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Abstract

There is an increasing demand for remote healthcare systems for single person

households as it facilitates independent living in a smart home setting. Much

research effort has been invested to develop such systems to monitor and infer if the

person is able to perform their routine activities on a daily basis. In this research

study, two different methods have been proposed for recognizing activities of daily

life (ADL) using wearable and ambient sensing respectively. The thesis presents a

novel algorithm for near real-time recognition of low-level micro-activities and their

associated zone of occurrence within the house by using just the wearable as the

lone sensor data. This is achieved by gathering location information of the target

person using a wearable beacon embedded with magnetometer and inertial sensors.

A hybrid three-tier approach is adopted where the main intention is to map the

location of a person performing an activity with pre-defined house landmarks and

zones in the offline labeled database. Experimental results demonstrate that it

is possible to achieve centimeter-level accuracy for recognition of micro-activities

and a classification accuracy of 85% for trajectory prediction. Furthermore, addi-

tional tests were carried out to assess whether increased antenna gain improves

the ranking accuracy of the fingerprinting method adopted for location estimation.

The thesis explores another method using ambient sensors for activity recognition

by integrating stream reasoning, ontological modeling and probabilistic inference

using Markov Logic Networks. The incoming sensor data stream is analyzed in

real time by exploring semantic relationships, location context and temporal rea-

soning between individual events using a stream-processing engine. Experimental
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analysis of the proposed method with two real-world datasets shows improvement

in recognizing complex activities carried out in a smart home environment. An

average F-measure score of 92.35% and 85.75% was achieved for recognition of

interwoven activities using this method.
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Chapter 1

Introduction

This chapter presents the motivations of this thesis, the research objectives, the

main contributions and the structure of the thesis.

1.1 Need for Remote Monitoring and Self-Care

Systems

Routine activities such as eating, dressing, bathing, toileting are commonly referred

to as Activities of Daily Living (ADL) which people tend to do on a daily basis for

normal self-care [2]. There has been a significant increase in the number of home-

care patients requiring assistance through caregivers with their daily activities.

The caregiver may offer home visits based on the patient’s condition and help

with managing their day-to-day activities. Providing such close monitoring and

management is expensive and time consuming. In most cases, the caregivers are

understaffed and have to deal with high caseloads and administrative duties that

1
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could limit their time spent with patients [3].

Part of the caregiver’s job is to interact and gather information from the patient

if they have been performing their daily activities and then report back to the clin-

ician regarding their progress. However in most cases, the collected information

may be incorrect as the patients may not entirely tell the truth or forget to report

information. This method of manual collection of data is quite laborious and puts

extra burden on the caregivers. Advancements in cheap sensing technology and

communication systems has helped improve quality of life by developing applica-

tions for various domains. Therefore, trying out alternatives such as setting up a

smart sensing system at home that requires less monitoring by caregivers is the

right way to move forward. Patients are embracing the new technology, which will

enable them to live independently in the comfort of their own homes.

Commercially available smart devices and copious amount of research studies

on smart living in homes have helped to design systems to look after the elderly

and people suffering from other medical conditions such as depression, Parkinson’s

disease, Alzheimer’s disease and dementia [4],[5],[6]. This research aims to address

the above-discussed issues through development of smart monitoring solutions that

use minimal sensing methods to understand, learn and interpret the daily activities

of a person at their own homes. The results of the proposed system can be extended

in developing an application to cater specifically for a health condition or delivering

automated prompts to remind the home occupant to do their daily activities, which

is beyond the scope of this thesis.
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1.2 Research Motivation

Technological advancements in location based services have led to them being

used as a solution for recognising low-level activities carried out by a person in

an indoor environment [7], [8]. Simple or Low-level activities are simple activity

steps or actions that cannot be decomposed any further. For example – sitting on

the couch, standing, eating dinner, drinking tea, sleeping and so on. A collection

of low-level activities makes up a complex or a high-level activity. Examples of a

complex activity may include preparation of breakfast, which involves several low-

level activities such as opening the fridge, using the microwave or toaster, using

the kettle and so on. It may be possible to deduce the low-level activities if the

locus of the person performing them is identified. Based on this hypothesis, the

thesis tries to tap into the potential of using an indoor positioning system to derive

low-level activities based on location context.

A combination of different sensing methods may be used to monitor high-level

activities. Despite the presence of advanced sensing systems, recognition of com-

plex activities may prove a challenging task as the low-level activities may be

concurrent or interleaved in nature. The recognition of two activities happening

at the same time through an observed activity sequence is called a concurrent

activity. An activity is said to be interleaved if it is paused for a short duration

and is resumed again after execution of another activity. A reliable system needs

to be in place to handle the data complexity in a real-time scenario. Furthermore,

it is not always feasible to have access to training data while setting up a monitor-

ing system. The thesis tries to work around these issues and discusses two main

models using an indoor positioning system for low-level activities and a hybrid

ontology and Markov Logic Network (MLN) model for complex activities.
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1.3 Research Questions

This thesis provides an overview of using different sensing technologies coupled

with different computation techniques to model a real-world activity recognition

problem, which are discussed in detail in the next chapters. In doing so, it aims

to answer the following research questions:

1. How to address the stability issues of an indoor positioning system

for achieving fine-grained positioning accuracy?

Indoor positioning has been commonly used for monitoring and tracking user

movement. However they are mostly restricted to the use case of room level

monitoring as the wireless signals are highly unstable. The thesis attempts

to answer this question through experimental testing done in Chapter 4. A

possible solution of hybridising two different wireless technologies – Bluetooth

low energy (BLE) and magnetic field data along with a novel algorithm is

devised to predict low-level activities and walking trajectories derived from

the resulting location context.

2. What are some of the key parameters that affect the performance

of an indoor positioning system using Bluetooth location finger-

printing?

Care has to be taken while designing an indoor positioning system for a
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domestic environment. Due to the presence of strong Non Line of Sight

(NLOS) conditions, it is important to focus on choosing the right equip-

ment and establish the data collection method before deployment. Important

parameters such as deciding the number of receivers to be deployed, deciding

the average length of walking routes to maintain in a training database, effect

of receiver coverage density on position accuracy are discussed in Chapter 5.

The experiments done in Chapter 5 helps in refining the performance of the

BLE fingerprinting system. A detailed analysis is presented by evaluating

these factors experimentally in a real-world apartment.

3. How to tackle the challenge of recognising complex activities with-

out the requirement of training data in a real-world setting?

Though there are several research works on activity recognition, a vast num-

ber of studies assume that the subject carries out only one activity at a time,

which is rather unrealistic in a real-world setting. Chapter 6 aims to address

this problem by using a probabilistic logic method such as Markov Logic

Network (MLN) along with a domain ontology to exploit the inter-relations

between the participating sensors, activities, location and objects in an unsu-

pervised way. Additionally, well-defined C-SPARQL queries are formulated

for deducing start and end times of a sensor event from raw unseen streaming

data to explore the temporal relationships between different activities occur-

ring together at the same time.
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1.4 Contributions of this Thesis

Two different sensing methods that use contrasting models for activity prediction

in a smart home are explained in this thesis. In the first half of this thesis, a

novel hybrid supervised data-driven approach is adopted with wearable sensing

for low-level activity recognition. Whereas, in the latter half of this thesis, unsu-

pervised probabilistic reasoning techniques are integrated with static knowledge-

driven methods for complex activity recognition using object-tagged and ambient

sensors. In particular, the thesis identifies the following contributions:

1. Discovering low-level activities and their associated zone of occurrence by

gathering useful location context information through wearable sensing for a

domestic home environment with strong NLOS conditions.

2. Development of a novel sequence based algorithm for simple activity recog-

nition using location-based techniques that requires less training data.

3. Prediction of walking trajectories of the home occupant moving between dif-

ferent areas of interest in a small household using just a wearable and without

relying on data from other modes of sensing.

4. Investigation of factors that can help improve the performance of bluetooth

location fingerprinting systems employed for fine-grained low-level activity

recognition and route prediction.
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5. Handling uncertainty using Markov Logic Networks over continuous incre-

mental RDF sensor streams through exploitation of domain knowledge mod-

eled using ontology.

6. Recognition of complex activities carried out in an interwoven manner in real

time using an unsupervised approach.

1.5 Limitations of scope

This thesis focuses on evaluating the research questions posed above to address

few problems that are particularly challenging or lacks sufficient investigation in

the field of activity recognition. With the allowed time for PhD research, few key

aspects surrounding ADL recognition for healthcare were selected for investiga-

tion and experimental analysis in this thesis. Further work on other aspects listed

below was not possible in this project due to time constraints. In particular, the

following limitations apply.

1. Both the data-driven and knowledge driven techniques discussed in the thesis

using wearable and ambient sensing methods respectively were tested only

in a single home user environment. Although, a multi-user scenario has not

been tested in this thesis, it is possible to differentiate between two indi-

viduals through different device ID’s (MAC address) of the wearable for the

indoor localisation approach suggested in Chapter 4. However the effect of

interference from multiple human bodies on the beacon signal is not studied
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and may affect the positioning performance. In the case of ambient sensing

systems, multiple people may perform individual or joint activities together

such as preparing a meal or cleaning the house. Individual activity patterns

can be studied in depth to help distinguish between persons carrying out

the same activity. The model developed in this thesis is not sophisticated

enough to identify such user patterns and may not cope with recognition of

joint activities performed by two or more individuals.

2. The algorithms developed for indoor positioning for tracking user activities

are designed with two-dimensional data co-ordinates and were tested exper-

imentally in one-bedroom flats. Its suitability for multi-floor homes or large

spaces is questionable and requires further development and testing. Using

the same indoor positioning system described in Chapter 4 for a multi-floor

environment may fail to distinguish between floors as the system was not

calibrated to account for vertical localisation. In the case of the ambient

sensing system, discussed in Chapter 6, using the same model in a multi-

floor level home is likely to not have any major impact on the performance

and can be used as it is without making any additional changes.

3. Chapter 5 considers a few important factors that affect the performance of

the deployed indoor positioning system described in Chapter 4 for tracking

the user activities and trajectories. However, there may be other factors

such as receiver placement, receiver orientation, interference from human

bodies and impact of certain building properties such as wall thickness on

the localization accuracy that are not discussed in this thesis. In particular,

the coverage area of the receivers may be reduced if the receiver placement
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and orientation of the antenna is not directed properly. Furthermore, the

presence of thick walls may weaken the beacon signal due to heavy attenua-

tion leading to performance degradation.

4. The thesis does not develop an end product that is designed for a specific

health condition, but in general suggests methods that aids in the process of

effective ADL recognition. There are still many practical challenges involved

for fingerprinting in particular and for the C-SPARQL-MLN model that need

to be addressed such as data management and performance issues such as

latency, interoperability. The model needs to be fine-tuned for it to be used

by a suitable application specific user interface. The discussed methods can

be further expanded into a complete end user health application with the

guidance of a relevant clinician.

5. Activity recognition systems deployed in a private space such as a home

environment should also consider the necessary privacy aspects involved.

Although the data handled in Chapters 4 and 5 is processed locally, data

encryption is not performed at any time, which may be a cause of concern

for the end user. When used as an end user application, control can be

given to users on how much information is shared. With respect to personal

privacy, visual sensing was not considered as a sensing option in the thesis.

This topic is beyond the scope of this study and the thesis does not discuss

such feature at any point.
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1.6 Thesis Outline

The structure of the remainder of the thesis is outlined below. Each chapter aims

to address parts of the research questions posed above. The logical progression of

work is illustrated graphically in Figure 1.1.

Figure 1.1: Thesis Progression

Chapter 2 presents an overview of the existing methods and techniques involved

for each step in the process of activity recognition described with relevant examples

from state-of-the-art works. The chapter also discusses the applications of smart

home monitoring for healthcare and highlights the challenges faced by existing

ADL recognition systems.
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Chapter 3 presents an introduction to the indoor positioning system using

different technologies and discusses the process of indoor location fingerprinting.

It also explains the design process of the indoor positioning system employed in

Chapters 4 and 5 highlighting the hardware setup, data collection process and

design of the fingerprinting test beds.

Chapter 4 presents an approach for detection of low-level activities and walk-

ing trajectories using a hybrid indoor positioning algorithm through wearable sens-

ing. The suggested approach applies fingerprinting techniques by integrating differ-

ent technologies such as Bluetooth Low Energy (BLE), Magnetic Field and inertial

sensors for accurate low-level ADL recognition assessed in two different homes.

Chapter 5 provides a detailed analysis on relevant factors that may affect the

outcome of the indoor positioning method described in Chapter 4. The experi-

ments conducted in this chapter will aid in the setup and choosing the number of

equipment required for the home environment.

Chapter 6 outlines the approach of combining a knowledge-driven model with

a probabilistic logic method and provides a detailed analysis of its benefits. It

demonstrates the use of stream reasoning framework on real-world continuous data

with probabilistic inference using Markov Logic Networks by making use of the

domain knowledge represented using ontology.

Chapter 7 summarizes the developed methods and results obtained from the

work carried out in this thesis, and outlines possible avenues for further research.



Chapter 2

An Overview of Human Activity

Recognition Systems in Smart

Home

The use of technology to support remote monitoring and self-care is transform-

ing the healthcare industry and empowering patients to better manage their own

health. However there are still various barriers to consider for it to be transformed

into actual implementation. Efforts have been taken by a number of research

studies to improve these areas of concern.

This chapter aims to provide an up-to-date summary of various state-of-the-

art systems in activity recognition for smart homes. The three basic building

blocks of any ADL recognition system are discussed in the first section. A detailed

outline regarding state-of-the-art techniques applied in each of these three stages

are introduced. It also presents the related work of activity recognition systems

designed in specific for healthcare applications. The chapter concludes by providing

12
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an overview and a critical analysis of the related work.

2.1 Three Phases of Human Activity Recogni-

tion

Various techniques in activity recognition to support remote healthcare have been

devised by exploiting pervasive computing technologies in the smart home domain.

It is important for every individual to perform day-to-day activities such as brush-

ing teeth, bathing, eating and other instrumental ADL’s for their overall wellbeing.

The ability to perform ADLs is used as a measurement of a person’s functional

status by a number of healthcare professionals. It therefore becomes necessary to

monitor these routine activities to determine the progress and next level treatment

for patients. Furthermore, monitoring the patients at their own homes through

installation of remote healthcare systems provides a sense of independence and

comfort to them.

Reliable ADL recognition involves choosing a sensing system that collects infor-

mation about activities being currently executed, filtering the useful data from the

raw sensor data obtained from the sensing system and using a computation model

to infer activities done by a person. The process of ADL recognition can be divided

into three main phases - Feature Detection, Feature Extraction and ADL Predic-

tion using a suitable model. A glimpse into different techniques introduced at each

stage is presented in the following sections.
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2.2 Feature Detection

Feature	Detection	
Systems	

Sensor-based	
Systems	

Wearable	
Sensing	

Environmental		
Sensing	

Object-tagged	
Sensing	

Optical-Imaging	
based	Systems	

Visual-based	
Sensing	

Depth	Image	
Sensing	

Thermal	
Sensing	

Figure 2.1: Types of Feature Detection Systems

The first step for ADL recognition is capturing relevant contextual information

to infer the activity carried out by the home occupant. Deploying reliable mon-

itoring systems is crucial as it reflects on the accuracy of the deployed activity

recognition framework. Based on the type of observed data collection method,

feature detection approaches can be broadly classified into optical imaging and

sensor-based systems (Refer to Figure 2.1). A brief discussion of different tech-

niques involved in feature detection are critically analyzed in this section.

2.2.1 Optical Imaging based Systems

In this section, we give a brief overview of various optical based systems rang-
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ing from visible imaging to thermal based sensing in the field of human activity

recognition.

2.2.1.1 Visual-based Sensing

Visual-based systems include cameras or surveillance systems to monitor the per-

son’s actions in their homes. These systems have been a popular choice for data

collection among the research community as it was one of the initial approaches

used for activity recognition. Application of computer vision techniques on the

captured data can recognize a variety of fine-grained activities [9], [10], [11]. The

main challenge in these systems is extracting feature representations from videos

to develop a robust human recognition model [12]. Tran et al. [13] adopted a

deep learning architecture called C3D for classifying actions captured through

video which extends a conventional 2D-CNN with a third convolution direction

over time. The performance was evaluated using three public video databases and

demonstrated that the developed structure was designed such that extracted fea-

tures model appearances and motion simultaneously. Another study developed a

similar model using two streams of 3D CNN. The features from the appearance

and motion estimation stream were concatenated respectively to feed as input to

a softmax layer to infer the activity classes. The main drawback however is the

privacy involved with visible sensing methods. These solutions were identified as

too intrusive in a smart home environment according to a recent study. The results

showed that camera based medical monitoring in a private space such as a home

had the lowest acceptance rate at 13.46% [14].
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2.2.1.2 Depth Image Sensing

Lately the use of depth sensors has been gaining popularity for improving accu-

racy. Devices such as Kinect can be used capture human motion and record the

3D co-ordinates. A fall detection system designed by Mettel et al. [15] used a

single Microsoft Kinect depth camera installed on the ceiling. The system used a

combination of static detection to check if the person was lying on the floor with

the dynamic motion detection of the fall. The use of a single depth sensor however

resulted in performance degradation, which as per the author could be overcome

by integrating multiple installations of the depth sensor. In another study, the

authors have used Kinect-based sensors along with video cameras for data capture

to enable them to function effectively under all lighting conditions [16]. [17], [18]

and [19] have used a combination of standard web cameras and Kinect sensors for

gathering activity information during all times of the day in their research study.

2.2.1.3 Thermal Sensing

Thermal infrared imaging is particularly useful when the human subject is indistin-

guishable from the background due to appearance and lighting conditions. These

passive sensors measure infrared radiations emitted by warm objects as a thermal

image. One such study makes use of thermal infrared imagery for spatio-temporal

gait representation, called the Gait Energy Image (GEI), for human repetitive

activity recognition [20]. GEI represents human motion sequence in a single image

while preserving temporal information unlike other studies, which consider gait as

a sequence of templates. Another study by Hevesi et al [21] leveraged a low-cost
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sensor array of 8*8 thermal sensors for recognizing different activities ranging from

opening a refrigerator, oven or showering and also usage of electric appliances. The

system claimed to track people within 1m accuracy range. A 16*16 thermal sensor

array was used in [22] to recognize basic activities such as sitting, standing, walk-

ing etc. and abnormal activities such as fall detection. The authors used a deep

learning based approach for extracting spatio-temporal representation. Thermal

infrared sensing serves as a way to reduce the privacy concern caused by cameras

in a household space by not revealing too much private information.

Despite the existence of several optical imaging systems designed for activity

recognition, the acceptability of such systems are still questionable [23]. As per

the study in [23], the end user is likely to accept a monitoring system that is less

intrusive and vigilant regarding the data collected.

2.2.2 Sensor-based Systems

A wide range of sensor-based options is available to monitor the behavior of the per-

son with their associated environment. Advancement in sensor technology and low

cost has further encouraged many researchers to opt for a sensor-based approach

for activity recognition. They can be further classified into three categories based

on the method of deployment, which are wearable, environmental and object-tagged

sensing.

2.2.2.1 Wearable Sensing

Wearing different types of sensors around the body is another popular method for

collecting data about body condition and surroundings. They have been exten-
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sively used in the recognition of human physical movements. Devices ranging

from accelerometers to wearable ECG sensors have also been used for monitoring

patients at home when they suffer from disorders such as heart attack, anorexia,

bulimia, Parkinson disease, Alzheimer’s disease, depression and so on [4], [5],[6]

and [24]. In [25], a combination of sensors meant for activity sensing, ambient

environment sensing and location context sensing is integrated into a wrist-worn

smart wearable device. Bluetooth low energy beacons are deployed in the surround-

ing infrastructure to notify the wrist worn wearable whenever in range, thereby

estimating the location proximity.

Recently, micro-sensors that come in the form of body patches have been devel-

oped to monitor the body’s physiological parameters. They are little less than one

millimetre thickness and their usage is expected to increase by 40% in the next ten

years [26]. These sensors that are termed as bio-stamps looks like a tattoo or sticker

and have the capability to monitor chemicals in sweat, measure blood pressure, skin

hydration, temperature and so on [27], [28] and [29]. Apart from micro-sensors,

there has been increased research interest in the development of implantable medi-

cal devices. These minute sensors use RFID and can be implanted into the human

body or are attached to certain internal organs for monitoring health parameters

[29].

One notable disadvantage of this type of sensing is that they may easily be

misplaced or the patient may forget to wear resulting in inferior performance of

the monitoring system. Technical issues such as size, ease of use and battery life

is another concern.
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2.2.2.2 Object-Tagged Sensing

This method is also commonly referred as dense sensing which involves attach-

ing sensors to objects of daily use. Activities are recognized based on the person’s

interaction with the object. Low-cost low-power object sensors are readily available

which makes them suitable for deployment in intelligent pervasive environments.

Furthermore, they are easy to install, require minimal maintenance and supervi-

sion, and do not have to be worn or carried. A change in status of an object-tagged

sensor provides a strong indication of an activity being undertaken by the person.

Displacement sensors, pressure mat sensors or contact switches are some of the

commonly used sensors for tagging objects that simply report a value of zero or

one at each time step when used. For instance, the activation of pressure mat

sensors placed on the bed can strongly suggest the action of relaxing or sleeping.

The dense sensing paradigm has been deployed in different smart homes for

ambient assisted living (AAL) [30], [31] and [32]. A major drawback of this type

of sensing is that it bounds the person to use tagged-objects for recognition of

activities. The lone use of object-tagged sensing method may not be suitable for

recognizing all types of activities that do not require device interaction.

2.2.2.3 Environmental Sensing

Environmental or Device-free sensing has been gaining popularity over the past

few years since users are not required to wear or tag the objects while performing

an activity. The sensors are deployed in the surrounding environment to capture

data for ADL recognition. A number of radio frequency (RF) based device free

approaches have received significant attention for human presence detection and
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activity monitoring by capturing the data through deployment of RF tags in the

surrounding environment requiring no participation from the user.

Different wireless technologies such as RFID [33]-[34], Wi-Fi [35]-[36], ZigBee

[37]-[38], FM radio [39]-[40], microwave [41], RADAR [42], LIDAR [43] are com-

monly used for this type of sensing. However, the system may malfunction when

reading from multiple receiver tags at once due to signal collision. The data cap-

tured by the sensing equipment may also be subjected to other forms of interference

from the environment causing the injection of noise into the data. Various noise

removal and anti-collision algorithms need to be formulated for effective activity

recognition. Care needs to be taken to reduce the computational cost and com-

plexity of the system through introduction of such algorithms.

Each category discussed above has its own share of pros and cons. The suit-

ability and performance of the sensing method depends on the activities to be

assessed and its end application. One or more sensing methods may also be used

in combination with each other to yield acceptable results. In Chapters 3 and 4,

wearable sensing method is used along with RF technology for low-level activity

recognition and in Chapter 5, movement sensors and object-tagged sensors are

used for detecting the human presence and capturing the human-object interac-

tion respectively. Use of different computation methods in addition to employing

two different sensing paradigms in this dissertation provides an overall insight into

various techniques that can be adopted for AAL.
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2.3 Feature Extraction from the Data Collected

Feature extraction or feature engineering is an important phase in activity recog-

nition systems since the features extracted from the raw sensor stream influences

the final outcome. This is also one of the most challenging phases in an ADL

framework as it is quite difficult to determine useful information from continuous

raw sensor data in a dynamic environment. It involves extracting important fea-

tures through domain-specific expertise to train a machine-learning algorithm and

to create a suitable predictive model. In most cases, the raw data collected from

sensors requires intensive feature engineering to produce a model with sufficient

prediction accuracy due to the large scale input database. Feature engineering

of such time-series data collected using sensors is essential to provide as much

information as possible with an optimum cost computation algorithm [44]. For

techniques adopting machine learning methods for inference, a number a learning

methods are used to select the features relevant to the recognition problem [45].

The sensor training data is usually quite large and a number of statistical meth-

ods may be applied to derive useful information in the form of different features.

The most important features are then selected using relevant feature reduction

techniques to reduce the overall dataset dimension. Mahbuba et al. [44] con-

ducted a comparative study of ML classifiers for human activity recognition by

applying different feature engineering techniques. The motivation of the study

was to portray the significance of the feature engineering stage with data min-

ing and ML algorithms in the field of human activity recognition. Four different

feature-engineering approaches were implemented and the selected feature set from

each of the four approaches were used to train various ML models. The final results

indicate that the Extra tree classifier feature set showed the highest accuracy on
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average for all the considered ML classifier models; out of which, Multi-layer per-

ceptron model performed the best.

Zdravevski et al. [46] proposed an automated feature engineering method which

selects the best feature sets for execution of AAL algorithms for robust activity

recognition. The authors tested this approach on five publicly available datasets.

Each of the datasets was subjected to segmentation by applying a sliding window

approach followed by extraction of time and frequency domain features from raw

sensor data and carry out feature reduction techniques respectively.

For a majority of activity recognition applications, sensor data needs to be

pre-processed and segmented after data acquisition. Determining the length of the

sensor event stream to be used for real or near-real time ADL recognition also poses

a huge challenge. Research work in the area of sensor data segmentation is quite

sparse. Sliding window technique is a method used to identify the length of the

sensor stream for activity recognition from an un-segmented sensor sample. The

size of the window may be determined by using different parameters such as time

intervals, number of sensor events triggered, change in person’s location and other

parameters that may help filter out the useful information from the raw sensor

data. The authors of [47] follow the approach of segmenting the sensor stream into

individual windows based on time intervals between observations and movement

of a person between different zones (e.g. moving between sink zone to toilet zone).

