scheduling,” in 2013

International Green Computing Conference Proceedings, IGCC 2013. IEEE, Jun. 2013, pp.

1–8.

[195] J. Park, M. Moon, S. Hwang, and K. Yeom, “Cass: A context-aware simulation system for

smart home,” in 5th ACIS International Conference on Software Engineering Research,

Management & Applications (SERA 2007). IEEE, Aug. 2007, pp. 461–467.

[196] M. Drăgoicea, L. Bucur, and M. Pătraşcu, “A service oriented simulation architecture for

intelligent building management,” in Exploring Services Science, 2013, pp. 14–28.

[197] N. Martínez, J.-F. Martínez, and V. Hernández Díaz, “Virtualization of event sources in

wireless sensor networks for the internet of things,” Sensors, vol. 14, no. 12, Dec. 2014.

[198] A. Merentitis and F. Zeiger, “Wsn trends: Sensor infrastructure virtualization as a driver

towards the evolution of the internet of things,” in UBICOMM 2013 : The Seventh

International Conference on Mobile Ubiquitous Computing, Systems, Services and

Technologies, no. c, 2013, pp. 113–118.

[199] Q. Cao, D. Fesehaye, N. Pham, Y. Sarwar, and T. Abdelzaher, “Virtual battery: An

energy reserve abstraction for embedded sensor networks,” in 2008 Real-Time Systems

Symposium. IEEE, Nov. 2008, pp. 123–133.

[200] J. He, Y. Geng, Y. Wan, S. Li, and K. Pahlavan, “A cyber physical test-bed for virtualization

of rf access environment for body sensor network,” IEEE Sensors Journal, vol. 13, no. 10,

pp. 3826–3836, Oct. 2013.

208

Bibliography

[201] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless sensor

network virtualization: A survey,” IEEE Communications Surveys & Tutorials, vol. 18,

no. 1, pp. 553–576, Jan. 2016.

[202] B. De Carolis, G. Cozzolongo, S. Pizzutilo, and V. L. Plantamura, “Agent-based home

simulation and control,” in Foundations of Intelligent Systems, no. April 2016. Springer

Nature, 2005, pp. 404–412.

[203] G. Morganti, A. M. Perdon, G. Conte, and D. Scaradozzi, “Multi-agent system theory

for modelling a home automation system,” in 10th International Work-Conference on

Artificial Neural Networks, 2009, pp. 585–593.

[204] P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and Simulation, 2nd ed. New

York: Academic Press, 2000.

[205] J. S. Hong, H.-S. Song, T. G. Kim, and K. H. Park, “A real-time discrete event system

specification formalism for seamless real-time software development,” Discrete Event

Dynamic Systems: Theory and Applications, vol. 7, no. 4, pp. 355–375, 1997.

[206] A. Varga and R. Hornig, “An overview of the omnet++ simulation environment,” in

Proceedings of the First International ICST Conference on Simulation Tools and Techniques

for Communications Networks and Systems. ICST, 2008, pp. 60:1—-60:10.

[207] F. Howell and R. Mcnab, “simjava: A discrete event simulation library for java,” Computer,

vol. 30, pp. 51–56, 1998.

[208] N. Matloff, “Introduction to discrete-event simulation and the simpy language,” Davis,

CA. Dept of Computer Science. University, pp. 1–33, 2008.

[209] K. Helsgaun, “Discrete event simulation in java,” Department of Computer Science

Roskilde University, Denmark, Tech. Rep., 2000.

[210] K. S. Perumalla and R. M. Fujimoto, “Efficient large-scale process-oriented parallel

simulations,” in WSC ’98 Proceedings of the 30th conference on Winter simulation, 1998,

pp. 459–466.

[211] P. O. Siebers, C. M. Macal, J. Garnett, D. Buxton, and M. Pidd, “Discrete-event simulation

is dead, long live agent-based simulation!” Journal of Simulation, vol. 4, no. 3, pp.

204–210, 2010.

[212] A. Gustafsson, “Threads without the pain,” Queue, vol. 3, no. 9, p. 34, 2005.

[213] Q. Fan and Q. Wang, “Performance comparison of web servers with different

architectures: A case study using high concurrency workload,” in 2015 Third IEEE

Workshop on Hot Topics in Web Systems and Technologies (HotWeb). IEEE, Nov. 2015,

pp. 37–42.

209

Bibliography

[214] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R. Cheriton, “Comparing the

performance of web server architectures,” ACM SIGOPS Operating Systems Review,

vol. 41, no. 3, p. 231, Jun. 2007.