The main drawback is that it might take a longer time to define the segmentation

until adequate information is received. There is also the issue of segmenting the

sensor stream if multiple events mapped to different activities occur simultaneously

when ADLs are performed in an interwoven manner. Hence including temporal

information and finding the start and end times of the observed events can help in

complex activity recognition in the later stages.
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[48] presents a novel strategy for dynamic sensor data segmentation that includes

a computation based on sensor correlation and time correlation. Pearson product

moment correlation (PMC) coefficient is computed between the sensor events to

delineate the boundaries of the activity. The PMC value depends on the placement

of the sensor and a suitable threshold value is selected to determine the sensor cor-

relation. A high PMC value indicates that the sensors are located within each

other’s vicinity and are therefore likely to be triggered together or sequentially.

For time correlation, maximum time span is set for each activity and are identi-

fied based on the functioning area. The final segmentation is done based on the

results of the threshold parameters set for time and sensor correlation. This type

of approach allows recognition of activities at near real-time. The researchers of

[49] have used dynamic time warping approach for sensor segmentation and differ-

entiating between a set of ten low-level kitchen activities such as chopping, coring,

dicing, peeling and so on. This was done by analysing continuous sensor data

recorded by accelerometers that were embedded into the kitchen utensils.

2.4 Models Used for ADL Prediction

Models developed for ADL recognition frameworks can be divided into two cat-

egories namely, inductive and deductive [50],[47]. The inductive or data-driven

methods mainly involve making decisions based on generalization and learning

from examples observed in a specific case. This method includes the different

machine learning algorithms that are executed based on the available training

examples. Whereas, deductive methods utilise contextual information along with

semantic knowledge to reach a conclusion. This includes all the activity recogni-

tion models that are based on knowledge-driven techniques such as logic-based [51]
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and ontology-based [52] approaches. In most cases, a combination of inductive and

deductive models is used together in an ADL recognition framework [53]. Relevant

literature that use one or both these methods are discussed below.

2.4.1 Inductive or Data-Driven Approaches

User activity models are created from existing large training datasets by using

data mining and machine learning techniques and using the learned models to

infer activities [54] – [55]. Many models have been used for inference of ADL at

home, out of which the most popular computational models include the Hidden

Markov Models (HMM) and Bayesian Models. In [56], HMM’s that employ Viterbi

decoder are adopted for real time human activity recognition. Instrumented objects

along with hand co-ordinate data are used to correctly determine the sub-goals of

tea making task. Their approach makes it feasible to detect sub-goals that occur

simultaneously by passing the extracted feature vectors through a set of parallel

asynchronous HMM detectors, each responsible for detection of one of the sub-

goals.

In another prototype, few off the shelf sensors were used to investigate a measure

of interaction with everyday objects called “busyness” to develop a reliable and

cost effective AAL system for the elderly to live independently [57]. In their case

study of hot drink making activity, Principal Component Analysis (PCA) is used

for data pre-processing to reduce the number of features and maximize the system

performance. This reduced dataset is then subjected to cluster analysis based on

K-means algorithm and then uses Average Silhouette Width’s indexes to estimate

the number of clusters. But this system fails to distinguish between different people

and hence is not applicable for a multiuser environment. The wearable used in [25]
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incorporates Deep Learning Neural Network based data analytics into its design

that ensures fine-grained ADL recognition at home. It makes use of stochastic

gradient descent algorithm with 2 hidden layers for training the neural network.

The model also performed a 5-fold cross-validation to determine the number of

neurons in each of the hidden layers. The final results indicate that a choice of 100

and 800 neurons in the hidden layers provide a reasonable 89.38% cross validation

accuracy in their test experiment.

In [48], a number of popular algorithms such as Näıve Bayes, Bayesian net-

work, C4.5 decision tree, Näıve Bayes tree (NBT) and HMM were assessed and

compared to find the best recognition rate. The hybrid algorithm, NBT demon-

strated improved recognition performance, but it was pointed out that the choice of

algorithm might not be the single deciding factor for improving the precision rate.

Support Vector Machines (SVM) and Artificial Neural Networks (ANN) are most

commonly used discriminative approaches [58]. In [58], the authors use an SVM

classifer on two existing datasets to resolve problems in activity recognition. The

developed model is compared against 1-Nearest Neighbour classifier. The authors

noticed that the SVM classifier performed poorly on imbalanced training sets.

Employing deep learning models to recognise complex activities has been gain-

ing immense popularity. The authors of [59] have used a hybrid deep machine

learning approach to recognise concurrent and interleaved ADL’s. A two phase

approach wherein a Bidirectional LSTM (BiLSTM) model to recognise concurrent

activities and a Skip-Chain Conditional random field (SCCRF) model to iden-

tify interleaved activities were devised. The experimental analysis performed on

two public datasets yielded an average accuracy of 93%. Another study [60] imple-

mented four deep learning classifiers using BiLSTM to recognise complex activities

with an average accuracy of 95%. However both these studies and other machine
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learning approaches require extensive training data to provide reasonable results.

The main advantage of data-driven methods is their ability to model uncer-

tainty, which is important for real world deployments. However, they suffer from

cold start problem, as copious amounts of training data are required for reliable

activity recognition [50].

2.4.2 Deductive or Knowledge-Driven Approaches

Different types of knowledge-based approaches have been developed for recognising

constituent tasks from sensor event data. The ADL’s may be modelled as a set

of goals and sub-goals to represent simple tasks. For Example: In [61], An ADL

for “Make Breakfast” has “Enter Kitchen”, “Prepare Food”, “Cleaning”, “Leave

Kitchen” as their sub-goals. These sub-goals can be further divided into its sub-

components. In this case, “Prepare Food” has the sub-goals “Prepare Toast”

and “Prepare Tea”. Researchers of [47], [62]-[63] use a hierarchical framework

for identification of different ADL’s where ADL’s are at the top of the hierarchy

and sensor events form the lowest level. In [62]-[63], ADL recognition is divided

into two levels where the lower tier is responsible for task recognition from different

sensor events and the higher tier carries out recognition of activities from the tasks

recognised in the lower tier. The higher tier comprising of different ADL’s were

modelled using a plan representation language called Asbru.

Using ontologies for activity recognition has garnered interest as they facili-

tate portability, interoperability and reuse for different applications [64]-[65], [50].

Moreover they can capture and encode rich domain knowledge in a machine under-

standable way. The ontology model when combined with contextual information

can help decrease data misinterpretations.
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In [66], the authors carry out ontology based activity recognition by using

a model which consists of the user’s context such as human posture, location,

sensor and so on. With the added information regarding the posture data, the

authors were able to solve some of the ambiguous cases and distinguish between

final activities through ontological reasoning. The researchers of [52] developed

an ADL framework that is purely knowledge driven based on an ontology model.

Their purpose of the study was to experimentally evaluate the effectiveness of the

ontology approach using a smart home activity dataset. The preliminary results

highlighted that the ontology-based approach without temporal information under-

performed when compared to the data-driven techniques. However when the model

was extended with temporal reasoning, the performance was comparable with tech-

niques such as HMM. The authors of [67] create a knowledge-driven framework for

situation awareness and human activity understanding in multi-sensor environ-

ments. The framework relies on ontology design patterns and standards such as

SPARQL that can be reused with different individuals or environments. In [68],

a rule-based method was proposed for offline and online ADL recognition that

was implemented using Jess rule engine for a smart home environment. The devel-

oped system uses a bottom-up multi-level reasoning approach to recognize complex

activities.

Compared to the data-driven approach, knowledge-driven approaches do not

suffer from cold start problem as they use generic domain knowledge rather than

data for activity modeling, but are weak in handling uncertainty.
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2.4.3 Hybrid Approaches

The main idea of hybrid-based activity recognition approaches is to solve the draw-

backs of data-driven and knowledge driven methods through combined usage of

both the methods in a single system. [53] combine statistical inference techniques

with ontological activity modeling and recognition. Similarly in [69], the authors

proposed the AGACY Monitoring hybrid model by integrating the background

knowledge with the data-driven method for recognition of activity instances and

hence were able to support the inherent uncertain nature of sensor data.

Different probabilistic techniques such as Dempster-Shafter theory [70], Markov

Logic Networks (MLN) [71]-[72] and Bayesian networks [73] are used along with

ontology-based approaches in order to handle uncertainty. In [71], probabilistic

ontology based activity recognition of complex activities is carried out through

use of MLN models containing formula weights. The authors used a hybrid loca-

tion based sliding window approach to intelligently segment the data based on the

zone where sensors were triggered. MLN rules were formulated using object sen-

sor mappings from the ontology and formula weights were assigned based on the

observed training data. The authors were able to achieve an average F-measure

of 96%. Riboni et al. [72] also used Markov logic network models to recognise

concurrent and interleaved activities using an unsupervised approach. The study

relied on ontological reasoning to derive necessary conditions about sensor events

and semantic correlations. The start and end times of the activity instances were

decided based on these sensor correlations.The final activity recognition on the can-

didate activity instances were performed using MAP inference based on the MLN

model defining sensor events and semantic constraints. An average F-measure of

78% was achieved using this model.
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2.5 Privacy Issues in Human Activity Recogni-

tion

Though activity recognition using the latest smart devices and technology presents

innumerable benefits, privacy breach when dealing with software, data collection

and sensing methods is a cause of concern. Privacy infringement in ADL recogni-

tion systems may take place in various forms. For example: unintentional expo-

sure of personal information from photos or images recorded by the surveillance

system, information leakage during data pre-processing and analysis, extracting

data related to user behavior or location details from raw data and so on. It is

therefore necessary to implement suitable measures to protect human related pri-

vacy while handling sensitive data for the purpose of activity recognition. The

authors in [74] and [75] proposed complete data isolation by carrying out homo-

morphic encryption (HE) to prevent information leakage. Similarly sensitive areas

in images or videos are encrypted in the study conducted in [76]. Another interest-

ing privacy-preserving solution is to capture anonymized images or videos by using

different modified pictures of the same person [77]. Garcia et al. [78] proposed

edge computing over central computing to prevent risk of hacking and delay in

data transmission. The data is thus immediately analyzed and processed locally

near to the user’s device rather than sending it to a central data center such as the

cloud. Few studies have proposed adversarial trainings to suppress the information

disclosure for preserving privacy in deep learning and neural network approaches

[79], [80]. This type of machine learning technique supplies deceptive input such
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that sensitive information is eliminated while maintaining sufficient information

to predict the user’s activity. Another option is to implement differential privacy

by injecting noise in order to prevent information disclosure in machine learning

methods [81], [82]. Based on the model adopted for activity recognition, a suitable

privacy preserving solution can thus be implemented.

2.6 Applications of ADL systems for Healthcare

There has been some significant amount of work done in the area of activity recog-

nition at home designed specifically for elderly monitoring, treatment of health

disorders [4], [5], [6] and for overall wellbeing. Figure 2.2 illustrates some of

the common healthcare applications developed for smart homes. A number of

research projects have been dedicated for healthcare in smart homes [83],[84]. The

project ”Aging in Place” was developed to assist seniors to live independently at

their own homes [83]. The popular SPHERE project helped people by predicting

falls, strokes and to detect periods of depression or anxiety using computer-based

therapy, in addition to analyzing human eating behavior [84].

There are few proposed systems that deal with depression treatment by moni-

toring the person’s daily activities at home [86]. One such proposal is Help4Mood

that was mainly framed for people suffering from major depression [86],[87]. This

system makes use of non-intrusive sensors along with an interactive virtual agent,

which compiles changes in activity pattern and reports it to the clinician. Data is

collected using a smartphone as well as wearables. In addition to these sensors,

parameters such as sleep time, sleep quality and physiological measurements such

as heart rate and breathing are measured using an under-mattress sensor and a

watch that works on the SimpliciTI protocol. Based on the incoming data from the
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Figure 2.2: Healthcare Applications in Smart Homes. Adopted from [85]

sensors, the developed virtual agent (VA) prompts the user to carry out helpful

activities and alerts the clinician if necessary. ICT4Depression project incorpo-

rates the use of biosensors and comprises of interactive self-management modules

and intelligent reasoning system integrated through an innovative mobile solution

called Moodbuster [87]. A number of therapeutic modules that deals with goal set-

ting, exercise therapy, medication therapy and feedback modules about the level of

mood are also present. These modules help the patient in doing their daily routine

activities by sending reminders in addition to updating itself by prompting user

for mood ratings.
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2.7 Challenges of Existing Activity Recognition

Systems

Although significant research has been done in the field of activity recognition,

there are still some open issues that need to be addressed.

2.7.1 Complex Activity Recognition

Most of the existing work in ADL recognition concentrates on recognizing only one

activity at a time. But in a real world scenario, a person may carry out activities

concurrently i.e., multiple activities at the same time. For example, a person can

talk in phone and watch TV at the same time. A majority of the existing works

on ADL recognition have been used only for simple activity recognition and does

not deal with handling concurrent and interleaved activites [88], [89]. A number

of data-driven models such as [59] are designed for complex activity recognition.

However they require extensive training data to achieve reliable results. Very little

research has been done in this area. The thesis attempts to address this issue in

Chapter 6 through probabilistic inference and reasoning.

2.7.2 Real-Time Recognition

It is a challenge for many existing systems to cope with the high volume and con-

tinuous incoming data from heterogeneous sources and carry out the ADL recog-
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nition with less latency [90]. Real time recognition is vital in many smart home

health care systems. Dynamic segmentation techniques has been studied in various

research works such as [91], [48], [92] for real time recognition. In [92], authors use

a semantic segmentation technique on real time streaming data and separate them

into multiple dynamic threads for inferencing. The activity was then predicted

using the domain knowledge encoded in an ontology. In this thesis, a stream rea-

soning approach is introduced in Chapter 6 to help process large amount of sensor

data against the knowledge base with high throughput.

2.7.3 Security

Security is one of the important open issues that needs to be addressed in ADL

recognition. Relevant security measures to ensure data protection, privacy and

accessibility needs to be researched. As highlighted in Chapter 1, this thesis does

not discuss this aspect. However methods such as homomorphic encryption dis-

cussed in Section 2.5 can be implemented to prevent information leakage [75], [74].

Use of visual based sensing methods can be quite invasive. Personal privacy can

be preserved by introducing features to anonymise the person appearing in images

or videos as in [77]. In this thesis, data is processed locally near to the source (in

Chapter 4) and only non-invasive modes of sensing are used.

2.7.4 Minimal Sensing

Home-care patients opt for a minimal sensing environment with an ADL recogni-
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tion system [93]. The complexity of the recognition algorithm may increase when

more number of sensors are used [94]. Hence efforts have been taken to reduce

the sensing equipment used in Chapters 4 and 5 by using just a wearable and few

receivers. Similarly, minimum number of sensors from a real-world public dataset

has been chosen in Chapter 6. Despite the minimal sensing environment, the devel-

oped models in these chapters perform well without compromising on the accuracy

of the predicted activities.

2.7.5 Requirement of Extensive Training

A number of studies that implement data-driven approaches propose solutions that

require extensive training data [59], [56], [54]. The performance of such systems

are largely dependent on the quantity and quality of training data. However,

amassing massive training data in a real-world setting is not feasible and practical.

In this thesis, efforts have been taken to reduce the amount of training required for

the data-driven approach discussed in Chapters 4 and 5. Furthermore, Chapter

6 tackles this issue by using an unsupervised approach to carry out probabilistic

inference when combined with an ontology.

2.7.6 Multiple Subjects

It is necessary to design an ADL recognition system to handle situations with

multiple subjects in a smart home setting. For example, multiple people carrying

out kitchen or living room activities .The different challenges and opportunities
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involved in multi-user activity recognition is discussed in [95] However, the work

done in this thesis is not tested experimentally for such scenarios and may need

further development and investigation.

2.7.7 Variability

Variability refers to the same activity being performed by different persons or same

activity performed at a different pace and order. An activity recognition system

needs to be robust enough to deal with the issue of variability as it may otherwise

lead to performance degradation. The real-world dataset used in Chapter 6 consists

of data recorded for eight different ADLs performed by twenty one participants in

no specific order or time. Also, in Chapters 4 and 5, experimental analysis was

conducted on data recorded by two different participants. Despite the complexity

involved, the proposed systems were able to overcome the issue of variability and

produce good results.

The next chapter provides a formal introduction to different indoor positioning

systems and the process of indoor location fingerprinting. Chapter 3 describes

the design details implemented in Chapters 4 and 5 and will serve as a base for

understanding the concepts presented in both these chapters.



Chapter 3

Typical Indoor Positioning

Systems and Introduction to

Fingerprinting-Based Localisation

Indoor Positioning Systems has been an actively researched topic in the past years

due to the growing demand to provide location-based services for various applica-

tions indoors. Traditional techniques such as fingerprinting is still used in many

studies due to its many benefits. The first half of the chapter presents a short intro-

duction to existing indoor positioning systems followed by describing the indoor

location fingerprinting approach. The experiment design details regarding the

hardware setup, data collection process and design of the fingerprinting test beds

is explained in the second half of the chapter.

36
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3.1 Introduction to Indoor Positioning Systems

The demand for indoor positioning systems (IPS) has increased in recent years in

order to provide support to a range of pervasive applications like indoor naviga-

tion, proximity based applications, elderly person monitoring, asset tracking and

indoor emergency systems. The Global Positioning System (GPS) that has been

widely used for outdoor positioning, fails to provide adequate support for indoor

localization due to the high attenuation of the satellite signal caused by roofs and

walls inside buildings [96]. As a result, this has opened up research on alternative

methods that are reliable and capable of achieving higher accuracy. Over the past

few years, researchers have developed indoor positioning systems that are based

on different mediums. An overview of the common technologies used for indoor

location estimation is illustrated in Figure 3.1.

Radio Frequency (RF) based systems such as Wi-Fi, Bluetooth, Radio Fre-

quency Identification (RFID) and Ultra-Wide-Band (UWB) are the some of the

most popular technologies used in existing IPS due to the widespread prevalence

of hardware and existing networks [97]. Indoor positioning using Wi-Fi based on

the IEEE 802.11 standard is a popular choice due to the wide scale deployment of

wireless LAN infrastructure in buildings. It has the advantage of using previously

deployed access point infrastructure and provides extended coverage over several

meters [98][99]. Existing localization systems that use Wi-Fi as the medium, apply

either the timebased, angle-based or Received Signal Strength Indicator (RSSI)

based technique. RADAR, the world’s first Wi-Fi signal-strength based indoor

positioning system uses RF fingerprinting and implements nearest neighbor algo-

rithm to estimate the user’s location [100]. Its median accuracy was in the range

of 2 to 3 m. Bluetooth is another widely used wireless technology that operates in
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Figure 3.1: Different Technologies Used for Indoor Location Estimation

the 2.4 GHz band and is based on the IEEE 802.15.1 standard. Similar to Wi-Fi,

a number of consumer devices are equipped with Bluetooth radio transceivers and

is readily available. Increasing number of IPS utilise Bluetooth Low Energy (BLE)

ever since the introduction of iBeacon protocol. The protocol was first introduced

by Apple [20] and since then, various other vendors have designed compatible low-

cost beacons that implement BLE wireless technology. RFID technology has also

been used for locating assets or people in an indoor environment. RFID compat-

ible hardware is inexpensive and is relatively simple to use and easy to maintain.

The authors of [101] and [102] use Time of Arrival (ToA) and RSSI techniques for

RFID based location systems. Their work highlights the issue of high power con-
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sumption, delay in receiving response and the need for higher density of nodes to

improve accuracy. When a radio signal is transmitted, it can take multiple paths

including the direct path to reach the receiver. UWB technology, which uses very

narrow pulses, will be able to distinguish these individual signals as they arrive

at the receiver. This ensures finding the direct path component in the multipath

signal leading to high precision measurement of time of flight of the signal.

Apart from these technologies, magnetic field based positioning systems have

garnered extensive interest amongst the scientific community due to the fact that

they are not prone to multipath degradation and can operate in obstructed Line of

Sight (LOS) conditions [103],[104]. The anomalies in the ambient magnetic field,

which are formed due to distortions caused by the surrounding structural steel

elements, form the main basis for building magnetic maps for indoor localization

[103],[105]. In comparison with Wi-Fi or Bluetooth Low Energy (BLE), the mag-

netic field has low sensitivity to changes in surrounding environment (movement of

people or furniture) and therefore, has the capability to generate the same magnetic

fingerprint over time [104]. However an extensive reference database consisting of

continuous samples of magnetic signatures is required to improve the accuracy and

uniqueness of the mapping.

Another viable technology used for indoor location estimation is the use of iner-

tial sensors at high sampling rates to obtain position and orientation information.

This process is often referred to as dead-reckoning. These sensors are compact,

low cost, lightweight and most of them are integrated into smartphones. A major

drawback with these systems is that a small deviation in orientation measurement

could lead to large errors in position estimation and hence may require frequent

calibration.
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Each of the above-discussed technologies has its share of limitations. The posi-

tioning accuracy of RF based systems is largely dependent on the location fin-

gerprint created by the radio signals being reflected and attenuated by objects

through which they pass. In a dynamic, realistic scenario the layout of the envi-

ronment will change; For example, furniture being moved which will change the

reflection and attenuation characteristics from those when the training data was

collected, which may reduce accuracy. On the other hand, UWB systems perform

well in Non-Line-of-Sight (NLOS) conditions achieving a positioning accuracy of

the order of 20cm. But most of these systems are commercially expensive when

compared to other technologies and in some cases, the signals may be blocked by

large metallic objects [106]. The decrease in accuracy of Wi-Fi based positioning

caused by user movement and presence of obstructions remains a main concern

[107]. Zhao et al. compared the positioning accuracy of BLE and Wi-Fi in a simi-

lar test bed environment and the results showed that BLE outperformed Wi-Fi by

around 27 percent [108]. BLE devices are low power consumption devices which

allows them to be continuously powered from batteries from months to years [109].

This makes them a suitable candidate to be deployed in places where WiFi access

points would be difficult to power. Furthermore, the usage of iBeacon technol-

ogy is expected to increase in the coming years with the release of Bluetooth 5.

Technologically advanced Bluetooth 5 has improved speed, broadcast messaging

capacity and increased range contributing to better localisation performance.

Having considered the advantages and disadvantages, of various technologies,

Bluetooth RSSI and magnetic field data were opted as the main technologies for

the indoor localisation system discussed in Chapter 4.
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3.2 Introduction to Indoor Location Fingerprint-

ing

Radio Frequency (RF) fingerprinting techniques using different wireless technolo-

gies are often considered to be suitable for indoor localization since they provide

better performance when compared to triangulation [110] - [111]. It is based on

the signal strength measurement and involves two stages; the offline training phase

and the online positioning phase. In the offline phase, a detailed site survey is per-

formed where sufficient number of RSSI samples are collected and recorded at

known locations to construct a training database (also known as a radio map).

During the online positioning phase, the gathered RSSI samples from one or more

receivers are compared against the radio map using deterministic or probabilistic

methods to estimate the target’s location. As a result, the radio map accuracy is

crucial to the success of the system.

Factors such as number of training positions (also addressed as reference points

in this thesis), measurements at each position and the labeling format of the

received signal data are important parameters to be considered before the training

stage. Increased space between reference points reduces granularity and may lead

to high positioning error. On the other hand, the surveyor needs to cover more

training positions when the space between the reference points is less making it

more laborious. It is also important to collect sufficient number of samples at each

position for providing a detailed location fingerprint. Lastly, the RSSI data sample

at each reference point needs to be labeled using a suitable identifier (For example:

Cartesian co-ordinates, latitude and longitude or any user-defined label). One of

the limitations associated with fingerprint-based systems is the labour-intensive
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construction of the training database. However, methods with reduced workload

have been introduced recently such as implementation of crowd sourcing tech-

niques to train the system automatically [112]-[113] or incorporating robots to do

the survey process [114]-[115].

When a target user needs to be positioned in an indoor space, the positioning

algorithm is invoked with the incoming RSSI values at the receiver end. The

algorithm matches the online RSSI sample against the training database, performs

necessary computation and returns the closest match as the position estimate of

the target user. The performance of the system is not only dependent on the

accuracy of the constructed radio map, but also on the algorithm used to match

the online sample against the training database. One of the main challenges in

this phase is to decide the length of the online sample to be matched against the

radio map. A suitable segmentation technique needs to be employed based on the

requirement of real-time or offline positioning.

Fingerprinting using Wi-Fi has been quite popular and well established as it can

make use of the existing infrastructure containing access points (AP). RADAR, the

world’s first Wi-Fi signal-strength based indoor positioning system uses RF finger-

printing and implements nearest neighbor algorithm to estimate the user’s location

[100]. Its median accuracy was in the range of 2 – 3 m. As an alternative to Wi-Fi,

many studies have used the fingerprinting technique with other technologies like

BLE [109], [116] and magnetic field data [117]. The authors of [116] conducted a

detailed study of BLE fingerprinting using 19 beacons investigating the choice of

key parameters such as beacon density, transmit power, transmit frequency and

also performed a quantitative comparison with WiFi fingerprinting. The results of

their study indicate that BLE beacons performed better when compared to WiFi,

with the former achieving <4.6m error in the worst case scenario with reduced



Chapter 3. Typical Indoor Positioning Systems and Introduction to
Fingerprinting-Based Localisation 43

beacon density and the latter achieving <8.5m error for an established WiFi net-

work in the same space. In [117], the authors constructed the fingerprint database

with magnetic field values using smartphones. The magnetic field data along with

its extracted features was fed into four Deep Neural Networks (DNN) to get a

probability map of the user’s location. After applying suitable post processing

methods, the authors were able to achieve good results with an average distance

error of 2.5m by using only the magnetic field data.

BLE RSSI along with magnetic field strength are used as the main indicators of

location estimation using the fingerprinting approach in Chapters 4 and 5 of this

thesis. The training database is constructed separately for BLE RSSI transmitted

by the beacon as well as for MFV readings for the purpose of fingerprinting.

3.3 Inverse Beacon Positioning

Most of the existing positioning systems employ a set of fixed beacons at known

locations and a moving receiver such as a mobile phone. However, using multiple

receivers at fixed positions to track a moving beacon is better suited for use cases

such as monitoring a person or asset tracking [118]. This type of technique is com-

monly referred to as the Inverse Beacon Positioning method. The implementation

is based on the principle that the RSSI signal decays with the increasing distance

between the beacon and the receiver.

A similar setup was followed in [118], where the positioning computations were

performed by multiple fixed sniffers implemented on Raspberry-Pis and a cloud

based central server, while the testing was done using a smart phone carried by
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the user. The benefits of this type of implementation include power efficiency of

the user device making it suitable for long-term tracking services. Furthermore, the

use of a wearable eliminates the issue of device diversity encountered by using dif-

ferent models of smart phones and is also a better choice for developing monitoring

applications at home.

This type of approach was opted for BLE fingerprinting in Chapters 4 and

5 of this thesis. A wearable beacon is used and multiple Raspberry-Pi receivers

are placed at fixed points to determine the location of the resident. More details

regarding the hardware, initial configuration, data collection process and infor-

mation regarding the fingerprinting test beds followed in Chapters 4 and 5 are

mentioned in the upcoming sections.

3.4 Setting up the Indoor Positioning System

3.4.1 Hardware Considerations

The indoor positioning system is composed of a set of Raspberry-Pis that function

as receivers and a transmitting wearable beacon with embedded sensors known

as MetaMotionR manufactured by MbientLab [119]. The wearable allows on-chip

logging or streaming of sensor data and it comes enclosed in a waterproof casing

with a rubber clip. Amongst the multiple onboard sensors present in the wearable,

the magnetometer, the built-in step detector module and the beacon functionality

is utilised.

The MetaMotionR wearable is powered by a rechargeable 100mAH lithium-ion
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3.7V battery that can last for about 1.5 weeks on a single battery charge. Other

wearables from MbientLab that use a coin cell battery can also be worn that may

be more suitable for elderly monitoring applications, in which case the battery can

last up to 1 year. The power consumption of the MetaMotionR wearable ranges

from 20µA to 20mA @ 3.0V.

The sampling frequency or sampling rate, fs, is the average number of samples

obtained in one second (samples per second), thus fs = 1/T. In this study, the

sampling frequency of the beacon is set at 10Hz (fs1 = 10Hz) and the magne-

tometer sampling frequency is set at 10Hz (fs2 = 10Hz), such that the battery

life of the wearable is effectively prolonged while maintaining sufficient accuracy.

If fs1=10Hz, then nearly 10 samples are acquired approximately per second from

the beacon. This is averaged to 1 reading per second during data pre-processing.

After a preliminary coverage analysis, the beacon was configured with a transmis-

sion power of 0 dBm. This intermediate power allows covering all the areas of the

house without too much spectral overlap between beacons.

3.4.2 Hardware Setup and Placement

The optimum number of receivers required depends on the area of the space to

be measured and the number of obstacles present in that particular space. The

number of receivers needs to be distributed uniformly throughout the property

with the intention that every part of the house falls within the coverage area of

the wearable beacon at any given position (Refer to Section 4.5.4 in Chapter 5

to decide the number of optimal receivers required for a given environment). The

beacon is clipped on to the shirt collar such that it is positioned at chest level at all
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times. A majority of the receivers were deployed at a height of approximately 1.5

m from the floor and were alligned to provide maximum scope for detection by the

beacon in the horizontal plane. Their placement in the experimental test bed was

decided based on the activities to be monitored. For example: In order to monitor

kitchen related activities, it is necessary to place the receiver in close vicinity and

in line of sight view while using common kitchen objects such as microwave, kettle,

stove and so on. Easy access to a power supply was another important factor for

deciding the placement of the receivers. In places such as a bathroom where there

is a lack of a power supply source, the Raspberry-Pis were powered up by an

external battery pack. Furthermore, a detailed study into the key parameters for

setting up the BLE fingerprinting system is discussed in Chapter 5

3.4.3 Data Collection Software Setup

A python script was written as part of the data collection module setup in each

of the Raspberry-Pi receivers. A master-slave approach was used to collect and

combine the beacon RSSI data from all the Raspberry-Pi receivers. One of the

Raspberry-Pis was programmed as the master and the rest of the receivers were

assigned as slaves. An issue with time synchronization may occur when the RSSI

collection process is not in sync amongst the Raspberry-Pi receivers. In this case,

the collected data is invalid and provides inaccurate results. In order to overcome

this scenario, the master Raspberry-Pi stands out as the time broadcaster. Each

of the slave devices will set their own time based on the master Raspberry-Pi’s

time. This is achieved by assigning the master device as the NTP server. The

time synchronization process happens each time the Raspberry-Pis are booted up
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and this service works as a thread in the background keeping the time uniform

amongst all the devices in the local network.

All the Raspberry-Pis collect beacon RSSI data along with their respective

timestamp and save it locally. The collected raw data was then sent to the master

Raspberry-Pi every few minutes during the training stage, which is responsible

for combining and sorting the amassed RSSI data into a single file. As part of

the sorting process, the master Raspberry-Pi averages out the RSSI value if there

are multiple readings in the same second or performs linear interpolation if there

are missing readings per second between records. The magnetometer sensor read-

ings and step counter data with the corresponding timestamp are simultaneously

transmitted from the wearable to the master receiver. The final processed data

consisting of the beacon RSSI, magnetometer and step detector readings are used

as input for Algorithm 1 described in the next chapter. The same data collection

software was also used during the testing phase. Based on the application and

end user requirement, the rate of frequency of transferring the raw data to the

master receiver can also be adjusted. For example, data to be transferred could

be sent every few seconds rather than minutes from the slave Pis to the master Pi

for applications that require near-real time positioning.

3.4.4 Data Collection Process

Stickers with Cartesian co-ordinates were marked on the floor of the experimental

testbed measured using a laser distance meter for ease of collecting measurements

during the training stage. These were used as the reference points for the radio

map and were spaced 0.5m apart since it is equivalent to the distance travelled
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with each step while walking at a normal pace. A number of walking routes and

stationary positions were chosen to reflect regular domestic human behavior to pro-

vide the most realistic scenario for testing. Sequence based fingerprinting approach

was followed in this study which involves creating the fingerprinting database with

sequences of collected data samples for each label that are incremental in time. This

type of fingerprinting technique is explained further in detail in the next Chapter.

It is important to note that cartesian co-ordinates were included in the fingerprint

training database only for the purpose of evaluating various performance metrics

for the developed model. It is sufficient to annotate the data samples using just

the key locations of interest and commonly used paths inside the house during

the ground truth collection for the training database. With all of the hardware

in place and the physical location measurements complete, a fingerprint map was

built by collecting the RSSI values of the beacon detected at each Pi and magne-

tometer readings at different reference points based on the routes or positions to

be measured.

For the construction of the training database, measurements were made at rele-

vant reference points along commonly used walking routes (For example: bedroom

to bathroom, couch to front door and so on) and fixed positions (For example:

couch, bed, dining area). The readings were collected at these reference points

for a period of 30s in all possible orientations to ensure that the interference from

signals passing through the human body was taken into account. The training

database size and overhead in this case is considerably less when compared to

other existing data collection methods as limited samples at required reference

points (for selected positions and routes) are amassed for a short duration of 30s,

making the calibration stage undemanding. Furthermore, the beacon RSSI and

MFV samples from the wearable were collected simultaneously at all times. A
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simple mobile application was developed to record the corresponding timestamp

and ground truth label (see Figure 3.2 ) during the training and testing phase.

Figure 3.2: The Annotation app used for recording the ground truth labels

3.4.5 The Fingerprinting Test Beds

Details regarding the test beds - Trial Home-1 and Trial Home-2 used in Chapters 4

and 5 of this thesis are presented here. Both the test beds are one-bedroom apart-

ments and the measurements were collected in realistic conditions in an inhabited

flat with large pieces of furniture and equipment. Two different individuals carried

out the experimental study in their respective flats; one of them being the thesis

author1. Separate training databases were maintained for beacon RSSI and MFV

1The researchers who performed the experiments completed the QMUL Research ethics ques-
tionnaire application. Based on this, an ethics approval was not required for the study.
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readings respectively in each test bed. A detailed description of each trial home is

presented below.

3.4.5.1 Trial Home-1

Figure 3.3: Layout of Trial Home-1

This one-bedroom apartment space which measures 6.45m by 6m has a living

area, 1 kitchen, 1 bedroom, 1 bathroom and is occupied by a single person. Rasp-

berry Pi 2 Model B devices (Quad Core CPU 900 MHz, 1 GB RAM, Linux) each

fitted with a Bluetooth USB dongle were used as receivers in this test bed. The

leftmost corner of the lounge was selected as the origin and all other reference

points were measured relative to it. To provide comprehensive Bluetooth cover-

age of the entire house, a total of eight Raspberry-Pi receivers were deployed in

Trial home-1 (see Figure 3.3 ). It was observed that all the eight receivers were

detected at any given reference point in Trial home-1, which was our intention so

as to provide maximum coverage and present an ideal case scenario to get good
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results. In total, there are 68 reference points in the collected fingerprint database

identified with their respective Cartesian co-ordinates and a user-defined label.

Data collection took place over a period of 10 days at different times of the day.

3.4.5.2 Trial Home-2

Figure 3.4: Layout of Trial Home-2

This test bed is also a one-bedroom apartment with floor area measuring 10.57m

x 4.44m. The entirety of the property was chosen to be used for the analysis. Five

Raspberry-Pi receivers were deployed in Trial home-2. The number of receivers to

be deployed was decided based on some of the parameters discussed in Chapter

5. Similar to Trial home-1, the receivers were equally distributed throughout the

flat and the their placement was chosen as per the activities to be monitored.

Figure 3.4 illustrates the layout of Trial home-2 along with the placement of the

master and the slave Raspberry-Pi receivers. The location of the master Pi was

considered as the origin and all other points were measured relative to it using

Cartesian co-ordinates in Trial home-2. It was decided to deploy lesser number of

receivers when compared to Trial home-1 for evaluation purpose. These receivers
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were fitted with external BLE dongles of different antenna gain -1dBi and 5dBi

to investigate if an increased antenna gain helps in maintaining the same level of

accuracy with reduced number of Raspberry-Pi receivers.

To avoid the possibility of differing performance characteristics between differ-

ent Bluetooth chips, each Raspberry-Pi 3 Model B receiver (1.5 GHz 64-bit quad

core ARM Cortex-A72 processor, 1GB RAM) was equipped with a Sena UD100-

G03 Bluetooth USB dongle that supported interchangeable omnidirectional anten-

nas (1dBi and 5dBi gain antennas). The on-board Bluetooth in the Raspberry-Pi

Model 3 devices was disabled while carrying out the experiments.

88 points were required to cover the entire property with reference points spaced

at 0.5m from each other. The construction of the radio-map and the MFV fin-

gerprint database during the training stage was carried out for both the 1 dBi

and 5 dBi antennas separately. The data collection was done over a week with

measurements made on different days and at different times of the day.

Table 3-A provides a summary of the two test beds.

3.5 Chapter Summary

Chapter 3 introduced the different types of indoor positioning systems with rele-

vant literature. It also explains the concept of location fingerprinting in an indoor

positioning system. Furthermore details regarding the experiment design such as

the hardware setup, data collection process and description about the fingerprint-

ing test beds are explained in detail and included here to better understand the

concepts presented in Chapters 4 and 5.
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Table 3-A: Summary of the Fingerprinting Test Beds Used in Chapters 4 and 5
Parameters Trial Home-1 Trial Home-2 
Training area 6.45m * 6m 10.57m * 4.44m 
Surveyed space Entire Home (1 bedroom, 

1 living area, 1 kitchen, 
1bathroom) 

Entire Home(1 bedroom, 1 
living area, 1 kitchen, 
1bathroom) 

No. of Floors 1 1 
No. of surveyors 1 1 
Time taken for Data 
collection  

10 days 1 week 

Database Annotation Done by the surveyor with 
annotation app 

Done by the surveyor with 
annotation app 

Tx and Rx Devices MetaMotionR beacon, 
Raspberry Pi 

MetaMotion R beacon, 
Raspberry Pi with external 
antennas 

No. of Receivers 8 5 
Additional Receiver 
Antennas 

Not Used 5dBi and 1dBi 
omnidirectional antennas 

Distinct positions (No. of 
Reference points in 
database) 

68 88 (Each for 1dBi and 
5dBi respectively) 

Space between 2 adjacent 
reference points  

50 cm 50cm 

Fingerprint Metric BLE RSSI, Magnetic Field 
Strength 

BLE RSSI, Magnetic Field 
Strength (Chapter 4), Only 
BLE RSSI (Chapter 5) 

Beacon Fingerprint 
database size 

9916 With 1dBi antennas: 
14386  
With 5dBi antennas: 
14151 

MFV Fingerprint data size 13020 8071 
Fingerprint Type Point based + Sequential Point based + Sequential 
Label Type Cartesian (metre scale) + 

user-defined label based 
on house landmarks/routes 

Cartesian (metre scale) + 
user-defined label based 
on house landmarks/routes 

Training Time at each RP 30s (in each orientation) 30s (in each orientation) 
Beacon Transmission 
Power 

0dBm 0dBm 

Beacon Advertisement 
Interval 

100ms 100ms 

Beacon Sampling 
Frequency 

10Hz 10Hz 

Magnetometer Sampling 
frequency 

10Hz 10Hz 
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The subsequent Chapters (Chapter 4 and 5) present details regarding the pro-

posed work done on recognising low-level activities using hybrid indoor positioning.

Chapter 5, in particular describes few key parameters that affect the performance

of the BLE fingerprinting system.



Chapter 4

Prediction of Micro-Activities

and Walking Routes through

Wearable Sensing Using Location

Estimation Techniques

A common mode of sensing for ADL recognition is by detecting human object

interaction through ambient and infrastructural sensors. Additionally, collection

of location information of the resident in their homes can assist in the ADL recog-

nition process by providing context information and can help reduce the number

of installed infrastructural sensors.

In this chapter, a method for recognition of low-level activities and prediction

of walking routes using location estimation techniques through wearable sensing

is elaborated. The chapter starts with introduction to hybrid indoor positioning

systems, a short survey of related work that use location information for activity

55
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recognition followed by necessary background and definition concepts. Sections 4.5

and 4.6 provides details regarding the system architecture and description of the

algorithm. The evaluation results investigated in the experimental test-bed using

the proposed approach are presented in Section 4.7. In Section 4.8, the findings of

several aspects of the proposed method are analyzed and discussed.

4.1 Introduction to Hybrid Indoor Positioning

Systems

BLE based inverse beacon positioning method was opted in this study due to its

inherent benefits. However, beacon signals that are mainly suited for proximity

based positioning are often erratic and do not contribute to fine-grained position-

ing when used as a solo solution [120]. BLE is known to work best when combined

with other technologies. Similarly, magnetic field matching, when used as an inde-

pendent IPS solution, may not be enough for accurate positioning as only three

parameters are considered, which increases the probability of having the same fin-

gerprint in different locations [107],[120]. Such drawbacks can be overcome by

hybridizing the positioning information coming from different technologies. Prior

research suggests that implementing hybrid technologies for indoor localization has

proved advantageous since they exhibit sufficient positioning accuracy [121],[122].

To address concerns of low accuracy, BLE signals may be supplemented with

other technologies such as Wi-Fi or magnetic field data to produce more accurate

localisation. Since magnetic field is unlikely to be affected by changes such as

furniture movements and remains fairly constant over time when compared to
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Wi-Fi, the former remains a sensible choice to be used along with BLE system.

In this chapter, a novel algorithm is proposed to find the locus of the target user

and track their movement between different zones of the house using the MetaMo-

tionR wearable (described in Chapter 3) embedded with beacon, magnetometer

and other onboard sensors.This is achieved by the collaborative use of BLE tech-

nology with inertial sensors to reduce the search space for magnetic field sequence

matching.

4.2 Related Work

Different sensor technologies have been used for carrying out activity recognition.

Some works such as [123],[124] rely on smartphones for monitoring activities. The

authors of [123] use just a single smart phone to identify simple and complex activ-

ities. Their experiments yielded a classification accuracy of above 90% for simple

activities, but drops to 50% for complex activities. Using smart phones may not

be suitable in most patient or elderly monitoring applications as it forces the resi-

dent to carry their bulky phones with them at all times. Other works depend on

object-based sensing methods for recognizing different activities [125],[126]. Instru-

menting most of the daily-use objects with sensors increases the deployment cost

and is not a practical solution for a home environment.

An overview of recent work on ADL recognition systems, where location infor-

mation is used for identification of low-level or complex activities, is presented

here. Torres et al. carried out experiments with a smart phone in seven different

urban flats to study whether the Wi-Fi fingerprinting approach is feasible for in-

home monitoring applications [124]. Their results provided an average accuracy of
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89%. In [127] and [128], the authors implemented a BLE fingerprinting approach

using beacons for monitoring of nursing home residents and for detecting frailty in

older adults based on indoor localization habits, respectively. However, all these

systems were designed to predict simple activities based on the user’s location with

just room-level accuracy. Other studies have used location as one of the parame-

ters alongside other sensing methods to predict multiple complex ADL’s [126][129].

The authors of [129] use positioning sensors along with power meters for real time

recognition of routine activities in a smart home. The system achieves an overall

classification accuracy of 79.39%. In [126], multiple events from binary sensors,

a capacitive smart floor and a wearable beacon with an accelerometer are com-

bined together in a real-time segmentation-free approach to predict 24 different

personal activities in an apartment. Such systems predict a high number of ADLs,

but increase the deployment cost and sensing complexity. Failure to track user

movement between different zones of the house is also a major drawback in the

above-discussed solutions. This may provide inconsistent results due to missing

sensor readings which may prove costly in an end user application.

4.3 Sequential Fingerprinting Method

Locating a person inside a home requires contextual and useful information related

to their inherent surroundings, which can be mapped easily to an activity recog-

nition framework. Using just the global coordinate system for location mapping

inside a house for such applications is impractical. The Received Signal Strength

Indicator (RSSI) collection process during the training stage is much less stren-

uous when a sequence of RSSI samples can be collected along a known pathway
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as opposed to dividing the house floor plan into a grid like pattern and collecting

data over random discrete points. Prior research suggests that position estimation

using sequential RSSI values along a path is less variant when compared to point

based prediction methods [113]-[130]. RF fingerprinting performed in this way is

known to be more resilient to changes in the surrounding environment because the

sequential values collected along a pathway have a distinct signature and conse-

quently, this approach is more suitable for beacon fingerprinting to account for its

high signal variability. The authors of [113] and [130] have used sequences of RSSI

data for radio map creation, but importance has not been given to the inclusion

of key locations and routes that reflect a person’s daily routine inside their homes.

It is rather helpful to create a system, which integrates various key elements of a

home such as couch, dining area, sink, stove, bed and so on into the fingerprint

collection database. The RSSI and MFV samples were collected for conditions

when a person is performing an activity with minimal movement (e.g., sitting in

the dining area or couch) and when a person walks along a certain path both in

the forward and reverse directions (e.g., bedroom to bathroom, bathroom to bed-

room).The focus of the developed system is not in finding the (x,y) coordinates of

the target, but determining whether the target is present at certain defined loca-

tions of interest or moving along certain defined paths. Even if the location of the

objects are changed in the future, it is sufficient if the user collects 30s of data

samples at the new location of interest for updating the training database. Incase

of adding a new walking route to the training database, the user has to collect

30s of data samples at random points along the walking route spaced around 50cm

apart (approximate distance between consecutive steps) in the forward and reverse

directions. Since cartesian co-ordinates are not required for recording the ground

truth in this study, it is much simpler for the user to record the ground truth labels

using the names of the key locations and routes through the developed mobile app
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in Fig. This makes the entire calibration phase simple and easily adaptable for

any changes in the environment.

Initially a hybrid two-phase approach for recognition of landmarks and routes in

a complex indoor environment using a wearable and a smartphone was developed

[131]. This has been further improvised using a single wearable coupled with

inertial sensing to get better results in both the trial homes.

4.4 Background And Definitions

The necessary background knowledge, along with the definition of several impor-

tant terms, concepts and notations used in this Chapter are presented below.

4.4.1 Micro-activities, Routes and Zone

Definition 1. There are certain unique locations of interest inside a home where

the home occupant tends to spend a considerable amount of time carrying out a

daily routine activity. The study identifies these locations and collects data samples

for the training database. Location is one of the key indicators in identifying the

activities performed by the user. Based on this logical assumption, The thesis refers

to these points of interest as micro-activities. The activities performed at these

unique locations are simple or atomic activities that cannot be decomposed any

further. For example: sitting on the couch, sitting in the dining area or sleeping

on the bed activities cannot be split any further. The focus of the chapter is to

find the locus of these simple activities pre-defined in the training database and

assumes that if the location of the person is estimated to be at any one of these
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points, the person is performing a micro-activity associated for that respective

location. The terms micro-activities and low-level activities have been used

interchangeably for the remainder of the thesis. Combination of several micro-

activities derived from location context can be a part of a high-level complex

activity such as preparing breakfast, watching TV and so on. Furthermore, the

results of this study can also be used in combination with other sensing methods

such as ambient sensing to identify a complex activity.

Definition 2. In addition to micro-activities, the thesis also recognises pre-defined

walking routes to account for the transition when a person moves between differ-

ent landmarks inside the house. In other words, walking route is the trajectory

followed by the home occupant between two points of interest where a micro-

activity takes place. The walking routes have been further categorised as short

routes (less than 5 steps) and long routes (greater than 5 steps) based on the

average number of steps a person takes in order to differentiate routes of varying

lengths covering the same reference points. All the routes present in the train-

ing database are labelled as either Micro-Activities/Short Routes or Long Routes

based on the resulting step count measured using the built-in step detector module

in the wearable.

Definition 3. Each house is divided into different sections such as Lounge, Kitchen,

Bedroom, Bathroom and Hallway where a person carries out a specified set of activ-

ities. These sections are referred to as Zones in this study. The proposed model

monitors the movement of the person within each zone as well between different

zones.
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4.4.2 Modelling the BLE Fingerprint Database

Definition 4. (A beacon RSSI profile (RSSIi) are individual RSSI values

observed at position (Li) from n nearby receivers. Li = (dix, d
i
y) corresponds to a

specific point marked by its two-dimensional Cartesian label (used only for perfor-

mance evaluation in this study). In this study, a set of Raspberry-Pis is used as

the receiver of the beacon signal. The RSSI profile measured at any given point is

represented by:

RSSIi = {PiRSS1 , ..., P iRSSn} (4.1)

where PiRSS1 , ..., P iRSSn are the individual signal strength of n Raspberry-Pi receivers.

Definition 5. The beacon RSSI fingerprint database (RSSIDB) is modeled

as:

RSSIDB = {RSSS1 , . . . , RSSSK
}(1 ≤ k ≤ K) (4.2)

where RSSSk
represents the collective beacon fingerprint measurement for an indi-

vidual micro-activity or walking route identified by Sk(1 ≤ k ≤ K) with K being

the total number of micro-activities and routes in the database. For any given Sk,

N training samples are present where each sample is an individual fingerprint Bi.

A beacon RSSI fingerprint (Bi) is a combination of RSSI profile RSSIi

measured at location Li, labeled by its corresponding route or micro-activity Sk.

It is represented by:

Bi = [Li, RSSIi, Sk](1 ≤ i ≤ N) (4.3)

For cases where Sk is a walking route, the training examples will be a sequence

of RSSI values recorded at their corresponding position co-ordinates along the

considered walking path. The database may contain duplicate values of Li as
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X Y PiRSS1 PiRSS2 PiRSS3 PiRSS4 PiRSS5 PiRSS6 PiRSS7 PiRSS8 Micro-Activity/Route
5.296 -0.647 -60 -79 -86 -75 -76 -81 -74 -82 Main Door to Bedroom Door
5.296 -0.647 -57 -75 -85 -69 -84 -89 -76 -79 Main Door to Bedroom Door
5.296 -0.647 -55 -74 -79 -72 -77 -85 -79 -82 Main Door to Bedroom Door
1.811 1.046 -72 -84 -81 -90 -74 -78 -81 -76 Couch to Main Door
1.811 1.046 -78 -89 -83 -91 -69 -78 -84 -77 Couch to Main Door
1.811 1.046 -70 -85 -84 -92 -69 -82 -87 -92 Couch to Main Door

Figure 4.1: RSSITrainingDatabaseSample

several RSSI readings are captured at the same position. Sample data of the

training database (RSSIDB) is presented in Figure 4.1.