[215] F. Feng, R. Lu, and C. Zhu, “A combined state of charge estimation method for lithium-

ion batteries used in a wide ambient temperature range,” Energies, vol. 7, no. 5, pp.

3004–3032, 2014.

[216] R. P. Sera D Teodorescu R, “Pv panel model based on datasheets values,” IEEE

Transactions on Power Electronics, no. 4, pp. 2392–2396, 2007.

[217] I. M. Syed and A. Yazdani, “Simple mathematical model of photovoltaic module for

simulation in matlab/simulink,” in 2014 IEEE 27th Canadian Conference on Electrical

and Computer Engineering (CCECE), no. I. IEEE, May 2014, pp. 1–6.

[218] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A real-time network

emulator,” in Proceedings - IEEE Military Communications Conference MILCOM. IEEE,

Nov. 2008, pp. 1–7.

[219] K. Fall and K. Varadhan, “The network simulator (ns-2),” 2007. [Online]. Available:

http://www.isi.edu/nsnam/ns/

[220] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 project goals,” in Proceeding from

the 2006 workshop on ns-2: the IP network simulator, 2006.

[221] X. Chang, “Network simulations with opnet,” Simulation Conference Proceedings, 1999

Winter, vol. 1, pp. 307–314 vol.1, 1999.

[222] I. S. Hammoodi, B. G. Stewart, A. Kocian, and S. G. McMeekin, “A comprehensive

performance study of opnet modeler for zigbee wireless sensor networks,” NGMAST

2009 - 3rd International Conference on Next Generation Mobile Applications, Services and

Technologies, pp. 357–362, 2009.

[223] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A library for parallel simulation of

large-scale wireless networks,” in Proceedings of the Twelfth Workshop on Parallel and

Distributed Simulation. Banff, Alberta, Canada: IEEE Computer Society, 1998, pp.

154–161.

[224] a. Medina, a. Lakhina, I. Matta, and J. Byers, “Brite: an approach to universal topology

generation,” MASCOTS 2001, Proceedings Ninth International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems, pp. 346–353,

2001.

[225] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski, “Towards Realistic Million-Node

Internet Simulations,” Proceedings of the 1999 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA’99), pp. 2129–2135, 1999.

210

Bibliography

[226] “Scalable simulation framework network models (ssfnet 2.0),” 2004. [Online]. Available:

http://www.ssfnet.org/homePage.html

[227] H. Sundani, H. Li, and V. Devabhaktuni, “Wireless sensor network simulators a survey

and comparisons,” International Journal Of Computer Networks (IJCN), vol. 2, no. 2, pp.

249–265, 2010.

[228] F. Yu and R. Jain, “A survey of wireless sensor network simulation tools,” Washington

University in St. Louis, Department of Science and Engineering, 2011.

[229] G. F. Lucio, M. Paredes-farrera, E. Jammeh, M. Fleury, and M. J. Reed, “Opnet modeler

and ns-2 : comparing the accuracy of network simulators for packet- level analysis

using a network testbed opnet modeler and ns-2 : Comparing the accuracy of network

simulators for packet-level analysis using a network testbed,” WSEAS Transactions on

Computers, vol. 2, no. 3, pp. 700–707, 2003.

[230] L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying network simulation

setup,” Proceedings of the 6th International ICST Conference on Simulation Tools and

Techniques, pp. 82–91, 2013.

[231] L. Devroye, “General principles in random variate generation,” Non-Uniform Random

Variate Generation, pp. 27–82, 1986.

[232] C. Boucher, “Sampling random numbers from probability distribution functions

| comsol blog,” 2016. [Online]. Available: https://www.comsol.com/blogs/

sampling-random-numbers-from-probability-distribution-functions/

[233] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput,” ACM

SIGCOMM Computer Communication Review, vol. 28, no. 4, pp. 303–314, 1998.

[234] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load control with price

prediction in real-time electricity pricing environments,” IEEE Transactions on Smart

Grid, vol. 1, no. 2, pp. 120–133, 2010.

[235] S. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings, “Agent-based control for

decentralised demand side management in the smart grid,” AAMAS ‘11, Taipei,, pp. 5–12,

2011.

[236] T. Hubert and S. Grijalva, “Realizing smart grid benefits requires energy optimization

algorithms at residential level,” in ISGT 2011. IEEE, Jan. 2011, pp. 1–8.