4.4.3 Magnetic Field Vector (MFV) Sequence Matching

Definition 6. The Magnetic Field Vector, MFVi profile represents the mag-

netic field strength in x, y, z direction observed at position co-ordinates Li =

(dix, d
i
y). It is represented by:

MFVi = {MFVx,MFVy,MFVz} (4.4)

Definition 7. Similar to RSSIDB, the MFV training database (MFVDB) is

populated with sequential three-dimensional vector readings modeled as:

MFVDB = {MVS1 , . . . ,MVSK
}(1 ≤ k ≤ K) (4.5)

where MVSk
represents the collective magnetic field measurement for each micro-

activity or walking route identified previously as Sk(1 ≤ k ≤ K). Each MFV

fingerprint (Mi) observed at position co-ordinates Li = (dix, d
i
y) for a given micro-

activity or route Sk is represented by:

Mi = [Li,MFVi, Sk](1 ≤ i ≤ N) (4.6)
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where N is the number of training samples observed for individual Sk.

Definition 8. The Dynamic Time Warping (DTW) technique is used as the

distance measure to compute the similarity between two MFV sequences. DTW

is a well-known algorithm to measure the similarity between two sequential series

of different lengths that vary in time or speed. It has widespread application in

image processing, speech recognition, data mining, robotics, manufacturing and

other classification techniques [132]. The DTW distance measure has an innate

advantage over Euclidean distance for time series measurement as the latter fails to

provide a correct measure when there are small distortions in the time axis. DTW

is more robust for comparing MFV sequences as it allows a one to many mapping

(compression and stretching the time axis) of one or both the sequences to obtain a

suitable alignment. An iterative procedure is performed for all the eligible routes,

which involves constructing a matrix between the offline and measured magnetic

sequence to find the warping path that minimizes the overall cost function. This

is calculated using the dynamic programming approach given by Eq( 4.7).

DTW (n,m) = d(qn, cm)+

min{DTW (n− 1,m− 1),

DTW (n− 1,m), DTW (n,m− 1)}

(4.7)

where d(qn, cm) = (q[n]−c[m])2 is the squared distance between the sample points.

Q = {q1, q2. . . ..qN} and C = {c1, c2. . . ..cM} are the online and offline magnetic

sequences of length N and M, respectively. Squared Euclidean distance is selected

to calculate the cost measure in Eq( 4.7) as it provides better accuracy in compar-

ison with Euclidean or Manhattan distance measures. The final predicted route is

the one with the least distance measure, which implies a high similarity between

the measured sequences.
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Definition 9. RSSIOnline and MFVOnline are the respective online beacon and

magnetic sequences collected using the wearable for prediction of location context

of the target user using the reference RSSIDB and MFVDB. The task is to find

the label SK using the algorithm described in Section 3.6.

4.5 Main Contributions of this Chapter

The main contributions of this chapter is two-fold.

• A novel algorithm is proposed using a wearable for recognition of low-level

micro-activities and their associated zone of occurrence within the house.

The resulting outcome helps in providing useful location context information

for discovery of complex ADL’s. This method is particularly useful in devel-

oping monitoring applications for home-care patients and also for sheltered

accommodation, which are typically studio or one-bedroom apartments. In

order to demonstrate and verify the accuracy of the proposed system, exten-

sive experiments are conducted in two different home environments under

strong Non-Line of Sight (NLOS) conditions.

• In addition to recognizing the micro-activities, the proposed algorithm is

capable of predicting accurately the movement of a person between different

points of interest within a room and also between different zones of a house

without relying on data from other infrastructure-based sensors.
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Figure 4.2: Schematic Diagram of the Proposed System

4.6 Algorithm For Detection Of Micro-Activities

And Walking Routes

The proposed algorithm constitutes three main phases for prediction of micro-

activities and walking routes. It follows a data-driven approach as the method

relies on the training data collected using the wearable and their respective ground

truth labels expressed in terms of different micro-activities (location of interest)

and routes within an indoor environment. Figure 4.2 illustrates the overall system

architecture. A brief description of the three phases involved in the positioning
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algorithm is given below and their respective pseudocode is shown in Algorithm 1.

Algorithm 1 Route Prediction and Detection of Micro-Activities

Inputs: RSSIOnline and MFVOnline, stepCount
Output: R ← Predicted Walking Route or micro-activity
1: for i = 1: sizeof(RSSIDB) do
2: A ← Sort RSSIi in descending order
3: end for
4: for i = 1: sizeof(RSSIOnline) do
5: B[i] ← Get corresponding label Sk for matched RSSIi in RSSIDB after

sorting in descending order
6: occ[i] ← Compute frequency of occurrence of matched Sk in B[i]
7: end for
8: C ← Sort B based on Sum(occ), groupCount incase of ties, where groupCount

= no. of routes grouped by occ
9: D ← Retrieve top 10 or less Sk from C
10: if stepCount ≥ 0 && stepCount ≤ 5 then
11: selectedSk ← All Micro-activities & Short Routes applicable in D
12: else
13: selectedSk ← All Long Routes applicable in D
14: end if
15: MFVTrain ← MFVi of selectedSk from MFVDB
16: for i = 1: sizeof(MFVTrain) do
17: R← findBestSk(MFVTrain(i), MFVOnline); //Predict Sk label using DTW
18: end for
19: return R

4.6.1 Description of the Positioning Algorithm

4.6.1.1 Phase I - Route Selection Using Beacon RSSI Fingerprinting

The offline collected RSSI training samples and the online measured sequences are

initially sorted based on their strongest beacon signal strengths. An individual

rank matrix for the training and online data is then created, where each row

contains the Raspberry-Pi identifier arranged in order of the strongest signal (Refer

to Figure 4.3). Both these ranked datasets are compared against each other

to find similarities between them and a list of corresponding matched Sk labels
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Figure 4.3: Representation of the Ranked Training Matrix from Phase I

are returned. The routes and positions for the next phase are selected based on

the total number of occurrences of matched labels (Sum(occ)) and frequency of

occurrence for each position co-ordinate over the entire length of the measured test

sequence (groupCount). The number of highest ranked positions/routes considered

for Phase II depends on the accuracy of the Beacon RSSI fingerprinting method.

An optimal count is chosen such that the correct position/route is part of the

magnetic search area in the next phase. In this study, the maximum count is set

to ten or less for selection from the resulting output of Phase I.

4.6.1.2 Phase II - Elimination of Inconsistent Routes from Phase I

Using the Step Detector Module

Data from the step counter is used to identify if the selected routes from Phase I

fall under Type I (Micro-Activities and Short routes (≤ 5 steps)) or TypeII (Long

routes (> 5 steps)) category. The number of steps is chosen as five in this case

based on the sensitivity of the step detector module embedded in the MetaMo-

tionR wearable. Since the distance between multiple micro-activities considered

for classification is only few cms apart, the threshold value to distinguish them

from long routes is set to five. This threshold value to detect steps can be var-

ied based on the type of wearable used. Based on this classification, extraneous

routes are excluded and only the relevant routes are carried forward to the next
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phase. Micro-activities and short routes have been grouped together as there is

a likelihood that the step detector may produce false positives or false negatives

when small strides between ‘kettle to sink’ or ‘fridge to microwave’ are consid-

ered. This is especially true in a kitchen scenario when the objects of interest

such as kettle, stove, sink, microwave are very close to each other and transitional

changes between two stationary positions near different objects/landmarks need

to be taken into consideration. Inclusion of the step counter assists in improving

the accuracy by easily eliminating the overlapping routes in an indoor space. For

example, Couch to Dining is a short route that overlaps with the longer route

Couch to Main Door. Results from the step detector help in differentiating and

choosing the applicable route for that particular instance. It is also beneficial for

the next phase as it further reduces the magnetic matching searching space. This

helps in improving the overall time complexity since the DTW technique that is

used in the next phase is known to be a computationally expensive algorithm.

Depening on the requirement, the step detector can be configured in 3 modes:

Normal/ Sensitive/ Robust.

4.6.1.3 Phase III - Magnetic Matching (MM) using DTW

The magnetic signatures of the selected routes from Phase II are alone considered

from the MFV training database and consequently, the overall efficiency is likely to

improve as the search space for MFV fingerprinting is significantly reduced. A low

pass filter is applied to smooth the noise of the magnetometer sensor data before

calculating the similarity measure. Nearest Neighbor Dynamic Time Warping algo-

rithm that makes use of the dynamic programming approach given by Eq( 4.7) is

used to compute the similarity between two MFV sequences. The pseudocode for

the 1-Nearest Neighbor DTW is presented in Algorithm 2.



Chapter 4. Prediction of Micro-Activities and Walking Routes through Wearable
Sensing Using Location Estimation Techniques 70

Algorithm 2 1-Nearest Neighbor DTW

Inputs: MFVTrain ← MFV of selectedSK from MFVDB, MFVOnline ← MFV of
Online sequence

Output: Reference MFV
1: best so far ← ∞
2: Reference MFV ← MFVTrain[1]
3: for i = 1: sizeof(MFVTrain) do
4: DTW distance ← DTW(MFVTrain[i],MFVOnline)
5: if DTW distance < best so far then
6: best so far ← DTW distance
7: Reference MFV ← MFVTrain[i]
8: end if
9: end for
10: return Reference MFV

4.7 Experimental Study

The suggested approach is assessed in two different test environments (Trial home-1

and Trial home-2) where the main aim is to map the target’s location with the pre-

existing routes and positions(micro-activities) in the reference database. RSSIDB

and MFVDB contain data samples for a total of 40 micro-activities and walking

routes (24 micro-activities/short routes + 16 long routes) in Trial home-1 and

a total of 36 micro-activities and routes (18 micro-activities/short routes + 18

routes) in Trial home-2.

In order to evaluate the performance of the proposed algorithm, the whole

dataset was split into training set and testing set (hold-out method). The split

was done in such a way that from the measurements obtained at each reference

point, the first 70% samples ordered in time was allocated to the training set, while

the remaining 30% samples was allocated to the test set. Apart from this, test data
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samples for some of the micro-activities and routes in both the trial homes were

collected multiple times separately on different days and times from the original

dataset. This unseen new data was collected randomly at regular walking pace

which may or may not cover the same reference points used during the training

stage. These test data samples are referred to as Test Dataset-2 and the test set

from the hold-out method is referred to as the Test Dataset-1 for the remainder

of the chapter. This type of dual testing provides an in-depth evaluation of the

proposed framework.

The performance of the proposed method : BLE-MMDTW (BLE aided mag-

netic matching using DTW with step detector) was mostly compared when the

same algorithm was used without step detector results - BLE-MMDTW (with-

out step detector) and also with the sole use of magnetic data samples matched

using DTW method (MMDTW ). Sequence-based inputs of varying lengths require

specialized classifier algorithms as they are different from other supervised learn-

ing problems. The order of the observations and the temporal context must be

preserved when training models and making predictions. The accuracy of the

proposed algorithm is not compared against well-known machine learning classi-

fiers in this chapter as most of these models are not suitable for such complex

sequence classification problems. Recurrent Neural Networks (RNN) using Long

Short-Term Memory (LSTM) networks are one of the few state-of-the-art tech-

niques known for sequence classification [59]. In particular, Bidirectional LSTM’s

are used when there is a need to preserve information about the complete input

sequence at each time step. These models have the capability to take sequences

as input both in the forward and reverse directions and perform much better than

unidirectional LSTM’s. Benchmark comparison of the developed model is done

against the state-of-the-art Bidirectional LSTM model in this study.
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Micro-activities and short routes are grouped together for performance evalu-

ation and long routes are evaluated separately using the proposed model. Much

of the evaluation was done in Trial home-1. Similar kind of experimental analy-

sis were carried out in Trial home-2 too but with reduced receivers to check the

efficiency of the proposed fingerprinting system.

4.7.1 Performance Assessment Of Recognition Of Micro-

Activities and Short Routes in Trial home-1

4.7.1.1 Error Calculation Using Test Dataset-1

A list of the micro-activities and short routes considered in Trial home-1 is pre-

sented in Table 4-A.
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Figure 4.4: RMSE measure for recognition of 24 micro-activities using Test
Dataset-1

The Root Mean Square Error (RMSE) is used as the main performance metric
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Table 4-A: List of Micro-activities and Short routes considered in Trial home-1
Micro-activity/Short Route No. Name 

1 Sitting on Couch - centre 
2 Sitting on Couch - left side 
3 Sitting on Couch - right side 
4 Sitting in the dining area - left side 
5 Sitting in the dining area - right side 
6 Near stove 
7 Standing near sink 
8 Near Kitchen shelf 
9 Near kettle and fridge 

10 Near Microwave 
11 Near bathroom closet 
12 Near bathroom washbasin 
13 Shower area 
14 Sitting in bed left side 
15 Sitting in bed right side 
16 Sleeping in bed 
17 Near bedroom cupboard 
18 Couch to Dining 
19 Dining to Couch 
20 Sink to fridge 
21 Fridge to sink 
22 Fridge to Microwave 
23 Microwave to Fridge 
24 From bed to cupboard in bedroom 

	

for determining the standard deviation of the predicted locus of the micro-activities

and short routes against the position co-ordinates of the ground truth. Figure

4.4 shows the performance comparison of the RMSE measure computed for the

24 micro-activities and routes using the proposed BLE-MMDTW method, BLE-

MMDTW (without step detector) method, MMDTW method and Bidirectional

LSTM method.

A paired T-Test was conducted between the RMSE values of BLE-MMDTW

and MMDTW methods and between BLE-MMDTW and BLE-MMDTW method

(without step detector) respectively to check for statistical significance as all the
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Accuracy: 70.83%
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Figure 4.5: Confusion matrix for Micro-activities/Short Routes Using Test
Dataset-1 in Trial home-1 for BLE-MMDTW model

three models were evaluated on the same dataset but with variations in the algo-

rithm. The results of the paired T-Test provided a value of 0.0170 and 0.0003,

which is less than the 0.5 significance level indicating a significant difference between

the proposed method and the MMDTW method and BLE-MMDTW method

(without step detector) respectively.

Out of the four models, the proposed BLE-MMDTW and the Bidirectional

LSTM models have the least average RMSE of 0.18m and 0.31m respectively. The

average RMSE of the other two models, BLE-MMDTW (without step detector)

and MMDTW is 0.49m and 1.2m respectively. The Bidirectional LSTM model was

designed using the following layers and parameters: a sequence input layer with 11
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Accuracy: 66.67%
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Figure 4.6: Confusion matrix for Micro-activities/Short Routes Using Test
Dataset-1 in Trial home-1 for Bidirectional LSTM model

features, a bidirectional LSTM layer with 100 hidden units, a fully connected layer

of size 24 followed by a softmax layer and a classification layer. The maximum

epochs was set to 100 and the mini batch size was set to one as only a single

observation for each of the 24 classes were present in the training set. The initial

learning rate was set to 0.01 and was reduced by a factor of 0.1 every 5 epochs.

The model uses Adaptive Moment estimation (adam) as the optimizer and cross-

entropy as the loss function. In this case, Bidirectional LSTM model is the second

best performing model with 16 output classes being correctly predicted.

The confusion plot for both the BLE-MMDTW method and Bidirectional LSTM

method are show in Figure 4.5 and Figure 4.6 respectively. A total of 17 micro-
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activities/short routes were predicted correctly out of the 24 considered classes.

For the wrongly classified micro-activities and short routes, it can be seen that

the predicted outcome is very close to the actual ground truth. On closer inspec-

tion, all the wrongly classified labels have RMSE <= 1m with the “Near Kettle

and Fridge” class having the maximum error of 1.01m. This is a good result for

a multi-classifier problem with 24 different classes considering that the predicted

output and the actual positions are only few centimeters apart. The proposed

model will perform much better if only the object of interest involved in the micro-

activity/short route is considered ignoring the seating direction. For example:

using just the class “Couch” instead of having separate classes for left, right and

center seating positions on the couch will greatly improve the results. The user

can modify the class labels based on the level of granularity required for a given

space.

4.7.1.2 Zone Based Classification Accuracy Using Test Dataset-1
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Figure 4.7: Confusion matrix for Zone-based recognition of Micro-Activities Using
Test Dataset-1 (a) BLE-MMDTW Model (b) Bidirectional LSTM Model
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In order to check the room level classification accuracy of the detected micro-

activities, Trial home-1 was divided into five zones namely: Lounge, Bedroom,

Bathroom, Kitchen and Hallway. None of the micro-activities and short routes

listed in Table 4-A fall under the Hallway category in this particular case. The

confusion matrix for zone based recognition of micro-activities and short routes

using BLE-MMDTW(proposed) and Bidirectional LSTM models is shown in Fig-

ure 4.7(a) and Figure 4.7(b) respectively. The proposed method was able to

classify all the 24 micro-activities/short routes correctly to their respective zones

(100% accuarcy). For the Bidirectional LSTM model, Fridge to Sink and Sitting

in the dining area - right side were wrongly predicted as Sitting on Couch - cen-

tre and Near Microwave and hence classified into the Kitchen and Lounge zones

respectively resulting in a classification accuracy of 91.67%. The classification

accuracy deteriorates to 58.33% when only magnetic samples are matched using

DTW which highlights the significance of hybridising the positioning results of

both beacon and magnetic data.

4.7.1.3 Error Calculation Using Test Dataset-2

Following are the micro-activities considered for evaluation with Test Dataset-2 in

Trial home-1. Ten different test data samples were collected for cross-validation

for each of the below mentioned micro-activity measured over different days.

1. Sitting on Couch - centre, 2. Sitting on Couch - left side, 3. Sitting on

Couch - right side, 4. Sitting in the dining area - left side, 5. Sitting in the dining

area - right side, 6. near stove, 7. Standing near sink, 8. Near Kitchen shelf, 9.

Near kettle and fridge, 10. Near Microwave, 11. near bathroom closet, 12. near

bathroom washbasin, 13. shower area, 14. sitting in bed left side, 15. sleeping in
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Test Dataset

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
M

S
E

 (
m

)

BLE Aided MM Using DTW (With Step Detector)

BLE Aided MM Using DTW (Without Step Detector)

MM Using DTW

Figure 4.8: Average RMSE measure for recognition of micro-activities Using Test
Dataset-2

Figure 4.9: Performance assessment of individual micro-activities Using Test
Dataset-2

bed, 16. Near bedroom cupboard
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Figure 4.8 illustrates the performance comparison of average RMSE computed

for ten test datasets for the 16 micro-activities using three approaches - BLE aided

MM using DTW with step detector (BLE-MMDTW), BLE-MMDTW (without

step detector) and MM using DTW (MMDTW). The proposed algorithm using

the hybrid BLE-MMDTW method that includes the step counter had the least

RMSE measure in each of the ten test cases with an overall average RMSE of

0.55m. The average RMSE for the BLE-MMDTW (without step detector) and

the MMDTW methods were 1.09m and 1.13m, respectively. RMSE was chosen as

the evaluation metric over classification accuracy in this scenario as the intention

was to measure the degree of closeness of the false positive results with the ground

truth. For instance, the classification results using ten different test datasets for

micro-activities: Sleeping on bed, Sitting on Couch – centre, Sitting in the dining

area – left side and Near microwave shown in Figure 4.9 indicate that the activities

predicted as false positives are very close to the ground truth and the predicted

outcome in each case was associated with the actual micro-activity taking place.

In Figure 4.9, the micro-activity Sitting on Couch – centre was classified six

times as Sitting on Couch – right side, twice as Dining to Couch and one each

for Sitting on Couch – left side and Sitting on Couch – centre when tested at ten

different instances. However, the predicted outcome in each case refers to Couch

as the main landmark where the activity is carried out. Similarly for the sleeping

activity, the classification labels Sleeping on bed and Sitting on bed – left side maybe

different, but the locus of both these activities are almost identical (Refer Figure

4.9). The same can be said for the predicted outcome of other micro-activities.

It must be noted that the false positive results occur as multiple positions and

routes are considered for classification in this study (24 micro-activities and short

routes). The results demonstrate the merit of the approach given the high number

of different micro-activities that are to be classified (16 activities). This form of
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values and broken down by each class.

Classification accuracy = Correct predictions / Total predictions * 100 = 91.87%

Figure 4.10: Confusion matrix for Zone-based recognition of Micro-Activities Using
Test Dataset-2

location context information is crucial for supporting complex ADL recognition

when the number of physical sensors deployed in the smart home is small. In

other words, it is possible for us to maintain a minimal sensing environment and

recognize low-level activities by using just the wearable as the lone sensor data.

4.7.1.4 Zone Based Classification Accuracy Using Test Dataset-2

Based on the earlier cross-validation results using the ten test datasets, the 16

micro-activities were classified into their respective zones in the trial home. The

confusion matrix for zone-based recognition of micro-activities using the proposed

BLE-MMDTW method is shown in Figure 4.10. A classification accuracy of

91.87% was achieved, indicating that the zone of occurrence of the micro-activities

was recognized correctly in most cases inside a confined living space. The classifi-

cation accuracy in this study was obtained by calculating the percentage ratio of

correct predictions to total predictions made. However, the classification accuracy
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drops to 51.25% when the beacon data was eliminated and the MM approach was

carried out independently.

4.7.2 Performance Assessment Of Recognition Of Walking

Routes in Trial home-1

4.7.2.1 Using Test Dataset-1

Table 4-B: List of Long walking routes considered in Trial home-1
Route No. Name 

1 Kitchen Fridge to Bathroom 
2 Bathroom to Kitchen Fridge 
3 Kitchen fridge to bedroom door 
4 Bedroom door to Kitchen fridge 
5 Fridge to Couch 
6 Couch to fridge 
7 Bedroom door to Couch 
8 Couch to bedroom door 
9 Bedroom door to main door 

10 Main door to Bedroom door 
11 Couch to main door 
12 Main door to Couch 
13 Bathroom to bedroom 
14 Bedroom to bathroom 
15 Dining Table to Kitchen stove 
16 Kitchen Stove to Dining table 

	

A list of the long walking routes considered in Trial home-1 is presented in

Table 4-B.

Apart from the detection of micro-activities and their zone of occurrence, the

proposed algorithm also has the capability to track walking trajectories of the

target user. This helps to monitor the movement of the user between different
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Accuracy: 81.25%
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Figure 4.11: Confusion matrix for long walking routes Using Test Dataset-1 in
Trial home-1 Using BLE-MMDTW Model

Accuracy: 56.25%
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Figure 4.12: Confusion matrix for long walking routes Using Test Dataset-1 in
Trial home-1 Using MMDTW Model
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Accuracy: 25.00%
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Figure 4.13: Confusion matrix for long walking routes Using Test Dataset-1 in
Trial home-1 Using Bidirectional LSTM Model

rooms of the house. The confusion matrices for route classsification using the

BLE-MMDTW, MMDTW and Bidirectional LSTM models are shown in Figure

4.11, 4.12 and 4.13 respectively. It can be seen that BLE-MMDTW model has

the highest classification accuracy of 81.25% when compared to the other 2 models.

Only three routes out of the 16 walking routes were wrongly classified. The wrong

prediction is most likely due to the fact that few portions of the predicted route

overlaps with the actual ground truth as they partly share the same reference

points. MMDTW model has a classification accuracy of 56.25% and performs

better in comparison with the state-of-the-art Bidirectional LSTM model. Unlike

the good performance for micro-activities, Bidirectional LSTM performs poorly

for walking routes and achieves a dismal 25% classification accuracy.

The Bidirectional LSTM model used for prediction of walking trajectories was
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Figure 4.14: Performance comparison of walking routes using Fréchet Distance in
Trial home-1 Using Test Dataset-1

designed using the following layers and parameters: a sequence input layer with 11

features, a bidirectional LSTM layer with 100 hidden units, a fully connected layer

of size 16 followed by a softmax layer and a classification layer. The maximum

epochs was set to 50 in this case. Rest of the parameters were the same similar

to the model developed for micro-activities and short routes explained in Section

4.7.1.1. However the Bidirectional LSTM model is not suitable for recognition of

walking routes in this case due to its substandard performance.

In the case of trajectories, Fréchet distance was used as the performance metric

to measure the similarity between the ground truth and the predicted outcome

[133]. It takes into account the location and ordering of the distance co-ordinates
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along a trajectory, which makes it a suitable distance metric when comparing 2

walking routes of different lengths. The Fréchet distance measure can be mathe-

matically represented by Eq( 4.8)

δF (P,Q) = min
α[0,1]→[1,N ]
β[0,1]→[1,M ]

{max
t∈[0,1]

d(P (α(t)), Q(β(t))} (4.8)

where P and Q are the actual and predicted trajectories of lengths N and M ,

respectively and d is the distance function. For simplicity, Euclidian distance is

used as the distance metric. The co-ordinates α(t) in P and β(t) in Q range over

continuous and increasing functions with α(0) = 0, α(1) = N , β(0) = 0 and β(1)

= M . The Fréchet distance measures for the individual walking routes using the

BLE-MMDTW, MMDTW and Bidirectional LSTM models are shown in Figure

4.15.

When mapping the predicted routes to their respective zones, BLE-MMDTW,

MMDTW and Bidirectional LSTM models were found to have a classification

accuracy of 75% (since 3 routes were predicted incorrectly), 37.50% and 31.25%

respectively. The predicted intra-zone and inter-zone transition for these models

can be seen in their respective confusion matrix plot in Figure 4.15.

4.7.2.2 Using Test Dataset-2

Ten different test datasets for 12 walking routes were collected for evaluating the

classification efficiency of the proposed model. These selected routes are listed

below:
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Figure 4.15: Confusion matrix for zone-based classification of walking routes Using
Test Dataset-1 in Trial home-1 (a) BLE-MMDTW Model (b) MMDTW Model (c)
Bidirectional LSTM Model

1. Couch to Dining, 2. Dining to Couch, 3. Dining Table to Kitchen stove, 4.

Kitchen Stove to Dining table, 5. Sink to fridge, 6. Fridge to sink, 7. Bathroom

to bedroom, 8. Bedroom to bathroom, 9. Main door to Couch, 10. Couch to main

door, 11. Bathroom to Kitchen Fridge, 12. Fridge to Microwave

The confusion matrices for route classification using the BLE-MMDTW, MMDTW

method are presented in Figure 4.21(b), respectively. The proposed BLE-MMDTW

model provides a reasonable classification accuracy of 85% and outperforms the

MMDTW method that provides a classification accuracy of 76.67%. However, the
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Classification Accuracy = Correct predictions / Total predictions *100 = 85.00%
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Classification Accuracy = Correct predictions / Total predictions *100 = 76.67%
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Figure 4.16: Recognition confusion matrix for walking routes Using Test Dataset-2
in Trial home-1 (a) BLE-MMDTW Model (b) MMDTW Model
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Figure 4.17: Performance comparison of walking routes using Fréchet Distance
in Trial home-1 Using Test Dataset-2 (a) Fréchet Distance Measure for BLE-
MMDTW Model (b) Fréchet Distance Measure for MMDTW Model
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MMDTW method performs well for route classification when compared to clas-

sification of micro-activities since the observed trajectories have a more unique

magnetic signature for trajectories when compared to stationary points.

The Fréchet distance measure for the selected routes using the BLE-MMDTW

and MMDTW models are shown in Figure 4.17.

For zone-based classification, the BLE-MMDTW and MMDTW models provide

a classification accuracy of 88.33% and 85%, respectively. Their respective confu-

sion matrices for the associated intra-zone and inter-zone classification of routes

are shown in Figure 4.18.

4.7.3 Performance Assessment Of Recognition Of Micro-

Activities and Short Routes in Trial home-2 with

Reduced Receivers

A different comparative analysis was conducted in Trial home-2 to study the impact

of reducing the number of receivers and the effect of higher receiver antenna gain

on the final outcome using the proposed algorithm. As described earlier, five

Raspberry-Pi receivers equipped with external antennas (5dBi and 1dBi) were

deployed in the slightly larger second trial home to test the robustness of the

hybrid approach with lesser number of receivers.

4.7.3.1 Using Test Dataset-1

The different micro-activities and short routes in Trial home-2 is listed in Table

4-C.
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Classification Accuracy = Correct predictions / Total predictions *100 = 88.33%
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Classification Accuracy = Correct predictions / Total predictions *100 = 85.00%
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Figure 4.18: Recognition confusion matrix for zone-based classification of walk-
ing routes Using Test Dataset-2 in Trial home-1 (a) BLE-MMDTW Model (b)
MMDTW Model
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Table 4-C: List of micro-activities and short routes considered in Trial home-2
Micro-activity/Short Route No. Name 

1 Bathroom sink 
2 Near kettle and sink 
3 Shower 
4 Sitting at dining table left hand side 
5 Sitting at dining table right hand side 
6 Sitting on centre of couch 
7 Sitting on left of bed 
8 Sitting on left of couch 
9 Sitting on right of bed 

10 Sitting on right of couch 
11 Bedroom door to front door 
12 Couch to dining table 
13 Dining table to couch 
14 Fridge to sink 
15 Front door to bedroom door 
16 Sink to fridge 
17 Couch to tv 
18 Tv to couch 

	

A total of 18 micro-activities and short routes are considered for performance

analysis when the receivers are fitted with 5dBi higher gain antennas and the

lower 1dBi gain antennas to check if there is any significant improvement in the

performance of the proposed model (BLE-MMDTW Model) for these two cases.

RMSE is used as the metric to assess the accuracy of the predicted micro-activities

and short routes. The stem plot showing the RMSE for the individual micro-

activities and short routes while using 5dBi and 1dBi antennas can be seen in

Figure 4.19. Table 4-C can be used for referring to the class labels for the

respective micro-activity/short route numbers. While using 5dBi antennas, the

average RMSE was found to be a reasonable 0.39m with seven micro-activities

and short routes being predicted correctly. In the case of 1dBi antennas, the

average RMSE was found to be 1.03m.
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Figure 4.19: RMSE of micro-activities and short routes in Trial home-2 Using the
proposed BLE-MMDTW Model for Test Dataset-1

Since the same set of micro-activities was considered for both 1 dBi and 5dBi

antennas, a paired T-Test was performed between RMSE values to check for sta-

tistical significance. The difference is significant if the p value is less than 0.05.

A p value of 0.0020 was achieved indicating a significant difference between the

two groups.The use of high gain antennas showed a significant reduction in the

overall error and boosted the performance of the BLE-MMDTW model using just

five receivers in this case.
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Figure 4.20: RMSE for these micro-activities in Trial Home-2 Using Test Dataset-2
(a) Sitting on Centre of Couch (b) Sitting on Left of Couch (c) Sitting on Right
of Couch (d) Using the Shower (e) Using the Bathroom Sink

4.7.3.2 Using Test Dataset-2

As part of the Test Dataset-2, four different datasets of five micro-activities were

selected for analysis that were collected on different days spread over a week. The

five micro-activities selected for analysis were: 1) Sitting on Centre of Couch, 2)
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Sitting on Left of Couch, 3) Sitting on Right of Couch, 4) Using the Shower, 5)

Using the Bathroom Sink.

Figure 4.20. illustrates the RMSE for these micro-activities when the experi-

mental study was conducted separately with receivers fitted with 5dBi and 1dBi

antennas respectively. The results indicate that the RMSE of predicted activities

is a lot smaller when the receivers are fitted with 5dBi antennas than with 1dBi

antennas similar to the results of Test Dataset-1 . This is because an increase

in antenna gain improves the range of the Raspberry-Pi receivers such that they

can detect the beacon from a greater distance [134]. Hence sufficient accuracy

is still maintained with reduced number of receivers when equipped with high

gain antennas. However, accuracy is compromised with low-gain antennas due

to reduced coverage as only five receivers are used in Trial home-2 compared to

eight in Trial home-1. In cases where high gain antennas are used, the predicted

outcome is precise in most cases for activities {1,2,4,5} and in other instances pro-

vides sub-meter level precision. Similar to Trial home-1, the locus of the predicted

activity for different sitting positions on the couch (Activities {1-3}) using 5dBi

antennas for all test samples was found to be the Couch. The use of a pressure

sensor can therefore be avoided and rely solely on the positioning results to find

out if the person has been spending some time on the couch. Opting for low gain

antennas can also prove useful if the requirement is only to predict the room or

zone where the activity is taking place. The average error is around a meter when

low gain antennas are used.
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4.7.3.3 Performance Assessment Of Recognition Of Walking Routes in

Trial home-2 with Reduced Receivers

4.7.3.4 Using Test Dataset-1

Table 4-D: List of all Long routes considered in Trial home-2
Route No. Name 

1 Bathroom to kitchen fridge 
2 Bedroom door to couch 
3 Bedroom door to kitchen fridge 
4 Couch to bedroom door 
5 Couch to fridge 
6 Couch to front door 
7 Dining table to cooker 
8 Fridge to couch 
9 Fridge to bathroom 

10 Kitchen cooker to dining table 
11 Kitchen fridge to bedroom door 
12 Bathroom to bedroom 
13 Bedroom to bathroom 
14 Bed to wardrobe 
15 Front door to couch2 
16 Couch2 to front door 
17 Front door to fridge 
18 Front door to toilet 

	

A list of all the long walking routes in Trial home-2 is shown in Table 4-D.

A comparative analysis was performed for long walking routes (> 5 steps) when

the receivers were fitted with 5dBi and 1dBi antennas, respectively. 18 long routes

were part of that training database of Trial home-2. When the testing was done

using the Test-datset-1, the performance when using high gain antennas proved to

be better even for the lengthy walking routes. A classification accuracy of 72.22%

was achieved with 5 dBi antennas and 61.11% with 1 dBi antennas. The respective

confusion matrices illustrating the predictions for different routes can be seen in



Chapter 4. Prediction of Micro-Activities and Walking Routes through Wearable
Sensing Using Location Estimation Techniques 96

FIgure 4.21.

Accuracy: 61.11%
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Figure 4.21: Recognition confusion matrix for walking routes Using Test Dataset-1
in Trial home-2 (a) Using 1dBi antennas (b) Using 5dBi antennas
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Figure 4.22: Performance comparison of walking routes using Fréchet Distance in
Trial home-2 Using Test Dataset-1

Similar to Trial home-1, Fréchet distance was used as the performance metric

to measure the similarity between the actual and predicted results. The Fréchet

distances corresponding to their respective walking routes using 5dBi and 1dBi

antennas is seen in Figure 4.22. Route No. 4, 7, 11 has a higher Fréchet dis-

tance error while using 5 dBi antennas than when using 1 dBi antennas. On closer

inspection, all three routes has reference points passing through the hallway. A

possible reason for the weak performance may be due to the interference of the bea-

con signal caused by the thick walls while crossing through the hallway. Receivers

with low gain antennas tend to perform much better in such cases. This has been

further explained in detail in the next Chapter which concentrates specifically on

several parameters to improve BLE fingerprinting in Trial home-2.
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4.7.3.5 Using Test Dataset-2

Four datasets of five different walking routes were selected for experimental analysis

in Trial home-2. These were 1) Bathroom to Kitchen Fridge, 2) Kitchen Fridge to

Bathroom, 3) Kitchen Fridge to Sink, 4) Couch to Front Door, 5) Couch No.2 to

Front Door. A comparative analysis was performed for walking routes when the

receivers were fitted with 5dBi and 1dBi antennas, respectively.

The Fréchet distance results of the selected five routes are illustrated in Figure

4.23. The predicted outcome for routes 1 and 2 were precise when using 5dBi

antennas for each of the four test datasets as seen in Figure 4.23. Overall, the

Fréchet distance between the target route and the predicted route when using high

gain 5dBi antennas is considerably lesser when compared to using low gain 1dBi

antennas for all the five routes indicating high similarity between the predicted

route and the actual route. In comparision, the Fréchet distances while using 1dBi

antennas are slightly on the higher side as the overall coverage by the receivers is

reduced across various rooms in the flat. Thus, it can be deduced that increasing

the receiver antenna gain raises the likelihood of improvement and helps reduce

the number of Raspberry-Pis deployed in the test environment while maintaining

sufficient accuracy.

4.7.4 Selection of Time Window Length for Segmentation

of Incoming Data in Trial home-1

So far the test sequences have been considered as a whole for performance eval-

uation for the experimental evaluation in Trial home-1 and Trial home-2 In this

section, a sliding window approach was used for segmentation of incoming wear-
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Figure 4.23: Performance comparison of walking routes using Fréchet Distance in
Trial home-2 Using Test Dataset-2 (a)Bathroom to KitchenFridge (b) Kitchen-
Fridge to Bathroom (c) Kitchen Fridge to Sink (d) Couch to Front Door (e) Couch
No.2 to Front Door

able sensor data to check the suitability of the proposed framework in a real world

scenario. Based on the sampling rate and the length of the trajectories to be

measured, a suitable time window, Tw length needs to be selected such that the

segmented data contains sufficient information to output a micro-activity or tra-

jectory. In order to test the system responsivity, the classification accuracy of

routes for three different time windows of length Tw1 = 8s , Tw2 = 12s and Tw3 =
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15s were computed. When Tw1 and Tw2 are the chosen parameters, a classification

accuracy of 66.67% and 77.67% were obtained, respectively. Tw3 = 15s was selected

for which a maximum classification accuracy of 85% is achieved.

4.7.5 Case Study Evaluation

A case study evaluation was conducted in the two test apartments to evaluate

the performance of the proposed method employing the BLE-MMDTW approach

against the solo use of MFV fingerprinting. This was determined when the user was

moving inside the apartment performing a series of random activities that reflect

regular human day-to-day behavior. A sliding window of Tw = 15s was used in

this case study for both the trial homes. The test results of Trial home-1 and Trial

home-2 (using 5dBi antennas) are highlighted in Figure 4.24 and Figure 4.25,

respectively. The positions or routes specified in both the figures are the results

of each method, which are in the order of the activities performed by the user.

The resulting output from the case studies prove that the predicted routes and

positions obtained by the proposed method are much closer to the actual results

as compared to using only MFV sequences for location estimation. Furthermore,

the results indicate that the independent use of the MFV fingerprinting method is

ineffective and therefore contributes to a high mismatch rate.

4.8 Discussion

The need to design a reliable context based location aware system for an increas-

ingly dynamic and complex domestic environment is crucial as they form the basis

for a number of remote home healthcare applications. The results from Section
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(a)

(b)

(c)

Figure 4.24: Case Study Illustration when user performs the following activities
in Trial home-1 (a) Actual Walking Route (b) Predicted Walking Route (Using
Beacon RSSI + MFV Fingerprinting Method) (c) Predicted Walking Route (Using
only MFV Fingerprinting Method)
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(a)

(b)

(c)

Figure 4.25: Case Study Illustration when user performs the following activities
in Trial home-2 (a) Actual Walking Route (b) Predicted Walking Route (Using
Beacon RSSI + MFV Fingerprinting Method) (c) Predicted Walking Route (Using
only MFV Fingerprinting Method)
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4.7 demonstrate that the hybrid BLE-MMDTW method with the inclusion of step

detector information outperforms the individual use of MMDTW method in all the

test case scenarios for micro-activities and walking routes. The findings are more

conclusive since they were assessed in a home environment with strong NLOS con-

ditions. The proposed model was also tested against state-of-the-art Bidirectional

LSTM model for all routes and positions in Trial home-1. The performance of the

Bidirectional LSTM model for recognition of micro-activities is comparable with

the proposed model providing an error of 0.31m. The RMSE achieved by the pro-

posed model for micro-activities is 0.18m. The low error rate proves the capability

of the proposed model to achieve fine-grained positioning. In the case of walking

routes, BLE-MMDTW model outperformed the performance of the Bidirectional

LSTM model by achieving a high accuracy of 81.25%. The latter provided a poor

classification accuracy of 25%. As per the results, it can be deduced that the Bidi-

rectional LSTM model is not suitable for prediction of walking trajectories when

reduced amount of training data is available. In this study, only single observation

of sequential data for each walking route and micro-activity was available in the

training database. The proposed model was able to perform decently even in such

conditions.

Overall, the performance assessment and the case study results corroborate the

hypothesis that the fusion of BLE and MFV fingerprinting with added information

from inertial sensors complement each other to accomplish low-level recognition of

multiple activities and user trajectory prediction in a smart home environment.

Furthermore, the decision to evaluate 1dBi and 5dBi interchangeable external

antennas in Trial home-2 was to determine the level of localization accuracy with

fewer receivers using the proposed algorithm. Experimental results indicate that

adequate accuracy can still be maintained with a reduced infrastructure, by deploy-
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ing receivers with higher gain antennas. Besides, the data collection approach used

in this study along with radio map construction for sequence-based inputs and tra-

jectory measurements can be extended to other location estimation technologies

(Eg: LiDAR, Radar, mmWave).

Table 4-E shows a comparison of the proposed system against recent works that

have used location estimation techniques as a supporting or standalone system for

activity monitoring. Most of these systems are designed only to achieve room-level

accuracy [124][127][128]. Other works that consider a higher number of activities,

suffer in accuracy due to the complexity involved in a multi-activity classification

problem (10 or more classes) [126][129]. Location estimation techniques are used

in combination with other sensing methods in both these works. In this study,

indoor positioning techniques were used as a standalone system to provide more

fine-grained positioning rather than room-level accuracy and to classify multiple

activities. Furthermore, the study also considers the user trajectory, which is

crucial for continuous monitoring applications. Despite the complexity involved,

the developed system managed to achieve reasonable accuracy for both stationary

positions and walking routes.

4.9 Chapter Summary

In this work, a novel algorithm has been developed for low-level micro-activity

recognition and prediction of walking routes using wearable sensing. The imple-

mentation employs an inverse beacon fingerprinting scheme coupled with inertial

sensors to narrow down the magnetic field vector matching space. The suggested

approach helps in overcoming the shortcomings of beacon signal stability and mis-

match issues in magnetic field fingerprinting. An overall improvement in prediction
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accuracy is made possible by amalgamating the results of both techniques. Further-

more, a context-oriented, trajectory-based radio map model for location estimation

is adopted in this study to provide a realistic scenario for testing that is better

suited in setting up an activity recognition system at home. The empirical results

demonstrate that the proposed method has high potential in providing centimeter-

level positioning accuracy for micro-activities and a reasonable classification accu-

racy over 80% can be achieved for walking routes. The method proposed in this

chapter provides an accurate and cost-effective solution for monitoring applica-

tions within a home environment as it delivers sufficient prediction accuracy on

its own without the use of object-based sensing methods. Furthermore, complex

ADL recognition is feasible when the suggested method is combined with posture

recognition methods or used in ambient sensing environments, instrumented with

only the essential sensors required for monitoring.

Chapter 5 uses the ranking feature of the positioning algorithm described in

this Chapter and provides an evaluation of the key parameters involved in setting

up the BLE fingerprinting system by using reduced receivers with interchangeable

high gain and low gain antennas.



Chapter 5

Evaluation of Factors Affecting

Inverse Beacon Fingerprinting

Using Route Prediction

Algorithm

Conventional Radio Frequency (RF) based fingerprinting still remains one of the

most popular methods amongst other indoor positioning techniques due to its

inherent accuracy and reliability. However, not much prominence has been shown

in analyzing certain factors that may affect the outcome of the fingerprinting

method while designing the localization system.

In this chapter, an analysis of the factors that possibly influence the performance

of the indoor positioning method explained in Chapter 4 is discussed here. Further-

more, the chapter makes few suggestions surrounding the hardware setup which

helps in boosting the overall performance of the beacon fingerprinting method

107
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implemented in Chapter 4. All the experiments conducted in this Chapter was

performed in Trial home-2. Ranking accuracy with a route selection algorithm

(without the steps correction phase) is used as the basis to analyze the perfor-

mance of the fingerprinting method.

The rest of the chapter is organized as follows; Section 5.1 and 5.2 highlights

the main motivations and main contributions of this chapter. Related work is

discussed in Section 5.3. Section 5.4 describes the route prediction algorithm. The

performance analysis results of various factors including antenna gain and electrical

interference are discussed in Section 5.5.

5.1 Motivation for the study

Despite the recent advances in indoor positioning systems, setting up a reliable

smart space for localization in compact domestic homes still remains an open

challenge. One of the reasons of not being able to devise a practical localization

solution for small-scale homes is mainly due to the dynamic nature of a domestic

space that is constantly subjected to heavy attenuation caused by the surrounding

walls and furniture. Deploying independent RF fingerprint based solutions in such

compact spaces will prove ineffective, as the signal will be unstable in a strong

non-line of sight (NLOS) environment. To develop a potential RF fingerprinting

system for a home environment, importance has to be extended in choosing the

right hardware elements and data collection method, apart from improving the

location estimation algorithm.

Important parameters such as deciding the number of receivers to be deployed,

deciding the average length of walking routes to maintain in training database,
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effect of receiver coverage density on position accuracy are discussed in Chapter

5. The reason for including these details after Chapter 4 is because it facilitates

understanding of the technical concepts and the impact of these parameters on

location fingerprinting presented in Chapter 5.

5.2 Main Contributions of this Chapter

The main contributions of this chapter are summarized as follows:

1. Motivated by the above, this chapter will provide an insight into the concept

of ranking accuracy, which is used as the metric for performance analysis

of the BLE fingerprinting method described in Chapter 3. The results from

this study can help improve the BLE fingerprinting performance in Chapter

3 and bring about improved localization in small-scale homes.

2. An in-depth study on the impact of control variables such as receiver antenna

gain, route length, number of detected receivers on the ranking accuracy of

routes is carried out. The chapter also discusses the effect of surrounding

electrical interference on the beacon signal.

3. Location estimation algorithms are not the focus of this chapter as there is

sufficient research already carried out on them. The key findings from this

study will help the reader consider different factors that can help improve the

overall performance of the RF localization system, and will serve as a refer-

ence case study for future research when deciding on hardware characteristics

during deployment of RF fingerprint based indoor positioning systems.
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5.3 Related Work

Some of the important factors that determine the accuracy of this type of scene

survey method is the procedure used for collecting RSSI fingerprints, the accuracy

of the radio map, the location estimation algorithm and other miscellaneous fac-

tors, such as hardware setup and configuration, building layout and environment

noise. Apart from the location estimation algorithm and the data collection proce-

dure, there has been minimal research done in evaluating other factors that affect

indoor location fingerprinting systems. It is essential to take note of these external

elements while designing a stable location aware system.

One such quality control study by Liu et al. involves analyzing and summariz-

ing the potential impact factors affecting Wi-Fi fingerprinting that is implemented

on a simulation platform [135]. The research involves studying various factors such

as AP density, AP distribution, radio signal attenuation factor, radio signal noise,

and reference point (RP) density. The final results indicate that an increase in AP

density, RP density and the signal attenuation factor with low signal noise level

contribute to better performance. The study also claimed that the AP distribu-

tion had no particular impact on the end result. In another study conducted by

Moghtadaiee et al., the design characteristics such as the effects of the number

and geometry of APs, RPs and number of RSSI samples for an indoor positioning

system were analyzed [136]. Results from this study revealed that merely increas-

ing the number of APs beyond a suitable number for a given indoor space barely

influences the end result.

The attenuation caused by the human body is another key factor to be con-

sidered in indoor positioning systems. At most times, accuracy is affected when
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a human body shields the direct line of sight path between the transmitter and

the receiver. A number of studies have introduced compensation factors into the

positioning algorithm to account for the path loss encountered due to the presence

of a human body [137]-[138]. In [139], the fluctuations in signal strength in indoor

environment caused by human movement are studied. Various attenuation models

based on movement speed were built for a single-person and three-person scenario.

Though the effect of the human body was not studied in detail in the research

presented in this chapter, readings were collected in all directions for a given path

to ensure that the interference from signals passing through the human body was

Figure 5.1: Project hardware components: Raspberry-Pi receiver with external
1dBi and 5dBi antennas along with wearable beacon

taken into account while creating the radio map.

5.3.1 Route Prediction Rank Based Algorithm

The route prediction rank based algorithm is based on Phase I of the positioning

algorithm described in Chapter 5 (Refer to Section 5.6.1.1). For determining the

correct path during the online phase, a section of routes were tested by physically

walking along the trajectory and collecting RSSI data whilst moving. The collected

RSSI data was then passed to a prediction algorithm that outputs a list of routes
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Algorithm 3 Route Prediction Using RSSI Fingerprinting

Inputs: RSSoffline ← Offline radio map with labeled routes, RSSonline ← Online
RSSI data, n← number of receivers considered, RPiID ← Raspberry-Pi Iden-
tified where (1 ≤ ID ≤ n)

Output: selectedRoutes ← Top 10 most likely routes ranked in decreasing order
of likelihood that was walked by the target

1: for i = 1: sizeof(RSSoffline) do
2: Compute rank matrix ′α′ where each row ’i’ contains the RPiID sorted in

descending order based on the strongest RSSI
3: end for
4: for i = 1: sizeof(RSSonline) do
5: Ionline ← RPiID in descending order based on the strongest incoming

RSSonline
6: β[i] ← Retrieve respective walking route label of matched rows in Ionline

from ′α′

7: occ[i]← Compute the frequency of occurrence of matched walking routes in
β[i]

8: end for
9: γ ← Results from ′β′, categorized by groupocc ← number of routes grouped by

occ and sumocc ← total number of observations of each routes
10: δ ← Sort Routes ′γ′ based on sumocc and on groupocc incase of ties
11: return selectedRoutes ← Retrieve top 10 walking routes from ′δ′

ranked in order of descending likelihood to the actual route walked by the resident.

The first step involved sorting the entire training database and the collected online

beacon signal samples based on their strongest RSSI vectors. RSSI values with

“-120” collected by receivers are indexed as zero referring to the fact that the

respective Raspberry-Pis is out of range of the beacon. This is followed by creating

a rank matrix individually for the offline and online data where each row contains

the corresponding Raspberry Pi identifier based on the previous sorting. The

ranked datasets are finally matched against each other to find the top ten most

likely routes that was walked by the target person. The Pseudo code explaining

the above steps is shown in Algorithm 3.
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5.3.2 Advantages and Applications

In this chapter, a deeper analysis of the factors that help in raising the accuracy

of the beacon fingerprinting method is performed, such that the probability of the

actual route appearing in the top ten or top five positions using Algorithm 3 are

improved. This approach is tested in a one bed apartment and would be useful

in designing a reliable Activities of Daily Life (ADL) monitoring system or can

be developed into a suitable user-friendly Internet of Things (IoT) application.