[237] B. Neenan and J. Eom, “Price Elasticity of Demand for Electricity : A Primer and Synthesis,”

Electric Power Research Institute, Tech. Rep. January, 2008.

[238] OpenADR Alliance, “OpenADR.” [Online]. Available: http://www.openadr.org/

[239] G. Lilis and O. Van Cutsem, “vMiddlware: a real time building emulation engine,”

https://gitlab.com/georgekav/ib_backend_virtualization.git, 2017.

211

Abbreviations and Acronyms

ABS agent-based simulation

ADR automated demand response

API application programming interface

BAS building automation system

BMS building management system

CDF cumulative distribution function

CPS cyber-physical system

DES discrete-event simulation

DEVS discrete event specification

DR demand response

DSM demand side management

EMS energy management system

GNSS global navigation satellite system

HID human interface device

HPS hybrid positioning system

IC integrated circuit

ICT information and communication technology

IoT Internet of Things

IPS indoor positioning system

LP load profile

LSB least significant bit

M2M machine-to-machine

MCU microcontroller unit

MoM message-oriented middleware

MPC model predictive control

MPU microprocessor unit

NAT network address translation

NFC near field communication

OOP object-oriented programming

ORM object-relational mapping

OS operating system

PDF probability density function

213

Bibliography

PLC power line communication

PMF probability mass function

pMid physical middleware

PMU power measurement unit

PMU phasor measurement unit

PV photovoltaics

RDBMS relational database management system

RFID radio frequency identification

RPC remote procedure call

RSSI received signal strength indicator

RT AM real-time atomic model

RT CM real-time coupled model

RTDEVS real-time discrete event specification

RTT round-trip time

SB Smart Building

SG Smart Grid

SOC system on a chip

SoC state of charge

SoM service-oriented middleware

TSDB time series database

UML unified modeling language

uTread micro-thread

UUID universally unique identifier

vEngine virtualization engine

vEntity virtual entity

vMid virtualization middleware

vNetwork virtual network

VPN virtual private network

VPS virtual private server

WPS Wi-Fi-based positioning systems

WSN wireless sensor network

214

GEORGIOS LILIS
École Polytechnique Fédérale de Lausanne

Electronics Laboratory · Lausanne, Vaud, CH-1015

+41 766503143 · georgios.lilis@alumni.epfl.ch

EDUCATION

École Polytechnique Fédérale de Lausanne, Switzerland 2017
Ph.D. in Microsystems & Microelectronics
Dissertation: "A scalable and secure system architecture for smart buildings"

Aristotle University of Thessaloniki, Greece 2012
Diploma (joint bachelor’s & master’s degree) in Electrical & Computer Engineering
Thesis: Power system dynamic analysis using mixed-signal electronics emulation

SCIENTIFIC INTERESTS

Smart Building • system design, ambient intelligence, demand side management, IoT
Cloud & fog computing • architectures, virtualization, analytics, IaaS, PaaS
Distributed architectures for scalability and fault-tolerance
Software - hardware co-design
Embedded & computer networks
Embedded electronics design
Cybersecurity

TECHNICAL STRENGTHS

Computer Languages Python, C, C++, Java (SE), JavaScript, HTML5, CSS, VHDL
Full-stack development Embedded, Android, frontend/backend web development,

analytics platforms (Hadoop, Storm, Spark), FPGA, LABVIEW
Protocols 6loWPAN, 802.14.5, LPWAN-LoRaWAN, Powerline, Zwave,

802.11, 802.3, NFC
Embedded Discrete analog/digital, PCB, microcontrollers (ARM/AVR)

microprocessors (MIPS/ARM), SOC
Databases NoSQL, mySQL, SQLite, HBase
Tools Git, SVN, Latex, shell script, MATLAB
Misc Power systems, project management, Agile development

LANGUAGES

Greek Native proficiency
English Full professional proficiency (C2)
French Professional working proficiency (C1)
German Elementary proficiency

CERTIFICATIONS

PRINCE2® Foundation certificate in Project management – 04117287-01-ESG3
NI® Certified LabVIEW Associate Developer – 100-316-16286

215

LIST OF PUBLICATIONS

Journal Papers

[1] G. Lilis, and M. Kayal “A Secure and Distributed Message Oriented Middleware for
Smart Building Applications,” in Automation in Construction, 2017

[2] G. Lilis, O. Van Cutsem, and M. Kayal A High-Speed Integrated Building Emulation
Engine Based on Discrete Event Simulation,” in IEEE Transactions on Automation
Science and Engineering , 2017 in revision