The proposed technique can also be extended to an industrial environment where

location based services play a pivotal role in supply chain management or can help

managers to collect and analyze information regarding the worker’s movement

patterns. The experiments conducted in this study provides an insight on how the

efficacy can be improved using the deployed hardware.

5.4 Results and Analysis

The experiments in this Chapter were performed on the Trial home-2 test bed.

Further information regarding the layout of the test bed, hardware setup and data

collection process is mentioned in Chapter 3 under Section 3.4. The layout of the

trial home along with the placement of the master and slave Raspberry-Pi receivers

is the same as seen in Figure 3.4.

The training database comprised a total of 36 routes including stationary points.

RSSI data samples for the 24 walking routes listed in Table 5-A were selected to

study the performance analysis between receivers equipped with 1dBi and 5dBi

antennas individually, out of which 17 routes were measured 4 times (Route No. 1
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to 20) and 7 routes were measured 10 times (Route No. 21 to 24). When a route

was not found in the top ten rankings, it was assigned the value “eleven”. In this

section, the rank based route selection method explained in Algorithm 3 was used

as the basis to assess the performance against various factors. For the remainder

of the sections and figures in this Chapter, the routes will be mentioned in terms of

their route numbers. Refer to table 5-A for information regarding the route names

for a given route number.

5.4.1 Impact of Antenna Gain on Ranking Accuracy of

Routes

Antenna gain is a measurement of how well the antenna focuses a signal in a

specified direction (strength and reach of the antenna’s signal), which is typically

measured in dBi. An evaluation was performed to assess if increased antenna

gain improves the position of the correct route in the rankings using the method

described in Algorithm 3. An analysis on the collective measurements of all walking

routes yielded an average median rank of 7.58 for 1dBi antenna setup that improved

to 6.1 when 5dBi antennas were deployed. Figure 5.2 represents the corresponding

individual average median route rankings for 1dBi and 5dBi antenna gain. The

median was chosen to perform the analysis rather than the mean in order to reduce

the effect of outliers. The average improvement in rank while using 5dBi antenna

is a movement of 1.5 positions over 1dBi. It can be noticed in Figure 5.2 that

most of the routes connecting the kitchen and living room are not improved by the

high antenna gain. One possible cause could be the placement of the antenna of

Pi1 next to the thick wall, as nearly half of the antenna’s gain is lost when it tries

to pick up signals from the surrounding walls.
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Table 5-A: List of Walking Routes Used for the Analysis

Since the same set of routes were walked for 1dBi and 5dBi setup, a Paired-t

test was used to match the individual route rankings against each other to check
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if there is a significant difference in the results between these two groups. The

difference is considered to be statistically significant if the p-value ≤ 0.05. In

this case, the p-value was found to be 0.0324, which indicates a notable difference

between the 1dBi and 5dBi measures. When the improvement of each route was

analyzed individually, the rank of 67% of the walking routes improved while using

5 dBi antennas as opposed to their rank using the 1dBi stub antennas. Taking

into account those that did not change, 91% of routes were equal or better at 5

dBi compared to 1 dBi gain.
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Figure 5.2: Comparative analysis median rank analysis of 24 selected routes using
1dBi and 5dBi receiver antenna

It has to be noted that the sole use of this method will not help in accurate

location positioning. The very purpose of this analysis in this thesis was to check if

an increased antenna gain helped in boosting the probability of a route appearing

in the top 10 positions consistently, so that the outcome of the method described in

Section 3.6 of Chapter 4 is improved. Furthermore, the analysis also helps in decid-

ing an optimal setting for any indoor positioning system using BLE fingerprinting

technique.
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5.4.2 Correlation between Route Length and Rank Improve-

ment

It was expected that there would be a direct correlation between the length of

a specific route and an improved ranking. This was based upon the assumption

that if the signature of the route was longer, it would more likely be unique and

therefore, more accurately matched against the radio map built during the training

stage. However, this was not the case as shown in Figure 5.3.

Figure 5.3: Relationship between Route Length and Rank Improvement

A large percentage of the longer routes, which consist of more than 10 points

(Routes 3, 12, 20 and 9), did not show a marked improvement in ranking when

5dBi antennas were used. The reason for such performance deterioration maybe
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due to the existence of several walking routes of shorter length that share the same

order of reference points as that of the longer routes in the training database.

Furthermore, receivers with 5 dBi BLE dongles provide a greater coverage range

compared to those with 1dBi dongles (More on this in Section 5.4.3). However,

with increased beacon coverage area, number of receivers detecting the beacon will

be higher at each reference point resulting in fingerprints of greater dimensionality.

The uniqueness of the data sample at each reference point along the longer walking

route is thus diluted for higher gain antennas resulting in more route matches from

the training database in contrast to using lower gain antennas. The poor result is

thus understandable making it harder to identify the exact walking route as longer

routes cover numerous segments of existing shorter routes.

The results highlight the fact that the most consistently improved routes in

ranking are those between eight and ten points; primarily routes of medium length.

5.4.3 Effect of the Number of detected Raspberry-Pis on

the Ranking Accuracy

5.4.3.1 5dBi Median Route Rankings Vs Minimum Number of Raspberry-

Pis detecting the beacon

Whilst there was no improvement in ranking performance due to the increased

route length, it was noticed that the number of Raspberry-Pis detecting the beacon

had a positive influence on the performance rankings for each route. For any given

route, the number of Raspberry-Pis detecting the beacon can vary between one

and five in this case study. In order to measure the performance efficiency, the

minimum number of Raspberry-Pi receivers detecting the beacon was identified for
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each route along with their respective rank position outcome. The tests indicate

that an increase in the minimum number of detected Raspberry-Pis raises the

likelihood of improvement, which is reflected in the ranking position for a given

route (as shown in Figure 5.4).

Figure 5.4: 5dBi Median Route Ranking Vs Minimum Number of Raspberry-Pis
detecting the beacon

In Figure 5.4 plot, the y-axis identifies the rank, with one being the highest; all

routes outside the top ten are demarcated by the value ‘eleven’. It is evident from

this plot that a large section of routes (Route No. 1,3,4,11,13-17,19-22) have at

least four Raspberry-Pis detecting the beacon as a result of using 5 dBi antennas at

any given time. Around nine of these thirteen routes are found to have an average

median rank ranging from one to five, confirming that the relative rankings improve

with the increase in the number of receivers detecting the beacon.
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5.4.3.2 Improvement in Rank Vs Number of Raspberry-Pis detecting

the beacon

It was observed that the number of Raspberry-Pis detecting the beacon using

5dBi antennas were comparatively higher than when using 1dBi antennas (Refer

Table 5-B). Consequently, there was also an improvement in the average median

rank by using receivers with higher antenna gain when the minimum number of

Raspberry-Pis detecting the beacon increased (Refer to Figure 5.5).
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Figure 5.5: Improvement in Rank Vs Minimum Number of Raspberry-Pis detecting
the beacon

For instance, it was noted that the same routes (Routes: 1,3,4,11,13-17,19-22),

which had at least four Raspberry-Pis detecting the beacon, were seen to improve

in rank position or remain unchanged when the antenna gain was increased by

4 dBi. None of the routes were found to deteriorate in the rankings when the
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minimum number of receivers detected were four, and the performance worsened

for only one route (Route No: 12 - Kitchen fridge to Bedroom door) when the

number of receivers detected were three.

5.4.4 Impact of Increased Antenna Gain on the Number

of Raspberry-Pis Deployed

Using the hypothesis that higher antenna gain increases the density of coverage

within the property, it was considered a possibility that it would help reduce the

number of Raspberry-Pis deployed in the test environment while maintaining suf-

ficient accuracy. This was tested by removing the Raspberry-Pi located in the

bathroom (Pi-4), because of its proximity to the Raspberry-Pi in the kitchen

(Pi-5) and the one in the hallway (Pi-1) (Refer to Figure ??). By line of sight

measurement, the distances from the bathroom Raspberry-Pi to the hallway and

kitchen Raspberry-Pi were 1.8m and 2.5m respectively. The resulting rankings

were recomputed after removing Pi-3 from the training and test datasets.

To determine whether reducing the number of Raspberry-Pis to four had a

detrimental impact on the route rankings, the average median rank improvement

was investigated when the antenna gain was increased to 5dBi from 1dBi. It

was observed that the average improvement in rank in the case of deploying four

Raspberry-Pis was 1, compared to 1.5 with five Raspberry-Pi receivers (Refer to

Figure 5.6). In addition to the decreased average rank improvement, there was

a significant reduction in the number of individual routes that improved in its

ranking position while using four Raspberry-Pi receivers. It was found that only

45% of routes improved when four Raspberry-Pi receivers were used. The use

of an additional Raspberry-Pi therefore presents a significant improvement in the
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Figure 5.6: Difference in rank improvement between Differing Number of Receivers

overall performance. This would therefore suggest that there is a requirement for

a receiver to be placed inside every room, when the beacon cannot be detected

by all the Raspberry-Pis in the test property as matching against the fingerprint

database will be less precise.

5.4.5 Effect of Electrical Interference on Beacon Signal Mea-

surement

It was observed that the beacon RSSI readings were spurious at certain times of the

day and inconsistent with the readings obtained at other times inside the apart-

ment. It was presumed that this may be related to RF interference from another
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device in the testing area. To test this proposition, the MetaMotionR wearable

was left at a particular location in the apartment for a long time period. A deeper

inspection revealed that significant interference was observed when the washing

machine started functioning. This phenomenon was verified through several tests

confirming the result. Figure 5.7 shows the placement of the washing machine

denoted by ‘W’ and the beacon denoted by ‘B’ in the test apartment.

Figure 5.7: Interference with respect to beacon position (B) and washing machine
(W)

The resulting RSSI signal variability due to interference was plotted against

time as seen in Figure 5.8. The washing machine was left on a timer and the

rapid variability of the beacon signal can be clearly seen when the machine was

in the middle of its operating cycle (right hand side of the chart). The effect

of electrical interference should especially be kept in mind while collecting RSSI

samples during the training stage as the entire positioning system depends on the

accuracy of the radio map. This is a good example of the susceptibility of indoor

localization systems using only RSSI data and should therefore be combined with
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Figure 5.8: Interference from a washing machine in the test apartment

other techniques mentioned in the earlier section to reduce the impact of electrical

interference.

Interference is unfortunately inevitable, but steps can be taken to reduce their

impact. Electrical interference may also come from devices such as refrigerators,

microwave, vacuum cleaner and other motorized devices. This may be a cause of

concern when the electrical device is in close proximity to areas where the home

occupant spends more time at specific spots such as the bed, couch, dining area.

In such cases, it is best to position the electrical devices at a safe distance away

from these spots.

As it can seen from Figure 5.7, the beacon was intentionally left in a single

spot for an extended time frame in close proximity to the washing machine to

highlight the inconsistencies in the beacon signal. However, the impact of the

interference caused by the washing machine functioning will be less during test
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data collection in this scenario since the probability of the person spending more

time at the beacon’s position as seen in Figure 5.8 is quite rare. Sudden changes

in beacon signal will not prove consequential when the person is passing through

the hallway at regular walking speed. That said, identifying the root cause of the

interference is more crucial in order to be able to deal with such excessive beacon

signal variation.

5.4.6 Comparison of Using Onboard BLE Chip Against

External BLE Antennas

The Raspberry Pi 3 Model B has a built in Bluetooth radio with a maximum gain

of 1.5 dBi. A brief comparison was made between the performance of the onboard

chip and the external 1dBi and 5dBi dongles on the premise that a higher antenna

gain increases the number of Raspberry-Pis that can detect the beacon. This

behavior was confirmed earlier. Working on the principle that a higher number

of receivers detecting the beacon improves the overall rank, a similar process of

finding the minimum number of Raspberry-Pis detecting the beacon for all routes

was estimated using the onboard BLE module.

The number of Raspberry-Pis detecting the beacon for each walking route using

1dBi, 1.5dBi and 5dBi antennas is illustrated in Figure 5.9 and the results summary

for all the routes using these antennas are shown in Table 5-B. The results indicate

that an increase in antenna gain of 0.5 dBi has little or no impact on the number

of Raspberry-Pis that detect the beacon, and therefore, there will be no realistic

improvement in the rankings. A more substantial increase in receiver antenna

gain is therefore required to increase the number of Raspberry-Pis that are able to

detect the beacon, as demonstrated by the marked improvement in performance
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Figure 5.9: Minimum number of Raspberry-Pis detected per route using 1dBi,
1.5dBi and 5dBi antennas

Table 5-B: Summary of Beacon Range
Number of Raspberry-

Pis detecting beacon 
Number of Routes 

1 dBi 1.5 dBi 5 dBi 
4 0 0 13 
3 12 13 5 
2 3 3 6 
1 9 8 0 

	

while using the 5 dBi antennas.

5.5 Chapter Summary and Discussion

There are very few indoor positioning systems specially designed to cater to a

domestic environment. In this chapter, a modified inverse procedure of RF finger-

printing was designed and implemented using a beacon that uses a trajectory-based

radio map model for location estimation. The main focus was on analyzing some

of the hardware and external factors that influence the positioning performance of

the beacon fingerprinting method.

A direct comparison was made for a selected number of paths by using different
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interchangeable receiver antennas to assess the impact of antenna gain on the

position of the correct route in the resulting rankings. It was found that an increase

in antenna gain improves the range of the Raspberry-Pi receivers such that they

can detect the beacon from a further distance. Consequently, it was proved that

the performance of the fingerprinting system improved with the increase in the

number of receivers detecting the beacon, and not with the increase in route length.

Experimental results also suggest that the number of receivers deployed in the

test environment have a strong influence on the localization performance. This

was confirmed by removing a single Raspberry-Pi from the system and even with

an increased antenna gain, the performance of the fingerprinting technique was

found to deteriorate. Furthermore, it was observed that the electrical interference

resulting from the washing machine motor had an undesirable effect on the beacon

signal.

From the analysis done, it was observed that a majority of routes passing

through the narrow hallway area performed poorly with higher gain antennas in

comparison with lower gain antennas. In particular, Routes 3 and 12 (Bedroom

door to kitchen fridge – forward and reverse routes), Routes 9 and 20 (Dining

table to cooker – forward and reverse routes) showed reduced performance with

5dBi antennas throughout this study. Some of the possible reasons for such poor

results are discussed here. Firstly on closer observation, it was realized that the

number of receivers detected for the routes passing through the hallway were either

2 or 3 even when higher gain 5dBi antennas were used (Refer Figure ). Secondly

the presence of thick walls in the narrow hallway is prone to beacon signal degra-

dation resulting in poorer signal quality. Thirdly, importance was not given to

the antenna radiation patterns in this study. Typically, higher gain omnidirec-

tional antennas will provide a doughnut shaped radiation pattern compared to a
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lower dBi antenna, which will provide more of a round shaped signal pattern. It is

possible that majority of the receiver’s antenna gain was lost when the doughnut

shaped coverage pattern of the 5dBi antennas was not directed correctly making

the signal reflection or interference stronger between the two walls in the hallway.

In the case of the lower gain 1dBi antennas, this would not be much of an issue as

the signal quality is slightly better for a shorter radius with better signal projection

also in the vertical plane. The use of low-gain antennas for such spaces may help

in negating the effects ensuing in the narrow hallway area.

The study was carried out to assess whether increased antenna gain improves

the ranking accuracy of the BLE fingerprinting system previously developed in

Chapter 3. The analysis done in this chapter will help in planning the setup

and choosing the number of equipment required for a given area. Integrating

localization and ambient sensor systems provide a significant boost to activity

recognition results and can help bring down the deployment cost by using minimal

sensor equipment. Future work will investigate if using a combination of high

and low gain antennas in the flat will improve the performance across narrow

hallways and look for possible solutions to combat the effect of RF interference.

Another important research topic is the optimal placement and orientation of the

receivers and the impact of certain building properties such as wall thickness on

the localization accuracy.

Until now, Chapters 3, 4 and 5 provided details regarding the proposed indoor

positioning system for recognition of micro-activities and walking routes. The

next Chapter implements a knowledge engineering based system which combines

ontologies and Markov Logic Networks for recognition of complex activities.



Chapter 6

Recognition of Complex Activities

using Stream Reasoning and

Probabilistic Inference

Knowledge-based approaches are often too brittle to handle the uncertainty and

noise present in an incoming sensor stream. Statistical Artificial Intelligence (AI)

uses probabilistic representations such as probabilistic graphical models to capture

uncertainty. This chapter aims to investigate probabilistic stream reasoning using

ontology for continuous recognition of complex activities. In the first sections of

the chapter, the theoretical foundations of Stream Reasoning and Markov Logic

Networks (MLN) are presented followed by a review of the related work. Sections

6.4 to 6.6 provide details regarding the design of the developed model, experimental

setup and performance evaluation respectively. The chapter concludes with a short

summary and critical analysis of the developed model.

129
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6.1 Background and Definitions

6.1.1 Introduction to Stream-Reasoning

The Stream Reasoning framework provides the abstractions, foundations, meth-

ods, and tools required to integrate data streams and reasoning systems [140].

Data streams are unbounded sequences of time-varying data elements that form a

continuous flow of information. Traditional activity recognition approaches have

well defined boundaries for reasoning tasks indicating when it has to perform infer-

ence and when the results need to be delivered. Whereas stream reasoning adopts

a continuous model where incoming incremental data is evaluated and reasoned

against static knowledge base. However, little work has been done with usage of

stream reasoning with probabilistic reasoning techniques. There has been ongoing

research on stream reasoning and its suitability for various domains owing to the

unbounded incremental time-varying nature of real time data and the requirement

for continuous inference against this constant flow of information. In recent years,

different frameworks for stream reasoning such as C-SPARQL, SPARQLstream,

Continuous Query Evaluation over Linked Stream (CQELS) have been introduced

[141], [142], [143], [144]. In this study, Continuous SPARQL (C-SPARQL) is used

to run continuous queries over Resource Description Framework(RDF) graphs and

RDF streams. Building a prototype for activity recognition becomes effortless

by incorporating it into a stream-reasoning framework such as C-SPARQL. Fur-

thermore, the ability of deriving sensor-activity relations and other corresponding

inter-relations from static knowledge bases for inference is an added bonus. In the

semantic web context, data is usually modeled according to RDF [145]. C-SPARQL

engine is an extension of SPARQL 1.1 and processes incoming sensor data in the
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form of RDF triples comprising a subject → predicate → object relationship.

The ordered sequence of a sensor stream and their respective timestamps is of

the following format:

(< subji, predi, obji >, Ti)

(< subji+1, predi+1, obji+1 >, Ti+1)

,where (Ti ≤ Ti+1) are monotonically non-decreasing timestamps accompanying

the sensor stream.

Some notable advantages of using the C-SPARQL engine architecture are pre-

sented.

6.1.1.1 Advantages of C-SPARQL Engine Architecture

1. Simple, modular architecture: The engine serves as a middleware for

runtime management of RDF streams, C-SPARQL query and as a result

listener. The queries are evaluated with high throughput and low latency.

2. Support for Background RDF graph access: This is made possible as

C-SPARQL has the ability to query for results by merging information from

data streams with static ontology knowledge bases.

3. Reasoning on massive heterogeneous data with multiple queries:

C-SPARQL also supports parallel processing of sensor streams emerging from

different heterogeneous sources [142]. Multiple queries can be registered to
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reason on either the same or in a different RDF stream. In this research

study, two different queries are processed simultaneously on the incoming

sensor stream that may have different sets of RDF triple information for

every sensor event triggered.

6.1.2 Probabilistic Reasoning with Markov Logic networks

Markov Logic Networks (MLN) are statistical relational models that combine

Markov networks with first-order logic (FOL). By unifying FOL and probabilistic

graphical models into a single representation, MLN is able to handle complexity

and uncertainty of the real world [146]. A FOL knowledge base such as an ontology

can be seen as a set of hard constraints on a set of possible worlds. The basic idea

in Markov logic is to soften these constraints by associating weights with FOL

formulas, which reflects the importance of the constraint. These weights imply

that violating a formula makes it less probable, but not impossible. MLN can

be viewed as a template for constructing ground Markov networks and are repre-

sented as log-linear models [146]. The formal definition of a Markov Logic Network

L is given by a set of pairs < Fi, wi > ,where Fi is a formula in FOL and wi is

a real-valued weight. Together with a finite set of constants C = c1, c2, . . . , c|C|,

it defines a Markov network ML,C . The ground Markov Network ML,C specifies a

probability distribution over a set of possible worlds (X) given by Equation 6.1

and 6.2.

P (world) ∝ e
∑
weights−of−formulas−it−satisfies (6.1)
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P (x) =
1

Z
exp(

∑
i

wini(x)) (6.2)

,where ni(x) is the number of true groundings of FOL formula Fi in world x

and Z is a normalisation constant.

6.2 Related Work

6.2.1 Ontology based activity recognition with uncertainty

Semantic knowledge has been successfully used to support activity recognition by

integrating different contextual attributes in a number of research studies. How-

ever these methods do not take into consideration the uncertainty involved in

activity prediction. Probabilistic models such as MLN and Bayesian Networks

can be used to handle uncertainty. PR-OWL provides a means for representing

uncertainty in ontologies using Bayesian probabilities [147]. It is based on Multi

Entity Bayesian Network (MEBN) and uses the UnBBayes framework to execute

probabilistic inference over the domain ontology.

MLNs that combine probabilistic and logical reasoning along with ontologi-

cal reasoning have been used in few AAL projects to better handle uncertainty

and contradictory knowledge. For instance, Riboni et al. adopt an unsupervised

method for recognition of interleaved activities using ontological and probabilis-

tic reasoning [72]. Semantic correlations among sensor events and activities are

derived through ontological reasoning to form a prior probability matrix. A sta-

tistical reasoner is then used to match the incoming sensor events with semantic

correlations and provides an initial hypothesis of the occurred activity. This is
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further refined through probabilistic reasoning with a MLN model exploiting con-

straints derived from the ontology. The same framework is extended in [148] to

include collaborative active learning to discover new semantic correlations and to

improve the recognition rate. The work by Gayathri et al. also augments ontology

based activity recognition with probabilistic reasoning through MLN [71]. The

constructed domain ontology is transformed to its FOL equivalent using a trans-

formation tool and weights for the MLN model are learned from the ABox of the

developed ontology by employing weight learning algorithms.

The authors of [149] create a classification model for recognizing ADLs from

acoustic information by combining logic formal representation through ontologies

with probabilistic inference using MLN. Sensor outputs are statistically processed

before generating evidence data for MLN. However, their design does not support

temporal data reasoning and recognition of interleaved activities. Vision-based

activity recognition systems have also used MLN for recognizing simple and com-

plex activities where the weights are learnt from corresponding ontology axioms

[150].

6.2.2 Other Studies Employing Probabilistic Logic Models

for ADL Recognition

Another method closely related to MLN is ProbLog and the study conducted in

[151] investigates the connection between them. The authors of [152] use ProbLog

to define probabilistic facts and rules and infer activities. The probability values in

ProbLog are manually assigned or mined from a dataset. By performing marginal

inference, the authors claim that they were able to efficiently recognize ADLs in

an online fashion with an F-measure of 83%.
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Online inference is vital in certain scenarios where clinical decision-making sys-

tems need to be aware of current user needs. The authors of [153] use MLN for

online activity recognition to provide responsive information from domotic sensors

throughout the day. For this purpose, they tested the responsiveness of different

MLN inference engines such as Alchemy, Tuffy and ProbCog, out of which Alchemy

seemed to have the best response time, as the engine relies on a compiled code. In

this thesis, the open-source Alchemy tool is also the chosen as the MLN engine for

performing weight learning and inference.

6.2.3 Stream Reasoning for Activity Recognition

Stream reasoning has been used for real time monitoring and analysis for a wide

range of applications [154], [155], [156], [157]. In their study, the authors of [158]

carry out mobile activity recognition by applying a hybrid model using machine

learning algorithms and ontology based stream reasoning techniques. Composite

activities using accelerometer and GPS data from mobile devices were inferred

through use of C-SPARQL queries and rich background knowledge represented in

the form of ontologies. When compared to their approach, probabilistic reason-

ing with MLN has been used in this research study along with stream reasoning

framework to deal well with ambiguity when recognizing activities.

6.3 Main Contributions of this Chapter

The main contributions of this chapter include:
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1. Incorporating C-SPARQL as a stream-reasoning engine to process continuous

incoming sensor data against a static ontology modeled using the available

domain knowledge.

2. Overcoming the drawbacks of pure deductive reasoning by handling uncer-

tainty using Markov Logic networks built and trained using the existing

ontology.

3. Recognising complex activities carried out in an interwoven manner in real

time using an unsupervised approach.

4. Integration of stream reasoning framework with probabilistic semantic-knowledge

based reasoning.

6.4 Model and System Overview

Figure 6.1 represents the high-level architecture of the proposed ontology-based

probabilistic stream-reasoning framework. The design constitutes three main units:

Knowledge Representation Layer, C-SPARQL Stream Reasoning module and Markov

Logic Networks (MLN) module. The recognised activity is forwarded to the

decision-making system designed to meet the requirements of the smart-home

application. Some example use-cases of the decision-making system include alert-

ing the caregiver incase of any abnormality, sending out an alert in the form of a

voice message or to initiate automation based on the inferred activity.
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Figure 6.1: Architecture of Proposed System

6.4.1 Knowledge Representation Layer

The Semantic Web Ontology Language (OWL) is designed for use by a number

of applications that requires representation of rich and complex knowledge for any

domain and is the preferred language for authoring ontologies [159]. Ontologies are

useful in representing the domain knowledge in the form of named individuals, its

relevant classes and the relationships between them using object and data prop-

erties. Several activity recognition systems that use knowledge-driven techniques

use ontologies as the basis to represent the relevant domain knowledge [65],[52].

A number of smart home domain specific ontologies are present for modelling

the data [160]. They can help reduce the knowledge engineering effort by reusing

the existing ontologies. The ontology used in this study is an extension of the
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Figure 6.2: Activity Ontology Model

COSAR ontology [53] since it has all the necessary attributes required to model

any smart home activity recognition system. It has been customised to suit the

proposed design by extending it with few other classes, artifacts and data properties

such as hasStartTime, hasEndTime and numericPosition. The same ontology was

used for modelling both the smart home public datasets in this study.

The ontology is populated with statements that are a combination of terminolo-

gies (TBox) and assertions (ABox). The TBox statements describe definitions of

concepts (classes), sub-concepts and properties that establish the structural rela-

tionships between them. The ABox contains individuals, which are instantiated
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from TBox concepts. Figure 6.2 shows the activity ontology model used in this

study highlighting the classes, sub-classes and the relevant object and data proper-

ties (TBox). The ABox of the activity ontology is populated with instances of the

defined sensors, location and activities. The mapping of sensor events with their

relevant activities is done using the information gained through the interaction

of item, door or water sensors attached to the participating objects for a given

activity. The motion sensors were mapped to appropriate activities when there is

an overlap in their location of installation with the location where the activities

are primarily carried out. All object sensors (item, door and water sensors) are

considered as necessary sensors as their change in status are strong indicators of

the performed activity.

6.4.2 C-SPARQL Stream Reasoning module

The incoming raw sensor feed is parsed and converted to a stream of RDF triples,

which will serve as the input for the stream-reasoning module. The RDF stream

and the C-SPARQL queries are registered initially in the C-SPARQL engine. The

queries are formulated in the C-SPARQL engine according to the requirement

that is needed by the system. The engine is now ready to receive the stream of

RDF quadruples and execute queries using the defined domain ontology as per the

time window size mentioned in each C-SPARQL query. Two different queries are

considered in this study – Time Query and Activity Query.

6.4.2.1 Time Query

The time query has been developed to compute the start and end time of individual

sensor events observed for a given fixed time interval mentioned in the registered
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Figure 6.3: Queries executed in the C-SPARQL engine - C-SPARQL Time Query

query. An example of the developed time query used in this study is provided in

Figure 6.3. The start and end times of the observed events are extracted based

on the sensor ON and OFF notifications respectively. In this query, the RANGE

120s STEP 5s refers to the length of the time window as 120s that is progressively

advanced by a step size of 5s. The resulting variable bindings in the C-SPARQL

query expire as soon as the query is recomputed for the next window.

6.4.2.2 Activity Query

The activity query makes use of the RDF stream data as well as the static knowl-

edge represented in the domain ontology to detect the respective activities, loca-

tion and attached objects mapped to the observed sensor event. Furthermore, it is
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possible to narrow down on the possible activities taking place in the current time

window based on the sensor-activity correlations described in the ontology. Object

properties, data properties and annotation properties are utilized in this context

to retrieve the required results. Various cases are considered to filter the results

and eliminate the activities that are unlikely to have taken place. The first case

considers the scenario when multiple object sensors such as item, door or water

sensors are mapped to the same activity in the domain ontology. The second case

considers the scenario when a motion and an object sensor are observed together

in the same window. In the third case when two motion sensors are triggered

together, all possible activities mapped to the motion sensors are retrieved from

the ontology even if the observed events are mapped to the same activity in the

ontology. This is because motion sensors are triggered frequently within a smart

home and are often linked to multiple activities taking place in close proximity to

where they are installed. They are also unreliable when compared to the object

sensors and therefore are more likely to generate false positive events. It is left to

the MLN module to pick the most probable activity when motion sensor events

are observed alone and when they are not accompanied with other object sensors

that are part of the same activity instance. There are also several instances where

C-SPARQL query is incapable to detect the plausible activity when a lone sen-

sor event that is part of multiple activities is observed in a time window. These

types of happenings are observed often in real time when a time window contains

an incomplete set of sensor event information. The MLN module best handles

such situations to predict the most probable activity. A snapshot of the developed

C-SPARQL activity query is shown in Figure 6.4.
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Figure 6.4: Queries executed in the C-SPARQL engine - Activity Query

6.4.3 Markov Logic Networks (MLN) Module

The registered C-SPARQL queries are executed continuously on the RDF sensor

stream resulting in continuous flow of information to the MLN module. The process

of construction of MLN template from the activity ontology, weight learning of the
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first-order clauses and the use of MLN inference algorithms are described below.

6.4.3.1 Construction of MLN model for ADL recognition

The classes and predicate definitions that form the TBox in the activity ontology

are translated into theirs corresponding first order equivalent. Consider the fol-

lowing examples:

Example 1:

Classes in activity ontology: sensor, adl, simplead

FOL equivalent for the classes: simpleadl(a) ⇒ adl(a)

The FOL statement defines the subclass relationship between classes simpleadl

and adl derived from the activity ontology.

Example 2:

Object Properties in activity ontology: usedFor, necessarySensorFor

FOL equivalent of object-properties with their associated classes as

domain and range:

necessarySensorFor(s,a) ⇒ simpleadl(a)

necessarySensorFor(s,a) ⇒ sensor(s)

usedFor(s,a) ⇒ simpleadl(a)

usedFor(s,a) ⇒ sensor(s)

The variables in the MLN template will be replaced by constants of their respec-

tive defined classes during the weight learning and inference operations. In the

above example, the variables s and a will hold the instance values of classes of
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type sensor and activity respectively. Additional formulas may be added using

the defined classes and predicates. The following rule is formulated in order to

correctly map the sensor events to their respective activities if multiple activities

occur in the same window.

Rule 1:

sensor(s1) ∧ *sensor(s2) ∧ usedFor(s1,a) ∧ *usedFor(s2,a) ∧ *necessary-

SensorFor(s1,a) ∧ *necessarySensorFor(s2,a) ∧ (s1 6= s2)⇒ simpleadl(a)

The weights for this rule are learned from the first-order equivalent of the ontol-

ogy’s ABox using a weight-learning algorithm1 that is discussed in the next section.

When the activities are carried out in an interwoven manner, it is important to

find the temporal boundaries for each activity occurring in a time window. This is

deduced using the below MLN formula and are considered to be hard constraints

which have infinite weight value. A world that violates a hard constraint has zero

probability.

Rule 2 - Start Time Calculation for each activity:

sensor(s1) ∧ hasStartTime(s1,t1) ∧ hasEndTime(s1,t2) ∧ sensor(s2)

∧ hasStartTime(s2,t3) ∧ hasEndTime(s2,t4) ∧ usedFor(s1,a) ∧

usedFor(s2,a) ∧ (t1 ≤ t3) ∧ (s1 6= s2) ∧ (t2 6= 0) ∧ (t4 6= 0) ⇒

activitystarttime(a,t1).

1When predicates in a formula are preceded by *, the MLN weight learning process considers
all possible ways in which * can be replaced by !. For more details refer to https://alchemy.

cs.washington.edu/user-manual/4_2MLN_Syntax.html

 https://alchemy.cs.washington.edu/user-manual/4_2MLN_Syntax.html
 https://alchemy.cs.washington.edu/user-manual/4_2MLN_Syntax.html
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Rule 3 - End Time Calculation for each activity:

sensor(s1) ∧ hasStartTime(s1,t1) ∧ hasEndTime(s1,t2) ∧ sensor(s2)

∧ hasStartTime(s2,t3) ∧ hasEndTime(s2,t4) ∧ usedFor(s1,a) ∧

usedFor(s2,a) ∧ (t4 ≥ t2) ∧ (s1 6= s2) ∧ (t2 6= 0) ∧ (t4 6= 0) ⇒

activityendtime(a,t4).

In the above rules, t1,t2 and t3,t4 are variables used to denote start and end

times of sensor variables s1 and s2 respectively.

6.4.3.2 Weight Learning in MLN

The MLN, which acts as a template for constructing a Markov network, is a set of

weighted first-order formulas or clauses. With the use of clause weights, probabil-

ity of occurrence can be defined, thus providing additional tolerance to the logic

formulas. Weights can be assigned manually or learned automatically from data.

There are various weight learning algorithms that can assign weights to different

combinations of attributes for each formula based on the observed training data.

The training data must contain the truth values of a number of ground atoms

for efficient weight learning. Any ground atoms that are not part of the training

database are assumed to be false. The clause weights were learned generatively

using a pseudo-log likelihood algorithm where the goal is to learn a joint probabil-

ity distribution over all atoms [161]. For this study, sensor-activity, sensor-object

and sensor-location mappings described in the ABox of activity ontology were

used to learn the weights of the first order clauses. This type of unsupervised

approach eliminates the need for any additional training data to learn the weights

and employing such weight learning algorithms makes the whole learning process

undemanding.
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Figure 6.5: Ontology modelled using Protégé

6.4.3.3 MLN as Inference Engine

With the learned MLN model, the queries can be answered by performing infer-

ence on them. The standard Markov Network inference methods such as Markov

Chain Monte Carlo (MCMC) can be used on the instantiated network. MC-SAT

which is essentially a slice sampling MCMC inference algorithm is designed to deal

efficiently with probabilistic and deterministic dependencies. It is used along with

a satisfiability solver (MaxWalksat) to sample from the slice [162].
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Algorithm 4 Implementation of Stream Reasoning with MLN

Inputs: SE ← Continuous Sensor Event Sequence < SEi, ....SEn >(1≤ i ≤ n),
OntADL ← Domain Activity Ontology, MLNweighted ← Input MLN File of
weighted FOL formulas

Output: ADLpredicted ← Activities predicted by the MLN module with their
respective probabilities

1: for each TimeWindow do
2: SEistart , SEiend

← Execute TimeQuery //Calculate Start and End time of
observed SE

3: MLNtimeSEi
← SEistart , SEiend

//Translation to MLN Predicate format
4: MLNevidence ← MLNtimeSEi

5: SEiobj , SEiloc , SEiactivity ← Execute ActivityQuery //Infer Attached Object,
Location and Relevant activities for observed SE from OntADL

6: MLNactivitySEi
← SEiobj , SEiloc , SEiactivity //Translation to MLN Predicate

format
7: MLNevidence ← MLNactivitySEi

8: ADLpredicted ← MLNweighted, MLNevidence //Perform MLN Inference
9: return ADLpredicted
10: end for

6.4.3.4 Hardware and Software Requirements

The C-SPARQL engine with MLN framework was hosted in a system with 1.6 GHz

Intel Core i5 processor and 4GB RAM. The activity ontology was implemented

using the open source Protégé tool [163] and the conversion of OWL concepts

and object properties into their respective unary and binary FOL predicates were

performed using an existing transformation tool called Incerto [164]. Figure 6.5

illustrates the TBox and ABox of the developed ontology using Protégé. The

transformed model was then used as input to the Alchemy system, which is also

an open-source tool [165]. The formulae are automatically translated into clausal

form before grounding. The Alchemy package provides the necessary algorithms for

statistical relational learning and probabilistic logic inference based on the Markov

logic representation.
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6.5 Implementation of Stream Reasoning with

MLN

Algorithm 4 shows the steps involved in the implementation of the Stream rea-

soning with the MLN framework. A running example illustrating the resulting

output at various stages of the proposed system is also presented. Figure 6.6(a)

shows a fragment of the incoming continuous sensor feed from the smart home.

The sensor feed is embedded with information regarding the status of the sensor

events along with its associated timestamp. The stream reasoner executes the

C-SPARQL Time Query and Activity Query simultaneously for the defined time

window and extracts the results using the activity ontology. The output of C-

SPARQL queries are translated into their corresponding predicate formats with

embedded constant values that are recognized by the MLN processor as shown in

Figure 6.6(b). These constant values are the observed sensor events and their

associated locations, activities and time intervals derived from the initial hypoth-

esis of executing the ontology-based C-SPARQL queries. The C-SPARQL results

form the evidence database, which will be used by the MLN inference engine. The

generated evidence for each time window along with the already defined weighted

MLN template are used to perform online inference to determine the most prob-

able activity. Figure 6.6(c) displays the MLN inference results for the observed

sensor events in Figure 6.6(a) using the evidence file as test data (Figure 6.6(b)).

From the figure, it can be seen that WatchDVD and ChooseOutfit are the inferred

activities with their respective marginal probabilities for that particular time win-

dow. Their respective start and end times are also inferred using the defined hard

constraint MLN formulas described in Section 6.3.3.1.
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(a)

(b) (c)

Figure 6.6: Running Example of Proposed Stream Reasoning with MLN Frame-
work (a) Excerpt of Incoming Continuous Sensor Feed (b) Output of C-SPARQL
Time Query and Activity Query (c) MLN Inference Results
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6.6 Experimental Analysis

Experimental results of the described probabilistic stream reasoning architecture

with two public datasets and a comparative analysis against other state-of-the-art

approaches are presented in this section.

6.6.1 Dataset Description

The WSU CASAS smart home dataset [166] and Kasteren House-B dataset [1] is

used for experimental analysis in this study.

6.6.1.1 WSU CASAS smart home dataset

The layout of the WSU CASAS smart home along with the placement of the

respective sensors is illustrated in Figure 6.7. The dataset represents 21 partic-

ipants performing eight different ADLs in an apartment namely: Fill Medication

Dispenser (ADL1), Watch DVD (ADL2), Water Plants (ADL3), Answer the Phone

(ADL4), Prepare Birthday Card (ADL5), Prepare Soup (ADL6), Clean (ADL7)

and Choose Outfit (ADL8). During data collection, only one person was present

in the smart home. The participants were asked to perform the activities sepa-

rately and they were recorded in individual files. Later, data were recorded when

they were asked to perform the entire set of eight activities again in any order,

interweaving or in parallel, if desired. The latter set of data files were chosen to

perform the evaluation as it closely reflects the real-world setting in a home envi-

ronment where the occupant performs activities in an interwoven fashion and in

no particular time or order.
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Figure 6.7: Sensor Layout of WSU CASAS smart home dataset (indicated by
motion (M), temperature (T), door (D), water (AD) and item used(I). Adopted
from [166]

A total of 70 sensors were used to record the sensor events in the CASAS ADL

dataset. But only 25 sensors2 were considered in this study that gathered data

about movement, use of water, interaction with items, doors, cabinets and phone.

The sensors used to collect observations were chosen because they were highly

correlated with a specific activity taking place.

2Selected sensors from the dataset are AD1-B, AD1-C, D07, D08, D09, D10, D11, D12, I01,
I02, I03, I04, I05, I06, I07, I08, I09, M02, M03, M04, M05, M13, M23, M24, P01.
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Figure 6.8: Floor Plan of Kasteren smart home B dataset with sensor locations.
Adopted from [1]

6.6.1.2 Kasteren House-B dataset

The floor plan with the sensor layout of Kasteren house-B is shown in Figure

6.8. Thirteen different ADL’s were carried out by a single person aged 28 for

fourteen days in a two-bedroom apartment. The ADL’s performed were: Brush

Teeth (ADL1), Eat Brunch(ADL2), Eat Dinner (ADL3), Get Dressed (ADL4),

Get Drink (ADL5), Go To Bed (ADL6), Leave House (ADL7), Others (ADL8),

Prepare Brunch (ADL9), Prepare Dinner (ADL10), Take Shower (ADL11), Use

Toilet (ADL12), Wash Dishes (ADL13). Others class consists of all other activities
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that are not part of the listed ADL’s. The annotation of this public dataset was

done manually by the resident by recording the readings in a personal diary.

Twenty three heterogeneous binary sensors such as pressure mats, mercury

contacts, passive infrared-PIR, float sensors and reed switches were used to collect

sensor data in the house. For this study, PIR sensor readings were not considered

as the sensor firings were common to many activities and was not particularly

useful in ADL prediction.

6.6.2 MLN Rules based on Domain Knowledge

Additional MLN rules were formulated based on common-sense knowledge for a

given smart home domain. Temporal knowledge was used as the basis to distin-

guish between various activities when they share the same set of sensors between

them. Following are some example MLN rules that provide additional information

regarding the occurrence of a specific ADL for a given set of observed contextual

attributes.

Example 3: In the CASAS smart home dataset, cabinet sensor D11 and a set of

motion sensors installed in the living room are highly correlated to ADL7 Clean and

ADL3 Water Plants. Therefore Rule 4 and Rule 5 help in distinguishing between

the two activities during the MLN inference process even when an incomplete set

of sensor events are observed. Rule 4 states that the motion sensors for Clean

ADL in the living room are activated only after removal of cleaning supplies from

kitchen supply closet and Rule 5 states that watering can is retrieved after opening

of the supply closet followed by filling it with water.
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Rule 4:

hasStartTime(D11,d11st) ∧ hasStartTime(s,sst) ∧

greaterThan(sst,d11st) ∧ usedFor(D11,a) ∧ usedFor(s,a) ∧ locate-

dIn(s,l) ∧ livingroom(l) ∧ clean(a) ⇒ simpleadl(a)

Rule 5:

hasStartTime(D11,d11st) ∧ hasStartTime(AD1-B,ad1bst)

∧ hasStartTime(AD1-C,ad1cst) ∧ hasStartTime(s,sst) ∧

greaterThan(ad1bst,d11st) ∧ greaterThan(ad1cst,d11st) ∧

greaterThan(sst,d11st) ∧ usedFor(D11,a) ∧ usedFor(AD1-B,a) ∧

usedFor(AD1-C,a) ∧ usedFor(s,a) ∧ locatedIn(s,l) ∧ livingroom(l)

∧ necessarySensorFor(D11,a) ∧ necessarySensorFor(AD1-B,a) ∧

necessarySensorFor(AD1-C,a) ∧ !preparesoup(a) ∧ waterplants(a) ⇒

simpleadl(a)

Similarly Rule 6 states that the necessary cooking supplies for preparing soup

are retrieved from the kitchen cupboard followed by filling the bowl with water.

This rule helps in distinguishing between WaterPlants and Prepare Soup ADLs.

Rule 6:

hasStartTime(D07,d07st) ∧ hasStartTime(AD1-B,ad1bst) ∧

hasStartTime(AD1-C,ad1cst) ∧ greaterThan(ad1bst,d07st) ∧

greaterThan(ad1cst,d07st) ∧ usedFor(D07,a) ∧ usedFor(AD1-

B,a) ∧ usedFor(AD1-C,a) ∧ necessarySensorFor(D07,a) ∧

necessarySensorFor(AD1-B,a) ∧ necessarySensorFor(AD1-C,a) ∧

preparesoup(a) ∧ !waterplants(a) ⇒ simpleadl(a)
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Example 4: In Kasteren house-B dataset, Prepare Brunch (ADL9) and Pre-

pare Dinner (ADL10) share a majority of the same set of sensors in the kitchen

area. In order to differentiate between these activities, Rule 7 is added to check

if the start time of the associated kitchen sensors is observed in the daytime or in

the evening time. The daytime and evening time are preset constant values (in

unix epoch time format), which is updated automatically every 24 hours. They

are denoted by the constants dt and nt respectively in Rule 7.

Rule 7:

cupboardplates(cp) ∧ usedFor(cp,a) ∧ hasStartTime(cp,cpst) ∧

fridge(fr) ∧ usedFor(fr,a) ∧ hasStartTime(fr,frst) ∧ microwave(mw) ∧

usedFor(mw,a) ∧ hasStartTime(mw,mwst) ∧ stovelid(sl) ∧ usedFor(sl,a)

∧ hasStartTime(sl,slst) ∧ toaster(to) ∧ necessarySensorFor(to,a) ∧

hasStartTime(to,tost) ∧ greaterThan(cpst,nt) ∧ lessThan(cpst,dt)

∧ greaterThan(frst,nt) ∧ lessThan(frst,dt) ∧ greaterThan(mwst,nt)

∧ lessThan(mwst,dt) ∧ greaterThan(slst,nt) ∧ lessThan(slst,dt) ∧

greaterThan(tost,nt) ∧ lessThan(tost,dt) ∧ preparebrunch(a) ∧ !pre-

paredinner(a) ⇒ simpleadl(a)

Example 5: Another example rule from the Kasteren house-B dataset is listed

below. This is for the Brush Teeth (ADL1). Since Brush Teeth (ADL1) was asso-

ciated only with the bathroom door sensor in the dataset, a special rule was formu-

lated to distinguish from the Take Shower (ADL11) activity, which also shares the

same door sensor. It was observed that the home resident followed a daily routine

of getting dressed followed by brushing teeth activity. The brushing teeth activity

was also carried out after the resident returned back home (front door sensor was

activated). This pattern has been expressed in Rules 8 and 9 respectively and
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comes into play when Brush Teeth (ADL1) and Get Dressed (ADL4) or Brush

Teeth (ADL1) and Leave House (ADL7) activities occur together in the same time

window.

Rule 8:

toiletdoor(td) ∧ necessarySensorFor(td,a) ∧ hasStartTime(td,tdst)

∧ dresser(dr) ∧ necessarySensorFor(dr,a1) ∧ hasEndTime(dr,drst) ∧

greaterThan(tdst,drst) ∧ !takeshower(a) ∧ brushteeth(a)⇒ simpleadl(a)

Rule 9:

toiletdoor(td) ∧ necessarySensorFor(td,a) ∧ hasStartTime(td,tdst) ∧

frontdoor(fd) ∧ necessarySensorFor(fd,a1) ∧ hasEndTime(fd,fdst) ∧

greaterThan(tdst,fdst) ∧ !takeshower(a) ∧ brushteeth(a)⇒ simpleadl(a)

In this way, rules for other ADLs can be modeled to distinguish between ADLs

that share few or same set of sensors and to deal with situations when only partial

information of the participating sensors are observed in a given time window.

6.6.3 Selection of Time Window Size for C-SPARQL Query

Selecting an appropriate time window size for the incoming sensor streams in

a C-SPARQL query is one of the most important factors as it reflects on the

performance of the activity recognition system. Suitable time interval needs to

be selected such that it is not too small as it may hold incomplete set of sensor

sequences or not too large as the window may contain multiple activities with

overlapping sensor events.

Figures 6.9, 6.10, 6.11 illustrates the confusion matrices for all the eight activi-
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Figure 6.9: Confusion Matrix when sliding window = 60s for CASAS dataset
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Figure 6.10: Confusion Matrix when sliding window = 90s for CASAS dataset
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Figure 6.11: Confusion Matrix when sliding window = 120s for CASAS dataset

ties in the CASAS smart home dataset when the time window range was set to 60s,

90s and 120s respectively and Table 6-A shows the average F-measure comparison

for all the eight activities for these three time window ranges. The three ranges

for comparison were roughly chosen based on the least average duration taken by

the participants to complete an activity which was 90s [166]. The statistical sig-

nificance of the F-measure performance results for the three time windows under

consideration was tested using a Friedman’s test. This test helps in checking the

significance between the variables when comparing three or more matched groups.

Carrying out the test resulted in a small p-value of 0.0208 and Chi-square value

of 7.75 indicating that the change in time window affects the output of the ADL

recognition system.

A step size of 5s was considered in all the cases. It can be seen that the

developed system performs well when the time interval was selected as 120s as
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Table 6-A: Performance Comparison with Different Time Window Ranges for
CASAS Smart home dataset

more context information is accumulated to determine the current activity. Hence

the window size for the CASAS dataset for the remainder of the sections is 120s

with a step size of 5s.
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Figure 6.12: Confusion Matrix when sliding window = 60s for Kasteren House-B
dataset

The confusion plots for the Kasteren House-B dataset is shown in Figures 6.12,

6.13 and 6.14 when the time window range was set to 60s, 75s and 90s respec-

tively. Table 6-B shows the average F-measure comparison for all the thirteen
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Figure 6.13: Confusion Matrix when sliding window = 75s for Kasteren House-B
dataset
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Figure 6.14: Confusion Matrix when sliding window = 90s for Kasteren House-B
dataset
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Table 6-B: Performance Comparison with Different Time Window Ranges for
Kasteren House-B dataset

Time	window	Range	 Avg.	F-Measure	of	all	activity	labels	(%)	

60s	 85.75	

75s	 83.87	

90s	 81.56	

	

activities for the mentioned time window ranges. Similar to the CASAS dataset,

the decision to use these ranges for comparison was based on the minimum average

time duration to complete an activity which was 60s for this dataset [1]. Using

a step size of 20s with 60s sliding window gave the best results. Increasing the

window size to 75s and 90s leads to wrong predictions for certain activities which

share the same set of sensors.

In order to check the statistical significance of the results, a Friedman’s test

was carried out on the individual F-scores for the 3 time windows. The test results

had a chi-square value of 11.56 and a p-value of 0.0031 indicating the significance

of the change in time window parameter on the overall performance of the ADL

recognition system. The best performing window size of 60s is selected for rest of

the sections for Kasteren House-B dataset.