[3] G. Lilis, G. Conus, N. Asadi, and M. Kayal, “Towards the next generation of intelligent
building: An assessment study of current automation and future IoT based systems
with a proposal for transitional design,” in Sustainable Cities and Society, 2016

[4] G. Lanz, L. Fabre, G. Lilis, T. Kyriakidis, D. Sallin, R. Cherkaoui and M. Kayal, “Cali-
bration of a Mixed-Signal Power Network Transient Stability Analysis Emulator,” in
International Journal of Microelectronics and Computer Science, vol. 4.4, 2013

Conference Papers

[1] O. Van Cutsem, G. Lilis, and M. Kayal, “Automatic Multi-State Load Profile Identifica-
tion with Application to Energy Disaggregation,” in 22nd International Conference
on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 2017

[2] G. Conus, G. Lilis, N. A. Zanjani, and M. Kayal, “Toward Event-Driven Mechanism
for Load Profile Generation,” in 22nd International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Limassol, Cyprus, 2017

[3] G. Lilis, O. Van Cutsem, and M. Kayal, “Building Virtualization Engine : a Novel
Approach Based on Discrete Event Simulation,” in 2nd International Conference
on Event-Based Control, Communication, and Signal Processing (EBCCSP), Krakow,
Poland, 2016

[4] G. Conus, G. Lilis, N. A. Zanjani, and M. Kayal, “An Event-driven Low Power Electron-
ics for Loads Metering and Control in Smart Buildings,” in 2nd International Con-
ference on Event-Based Control, Communication, and Signal Processing (EBCCSP),
Krakow, Poland, 2016

[5] G. Lilis, A. Hoffet, and M. Kayal, “GeoAware : A Hybrid Indoor and Outdoor Localiza-
tion Agent for Smart Buildings,” in 18th Mediterranean Electrotechnical Conference
(MELECON), Limassol, Cyprus, 2016

[6] G. Lilis, S. Bansal, and M. Kayal, “JouleSense: A simulation based platform for proac-
tive feedback on building occupants’ energy use,” in 5th International Conference on
Smart Cities and Green ICT Systems (SMARTGREENS), Rome, Italy, 2016

[7] G. Lilis, G. Conus, and M. Kayal, “A Distributed, Event-driven Building Manage-
ment Platform on Web Technologies,” in 1st International Conference on Event-
Based Control, Communication, and Signal Processing (EBCCSP), Krakow, Poland,
2015

216

[8] G. Lilis, G. Conus, N. Asadi, and M. Kayal, “Integrating building automation tech-
nologies with smart cities. An assessment study of past, current and future interop-
erable technologies,” in 4th International Conference on Smart Cities and Green ICT
Systems (SMARTGREENS), Lisbon, Portugal, 2015

[9] N. A. Zanjani, G. Lilis, G. Conus, and M. Kayal, “Energy Book for Buildings Occupants
Incorporation in energy efficiency of buildings,” in 4th International Conference on
Smart Cities and Green ICT Systems (SMARTGREENS), Lisbon, Portugal, 2015

[10] G. Lilis, T. Kyriakidis, G. Lanz, R. Cherkaoui and M. Kayal, "Pipelined Numerical
Integration on Reduced Accuracy Architectures for Power System Transient Simu-
lations," in 16th International Conference on Computer Modelling and Simulation
(UKSim-AMSS), Cambridge, UK, 2014

[11] G. Lilis, T. Kyriakidis, G. Lanz, R. Cherkaoui, and M. Kayal, “On the Effect of Integra-
tion Algorithms on Reduced Accuracy Computational Architectures For the Tran-
sient Simulation of Power System Dynamic Phenomena,” in ECESCON 7, Thessa-
loniki, Greece, 2014

[12] G. Lanz, L. Fabre, and G. Lilis, T. Kyriakidis, D. Sallin, R. Cherkaoui and M. Kayal,
"Power network transient stability electronics emulator using mixed-signal calibra-
tion," in 20th International Conference Mixed Design of Integrated Circuits and Sys-
tems (MIXDES), Gdynia, Poland, 2013

[13] T. Kyriakidis, G. Lanz, D. Sallin, G. Lilis, L. Fabre, R. Cherkaoui, and M. Kayal, "A
mixed-platform framework for Dynamic Stability Assessment," 2013 IEEE Power &
Energy Society General Meeting, Vancouver, Canada, 2013

217