6.6.4 Performance Analysis of Proposed Method

Performance metrics such as precision, recall and F-measure were used in analysing

the performance of the proposed method. They are calculated using the formulas

below for each class label:
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Table 6-C: Precision, Recall and F-measure of Individual Activities of CASAS
Smart Home dataset

precision =
truepositives

truepositives+ falsepositives
(6.3)

recall =
truepositives

truepositives+ falsenegatives
(6.4)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(6.5)

6.6.4.1 CASAS Smart Home Dataset

Table 6-C shows the respective precision, recall and F-measures computed for

each ADL class of the CASAS smart home dataset. The experimental results

indicate that all the activities were well recognised. The activities Water Plants
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(ADL3 ) and Answer Phone (ADL4 ) had the lowest recognition rate amongst all

the considered ADLs. Low precision and high recall rate for Water Plants (ADL3 )

reflect that a sizeable portion of the predicted labels for ADLs - Clean (ADL7) and

Watch DVD (ADL2) were incorrectly classified as Water Plants (ADL3) as seen

in the confusion matrix of Figure 6.11. This can be attributed to the fact that

Water Plants (ADL3) are not characterised by a single sensor type. ADL2, ADL3

and ADL7 share the same set of motion sensors and primarily occur in the Living

room area. Similarly, Answer Phone (ADL4) is mainly confused with Prepare

Birthday Card (ADL5) (Refer to Figure 6.11). Both these activities share the

same movement sensor M13 and occur in the same location. Furthermore, there

were few instances where the main object sensor (phone sensor (P01 )) was not

recorded in the dataset when the participant was answering a call. These cases

are particularly hard to differentiate, as the triggering of phone sensor is a strong

indication of the performed activity. Classification errors for rest of the activities

were minor and acceptable for real-time activity recognition. Overall, the results

prove that the combination of C-SPARQL with MLN is suitable for any decision-

making system. MLN particularly handles uncertainty when dealing with cases

when sensor event patterns are incomplete or not clearly recognisable in a given

time window through use of weighted formulas.

6.6.4.2 Kasteren Smart Home-B Dataset

Table 6-D shows the respective precision, recall and F-measures computed for each

ADL class of the Kasteren smart home-B dataset. As per the results, Leave House

(ADL7) was classified correctly at all times and the activities Eat Brunch (ADL2),

Get Drink (ADL5) and Prepare Brunch (ADL9) had the lowest recognition rates.

Low precision and high recall rate for Prepare Brunch indicates that some of the
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Table 6-D: Precision, Recall and F-measure of Individual Activities of Kasteren
Home-B dataset

Activity	Label	 Precision		 Recall	 F-Measure	

ADL1	–	Brush	Teeth	 0.94	 0.69	 0.79	

ADL2	–	Eat	Brunch	 0.50	 0.31	 0.38	

ADL3	–	Eat	Dinner	 1	 0.83	 0.91	

ADL4	–	Get	Dressed	 0.95	 0.95	 0.95	

ADL5–	Get	Drink	 0.75	 0.96	 0.84	

ADL6–	Go	To	Bed	 0.97	 0.97	 0.97	

ADL7–	Leave	House	 1	 1	 1	

ADL8–	Others	 0.95	 0.95	 0.95	

ADL9–	Prepare	Brunch	 0.78	 0.90	 0.84	

ADL10-	Prepare	Dinner	 0.88	 0.75	 0.81	

ADL11-	Take	Shower	 0.96	 0.89	 0.92	

ADL12-	Use	Toilet	 0.90	 0.99	 0.94	

ADL13-	Wash	Dishes	 1	 0.75	 0.86	

Avg.		 0.89	 0.84	 0.86	

	

predictions for ADLs - Prepare Dinner (ADL10) and Eat brunch (ADL2) were

incorrectly classified as Prepare Brunch (ADL9) as seen in Figure 6.12. This

was mainly due to incorrect labeling of the ground truth for some parts of the

dataset. The dataset was wrongly annotated as Prepare Dinner in the morning

session, which led to the system recognising it as Prepare Brunch activity. Of all

the ADL’s, Eat Brunch activity had the worst precision and recall rate of 50%

and 31.2% respectively. One of the main reasons for such poor recognition rate

is due to the fact that it had no specific associated sensors to monitor the actual

activity taking place. However it was seen to have a link with the Piano sensor

and occurred after the Prepare Brunch ADL whenever the resident executed the



Chapter 6. Recognition of Complex Activities using Stream Reasoning and
Probabilistic Inference 165

eating activity. An MLN rule was therefore formulated to capture this pattern.

Due to its dependence on the preceding Prepare Brunch (ADL9), the recognition

rate of Eat Brunch activity took a toll whenever the system failed to detect ADL9

and was incorrectly classified in the Others class. From the Figure 6.12, it can

be seen that GetDrink activity was wrongly predicted few times instead of the

Prepare Brunch ADL leading to a low precision rate. The main reason for this

type of confusion is because both the activities share common sensors, common

location and tend to occur simultaneously with one another. Rest of the activities

were recognised with reasonable precision and recall rates proving the efficiency of

the proposed classifier model. The average F-measure score was found to be 86%.

6.6.5 Comparison of Proposed Method Using Supervised

and Unsupervised Methods of MLN Weight Learning

As explained in Section 6.4.3.2, weights for MLN clauses can be assigned manually

or learned from data by employing weight-learning algorithms. A performance

comparison was made when the weights for the MLN formulas were learned auto-

matically from the ABox of the ontology using an unsupervised approach against

a supervised approach where weights were assigned manually based on the fre-

quency of sensor event firings for each of the eight activities from the dataset.

Uncertainty of the sensor events was captured numerically from the dataset as a

number between 0 and 1. The CASAS dataset representing twenty-one participants

where each ADL was performed separately was considered for the evaluation of the

supervised weight learning. For instance I03 and I05 sensors were used 14 out of

21 times and 17 out of 21 times while performing ADL2 Watch DVD respectively.

Similarly, M02 sensor was fired for all the 21 times the activity Watch DVD was
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Figure 6.15: CASAS Smart Home Dataset: F-Measure Results for weights learned
from dataset and for weights learned from ontology

performed by different participants. Based on this information, weight values of

0.666, 0.809 and 1 were assigned to the corresponding participating sensors (I03,

I05, M02 ) for Watch DVD activity.

Example 4: Weight Assignment for ADL2 WatchDVD :

Rule 7:

0.666 tvshelfRightDVD(i03) ∧ locatedIn(i03,l) ∧ livingroom(l) ∧ neces-

sarySensorFor(i03,a) ∧ usedFor(i03,a) ∧ watchdvd(a) ⇒ simpleadl(a)

Rule 8:

0.809 tvshelfRightDVD(i05) ∧ locatedIn(i05,l) ∧ livingroom(l) ∧ neces-

sarySensorFor(i05,a) ∧ usedFor(i05,a) ∧ watchdvd(a) ⇒ simpleadl(a)
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Table 6-E: CASAS Smart Home Dataset: F-measure comparison of Proposed
Method Using Supervised and Unsupervised MLN Weight Learning Methods

Rule 9:

1.0 tvshelfMotion(m02) ∧ locatedIn(m02,l) ∧ livingroom(l) ∧ used-

For(m02,a) ∧ watchdvd(a) ⇒ simpleadl(a)

Besides the manual assignment of weights to rules, the additional MLN rules

formulated based on the domain knowledge (described in Section 6.6.2) were also

used for the supervised method. Using this approach, the F-measure results are

illustrated in Figure 6.15 and tabulated in Table 6-E. It can be deduced that

the supervised approach of MLN weight learning exhibits only marginally better

performance than the unsupervised approach. This confirms the effectiveness of

employing weight learning algorithms to learn the weights directly from the domain

ontology’s ABox.
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6.6.6 Performance Comparison with Other Approaches Using

CASAS Smart Home dataset
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Figure 6.16: Performance Comparison of the Proposed System to Other Related
Works for CASAS Smart Home dataset

The comparison of the proposed approach with other research works using the

same CASAS interwoven dataset is presented in Table 6-F and illustrated in

Figure 6.16. The techniques used in the selected research works for comparison

help in laying out a sound comparative analysis of the developed model as they

cover different approaches such as data-driven, knowledge-driven and hybrid mod-

els. The supervised HMM (time-shifted) statistical approach in [166] has the least

F-measure (70%). The knowledge-driven framework, iKnow uses OWL ontolo-

gies and a context-driven situation interpretation algorithm as the main building

blocks for ADL recognition [67]. The interpretation layer is implemented using

the SPARQL Inferencing Notation (SPIN). An average F-measure of 78% was

achieved using this approach. The study conducted in [152] employs ProbLog to

recognise complex ADLs in an online fashion achieving a F-measure of 83%. Table
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Table 6-F: F-Measure Performance Comparison with Other Approaches for CASAS
dataset

	

CASAS	

Activity	

Label	

HMM	

(time	

shifted)	

	

iKnow	

	

ProbLog		 Existing	Probabilistic	

Ontology	Using	MLN	

	

Proposed	

Stream	

Reasoning	

with	MLN	

Method	

Riboni	et	

al.		

Gayathri	

et	al.		

ADL1	 0.66	 0.78	 0.76	 0.85	 0.95	 0.97	

ADL2	 0.86	 0.80	 0.89	 0.81	 0.97	 0.93	

ADL3	 0.29	 0.80	 0.69	 0.72	 0.94	 0.83	

ADL4	 0.59	 0.54	 0.61	 0.72	 0.95	 0.88	

ADL5	 0.83	 0.81	 0.92	 0.81	 0.98	 0.91	

ADL6	 0.83	 0.78	 0.85	 0.88	 0.97	 0.97	

ADL7	 0.88	 0.82	 0.67	 0.57	 0.96	 0.92	

ADL8	 0.67	 0.90	 0.83	 0.88	 0.95	 0.98	

Average	F	-

Measure	

0.70	 0.78	 0.83	 0.78	 0.96	 0.92	

6-F and Figure 6.16 also shows the comparison of the proposed approach with

other existing studies integrating MLN with the represented domain ontology [72],

[71]. Similar to the two step approach described in this chapter, Riboni et al.

formulated an initial hypotheses of the ADLs using semantic correlations from the

ontology using a statistical reasoner which was later refined through probabilistic

reasoning by MLN [72]. Their method achieved a F-measure score of 78%. The

study by Gayathri et al. had the highest recognition performance for the CASAS

interwoven dataset with an average F-measure of 96%. Their study employs a

hybrid fixed interval and location based segmentation approach to segment con-

tinuous sensor events, which is then used by the MLN inference system. The
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structure of their MLN model is learned from the defined concepts, properties and

SWRL rules of the developed ontology. The authors employ a Leave-one-day-out

approach for evaluation of their model and make use of the training data modeled

in the ontology’s ABox to learn the corresponding weights for the MLN formu-

las. Whereas the proposed model in this Chapter uses an unsupervised approach

to learn weights of the MLN formulas using just the information gathered from

the sensor-activity, sensor-object and sensor-locations mappings outlined in the

ontology’s ABox. Overall, the proposed probabilistic stream reasoning framework

in this chapter performs well when compared to other approaches highlighted in

Table 6-F and is comparable to the performance of the study done in [71], thus

highlighting the ability of the developed system to effectively recognize activities

from complex sensor event patterns.

6.6.7 Performance Comparison with Other Approaches Using

Kasteren Smart Home-B dataset

The F-measure comparison of the proposed approach with other research works

using the same Kasteren Home-B dataset is presented in Table 6-G and illustrated

in Figure 6.17. The results from the works done in [59] and [167] that employ

data-driven approachs is compared against the proposed MLN model using the

same dataset. The authors of [59] use a hybrid model where Bi-directional long

short term memory (BiLSTM) is used for recognising concurrent activities and

Skip-chain conditional random field (SCCRF) model for recognition of interleaved

activities. The average F-measure was found to be 92% for interleaved activity

recognition and performs well for a majority of the individual activities than the

proposed MLN model, which has an average F-measure of 86%. ADL7, ADL8,
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Figure 6.17: Performance Comparison of the Proposed System to Other Related
Works for Kasteren Smart Home-B dataset

ADL12 and ADL13 had a better F-measure rate using the proposed method in

comparison with the BiLSTM-SCCRF approach. The other study [167] used a

two-layer HMM ADL prediction model to map the low-level sensor data with their

corresponding high-level activity. The first layer was used to retrieve the location

details of the observed sensor events and the second layer made use of the object

use information to make a prediction. An average F-measure score of 76% was

achieved through the two-layer HMM model. Both these studies require a sizeable

training database to train their respective models before engaging the model for

prediction on new data. The developed C-SPARQL-MLN model acts on unseen

new data without the requirement of a large training database.
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Table 6-G: F-Measure Performance Comparison with Other Approaches for
Kasteren-B dataset

Activity	

Label	

BiLSTM-SCRRF	

Approach	

Two-layer	HMM	

Approach	

Proposed	

Method	

ADL1	 0.92	 0.78	 0.79	

ADL2	 0.97	 0.74	 0.38	

ADL3	 0.93	 0.76	 0.91	

ADL4	 0.96	 0.84	 0.95	

ADL5	 0.95	 0.77	 0.84	

ADL6	 0.94	 0.82	 0.97	

ADL7	 0.89	 0.90	 1.00	

ADL8	 0.82	 0.45	 0.95	

ADL9	 0.91	 0.70	 0.84	

ADL10	 0.93	 0.71	 0.81	

ADL11	 0.95	 0.78	 0.92	

ADL12	 0.92	 0.78	 0.94	

ADL13	 0.93	 0.80	 0.86	

Average	F	

-Measure	

0.92	 0.76	 0.86	

	

6.6.8 Execution Time of Proposed Method on Streaming

Data

The computational time consumed by the proposed method for each time window

over the streaming sensor data is illustrated in Figure 6.18. For this experiment,

one of the participant’s data from the CASAS interwoven dataset was selected. The

C-SPARQL Activity and Time queries were set to RANGE = 120s with STEP size
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Figure 6.18: Plot of Computation Time for Each Sliding Window of the Proposed
System

5s. In this scenario, the average execution time for each time window required by

the proposed method to run over 892s of streaming sensor data was 2.95s. The

average execution time required by the Alchemy engine alone was 2.23s as much

of the computation is done in the MLN module. All experiments were performed

using a two-core CPU processor. From the figure, it can be deduced that there

are few cases where the model requires more computational effort to derive the

most likely activity. However, for the most part, the proposed method achieves an

acceptable response time and can be put to good use in real time decision-making

applications.

6.7 Chapter Summary and Discussion

Considering the need for real time systems in smart homes to process continuous

raw sensor data with high throughput and low latency, this study shows how to

leverage on Stream Reasoning using rich background information for ADL recogni-

tion. Furthermore, due to the constraint of semantic knowledge bases in handling
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uncertainty, the study combines probabilistic inference with stream reasoning for

complex activity recognition. The chapter demonstrates a hybrid model, which

takes advantage of a C-SPARQL engine as the stream reasoner and a competent

Markov Logic Network to distinguish between interwoven activities. The abil-

ity of C-SPARQL to query from static ontologies is put to good use by mapping

observed sensor events to possible activities; their zone of occurrence and corre-

sponding attached objects. C-SPARQL query is also used in deducing the start

and end time for a sensor event in every time window. These collective results

are used as input to the MLN engine to infer the most likely ADLs to have taken

place along with their respective start and end times. The ability to formulate

weighted rules based on the domain knowledge in MLN is an added bonus as it

aids in predicting the correct activity even in the presence of few participating

sensor events for that particular ADL in a time window.

The experimental results from Section 6.6 demonstrate that the proposed hybrid

model shows great potential for deployment in smart home applications, as the

model does not require use of extensive data for training the model. The devel-

oped model follows an unsupervised approach as the sensor-activity relations are

modeled mainly based on common sense knowledge of the participating objects in

the surrounding environment. Weight learning for the MLN model is also based

on these inter-relations defined in the ontology. An average F-measure of 92.35%

was obtained using the CASAS real-world dataset where twenty-one participants

perform activities in no specific order or time. For the Kasteren smart home-B

dataset, an average F-measure of 86% was obtained. The results are comparable

or better in most cases to other state-of-the-art data-driven, knowledge-driven and

hybrid techniques. Learning of MLN weights from ontology’s ABox also obtains

essentially the same performance when compared to the supervised approach of
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extracting weights from the CASAS dataset, thus validating the effectiveness of

employing weight-learning algorithms.

On the negative side, the proposed model terminates with identifying the start

and end times of inferred activities, and do not report the findings on which ADLs

are sequential, interleaved or concurrent in nature in real time. Allen’s temporal

relations can be applied as a post-processing step to work out the interaction

between the inferred activities with their respective start and end times as in [71].

It is also questionable on how the developed framework would fare in a multi-

user scenario as the real-world dataset used in this chapter is for a single-person

household. Besides, certain amount of knowledge engineering effort is also required

to design the ontology ABox and formulate additional MLN rules based on the

surrounding home environment. However this counts as minimal effort compared

to the work involved in gathering training data and annotating large sets of data

for validation as in the case of Chapters 4 and 5. Care has been taken to design

the system such that it follows an unsupervised approach and efficiently handles

streaming data without compromising on the prediction accuracy.

The next chapter concludes the research and discusses possible avenues for

future research.



Chapter 7

Conclusions and Future Work

In this chapter, the results obtained individually from the previous chapters are

summarized and assessed in relation to the research objectives set out earlier. The

chapter concludes by discussing the possible avenues for future research in the field

of activity recognition.

7.1 Summary of the Main Contributions

Smart home assistive systems are a great way to improve quality of living and

can be truly transformative for anyone with physical challenges. A great deal of

effort has been invested in many research studies to infer high-level activities from

low-level sensor data and obtain satisfactory recognition performance in ambient

assisted living systems. However, there are still few gaps and questions that need

to be addressed as highlighted in Chapter 1. The thesis aims to tackle these

challenges and suggest different methods that can be applied to solve an activity

recognition problem. The techniques described in this thesis are flexible and can

176
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be adapted to existing ADL monitoring systems for healthcare.

With respect to the research questions posed in Chapter 1, the thesis identifies

the following contributions:

1. In Chapter 4 of this thesis, a novel context-based location aware algorithm

for identification of low-level micro-activities is proposed that can be used to

derive complex ADLs performed by home-care patients. This is made pos-

sible by using a wearable beacon embedded with magnetometer and inertial

sensors. The shortcomings of beacon signal stability and mismatch issues

in magnetic field sequences are overcome by adopting a hybrid three-phase

approach for deducing the locus of micro-activities and their associated zones

in a smart home environment. The suggested approach is assessed in two

different test environments. In addition to recognition of low-level activi-

ties, the methods described in Chapter 4 also identifies the person’s walking

trajectory within the same zone or between different zones of the house.

Experimental results prove that it is feasible to obtain centimeter-level accu-

racy for recognition of micro-activities. A classification accuracy of 85%

was achieved for trajectory prediction. These results are encouraging and

imply that collection of accurate low-level information for ADL recognition

is possible through integration of inertial sensors, Magnetic Field and BLE

technologies from the wearable without relying on other infrastructural sen-

sors.

2. In Chapter 5 of this thesis, a study was conducted to infer if a reduced num-

ber of receivers equipped with higher gain antennas could provide improved
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BLE fingerprinting performance for the method described in Chapter 2. The

evaluation was performed in a standard domestic apartment with an activity

centric approach using a single wearable beacon and multiple receivers. A

rank based route selection algorithm was used as the basis to identify the

candidate positions or routes that indicates the most likely path of the sub-

ject. Furthermore, the chapter highlights the benefits of implementing the

inverse fingerprinting method with a trajectory based prediction model. The

chapter also discussed the effect of surrounding electrical interference on the

beacon signal. Experimental results indicate that an increased antenna gain

in addition to deploying an adequate number of receivers have a positive

effect on the overall ranking accuracy, thus contributing to better position-

ing performance.

3. Chapter 6 of this thesis concentrates on a different activity recognition prob-

lem when compared to Chapters 4 and 5. Chapter 6 tackles the issue of

handling uncertainty in knowledge-based semantic representation of activi-

ties by incorporating Markov Logic Networks (MLN), which is a statistical

relational learning approach. In the thesis, MLN makes use of the domain

knowledge from the ontology to form the first order rules and also learn

weights automatically using an unsupervised approach. The ability to for-

mulate weighted rules based on the domain knowledge helps in dealing with

the uncertainty involved in dynamic activity recognition to a great extent.

Necessary examples are provided as added proof and experimental analysis

is conducted to support the argument.

Besides tackling the problem of uncertainty in knowledge-based systems,
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Chapter 6 also presents an innovative approach for complex activity recogni-

tion by combining stream reasoning with probabilistic inference using MLN.

Both these methods use the underlying domain ontology for inference. C-

SPARQL provides the initial hypothesis from continuous sensor stream by

mapping the sensor events to their respective location, object and potential

activity instances using the defined ontology in addition to finding the start

and end times for each observed sensor event. The results of the C-SPARQL

engine are then used as input by the MLN module to infer the activities and

their corresponding time intervals for each temporal sliding window. Exten-

sive experiments with two real-world datasets prove that the performance

of the proposed model is comparable and in most cases better than other

state-of-the-art techniques. An average F-measure score of 92.35% and 86%

was achieved for recognition of interwoven activities using this method.

7.2 Future Work

This section outlines the potential future research directions that could be con-

ducted for the methods described in previous chapters of this thesis.

7.2.1 Depression Monitoring

The different ADL models developed in this thesis were carried out as part of a

larger project for monitoring depression patients at home. The predicted output

of the ADL system will be integrated with a suitable decision making system

that will be designed as per relevant clinical guidelines. This part of research
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will be carried out by amassing relevant information from a psychiatrist regarding

depression treatment, patterns of behaviour and setting of pertinent goals. Though

the models developed in Chapters 3 and 5 differ from each other, a combination

or certain aspects of both the models may be used in recognition of goals set by

the clinician.

7.2.2 Cognitive System for Delivering Prompts

The work done in this thesis could be extended for designing a cognitive system

that can help deliver relevant prompts to motivate and remind the person to carry

on with their daily activities.

7.2.3 Testing in Different Style Homes

The future research direction will concentrate on extending the proposed method-

ology in Chapter 3 for implementation in different types of home and testing with

individuals who belong to different age groups making use of the same training

database.

7.2.4 Active Learning

Devices such as amazon echo could be employed for active learning to handle

situations when the system is unable to take a decision as a result of contradictory

knowledge. The device interacts with the user, collects necessary information and

feeds the response back to the AR system. The feedback can be reflected through

change in assignment of weights in the MLN template. The weight learning process
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can then be carried out at timely intervals to keep the system updated with the

surrounding changes in the environment and for better performance of the decision-

making system.

7.2.5 Use of Human Posture Data

Combining human posture data from wearables with ambient and object-tagged

sensing for carrying out fine-grained ADL recognition. For instance, it is possible

to detect the bed occupancy through use of a pressure mat sensor. But it is not

possible to infer if the person is sleeping or just sitting on the bed through the

lone usage of the pressure mat sensor. The combined usage of the binary switch

sensor with the accelerometer data from the wearable aids in accurate predic-

tion and handling such situations. Furthermore, C-SPARQL has the capability to

handle streams from heterogeneous sensing sources without suffering performance

degradation.

7.2.6 Testing for a Multi-User Scenario

Both the models described in Chapters 3 and 5 were carried out for a single person

household. Evaluation when more than one person share the smart home was not

considered in this thesis. Additional fine-tuning and experiments could be carried

out to determine the suitability of the developed methods for a multi-user home

environment. A potential idea would be differentiate between individuals through

use of wearables.
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S. Estevez, and J. Rosell-Ferrer, “Unobtrusive activity measurement in patients

with depression: the h4m approach,” Information and Communication Tech-

nologies applied to Mental Health, p. 18.

[7] G. Hussain, M. S. Jabbar, J.-D. Cho, and S. Bae, “Indoor positioning sys-

tem: A new approach based on lstm and two stage activity classification,”

Electronics, vol. 8, no. 4, p. 375, 2019.



Appendix A. Author’s publications 184

[8] D. Moreira, M. Barandas, T. Rocha, P. Alves, R. Santos, R. Leonardo,

P. Vieira, and H. Gamboa, “Human activity recognition for indoor local-

ization using smartphone inertial sensors,” Sensors, vol. 21, no. 18, p. 6316,

2021.

[9] B. Kayalibay, G. Jensen, and P. van der Smagt, “Cnn-based segmentation

of medical imaging data,” arXiv preprint arXiv:1701.03056, 2017.

[10] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: realtime

multi-person 2d pose estimation using part affinity fields,” IEEE transactions

on pattern analysis and machine intelligence, vol. 43, no. 1, pp. 172–186,

2019.

[11] A. Ali and J. K. Aggarwal, “Segmentation and recognition of continuous

human activity,” in Proceedings IEEE Workshop on Detection and Recogni-

tion of Events in Video. IEEE, 2001, pp. 28–35.

[12] B. Fu, N. Damer, F. Kirchbuchner, and A. Kuijper, “Sensing technology for

human activity recognition: A comprehensive survey,” IEEE Access, vol. 8,

pp. 83 791–83 820, 2020.

[13] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning

spatiotemporal features with 3d convolutional networks,” in Proceedings of

the IEEE international conference on computer vision, 2015, pp. 4489–4497.

[14] K. Arning and M. Ziefle, ““get that camera out of my house!” conjoint

measurement of preferences for video-based healthcare monitoring systems

in private and public places,” in International Conference on Smart Homes

and Health Telematics. Springer, 2015, pp. 152–164.

[15] M. R. Mettel, M. Alekseew, C. Stocklöw, and A. Braun, “Designing and eval-
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